ii(i\!' = — l{i\i
i X Thacice
UML for Global Computing
Lecture 3: Property-Driven Development
Martin Wirsing

LMU Miinchen

in cooperation with
Hubert Baumeister

GC Summer School, Edinburgh, July 2003

Thaice

Contents

= Lecture 1: Introducing UML for Mobility

= Lecture 2: Refining Mobility Designs

= Lecture 3: Property-driven Development of
Mobile Systems
= Development process
= Case study: A Multi User Dungeon Game

= Simple game
= Game with logical distribution

M. Wirsing: UML for Global Computing

Property-Driven Design ?Aﬁﬁ

Joint development of test / specification / model
= Executable models
= Immediate feedback
= Automatic tests
= Refinement
= Adding details
= Refactoring
= Tools
= Specification: JML / OCL
= Tests: Fit and JUnit
= Modeling language: UML and Java

M. Wirsing: UML for Global Computing

IiAGILE

Property-Driven Development: Process I

= Step 1: Requirements Capture
= Develop User Stories (functional- and non functional requirements)

= Define development strategy

M. Wirsing: UML for Global Computing

Example: MUD Game

IiAGILE
Requirements
= Multi User Dungeon Game

Functional
Requirements
= Player walks through rooms

= Meets other human- /non human players
= Talks
« Fights
= Trades

. i Non-functional
= Played via mobile phones Requirements
= Distribution
= Client server vs

M. Wirsing: UML for Global Computing

IiAGILE

Development Strategy for the MUD Game

Detail | [Game with Physical Distribution || _|{ o
] o
Q

| Game with Logical Distribution | = g

S| e
- a =1

| Simple Game | ’

Functionality i

M. Wirsing: UML for Global Computing

IiAGILE

Development Strategy for the MUD Game

Detail | Game with Physical Distribution a1l o
iy e
Q
| Game with Logical Distribution = g
1 Player Multi-Player Handle kg §
Game Game Objects
Functionality

M. Wirsing: UML for Global Computing

Property-Driven Develpmt: Design and Implementatioﬁ/"GILE

Use Case Development
[Extract Class Diagram and
Cases from User Stories]

Property Extraction
[Generalize tests to yariants

and pre-/postconditions¥ OCL;
translate to JML]

M. Wirsing: UML for Global Computing

p UML Sequence Diagrams
se Case;

generate semi-automatically

tests from Sequence Diagrams]

fThaie

Property-Driven Development: Process II

= Step 2: Design and Implementation
For each User Story iterate
= Step 2.1: Use Case Development
= Extract Use Cases from User Stories
= Step 2.2 Scenario Development
= Develop UML Sequence Diagrams for Use Case
= Generate semi-automatically tests from Sequence Diagrams
(generate test templates for FIT or Junit and complete templates with
test data and expected results)
= Step 2.3: Property Extraction
= Generalize tests to invariants and pre-/postconditions in OCL/MTLA
= Translate to JML
= Step 2.4: Modelling / Programming
= Develop UML Behaviour Diagrams (Sequence-, Activity Diagrams,
and State Charts)
= Generate /develop implementations of behaviors

= Test and refactor programs
M. Wirsing: UML for Global Computing

Property-Driven Design: Remarks

IiAGILE

= Class Diagram evolves in parallel with the steps
= Different tools / notations for different levels of detail

= High level

UML Diagrams

Sequence Diagrams, Activity Diagrams, State Charts, etc.

FIT acceptance tests

OCL / MTLA logic specifications

= Low level
Java

JUnit unit tests
JML logic specifications

M. Wirsing: UML for Global Computing

(or for mobile agents: Jade)

IiAGILE

Difference Use Case / User Story

= User Story
Tells an interesting "story" about the system that is relevant
to the customer
Functional- / non-functional requirements
Includes Use Cases; however, usually less formal than use
cases
= Use Case
= Functionality of the System
= Defined by
= Pre- / Postconditions
= Primary- / Secondary Scenarios.

M. Wirsing: UML for Global Computing

GC Summer School, Edinburgh, July 2003

Simple Game

Example: Simple MUD-Game iAG"-E

= The Simple MUD Game consists of the User Stories:

Multi-Player

1 Player
Game

Game

Handle
Objects

= First iteration: Develop 1 Player Game from User Story

= Second iteration: Develop Multi-Player Game from User Story
= Extract Class diagram and Use Cases
= Develop UML Sequence Diagrams and Acceptance Tests (FIT)

= Find Properties: Invariants and Pre-/Post Conditions in OCL and
translate to JML

= Develop Implementation (in Java)
= Run Acceptance Tests alone and with JML assertions

M. Wirsing: UML for Global Computing

User Story: 1 Player Game iAG"-E

Start Room Special Room

Game Rules
= The game has several Levels; each Level contains several Rooms

which may be connected.

= The game starts in the Start Room of the lowest Level and ends in the
highest Level.

= From the Special Room the player advances to the next Level or the
game is over.

= The Player moves through the rooms until he finds the Special Room.
He can see the rooms which are directly connected with its current
room.

= The player moves always to a room which is directly connected to its
current room.

User Story: Multi Player Game iAG"-E

i
Tl

~

Start Room & q%/ Special Room

Additional Game Rules
= Several players in the game
= A player can see the other players in its room

—
—
—

M. Wirsing: UML for Global Computing

Design of Class Diagram and Use Cases Facice

= Extract classes (without operations) from User Story.
= Room, Level, Player, Start Room, Special Room
= Define the conceptual mobility structure of the game:
= Rooms and Levels are locations;
= players are mobile objects
= Extract Use Cases from User Story
= Look to connected Rooms
= Move
= Move to next Room
= Advance to next level

M. Wirsing: UML for Global Computing

Class Diagram for Multi Player Game Fhoice

1 [<<location>> | o.1

Level nextLevel
1 0.1

<<location>> X . <<mobile object>>|
Y Room Player
connectedTo currentRoom

1

StartRoom

SpecialRoom

<<location>> ‘

<<location>> ‘

M. Wirsing: UML for Global Computing

Use Cases for the Multi-Player Game Fhsice

MUD

look room
exits

<<include>>

— ~

User <<mc|nde>&7 _

M. Wirsing: UML for Global Computing

fThaice

Development of Scenarios and Acceptance Tests

= Develop Sequence Diagrams for each Use Case
= Standard behaviour (moves in black color are possible)
= Forbidden behaviour (moves in red color are forbidden!)

= Derive Acceptance Test from Sequence Diagram
= Create Test Template
= Add parameter data and expected results

= Extend Class Diagram by the operations of the

Acceptance Test?

M. Wirsing: UML for Global Computing

Thaice

SDM: Scenario for moveToRoom Use Case

[rstartRoom | [riRoom | [2Room | [3:Room |

o
Move(rl)
Move() 1%]

{cannot re-enter the
start room}

Forbidden
Move

M. Wirsing: UML for Global Computing

IiAGILE

SDM: Scenario for move Use Case

[r:startRoom | [riRoom | [2Room | [raRoom |

Move(rl) %]
.
:
/ H
/
/

{r2 not connected
torl}

User
n

M. Wirsing: UML for Global Computing

IiAGILE

SDM: Scenario for move Use Case

[r:startRoom | [riRoom | [2Room | [rRoom]
User
.
Move(r1)
Move(r3)
74 E
/
/
/
4 is connected to
J oy
M. Wirsing: UML for Global Computing

IiAGILE

Acceptance Tests with FITNesse

= FitNesse is a collaborative testing and documentation
tool developed by R. Martin et al.

= Itis a Wiki implemented in Java

= Test development:

= Write acceptance tests in Wiki where every test is shown in
a table

= Implement a test fixture in Java for the operations in the test
tables

M. Wirsing: UML for Global Computing

|
At the beginrng, the player bs in the sart moms of the fint level and he can move to rooms §snd 2 E

o Action Podure
start_[Gumel prare Create player
action createaper Pl

chock carrent evel |1
check carrent room)

Porwr wee hewve the #1211 room.
it ArtionFiure Move to Room 1

action mewe 0
eherd. urrent room 1

Acceptance
Test for
Move to Next
Room

Let's meve 108 fooms which &

B ActicaFixture Forbidden: Move to
chock cwrrent room |1
Bction move e Room 2

cherk \ewoeption|imvalid Meve
check oarvent room 1

Lex's try i e baeck imio the tart room.
o b ! Forbidden: Move back
her cweption vl Vv to Start Room

cheed wurrent room ||

Let's meve o anather room.

fit. Action Fisture
sow| [oiosive a I move to Room 4

rherk rrvent room

fThaice

Derive Properties

= Extend the class diagram by the operations of discovered in the
acceptance test (moveToRoom; . . .)

= Derive OCL pre- and post conditions for the operations
= Derive OCL invariants

= Translate OCL to JML
which automatically creates assertions in the implementation

M. Wirsing: UML for Global Computing

Thaice

inv: players —>forAll(player | player.currentRoom = self) ‘ inv: currentRoom != null implies

Class Diagram for Multi-Player Game

currentRoom.players —>includes(self)

<<location>>
Level

<<location>>
Room

<<mobile object=>
Player

connectedTo currentRoom players

moveToRoon(r oo
17

<<location>>
SpecialRoom

<<location>>
artRoom

pre: currentRoom.connectedTo —>includes(room)

post: currentRoom. = room;

exception:

pre: not(currentRoom.connectedTo —> includes(room))
signals: invalidMoveException;

M. Wirsing: UML for Global Computing

Translate OCL Pre/Post Conditons to JML iAG"-E

I*@

publ i c normal _behavi or
requires currentRoon().connectedTo(). contains(roon;
ensures currentRoon() == room

al so

public exceptional _behavior
requires !currentRoon(). connectedTo(). contains(roon);
assi gnabl e \ not hi ng;
signal s (InvalidMveException);

@/

public void noveToRoon{ Room roon) throws I|nvalidMVoveException ...

M. Wirsing: UML for Global Computing

Translate OCL Invariants to JML iAG'LE

Invariante der
Klasse Room

public instance invariant
(\forall Player player;
pl ayers().contains(player);

pl ayer.currentRoon{) == this);

Invariante der

4« Klasse Player

public instance invariant
currentRoom() != null ==>
current Roon(). pl ayers().contains(this);

M. Wirsing: UML for Global Computing

IiAGILE

Step 2.4: Modelling / Programming

= Develop Activity Diagrams for moveToRoom()
= Responsibility centered
= Location centered

= Generate and test Java implementation

= Refactor, if necessary

M. Wirsing: UML for Global Computing

Activity Diagram (RC) for p. noveToRoon{(r 2)"AGI

piPlayer

throw Invali oD
[not(r.connectedTo->includes(12))] g

[rl.connected To->includes(2)]

entRoom}

<move>>
oom =12

<
currentR¢

add p to 12 players

M. Wirsing: UML for Global Computing

Acceptance "] DE};?; 3.“ éﬁ :T—::.;mm:}.,,.,.,..,.m Corrected Diagram (RC) for p. moveToRoon{ r 2) AGiLE

Test for 5, G eiad 4 Aeierg D] Netcande O, Tuche 5 Shoptlene | Dlemoechen . MUD D
Move to Next @Tﬂ-l—

Room - 5
Sy Test Suite Results

piPlayer

Throw Inva)
Lz MudOne. [not(r1 .connectedTo->includes(r2))]
@y SuiteSwepTests [r1.connectedTo->includes(12)]

-~

{12 = currentRoom}

el ookComectedRooms

_ <<move>>
currentRoom :=r2

add p to 12 players

il ookimentory

—_s[p:Player
[atLoc = 2]

1

TestLookOtherPlayers
shows error:

Forgot to remove p from
the old room

M. Wirsing: UML for Global Computing

= s Dmmeens Dan Seam fow

Temar

Activity Diagram (LC): p. noveToRoon{(r 2) iAG'LE

L
Acceptance At the Wn—;_u.qt.,u ' i the 127 T o Ehe farst bevel and he can move o roomm Land 1

Test for
t1:Room
Move to Next
ot connectedTo->includes(r2))] Room | All tests
i N we bewve the vtan moom.
throw are successful!
it Action Fivmure
[r1. connectedTo->includes(r2)] sheck sufrent oo L
ok mand.
remove p from the players of rl |
t
|
H <<move>> O\ ___________________
””””””””” currentRoom := 12 |
'
T
r2:Room !
add p to the players of 12
it Actiom Fisture
[ehock urent room 4
£ X :
M. Wirsing: UML for GlobaTComputing M. Wirsing: UM =24 LEroniTage] Lseren o] i
O)t v . =

- Dobs Besteien feoegen [ehe Lesssmches fme Foroie bl

o Q,Q 0 @ (D [oabn #5vhtion Skt s Pt

o By Gllead ety B Netacade O Surte 7 Shoolimiems (L " MUD G
;',w-l—

= Test Suite Results

MudOne.

L -
& SuiteSwepTests

Test Suite

Game with Logical Distribution

elookConnectedR ooms

All tests

el ooklnventory

are
successful!

M. Wirsing: UML for Global Computing GC Summer School, Edinburgh, July 2003

MUD Game with Logical Distribution faeice

= User Story: Play the MUD Game with mobile phones:
= Add server and mobile phones as locations
= Players are located on phones

= For playing the game, the current room is moved to the
phone with the player

mmmmd> Rooms and Levels are mobile objects

= Property-driven development as before:
Refactor and extend Class Diagram

Develop Sequence Diagrams and tests

Derive OCL Properties

= Develop UML Activity Diagram and generate and test
implementation
= Refactor, if necessary

M. Wirsing: UML for Global Computing

Refactor and extend Class Diagram Fhoice

<<location=> <<mobile object=> 0.# 0.1 [<<mobile object=>
Phone PersonalObject ventory Player
0F 0
<<location=>
Server
0.1 | 0.1
<<mobile object=> 0.* 1 [<<mobile object>> 0.1
connectedRooms Level nextLevel
T [On]

<<mobile object>> <<mobile object>> |
SpecialRoom StartRoom

M. Wirsing: UML for Global Computing

Develop SDM: set current room Fhoice
[phone | [server: Server |
User
{Start Room sr
moveTo(phone) | P _ o Jocated at server}
currentRoom(sr) P -

<<clone>>

{current room
llocated at phone}

{current room is a
clone of sr}

M. Wirsing: UML for Global Computing

Unit Test with JUnit Ii/’\GILE

= JUnit is an ,Open Source Framework" for automatising Unit-Tests for
Java.

= Developed by Kent Beck and Erich Gamma
= Test Case Design:
= Generate test template from Sequence Diagram

= Add assertions for the checking the current state

M. Wirsing: UML for Global Computing

JUnit Test for ,set Current Room" iAG"-E

public void testGanmeLocation() throws Exception {
Server server = new Server();
Phone phone = new Phone();

Pl ayer player = new Player("Hubert");
pl ayer . noveTo(phone);

Level gane = server.gane();

Constructs clone
of Start Room at
phone

assert True(game. start Roon() . | ocat edAt (server));

pl ayer. current Roon{ gane. startRoon());
assert True(pl ayer. current Roon(). | ocat edAt (phone));

assert True(pl ayer. current Roon() . cl oneCf (game. start Roon()));
assert True(game. start Roon() . | ocat edAt (server));

M. Wirsing: UML for Global Computing

Properties: Additional Invariant for Player Fhsice

tRoom != null impli

<<location>>
Server

o1 0.1 0.1 |cumentRoom
0. mobile object

0.5 1 ‘maobile object>>
connectedTo Room Lev

T 0.1

mobile abject>> mobile abject>> 1
SpecialRoom StartRoom

0.1
nextLevel

M. Wirsing: UML for Global Computing

Translation to JML IiAGILE

Additional Invariant of the Player

public instance invariant
currentRoon() != null ==>
current Roon() .| ocat edAt (1 ocation());

M. Wirsing: UML for Global Computing

Activity Diagram (LC): MoveTo Method fheice

:Phone

{12 = currentRoom}
[!(r].connectedTo->includes(r2))]

throw

[rl.connected To->includes(r2)] %

Temove p from the players
ofrl

<<clone>>
Create a local copy of 12

currentRoom :=r3

add p to the players of r3

D

M. Wirsing: UML for Global Compufing

JUnit Test Run IiAG'LE

_15]x]
¥ Types v X || 2% Members L o ow o x
9 Allests ‘gF import declarations =l
GameServerTest <5: BANANA
3 MoLocsionTest ©° GameServe:Test(Sting)
@ chooseElementF rom(Collection)
@ testlevelRoomsContainStartRoom|) [
@ testLevellocation(]
® testGameLocation)
o testMoveOnePlayerl ocationl) =
All tests BE Junit (Gar o & x

are —

successful!

Runs: 12412 H Emors: 01 B Failures: 0

I cloneOJ nﬁrames}gﬁmeramm

M. Wirsing: UML for Global Computing

User Story ,Handle Objects" iAG'LE

= User Story
= Personal objects like bananas or apples can be in a room
= A player can see the objects in the current room, he can use, take or
put down an object

M. Wirsing: UML for Global Computing

Class Diagram for “Handle Object” Fhoice

<<mabile object>>
PersonalObject

<<location>>
Phone

<<mobile object=> ‘

i / ’
0.1 0.1
<<mobile object=> 0.* 1 [<=mobile object=> 0.1
connectedRooms Room Level nextLevel
T

0.1

<<mobile object=>
SpecialRoom

<<mobile object=> |
StartRoom

M. Wirsing: UML for Global Computing

All Use Cases iAG"-E

MUD

look room
exits

<<include>>

% _‘sgmmi?z“>
:cr\ -m, —=Zinclude>> _ _

handle
St <
! .
L__ _=sinclude=> _ _ _.

M. Wirsing: UML for Global Comp

Activity Diagram: TakeObjectFromRoom Fhoite

[current room does not

contain object] /0w TvalidAction
Exception

[current room contains object]

add object to inventory

remove object from
current room

remove object from
original room

Remove object from

Current Room,

server,

all clones of the
original room

Activity Diagram (LC): TakeObjectFromRoom iAG"-E

phonel :Phone phone2:Phone server:Server

current room does not
contain 0bject] fhrow TvalidAction
Xeeption

jcurrent room contains object]

/2dd abject to inventory.

‘femove object from
current room

object from
original room

X

[all other players notified)
Temove object from
other player current

>®
1l other players notified] has other player]
[has other player] E 3 t
rc?:ovclobjcct from Remove object from \
oy player curtent all clones of the original room, Current Room, server,
M. Wirsing: UML for Global Computing IS m o
MUD Game with Physical Distribution Thie Summary Fhoice

Implement MUD Game over
= Platform which supports mobility (e.g. Jade) or
= Use RMI and serialization of Java
= Problem:
RMI sends remote object with all its associated objects;

= Remedy: Use explicit object names to separate objects from
associated objects in order to send only the actual object

= Lecture 1: UML extension with mobility
= First approach for explicit modeling of mobility in UML
= Simple solution
= Used already in industry and for teaching
(DEGAS-Project, SWE-Praktikum)

= Lecture 2: Refinement

= Simple syntactic refinement calculi for activity and sequence
diagrams for mobility

= MTLA as a formal basis for a UML notion of refinement:
Refinement is implication (with possible hiding of variables or

locations)!
M. Wirsing: UML for Global Computing M. Wirsing: UML for Global Computing
Summary fhoice Future Work Thcite

= Lecture 3: Property-Driven Design

= Executable models
» Immediate feedback
= Allows to experiment with the system

= Joint development of formal properties and model
« Tests
= Formal specification

= Tests + Refactoring = "Soft"ware

M. Wirsing: UML for Global Computing

= Test- / Verification Tool for State Charts
= Better Integration of Formal Methods
= Executable UML

= Model-Driven Architecture (MDA)
= Problems: User defined translations

M. Wirsing: UML for Global Computing

