
Local Reasoning about Data Update, Edinburgh 2006 1

Local Reasoning about Data Update

Cristiano Calcagno, Philippa Gardner and Uri Zarfaty

Imperial College London

References

Context Logic and Tree Update, POPL’05

Context Logic as Modal Logic: Completeness and Parametric

Inexpressivity, submitted

Local Reasoning about Data Update, journal paper, submitted

Supported by EPSRC, Microsoft and Royal Academy of Engineering.



Local Reasoning about Data Update, Edinburgh 2006 2

Reasoning about Data Update

Examples of data update

heap update, information on hard discs, XML update, term rewriting

Hoare Reasoning for Heap Update

Hoare’s original work based on First-order Logic

O’Hearn, Reynolds, Yang’s work on local reasoning using Separation

Logic (SL), an application of Bunched Logic to heaps (O’Hearn, Pym).

Hoare Reasoning for Data Update

Hardly studied for other forms of data update

No unified account



Local Reasoning about Data Update, Edinburgh 2006 3

Reasoning about Trees

Reasoning about Static Trees

Ambient Logic (AL) Cardelli, Gordon

Reasoning about web data Cardelli, Gardner, Ghelli

Similar reasoning to Separation Logic

Local Hoare Reasoning for Tree Update

Not possible using Ambient Logic

Possible using Context Logic (CL) Calcagno, Gardner, Zarfaty



Local Reasoning about Data Update, Edinburgh 2006 4

Summary

- Context Logic

- Application to Trees

- Local Reasoning about Tree Update

- Inexpressivity Result for Ambient Logic



Local Reasoning about Data Update, Edinburgh 2006 5

Reasoning about Trees

Ambient Logic

n[P ]
P P Q

P ◦ Q

n

P and Q are data formulae

Context Logic for Trees

P

K(P )
K

P is a data formula and K a context formula



Local Reasoning about Data Update, Edinburgh 2006 6

CL0-Formulae

Data Formulae

P ::= 0 zero formula

K(P ) application

K C P data application adjoint

P ∨ P | ¬P | false boolean additive formulae

Context Formulae

K ::= I identity formula

P B P context application adjoint

K ∨ K | ¬K | False boolean additive formulae



Local Reasoning about Data Update, Edinburgh 2006 7

Reasoning about Trees

P
K

K / P

Data Adjoint

P

Q
P . Q

Context Adjoint

P

K(P )
K

Application



Local Reasoning about Data Update, Edinburgh 2006 8

CL0-Models

A CL0-model M is a tuple (D, C, ap, I, 0) consisting of

1. data set D and context set C

2. application ap ⊆ (C × D) ×D: we write ap(c, d1) = d2

3. the left identity I ⊆ C to application:

• ∀d ∈ D,∃i ∈ I, d′ ∈ D. ap(i, d) = d′;

• ∀d, d′ ∈ D,∀i ∈ I. ap(i, d) = d′ implies d = d′;

4. the projection p : C → D defined by

p(c) = d ⇔ ∃ o ∈ 0. ap(c, o) = d

st. p is a total surjective function and ∀c, o. p(c) = o ⇒ c ∈ I.



Local Reasoning about Data Update, Edinburgh 2006 9

Example CL0-Models

• MonD = (D,D, ·, {e}, {e}), with (partial) monoid · and unit e.

• TermΣ = (TΣ, CΣ, ap, { }), with TΣ the set of terms, CΣ the

contexts, ap context application and the empty context.

• sequences, trees, multisets, heaps

• RelD = (D,P(D ×D), ap, {i}), with ap relational application

and i the identity relation, is a CL-model.

• Step = (N, {0, 1},+, {0}) is a CL-model.

• M1 +M2 = (D1∪D2, C1∪C2, ap1 ∪ ap2, I1∪I2, 01 ∪ 02)

for CL0-models Mi = (Di, Ci, api, Ii, 0i), i = 1, 2.



Local Reasoning about Data Update, Edinburgh 2006 10

CL0-Satisfaction Relation

For CL0-model M = (D, C, ap, I, 0), the CL0-satisfaction relation

� consists of two relations M, d � P and M, c � K given by:

M, d � 0 iff d ∈ 0

M, d � K(P ) iff ∃c, d′. ap(c, d′) = d ∧M, c � K ∧M, d′ � P

M, d � K C P iff ∀c, d′. M, c � K ∧ ap(c, d) = d
′ ⇒ M, d′ � P

M, c � I iff c ∈ I

M, c � P1 B P2 iff ∀ d, d′. M, d � P1 ∧ ap(c, d) = d
′ ⇒ M, d′ � P2

The boolean additive cases are standard.



Local Reasoning about Data Update, Edinburgh 2006 11

Derived CL-Data Formulae

Standard derived formulae for the additive connectives.

• �P , True(P ) somewhere property P holds;

` P ⇒ �P and 6` � �P ⇒ �P (holds with context composition)

• K J P2 , ¬(K C ¬P2) there exists a context satisfying

property K such that, when the given data element is put in the

hole, the resulting data satisfies P2.

• P1 I P2 , ¬(P1 B ¬P2) there exists some data element

satisfying property P1 such that, when it is put in the hole of the

given context, the resulting data satisfies P2.



Local Reasoning about Data Update, Edinburgh 2006 12

Derived CL0-Data Formulae

1 , ¬0 ∧ ¬(¬I)(¬0) size one

P1 ∗ P2 , (0 B P1)(P2) data can be split into subdata satisfying

P2 and a context satisfying P1 when a zero is put in the hole.

P2

P1 ∗ P2

0 . P1

P1 ∗− P3 , (0 B P1) C P3 whenever a context applied to a zero

satisfies P1, then the context applied to the given data satisfies P3.

P2 −∗ P3 , ¬(¬(P2 B P3)(0)) whenever data satisfying P2

replaces empty subdata of the given data, then result satisfies P3.



Local Reasoning about Data Update, Edinburgh 2006 13

Proof theory and Completeness

Hilbert-style proof theory using ., /

Modal-logic presentation using I,J and specific CL0-axioms

The CL0-axioms are well-behaved (very simple Salqvist formulae)

Salqvist’s theorem implies completeness



Local Reasoning about Data Update, Edinburgh 2006 14

Summary

- Context Logic

- Application to Trees

- Local Reasoning about Tree Update

- Inexpressivity Result for Ambient Logic



Local Reasoning about Data Update, Edinburgh 2006 15

Application to Trees

Tree Model

trees t ::= 0 empty tree

n[t] tree with top node n ∈ N

t ◦ t horizontal composition

contexts c ::= | n[c] | c ◦ t | t ◦ c, n ∈ N

Equality states that ◦ is associative and commutative with unit 0.

We choose the node labels to be unique.



Local Reasoning about Data Update, Edinburgh 2006 16

CL0 for Trees

Specific CL0-formulae for trees

data formulae P ::= . . . | n[P ] | P ◦ P , n ∈ N

context formulae K ::= . . . | n[K] | K ◦ P | P ◦ K, n ∈ N

Satisfaction Relation

TreeN , c � n[K] iff ∃c′. c = n[c′] ∧ TreeN , c′ � K

TreeN , c � K◦P iff ∃c
′, d. c = c

′◦d∧ TreeN , c′ � K∧ TreeN , d � P

n[K]

n

K K P

K ◦ P

Adjoints n̂[P ] , n[I] / P and P1 −◦ P2 , (P1 ◦ I) / P2.



Local Reasoning about Data Update, Edinburgh 2006 17

Derived Tree Formulae

- n[0], the tree n[0]; n[true], a tree with root node labelled n

- �n[true], a tree containing a node n

- n[true] ◦ n[true], n[true] ∗ n[true], unsatisfied as n unique

- m[true] ◦ n[true], two trees with top nodes m and n

- m[true] ∗ n[true], either two trees with top nodes m and n, or

one tree with top node m and a subtree with top node n

- (0 . P )(n[true]) and P ∗ n[true], a tree containing n that

satisfies P if the subtree at n is replaced by 0.

- (m[true] . P )(n[true]), a tree containing n that satisfies P

whenever the subtree at n is replaced by a tree with top node m



Local Reasoning about Data Update, Edinburgh 2006 18

Summary

- Context Logic

- Application to Trees

- Local Reasoning about Tree Update

- Inexpressivity Result for Ambient Logic



Local Reasoning about Data Update, Edinburgh 2006 19

Local Reasoning about Data Update

Update commands tend to operate in a local way, by accessing a

small part of the data called the footprint O’Hearn, Reynolds, Yang

Local Hoare reasoning reflects this locality intuition:

small axioms specify the behaviour of commands on their footprints;

the frame rule automatically infers that the rest of the data (the

context) remains unchanged.

CL-reasoning is ideally suited to this style of reasoning.

Here we focus on tree update. For our tree commands to be local, the

node values must be unique.



Local Reasoning about Data Update, Edinburgh 2006 20

Tree Update

Node variables n,m, . . .

Tree variables x, y, . . .

Stores map variables to values, denoted by s

Specific CL0-formulae

data formulae P ::= . . . | x x tree variable

. . . | ∃n. P | ∃x. P quantification

context formulae K ::= . . . | n[K] | K ◦ P n node variable

. . . | ∃n.K | ∃x.K quantification

Satisfaction relation TreeN , s, t � P and TreeN , s, c � K



Local Reasoning about Data Update, Edinburgh 2006 21

Commands for Tree Update

C ::= n := n′ | x := x′ variable assignment

Cup(n) update at location n

C ; C sequencing

Cup(n) ::= [n]T := 0 [n]SF := 0 dispose

[n]T ∗= x [n]SF ∗= x append

x := [n]T x := [n]SF lookup

n′ := new [n]T n′ := new [n]SF new

free(C) = set of variables in C; mod(C) given by the red variables.

All the commands are local.



Local Reasoning about Data Update, Edinburgh 2006 22

Move Example

move(n, n′) , x := [n]T ;

[n]T := 0 ;

[n′]SF ∗= x

Three cases

n

n
′

n
′

n
n
′

n



Local Reasoning about Data Update, Edinburgh 2006 23

Local Hoare Reasoning

Hoare triples {P} C {Q} partial, fault-avoiding interpretation

Frame Rule

{P} C {Q}

{K(P )} C {K(Q)}
mod(C) ∩ free(K) = ∅

Plus consequence, auxiliary variable elimination and sequencing.

Soundness The rules are sound if the commands are local.



Local Reasoning about Data Update, Edinburgh 2006 24

Sample Small Axioms

{n[true]} [n]T := 0 {0}

{n[y]} n′ := new [n]T {n[y] ◦ n′[0]}



Local Reasoning about Data Update, Edinburgh 2006 25

Weakest Preconditions

{(0 B P )(n[true])} [n]T := 0 {P}

{∃y.∀n′. ((n[y] ◦ n′[0]) B P )(n[y])} n′ := new [n]T {P}

where y /∈ free(P )



Local Reasoning about Data Update, Edinburgh 2006 26

Derivations

{n[true]} [n]T := 0 {0}
FRAME

{(0 B P )(n[true])} [n]T := 0 {(0 B P )(0)}
CONS

{(0 B P )(n[true])} [n]T := 0 {P}

{n[y]} n′ := new [n]T {n[y] ◦ n′[0]}
FRAME

{K(n[y])} n′ := new [n]T {K(n[y] ◦ n′[0])}
CONS/VARS

{∃y.K(n[y])} n′ := new [n]T {P}

K = (∀n′. (n[y] ◦ n′[0]) B P ) and y /∈ free(P )

Uses structural modus ponens (P . P ′)(P ) ` P ′ ∧ True(P ).



Local Reasoning about Data Update, Edinburgh 2006 27

Reasoning about Move

Safety property for move(n, n′)

{(0 B True(n′[true]))(n[true])}

x := [n]T

{(0 B True(n′[true]))(n[true])}

[n]T := 0

{True(n′[true])}

[n′]SF ∗= x

{true}



Local Reasoning about Data Update, Edinburgh 2006 28

Reasoning about Move

Specification of move(n, n′)

{(0 B True(n′[x]))(n[y])}

move(n, n′)

{True(n′[x ◦ n[y] ])}



Local Reasoning about Data Update, Edinburgh 2006 29

Other Examples of Update

CL0-reasoning about heap update is exactly analogous to

SL-reasoning about heap update.

CL-reasoning about term rewriting possible, not possible using SL.

CL-reasoning about tree update, heap update and term rewriting is

strikingly similar.

Challenge unified Hoare reasoning about data update



Local Reasoning about Data Update, Edinburgh 2006 30

Summary

- Context Logic

- Application to Trees

- Local Reasoning about Tree Update

- Inexpressivity Result for Ambient Logic



Local Reasoning about Data Update, Edinburgh 2006 31

Expressivity for AL and CL

Assume no quantification

Result AL is as expressive as CL for trees minus .

Requires �̂P n⊥[P ] n̂⊥[P ]

Result AL is as expressive as AL minus structural adjoints

Lozes, then Dawar, Gardner, Ghelli

Result SL is as expressive as SL minus structural adjoints Lozes

Conjecture CL is as expressive as CL minus .

Requires context composition, probably requires multi-holed contexts

CL-reasoning is still essential for reasoning about tree update.



Local Reasoning about Data Update, Edinburgh 2006 32

Parametric inexpressivity

Result

AL is not as expressive as CL0 for trees using parametric expressivity

Intuition

CL-formula (0 B m1[m2[0]])(n[true])

AL-formula

m1[m2[n[true]]]∨(m1[m2[0] ◦ n[true]])∨(m1[m2[0]] ◦ n[true]).

CL-formula (0 B �m2[true])(n[true])

AL-formula �m2[true] ∧ � n[¬ � m2[true]]

The CL-reasoning is more uniform than the AL-reasoning.



Local Reasoning about Data Update, Edinburgh 2006 33

Parametric inexpressivity

Result

AL is not as expressive as CL0 for trees using parametric expressivity

Proof For simplicity, we assume that the node labels are not unique.

Consider formula (0 B p)(n(true)), where p is a propositional

variable. This formula describes a function from sets of trees to sets

of trees. We prove that it is not expressible in AL.

Let p denote the set of trees whose node labels are equal.

Consider m[m[0] ◦ n[0]] and m[m′[0] ◦ n[0]] for arb. m 6= m′.

These trees cannot be distinguished by an AL-formula using p.

We work with finite set N ′ ⊆ N , with n ∈ N ′ and m,m′ 6∈ N ′.



Local Reasoning about Data Update, Edinburgh 2006 34

AL-Bisimulation

Result from Modal Logic If ∼ is an AL-bisimulation, then t ∼ t′

implies t, t′ are logically indistinguishable in AL.

Definition Define the symmetric relation ∼ by t ∼ t′ iff

• t has equal nodes iff t′ has equal nodes

• t = n[t1] implies there exists n′, t′
1

st. t′ = n′[t′
1
]and t1 ∼ t′

1

and if n ∈ N ′ then n = n′, and vice versa

• t = t1 ◦ t2 implies there exists t′
1
, t′

2
st. t′ = t′

1
◦ t′

2
and

t1 ∼ t′
1

and t2 ∼ t′
2
, and vice versa.

m[m[0] ◦ n[0]] ∼ m[m′[0] ◦ n[0]] for m,m′ 6∈ N ′.

Result ∼ is a AL-bisimulation



Local Reasoning about Data Update, Edinburgh 2006 35

Other Parametric Inexpressivity Results

Heaps

SL is parametrically as expressive as CL0 for heaps.

SL is as expressive as first-order logic plus atomic heap formulae

Lozes. It is not parametrically as expressive. Direct proof

Bisimulation proof technique still interesting p ∗ q not parametrically

expressible in first-order logic using p = list(3) and q = list(4).

Sequences CL0 for sequences is as expressive as BL for sequences

It describes the ?-free regular languages

It is not parametrically as expressive as BL for sequences



Local Reasoning about Data Update, Edinburgh 2006 36

Conclusions

Context Logic is a fundamental logic for reasoning about data

Reasoning about data update requires reasoning about contexts

Parametric inexpressivity results are intriguing

Future

Combination of tree update with queries Gardner, Zarfaty, MFPS’06

Small-axiom approach prob. requires multi-holed contexts and wiring

Integration of high-level and low-level reasoning

Unified Hoare reasoning about data update

Other applications of Context Logic


