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AIM: recall influence of Plotkin (and others) on my PhD research (and beyond)

Mainly overview of published work + personal comments and opinions

Please interrupt to correct my account or to add your comments

Main focus on

Partial lambda-calculus [Mog88] 1984-1988

but work placed in broader context:
partiality in: Logic, Algebra, Computability
lambda-calculi as: PL [Lan66, Plo75], ML [Sco93, GMW79, Plo85]
domain theory [FJM+96]: classical, axiomatic, synthetic

Applications of monads [Mac71, Man76]
for computational types (lifting and recursion) [Mog89, Mog91] 1988-. . .
in pure functional languages (Haskell) – Wadler et al.
for collection types (in databases) – Buneman et al.

including recent contributions by Plotkin et al. [HPP02]
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Partial Lambda-Calculus: Background

Relevant work (1983-1985)

1983 categories of partial maps for computability [dPH86, LM84]

1985 the cleanest exposition on categories of partial maps [RR88]
C category (of total maps) f : A > B

M dominion = class of monos (with certain properties)

Cp category P(C,M) of partial maps

A

·

m ∈M

∪

∧

f > B
⇀

>: 1 > Σ dominance classifyingM (in topos Σ ⊂ Ω with certain properties)
central role in Synthetic Domain Theory [Hyl91, Pho90, Pho91]

1984 reformulation of domain theory using partial continuous maps [Plo85]

Previous relevant work (. . . -1983)

1982 more systematic study of categories of partial maps [Obt86, CO87]

partiality in algebraic specifications: [Bur82]

partiality in (intuitionistic) logic: LPE [Fou77, Sco79], LPT [Bee85]

mismatch between lambda-calculus and programming languages [Plo75]

λV CBV axioms (λx.t)v > t[x: =v] and (λx.vx) > v with v: : = x | λx.t values
λp is derived from models like λV is derived from operational semantics

λV ⊂ λc ⊂ λp are correct (but incomplete) for CBV (on untyped λ-terms)

λc on (simply typed) λ-terms is inverse image of λβη w.r.t. CBV CPS [SF93]
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Partial Lambda-Calculus: Background

Relevant work (1983-1985)

1983 categories of partial maps

1984 reformulation of domain theory using partial continuous maps [Plo85]
Hand-written notes for the TPG course

computational lambda-calculus [Mog89] influenced by metalanguage
τ : : = . . . | τ⊥ | τ1 ⇀ τ2 e: : = . . . | [e] | let [x] be e in e′

and its interpretation in Cpop

Axiomatic Domain Theory [Fio94] influenced by reformulation:
Cpop paradigmatic example of algebraically compact category [Fre92]
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Partial Lambda-Calculus: Approach and Results

Systematic and unbiased investigation of partiality
in the setting of both intuitionistic and classical logic
in set-theoretic models and order-theoretic models (PoSet or Cpo)

Axiomatization in Logic of Partial Terms (LPT) [Bee85]
variables x range on existing elements, but terms e could be undefined
(in LPE free x range on partial elements, and e denote partial elements)
e ↓ means “e defined” (or “evaluation of e terminates”)
e1 = e2 means “e1 and e2 defined and equal” (similarly e1 ≤ e2)

e1 ' e2
∆
⇐⇒ (e1 ↓ ∨e2 ↓) ⊃ e1 = e2 (but e1 . e2

∆
⇐⇒ e1 ↓⊃ e1 ≤ e2)

Analogies between λp-calculi and λ-calculus (results and proof techniques)

Characterization of equality (on untyped pλ-terms) by confluent reduction
Very complex in comparison with characterization of equality in λβη

e D
e1 D1 e2 D2

e1e2 {e1e2} ∪D1 ∪D2

e D1 ∪D2

(λx.e D1) D2

x /∈ FV(D2) . . . [Obt86]

βp (λx.e1 D1)e2 {(λx.e1 D1)e2} ∪D2 > e1[x: =e2] (D1[x: =e2]) ∪D2

On pλ-terms one should use one-step parallel βp-reduction 1>

' in Jλpβη characterized by 1> and decidable equivalence 'dη [Per88]

. in Jλ≤
p βη characterized by 1> and decidable preorder .dη

diamond property of 1>

up to 'dη (or .dη)

e1 D1 'dη e2 D2 1 > e4 D4

e3 D3

1

∨
1 > ·

1
m

ax

>

'dη ·

1

∨

1
m

ax

>
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Partial Lambda-Calculus: Approach and Results

Systematic and unbiased investigation of partiality
λpβη-models as partial Combinatory Algebras (pCA) + extensionality
For λpβ-models adapt FOL axiomatization of λβ-models in [Mey82]

pCA Kxy = x (Sxy) ↓ Sxyz ' xz(yz)

abstraction [x]e s.t. ([x]e) ↓ and ([x]e)x ' e definable by induction [Bar84]

ext.' (∀z.xz ' yz) ⊃ x = y

ext.. (∀z.xz . yz) ⊃ x ≤ y (and monotonicity x1 ≤ x2 ∧ y1 ≤ y2 ⊃ x1y1 . x2y2)

tot (xy) ↓ (i.e. application always defined) – λβη = λpβη + tot (⊥ not built-in)

intuitionistic classical

set-theoretic Jλpβη Kλpβη

order-theoretic Jλ≤
p βη Kλ≤

p βη
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Partial Lambda-Calculus: Approach and Results

Systematic and unbiased investigation of partiality

Comparison among λp-calculi (and also λ- and λV -calculi)

on equations e1 = e2 between pure λ-terms – quite complex

λV βη ⊂ Jλpβη ⊂ Jλ≤
p βη

∩ ∩

Kλpβη ⊂ Kλ≤
p βη ⊂ λβη(= Jλβη = Kλ≤βη)

on definedness assertions e ↓ for pure λ-terms

λV βη = Jλpβη = Kλ≤
p βη ⊂ λβη

Corollary of computational adequacy result in [Plo85]

Analogies between λp-calculi and λ-calculus (results and proof techniques)

Characterization of equality (on untyped pλ-terms) by confluent reduction
Very complex in comparison with characterization of equality in λβη
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Partial Lambda-Calculus: Approach and Results

Systematic and unbiased investigation of partiality

Analogies between λp-calculi and λ-calculus (results and proof techniques)

Completeness results for type hierarchies (simply typed fragment)
λβη complete for Set(N) [Fri75] and Cpo(N⊥) [Plo82]

Kλpβη complete for Setp(N) – partial functions

Kλ≤
p βη complete (on inequalities) for PoSetp(P (N))

Unknown if similar result holds in Cpop

Results proved using logical relations for λp-calculus

fRτ⇀τ ′g
∆
⇐⇒ ∀x, y. xRτy ⊃ fxR̃τ ′gy where e1R̃e2

∆
⇐⇒ (e1 ↓ ∨e2 ↓) ⊃ e1Re2

Characterization of equality (on untyped pλ-terms) by confluent reduction
Very complex in comparison with characterization of equality in λβη
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Partial Lambda-Calculus: Approach and Results

Systematic and unbiased investigation of partiality

Analogies between λp-calculi and λ-calculus (results and proof techniques)

Characterization of equality (on untyped pλ-terms) by confluent reduction
Very complex in comparison with characterization of equality in λβη

e

�

D
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D1 e2

�

D2

e1e2

�

{e1e2} ∪D1 ∪D2

e

�

D1 ∪D2

(λx.e

�

D1)

�

D2

x /∈ FV(D2) . . . [Obt86]

βp (λx.e1
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D1)e2
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�
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Partial Lambda-Calculus: Concluding Remarks

Too much focus on partiality!
λp-calculus is not sound for reasoning on CBV languages (e.g. SML) with
other computational effects, while λV -calculus is still sound

Generalize ===⇒ Notions of computations as Monads

Work in this direction started after PhD submission, and was discussed during
the PhD exam (Hyland, Milner, Plotkin). Essential contributions in early stages:

Plotkin ===⇒ lots of examples inspired by Denotational Semantics
Essential to get reassurance that we were on the right track
Hyland, Kock,. . . ===⇒ pointers to the relevant Category Theory literature
Basically all the necessary mathematics was already there [Koc72, Man76]

Too generic on what kind of partiality!
λp-calculus does not adequately capture partiality in the setting of
computability and domain theory

Specialize ===⇒ Axiomatic and Synthetic Domain Theory
ADT Axioms for a dominance Σ in a (order-enriched) category [FP94, Fio94] to

interpret a metalanguage (e.g. FPC) with recursive definitions and
recursive types (in the category of partial maps [Fre90, Fre92])

SDT Axioms for a dominance Σ ⊂ Ω in a topos to ensure existence of full
sub-category of domains (Scott’s slogan “domains as sets”)
[Hyl91, Pho90, Pho91] (some axioms incompatible with classical logic)
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Monads and Computational Types

C category of sets and maps, τ set of values and Mτ set of programs of type τ

M should have (at least) the structure of a monad

e: τ

ret e: Mτ

e1: Mτ1 x: τ1 ` e2: Mτ2

do x← e1; e2: Mτ2

do x← (ret e1); e2 = e2[x: =e1]

do x2 ← (do x1 ← e1; e2); e3 = do x1 ← e1; (do x2 ← e2; e3) x1 6∈ FV(e3)

do x← e; (ret x) = e

PL CBV programming language interpreted in Kleisli category CM for a given M
Like interpretation of Plotkin’s metalanguage in Cpop [Plo85]

MLM Monadic metalanguage interpreted in C (possibly with several monads)

extends conservatively a typed λ-calculus for C with computational types
Semantics of programming languages via translation in MLM followed by interpretation of M
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Monads and Computational Types

C category of sets and maps, τ set of values and Mτ set of programs of type τ

M should have (at least) the structure of a monad

Relation to partiality: partial map classifier C(A, B⊥) ∼= Cp(A, B) is a monad

the category Cp of partial maps isomorphic to the Kleisli category C⊥

monad morphism (−)⊥
.
→M in model for Axiomatic/Synthetic Domain Theory

===⇒ recursive definitions of elements in Mτ (is a EM-algebra for (−)⊥)
M usable in recursive domain equations (as M extends to C⊥)

Relation to λV : CBV translation (−)v in MLM with V = (MV )V – xi: V ` ev
: MV

λV ⊂ λc = calculus on (untyped) λ-terms induced by (−)v

[SF93] λc = inverse image of λβη w.r.t. CBV CPS translation (−) of [Plo75]
Continuations as worst case instance of computational types
Corollary: completeness results for simply typed fragment

MLM complete for Set and Cpo with monad M− = A(A−)

In Set interpret A and base type with N , in Cpo with N⊥

GDP symposium – p.6/11



Monads in Functional Programming

Extension of Haskell with computational types [Wad90, Wad92a, Wad92b]

Motivation: to mimic impure features in a pure functional language
and also hide how much impure features to mimic

Analogy with monadic metalanguage extending conservatively λ-calculus

Further ideas originally developed within Haskell
Monadic encapsulation of effects run: (∀α.Mατ)→ τ [LP94, LS97, MS01]
No need to change Haskell’s type system with a type-and-effect system [LG88, TJ94]

Refinement of computational types with effects Mετ [Wad98, BHM02]
Refined type semantically (A ∈ Set, P ⊆ A), syntactically |Mετ | = M |τ |

Monadic value recursion
x: Mτ ` e: Mτ

Mfix x.e: Mτ
[EL00, Erk02, MS04]

Operational semantics of Mfix , only loose axiomatization
Mfix x.ret e = fix x.ret e Mfix (x2.do x1 ← c; e) = do x1 ← c; (Mfix x2.e)
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Monads and Collection Types [BNTW95]

From list comprehension to monad comprehension [Wad92a]

x1: Mτ1, . . . , xj−1: Mτj−1 ` ej : Mτj 1 ≤ j ≤ n

x1: Mτ1, . . . , xn: Mτn ` e: τ

{e|x1 ← e1, . . . , xn ← en}: Mτ comprehension notation
do x1 ← e1; . . . ; xn ← en; ret e: Mτ do-notation

c ∈Mτ collection of elements in τ – Mτ collection type
c ∈Mτ computes values in τ – Mτ computational type

A collection M should have (at least) the structure of a monad, but also
a collection c ∈Mτ should have a finite numbers of elements
empty collection 0: Mτ and union c1 + c2: Mτ of two collections c1, c2: Mτ

[Man98] defines and studies collection monads in Set

M collection monad⇐⇒ induced by a balanced algebraic theory (Σ, E)

i.e. FV(e1) = FV(e2) for all equations (e1, e2) ∈ E

M collection monad =⇒ memX : MX > Pfin(X) monad morphism
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Combining Monads

Motivation: modular approach to semantics of programming languages

ideally semantics as easy to extend as syntax of PL [Mos90]

Approach: build monad for a complex language from simple monads
Ideally from monads capturing one computational effect

Early proposals, e.g. monad transformers [BHM02]:
methodologically and mathematically unsatisfactory

New proposal [PP02, PP03, HPP02]:
revisits correspondence between algebraic theories and monads
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Combining Monads

Motivation: modular approach to semantics of programming languages

New proposal [PP02, PP03, HPP02]:
revisits correspondence between algebraic theories and monads
Originally the correspondence was used to establish computational adequacy between

denotational and operational semantics for a monadic language with algebraic effects.

May identify better monads, e.g. monad MX induced by read/write operations
lkp: L > MV and upd: L, V > M1 on set L of global variables is strictly
included in naive state monad, when L is infinite

MX ⊂ (X × S)S with S = V L

c ∈MX ⇐⇒ ∀s1.∃R, W ⊆fin L.∀s2.s1 =R s2 ⊃ cs2 = (x1, s
′
2)

where (x1, s
′
1) = cs1 and s′2 s.t. s′2 =W s′1 and s′2 =W s2

Main limitation: continuation monads don’t fit in algebraic framework

Technical complications: need to go beyond plain algebraic theories
Enriched setting (e.g. Cpo-enrichment), and arities not necessarily finite (e.g. countable).
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Combining Monads

Motivation: modular approach to semantics of programming languages

New proposal [PP02, PP03, HPP02]:
revisits correspondence between algebraic theories and monads

Mathematically clean: use few natural combinations for algebraic theories
+ disjoint union of operations and equations of two theories T1 and T2

⊗ disjoint union of operations and equations + equations for commutativity

op1(op2(xi,j |j ∈ n)|i ∈ m) = op2(op1(xi,j |i ∈ m)|j ∈ n)

operation op1 of theory T1 commutes with op2 of theory T2

Most monad transformers defined using (conterpart of) + and ⊗ (on monads).
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Combining Monads

Motivation: modular approach to semantics of programming languages

New proposal [PP02, PP03, HPP02]:
revisits correspondence between algebraic theories and monads

Mathematically clean: use few natural combinations for algebraic theories
+ disjoint union of operations and equations of two theories T1 and T2

⊗ disjoint union of operations and equations + equations for commutativity

op1(op2(xi,j |j ∈ n)|i ∈ m) = op2(op1(xi,j |i ∈ m)|j ∈ n)

operation op1 of theory T1 commutes with op2 of theory T2

The approach can be used for a modular approach to collection types too!

in this case plain algebraic theories (finitary monads on Set) suffice [Man98]
+ and ⊗ preserve balanced algebraic theories

problematic monads (like continuations) are ruled out by application domain.
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Conclusions

I would like to conclude by mentioning a very influential unpublished work by

Rod Burstall
Robin Milner
Gordon Plotkin et al.

well-known worldwide, and

particularly appreciated by CS researchers that had the opportunity
to be or visit Edinburgh in the last 20 years

The Laboratory for
Foundations of Computer Science

Many Thanks, Gordon!
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Technical Details: CBV

λV -calculus terms t: : = x | λx.t | t1t2 values v: : = x | λx.t and axioms

βV (λx.t)v = t[x: =v] ηV (λx.vx) = v if x 6∈ FV(v)

CBV translation (−)v in MLM and CBV CPS translation (−) in λ-calculus

t x λx.t t1t2

tv ret x ret (λx: V.tv) do x1 ← tv1; x2 ← tv2; x1x2

t λk.kx λk.k(λx.t) λk.t1(λx1.t2(λx2.x1x2k))

Monad of continuations Mτ = A(Aτ ) with answers in A

ret e = λk.ke do x← e1; e2 = λk.e1(λx.e2k)
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Technical Details: CBV

λV -calculus terms t: : = x | λx.t | t1t2 values v: : = x | λx.t and axioms

βV (λx.t)v = t[x: =v] ηV (λx.vx) = v if x 6∈ FV(v)

inverse image of λβη w.r.t. CBV CPS translation [SF93] βV + ηV +

(λx.x)t = t

E[(λx.t1)t2] = (λx.E[t1])t2 x 6∈ FV(E)

E[t1t2t3] = (λx.E[xt3])(t1t2) x 6∈ FV(E, t3)

(λx.E[x′x])t = E[x′t] x 6∈ FV(E, x′)

where E: : = [] | vE | Et CBV evaluation contexts, or alternatively

(λx.x)t = t

(λx2.t3)((λx1.t2)t1) = (λx1.(λx2.t3)t2)t1 x1 6∈ FV(t3)

t1t2t3 = (λx.xt3)(t1t2) x 6∈ FV(t3)

vt1t2 = (λx.vx)(t1t2) x 6∈ FV(v)
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