
1

GC Summer School, Edinburgh, July 2003

in cooperation with
Hubert Baumeister

UML for Global Computing
Lecture 3: Property-Driven Development

Martin Wirsing

LMU München

M. Wirsing: UML for Global Computing

Contents

Lecture 1: Introducing UML for Mobility
Lecture 2: Refining Mobility Designs
Lecture 3: Property-driven Development of
Mobile Systems

Development process
Case study: A Multi User Dungeon Game

Simple game
Game with logical distribution

M. Wirsing: UML for Global Computing

Property-Driven Design

Joint development of test / specification / model
Executable models

Immediate feedback
Automatic tests

Refinement
Adding details
Refactoring

Tools
Specification: JML / OCL
Tests: Fit and JUnit
Modeling language: UML and Java

M. Wirsing: UML for Global Computing

Property-Driven Development: Process I

Step 1: Requirements Capture
Develop User Stories (functional- and non functional requirements)
Define development strategy

M. Wirsing: UML for Global Computing

Example: MUD Game

Requirements
Multi User Dungeon Game

Player walks through rooms
Meets other human- /non human players

Talks
Fights
Trades

Played via mobile phones
Distribution
Client server vs. Peer to Peer

Functional
Requirements

Non-functional
Requirements

M. Wirsing: UML for Global Computing

Development Strategy for the MUD Game

Game with Physical Distribution

Game with Logical Distribution

Functionality

Detail Fighting

Com
m

un.

...

Simple Game

2

M. Wirsing: UML for Global Computing

Development Strategy for the MUD Game

1 Player
Game

Game with Physical Distribution

Game with Logical Distribution

Functionality

Detail Fighting

Com
m

un.

...

Multi-Player
Game

Handle
Objects

M. Wirsing: UML for Global Computing

Property-Driven Develpmt: Design and Implementation

Modelling / Programming
[Develop UML Behaviour Diagrams;
generate /develop implementations of
behaviour; test and refactor programs]

Use Case Development
[Extract Class Diagram and
Use Cases from User Stories]

Scenario Development
[Develop UML Sequence Diagrams
for Use Case;
generate semi-automatically
tests from Sequence Diagrams]

Property Extraction
[Generalize tests to invariants
and pre-/postconditions in OCL;
translate to JML]

M. Wirsing: UML for Global Computing

Property-Driven Development: Process II
Step 2: Design and Implementation
For each User Story iterate

Step 2.1: Use Case Development
Extract Use Cases from User Stories

Step 2.2 Scenario Development
Develop UML Sequence Diagrams for Use Case
Generate semi-automatically tests from Sequence Diagrams
(generate test templates for FIT or Junit and complete templates with
test data and expected results)

Step 2.3: Property Extraction
Generalize tests to invariants and pre-/postconditions in OCL/MTLA
Translate to JML

Step 2.4: Modelling / Programming
Develop UML Behaviour Diagrams (Sequence-, Activity Diagrams,
and State Charts)
Generate /develop implementations of behaviors
Test and refactor programs

M. Wirsing: UML for Global Computing

Property-Driven Design: Remarks

Class Diagram evolves in parallel with the steps
Different tools / notations for different levels of detail

High level
UML Diagrams

Sequence Diagrams, Activity Diagrams, State Charts, etc.
FIT acceptance tests
OCL / MTLA logic specifications

Low level
Java (or for mobile agents: Jade)
JUnit unit tests
JML logic specifications

M. Wirsing: UML for Global Computing

Difference Use Case / User Story

User Story
Tells an interesting "story" about the system that is relevant
to the customer
Functional- / non-functional requirements
Includes Use Cases; however, usually less formal than use
cases

Use Case
Functionality of the System
Defined by

Pre- / Postconditions
Primary- / Secondary Scenarios.

GC Summer School, Edinburgh, July 2003

Simple Game

3

M. Wirsing: UML for Global Computing

Example: Simple MUD-Game

The Simple MUD Game consists of the User Stories:

1 Player
Game

Multi-Player
Game

Handle
Objects

First iteration: Develop 1 Player Game from User Story
Second iteration: Develop Multi-Player Game from User Story

Extract Class diagram and Use Cases
Develop UML Sequence Diagrams and Acceptance Tests (FIT)
Find Properties: Invariants and Pre-/Post Conditions in OCL and
translate to JML
Develop Implementation (in Java)
Run Acceptance Tests alone and with JML assertions

M. Wirsing: UML for Global Computing

User Story: 1 Player Game

Game Rules
The game has several Levels; each Level contains several Rooms
which may be connected.
The game starts in the Start Room of the lowest Level and ends in the
highest Level.
From the Special Room the player advances to the next Level or the
game is over.
The Player moves through the rooms until he finds the Special Room.
He can see the rooms which are directly connected with its current
room.
The player moves always to a room which is directly connected to its
current room.

0 6
2

1

5

4

3

Start Room Special Room

M. Wirsing: UML for Global Computing

User Story: Multi Player Game

Additional Game Rules
Several players in the game
A player can see the other players in its room

0 6
2

1

5

4

3

Start Room Special Room

M. Wirsing: UML for Global Computing

Design of Class Diagram and Use Cases

Extract classes (without operations) from User Story.
Room, Level, Player, Start Room, Special Room

Define the conceptual mobility structure of the game:
Rooms and Levels are locations;
players are mobile objects

Extract Use Cases from User Story
Look to connected Rooms
Move

Move to next Room
Advance to next level

M. Wirsing: UML for Global Computing

Class Diagram for Multi Player Game

0..1

0..*
connectedTo

0..*

1

0..*0..1

0..1

0..1
nextLevel

1

1

<<location>>
Level

<<mobile object>>
Player

<<location>>
Room

<<location>>
SpecialRoom

<<location>>
StartRoom

currentRoom

M. Wirsing: UML for Global Computing

Use Cases for the Multi-Player Game
MUD

User

advance to
next levelmove

look

look room
exits

move to room

<<include>>

<<include>>

<<include>>

look other players
<<include>>

4

M. Wirsing: UML for Global Computing

Development of Scenarios and Acceptance Tests

Develop Sequence Diagrams for each Use Case
Standard behaviour (moves in black color are possible)
Forbidden behaviour (moves in red color are forbidden!)

Derive Acceptance Test from Sequence Diagram
Create Test Template
Add parameter data and expected results

Extend Class Diagram by the operations of the
Acceptance Test?

M. Wirsing: UML for Global Computing

SDM: Scenario for moveToRoom Use Case

r:StartRoom r1:Room r2:Room

p
User

p

p

r3:Room

Move(r1)

Move(r)

{cannot re-enter the
start room}

Forbidden
Move

M. Wirsing: UML for Global Computing

SDM: Scenario for move Use Case

r:StartRoom r1:Room r2:Room

p
User

p

p

r4:Room

Move(r1)

Move(r2)

{r2 not connected
to r1}

M. Wirsing: UML for Global Computing

SDM: Scenario for move Use Case

r:StartRoom r1:Room r2:Room

p
User

p

p

r4:Room

Move(r1)

Move(r3)

{r4 is connected to
r1}

M. Wirsing: UML for Global Computing

Acceptance Tests with FITNesse

FitNesse is a collaborative testing and documentation
tool developed by R. Martin et al.
It is a Wiki implemented in Java
Test development:

Write acceptance tests in Wiki where every test is shown in
a table
Implement a test fixture in Java for the operations in the test
tables

M. Wirsing: UML for Global Computing

Acceptance
Test for

Move to Next
Room

Create player

Move to Room 1

Forbidden: Move to
Room 2

Forbidden: Move back
to Start Room

Move to Room 4

5

M. Wirsing: UML for Global Computing

Derive Properties

Extend the class diagram by the operations of discovered in the
acceptance test (moveToRoom; . . .)
Derive OCL pre- and post conditions for the operations
Derive OCL invariants

Translate OCL to JML
which automatically creates assertions in the implementation

M. Wirsing: UML for Global Computing

Class Diagram for Multi-Player Game

0..1

0..*
connectedTo

0..*

1

0..*0..1

0..1

0..1
nextLevel

1

1

<<location>>
Level

<<mobile object>>
Player

<<location>>
Room

<<location>>
SpecialRoom

<<location>>
StartRoom

moveToRoom(room)

. . .

pre: currentRoom.connectedTo −>includes(room)
post: currentRoom. = room;
exception:
pre: not(currentRoom.connectedTo −> includes(room))
signals: invalidMoveException;

currentRoom

inv: players −>forAll(player | player.currentRoom = self)

players

inv: currentRoom != null implies
currentRoom.players −>includes(self)

M. Wirsing: UML for Global Computing

Translate OCL Pre/Post Conditons to JML
/*@

public normal_behavior
requires currentRoom().connectedTo().contains(room);

ensures currentRoom() == room;
also
public exceptional_behavior

requires !currentRoom().connectedTo().contains(room);
assignable \nothing;
signals (InvalidMoveException);

@*/

public void moveToRoom(Room room) throws InvalidMoveException …

M. Wirsing: UML for Global Computing

Translate OCL Invariants to JML

Invariante der

Klasse Room
public instance invariant

(\forall Player player;

players().contains(player);

player.currentRoom() == this);

public instance invariant

currentRoom() != null ==>

currentRoom().players().contains(this);

Invariante der

Klasse Player

M. Wirsing: UML for Global Computing

Step 2.4: Modelling / Programming

Develop Activity Diagrams for moveToRoom()
Responsibility centered
Location centered

Generate and test Java implementation
Refactor, if necessary

M. Wirsing: UML for Global Computing

Activity Diagram (RC) for p.moveToRoom(r2)

p:Player

<<move>>
currentRoom := r2

add p to r2 players

throw InvalidMoveException

p:Player
[atLoc = r2]

p:Player
[atLoc = r1]

[not(r1.connectedTo->includes(r2))]

[r1.connectedTo->includes(r2)]

{r2 = currentRoom}

6

M. Wirsing: UML for Global Computing

Acceptance
Test for

Move to Next
Room

TestLookOtherPlayers
shows error:

Forgot to remove p from
the old room

M. Wirsing: UML for Global Computing

Corrected Diagram (RC) for p.moveToRoom(r2)

p:Player

remove p from r1 players

<<move>>
currentRoom := r2

add p to r2 players

throw InvalidMoveException

p:Player
[atLoc = r2]

p:Player
[atLoc = r1]

[not(r1.connectedTo->includes(r2))]

[r1.connectedTo->includes(r2)]

{r2 = currentRoom}

M. Wirsing: UML for Global Computing

Activity Diagram (LC): p.moveToRoom(r2)

r2:Room

p:Player

p:Player

<<move>>
currentRoom := r2

add p to the players of r2

remove p from the players of r1

throw InvalidMoveException
[not(r1. connectedTo->includes(r2))]

[r1. connectedTo->includes(r2)]

r1:Room
{r2 = currentRoom}

M. Wirsing: UML for Global Computing

All tests
are successful!

Acceptance
Test for

Move to Next
Room

M. Wirsing: UML for Global Computing

Acceptance
Test Suite

All tests
are

successful!

GC Summer School, Edinburgh, July 2003

Game with Logical Distribution

7

M. Wirsing: UML for Global Computing

MUD Game with Logical Distribution

User Story: Play the MUD Game with mobile phones:
Add server and mobile phones as locations
Players are located on phones
For playing the game, the current room is moved to the
phone with the player

Rooms and Levels are mobile objects

Property-driven development as before:
Refactor and extend Class Diagram
Develop Sequence Diagrams and tests
Derive OCL Properties
Develop UML Activity Diagram and generate and test
implementation
Refactor, if necessary

M. Wirsing: UML for Global Computing

Refactor and extend Class Diagram

0..*

0..1

0..10..*
inventory

0..1

0..*

0..1
0..*

connectedRooms
0..* 1

0..1

0..1
nextLevel

1

1

<<mobile object>>
Level

<<location>>
Phone

<<mobile object>>
Room

<<location>>
Server

<<mobile object>>
StartRoom

<<mobile object>>
PersonalObject

<<mobile object>>
SpecialRoom

<<mobile object>>
Player

M. Wirsing: UML for Global Computing

Develop SDM: set current room

server: Server

User

currentRoom(sr)

phone

p

p

sr’

<<clone>>

moveTo(phone)

sr

<<create>>
{Start Room sr

located at server}

{current room
located at phone}

{current room is a
clone of sr}

M. Wirsing: UML for Global Computing

Unit Test with JUnit

JUnit is an „Open Source Framework“ for automatising Unit-Tests for
Java.

Developed by Kent Beck and Erich Gamma

Test Case Design:

Generate test template from Sequence Diagram

Add assertions for the checking the current state

M. Wirsing: UML for Global Computing

JUnit Test for „set Current Room“
public void testGameLocation() throws Exception {

Server server = new Server();

Phone phone = new Phone();

Player player = new Player("Hubert");

player.moveTo(phone);

Level game = server.game();

assertTrue(game.startRoom().locatedAt(server));

player.currentRoom(game.startRoom());

assertTrue(player.currentRoom().locatedAt(phone));

assertTrue(player.currentRoom().cloneOf(game.startRoom()));

assertTrue(game.startRoom().locatedAt(server));

}

Constructs clone
of Start Room at

phone

M. Wirsing: UML for Global Computing

Properties: Additional Invariant for Player

0..*

0..10..10..1
0..*

connectedTo
0..* 1

0..1

0..1
nextLevel

1

1

<<mobile object>>
Level

<<location>>
Phone

<<mobile object>>
Room

<<location>>
Server

<<mobile object>>
StartRoom

<<mobile object>>
SpecialRoom

<<mobile object>>
Player

inv: currentRoom != null implies
currentRoom.locatedAt().location()

currentRoom

8

M. Wirsing: UML for Global Computing

Translation to JML

public instance invariant

currentRoom() != null ==>

currentRoom().locatedAt(location());

Additional Invariant of the Player

M. Wirsing: UML for Global Computing

Activity Diagram (LC): MoveTo Method

add p to the players of r3

remove p from the players
of r1

throw InvalidMoveException

currentRoom := r3

r3:Room

:Phone

:Server

r2:Room
<<clone>>

Create a local copy of r2

[!(r1.connectedTo->includes(r2))]
{r2 = currentRoom}

[r1.connectedTo->includes(r2)]

M. Wirsing: UML for Global Computing

JUnit Test Run

All tests
are

successful!

M. Wirsing: UML for Global Computing

User Story „Handle Objects“

User Story
Personal objects like bananas or apples can be in a room
A player can see the objects in the current room, he can use, take or
put down an object

M. Wirsing: UML for Global Computing

Class Diagram for “Handle Object”

0..*

0..1

0..10..*
inventory

0..1

0..*

0..1
0..*

connectedRooms
0..* 1

0..1

0..1
nextLevel

1

1

<<mobile object>>
Level

<<location>>
Phone

<<mobile object>>
Room

<<location>>
Server

<<mobile object>>
StartRoom

<<mobile object>>
PersonalObject

<<mobile object>>
SpecialRoom

<<mobile object>>
Player

M. Wirsing: UML for Global Computing

MUD

User

take object

put down
object

advance to
next level

use object

handle
object

move

look objectslook

look inventory

look other
players

look room
exits

move to room

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

All Use Cases

9

M. Wirsing: UML for Global Computing

Activity Diagram: TakeObjectFromRoom

throw InvalidAction
Exception

add object to inventory

remove object from
current room

remove object from
original room

remove object from
other player current
room

[current room contains object]

[current room does not
contain object]

[all other players notified]
[has other player]

Remove object from
Current Room,

server,
all clones of the

original room

M. Wirsing: UML for Global Computing

Activity Diagram (LC): TakeObjectFromRoom

phone1:Phone phone2:Phone server:Server

throw InvalidAction
Exception

remove object from
current room

add object to inventory

remove object from
original room

remove object from
other player current

room

[current room does not
contain object]

[all other players notified]

[has other player]

[current room contains object]

Remove object from
all clones of the original room, Current Room, server,

M. Wirsing: UML for Global Computing

MUD Game with Physical Distribution

Implement MUD Game over
Platform which supports mobility (e.g. Jade) or
Use RMI and serialization of Java

Problem:
RMI sends remote object with all its associated objects;
Remedy: Use explicit object names to separate objects from
associated objects in order to send only the actual object

M. Wirsing: UML for Global Computing

Summary

Lecture 2: Refinement
Simple syntactic refinement calculi for activity and sequence
diagrams for mobility
MTLA as a formal basis for a UML notion of refinement:
Refinement is implication (with possible hiding of variables or
locations)!

Lecture 1: UML extension with mobility
First approach for explicit modeling of mobility in UML
Simple solution
Used already in industry and for teaching

(DEGAS-Project, SWE-Praktikum)

M. Wirsing: UML for Global Computing

Summary

Lecture 3: Property-Driven Design
Executable models

Immediate feedback
Allows to experiment with the system

Joint development of formal properties and model
Tests
Formal specification

Tests + Refactoring = "Soft"ware

M. Wirsing: UML for Global Computing

Future Work

Test- / Verification Tool for State Charts
Better Integration of Formal Methods
Executable UML

Model-Driven Architecture (MDA)
Problems: User defined translations

