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Abstract

We consider the transfer of verification techniques to structures with binding.
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1 Introduction

A notable success in Computer Science has been the development of techniques
for the computer-assisted verification of finite and infinite-state systems. These
methods include model checking and equivalence checking. A general research goal
is to transfer them to classes of finite and infinite-state systems with binding. In this
paper we examine two problems involving typed λ-calculi, higher-order matching
and higher-order program schemes.

The basic idea for understanding both these problems is to view typed λ-terms as
models with binding, akin to transition graphs, and to understand their dynamical
behaviour (β-reduction) by playing games on them without changing them using
substitution. In the case of matching we assume we are given a potential solution
term t. The model-checking game for t decides whether it is a solution. To transform
this into a decision procedure for matching, one needs to find play unformities that
imply the small model property: if a problem has a solution then it has a small
solution [26]. Here, we present the proof for the third-order case, as the small
model property follows immediately from the tree-model property that every play
descends a branch of a solution term. In the case of a scheme, we adopt Ong’s
presentation as an infinite term (that can be wrapped into a finite graph) [17]. We
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define a scheme model checking game similar in spirit to game semantics as defined
by Ong [17] but based on the ideas introduced for defining matching games.

In Section 2 we introduce higher-order matching and its equivalent problem,
dual interpolation. The matching game is defined in Section 3 and in Section 4 we
show decidability for the 3rd-order case. Higher-order schemes are introduced in
Section 5 and their games in Section 6.

2 Matching and dual interpolation

We consider simple types that are generated from a single base type 0 using the
binary → operator. A type is 0 or A → B where A and B are types. If A 6= 0 then
it has the form A1 → . . . → An → 0, assuming → associates to the right, which is
here written (A1, . . . , An,0) following Ong [17]. A standard definition of order is:
the order of 0 is 1 and the order of (A1, . . . , An,0) is k +1 where k is the maximum
of the orders of the Ais.

Terms of the simply typed λ-calculus are built from a countable set of typed
variables x, y, . . . and typed constants a, f, . . . (each variable and constant has a
unique type). The set of simply typed terms is the smallest set T such that

(i) if x (f) has type A then x : A ∈ T (f : A ∈ T ),

(ii) if t : B ∈ T and x : A ∈ T then λx.t : A → B ∈ T ,

(iii) if t : A → B ∈ T and u : A ∈ T then tu : B ∈ T .

The order of a typed term is the order of its type. A typed term is closed if it does
not contain free variables. Throughout, we assume the definitions of α-equivalence,
β and η-reduction.

Definition 2.1 A matching problem is an equation v = u where v, u : 0 and u

is closed. The order of the problem is the maximum of the orders of the free
variables x1, . . . , xn in v. A solution is a sequence of terms t1, . . . , tn such that
v{t1/x1, . . . , tn/xn} =β η u.

The decision question is: given a matching problem, does it have a solution? Match-
ing is a particular instance of higher-order unification when the term u is closed: can
v be pattern matched to u? Although higher-order unification is undecidable (even
if free variables are only second-order), higher-order matching was conjectured to
be decidable by Huet [12]. If matching is decidable then it is known to have non-
elementary complexity. Decidability has been proved for the general problem up
to order 4 using observational equivalence of λ-terms and for various special cases
[18,19]. Comon and Jurski define tree automata that characterize all solutions to a
4th-order problem, thereby, showing that they form a regular set [6]. Loader showed
that matching is undecidable for the variant definition when β-equality is the same
normal form by encoding λ-definability as matching [15], also see [13].

In [26], we describe a procedure that shows that matching is decidable that
uses finite model checking games on λ-terms. In this paper, we describe the model
checking game and how it leads to decidability for the third-order case, as a prelude
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to examining (infinite) model checking games for higher-order schemes.
We assume that all terms in normal form are in η-long form,

(i) if t : 0 then it is u : 0 where u is a constant or a variable, or u t1 . . . tk where
u : (B1, . . . , Bk,0) is a constant or a variable and each ti : Bi is in η-long form,

(ii) if t : (A1, . . . , An,0) then t is λy1 . . . yn.t′ where each yi : Ai and t′ : 0 is in
η-long form.

Throughout we use λz1 . . . zn for λz1 . . . λzn. A term is well-named if each occur-
rence of a variable y within a λ-abstraction is unique.

Assume u : 0 and each vi : Ai, 1 ≤ i ≤ n, is a closed term in normal form
and x : (A1, . . . , An,0). An interpolation equation has the form xv1 . . . vn = u

and an interpolation disequation is xv1 . . . vn 6= u. A finite family of interpolation
equations xvi

1 . . . vi
n = ui, i : 1 ≤ i ≤ m, with the same free variable x is an

interpolation problem P . A finite family of interpolation equations and disequations,
xvi

1 . . . vi
n ≈i ui, i : 1 ≤ i ≤ m and each ≈i ∈ {=, 6=}, with the same free variable

x is a dual interpolation problem P . The type of problem P is that of x and the
order of P is the order of x. A solution of P of type A is a closed term t : A in
normal form such that for each equation tvi

1 . . . vi
n =β ui and for each disequation

tvi
1 . . . vi

n 6=β ui. We write t |= P if t is a solution of P .
Schubert shows that a matching problem of order n reduces to an interpolation

problem of order at most n+2 and Padovani shows it reduces to a dual interpolation
problem of order n [20,19]. Because of normal forms, β-equality and β η-equality
coincide. Consequently, the higher-order matching problem reduces to the following
decision question: given a (dual) interpolation problem P , is there a term t |= P?

Example 2.2 The problem xλy1y2.y1λy3.fy3y3 = faa from [6] has order 3 with
x : ((0,0,0), (0,0),0) and each yi : 0. 2

Example 2.3 The problem xλz.z = f(λx1x2x3.x1(x3))a also has order 3 where x

has type ((0,0),0). This example illustrates that the closed term u : 0 may contain
bound variables: here f : (((0,0),0,0,0),0,0). 2

3 Matching games

We use a game-theoretic characterization of dual interpolation inspired by model
checking games (such as in [23]) where a model, a transition graph, is traversed
relative to a property and players make choices at appropriate positions. Similarly,
in the following game the model is a putative solution term t that is traversed
relative to the dual interpolation problem P . The central motivation is to model
the dynamics, β-reduction, without changing t by substituting into it. Because of
binding play may jump around t.

A potential solution term t for P has the right type, is in normal form, is well-
named (with variables that are disjoint from variables in P ). Term t is represented
as a tree, tree(t). If t is y : 0 or a : 0 then tree(t) is the single node labelled with t.
In the case of uv1 . . . vk when u is a variable or a constant, we assume that a dummy
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Fig. 1. A solution term

λ with the empty sequence of variables is placed before any subterm vi : 0 in its
tree representation. With this understanding, if t is uv1 . . . vk then tree(t) consists
of the root node labelled u and k-successor nodes labelled with tree(vi). We use the
notation u ↓i t′ to represent that tree t′ is the ith successor of the node u. If t is
λy.v, where y is possibly empty, then tree(t) consists of the root node labelled λy

and a single successor node tree(v), λy ↓1 tree(v).
In the following we use t to be the λ-term t, its λ-tree or the label (a constant,

variable or λy) at its root node.

Example 3.1 A solution term t for the problem of Example 2.3 is
λy.y(y(f(λxz1z2.x(z2)) a)). The tree for t (without indices on the edges) is in Fig-
ure 1. For instance, in this tree (6) ↓2 (11). There are various nodes in the tree
with dummy λs such as (5) and (9). 2

We assume that each node of a tree t is uniquely identifiable: for instance, in
Example 3.1 we labelled each node with a distinct natural number to distinguish
different occurrences of z and λ.

Innocent game semantics following Ong in [17] provides a possible game-theoretic
foundation. Given a potential solution term t and a (dis)equation xvi

1 . . . vi
n ≈i ui

there is the game board in Figure 2. Player Opponent chooses a branch of ui.
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Fig. 2. Illustrating game semantics

Then, there is a finite play that starts at the root of t and may repeatedly jump in
and out of t and in and out of the vi

j ’s. At a constant a : 0 play ends. At other
constants, player Proponent tries to match Opponent’s choice of branch. Proponent
wins, when the play finishes, if the sequence of constants encountered matches the
branch chosen by Opponent. Play, for example, may reach y in t and then jump
to λz in vi

j , as it is the subtree at λz that is applied to λy, and then when at
z in vi

j play may return to t to an immediate successor of y. Game semantics
models β-reduction on the fixed structure of Figure 2 without changing it using
substitution. This is the rationale for the tree-checking game. However, it starts
from the assumption that only t is the common structure for the problem P . So,
play will always be in t. Jumping in and out of the vi

j ’s is coded using states, as play
traverses t. Moreover, the game avoids the justification pointers of game semantics
by appealing to iteratively defined look-up tables.

The tree-checking game G(t, P ) is played by one participant, player ∀, the refuter
who attempts to show that t is not a solution of P . It appeals to a finite set of states
involving left terms, subterms of the vi

j ’s, and right terms, closed subterms of the
ui’s, of the matching (dis)equations in P (both modulo substitution of constants for
bound variables that are directly below a constant f , as we shall see). There are
three kinds of state: argument, value and final states. An argument state has the
form q[(l1, . . . , lk), r] where each lj is a left term (and k can be 0) and r is a right
term. Such a state will occur at a node labelled λz1 . . . zk in t where each lj has the
same type as zj : (l1, . . . , lk) are the subterms applied to λz1 . . . zk. A value state
has the form q[l, r] where l is a left term and r a right term. This state is associated
with a node labelled with a variable y in t where y and l share the same type: l is
the subterm of some vi

j that play at y would jump to in game semantics. A final
state is either q[∀ ] or q[∃ ].
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A. tm = λy1 . . . yj , tm ↓1 t′ and qm = q[(l1, . . . , lj), r].
So, tm+1 = t′, θm+1 = θm{l1ηm/y1, . . . , ljηm/yj} and qm+1, ηm+1 are defined
by cases on tm+1.
1. a : 0. So, ηm+1 = ηm. If r = a then qm+1 = q[∃ ] else qm+1 = q[∀ ].
2. f : (B1, . . . , Bk,0). So, ηm+1 = ηm. If r = fs1 . . . sk) then qm+1 = qm else

qm+1 = q[∀ ].
3. y : B. If θm+1(y) = lηi, then ηm+1 = ηi and qm+1 = q[l, r].

B. tm = f : (B1, . . . , Bk,0), tm ↓i t′i and qm = q[(l1, . . . , lj), fs1 . . . sk].
So, θm+1 = θm, ηm+1 = ηm and ∀ chooses a direction d : 1 ≤ d ≤ k.
1. tm+1 = t′d. If sd : 0, then qm+1 = q[( ), sd]. If sd is λx1 . . . xn.s then qm+1

= q[(c1, . . . , cn), s{c1/x1, . . . , cn/xn}] where the ci’s are new constants and
each ci has the same type as xi.

C. tm = y and qm = q[l, r].
If l = λz1 . . . zj .w and tm ↓i t′i then ηm+1 = ηm{t′1θm/z1, . . . , t

′
jθm/zj} else

ηm+1 = ηm. Elements tm+1, qm+1 and θm+1 are by cases on l.
1. a : 0 or λz.a. So, tm+1 = tm and θm+1 = θm. If r = a then qm+1 = q[∃ ]

else qm+1 = q[∀ ].
2. c : (B1, . . . , Bk,0). So, θm+1 = θm. If r 6= cs1 . . . sk then tm+1 = tm and

qm+1 = q[∀ ]. Otherwise, ∀ chooses a direction d : 1 ≤ d ≤ k and t′m+1 = t′

where t′m ↓d t′. If sd : 0 then qm+1 = q[( ), sd]. If sd is λx1 . . . xn.s then
qm+1 = q[(c1, . . . , cn), s{c1/x1, . . . , cn/xn}] where the ci’s are new constants
and each ci has the same type as xi.

3. fw1 . . . wk or λz.fw1 . . . wk. So, tm+1 = tm and θm+1 = θm. If r 6=
fs1 . . . sk then qm+1 = q[∀ ]. Otherwise, ∀ chooses a direction d : 1 ≤ d ≤ k.
If sd : 0 then qm+1 = q[wd, sd]. If sd = λx1 . . . xn.s and wd = λy1 . . . yn.w

then qm+1 = q[w{c1/y1, . . . , cn/yn}, s{c1/x1, . . . , cn/xn}] where the ci’s are
new constants and each ci has the same type as xi and yi.

4. xl1 . . . lk or λz.xl1 . . . lk. If ηm+1(x) = t′θi then tm+1 = t′, θm+1 = θi and
qm+1 = q[(l1, . . . , lk), r].

Fig. 3. Game moves

As play proceeds in t, there are two kinds of free variable: those in t, such as y in
Figure 2, and those in the left terms of states, such as z in Figure 2. Free variables
in t are associated with left terms and free variables in states are associated with
nodes of t. So, the game appeals to a sequence of supplementary look-up tables
θk and ηk, k ≥ 1: θk is a partial map from variables in t to pairs lηj where l is a
left term and j < k, and ηk is a partial map from free variables in subterms of vi

j′

to pairs t′θj where t′ is a node of the tree t and j < k. A variable y in t may be
associated with a left subterm l which contains free variables: hence, the need for
θk(y) to be a pair lηj as ηj records the values of the free variables in l and j < k.
Similarly, a variable in a left subterm may be associated with a subtree of t which
contains free variables. Initially, at the beginning of play when there are no free
variables, θ1 and η1 are both empty.

6



GDP Festschrift ENTCS, to appear

(1) q[(λz.z), u] θ1 η1

(2) q[λz.z, u] θ2η2 θ2 = θ1{(λz.z)η1/y} η2 = η1 A3

(3) q[( ), u] θ3η3 θ3 = θ2 η3 = η2{(3)θ2/z} C4

(4) q[λz.z, u] θ4η4 θ4 = θ3 η4 = η1 A3

(5) q[( ), u] θ5 η5 θ5 = θ4 η5 = η4{(5)θ4/z} C4

(6) q[( ), u] θ6 η6 θ6 = θ5 η6 = η5 A2

Fig. 4. Initial moves

A play of G(t, P ) is a sequence of positions t1q1θ1η1, . . . , tnqnθnηn where each ti
is (the label of) a node of t, t1 = λy is the root node of t, each qi is a state and
qn is a final state. A node t′ of the tree t may repeatedly occur in a play. The
initial state is decided as follows: ∀ chooses a (dis)equation x(vi

1, . . . , v
i
n) ≈i ui from

P and q1 = q[(vi
1, . . . , v

i
n), ui]. This is the same as an initial position in the game

semantics, except the terms vi
j and ui are now part of the state (and the choice of

branch in ui takes place as play proceeds).
If the current position is tmqmθmηm and qm is not a final state, then the next

position tm+1qm+1θm+1ηm+1 is determined by a unique move in Figure 3. Moves
are divided into three groups that depend on tm. Group A covers the case when
it is a λy, group B when it is a constant f (whose type is not 0) and group C
when it is a variable y. We assume standard updating notation for θm+1 and ηm+1:
β{α1/y1, . . . , αm/ym} is the partial function similar to β except that β(yi) = αi. In
the case of rules B1, C2 and C3 we assume that the constants ci are new: their role
is to replace bound variables directly beneath a constant f . These are also the only
rules where ∀ can exercise choice, by carving out a branch. The look-up tables are
used in rules A3 and C4 to interpret the two kinds of free variables. If tm is a λ

node, tm ↓1 tm+1 and tm+1 is the variable y, then ηm+1 and qm+1 are determined by
the entry for y in θm+1: if it is lηi, then l is the left element of qm+1 and ηm+1 = ηi.
In C4, if tm = y, qm = q[l, r] and l = x(l1, . . . , lk) or λz.x(l1, . . . , lk), then θm+1 and
tm+1 are determined by the entry for x in the table ηm+1: if it is t′θi then tm+1 = t′

and θm+1 = θi. It is this rule that allows play to jump elsewhere in the term tree
(always to a node labelled with a λ). In contrast, for A1-A3, B1 and C2 (unless
play finishes) control passes down the term tree while it remains stationary in the
case of C1 and C3.

A play of G(t, P ) finishes with a final state q[∀ ] or q[∃ ]. Player ∀ wins the play
if the final state is q[∀ ] and she loses it if the final state is q[∃ ].

Example 3.2 Let P be the problem of Example 2.3 and let t be the term tree
of Figure 1. G(t, p) consists of two plays that descend t. Both plays start as in
Figure 4 where we have supplied which move is applied to produce the next position.
The initial state is an argument state q[(λz.z), u] and control is at node (1). Play
descends from node (1) to (2) calling the value λz.z by A3. Next, by C4, because
z is the head variable in the body of λz.z, has no arguments and is associated with
node (3), the next state is the argument state q[( ), u] and control is at (3). Play
descends from (3) to (4) calling the value λz.z by A3. Again by C4, z is the head
variable in the body of λz.z, has no arguments and is now associated with (5), the
next state is the argument state q[( ), u] and control is at (5). A2 is then applied
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(because the right term u in the state has f as head constant) and control passes
from (5) to (6). Move B1 is now applied and there is a ∀ choice as to which branch
of u to take. If direction 1 is chosen then play continues as follows.

(7) q[(c1, c2, c3), c1(c3)] θ7 η7 θ7 = θ6 η7 = η6 B1

(8) q[c1, c1(c3)] θ8 η8 θ8 = θ7{c1η7/x, c3η7/z2} η8 = η7 A3

(9) q[( ), c3] θ9 η9 θ9 = θ8 η9 = η8 C2

(10) q[c3, c3] θ10 η10 θ10 = θ9 η10 = η7 A3

(10) q[ ∃ ] θ11 η11 θ11 = θ10 η11 = η10 C1

New constants are introduced for replacing x1, x2, x3 in the body of u to give
the right term c1(c3) and as arguments (c1, c2, c3) for the variables x, z1, z2 bound
at (7). At (8) the value c1 is called and by C2, control proceeds to (9) where the
right term is reduced to c3. Finally, at (10), the value c3 is called, and by C1, ∀
loses the play. She also loses if direction 2 is chosen. 2

Example 3.3 A solution to Example 2.2, x v1v2 = faa, is depicted in Figure 5
where v1 = λy1y2.y1 and v2 = λy3.fy3y3. The moves are also shown. In fact there
are two plays here: at position 4 there is a ∀-choice: however, both choices lead to
the same position 5. 2

If P is an interpolation problem then ∀ loses the game G(t, P ) if she loses every
play: for each equation she loses every play whose initial state is from it. When P is
a dual interpolation problem, ∀ loses the game G(t, P ) if for each equation she loses
every play whose intial state is from it and if for each disequation she wins at least
one play whose initial state is from it. The game characterizes dual interpolation
and is proved in [25].

Proposition 3.4 ∀ loses G(t, P ) if, and only if, t |= P .

The number of different plays in G(t, P ) is bounded by the sum of the number
of branches in the right terms ui of P . We let π range over subplays that are
consecutive subsequences of positions of any play of G(t, P ).

Definition 3.5 The length of π, |π|, is the number of positions in π. The ith
position of π, for 1 ≤ i ≤ |π|, is π(i) and π(i, j), i ≤ j, is the interval π(i), . . . , π(j).

For ease of notation, we write t ∈ π(i), q ∈ π(i), θ ∈ π(i) and η ∈ π(i) if π(i) = tqθη

and t 6∈ π(i) means that π(i) = t′qθη and t 6= t′. If q = q[(l1, . . . , lk), r] or q[l, r]
then its right term is r.

Definition 3.6 A subplay π is ri, right term invariant, if q ∈ π(1) and q′ ∈ π(|π|)
share the same right term r. It is nri if it is not ri and q′ ∈ π(|π|) is not final.

Definition 3.7 If π ∈ G(t, P ) and π(i)’s look-up table is called when move A3 or
C4 produces π(j), j > i, then position π(j) is a child of position π(i). If π(i + 1) is
the result of move B1 or C2, then π(i + 1) is a child of π(i).

Fact 3.8 If π ∈ G(t, P ), j > 1, π(j) is not a final position and λy or y ∈ π(j),
then there is a unique π(i), i < j, such that π(j) is a child of π(i).

Definition 3.9 A look-up table β′ extends β if for all x ∈ dom(β), β′(x) = β(x).
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(1) q[(v1, v2), faa] θ1 η1

(2) q[v1, faa] θ2 = θ1{v1η1/x1, v2η1/x2} η2 = η1 A3

(3) q[( ), faa] θ3 = θ2 η3 = η2{(3)θ2/y1, (15)θ2/y2} C4

(4) q[v2, faa] θ4 = θ3 η4 = η1 A3

(4) q[y3, a] θ5 = θ4 η5 = η4{(5)θ4/y3} C3

(5) q[( ), a] θ6 = θ4 η6 = η5 C4

(6) q[v1, a] θ7 = θ6 η7 = η1 A3

(7) q[( ), a] θ8 = θ7 η8 = η7{(7)θ7/y1, (13)θ7/y2} C4

(8) q[v1, a] θ9 = θ8 η9 = η1 A3

(9) q[( ), a] θ10 = θ9 η10 = η9{(9)θ9/y1, (11)θ9/y2} C4

(10) q[ ∃ ] θ11 = θ10 η11 = η10 A1

Fig. 5. Plays of a solution term to Example 2.2

Fact 3.10 If π(j) is a child of π(i) then θj ∈ π(j) extends θi ∈ π(i) and ηj ∈ π(j)
extends ηi ∈ π(i).

4 Deciding third-order matching

We describe how the game-theoretic characterization of matching, Proposition 3.4,
underpins decidability of third-order matching. The idea is to show the small model
property : if t0 |= P then there is a small term t′ |= P . First, we relate the static
structure of a solution tree t0 with the dynamics of playing.

Definition 4.1 Assume B = (B1, . . . , Bk,0).

9
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(i) λ is an atomic leaf of type 0.

(ii) If xj : Bj , 1 ≤ j ≤ k, then λx1 . . . xk is an atomic leaf of type B.

(iii) If u : 0 is a constant or variable then u is a simple tile.

(iv) If u : B is a constant or a variable and tj : Bj , 1 ≤ j ≤ k, are atomic leaves
then u(t1, . . . , tk) is a simple tile.

The term tree t0 without its very top λy consists of simple tile occurrences. In
Figure 5, nodes (2),(3) and (15) form the simple tile x1(λ, λ) with atomic leaves λ

and λ, (8), (9) and (11) form x1(λ, λ). Nodes such as (10) and (12) are also simple
tiles without atomic leaves. The node (2) by itself or (2) with (3) are not simple
tiles.

Throughout, our use of tile in t0 means “tile occurrence” in t0. We write
t(λx1, . . . , λxk) if t is a simple tile with atomic leaves λx1, . . . , λxk.

Definition 4.2 Assume t and t′ are simple tiles.

(i) t′ is j-below t(λx1, . . . , λxk) in t0 if there is a branch in t0 from λxj to t′.

(ii) t′ is an immediate j-dependent of tile t in t0 if t′ is j-below t and the head
variable of t′ is bound by a λy in t.

(iii) t′ is a j-dependent of t if it is an immediate j-dependent of t or there is a t′′

that is an immediate j-dependent of t and t′ is a j′-dependent of t′′ for some
j′.

(iv) t′ is a dependent of t if it is a j-dependent of t for some j.

In Figure 1, the tile x(λ) rooted at (8) is 1-below f(λxz1z2, λ) rooted at (6) and is,
therefore, also an immediate 1-dependent of it

Definition 4.3 Assume t = t(λx1, . . . , λxk) is a simple tile in t0.

(i) t is a top tile in t0 if its free variable y is bound by the initial lambda λy of t0.

(ii) t is j-end in t0, if every free variable below λxj in t0 is bound above t. It is an
end tile in t0 if it is j-end for all j : 1 ≤ j ≤ k.

(iii) t is a constant tile in t0 if its head is a constant or it is a dependent of a
constant tile.

The tiles x1(λ, λ) rooted at (2), (6) and (8) are top and end tiles in Figure 5. Tiles
f(λxz1z2, λ) and x(λ) in Figure 1 are constant tiles.

Tiles can also be categorized in terms of their dynamic properties by appealing
to subplays of G(t0, P ).

Definition 4.4 A subplay π is a play on the simple tile u(λx1, . . . , λxk) in t0 if
u ∈ π(1), λxi ∈ π(|π|) for some i and π(|π|) is a child of π(1). It is a j-play if
λxj ∈ π(|π|).

A play on a simple constant tile u(λx1, . . . , λxk) is a pair of positions π(i, i + 1)
with u ∈ π(i) and λxj ∈ π(i + 1) for some j (by moves B1 or C2 of Figure 3). If π

is the play in Example 3.2, then π(6, 7) is a 1-play on f(λxz1z2, λ) of Figure 1.

10
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Fact 4.5 If π is a play on a simple constant tile then |π| = 2.

In the general higher-order matching case, a play π on a simple non-constant
tile y(λx1, . . . , λxk) in t0 can be of arbitrary length. It starts at y and finishes at
a leaf λxj . In between, flow of control can be almost anywhere in t0 (including y).
However, because of paucity of binding, play is very restricted in the third-order
case. In a play π ∈ G(t0, P ), it is not possible for there to be more than one subplay
on a simple tile of t0: in [26], it is shown that if π(i,m) and π(i, n), n > m, are
plays on the simple tile y(λx1, . . . , λxk) and λxj ∈ π(m) then there is a position
π(m′), m′ < n, that is a child of π(m). Therefore, the following is an immediate
corollary because a top tile in a third-order term tree has no dependent tiles.

Proposition 4.6 If π ∈ G(t0, P ), P is third-order and t is a simple tile in t0 then
there is at most one subplay on t within π.

Assume P is a 3rd-order problem and t0 |= P . If we inspect t0 top-down, starting
beneath the initial λ, then it is a tree of simple tiles: each is a constant or a top tile
that is also an end tile. The tree in Figure 1 consists of two initial top tiles y(λ)
that are also end tiles and the constant tiles f(λxz1z2, λ), x(λ), z2 and a. Assume
that Π = {π1, . . . , πp} are the plays of G(t0, P ). We define a partition of each π ∈ Π
in stages. At each stage n we examine a simple tile tn in t0 and a position π(in)
whose control is at the head of tn. We formalize that the subplay π(in, jn) is a play
on tn or jn = |π|. With each π ∈ Π we associate a unique colour c(π).

For stage 1, we identify the initial simple tile t1 = u(λx1, . . . , λxk) in t0 which
is a constant or top tile (and possibly k = 0). We examine the play on t1, if there
is one, consisting of moves π(i1, j1) where i1 = 2. If there is no play we let j1 = |π|,
so q ∈ π(j1) is final, and for all i : i1 ≤ i ≤ j1 it follows that u ∈ π(i): so, control
never reaches beyond this initial tile. Tile t1 is then final for π and we terminate at
this stage. Otherwise, the play on t1 ends at one of its atomic leaves λxj and t2 is
the simple tile directly below λxj in t0 and i2 = j1 + 1. If the play π(i1, j1) on t1 is
nri then t1 is coloured c(π). At stage n, for any subsequent simple tile tn we assume
that the play π(in, jn) is the play on tn, if there is one. If there is not a play then
jn = |π| and tn is final for π. If π(in, jn) is an nri play on tn then tn is coloured
c(π). In this way, the partition of π descends a branch of t0 until it reaches a final
tile.

Example 4.7 For the tree of Figure 1 and the play π of Example 3.2 there is the
following partition of π.

y λ y λ f λxz1z2 x λ z2

π(2, 3) π(4, 5) π(6, 7) π(8, 9) π(10, 10)

Tiles f(λxz1z2, λ) and x(λ) are coloured c(π) and z2 is final for π. For the other
play π′ in this example, there is a similar partition.

y λ y λ f λ a

π′(2, 3) π′(4, 5) π′(6, 7) π′(8, 8)

11
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where only f(λxz1z2, λ) is coloured c(π′) and the tile a is final for π′. 2

Consider partitioning with respect to all plays π ∈ Π. We slightly abuse notation:
if π and π′ are two plays we let π(in, jn), π′(in, jn) be subplays at stage n of their
partition even when these intervals have different ranges. Instead of a sequence of
simple tiles there is a tree of simple tiles, as they all share the initial tile. We select
three kinds of simple tile in the tree. Tile t is coloured if it has at least one colour
and t is final if it is final for at least one play. Each play at stage 1 that ends at the
same atomic leaf of t1 shares t2 at stage 2 and so on. Therefore, branching occurs at
tm at stage m if there are plays that ended at the same atomic leaves of tk, k < m,
and at stage m plays end at different atomic leaves of tm: tile tm is then a (play)
separator. In Example 4.7, f(λxz1z2, λ) separates the plays. If a simple tile in t0 is
coloured, final or a separator then it is special.

A simple tile in t0 with atomic leaves that is not special is superfluous. Either
every play avoids it or every subplay that passes through it is ri and ends at the
same atomic leaf λxj . If every play avoids the simple tile u(λx1, . . . , λxk) then we
can replace the subtree rooted at u in t0 with the simple constant tile b : 0. If every
subplay that passes through u(λx1, . . . , λxk) is ri and ends at the same atomic leaf
λxj and tj is the subtree beneath λxj of t0, then we can replace the subtree rooted
at u in t0 by tj . Clearly, both these transformations preserve solution trees. For
instance, the two occurrences of y(λ) in Example 4.7 are both redundant: the tree
in Figure 1 is transformed by moving node (6) directly beneath node (1). The only
significant tiles with atomic leaves are special. However, the number of coloured and
final tiles is bound by the sum of the depths of the right terms ui and the number
of separators is at most p− 1 (where p is the number of plays). So, the small model
property follows where s(P ) is the appropriate measure.

Fact 4.8 If t0 is a smallest solution to third-order P , then |t0| ≤ s(P ).

For Example 4.7 the term whose tree is in Figure 1 is reduced by partitioning to
λy.f(λxz1z2.x(z2))a. Similarly, the term in Figure 5 is reduced to λx1x2.x2(a).

The decidability proof exploits a key feature of game playing on a potential
solution term t0 for third-order P , the tree-model property: each play π ∈ G(t0, P )
descends a branch of t0 until a final state is reached. Because there is only one level
of simple non-constant tiles, so, they are both top and end, game playing is heavily
constrained. With a 4th or 5th-order tree there are two levels of simple non-constant
tiles: top tiles y(λx1, . . . , λxk) and end tiles z(λz1, . . . , λzl) where z is bound by a
λxj . The number of levels increases with order: at 8th or 9th-order there are four
levels. As soon as there is more than one level, game playing may jump around the
tree. To show decidability of matching for the general case, the argument is much
more involved and appeals to unfolding which is analogous to unravelling in modal
logic. Unfolding induces the tree-model property. The proof of decidability uses
unfolding followed by selective refolding (the inverse of unfolding) and from their
combinatorial properties the small model property holds, see [26]. Here, instead we
wish to consider infinite games on infinite λ-terms.

12
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Fig. 6. The tree for Example 5.2

5 Higher-order program schemes

Assume 0 is the domain of finite and infinite F-trees where each node is labelled by
a basis function (constant) f ∈ F = {f1, . . . , fk}. Each fi has an arity which is its
degree of branching: if fi : 0 then it has arity 0 and f : (0, . . . ,0,0) has arity the
number of 0’s less one 2 . A higher-order program scheme, following Damm [8], is
defined relative to a set of basis functions.

Definition 5.1 A scheme is a finite family Fi x
i
1 . . . xi

ni

def= ti, 1 ≤ i ≤ m, of
definitions where each Fi is typed and distinct, and each ti : 0 is built from the
typed variables, xi

1, . . . , x
i
ni

, basis functions and the Fi’s using application. There is
also a start configuration S : 0 without free variables built from the basis functions
and Fi’s using application. The order of a scheme is the highest order of a variable
xi

j that occurs on the left hand side of a definition 3 .

Example 5.2 Fx
def= fF (g(x))g(x) with start configuration Fa is first-order as

x : 0: here, a has arity 0, g arity 1 and f arity 2. 2

Example 5.3 The following with start configuration F g h a is second-order.

Fx1x2x3
def= f (F (Gx1)(Hx2)x3) x1(x2(x3))

Gy1y2
def= g(y1(y2))

Hz1z2
def= h(z1(z2))

Variables x1, x2, y1, z1 : (0,0), x3, y2, z2 : 0, constant a has arity 0, g, h arity 1 and
f arity 2. 2

A scheme is an abstracted functional program whose interpretation is the F-
tree generated by S. For instance, Fa of Example 5.2 becomes fF (ga)ga, then
f(fF (g(g(a)))g(g(a)))g(a) and so on, thereby generating the infinite tree whose

2 The domain ordering is: ⊥v t and tj v t′j for each j implies fit1 . . . tk v fit
′
1 . . . t′k.

3 The matching literature assumes 0 is of order 1, following first-order logic, whereas the scheme literature
assumes 0 is of order 0 following λ-calculus literature. However, the definition of the order of a scheme is
then the highest order of any Fi which coincides with the definition here when 0 has order 1.
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initial part is depicted in Figure 6. Operationally, the following transition rules
generate the tree when applied to S.

(i) Fi s1 . . . sni −→ ti{s1/xi
1, . . . , sni/xni}

(ii) If sj −→ s′j for 1 ≤ j ≤ k then fi s1 . . . sk −→ fi s
′
1 . . . s′k

(iii) If a : 0 then a −→ a

Denotationally, the meaning of a scheme is the least fixed point with respect to
the free interpretation of basis functions, following Damm [8]. For Example 5.2,
F 0a =⊥ and F i+1a = f(F i(ga))ga. So F 2(a) = f(f(⊥)g(g(a)))g(a). The resulting
F-tree is Fω(a) =

⊔
i≥0 F i(a) which is the meaning of Y (λF. λx. f(F (gx))g(x))a.

Clearly, operational and denotational views coincide exactly. In the following we
restrict attention to schemes that do not generate F-trees with undefined subtrees.

The definition of scheme, Definition 5.1, is slightly more generous than Damm’s
for order greater than 1. Damm’s definition coincides with the safe schemes intro-
duced by Knapik, Niwiński and Urzyczyn [14]: see [1,10] for a detailed discussion
of this restriction and the proof that it indeed coincides with Damm’s. An open
question is whether safety restricts expressive power.

The classical higher-order scheme problem is: given two (possibly safe) schemes
do they generate the same F-tree? One approach to understand this problem is to re-
late schemes to formal languages. Each basis function f ∈ F with arity n > 1 can be
split into terminal symbols f1, . . . , fn reflecting the different directions that can be
taken. The branch language for an F-tree is the deterministic set of words which are
paths from the root to a terminal node a : 0: for Figure 6, f1f2gga is such a word.
Courcelle showed that the equivalence problem for first-order schemes is interre-
ducible to the equivalence checking problem for determinisitic pushdown automata
[7]. This problem was subsequently positively solved by Sénizergues [21,22,24]. For
n > 1, equivalence of safe nth-order recursion schemes coincides with equivalence
between determinisitic nth-order pushdown automata [9,14].

Indeed, an open question is whether the branch language of an F-tree gener-
ated by a higher-order scheme is (deterministic) context-sensitive. For a first-order
scheme, Courcelle shows it is a deterministic context-free language. Figure 8 illus-
trates that expressive power reaches beyond the context-free for schemes of order
more than one. The family of languages recognized by second-order pushdown au-
tomata is the indexed languages, introduced by Aho in 1968 [2,3], which permit
some context-dependency. Aho offers a grammatical method for generating them
as well as an automata theoretic method (using nested stack automata) which turns
out to be equivalent to the second-order pushdown automata, as shown by Maslov
[16] who also defined a hierarchy of higher-order indexed languages characterized by
higher-order pushdown automata, [16]. A more detailed account is given by Damm
and Goerdt [9]. Aho also shows that the indexed languages are context-sensitive.
They form an AFL and are a proper subset of the context-sensitive languages. It
therefore follows that the branch languages of the F-trees generated by second-
order safe schemes are deterministic context-sensitive. Aelig, de Miranda and Ong
show that the branch language for an arbitrary second-order scheme is context-
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Fig. 7. The tree for Example 5.3

sensitive [1]. However, their proof simulates such a scheme using nondeterministic
second-order pushdown automata: so, it is an open question whether the language
is deterministic.

One area where there has been recent success in developing decision procedures
for schemes is the model checking problem: given a scheme, does its F-tree have
a decidable monadic second-order theory? Knapik, Niwiński and Urzyczyn proved
decidability of model checking for safe schemes by transforming them into infinite
terms of typed λ-calculus [14]. Ong has extended this result to all schemes. His
proof also transforms a scheme into an infinite (regular) term of typed λ-calculus
[17]. He then appeals to innocent game semantics to understand how it generates
an F-tree (and how an alternating parity automaton that runs on its tree can be
transformed into one that runs on the term instead). This provides a third account
of the semantics of schemes using games. Our intention is to reformulate the game-
theoretic interpretation using a similar game to that for matching.

6 Games for schemes

Knapik, Niwiński and Urzyczyn transform (safe) schemes into infinite terms of typed
λ-calculus [14]. Here, we follow Ong’s construction of the long transform of a scheme
into typed λ-calculus [17] except that we delay the introduction of dummy λ’s until
its tree representation (as we did in Section 3). For each definition Fx1 . . . xn

def= t

or start configuration S in a scheme we do the following.

1. Expand t or S to its η-long form (as in Section 2). One hereditarily η-expands
every subterm if it occurs in an operand position (that is, as the second argu-
ment of the implicit application operator of λ-calculus).
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2. Insert formal apply symbols @A. Replace each ground type subterm of t and
S of the form Fie1 . . . en where Fi : A = ((A1, . . . , An,0), A1, . . . , An,0) by
@AFie1 . . . en.

3. Lambda abstract the definition. If Fx1 . . . xn
def= t′ after stage 2 and n > 0,

then replace it with F
def= λx1 . . . xn.t′.

4. Rename bound variables so the set of equations and the start configuration are
well named with respect to each other.

Wherever possible we omit the type A from @.

Example 6.1 Stage 1 does not apply to Example 5.2. For stage 2, the start con-
figuration becomes @Fa and the single equation becomes Fx

def= f(@F (g(x)))g(x).
After λ-abstraction, F

def= λx.f(@Fg(x))g(x). 2

Example 6.2 Example 5.3 is transformed into @F (λu.g(u))(λw.h(w))a as start
configuration, where the constants g and h are η-expanded, with the following
equations.

F
def= λx1x2x3.f(@F (λx.@G(λv.x1(v))x)(λy.@H(λs.x2(s))y)x3) (x1(x2(x3)))

G
def= λy1y2.g(y1(y2))

H
def= λz1z2.h(z1(z2))

In the first equation, the operand subterms Gx1 and Hx2 are η-expanded. 2

This reformulation does not affect the tree generated using β-reduction and replace-
ment of the Fi’s by their definitions: for instance @Fa = @(λx.f(@Fg(x))(g(x)))a
which β-reduces to f(@Fg(a))(g(a)) assuming the standard interpretation of @.

The next step is to represent a scheme as a tree with backedges by system-
atically replacing all the Fi’s with their definitions. The idea is a simple gener-
alization of the representation of terms in Section 3. First, we treat @A when
A = ((A1, . . . , An,0), A1, . . . , An,0) as a constant with arity n + 1. To represent
uv1 . . . vk when u is a variable or a constant (which now includes @), we assume
that a dummy λ with the empty sequence of variables is placed before any subterm
vi : 0. Moreover, any Fi is replaced with its definition. We use the notation u ↓i t′

to represent that tree t′ is the ith successor of the node u as in Section 3.
For Example 6.1 we start with the initial term tree in Figure 8 where a dummy

λ is introduced above a. This is then expanded to the second term tree in the
figure, again with dummy λ’s. We could continue by replacing F with the subtree
rooted at (2) and so on, to produce an infinite λ-term (which only contains finitely
many variables). Instead, we assume that there is an edge from (5) to (2): that is
(5) ↓1 (2). So the scheme produces a tree with backedges.

The aim is to understand the way a term generates an F-tree using games. Ong
provides such a foundation using game semantics [17]. Again, to avoid justification
pointers, the key is an appeal to iteratively defined look-up tables. However, the
situation is simpler than for matching as there are only free variables in the tree.
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Fig. 8. The term tree for Example 6.1

A. tm = λy and tm ↓1 t′. Then tm+1 = t′ and θm+1 = θm.

B. tm = @A, A = ((A1, . . . , An,0), A1, . . . , An,0), tm ↓i t′i for 1 ≤ i ≤ n + 1 and
t′1 = λx1 . . . xn. Then tm+1 = t′1 and θm+1 = θm{t′2θm/x1, . . . , t

′
n+1θm/xn}.

C. tm = f , f has arity n > 0 and tm ↓i t′i for 1 ≤ i ≤ n. Then ∀ chooses a
direction j : 1 ≤ j ≤ n and tm+1 = t′j and θm+1 = θm.

D. tm = y : 0 and θm(y) = t′θk. Then tm+1 = t′ and θm+1 = θk.

E. tm = y : (A1, . . . , An,0), tm ↓i t′i for 1 ≤ i ≤ n and θm(y) = t′θk where
t′ = λz1 . . . zn. Then tm+1 = t′ and θm+1 = θk{t′1θm/z1, . . . , t

′
nθm/zn}

Fig. 9. Game moves

We appeal to single look-up tables θk: θk is a partial map from variables in t to
pairs t′θj where t′ is a node of the tree and j < k.

The basic game G(S) is played by one participant, player ∀. A play of G(S) is
an infinite sequence of positions t1θ1, . . . or a finite sequence t1θ1, . . . , tnθn where
tn = a : 0. For the initial position, t1 is the root of the tree representation of S and
θ1 is ∅, the initial empty look-up table. If the current position is tmθm and tm is not
a constant a : 0 then the next position tm+1θm+1 is determined by a unique move
in Figure 9. If play is at λy then it descends the tree. At @, play proceeds to the
first successor λx1 . . . xn and the look-up table is updated accordingly (the other
successors ti+1 with the curent look-up table is associated with xi). At a constant f

with arity more than 0, ∀ chooses a successor. If play is at a variable y : 0 and the
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entry in the current look-up table is t′θk then play jumps to t′ and θk becomes the
look-up table. If y is higher-order and its entry is t′θk in the current look-up table
θm where t′ = λz1 . . . zn then play jumps to t′ and the look-up table is θk together
with the association of t′iθm for each zi when y ↓i t′i.

Example 6.3 Consider G(S) when S is the tree in Figure 8. The first moves are
as follows.

(1)θ1 (2)θ2 = θ1{(15)θ1/x} (3)θ2

At this point there is a ∀-choice. If play takes the right branch then play continues.

(11)θ2 (12)θ2 (13)θ2 (14)θ2

Now x is called: θ2(x) = (15)θ1. So play continues with a jump: (15)θ1 and ends at
(16)θ1. The branch associated with this play is f2ga. If the other choice is taken
at position (3) then it continues.

(4)θ2 (5)θ2 (2)θ3 = θ2{(7)θ2/x} (3)θ3

And again there is a ∀-choice. If the right branch is taken then play continues.

(11)θ3 (12)θ3 (13)θ3 (14)θ3

Again x is called: θ3(x) = (7)θ2. So play now jumps to (7) and proceeds to (10)
before jumping to (15) and finishing at (16): the branch associated with this play
is f1f2gga. There is just one infinite play in G(S) when the left branch at (3) is
always chosen. 2

Example 6.4 We now examine plays of G(S) for S in Figure 10. Play starts as
follows.

(1)θ1 (2)θ2 = θ1{(42)θ1/x1, (46)θ1/x2, (50)θ1/x3} (3)θ2

If ∀ chooses the right branch of f then play continues.

(36)θ2 (37)θ2 (42)θ3 = θ1{(38)θ2/u}

Because θ2(x1) = (42)θ1, when play jumps to (42) the look-up table associates
(38)θ2 with u. Play proceeds to (45) and returns to (38).

(43)θ3 (44)θ3 (45)θ3 (38)θ2 (39)θ2

Now it jumps to (46)

(46)θ4 = θ1{(40)θ2/w} (47)θ4 (48)θ4 (49)θ4

and returns to (40).

(40)θ2 (41)θ2 (50)θ1 (51)θ1

The branch associated with this play is f2gha. 2

Given a scheme S, the F-tree generated from the game G(S) is the tree with
internal nodes f and subtrees determined by ∀’s choice when position C of Figure 9
is encountered, and leaf nodes a when play finishes at this constant.

Proposition 6.5 The F-tree generated by S is the F-tree generated by G(S).
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Fig. 10. The term tree for Example 6.2

Proof. We show that each prefix of the F-tree generated by S is the same prefix
of the F-tree generated by G(S) and that the remaining subtrees are the same. To
do this we show that the operational semantics of a scheme S that is expanded into
normal form when look-up tables θi are interpreted as delayed substitutions is iso-
morphic to game playing. Initially, the scheme operationally is S and the intial move
in G(S) is Sθ1 where θ1 is the empty look-up table: consequently the same. Assume
current branch f i1

1 . . . f ik
k in the prefix of the F-tree and tmθm is the current position

in the play. We proceed by cases on tm. If tm = @, so @(λx1 . . . xn.t′)t2 . . . tn+1θm

is the current unfolding in the operational semantics: this generates the F-tree
t′θm{t2θm/x1, . . . , tn+1θm}. Game theoretically, play first goes to the node labelled
λx1 . . . xn with θm+1 = θm{t2θm/x1, . . . , tn+1θm} and then play goes to t′θm+1, as
required. If tm = f and so ft1 . . . tnθm is the current unfolding in the operational
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semantics then the branch f i1
1 . . . f ik

k is expanded with f j for 1 ≤ j ≤ n, and the jth
subtree is tjθm. Clearly, in the game if ∀ chooses direction j then the next position
is tjθm. If f : 0 then it is a leaf of the F-tree and tmθm is a final position in a play.
If tm = y and so yt1 . . . tnθm is the current unfolding in the operational semantics
then this generates the F-tree θm(y)t1θm . . . tnθm: if θm(y) = λz1 . . . zn.t′θk then
this reduces to t′θk{t1θm/z1, . . . , tnθm/zn} and the game follows suit. A similar
argument holds for the case y : 0. 2

The issue is whether the game-theoretic characterization of the F-tree gener-
ated by a scheme can underpin useful decision procedures. Ong [17], using game-
semantics, shows how an alternating parity automaton that runs on the F-tree can
be transformed into one that runs on the term tree. The idea is to include as-
sumptions about play jumping with the descent of an automaton down a leftmost
successor of @: these assumptions are then checked by spawning auxiliary automata
that descend the other successors of the @. We can employ the tile classification
of regions of the scheme tree, and their subplays as described for matching, as an
alternative basis for this decidability proof. Much more work is needed to discover
relationships between the static structure of a scheme and the dynamics of game
playing.
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[14] Knapik, T., Niwiński, D., and Urzyczyn, P. (2002). Higher-order pushdown trees are easy. Lecture
Notes in Computer Science, 2303, 205-222.

20



GDP Festschrift ENTCS, to appear

[15] Loader, R. Higher-order β-matching is undecidable, Logic Journal of the IGPL, 11(1), 51-68, (2003).

[16] Maslov, A. (1976). Multilevel stack automata. Problems of Information Transmission, 12, 38-43.

[17] Ong, C.-H. L. On model-checking trees generated by higher-order recursion schemes, Procs LICS 2006,
81-90. (Longer version available from Ong’s web page, 42 pages preprint.)

[18] Padovani, V. Decidability of all minimal models. Lecture Notes in Computer Science, 1158, 201-215,
(1996).

[19] Padovani, V. Decidability of fourth-order matching. Mathematical Structures in Computer Science,
10(3), 361-372, (2001).

[20] Schubert, A. Linear interpolation for the higher-order matching problem. Lecture Notes in Computer
Science, 1214, 441-452, (1997).

[21] Sénizergues, G. (2001). L(A) = L(B)? decidability results from complete formal systems. Theoretical
Computer Science, 251, 1-166.

[22] Sénizergues, G. (2002). L(A) = L(B)? a simplified decidability proof. Theoretical Computer Science,
281, 555-608.

[23] Stirling, C. Modal and Temporal Properties of Processes, Texts in Computer Science, Springer, (2001).

[24] Stirling, C. (2002) Deciding DPDA equivalence is primitive recursive. Lecture Notes in Computer
Science, 2380, 821-832.

[25] Stirling, C. Higher-order matching and games. Lecture Notes in Computer Science, 3634, 119-134,
(2005).

[26] Stirling, C. A game-theoretic approach to deciding higher-order matching, Lecture Notes in Computer
Science, 4052, 348-359, (2006).

21


	Introduction
	Matching and dual interpolation
	Matching games
	Deciding third-order matching
	Higher-order program schemes
	Games for schemes
	References

