Paper: A coinduction principle for recursive data types based on bisimulation (at LICS 1993)
Authors: Marcelo P. FioreAbstract
The concept of bisimulation from concurrency theory is used to reason about recursively defined data types. From two strong-extensionality theorems stating that the equality (resp. inequality) relation is maximal among all bisimulations, a proof principle for the final coalgebra of an endofunctor on a category of data types (resp. domains) is obtained. As an application of the theory developed, an internal full abstraction result for the canonical model of the untyped call-by-value λ-calculus is proved. The operations notion of bisimulation and the denotational notion of final semantics are related by means of conditions under which both coincide
BibTeX
@InProceedings{Fiore-Acoinductionprincip,
author = {Marcelo P. Fiore},
title = {A coinduction principle for recursive data types based on bisimulation },
booktitle = {Proceedings of the Eighth Annual IEEE Symp. on Logic in Computer Science, {LICS} 1993},
year = 1993,
editor = {Moshe Vardi},
month = {June},
pages = {110--119},
location = {Montreal, Canada},
publisher = {IEEE Computer Society Press}
}
