Paper: Zero-one laws for Gilbert random graphs (at LICS 1996)
Authors: Gregory .L. McColmAbstract
We look at a competitor of the Erdos-Renyi models of random graphs, one proposed by E. Gilbert (1961): given /spl delta/>0 and a metric space X of diameter >/spl delta/, scatter n vertices at random on X and connect those of distance apart: we get a random graph G/sub n,/spl delta///sup X/. Question: for fixed X, /spl delta/, do we have 0-1 laws for FO logic? We prove that this is true if X is a circle.
BibTeX
@InProceedings{McColm-ZeroonelawsforGilbe,
author = {Gregory .L. McColm},
title = {Zero-one laws for Gilbert random graphs},
booktitle = {Proceedings of the Eleventh Annual IEEE Symp. on Logic in Computer Science, {LICS} 1996},
year = 1996,
editor = {Edmund M. Clarke},
month = {July},
pages = {360-369},
location = {New Brunswick, NJ, USA},
publisher = {IEEE Computer Society Press}
}
