
Calculi for Access Control

Mart!n Abadi
University of California, Santa Cruz

and

Microsoft Research, Silicon Valley



• Elements:

– Objects or resources

– Requests

– Sources for requests, called principals

– A reference monitor to decide on requests

2

The access control model



3

Authentication vs. access control

• Access control (authorization): 

– Is principal A trusted on statement s?

– If A requests s, is s granted? 

• Authentication:

– Who says s?



4

An access control matrix 
[Lampson, 1971]

xrruser3

xrruser2

xrrwrwxuser1

file4file3file2file1         objects

principals



5

Access control in current practice

• Access control is pervasive

– applications

– virtual machines

– operating systems

– firewalls

– doors

– …

• Access control seems difficult to get right.

• Distributed systems make it harder.



6

General theories and systems

• Over the years, there have been many theories 
and systems for access control.

– Logics

– Languages

– Infrastructures (e.g., PKIs)

– Architectures

• They often aim to explain, organize, and unify 
access control.



7

An approach

• A notation for representing principals and their 
statements, and perhaps more:

– objects and operations,

– trust,

– channels,

– …

• Derivation rules



8

A calculus for access control
[Abadi, Burrows, Lampson, and Plotkin, 1993]

• A simple notation for assertions 

– A says s

– A speaks for B  (sometimes written A ⇒ B)

• With logical rules

–  ! A says (s ! t) ! (A says s) ! (A says t)

– If  ! s then  ! A says s.

–  ! A speaks for B ! (A says s) ! (B says s)

–  ! A speaks for A

–  ! A speaks for B  ∧ B speaks for C ! A speaks for C



9

An example

• Let good-to-delete-file1 be a proposition.
Let B controls s stand for    
    (B says s) ! s

• Assume that 

– B controls (A speaks for B)

– B controls good-to-delete-file1

– B says (A speaks for B)

– A says good-to-delete-file1

• We can derive:

– B says good-to-delete-file1

– good-to-delete-file1



10

Another example

• Let good-to-delete-file2 be a proposition too.

• Assume that 

– B controls (A speaks for B)

– B controls good-to-delete-file1

– B says (A speaks for B)

– A says (good-to-delete-file1  good-to-delete-file2)∧
• We can derive:

– B says good-to-delete-file1

– good-to-delete-file1



11

Says

export

import

context 
1statement

context 2

context1 says
statement

Certificate
statement

(signed: context1)

export

import

context 1

statement

context 2
context1 says

statement

Channel 
statement

(from: context 1)

Says represents 
communication 
across contexts.

Says abstracts from 
the details of 
authentication.



12

Choosing axioms

• Standard modal logic?

– (As above.)

• Less?

– Treat says “syntactically”, with no special rules
(Halpern and van der Meyden, 2001)



13

Choosing axioms (cont.)

• More?

–  ! (A says (B speaks for A)) ! (B speaks for A)
The “hand-off axiom”; 
in other words, A controls (B speaks for A).

–  ! s ! (A says s)
(Lampson, 198?; Appel and Felten, 1999)
but then 

 ! (A says s) ! s " (A says false)



14

Semantics

• Following standard semantics of modal logics, 
a principal may be mapped to a binary relation 
on possible worlds.

     A says s holds at world w 
      iff 
  s holds at world w’ 
  for every w’ such that w A w’

• This is formally viable, also for richer logics.

• It does not give much insight on the meaning of 
authority, but it is sometimes useful.



15

Proof strategies

• Style of proofs:

– Hilbert systems

– Tableaux 
(Massacci, 1997)

– …

• Proof distribution:

– Proofs done at reference monitors

– Partial proofs provided by clients
(Wobber et al., 1994; Appel and Felten, 1999)

– With certificates pulled or pushed



16

More principals

• Compound principals represent a richer class of 
sources for requests:

– A ∧ B               Alice and Bob (cosigning) 

– A quoting B     server.uxyz.edu quoting Alice

– A for B server.uxyz.edu for Alice

– A as R             Alice as Reviewer

   A  ∧ B speaks for A, etc.

• Groups represent collections of principals, and 
may be treated as principals themselves.

• Programs may be treated as roles.



17

Applications (1): Security in an 
operating system [Wobber et al., 1994]



18

Applications (2): An account of 

security in JVMs [Wallach and Felten, 1998]



19

Applications (3): A Web access 

control system [Bauer, Schneider, and Felten, 2002]



20

Applications (4): The Grey system 
[Bauer, Reiter, et al., 2005]

• Converts a cell-phone into a tool for delegating 
and exercising authority.

• Uses cell phones to replace physical locks and 
key systems.

• Implemented in part of CMU.

• With access control based on logic and 
distributed proofs.



21

Distributed Proving
D208

Phone discovers door

To prove:

Mike says

Goal(D208.open)

Open 

D208

Jon

Jon’s 

phone

Mike’s 

phone
Mike

I can prove that with any of

1) Jon speaksfor Mike.Student

2) Jon speaksfor Mike.Admin

3) Jon speaksfor Mike.Wife

4) Delegates(Mike, Jon,

            D208.open) 

Please help

Jon speaksfor 

Mike.Student Proof of:

Jon says Goal(D208.open) ! 

Mike says Goal(D208.open)  

Proof of:

Mike says

Goal(D208.open)

Hmm, I can’t prove 

that.  I’ll ask Mike’s 

phone for help.



22

Further applications: 

Other languages and systems

Several languages rely on logics for access 
control and on logic programming:

• D1LP and RT [Li, Mitchell, et al.]

• SD3 [Jim]

• Binder [DeTreville]

“speaks for” plays a role in other systems:

• SDSI and SPKI [Lampson and Rivest; Ellison et al.]

• Plan 9 [Pike et al.]

• …



23

Some issues

• It is easy to add constructs and axioms, but 
sometimes difficult to decide which are right.

• Explicit representations for proofs are useful.

• Even with logic, access control typically does 
not provide end-to-end guarantees 
(e.g., the absence of flows of information).



24

The Dependency Core Calculus 

(DCC) [Abadi, Banerjee, Heintze, and Riecke, 1999]

• A minimal but expressive calculus in which the 
types capture dependencies.

• A foundation for some static program analyses:

– information-flow control, 

– binding-time analysis, 

– slicing, 

– …

• Based on the computational lambda calculus.



25

DCC basics

• Let L be a lattice.

• For each type s and each l in L, there is a type Tl(s).

• If l " k then terms of type Tk(t) may depend on terms of 

type Tl(s).

For instance:

• The lattice may have two elements Public and Secret, 
with Public " Secret.

• TPublic(int) and TSecret(bool) would be two types.

• Then DCC guarantees that outputs of type TPublic(int) do 

not depend on inputs of type TSecret(bool).



26

A new look at DCC

• We read DCC as a logic, 
via the Curry-Howard isomorphism.

– Types are propositions. 

– Programs are proofs.

• We consider significant but routine variations on 
the original DCC:

– We remove fixpoints and related constructs.

– We add polymorphism in the style of System F.

• We write A says s instead of Tl(s).

• We write A speaks for B as an abbreviation for 
#X. (A says X ! B says X).



27

A new look at DCC (cont.)

• The result is a logic for access control, with 
some principles and some useful theorems.

• The logic is intuitionistic 
(like a recent system by Garg and Pfenning).

• Terms are proofs to be used in access control.



28

Simply Typed DCC: Syntax



29

Simply Typed DCC: Protected types



30

Simply Typed DCC: Typing rules

• The typing rules are those of simply typed 
"-calculus plus:



31



32

Simply Typed DCC: Logical reading

• Reading the typing rules as a logic can be 
simply a matter of omitting terms…



33

 



34

Polymorphic DCC

• Polymorphic DCC is obtained by adding type 
variables and universal quantification, 
with the standard rules.

• The definition of “protected” is extended:



35

Semantics

• Operational semantics (one possibility): 

– usual "-calculus rules, plus

– the new rule

   (Zdancewic recently checked subject reduction and 
progress properties for this semantics in Twelf.)

• Denotational semantics? (We have some 
pieces, but more could be done.)



36

DCC theorems

• We can rederive the core of the previous logics:

–  ! A says (s ! t) ! (A says s) ! (A says t)

– If  ! s then  ! A says s.

–  ! A speaks for B ! (A says s) ! (B says s)

–  ! A speaks for A

–  ! A speaks for B  ∧ B speaks for C ! A speaks for C



37

DCC theorems (cont.)

• DCC has some additional useful theorems.

–  ! (A says (B speaks for A)) ! (B speaks for A)

–  ! s ! (A says s)

and also

–  ! A says A says s ! A says s

–  ! A says B says s ! B says A says s

   
These follow from general rules, 
apparently without annoying consequences.



38

DCC theorems (cont.)

• If A  B, then  A speaks for B." !

• B says (A speaks for B) does not imply A  B."

• B says (A  B) is not even syntactically correct."

• Lattice elements may represent groups, rather 
than individual principals.

• The operations  and  may represent group # $

intersection and union.

–  ! (A  B) says s # ! A says s ∧ B says s.

– The converse fails (quite reasonably).



39

DCC metatheorems

• DCC also has a useful metatheory, which 
includes old and new non-interference results.



40

Mapping to System F (warm-up)

• Tse and Zdancewic have defined a clever 
encoding of Simply Typed DCC in System F.

• We can define a more trivial mapping (.)F from 
Polymorphic DCC to System F by letting

• This mapping preserves provability, so 
Polymorphic DCC is consistent.



41

Non-interference

• Access control requires the integrity of requests 
and policies. 

– We would like some guarantees on the possible 
effect of the statements of principals.

– E.g., if A and B are unrelated principals, then B’s 
statements should not interfere with A’s.

• There are previous non-interference theorems 
for DCC, and we can prove some more.



42

Another mapping: what a formula 

means when B may say anything

 



43

A theorem

 



44

Some corollaries

 



45

Further work and open questions

• Rich, convenient languages for writing policies.

• Procedures for analyzing policies.

• Revisiting compound principals.

• Other logics with similar principles 
(but different theorems).

• More semantics.

• Integration of access control into programming.

• Relation to information flow.



46

Outlook

• We can provide at least partial evidence of the 
“goodness” of our rules.

• Even with imperfect rules, declarative policies 
may contribute to improving authorization.

• Logics and types should help.


