
GDP Festschrift ENTCS, to appear

Event Structures with Symmetry
(Extended Abstract)

Glynn Winskel 1

University of Cambridge Computer Laboratory, England

Abstract

A category of event structures with symmetry is introduced and its categorical properties investigated.
Applications to the event-structure semantics of higher order processes and the unfolding of Petri nets with
multiple tokens are indicated.

Keywords: Event structures, symmetry, pseudo monads, spans, semantics of processes, Petri net
unfolding.

1 Introduction

In the paper introducing event structures [7] a ‘curious mismatch’ was noted. There
event structures represent domains, so types. But they also represent processes
which belong to a type. How are we to reconcile these two views? One an-
swer has arisen in recent work under the banner of ‘domain theory for concur-
rency’ (see [9] for a summary). This slogan stands for an attempt to push the
methodology of domain theory and denotational semantics into the areas of inter-
active/distributed/concurrent computation, where presently more syntactic, opera-
tional or more informal methodologies rule. Certain generalized relations (profunc-
tors [2]) play a strong unifying role and it was discovered that in several contexts
that they could be represented in a more informative operational way by spans of
event structures [8,16,11]. A span of event structures is typically of the form

E
in

��~~
~~

~~
~

out

@@

@@
@@

@

A B

1 Email: gw104@cl.cam.ac.uk

mailto:myuserid@mydept.myinst.myedu

where in and out are maps of event structures—the maps are not necessarily of the
same kind. The event structure E represents a process computing from an input
type, represented by the event structure A, to output type represented by B. A
span with no input amounts to just a single map E

out−→B which we can read as
expressing that the process E has type B. So spans are a way to reconcile the
double role that event structures can take, as processes and as types.

Of course spans should compose. So one would like systematic ways to vary the
in and out maps of spans which ensure they do. One way is to derive the maps by a
Kleisli construction from a monads on a fundamental category of event structures. It
becomes important that event structures are able to support a reasonable repertoire
of monads, including monads which produce multiple, essentially similar, copies of
an event structure. For this the introduction of symmetry seems essential.

In fact, there are several reasons for introducing symmetry to event structures
and related models:

• It’s there—at least informally. Symmetry often plays a role in the analysis of dis-
tributed algorithms. In particular, symmetry is present informally in the model
of strand spaces. Strand spaces are forms of event structures used in the analysis
of security protocols. They comprise a collection of strands of input and output
events, possibly with the generation of fresh values. Most often there are collec-
tions of strands which are essentially indistinguishable and can be permuted one
for another without changing the strand space’s behaviour.

• To obtain categorical characterizations of unfoldings of Petri nets in which places
may hold with multiplicity greater than one. There are well-known ways to unfold
such general nets; for example by distinguishing the tokens through ‘colours,’
splitting the places and events accordingly and so reducing the problem to the
unfolding in [7]. But the folding maps are not unique (w.r.t. an obvious cofreeness
property). They are however unique ‘up to symmetry.’

• Event structures are sometimes criticized for not being abstract enough. One
precise way in which this manifests itself is that the category of event structures
does not support monads and comonads of the kind discovered for more general
presheaf models [2]. The computation paths of an event structure, its configura-
tions, are ordered by inclusion. In contrast the paths of presheaf models can be
related more generally by maps. Some (co)monads used for presheaf models al-
low the explicit copying of processes and produce a proper category of paths even
when starting with a partial order of paths—this arises because of the similarity
of one copy of a process with another.

The last point is especially pertinent to the versatility of spans of event struc-
tures. This paper presents a definition of a symmetry on an event structure.
Roughly a symmetry will express the similarity of finite behaviours of an event
structure. The introduction of symmetries to event structures will, in effect, put
the structure of a category on their finite configurations, and so broaden the struc-
ture of computation paths event structures can represent. The ensuing category of
event structures with symmetries will support a much richer class of monads, from

which we can then obtain broader kinds of span.

2 Event structures

Event structures [7,12,14,15] are a model of computational processes. They repre-
sent a process as a set of event occurrences with relations to express how events
causally depend on others, or exclude other events from occurring. In one of their
simpler forms they consist of a set of events on which there is a consistency rela-
tion expressing when events can occur together in a history and a partial order of
causal dependency—writing e′ ≤ e if the occurrence of e depends on the previous
occurrence of e′.

An event structure comprises (E,Con,≤), consisting of a countable set E, of
events which are partially ordered by ≤, the causal dependency relation, and a
consistency relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con ⇒ Y ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con.

The events are to be thought of as event occurrences; in any history an event is to
appear at most once. A configuration is a set of events which have occurred by some
stage in a process. According to our understanding of the consistency predicate and
causal dependency relations a configuration should be consistent and such that if
an event appears in a configuration then so do all the events on which it causally
depends. Here we restrict attention to finite configurations.

The (finite) configurations, C(E), of an event structure E consist of those finite
subsets x ⊆ E which are

Consistent: x ∈ Con and

Down-closed: ∀e, e′. e′ ≤ e ∈ x ⇒ e′ ∈ x.

The configurations of an event structure are ordered by inclusion, where x ⊆ x′,
i.e. x is a sub-configuration of x′, means that x is a sub-history of x′. Note that an
individual configuration inherits an order of causal dependency on its events from
the event structure so that the history of a process is captured through a partial
order of events. For an event e the set {e′ ∈ E | e′ ≤ e} is a configuration describing
the whole causal history of the event e.

When the consistency relation is determined by the pairwise consistency of
events we can replace it by a binary relation or, as is more usual, by a complemen-
tary binary conflict relation on events. It can be awkward to describe operations
such as certain parallel compositions directly on the simple event structures here,
because an event determines its whole causal history. One closely related and more
versatile model is that of stable families, described in the Appendix.

Let E and E′ be event structures. A partial map of event structures f : E ⇀ E′

is a partial function on events f : E ⇀ E′ such that for all configurations x of E its
direct image fx is a configuration of E′ for which

if e1, e2 ∈ x and f(e1) = f(e2) ∈ E′, then e1 = e2.

The map expresses how the occurrence of an event e in E induces the coincident
occurrence of the event f(e) in E′ whenever it is defined. The partial function f

respects the instantaneous nature of events: two distinct event occurrences which
are consistent with each other cannot both coincide with the occurrence of a common
event in the image. Maps of event structures compose as partial functions.

We will say the map is total iff the function f is total, and rigid iff it is total
and for all configurations x of E and y of E′

y ⊆ f(x) ⇒ ∃z ∈ C(E). z ⊆ x and fz = y .

(The configuration z is necessarily unique.)
A rigid map of event structures preserves the causal dependency relation

“rigidly,” so that the causal dependency relation on the image fx is a copy of
that on a configuration x of E; this is not so for general maps where x may be aug-
mented with extra causal dependency over that on fx. (Special forms of rigid maps
appeared as rigid embeddings in Kahn and Plotkin’s work on concrete domains [6].)

Here we concentrate on the category of event structures with total maps.

Definition 2.1 Write E for the category of event structures with total maps. (In
future by a map of event structures we will mean a total map.)

Proposition 2.2 The category E of event structures with total maps of event struc-
tures has products and pullbacks (though no terminal object).

In defining symmetries on event structures we will make use of open maps w.r.t.
finite elementary event structures (i.e., finite event structures in which all subsets
are consistent) as the particular choice of paths [5].

Say a map h : A → B, between event structures A and B, is open iff for all maps
j : p → q between finite elementary event structures, any commuting square

p x //

j

��

A

h
��

q
y

//B

can be split into two commuting triangles

p x //

j

��

A

h
��

q
y

//

z

88qqqqqqq
B.

That the square commutes means that the path h ◦ x in B can be extended via j

to a path y in B. That the two triangles commute means that the path x can be
extended via j to a path z in A which matches y.

Open maps are a generalisation of functional bisimulations, known from transi-
tion systems.

Proposition 2.3 Open maps are rigid.

3 Event structures with symmetry

A symmetry on an event structure expresses when and how two finite configurations
are similar. Such similarity should form an equivalence relation. If two configura-
tions are similar then so should their pasts (restrictions to subconfigurations) and
futures (extensions to larger configurations) be similar. These properties are cap-
tured, somewhat abstractly, by the following definition.

Definition 3.1 An event structures with symmetry (E, l, r) comprises an event
structure E together with open maps l : S → E and r : S → E from a common event
structure S such that the map 〈l, r〉 : S → E ×E is an equivalence relation (i.e.the
map 〈l, r〉 is monic and satisfies the standard diagramatic properties of reflexivity,
symmetry and transitivity [4]).

In the above definition, the role of the symmetry l, r is to specify a relation
of similarity between the finite configurations of the event structure E. One can
characterise such symmetries more concretely as corresponding to certain families
of isomorphisms between finite configurations of E.

Definition 3.2 A isomorphism family of an event structure E consists of a family
S of bijections

θ : x ∼= y

between pairs of finite configurations of E such that:
(i) the identities idx : x ∼= x are in S for all finite x ∈ C(E); if θ : x ∼= y is in S,

then so is the inverse θ−1 : y ∼= x; and if θ : x ∼= y and ϕ : y ∼= z are in S, then so is
their composition ϕ ◦ θ : x ∼= z.

(ii) for θ : x ∼= y in S whenever x′ ⊆ x with x′ ∈ C(E), then there is a (necessarily
unique) y′ ∈ C(E) with y′ ⊆ y such that the restriction of θ to θ′ : x′ ∼= y′ is in S.

(iii) for θ : x ∼= y in S whenever x ⊆ x′ for a finite x′ ∈ C(E), then there is an
extension of θ to θ′ : x′ ∼= y′ in S for some (not necessarily unique) y′ ∈ C(E) with
y ⊆ y′.

Note that (i) implies that the symmetric forms of (ii) and (iii) also hold. Note too
that (ii) implies that the bijections in the family S respect the partial order of causal
dependency on configurations inherited from E; the bijections in an isomorphism
family are isomorphisms between the configurations regarded as elementary event
structures.

Proposition 3.3 Let E be an event structure.

(i) A symmetry on 〈l, r〉 : S → E×E determines an isomorphism family S: the
family S comprises the image under 〈l, r〉 of all the finite configurations of S.

(ii) An isomorphism family S of E determines a symmetry 〈l, r〉 : S → E × E:
the family S forms a stable family; the event structure S is obtained as Pr(S) for
which the events are primes [θ](e1,e2) for θ in S and (e1, e2) ∈ θ; the maps l and r

send a prime [θ](e1,e2) to e1 and e2 respectively.
The operations of (i) and (ii) are mutually inverse.

Through the addition of symmetry event structures can represent a much richer
class of ‘path categories’ [2] than mere partial orders. The finite configurations
of an event structure with symmetry can be extended by inclusion or rearranged
bijectively under an isomorphism allowed by the symmetry. In this way an event
structure with symmetry determines, in general, a category of finite configurations
with maps obtained by composing the inclusions and allowed isomorphisms; by
property (ii) in Definition 3.2 any such map factors uniquely as an allowed isomor-
phism followed by an inclusion.

Example 3.4 Any event structure E can be identified with the event structure
with the identity symmetry (E, idE , idE). Its isomorphism family consists of all
identities idx : x ∼= x on finite configurations x ∈ C(E).

Example 3.5 Identify the natural numbers ω with the event structure with events
ω, trivial causal dependency given by the identity relation and in which all finite
subsets of events are in the consistency relation. Define S to be the product of event
structures ω × ω in E ; the product comprises events all pairs (i, j) ∈ ω × ω with
trivlal causal dependency, and consistency relation consisting of all finite subsets of
ω × ω which are bijective (so we take two distinct pairs (i, j) and (i′, j′) to be in
conflict iff i = i′ or j = j′.) Define l and r to be the projections l : S → E and
r : S → E. Then $ =def (ω, l, r) forms an event structure with symmetry. The
corresponding isomorphism family in this case coincides with all finite bijections
between finite subsets of ω. Any finite subset of events of $ is similar to any other.
Of course, an analogous construction works for any countable set.

Example 3.6 Let E = (E, l : S → E, r : S → E) be an event structure with
symmetry. Define an event structure with symmetry !E = (E!, l! : S! → E!, r! :
S! → E!) comprising ω similar copies of E as follows. The event structure E! has
the set of events ω × E with causal dependency

(i, e) ≤! (i′, e′) iff i = i′ & e ≤E e′

and consistency relation

C ∈ Con! iff C is finite & ∀i ∈ ω. {e | (i, e) ∈ C} ∈ ConE .

The symmetry S! has events ω × ω × S with causal dependency

(i, j, s) ≤S!
(i′, j′, s′) iff i = i′ & j = j′ & s ≤S s′ .

A finite subset C ⊆ S! is in the consistency relation ConS!
iff

{(i, j) | ∃s. (i, j, s) ∈ C} is bijective & ∀i, j ∈ ω. {s | (i, j, s) ∈ C} ∈ ConS .

The finite configurations of E! correspond to tuples (or indexed families) 〈xi〉i∈I

of configurations xi ∈ C(E) indexed by i ∈ I, where I a finite subset of ω. With
this view of the configurations of E!, the isomorphism family corresponding to S!

specifies isomorphisms between tuples

(σ, 〈θi〉i∈I) : 〈xi〉i∈I
∼= 〈yj〉j∈J

consisting of a bijection between indices σ : I ∼= J together with θi : xi
∼=

yσ(i) from the isomorphism family of S, for all i ∈ I.
There is an isomorphism of event structures with symmetry $ ∼= !1, where 1 is

the event structure with a single event.

4 Maps preserving symmetry

Maps between event structures with symmetry are defined as maps between event
structures which preserve symmetry. Let (A, lA, rA) and (B, lB, rB) be event struc-
tures with symmetry. A map f : (A, lA, rA) → (B, lB, rB) is a map of event struc-
tures f : A → B such that there is a (necessarily unique) map of event structures
h : SA → SB ensuring

〈lB, rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Maps between event structures with symmetry compose as maps of event structures
and share the same identity maps. We define ES to be category of event structures
with symmetry.

We explore properties of the category ES. It is more fully described as cate-
gory enriched over equivalence relations and so, because equivalence relations are
a degenerate form of category, as a 2-category in which the 2-cells are instances of
the equivalence ∼. This view informs the constructions in ES which are often very
simple examples of the (pseudo- and bi-) constructions of 2-categories.

Definition 4.1 Let f, g : (A, lA, rA) → (B, lB, rB) be maps of event structures with
symmetry (A, lA, rA) and (B, lB, rB). Define f ∼ g iff there is a (necessarily unique)
map of event structures h : A → SB such that

〈f, g〉 = 〈lB, rB〉 ◦ h .

Proposition 4.2 The relation ∼ is an equivalence relation on maps ES(A,B) be-
tween event structures with symmetry A and B. The relation ∼ respects composition
in the sense that if f ∼ g then h ◦ f ∼ h ◦ g and f ◦ k ∼ g ◦ k, for composable maps
h and k.

The category ES is enriched over the category of equivalence relations (compris-
ing equivalence relations with functions which preserve the equivalence).

Definition 4.3 Let A and B be event structures with symmetry. An equivalence
from A to B is a pair of maps f : A → B and g : B → A such that f ◦ g ∼ idB and
g ◦ f ∼ idA; then we say A and B are equivalent.

Proposition 4.4 The category ES has products.

The category ES does not have a terminal object. However, the event struc-
ture with symmetry $ defined in Example 3.4 satisfies an appropriately weakened
property:

Proposition 4.5 For any event structure with symmetry A there is a map f : A →
$ in ES and moreover for any two maps f, g : A → $ we have f ∼ g.

The category ES does not have pullbacks and equalizers. However:

Proposition 4.6
(i) Let f, g : A → B be two maps between event structures with symmetry. There
is an event structure with symmetry E and map e : E → A such that f ◦ e ∼ g ◦ e

which satisfies the further property that for any event structure with symmetry E′

and map e′ : E′ → A such that f ◦ e′ ∼ g ◦ e′, there is a unique map h : E′ → E

such that e′ = e ◦ h.
(ii) Let f : A → C and g : B → C be two maps between event structures with
symmetry. There is an event structure with symmetry D and maps p : D → A and
q : D → B such that f ◦ p ∼ g ◦ q which satisfies the further property that for any
event structure with symmetry D′ and maps p′ : D′ → A and q′ : D′ → B such that
f ◦ p′ ∼ g ◦ q′, there is a unique map h : D′ → D such that p′ = p ◦ h and q′ = q ◦ h.

The defining property (i) above is a special, very simple, case of inserters in pie
limits [10]. There are obvious weakenings of the conditions of (i) and (ii) in which
the uniqueness is replaced by uniqueness up to ∼ and equality by ∼—these are
simple special cases of bilimits called biequalizers and bipullbacks.

Because ES is enriched over equivalence relations, the appropriate functors on
ES preserve the equivalence ∼ on the homsets. Ordinary natural transformations
between such functors will automatically preserve ∼ because composition does.

5 Functors and pseudo monads

Certain functors on E , the category of event structures, straightforwardly induce
functors on ES, the enriched category of event structures with symmetry. Suppose
a functor F : E → E on event structures preserves pullbacks and open maps. Then
it will induce a functor on ES which takes an event structure with symmetry (A, l :
S → A, r : S → A) to an event structure with symmetry (F (A), F (l), F (r)) and a
map f : (A, lA, rA) → (B, lB, rB) to F (f); it is easy to check that F preserves ∼ on
homsets.

Similarly a functor on several arguments F : E × · · · × E → E which preserves
pullbacks and open maps will induce a functor on event structures with symmetry
respecting ∼ on homsets.

Simple parallel composition
For example, consider the functor ‖: E × E → E which given two event structures
puts them in parallel. Let (A, ConA,≤A) and (B,ConB,≤B) be event structures.
The events of A ‖ B are ({0} × A) ∪ ({1} × B); with (0, a) ≤ (0, a′) iff a ≤A a′

and (1, b) ≤ (1, b′) iff b ≤B b′; and with a subset of events C consistent in A ‖ B

iff {a | (0, a) ∈ C} ∈ ConA and {b | (1, b) ∈ C} ∈ ConB. The operation extends to
a functor—put the two maps in parallel. It is not hard to check that the functor ‖
preserves pullbacks and open maps. Consequently it induces a functor ‖: ES×ES →
ES which preserves ∼ on homsets.

Sum
Similarly, the coproduct or sum of two event structures extends to the sum
of event structures with symmetry. Let (A,ConA,≤A) and (B,ConB,≤B) be
event structures. The events of the sum A + B are ({0} × A) ∪ ({1} × B); with
(0, a) ≤ (0, a′) iff a ≤A a′ and (1, b) ≤ (1, b′) iff b ≤B b′; but now a subset of events
C is consistent in A + B iff there is C0 ∈ ConA such that C = {(0, a) | a ∈ C0} or
there is C1 ∈ ConB such that C = {(1, a) | a ∈ C1}.

That ES is enriched over equivalence relations ensures that it supports the def-
initions pseudo functors and pseudo natural transformations, which here parallel
those of functor and natural transformation, but with equality replaced by ∼. In
the same spirit a pseudo monad on ES satisfies variants of the usual monad laws
but expressed in terms of ∼ rather than equality (we can ignore the extra coher-
ence conditions [3] as they trivialize in the simple situation here). As examples
we consider two particular pseudo monads which we can apply to the semantics of
higher-order nondeterministic processes.

The examples are based on constructions we have seen earlier.

5.1 The copying pseudo monad

The copying operation ! of Example 3.6 extends to a functor on ES. Let f : A →
B be a map of event structures with symmetry. Define !f :!A →!B by taking
!f(i, a) = (i, f(a)) for all events a of A. The functor ! preserves ∼ on homsets. (It
is not induced by a functor on E .)

The component of the unit η!
E : E →!E acts so η!

E(e) = (0, e) for all events
e ∈ E—it takes an event structure with symmetry E into its zeroth copy in !E.

The multiplication map relies on a subsidiary pairing function on natural num-
bers [,] : ω × ω → ω which we assume is injective. The component of the multi-
plication µ!

E :!!E →!E acts so µ!
E(i, j, e) = ([i, j], e).

It can be checked that the unit and the multiplication are natural transforma-
tions and that the usual monad laws, while they do not hold up to equality, do hold
up to ∼. The somewhat arbitrary choice of the zeroth copy in the definition of the
unit and pairing function on natural numbers in the definition of the multiplica-
tion don’t really matter in the sense that other choices would lead to components

∼-equivalent to those chosen. (Different choices lead to natural transformations
related by modifications with ∼ at all components.)

5.2 The partiality pseudo monad

Let E be an event structure with symmetry. Define E∗ =def E ‖ $, i.e. it consists
of E and $ put in parallel.

The component of the unit η∗E : E → E acts so η∗E(e) = (0, e) for all events
e ∈ E—so taking E to its copy.

The component of the multiplication µ∗E : (E∗)∗ → E∗ acts so µ∗E(0, (0, e)) =
(0, e) and µ∗E(0, (1, j)) = [0, j] and µ∗E(1, k) = [1, k], where we use the pairing
function on natural numbers above to map the two disjoint copies of ω injectively
into ω.

Both η∗ and µ∗ are natural transformations and the usual monad laws hold up
to ∼ making a pseudo monad. Again, the definition of multiplication is robust; if
we used some alternative way to inject ω + ω into ω the resulting multiplication
would be ∼-related at each component to the one we have defined.

The category of event structures with partial maps has played a central role in
the event structure semantics of synchronizing processes [13]. It readily generalizes
to accommodate symmetry and reappears as the Kleisli category of ()∗.

Definition 5.1 Let (A, lA, rA) and (B, lB, rB) be event structure with symmetry. A
partial map of event structures with symmetry f : (A, lA, rA) ⇀ (B, lB, rB) consists
of a partial map of event structures f : A ⇀ B for which there is a (necessarily
unique) partial map of event structures h : SA ⇀ SB ensuring

〈lB, rB〉 ◦ h = (f × f) ◦ 〈lA, rA〉 .

Partial maps of event structures with symmetry form a category; they compose as
partial maps of event structures and share the same identity maps. We can de-
fine an equivalence relation ∼ on partial maps of event structures with symmetry
by the obvious analogue of Definition 4.1. The category is enriched over equiva-
lence relations. (The full subcategory of event structures with identity symmetry is
isomorphic to the category of event structures with partial maps.)

Proposition 5.2 The Kleisli category of the pseudo monad (−)∗ and the category
of event structures with symmetry and partial maps are to biequivalent (regarding
categories enriched over equivalence relations as 2-categories).

6 Spans

Because ES has bipullbacks in the sense of Proposition 4.6 we can imitate the
standard construction of the bicategory of spans to produce a bicategory SpanES .
Its objects are event structures with symmetry. Its maps SpanES(A,B), from A to

B, are spans
E

f

��~~
~~

~~
~

g

@@

@@
@@

@

A B

composed using the bipullbacks of of Proposition 4.6(ii). Its 2-cells, maps in
SpanES(A,B), are the maps between the vertices of two spans making the obvious
triangles commute. SpanES has a tensor and function space given by the product
of ES.

An individual span can be thought of as a process computing from input of
type A to output of type B. But given the nature of maps in ES such a process
is rather restricted; from a computational view the process unnaturally symmetric
and ‘ultra-linear’ because any output event is synchronized with an event of input.
We wish to modify the maps of a span to allow for different regimes of input and
output. A systematic way to do this is through the use of pseudo monads on ES
and build more general spans

E
f

||zz
zz

zz
zz g

""E
EE

EE
EE

E

S(A) T (B)

for pseudo monads S and T . For example a span in which S = ()∗ and T =!()
would permit output while ignoring input and allow the output of arbitrarily many
similar events of type B. But for such general spans to compose, and form a
bicategory, we require that S and T satisfy several requirements, which we indicate
here:

• in order to lift to pseudo comonads and monads on spans, S and T should be
‘cartesian’ pseudo monads, now w.r.t. bipullbacks (adapting [1]);

• in order to obtain a comonad-monad distributive law for the liftings of S and T

to spans it suffices to have a distributive law for S and T , with commutativity
up to ∼, with extra bipullback conditions on two of the four diagrams.

The two pseudo monads ()∗ and !() do satisfy these requirements with a distribu-
tive law with components λE : (!E)∗ →!(E∗) such that λE(0, (j, e)) = (j, (0, e)) and
λE(1, k) = (0, (1, k)).

7 Applications

We briefly discuss some applications.
The particular bicategory of spans

E
f

~~}}
}}

}}
}} g

AA

AA
AA

AA

A∗ !B

is already quite an interesting framework for the semantics of higher-order processes.
It supports types including:

- Prefix types •!T : in which a single event • prefixes !T for an event structure with
symmetry T .

- Sum types Σα∈ATα: the sum of a collection Tα, for α ∈ A, of event structures
with symmetry—the obvious generalization of the binary functor described in
Section 5. Sum types may also be written a1T1 + · · · + anTn when the indexing
set is finite.

- Tensor types T1 ⊗ T2: the product w.r.t. partial maps of event structures with
symmetry.

- Function types T1 (T2: formed as the product (T1)∗×!T2 in ES.

- Recursively defined types.

The types describe the events and basic causalities of a process, and in this sense
are the event types or causal types of a process. For example, the type of a form of
higher-order CCS is expressible as the recursive type:

T = τ • !T + Σa∈A ā • !(T ⊗ T) + Σa∈A a • !(T (T) .

The events of a h.o.CCS process are either process events following a τ -event, ‘con-
cretion’ events following an output synchronizations ā, or ‘abstraction’ events fol-
lowing an input synchronization a. As an example of a higher order process, consider
parallel composition in h.o.CCS. It will denote a span

E
in

zzuuuuuuuuu
out

 A
AA

AA
AA

A

(T ⊗ T)∗ !T .

The role of ! on the output is to permit a process to perform the events specified
by its type countably many times. The types support definitions by cases on the
form of events, a style of definition which breaks away from traditional ‘interleaving’
approaches to concurrency.

This work begs the question of the extent to which other kinds of maps and
spans of event structures with symmetry can be obtained by Kleisli constructions
starting from the category of event structures with symmetry, perhaps with rigid
maps rather than total maps of event structures as the starting point, along the
lines of [16]—to what extent can the ‘persistent’ events of [16] be realized through
symmetry? Another direct application is to the unfolding of Petri nets with multiple
tokens. It is intended to treat these applications more completely in the full paper.

Appendix: Stable families

The use of stable families facilitates definitions on event structures.

Definition A stable family comprises (E,F) where E is a set of events and F is a
family of finite subsets of E, called configurations, satisfying:
Completeness: Z ⊆ F & Z ↑ ⇒

⋃
Z ∈ F ;

Coincidence-freeness: For all x ∈ F , e, e′ ∈ x with e 6= e′,

(∃y ∈ F . y ⊆ x & (e ∈ y ⇐⇒ e′ /∈ y)) ;

Stability: ∀Z ⊆ F . Z 6= ∅ & Z ↑ ⇒
⋂

Z ∈ F .

For Z ⊆ F , we write Z ↑ to mean compatibility, i.e.

∃x ∈ F∀z ∈ Z. z ⊆ x .

Configurations of stable families each have their own local order of causal
dependency, so their own prime sub-configurations generated by their events. We
can build an event structure by taking the events of the event structure to comprise
the set of all prime sub-configurations of the stable family.

Definition and Proposition Let x be a configuration of a stable family F . For
e, e′ ∈ x define

e′ ≤x e iff ∀y ∈ F . y ⊆ x & e ∈ y ⇒ e′ ∈ y.

When e ∈ x define the prime configuration

[e]x =
⋂

{y ∈ F | y ⊆ x & e ∈ y} .

Then ≤x is a partial order and [e]x is a configuration such that

[e]x = {e′ ∈ x | e′ ≤x e}.

Moreover the configurations y ⊆ x are exactly the down-closed subsets of ≤x.

Proposition and Definition Let (E,F) be a stable family. Then, Pr(E) =def

(P,Con,≤) is an event structure where:

P = {[e]x | e ∈ x & x ∈ F} ,

Z ∈ Con iff Z ⊆ P &
⋃

Z ∈ F and,

p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .

This proposition furnishes a way to construct an event structure with events
the prime configurations of a stable family. In fact we can equip the class of sta-
ble families with maps (the definitions are the same as those for event structures).

The configurations of an event structure form a stable family, so in this sense event
structures are included in stable families. With respect to any of the maps (rigid,
total or partial), the “inclusion” functor from the category of event structures to
the category of stable families has a right adjoint, which on objects is the construc-
tion we have just given, producing an event structure from a stable family. The
products w.r.t. total and partial maps are hard to define directly on the event
structures of this article. It is however straightforward to define the products of
stable families [13]. Right adjoints preserve limits, and so products in particular.
Consequently we obtain products of event structures by first regarding them as sta-
ble families, and then producing the event structure from the product of the stable
families. Pullbacks of event structures are obtained by restricting products to the
appropriate equalizing set.

Acknowledgement

I’m grateful for discussions with Marcelo Fiore, Martin Hyland and Pawel Sobocin-
ski. Birthday greetings and thanks to Gordon Plotkin for inspiration, guidance and
friendship over the years.

References

[1] Burroni, A., T-catégories. Cahiers de topologie et géométrie différentielle, XII 3, 1971.

[2] Cattani, G.L., and Winskel, G., Profunctors, open maps and bisimulation. MSCS, 2005.

[3] Cheng, E., Hyland, J.M.E., and Power, A.J., Pseudo-distributive laws. ENTCS 83, 2004.

[4] Johnstone, P., Sketches of an elephant, a topos theory compendium, vol.1. OUP, 2002.

[5] Joyal, A., Nielsen, M., and Winskel, G., Bisimulation from open maps. LICS ’93 special issue of
Information and Computation, 127(2):164–185, 1996. Available as BRICS report, RS-94-7.

[6] Kahn, G., and Plotkin, G.D., Concrete domains. TCS, 121(1& 2):187–277, 1993.

[7] Nielsen, M., Plotkin, G.D., and Winskel, G., Petri nets, event structures and domains. TCS, 13(1):85–
108, 1981.

[8] Nygaard, M., Domain theory for concurrency. PhD Thesis, University of Aarhus, 2003.

[9] Nygaard, M., and Winskel, G., Domain theory for concurrency. TCS 316: 153–190, 2004.

[10] Power, A.J., and Robinson, E.P., A characterization of pie limits. Math. Proc. Camb. Phil.Soc, 33-47,
1991.

[11] Saunders-Evans, L., and Winskel, G., Trace on event structures. Proc. Express’06, ENTCS, 2006.

[12] Winskel, G., Events in Computation. PhD thesis, Univ. of Edinburgh, available from
http://www.cl.cam.ac.uk/users/gw104, 1980.

[13] Winskel, G., Event structure semantics of CCS and related languages. ICALP 82, Springer–Verlag
LNCS 140, 1982. Extended version available from http://www.cl.cam.ac.uk/users/gw104.

[14] Winskel, G., Event structures. Invited lectures for the Advanced Course on Petri nets, September 1986.
Springer LNCS, vol.255, 1987.

[15] Winskel, G., An introduction to event structures. REX summerschool in temporal logic, Springer LNCS,
vol.354, 1988.

[16] Winskel, G., Relations in concurrency. Invited talk, LICS’05, 2005.

	Introduction
	Event structures
	Event structures with symmetry
	Maps preserving symmetry
	Functors and pseudo monads
	The copying pseudo monad
	The partiality pseudo monad

	Spans
	Applications
	Acknowledgement
	References

