
IST-2001-33149 (MRG)

Final report

30th June 2005

Project start date: 1 Jan 2002
Project duration: 40 months
Project coordinator: University of Edinburgh
Project partners: University of Edinburgh, Ludwig-Maximilians-Universität München

Funded by the European Community’s “Information Society
Technologies” Programme (1998–2002) under the FET proactive
initiative on Global Computing.



IST-2001-33149 (MRG) 30th June 2005 i

Contents

1 Executive summary 1

2 Project objectives 1

3 Methodologies 2

4 Project results and achievements 2

5 Deliverables and references 3

6 Potential impact of project results 11

7 Future outlook 14



IST-2001-33149 (MRG) 30th June 2005 1

1 Executive summary

The MRG project started on 1st January 2002 and ended on 30th April 2005. The aim of the
project was to develop the infrastructure needed to endow mobile code with independently verifiable
certificates describing its resource behaviour, in the form of condensed and formalised mathematical
proofs of resource-related properties which are by their very nature self-evident, unforgeable, and
independent of trust networks. This is the “proof-carrying code” approach to security, normally
applied to enforce type safety of mobile code.

The project fully achieved its objectives by constructing a complete working infrastructure for
generating and checking certificates describing the resource behaviour of programs written in a
high-level programming language. This software, which is packaged into a web-based demo for
easy use, is underpinned by foundations that provide a great deal of confidence in the integrity of
certificates, including most crucially a complete formalized proof that the logical system used to
build certificates is sound and complete.

The project partners were the University of Edinburgh (coordinator) and Ludwig-Maximilians-
Universität München.

2 Project objectives

The ability to move code smoothly between execution sites will be a key part of the technological
infrastructure of future global computing platforms. The pressure to supply and use mobile code
in a global environment aggravates existing security problems and presents altogether new ones.

One particular security issue is the maintenance of bounds on quantitative resources. We believe
that without technological foundations for providing such guarantees, global computing will be
confined to applications where malfunction due to resource bound violation is accepted as normal
and has little consequence, as with internet computation today. With more serious applications,
resource awareness will become a crucial asset.

The main objective of this project was the development of the infrastructure needed to endow
mobile code with independently verifiable certificates describing resource behaviour.

These certificates are condensed and formalised mathematical proofs of a resource-related prop-
erty which are by their very nature self-evident and unforgeable. Arbitrarily complex methods may
be used to construct these certificates, but their verification will always be a simple computation.
One may compare this to the verification of alleged solutions to combinatorial problems such as
Rubik’s cube or the travelling salesman problem. (Note that the word “certificate” has a different
connotation in computer security, relating to authentication and relying on a hierarchy of trusted
secure computer systems rather than self-evident guarantees.)

Scenarios of application for the proposed framework include the following.

• A provider of distributed computational power may only be willing to offer this service upon
receiving dependable guarantees about the required resource consumption.

• A user of a handheld device, wearable computer, or smart card might want to know that a
downloaded application will definitely run within the limited amount of memory available.

• Third-party software updates for electronic devices such as mobile phones, household appli-
ances, or car electronics should come with a guarantee not to set system parameters beyond
manufacturer-specified safe limits.



2 IST-2001-33149 (MRG) 30th June 2005

• Requiring certificates of specified resource consumption will also help to prevent mobile agents
from performing denial of service attacks using bona fide host environments as a portal.

Objective 1 is the development of a framework in which such certificates of resource consumption
make formal sense. This consists of a cost model and a program logic for an appropriate virtual
machine and run time environment. This objective also includes the delineation of appropriate
resource policies.

Objective 2 consists of the development of a notion of formalised and checkable proofs for this
logic which play the role of certificates. In particular, this involves the implementation of a proof
checker.

Objective 3 is the development of methods for machine generation of such certificates for ap-
propriate high-level code. Type systems are used as the underlying formalism for this endeavour.
Since resource-related properties of programs are almost always undecidable, we aim — following
common practice — for conservative approximation: there will always be programs for which no
certificate can be obtained although they abide by the desired resource policy.

Objective 4 While proof-like certificates are generally desirable they may sometimes be infeasible
to construct or too large to transmit. We therefore study relaxations based on several rounds of
negotiation between supplier and user of code leading to higher and higher confidence that the
resource policy is satisfied. This objective carries an appreciably higher risk than the others, due
to the novelty of the idea; we expect, however, to obtain at least some useful results.

3 Methodologies

All objectives were pursued with respect to representative concrete examples of resource types. In
the event we focussed primarily on heap space usage, but many results apply also to other resource
types. Appropriate case studies provided timely validation of decisions made.

The project is foundational in nature; therefore the main outcome was publications in scientific
fora. However, in order to enhance subsequent exploitation and to validate decisions made, all
stages were implemented within a prototype system whose various components are available as free
downloadable software.

4 Project results and achievements

The project fully achieved its objectives by constructing a complete working infrastructure for
generating and checking certificates describing the resource behaviour of programs written in a
high-level functional programming language. This software, which is packaged into a web-based
demo for easy use, is underpinned by foundations that provide a great deal of confidence in the
integrity of certificates, including most crucially a complete formalized proof that the logical system
used to build certificates is sound and complete.

Some of the tasks undertaken in the course of the project proved to be far more challenging than
originally anticipated, requiring considerably more manpower than planned. As a way of coping
with the situation, a revised workplan was agreed at the beginning of the final year of the project.
This involved eliminating some tasks that were peripheral to the core objectives of the project in
order to allow more time to be spent on critical tasks, and adding some important additional tasks



IST-2001-33149 (MRG) 30th June 2005 3

that did not appear in the original workplan; it was not necessary to sacrifice or compromise on
any of the original project objectives. This revised plan was successfully followed in the remainder
of the project with all deliverables produced; see Section 5 below for specific technical results.

Interaction with other projects was through shared personnel, collaboration, and exchange of
ideas. Such projects included the APPSEM-II thematic network, the ConCert project at Carnegie
Mellon University, and Global Computing projects AGILE, MIKADO, PROFUNDIS, DEGAS,
MyThS, DART and SECURE.

A number of companies have shown interest in the results of the MRG project. Now that we
have shown how to apply proof-carrying code to resource bounds, follow-on projects will concentrate
more on concrete applications (smart cards, mobile phones, the Grid) and bringing the results closer
to market. See Section 7 below for details.

5 Deliverables and references

The following paper gives a complete overview of the MRG project at its midpoint:

D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella and I. Stark. Mobile resource guar-
antees for smart devices. Proc. of the Intl. Workshop on Construction and Analysis of
Safe, Secure, and Interoperable Smart Devices: CASSIS 2004. Springer LNCS 3362,
1–26 (2005).

Now that the project has been completed, an updated and extended version of this will appear in
due course.

Workpackage 1: Virtual machine and cost model

Objectives: Definition of virtual machine platform, formalization of cost model, and collection of
examples.

The overall goal of the project is to build a framework for Java-style downloadable bytecode
equipped with checkable certificates regarding their usage of resources. The executable part of these
is bytecode for a specific virtual machine. Claims about resource usage refer to the cost model, which
specifies the amounts of various kinds of resource that are consumed during execution. For the sake
of connecting with current practice, we employed a version of the Java Virtual Machine Language.
We investigated the suitability of Microsoft’s .NET intermediate language as an alternative platform
at an early stage and found a way of achieving platform independence.

The main achievement in this workpackage was the definition and implementation of the Grail
intermediate language. On one hand Grail can be seen as a more abstract version of our JVML
subset with implemented translations to and from JVML. This more abstract view is more appro-
priate for the formulation and application of logical rules, see WP2. On the other it gives a degree
of platform independence since it seems clear that translations to and from .NET or any similar
bytecode language would not be difficult to provide. Grail is described in the following paper:

L. Beringer, K. MacKenzie and I. Stark. Grail: a functional form for imperative mobile
code. Proc. 2nd EATCS Workshop on Foundations of Global Computing, Eindhoven.
Electronic Notes in Theoretical Computer Science, Vol. 85, Issue 1 (2003).



4 IST-2001-33149 (MRG) 30th June 2005

Workpackage 2: Definition of bytecode logic

Objectives: Development of bytecode logic, including language of assertions and proof rules, and
a proof checker.

The purpose of this workpackage is to provide a language for making assertions about the
resource usage of bytecode programs with respect to the cost model of WP1, and a logic for
proving such assertions. The certificates attached to dowloadable bytecode are proofs in this logic.
Certificates must be easily checkable by the recipient, and the implementation of the proof checker
is part of the trusted code base.

The main achievement in this workpackage was the definition and implementation of a VDM-
style logic for Grail encoded in Isabelle/HOL, together with formalized proofs of soundness and
(relative) completeness with respect to the operational semantics of Grail. These formalized and
machine-checked proofs provide an extremely high level of confidence in the formulation of the
logic. The bytecode logic is described in the following paper:

D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl and A. Momigliano. A program
logic for resource verification. Proc. 17th Intl. Conf. on Theorem Proving in Higher
Order Logics (TPHOLs2004). Springer LNCS 3223, 34–49 (2004).

A journal version of this paper is nearly complete.

Workpackage 3: Design of experimental high-level language

Objectives: Design and implementation of high-level programming language targeted at the byte-
code language of WP1, to provide a test bed for WP4–7.

The preceding workpackages provide a grounding for resource guarantees on bytecode; but this
is too low a level for practical programming. The objective of this workpackage was to write a
compiler for a high-level programming language targeted at the bytecode language of WP1. This
provides a test bed for the higher-level developments of later workpackages. The compiler is small
enough to allow for rapid progress, yet sufficiently expressive to demonstrate that scaling up to real
languages is possible.

The main achievement in this workpackage was the definition and implementation of the
Camelot high-level language, including extensions to incorporate optimisations and object-oriented
features. The object-oriented extension, O’Camelot, provides access to the Java libraries; this
makes it possible to write programs that run on small devices, where input/output requires use of
a device-specific GUI, as well as programs that use threads. Camelot and O’Camelot are described
in the following papers:

K. MacKenzie and N. Wolverson. Camelot and Grail: resource-aware functional pro-
gramming on the JVM. Trends in Functional Programing, Intellect, Vol. 4, 29–46
(2004).

N. Wolverson and K. MacKenzie. O’Camelot: Adding objects to a resource aware
functional language. Trends in Functional Programing, Intellect, Vol. 4, 47–62 (2004).

S. Gilmore. Extending Camelot with mutable state and concurrency. Proc. 4th Intl.
Conf. on Computational Science. Springer LNCS 3038, 306–313 (2004).

S. Gilmore, K. MacKenzie and N. Wolverson. Extending resource-bounded functional
programming languages with mutable state and concurrency. Parallel and Distributed
Computing Practices (2005).



IST-2001-33149 (MRG) 30th June 2005 5

Workpackage 4: From reasoning principles to high-level type systems

Objectives: Develop reasoning principles and type systems for characterising resource usage,
including a typechecker and soundness proofs.

This workpackage builds on the foundational strands in the first three packages. Beginning
from the experimental high-level language of WP3, we investigated ways of expressing resource
constraints and proving that they are satisfied by the compiled program, according to the cost
model of WP1.

Our approach was to employ type systems where the type-checking problem is decidable,
whereas the problem of proving that a resource constraint is satisfied will generally be undecidable.
This means accepting an unavoidable gap (the “slack”) between the set of programs which are ty-
pable in a resource type system and the larger set of programs which satisfy the resource property
of interest. For many natural examples, though, the resource bounds are met for obvious reasons
which are in the scope of our type systems. The craft of designing type systems lies in capturing
these natural examples and minimising the slack, while retaining a practical notion of type and
practical type-checking algorithms.

The main achievement of WP4 was the development of a number of type systems for describing
heap space usage, representing various points in the tradeoff between the complexity of the type
system, including the readability of the types assigned to programs, and the “slack”. Some of this
work is described in the following papers:

M. Konečný. Functional in-place update with layered datatype sharing. Proc. 6th Intl.
Conf. on Typed Lambda Calculi and Applications. Springer LNCS 2701, 195–210 (2003).

R. Amadio. Max-plus quasi-interpretations. Proc. 6th Intl. Conf. on Typed Lambda
Calculi and Applications. Springer LNCS 2701, 31–45 (2003).

R. Atkey. A calculus for resource relationships. Proc. 2nd Workshop on Semantics, Pro-
gram Analysis and Computing Environments for Memory Management, Venice (2004).

Some preliminary work on a type system for stack space usage is described in the following paper:

B. Campbell. Folding stack memory usage prediction into heap. Proc. Quantitative
Aspects of Programming Languages Workshop (2005).

Workpackage 5: Further high-level and low-level type systems

Objectives: Generalise type systems in WP4 to accommodate more general notions of resource,
and develop type systems for expressing resource bounds at the byte-code level.

This workpackage continued and expanded on the work begun in WP4. The idea here was
to begin to generalise the systems for space-like resources studied there to consider more general
notions of resource. As a particular case, we examined type systems for expressing limits on
parameter values.

In the original workplan, this workpackage also aimed to broaden the scope of the type systems
to consider low-level type systems for expressing resource bounds at the level of the VM byte code.
This peripheral investigation was abandoned in the revised workplan.

The main achievement in WP5 was work on a type system for expressing limits on parameter
values, reusing existing technology including Hongwei Xi’s Dependent ML. This is described as an
extended example of an automobile control system with safety constraints in the following paper:



6 IST-2001-33149 (MRG) 30th June 2005

D. Aspinall and M. Hofmann. Dependent types. Chapter 2 in Advanced Topics in Types
and Programming Languages (B. Pierce, ed.). MIT Press, 45–86 (2005).

Workpackage 6: Generation of certificates

Objectives: Define format of certificates and implement a certificate generator. Experiment with
reducing size of certificates.

This package was concerned with generating guarantees of resource boundedness. The guar-
antee, or certificate, is what is shipped together with the code, as irrefutable evidence for the
consumer that the code obeys the desired resource constraints. Here we considered the format of
the certificates, and their generation. In the revised workplan, a task was added to address the
fact that the bytecode logic developed in WP2 is a logic of partial correctness, meaning that any
non-terminating program satisfies any property.

The main achievement of WP6 was the development of a method for automatically generating
certificates of heap space usage from typing derivations and its implementation and integration with
the Camelot compiler and the implemented Grail logic. This work is described in the following
papers:

L. Beringer, M. Hofmann, A. Momigliano and O. Shkaravska. Towards certificate gen-
eration for linear heap consumption. Proc. ICALP/LICS Workshop on Logics for Re-
sources, Processes, and Programs (LRPP2004), Turku (2004).

L. Beringer, M. Hofmann, A. Momigliano and O. Shkaravska. Automatic certification
of heap consumption. Proc. 11th Intl. Conf. on Logic for Programming, Artificial In-
telligence, and Reasoning, LPAR 2004, Montevideo. Springer LNCS 3452, 347–362
(2005).

Workpackage 7: Advances in high-level type systems

Objectives: Improve expressiveness, user-friendliness, and accuracy of the type systems developed
in WP4 and WP5.

The goal of this workpackage was to improve expressiveness, user-friendliness and accuracy of
the type systems developed under WP4 and WP5. The main topics of investigation were type
inference and extensions to the basic type system to cope with language extensions introduced in
WP3.

The main achievement of WP7 was the development, implementation and integration with
Camelot of an automatic type inference algorithm for heap space types. The algorithm and its
implementation are described in the following papers:

M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional
programs. Proc. 30th ACM Symp. on Principles of Programming Languages. ACM
Press, 185–197 (2003).

S. Jost. lfd infer: an implementation of a static inference on heap space usage.
Proc. 2nd Workshop on Semantics, Program Analysis and Computing Environments
for Memory Management, Venice (2004).



IST-2001-33149 (MRG) 30th June 2005 7

Workpackage 8: Integration with existing security model

Objectives: Implement resource manager and relate proof-checking infrastructure to present-day
security management.

The preceding workpackages provide a proof-checking infrastructure which advances the state
of the art in security management capabilities. This workpackage enriches our understanding of
this infrastructure by relating it to present-day security management.

There are a number of significant achievements under WP8. Probably the most visible one
was the implementation of a web-based demonstration system of the MRG proof-carrying code
infrastructure that integrates most of the software produced by the project. This allows a user to
generate Grail and JVML code for a Camelot program as well as to infer its heap space type and
generate a certificate with a proof that its heap space consumption is as stated by its type. On
the consumer side, JVML code equipped with a certificate is unpacked and the proof checked for
validity, with execution permitted only if the proof is valid.

H.-W. Loidl. MRG web demonstration. http://lionel.tcs.ifi.lmu.de/mrg/pcc/
(2005).

Additional work was done on resource policies, on integrating the MRG certificate checker with the
Java virtual machine:

S. Gilmore and M. Prowse. Proof-carrying bytecode. Proc. 1st Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE ’05), Edinburgh
(2005).

and on the use of Markovian analysis in estimating the impact of garbage-collection ignorant native
methods in the JVM on managed object allocations:

S. Gilmore and O. Shkaravska. Estimating the cost of native method calls for resource-
bounded functional progamming languages. Proc. Workshop on Trends in Functional
Programming (TFP2004), Munich (2004).

Workpackage 9: Reducing size of certificates

Objectives: Explore alternatives to 100%-guaranteed certificates when these are infeasible.

This package was concerned with exploring possible alternatives in situations where the genera-
tion and transmission of 100%-guaranteed certificates is infeasible for one of the following reasons:

• certificates exist, but are prohibitively large

• certificates can in principle be obtained, but only at prohibitively high cost (time and human
resource needed for theorem proving, runtime of program analyses)

• certificates can in principle not be obtained due to influence of unknown or merely estimable
parameters.

In the original workplan, this workpackage contained several tasks. In the revised workplan,
all but one of these was abandoned in order to focus attention on other workpackages. This was
partly because it was found that size of certificates did not appear to be a stumbling block for the
examples under consideration, and partly because the use of so-called “oracle strings” allows for a
drastic reduction in the size of proofs.



8 IST-2001-33149 (MRG) 30th June 2005

As a result, the only work done under WP9 was the formulation and implementation of a
probabilistically checkable proofs (PCP) framework for certification of arbitrary type systems. This
was a negative result in the sense that reductions in size brought about by this method only take
effect with proof sizes well beyond what is currently required. It is interesting that this work
appears to be the first actual implementation of PCP, despite the fact that the idea has attracted
considerable attention over the past several years. This work will be written up for publication in
the near future.

Workpackage 10: Mobile virtual machines

Objectives: Investigate extension to support downloadable virtual machines.

This workpackage developed a thread of investigation into a mechanism to support mobility
between computational environments. As with WP9, this investigation is visionary and speculative.
Here we are concerned with a promising technology which could provide a way to enable greatly
increased interoperability of mobile software. The foundational technology is the mobile virtual
machine, a bytecode interpreter which is itself downloaded before the bytecode application which
is to be interpreted by it. One use of this technology would be to allow more advanced virtual
machines to be installed between high-level language programs and the JVM. Another would be
to perform upgrades on pre-installed micro virtual machines.

Two of the three tasks under WP10 were completed with the third abandoned in the revised
workplan in order to save effort for other tasks.

Deliverables list

Del. Deliverable name WP Est. Del. type Planned Actual
no. no. person- delivery delivery

months (month) (month)
D1a Definition of virtual machine 1 1.5 report 2/02 2/02

platform
D1b Cost model 1 2.5 report 9/02 9/02
D1d Comparison of JVML with 1 7 report 12/02 12/02

.NET for project use
D1f Representative examples for 1 1 report 1/03 1/03

project use
D2a/b Bytecode logic 2 31.5 report 9/03 9/03
D2c Proof checker for bytecode 2 3 prototype 11/03 11/03

logic
D2e Theorem prover for bytecode 2 2.5 prototype 11/03 11/03

logic
D2f Encoding of VM semantics in 2 0.5 prototype 5/03 5/03

theorem prover [optional task]
D3a Definition of experimental 3 4 report 5/02 5/02

high-level language
D3b Compiler for high-level 3 4.5 prototype 1/03 1/03

language



IST-2001-33149 (MRG) 30th June 2005 9

Del. Deliverable name WP Est. Del. type Planned Actual
no. no. person- delivery delivery

months (month) (month)
D3d Extend compiler with 3 5.8 prototype 11/03 11/03

immutable objects and higher-
order functions

D3e Extend compiler with 3 2.5 prototype 9/03 9/03
optimisations

D3f Extend with mutable state and 3 1 prototype 2/04 2/04
concurrency [optional task]

D4a Reasoning principles for 4 4 report 12/02 12/02
resource usage

D4b/c Type system for space-like 4 9 report 11/03 11/03
resources

D4e/f Soundness of type system 4 11 report 4/04 5/04
D5a/b Type system for expressing 5 4 report 2/04 2/04

limits on parameter values
D6a Certificate generator 6 27.5 prototype 5/04 12/04
D6g Total correctness 6 18.7 prototype 4/05 3/05
D7a Extension of type system by 7 4 report 6/04 1/05

allowing user annotations
[optional task]

D7c Extension of basic type system 7 6 prototype, 9/04 6/05
to object-oriented language report

D7d Methods to infer type 7 10 report, 5/04 1/05
annotations automatically maybe

prototype
D7e Extension of basic type system 7 2 report 9/04 3/05

to mutable state and
concurrency

D8a Relationship between proof- 8 6 report 10/04 2/05
based certificates and present-
day security management

D8b Certificate-based resource 8 6.5 prototype 4/05 3/05
manager

D8d Methods for estimating cost of 8 2 report 8/04 1/05
native methods

D8e Expressing and relating 8 4 report 4/05 5/05
resource policies

D9b/c Advanced techniques of 9 2.5 report 12/04 3/05
certification

D10a Practical effectiveness of 10 2 report 3/03 3/03
mobile virtual machines

D10b Metalanguage for describing 10 1.3 report 2/04 2/04
virtual machine configuration

D11a Project website 11 0.5 website 2/02 2/02
D11b Kickoff workshop 11 0 workshop 5/02 5/02



10 IST-2001-33149 (MRG) 30th June 2005

Del. Deliverable name WP Est. Del. type Planned Actual
no. no. person- delivery delivery

months (month) (month)
D11c Workshop at end of year 1 11 0 workshop 12/02 2/03
D11d Workshop at end of year 2 11 0 workshop 12/03 3/04
D11e Workshop at end of year 3 11 0 workshop, 4/05 4/05

proceedings
D11f Measurable criteria of 11 0 report 6/02 8/02

progress/success
D11g Assessment of progress in 11 0 report 12/02 1/03

year 1
D11h Assessment of progress in 11 0 report 12/03 2/04

year 2
D11i Final assessment of progress 11 0 report 4/05 6/05
D11j Dissemination and use plan 11 0 report 6/02 6/02
D11k Technological implementation 11 0 report 4/05 6/05

plan



IST-2001-33149 (MRG) 30th June 2005 11

6 Potential impact of project results

Questions about
project’s outcomes

No. Comments or suggestions for further
investigation

1. Scientific and technological achievements of the project (and why are they so)

Question 1.1.

Which is the ‘Breakthrough’
or ‘real’ innovation achieved
in the considered period

N/A We have developed a complete prototype im-
plementation of a PCC infrastructure involving
a number of innovative components. Programs
are written in the high-level functional Camelot
language and compiled by a certifying compiler
which translates the program to the Grail inter-
mediate language and thence to bytecode. The
compiler also performs heap-space usage infer-
ence by means of the Hofmann-Jost method and
uses this to generate a certificate (expressed in
a bytecode logic) that the compiled version of
the program satisfies the given resource bound.
The bytecode program and the certificate are then
packaged together in a JAR file for transmission
to the code consumer. The process of space in-
ference and certificate generation is entirely au-
tomatic, requiring no human intervention. When
the code consumer receives the JAR file, the byte-
code program is converted back to its Grail repre-
sentation and the proof is then examined in order
to verify that the program does indeed satisfy the
claimed resource usage. If the proof is found to
be valid then the program can be executed in the
normal way and the consumer can be confident
that the stated resource bounds will not be ex-
ceeded.

2. Impact on Science and Technology: Scientific Publications in scientific
magazines

Question 2.1.

Scientific or technical publi-
cations on reviewed journals
and conferences

15 Details in Section 5

Question 2.2.

Scientific or technical publi-
cations on non-reviewed jour-
nals and conferences

1 Details in Section 5



12 IST-2001-33149 (MRG) 30th June 2005

Questions about
project’s outcomes

No. Comments or suggestions for further
investigation

Question 2.3.

Invited papers published in
scientific or technical journal
or conference.

2 Details in Section 5

3. Impact on Innovation and Micro-economy

A - Patents

Question 3.1.

Patents filed and pending 0

Question 3.2.

Patents awarded 0

Question 3.3.

Patents sold 0

B - Start-ups

Question 3.4.

Creation of start-up No

Question 3.5.

Creation of new department
of research (ie: organisational
change)

No

C - Technology transfer of project’s results

Question 3.6.

Collaboration/partnership
with a company?

Yes
Trusted Logic, France Telecom and SAP, and pos-
sible further collaborations under discussion; de-
tails in Section 7

4. Other effects

A - Participation to Conferences/Symposium/Workshops or other dissemination
events

Question 4.1.

Active participation to Con-
ferences in EU Member
states, Candidate countries /
NAS.

16 Details in Periodic Progress Reports

Question 4.2.

Active participation to Con-
ferences outside the above
countries

2 Details in Periodic Progress Reports



IST-2001-33149 (MRG) 30th June 2005 13

Questions about
project’s outcomes

No. Comments or suggestions for further
investigation

B - Training effect

Question 4.3.

Number of PhD students
hired for project’s completion

3 Field: Computer Science

C - Public Visibility

Question 4.4.

Media appearances and gen-
eral publications (articles,
press releases, etc.)

2
http://istresults.cordis.lu/index.cfm/
section/news/tpl/article/BrowsingType/
Features/ID/76759

IST Results website article
http://www.evca.com/images/attachments/
tmpl_27_art_33_att_802.pdf

EVCA Barometer article

Question 4.5.

Web-pages created or other
web-site links related to the
project

3
http://www.lfcs.ed.ac.uk/mrg

MRG project website
http://www.lfcs.ed.ac.uk/camelot

Camelot compiler download site
http://www.lfcs.ed.ac.uk/gc

Global Computing summer school

Question 4.6.

Video produced or other dis-
semination material

2
http://www.lfcs.ed.ac.uk/mrg/
project-info/flyer-colour.pdf

Publicity flyer
http://www.lfcs.ed.ac.uk/mrg/
project-info/NeSCposterA4.eps

Poster

Question 4.7.

Key pictures of results 0

D - Spill-over effects

Question 4.8.

Any spill-over to national pro-
grams

Yes UK e-science programme; details in Section 7

Question 4.9.

Any spill-over to another part
of EU IST Programme

Yes FET-Open and FP6 FET; details in Section 7

Question 4.10.

Are other team(s) involved in
the same type of research as
the one in your project ?

Yes An up-to-date list of related projects is on the
project website



14 IST-2001-33149 (MRG) 30th June 2005

7 Future outlook

A number of companies have shown interest in the results of the MRG project. These include:
Gemplus, NTT and Trusted Logic (smart cards), Helixion (secure multimedia), Motorola (automo-
tive networks) and AbsInt (embedded systems), among others. In the closing stages of the project,
we have been attempting to cement relationships with some of these companies by setting up col-
laborative follow-on projects. So far, the following attempts to secure funding have been successful
or seem likely to succeed:

• EmBounded is an FET-Open STREP project on resource bounds in embedded systems,
building on the results of the MRG project and specifically work on Grail and the Grail
bytecode logic. Partners include LMU München and AbsInt.

• MOBIUS is a FET-GC2 Integrated Project proposal that will build on the results of MRG.
Partners include Edinburgh and LMU München and industrial partners include Trusted Logic,
France Telecom and SAP. An industrial User Panel includes about a dozen companies from
a range of relevant sectors of industry.

• ReQueST is an EPSRC-funded project at Edinburgh under the “Research in the Fundamental
Computer Science for e-Science” Programme. It will apply the results of the MRG project to
resource certification in the Grid.

• The Edinburgh site have a proposal for a collaborative project with Helixion (a local SME in
the mobile phone sector) on digital rights management and secure multimedia.

Now that we have shown how to apply proof-carrying code to resource bounds, these follow-on
projects are focusing more on concrete applications (smart cards, mobile phones, the Grid) and
bringing the results closer to market. Scientific work includes moving to use Java in place of Camelot
as the high-level language, consideration of other resource types and seeing how the framework can
be generalised to handle different kinds of resource in a uniform way.


