Privacy and Access Control

L S

Rocco De Nicola
Dip. Sistemi e Informatica
Universita di Firenze

denicola@dsi.unifi.it

i Outline

= Motivations
= Privacy in DistributedTuple Spaces:

= Extending Linda with primitives for privacy in
distributed and mobile applications

= KriptoKlava
= Access Control via Typing
= U-Klaim
= Types for pu-Klaim

R. De Nicola PrivateKlaim@Global Computing

Motivation

Process mobility poses to a lot of security problems

= secrecy and integrity of transmitted data and
program code

= Malicious agents can attempt to access/modify
private information of the nodes hosting them

= Malicious hosts can try to compromise agent's
integrity/secrecy

Several programming/process languages with code
mobility come equipped with security mechanisms (e.g.
type systems, mechanisms for data/control flow
analysis)

R. De Nicola PrivateKlaim@Global Computing 3

Attacks

= Communication channels
= passive (e.g. traffic analysis)
= active (e.g. message modifications/forging)

m Hosts
= modification of host resources and data
= denial of service

= Mobile Agents
= modification of agent code
= leak of sensible data

Ty]]ovlcal defences: Cryptography, Access Control, Activity
onitoring, ... Types

R. De Nicola PrivateKlaim@Global Computing

i Our Defenses

s Cryptography
= Types

R. De Nicola PrivateKlaim@Global Computing

i Security Problems

» Linda provides no access protection to a
tuple space

= No way to determine the issuer of an
operation to the tuple space

= A process may retrieve/remove data
that do not belong to it

= Shared data can be easily modified and
corrupted

R. De Nicola PrivateKlaim@Global Computing 6

i Our Pro_posal

= Extend Linda operations with cryptography:
= Tuples can contain encrypted data
= New Primitives for encryption/decryption

] Aims:

= Change as little as possible the original Linda
model

= Make it Suitable for distributed application and
mobile agent based application

R. De Nicola PrivateKlaim@Global Computing 7

i Privacy, not Security

= Our principal aim is not to avoid that wrong
data be retrieved

= Our aim is that even if data is eavesdropped
or stolen, still it cannot be read

s A sort of PGP for Linda
s Smooth extension of Linda

= The impact on the Linda model is minimal
= Previous applications continue to work

R. De Nicola PrivateKlaim@Global Computing 8

i Cryptography & Tuple Spaces

= Operations for inserting/retrieving

encrypted tuples to/trom tuple spaces
(ink, readk, outk)

= Operations for encrypting/decrypting
tuple contents (encode & decode)

= Operations for signing/verifying mobile
agent code

R. De Nicola PrivateKlaim@Global Computing 9

i ink & readk

1. look for and possibly retrieve a matching
tuple,

2. attempt a decryption of the encrypted fields
of the retrieved tuple

3. if the decryption fails:

1. if the operation was an ink then put the retrieved
tuple back in the tuple space,

> look for alternative matching tuples,

4. if all these attempts fail, then block until
another matching tuple is available.

R. De Nicola PrivateKlaim@Global Computing 10

i Extended Pattern Matching

= The original pattern matching has to be
extended

= Two stages pattern matching;:

= In the first stage an encrypted field is seen as an
ordinary field with the type “encrypted” and it
can match only another “encrypted” field

= In the second stage decryption takes place, and a
further matching is performed with the decrypted
clear-text fields

R. De Nicola PrivateKlaim@Global Computing 11

i Keys and Mobile Agents

= symmetric and asymmetric key
encryption techniques rely on the
secrecy of private keys

= It is important that mobile code and
mobile agents do not carry private keys
when migrating to remote sites

R. De Nicola PrivateKlaim@Global Computing 12

i Finer Grain Mechanisms

= Explicit operations: enc & dec acting on
single tuple fields

= Mobile agents retrieve encrypted tuples with
standard Linda operations (e.g. without
decrypting them)

= Actual decryption will take place only at the
home site (where the private key is stored) by
stationary agents

= Wrong tuples retrieved by mistake have to be
explicitly put back

R. De Nicola PrivateKlaim@Global Computing 13

i Information Retrieval Agents

= Mobile agents can safely transport and
use public keys also on remote sites

= Intermediate results can be encrypted
so that they cannot be eavesdropped by
other sites

s They can be decrypted only by the
home site

R. De Nicola PrivateKlaim@Global Computing 14

i CryptoKlava

= A subpackage of Klava providing these
new modular extensions

= Based on Sun JCE (Java Cryptography
Extension) providing basic interfaces
and API for encryption

s Extended classes and extended
operations

R. De Nicola PrivateKlaim@Global Computing 15

Types as security tools

Type systems have been successfully used to ensure
type safety of programs since a long time to avoid run-
time errors, and guarantee tha data be used consistently
with the espected operations.

Recently, work has been done on exploring and
designing type systems for security:
= well-typed Java programs (and the corresponding verified

bytecode) will never compromise the integrity of certain
data

= Type systems for Dn-calculus (Hennessy-Riely, Yoshida-
Hennessy), and (variants of) Ambient calculus (Cardelli-
Ghelli-Gordon) have been proposed to control interaction

R. De Nicola PrivateKlaim@Global Computing 16

Type for access and code mobility control

= Models for Access Control
= mechanisms to specify policies for access control
= mechanisms to enforce such policies

= Capability-based Type System [DFPV - TCS2000]

= Types as specification tool

= to express control policies of nodes relatively to resource access and
code mobility)

= to abstract process intentions (read, out, spawn, ...) relatively to the
ditferent localities they interact with or migrate to
= (static and dynamic) type checking as enforcement
mechanism
= only intentions that match security policies are allowed}

= only processes whose types comply with network nodes security
policies are admissible (well-typed-ness)

R. De Nicola PrivateKlaim@Global Computing 17

i T'ypes and Security Policies

= Each node, that indicates a physical machine,
or a logical partition has an associated type:

[:OP
= Type & describes the security policy of the

node, i.e. what process P may do when
running at site /.

= We have capabilities/privileges in
correspondence of each process action

{i, 7,0, e n}

R. De Nicola PrivateKlaim@Global Computing 18

i Types and Security Policies

= A type is a partial function

0 . Loc — T1
Where Loc indicates the set of localities and [
is a collection of non-empty set of capabilities.

Examples
« LEGAL [::[li={i0}] in(. .) @Iq.nil

s NOT LEGAL [::lli—=1i0h-] eval(...)®@I nil

R. De Nicola PrivateKlaim@Global Computing 19

i The role of ypes

= The type of a node is set by a net coordinator and determines
the access policy of the node in terms of access rights;

= Type inference permits determining processes intentions

= Type checking guarantees that only processes whose intentions
match the rights granted by the coordinators are allowed to
proceed.

= Example: privilege [I’ — {e}] in the type of locality [will
enable processes running at / to perform an eval actions over /"

R. De Nicola PrivateKlaim@Global Computing 20

The role of types

Apart from occurring in the specification of a node,
type related information are introduced in two other
syntactic constructs:

= in action newloc(u :0) where 0 specifies the security policy
of the new node,

= in templates of formal parameter !u:m where 7 specifies the
access rights corresponding to the operations that the
receiving process wants to perform at u.

In both cases, the type information is not strictly
necessary: it increases the flexibility of newloc
(otherwise, some kind of "default policy' should be
assigned to the newly created node) and permits a
simpler static type checking.

R. De Nicola PrivateKlaim@Global Computing 21

w_Klaim: A core calculus for Klaim

= We take away :
= distinction between logical and physical localities/addresses
= allocation environments
= higher order communication
= types with global information

= For types, we have:

= types with only local information
privilege exchanges
dynamic modifications of security policies
efficient type handling
simpler semantics and type systems

R. De Nicola PrivateKlaim@Global Computing 22

* n_Klaim syntax

ts
N == 0 | 1P | Ny N
m Processes
P = nil \ a.P \ Py | P \ A (A2 P
s Actions

a = read(T)®/ \ in(T)@/¢ \ out(t)@/
‘ eval(P)©@/ | newloc(u : 9)

R. De Nicola PrivateKlaim@Global Computing 23

i Tuples and Templates

"emplates T = F |F,T
Tem.Fields F = f |1z |!u:7T
Tuples t = f | f,t
Tuple Fields Ffou= e \ 0w
EXxpressions e = V ‘ x |

R. De Nicola PrivateKlaim@Global Computing 24

i Matching Rules

(M1) match(V,V) = ¢ (M5) match(1z, V) = [V/z]
(M3) match(l,l) = ¢ (Mg) match(tu,l) = [Yu]
match(F, f) = o1 match(T,t) = o5
(Ms)

match((F,T) , (f,t)) =o01009

R. De Nicola PrivateKlaim@Global Computing 25

i Structural Congruence

(Com) Ni || No=DNo || Ny
(Assoc) (N1 || N2) || N3 =Ny || (N2 || N3)
(Abs) [:: P =1:.:(P]|nil)
(Prinv) [::A=1l.:P if A2 P
(Clone) [©::(Pi|Po) =1l P |l l:: P>

R. De Nicola PrivateKlaim@Global Computing 26

Untyped p-Klaim Semantics

[t] = et

/
I::out(t)@!'.P || 1:: P »~ ollet,l) |

2P| 1P || U (et)
/
I::eval(Q)@I'.P | I':: P ~ o)y p | P|Q
match([T],et) = o

i(l,et,l)

I:in(T)@I'.P || I':: (et) > > 1 Po || U': :nil
match([T],et) = o

/
I::read(T)QU.P || I':: (et) > r(l,et,l)

¢ L

s Po || U2 : (et)

n(la_al/)

L+ 1::newloc(u).P > LU{l'} Fil:: P[] || U : nil

R. De Nicola PrivateKlaim@Global Computing

i T'yped p-Klaim Semantics

= We consider now a few of the previous
rules by taking into account types.

= We ignore labels, these are not needed in
this framework. Labelled semantics is
useful for open systems and for logical
specification.

» Notation §|- P indicates that process P,
located at I complies with the restrictions
imposed by type o.

= A netis well typed if each node, say |,
complies with ot P

R. De Nicola PrivateKlaim@Global Computing

i Eval
't @

I 9eval(Q)@U.P || U P = 1::9P || U9 P|Q

Process Q must be dynamically type checked against
the policy of node I, this is necessary since no a-priori
knowledge of the target node policy can be assumed, no
static checking performed in / over the spawned process
can be useful.

R. De Nicola PrivateKlaim@Global Computing 29

newloc

' ¢ L

LF 12 O newloc(u: §').P —— LU {I'} F 12 5= pig] || 9T/ pil

where 81[32] denotes the pointwise union of functions d:and 62.

It is assumed that the creating node has over the created node all the
privileges it has on itself.

The check that 0’ = 0[u — 6(D)] (ie. the specified access]%olicy o' is
in agreement with the access policy o of the node executing the
operation extended with the ability of performing over [” all the
operations allowed locally) is left to static type inference.

This check prevents a malicious node [from forging capabilities b
creating a new node with more powerful privileges and then sendi %
malicious process that takes advantage of capabilities not owned by [.

R. De Nicola PrivateKlaim@Global Computing

30

1n

matchs([T],t) = o

0in(TY@U.P || U : (t) —— 1::° Po || I': : nil

The new pattern matching function match;is defined like match
but it also verifies that process Pc does not perform illegal actions
w.r.t. 8. Because of the static inference, the definition of match;
simply requires the following change to untyped match.

T C §(1)

matchs(Vw: 7, ") = [V/u]

R. De Nicola PrivateKlaim@Global Computing 31

i Type Soundness

= processes running in well-typed nets do
not attempt to execute actions that are
not allowed by the capabilities they own
(type safety)

= The above property is preserved along
reductions (subject reduction).

R. De Nicola PrivateKlaim@Global Computing 32

i Dynamic security policies

= One of our goal is to enable dynamic
modifications of security policies. We want to
permit transition like the following where

11 2= in(lu : {0})@ls.0ut(100)@u.nil |
I5 =10k] qut(1)@ls.nil

. Out& ln\
f /f ’

11 :ll2={ihi={0}] out(100)@L.nil |
I [la—{o},-.] il

l. grants l1 the capability of performing an out at L.

= Problem: How to guarantee that capabilities
are not forged?

R. De Nicola PrivateKlaim@Global Computing

i Exchanging Privileges - 1

1. out: each locality is annotated with the capabilities
passed along with it

Ny 2 1p =G in(iy {o})®@l5.0ut(100)@u.nil ||
I % out(l : [I1 — {o,e},l3 — {i}])@l5.nil

2. When out is performed it is checked that the
capabilities passed along with the localities be
really owned by the node performing the out

Ny =29 gy {3 jn(lu: {0})@ls.0ut(100)@u.nil |
I % tuple(l : [l1 — {o,e},l3 — {i}])
only if {o,e,i} C §(1)

R. De Nicola PrivateKlaim@Global Computing 34

i Exchanging Privileges - 2

3. When a read/in is performed (communication takes
place) it is verified that the accessed tuple can pass all
the capabilities required in the template to the locality
performing the read/in

11 2= in(lu : {o})®@ls.0ut(100)@u.nil ||
I ::% tuple(l : [I1 — {o,e},lz3 — {i}])

[:lle—lihi=1{o}] out(100)®@l.nil |

[> 110 il

because {0} C {o,e}

R. De Nicola PrivateKlaim@Global Computing 35

i Additional Information

= More in a paper just presented at
ICALP by D. Gorla and R. Pugliese.

R. De Nicola PrivateKlaim@Global Computing

36

i Klaim site

http:/music.dsi.unifi.it

= A few papers

s Current Implementation:
= KriptoKlava
= Type Checker for Access Control (?)

R. De Nicola PrivateKlaim@Global Computing

37

