Calculi for Access Control

Martin Abadi

University of California, Santa Cruz
and
Microsoft Research, Silicon Valley

The access control model

* Elements:
Objects or resources
Requests
Sources for requests, called principals
A reference monitor to decide on requests

o Do Reference| _| Opiect
Principal monitor J

Source Request Guard Resource

Authentication vs. access control

* Access control (authorization):
Is principal A trusted on statement s?
If Arequests s, is s granted?

* Authentication:
Who says s?

An access control matrix

[Lampson, 1971]

objects file1 file2 file3 filed
principals
user1 rwx rw r X
user2 r r X
user3 r r X

Access control in current practice

* Access control is pervasive
applications
virtual machines
operating systems
firewalls
doors

* Access control seems difficult to get right.
* Distributed systems make it harder.

General theories and systems

* QOver the years, there have been many theories
and systems for access control.
Logics
Languages
Infrastructures (e.g., PKIs)
Architectures

* They often aim to explain, organize, and unify
access control.

An approach

* A notation for representing principals and their
statements, and perhaps more:
objects and operations,
trust,
channels,

e Derivation rules

A calculus for access control
[Abadi, Burrows, Lampson, and Plotkin, 1993]

* A simple notation for assertions
A says s
A speaks for B (sometimes written A = B)

* With logical rules
— Asays (s >t) > (Asays s) > (Asays t)
If — s then - Asayss.
— A speaks for B — (A says s) > (B says s)
— A speaks for A
— A speaks for B A B speaks for C — A speaks for C

An example

* Let good-to-delete-file1 be a proposition.
Let B controls s stand for
(Bsayss)—>s
* Assume that
B controls (A speaks for B)
B controls good-to-delete-file1
B says (A speaks for B)
A says good-to-delete-file1

* We can derive:
B says good-to-delete-file1
good-to-delete-file1

Another example

* Let good-to-delete-file2 be a proposition too.

* Assume that
B controls (A speaks for B)
B controls good-to-delete-file1
B says (A speaks for B)
A says (good-to-delete-file1 A good-to-delete-file2)

* We can derive:
B says good-to-delete-file1
good-to-delete-file1

10

Says

Says represents
communication

statement statement
across contexts.
Says abstracts from L
the details of Channel Certificate
I I statement statement
authentication. (from: context 1) (signed:contextl)

contextl says
statement

contextl says
statement

Choosing axioms

* Standard modal logic?
(As above.)

e Less?

Treat says “syntactically”, with no special rules
(Halpern and van der Meyden, 2001)

12

Choosing axioms (cont.)

* More?

— (A says (B speaks for A)) — (B speaks for A)
The “hand-off axiom”;
In other words, A controls (B speaks for A).

—s — (Asays s)

(Lampson, 1987; Appel and Felten, 1999)
but then

— (A says s) > s v (A says false)

13

Semantics

* Following standard semantics of modal logics,
a principal may be mapped to a binary relation
on possible worlds.

A says s holds at world w
Iff
s holds at world w’
for every w’ such that w Aw’

* This is formally viable, also for richer logics.

* |t does not give much insight on the meaning of
authority, but it is sometimes useful.

14

Proof strategies

* Style of proofs:
Hilbert systems

Tableaux
(Massacci, 1997)

* Proof distribution:
Proofs done at reference monitors

Partial proofs provided by clients
(Wobber et al., 1994; Appel and Felten, 1999)

With certificates pulled or pushed

15

More principals

* Compound principals represent a richer class of
sources for requests:

AAB Alice and Bob (cosigning)

A quoting B server.uxyz.edu quoting Alice
Afor B server.uxyz.edu for Alice
Aas R Alice as Reviewer

A A B speaks for A, etc.

* Groups represent collections of principals, and
may be treated as principals themselves.

* Programs may be treated as roles.

16

Applications (1): Security in an
operating system wobber et al., 1994

(SRC—node as Accounting for by

1 oo
may read o
°<fle foo
WS @S Taos = SRC-node

Accounting or Cl pr | NFS Server
- O
WS aS Taos as % .
O Accounting for bwl —
Q4 Taos hode K C bsd 4.3
WS aS Taos e e
WS as Taos for pwl
/' \\ Workstation Ky Server
-1 hardware
bl Kbwi hardware ;s m

Kbwi = burl Kiws = WS channel

17

Applications (2): An account of
security in JVMS [waliach and Felten, 1998]

I|_'.-

enablePrivilege T1)

Figura 2: Example of interaction between stack frameas. Each rectangle reprasents a stack frame. Each
stack frame is labzlaed with its name. In this example, 2ach stack frame makes cne enablePrivilegs ()

ofF disablePrivilege () call, which is also writtan inside tha rectangle. Below each frame is written

QT

enablePrivilege T2)

Frsays ORI
i)

disablePrivilege 1)

—tee ¢

F2says Ow T2

enabkPrivikge(T2)

its balief set after its callte enablebrivilegs(] ordisablelrivilegsl).

Fa| F2says OriT2)
i T2)

18

Applications (3): A Web access
control SyStem [Bauer, Schneider, and Felten, 2002]

Mlce '.I:' Hequest midetarm. html Baob

. . hallenze L2

= Challeng '-5-

(3 Reguest ACL

35 -~=i} 'I"-'-":—'i-='l'~ll.'1.':-éllll":5-
I:i__.:l Prooal

Cert. Authority
| Kegisirar)

19

Applications (4): The Grey system

[Bauer, Reiter, et al., 20095]

Converts a cell-phone into a tool for delegating
and exercising authority.

Uses cell phones to replace physical locks and
Key systems.

mplemented in part of CMU.

With access control based on logic and
distributed proofs.

20

STANFORD UNIVERSIT (]amgg]e Welln JINSZD L
D208

Phone discovers door D
>
0
To prove: D

Distributed Proving

Jon

| can prove that with any of
1) Jon speaksfor Mike.Student

2) Jon speaksfor Mike.Admin
3) Jon speaksfor Mike.Wife Mike says
4) Delegates (Mike, Jon, Goal (D208 .open)

D208 . open) \§>1\>

\/ Hmm, | can’t prove

0o that. I'll ask Mike's
Mike's - lease help ohone for help.

phone

-

Jon speaksfor
A Mike ..Student Proof of:

Jon says Goal (D208.open) —

Mike says Goal (D208.open)

> Proof of:
Mike sayis
Goal(D208.opena

Further applications:
Other languages and systems

Several languages rely on logics for access
control and on logic programming:

e D1LP and RT (i, mitchell, et al]
e SD3 pim]
* Binder [peTrevilie]

“speaks for” plays a role in other systems:
e SDSI and SPKI [Lampson and Rivest; Ellison et al.]
* Plan 9 [pike et al.]

22

Some issues

* ltis easy to add constructs and axioms, but
sometimes difficult to decide which are right.

* Explicit representations for proofs are useful.

* Even with logic, access control typically does
not provide end-to-end guarantees
(e.g., the absence of flows of information).

23

The Dependency Core Calculus
(DCC) [Abadi, Banerjee, Heintze, and Riecke, 1999]

* A minimal but expressive calculus in which the
types capture dependencies.

* A foundation for some static program analyses:
Information-flow control,
binding-time analysis,
slicing,

* Based on the computational lambda calculus.

24

DCC basics

* Let L be a lattice.
« For eachtype sandeachlinL, there is a type T,(s).

« Ifl E k then terms of type T, (t) may depend on terms of
type T(s).

For instance:

e The lattice may have two elements Public and Secret,
with Public E Secret.

o To,,i(int)and T _..(bool) would be two types.

« Then DCC guarantees that outputs of type T, ,,.(int) do
not depend on inputs of type T.._..(bool).

Secret

25

A new look at DCC

* We read DCC as a logic,
via the Curry-Howard isomorphism.
Types are propositions.
Programs are proofs.

* We consider significant but routine variations on
the original DCC:
We remove fixpoints and related constructs.
We add polymorphism in the style of System F.

 We write A says s instead of T (s).

* We write A speaks for B as an abbreviation for
VX. (Asays X — B says X).

26

A new look at DCC (cont.)

* The result is a logic for access control, with
some principles and some useful theorems.

* The logic is intuitionistic
(like a recent system by Garg and Pfenning).
* Terms are proofs to be used in access control.

27

Simply Typed DCC: Syntax

The types of Simply Typed DCC are given by
the grammar:

sii=true|(sVs)|(sAs)|(s—s)]| Asayss

where A ranges over elements of a lattice C,
equipped with a partial order L.

28

Simply Typed DCC: Protected types

If AC B, then B says s is protected at level A.
true IS protected at level A.

If s and ¢ are protected at level A, then (s At)
is protected at level A.

If t is protected at level A, then B says t is
protected at level A.

If ¢t is protected at level A, then (s — t) is
protected at level A.

(It will turn out that, up to equivalence, the
types protected at level A are of the form A says t.)

29

Simply Typed DCC: Typing rules

* The typing rules are those of simply typed
A-calculus plus:

[Fe:s

FF(nyge): Asayss

[+~e:Asayss T[,x:shke it

F T bindr —eind 7 t protected at level A

30

F,z:s,"Fx:s () : true

L,z:s1Fe:so FFe:(sy—s0) T[TFe:sg

T (Ax:s1.e): (s — so) CF(eé): so

[(Feq:sq [Feo:so

M F(e1,e2) : (51 A s2)

FFe:(s1Aso) FFe:(s1Aso)
M+ (projji e) : s1 [+ (projoe) : so
[(Fe:sy [(Fe:so
[+ (injie) : (s1V s2) [+ (injoe) : (s1V s2)

FFe:(s1Vso) Lx:s1Fe1:s Lz :soFeo:s

[(case e of injq(x). e1 | injyo(x). €2) © s

[(Fe:@s
FF(nge): Asayss

. - /.
(FeiAsayss [laiske 't t protected at level A

+bindz =eine :t .

Simply Typed DCC: Logical reading

* Reading the typing rules as a logic can be
simply a matter of omitting terms...

32

,s,MFs [+ true

[, s1 F 5o M (s1 — s9) M+ sq
M+ (s1 — s9) [+ so
[+ sq [+ so
M (s1 A so)
|_|—(81/\82) rl—(sl/\SQ)
[+ sq [+ so
[+ sq [+ so
|_|—(81\/82) |—|—(81\/82)
M+ (s1Vso) [,s1F s L so ks
[F s
[F s
[+ Asays s

[HAsayss [,skt

F e t protected at level A

33

Polymorphic DCC

* Polymorphic DCC is obtained by adding type
variables and universal quantification,
with the standard rules.

[, X Fe:@s
T (AX.e):VX.s

[[Fe:VX.s .
T (et) - 5[t/ X] (t well-formed in IN)

* The definition of “protected” is extended:

If t is protected at level A,
then VX.t is protected at level A.

Semantics

* Operational semantics (one possibility):
usual A-calculus rules, plus
the new rule
bind x = (4 e) in e’ reduces to €'[e/x]

(Zdancewic recently checked subject reduction and
progress properties for this semantics in Twelf.)

* Denotational semantics? (\WWe have some
pieces, but more could be done.)

35

DCC theorems

* We can rederive the core of the previous logics:
— Asays (s > t) > (Asays s) - (A says t)
If — s then - Asayss.
— A speaks for B — (A says s) > (B says s)
— A speaks for A
— A speaks for B A B speaks for C — A speaks for C

36

DCC theorems (cont.)

* DCC has some additional useful theorems.
— (A says (B speaks for A)) — (B speaks for A)
—s — (Asays s)
and also
— AsaysAsayss —>Asayss
— A says B says s —» B says Asays s

These follow from general rules,
apparently without annoying consequences.

37

DCC theorems (cont.)

If A = B, then - A speaks for B.
B says (A speaks for B) does not imply A = B.
B says (A = B) is not even syntactically correct.

Lattice elements may represent groups, rather
than individual principals.

The operations M and LI may represent group
intersection and union.

— (A B)sayss —> Asays s A B sayss.

The converse fails (quite reasonably).

38

DCC metatheorems

* DCC also has a useful metatheory, which
includes old and new non-interference results.

39

Mapping to System F (warm-up)

 Tse and Zdancewic have defined a clever
encoding of Simply Typed DCC in System F.

* We can define a more trivial mapping (.)F from
Polymorphic DCC to System F by letting

(A says)7 = (s)F

* This mapping preserves provability, so
Polymorphic DCC is consistent.

40

Non-interference

* Access control requires the integrity of requests
and policies.

We would like some guarantees on the possible
effect of the statements of principals.

E.g., if Aand B are unrelated principals, then B's
statements should not interfere with A’s.

* There are previous non-interference theorems
for DCC, and we can prove some more.

4

Another mapping: what a formula
means when B may say anything

For a type s and B € £, we define (s)? as
follows:

(true)B — true
(s1Vsa)? = (s1)P v (s2)?
(s1 As2)P = (s1)P A (s2)”
(s1 = 52)" = (s1)” — (s2)”
true if BC A
(Asays s)” = { A says (s)? otherwise
(xX)¥ = X
(VX.s)P = vX.(s)P

42

A theorem

In Polymorphic DCC,

for every typing environment [,
type s, and B € L,

iflFe:s

then there exists ¢/

such that (MNP F e : (s)B.

43

Some corollaries

If BIZ A, then

(B says t) — (A says VX. X)

If s mentions no principal C such that B C C
and

- (B says t) — (A says s)
then
- A says s
Note however that - B sayst — A says B says t.

Further work and open questions

Rich, convenient languages for writing policies.
Procedures for analyzing policies.
Revisiting compound principals.

Other logics with similar principles
(but different theorems).

More semantics.
Integration of access control into programming.
Relation to information flow.

45

Outlook

We can provide at least partial evidence of the
“goodness” of our rules.

Even with imperfect rules, declarative policies
may contribute to improving authorization.

Logics and types should help.

46

