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Stochastic Collectives



Stochastic Collectives

e "Collective":

- A large set of interacting finite state automata:
e Not quite language automata (“large set")
e Not quite cellular automata (“interacting” but not on a grid)
e Not quite process algebra ("finite state" and "collective”)
e Cf. "multi-agent systems” and "swarm intelligence”

e "Stochastic":

- Interactions have rates
e Not quite discrete (hundreds or thousands of components)
e Not quite continuous (non-trivial stochastic effects)
e Not quite hybrid (no "switching” between regimes)

e Very much like biochemistry
- Which is a large set of stochastically interacting molecules/proteins
- Are proteins finite state and subject to automata-like transitions?

e Let's say they are, at least because:

e Much of the knowledge being accumulated in Systems Biology
is described as state transition diagrams [Kitano].



State Transitions
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Interacting Automata

hew a@r,
Communication
new b@f‘z channels
: new c@r,
T@A5E A1 = 70; A2 \
: A, =lc; Ag
- A3 = T@A5; A1
Bl = T@AZ: BZ + IG; B §
@ current State BZ = T@Al: Bl > g
=== Delay Wl | =
=== Transition B3 m Db, BZ °
@ =® Interaction
C,=1b;C,+2c; C
Communicating automata: a graphical FSA-like 1 Il 2. 3
notation for "finite state restriction-free n- Cz M T@A3: C1
calculus processes"”. Interacting automata do not C3 = T@A it ot y.
even exchange values on communication.
The stochastic version has rateson A 1 | B ! | C ) } The system and
initial state

communications, and delays.

"Finite state" means: no composition or restriction inside recursion.

Analyzable by standard Markovian techniques, by first computing
the "product automaton” to obtain the underlying finite Markov
transition system. [Buchholz]



Interacting Automata Transition Rules

@ current State
=== P Delay ‘ Delay

=== Transition : Q
PO O
[ ] rl [ ]

a@r a@r

Interaction

r

Q: What kind of mass behavior can this produce?

(We need to understand that if want to understand biochemical systems.)
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A stochastic collective of celebrities:

Groupies and Celebrities

la

Celebrity

(does not want to be like somebody else)

directive sample 0.1 200
directive plot A(); B(

new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?a; B()
and B() = do |b; B() or ?b; A()

run 100 of (AQ) | B())

—A() —B0

180 -
160 |
140 -
120

W

/{ equilibrium

Groupie
(wants to be like somebody different)

directive sample 0.1 200
directive plot A(); B()

? b new a@1.0:chan()
new b@1.0:chan()

let A() = do la; A() or ?b; B()
and B() = do Ib; B() or ?a; A()

run 100 of (AQ) | B())

.
Ib

A stochastic collective of groupies:

—A) —B0
200 =
180 always
160 eventually
140 deadlock

120 -

SR Y e Oty R i —
80 | ol 80 - ]
60 - ) 60 ]
w0 N © 2]
20 zz m’> 20 jz
0 T T T T zz ] T T T V— O T T T ZZ ] T T T 1
0 50 100 150 200 0 50 100 150 200
0 0.02 0.04 0.06 0.08 0.1 0 0.5 1 15 2 .
Unstable because within an A majority, an A has difficulty finding a B o
emulate, but the few B's have plenty of A’'s to emulate, so the majority may
Stable because as soon as a A finds itself in the majority, it is more likely to switch to B. Leads to deadlock when everybody is in the same state and there is

find somebody in the same state, and hence change, so the majority is weakened. nobody different to emulate.



Both Together

A way to break the deadlocks: Groupies with just a few Celebrities

la la directive sample 10.0 1000
directive plot Ga():; Gb(); Ca(); Cb()

new a@1.0:chan()
new b@1.0:chan()

let Ca() = do la; Ca() or ?a; Cb()
MCmY ?a( )?b A few. (2) ?b{ )?a and Cb() = do Ib: Cb() or 2b: Ca()
Groupies Celebrities

let Ga() = do la; Ga() or ?b; Gb()
and 6b() = do |b; Gb() or ?a; Ga()

run 1 of (Ca() | Cb())
run 100 of (Ga() | Gb())

Ib Ib

200 Ga() Gh() Ca() Ch()
180 —
160
20 4 —
‘ + ‘| | 180 - Ga vs. Gb

140
140

120
100
80 -
60 -
40 |
20 -




Hysteric Groupies

We can get more regular behavior from groupies if they "need more
convincing”, or “hysteresis” (history-dependence), to switch states.

!Cl 200 — Ga() —— Gb()  — directive sample 10.0 1000
=1 a'solid threshold” to observe switching | : Sirectiveplot-Ga-6bi)
o | : new a@1.0:chan()
20 R new b@1.0:chan()
?a 100 o JSample orbiy| et 6a0 = do la Gal) or 2b; 2b; Gb()
80 120 Gavs. Gb and Gb() = do |b; 6b() or ?a; ?a; Ga()
?a izkllllllll EEE EEjEEE EEEEEEEEEERpEEgQEER mm 1:: ICTDO()Z!G}DO()
20 4 & and Db() = Ib; Db()
0 AAA h.f\\ ANN A / W) . af A. : y M { .u] “
1 2 3 4 5 6 7

run 100 of (Ga() | Gb())

0 8 o 10 o - X —  run 1of (Da() | Db))
I
'b la b (With doping to
break deadlocks)
N.B.: It will not oscillate
without doping (noise)

200 G —— G / » directive sample 10.0 1000
180 4 - directive plot Ga(); Gb()
ijz i ° new a@1.0:chan()
i . new b@1.0:chan()
120 |
100 | 1 sample orbit let Ga() = do la; Ga() or ?b; ?b; ?b; 6b()
80 | Ga vs. Gb and 6b() = do Ib; Gb() or ?a; ?a; ?a; Ga()
60 - let Da() = la; Da()
407.... EEEEN EEEEEEN EEER EEn EEn EEEER EEEEEEN HEEBN andDb():lb;Db()
20 |

run 100 of (Ga() | 6b()) .
run 1of (Da() | Db())




Hysteric 3-Way 6Groupies

directive sample 3.0 1000
directive plot A(); B(); €()

new a@1.0:chan()
new b@1.0:chan()
new c@1.0:chan()

la b let AQ) = do la; AQ) or 2¢: 2¢; C()
and B() = do |b; B() or ?a; ?a; A()
‘@ @ and €() = do Ic; C() or ?b; 2b; B()
. . . let Da() = la; Da()
(Still with doping) and Db() = Ib; Db()
Ic D —e0e0

run 100 of (A(Q) | BO) | €())
run 1 of (Da() | Db() | Dc())

N.B.: It will not oscillate
without doping (noise)

A0 B() C0

——B() —¢C0

300

222\ N \ W

150

0 50 100 150 200 250 300

100 0 ] 1 sample orbit

ML

0 50 100 150 200 250 300
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“"Micromodels”: Continuous Time Markov Chains

The underlying semantics of stochastic n-calculus (and stochastic
interacting automata). Well established in many ways.

- Automata with rates on transitions.

“The" correct semantics for chemistry, executable.
- Gillespie stochastic simulation algorithm

Lots of advantages
- Compositional, compact, mechanistic, etc.

But do not give a good sense of "collective” properties.
- Yes one can do simulation.
- Yes one can do program analysis.
- Yes one can do modelchecking.
- But somewhat lacking in "analytical properties” and "predictive power".



"Macromodels”: Ordinary Differential Equations

e They always ask:

- "Yes, but how does you automata model relate to the 75 ODE models in the
literature?”

e (Going from processes/automata to ODEs directly:

- In principle: just write down the Rate Equation: [Calder, Hillston]
- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the "number of processes in state S" as a function of time.
- Define for each state S:
[S]° = (rate of change of the number of processes in state S)

Cumulative rate of transitions from any state S' to state S, fimes [S'],
minus cumulative rate of transitions from S to any state S, times [S].

- Intuitive (rate = inflow minus outflow), but often clumsy to write down precisely.

e But why go to the trouble?
- If we first convert processes to chemical reactions,
then we can convert to ODEs by standard means!



From Chemistry to ODEs



Chemical Reactions

A —"B;+ ..+ B,
A+ A, o"B;+ ..+ B,

A+A "B+ . +B,  Symmetric Collision

No other reactions!

Degradation

Asymmetric Collision

[A] = -r[A]

[Ail* = -r[A1][A]
[A]" = -r[A]([A]-1)

Exponential Decay
Mass Action Law

Mass Action Law

(assuming AzBzA, for all i j)

JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 1

The chemical Langevin equation

Daniel T. Gillespie®
Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555

Genuinely rimolecular reactions do not physically occur
in dilute fluids with any appreciable frequency. Apparently
trimolecular reactions in a fluid are usually the combined
result of two bimolecular reactions and one monomolecular
reaction. and involve an additional short-lived species.

Chapter 1V: Chemical Kinetics
[David A. Reckhow , CEE 572 Course]

.. reactions may be either elementary or non-
elementary. Elementary reactions are those reactions
that occur exactly as they are written, without any
intermediate steps. These reactions almost always
involve just one or two reactants. ... Non-elementary
reactions involve a series of two or more elementary
reactions. Many complex environmental reactions are
non-elementary. In general, reactions with an overall
reaction order greater than two, or reactions with
some non-integer reaction order are non-elementary.

THE COLLISION THEORY OF
REACTION RATES
www.chemguide.co.uk

The chances of all this happening if your
reaction needed a collision involving more
than 2 particles are remote. All three (or
more) particles would have to arrive at
exactly the same point in space at the same
time, with everything lined up exactly right,
and having enough energy to react. That's
not likely to happen very often!

Trimolecular reactions:
A+B+C->r'D

aggregate of e.g.:
A+Bo AB
AB+C—> D

00 0000000000000 000OCCKCGSIIIY

00000 000000000000000000000000000000000000000000,

the measured "r" is an (imperfect)

00 0000000000000 00000000000000000000000000000000

S Ey P

E+SoES
ES>P+E

0000000000000 O0O0COCOIOIOIONOIOS
0000000000000 0000000000

00 0000000000000 000000000000000000000000000000

Enzymatic reactions:

the "r" is given by Michaelis-Menten
(approximated steady-state) laws:

00 000000000000 OCOCGOCGOGOIOGINOSINOIDS

00 0000000000000 0000000000000000000000000000000




From Reactions to ODEs

vy A+B —>k, C+C

K
v A+C =k, D Write the coefficients A i C
vi: C —k, E+F by columns o . K
FuF B . Stoichiometric 1
va FHE =k reactions Matrix
N v, |Vvo]|Vs]|Vy
Quantity Al-1]-1 B C
changes ‘§ B|-1 1 ‘k\ l k3
Stoichiometric o|C|2]-1]-1 4 F E
matrix 8_ D 1
%)
L Rate laws E CAVEAT: A deterministic
F -2 approximation of a stochastic
[X]' = N X system (i.e. possibly mis/eading)
L ‘/Red the concentration Set a rate law for each reaction
[A]° = ‘Il - I2 d concentratio (Degradation/Asymmetric/Symmetric)
. changes from the rows
[B] - "|1 + I4 - | X: chemical species
o — _ _ [-]: quantity of molecules
[C] 2ll IZ l3 |1 kl[A][B] I: rate laws
[D]. = lz E.g. [A] = l2 kZ[A][C] k: kinetic parameters
° = -k [A][B] - k,[A][C] N: stoichiometric matrix
[FI=1,-2l, |, | k4[FI([F]-1)/2
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Chemical 6round Form (CGF)

E = Xi=My, .., X,=M,  Definitions (n20)
M:=mP,®. ®n,.P, Molecules (n20)

ek QU AN (bl Solutions  (n:0)
miE T 2Ny Ing Interactions (delay, input, output)
CGF ::=EP Definitions with Initial Conditions

@ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = O|P = P)
and null molecule (M@0 = 0®M = M) (t,.P = 0)
X. are distinct in E
Each name n is assigned a fixed rate r: n,

(To translate chemistry back to
processes we need a bit more than simple
automata: we may have “+" on the right
of —, that is we may need "|" after r.)

I
< Ex: interacting automata
a (which are CGFs using "|" only in initial conditions):
| Aufomaton instate A
5q 5h AzlaA@2bB utomaton in state
B=1b:B®2aA | Automaton in state B

g A|A|B|B | Initial
' conditions:
Ib

2A and 2B



CGF to Chemistry

Unary reactions.

E: C(E):
(X=r:(X1X) | [X orx+X]

Unbounded state,
but only 1 species.
No problem!

Binary reactions.

E: C(E): That is:
A=?nB®2nB A+C B+ D (A+C520B4+D |
C=1nD A+C M B+D

The same interaction can occur multiple times and must be taken into account:

Symmetric reactions:

E: C(E):
(X=lg0@2ay | [X+X >2@Y |

The rate of a is doubled because fwo reactions are possible.



Automata to Chemistry

A+C — C+C
C+B — B+B
B+A —» A+A




Processes Rate Semantics



Same Chemistry

SPiM

directive sample 0.002 10000 REEE

directive plot A(); B() R o
7499.3

new a@1.0:chan() f2a04

new b@l.O:Chan() 45905

37496

let A() =do !a; A() or !b; A() or ?b; B()
and B() = do delay@1.0; A() or ?a; A()

2499.8

1249.9

o

run 10000 of B() a 0002

B—os A
A+B - A+A
A+A -2 A+B

Same chemistry, hence
equivalent automata

aga9 SPird

directive sample 0.002 10000
directive plot A(); B()

AL
87491 Bi)

7499.3

new a@1.0:chan() 82494
4889 5

let A() =do !a; A() or ?a; B() 37496
and B() = do delay@1.0; A() or ?a; A() 24900

12499

run 10000 of B()

1} 0.002




Same ODEs

directive sample 0.002 10000
uB->t A directive pl ;
plot A(); B()
. + r +
a: A+B - A+A new a@1.0:chan()

b: A+A -2 A+B new b@1.0:chan()

let A() =do !a; A() or !b; A() or ?b; B()
and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()

[A] = 1[B] + r[A][B] - r[AY([A]-1)
[B]" = -t[B] -r[A][B] + r[A]([A]-1)

directive sample 0.002 10000

B A directive plot A(); B()
a: A+B - A+A new a@1.0:chan()
b: A+A —* B+B new b@0.5:chan()

let A() =do !a; A() or !b; B() or ?b; B()
and B() = do delay@1.0; A() or ?a; A()

run 10000 of B()

[A] = t[B]+ r[A][B] - r[AX([A]-1)
[B]" = -t[B] -r[Al[B] + r[AJ([A]-1)

10000

8750

7500

6250

5000

3750

2500

1250

10000

8780

7500

6250

5000

3750

2500

1280

0.002

0.002
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Epidemics

Kermack, W. O. and McKendrick, A. G. "A Contribution to the
Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A
115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()

!infeCT ?ianCT new infect @0.001:chan()

val recover = 0.03

. let Recovered() =
SUSCCP'h ble ‘ ; 5 infecf Infec.l.ed ?infect; Recovered()

and Susceptible() =
@recover sinfect; Infected()

and Infected() =
Recovered do linfect; Infected()
or ?infect; Infected()
. or delay@recover; Recovered()
?infect

run (200 of Susceptible() | 2 of Infected())

25| — Recovered() —— Susceptible() Infected()
Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models 200 |
of Infectious Disease
150
R. Norman and C. Shankland
Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk 100
e . - . \ 50
Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical 0 T T T

questions about the “best” way to defined the model.

0 50 100 150 200



U D
S = iy I

J

(6+T 5T IT+T)

I+ 5" I+1-
I >R 7‘

/

\R"‘I —t R"‘I/

"useless”
reactions

[S]=
[L1]° =
[R]* =

-t[S][I]
t[S][I]-r[I]
r[I]

Automata match & ="
the standard
ODE model!

(the Kermack-MMcEendrick, or STR model)|

ODE

* &

Concertration Species |:| Fluxes |:| Parameters D Compartiments

cER

180 -

Cell Designer
ODE Solver output for reactions:
S+I ST I+I
I —->"R
with t = 0.001 r = 0.03 [S]=200 [I]=2

100 -

a0 -

M

o]
o 1 1 1 1 1 1 |
1] 20 40 =] ga 100 120 140 160 180
Tirne
L]
et 20000

250

ODE Solver output for
S*=-1SI
200 I*=1SI-rI

150+

100

50 F

100 150 250




Simplified Model

| not useless! /S _ 7i(f)'I I
linfect T
R
N\

Il(.r) Io® Tn R
Susceptible O ‘)lnfec-r% Infected

useless

0 J

Not totally obvious e

that one coul/d have S + I _)T I + I
simplified the
automata model. \I —" R

([ST = -t[S][T]

directive sample 500.0 1000 ° — _
directive plot Recovered(); Susceptible(); Infected() [I] - T[S][I] r‘[I]
new infect @0.001:chan() 25 — Recovered() —— Susceptible() Infected() [R ]0 - rt [I]
val recover = 0.03 200 . | -
'e(*) Recovered() = . Same ODE, hence
. equivalent

and Susceptible() =

?infect; Infected() 1001 automata mOdCIS.
and Infected() = 50 -

do linfect; Infected()
or delay@recover; Recovered()

O T T T
run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200
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Predator-Prey

@br‘eedmg O

Herbivor . O

?cull :
@predaﬁon. O

leull Pl

Carnivor N O
@mor"rall‘ry “+0

628

471

214

167

Simulation: Halted, Time = 0343470 {317 pointz at 00062429 simTimelzysTime)

Carnivor)
Herbiwor)

Plotting: Live

directive sample 1.0 1000
directive plot Carnivor(); Herbivor()

val mortality = 100.0

val breeding = 300.0

val predation = 1.0

new cull @predation:chan()

let Herbivor() =
do delay@breeding; (Herbivor() | Herbivor())
or 2cull; ()

and Carnivor() =
do delay@mortality; ()

or leull; (Carnivor() | Carnivor())

run 100 of Herbivor()
run 100 of Carnivor()

An unbounded
state system!



(
.

= ’Eb,' (HlH) @ ?C(p):O

H
C = 1,0 ® I, (C[C)
p

HobH+H
C ->m0
\H+C—>P C+C

[H]
[cr

b[H]-p[H]LC]
-m[C]+p[H][C]

ODE

Lotka-Volterra Equations

mathwarld |

COMMENT Fa| DOWNLOAD
on this Page 71 mMathematica Notebook

The Lotka-volterra equations describe an ecological predator-prey (or parasite-host) model which assumes
that, for a set of fixed positive constants A (the growth rate of prey), B (the rate at which predators destroy

prey]), O (the death rate of predators), and 2 (the rate at which predators increase by consuming prey), the
following conditions hold,

1. & prey population x increases at arate dx = A x & ¢ (proportional to the number of prey) but is

simultaneously destroyed by predators at arate d x = -8 x pd ¢ (proportional to the product of the numbers
of prey and predataors),

2. A predator population p decreases at arate d y = —C yp d ¢ (proportional to the number of predators), but
increases at arate dy =D x p & ¢ (again proportional to the product of the numbers of prey and predatars).

), vk =15, F=1,C=3,D=1 i yila =1, =1, C=1, D=1
12

This gives the coupled differential equations

ax Ax-B (1)
S = X—=—0X

2z B

ey Cy+D (2
e = = +LxW7

= y+Dxy

Automata match the Lotka-
Volterra model (with B=D)
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Idle Delay Law by ODEs

A=1,AD1,.B 2 A=1.B
C’b'::'%';' ® -®
[A:TA;A@’C“}B] [A 1,.B ]
} }
= e )
l |

[A]" = -u[A] = [A]" = -u[A]
[B]* = W[A] [B]" = W[A]




Idle Interaction Law by ODEs

Ic
?2c

A=?cB
C=lcC
}

[A+C—»PB+C]

}

[Al] = -r[A]lC]
[B] = r[A][C]
[C] =

directive sample 6.0 1000
directive plot A()

new c@1.0:chan
let AQ) = 2¢; B()
and BO) = ()

and C() = Ic; €()

run (C() | 1000 of A())

00000

0000000

A ?2C.A @ ?2¢c.B
kC

A+C - A+C
A+C - B+C

It may seem like A should
decrease half as fast,
but NO! Two ways to explain:

-State A is memoryless
of any past idling.
- Activity on c is double

directive sample 6.0 1000
directive plot A()

new c@1.0:chan

let A() = do ?c; B() or ?c; A()
and B() = ()

and C() = lc; €()

run (C() | 1000 of A())

—A0

“““““
0000000




Hermanns: Interactive

Asynchronous Interleaving e s

1Ml s O 5 (o o ot bt

[Ado= AQ B() o)) D()
1000 1000 1000 directive sample 4.0 10000
@1 directive plot A(); B(); €(); DO
EEEEEER 800 |
let A() = delay@1.0; B()
0 60 | and B0 = )
. @2 400 1 let €() = delay@2.0; D()
200 | and D() = ()
0 ‘ ‘ ‘ ‘ ‘ ‘ : run 1000 of (A() | €())
0 05 1 15 2 25 3 35 4

directive sample 4.0 10000
directive plot

?2YA; B(): 2YC; DO: YO: AO; €()
new YA@1.0:chan new YC@1.0:chan

let A() = do delay@1.0; B() or ?vA
and B() = ()

let €() = do delay@2.0; D() or 2vc
and D() = ()

let Y() =
do delay@1.0; (B() | €())

or delay@2.0; (A() | D())
or ?YA or ?2YC

run 1000 of Y()

Amazingly, the B's and the D's from the two
branches sum up to exponential distributions



Asynchronous Interleaving Law by ODEs

! ! i l | el Want to show that B and D
TA'B | TU'D M TA’(B I TH’D) il TH’(TA'B | D) on both sides have the

"same behavior” (equal

(Al =1,.B ) (y = (B C) @ 1.(A, | D) quantities of B and D
C; = 7D C,=1,D produced at all fimes)
Al G Az =B

\. J

Y

(A, >'B ) (Y 5 B+C, ) (IYI = -ALYIuLY] )
¢, > D Y 54 A, +D [A,]° = u[Y]-ALA,]

AC C, >h D => [[B]* = A[YI*A[A,]

A, >'B [C,1° = ALYI-u[C,]
l N ) or=wvic
[A,]" = -ALA] [Y+A,] = -AY+A,] / VAL = [y] +[A,T°
[BI* = A[A] -9 |[BI = AlY+A,] = -ALYJ-u[Y +UIYI-ALA,]
[C,]° = -ulC] = [Y+C,]* = -p[Y+C,] = -A[YI-ALA,] :
(D" = uic,] \[DF = uiY+C,] P2 IAIYHA) DY) decays exponentialy!

[B] and [D] have equal time evolutions on the two sides provided that [A;]=[Y+A,] and [C,]=[Y+C,].
This imposes the constraint, in particular, that [A;]p=[Y+A,], and [C;]o=[Y+C,], (at time zero).

The initial conditions of the right hand system specify that [A,],=[C,]o=0 (since only Y is present).
Therefore, we obtain that [A;]o=[C11o=[Y o.

So, for example, if we run a stochastic simulation of the lef+ hand side with 1000*A1
and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of
the right hand side with 1000*Y.
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Conclusions

Stochastic Collectives
- Complex global behavior from simple components
- Emergence of collective functionality from "non-functional” components
- (Cf. "swarm intelligence": simple global behavior from complex components)

Artificial Biochemistry
- Stochastic collectives with Law of Mass Interaction kinetics

- Connections to classical Markov theory,
chemical Master Equation, and Rate Equation

Properties of collective behavior
- Simulation
- Systematic translation fo ODEs from parametric process "libraries”
- Correspondence (or not) between stochastic and deterministic behavior

Interdisciplinary connections
- Process descriptions vs. chemical descriptions
- Process descriptions vs. ODE descriptions



