A Resource-aware Program Logic for a JVM-like
Language

Hans-Wolfgang Loidl <hwloidl@tcs.ifi.lmu.de>

Institut fiir Informatik, Ludwig-Maximilans Universitat, 80538 Miinchen

Abstract. Guaranteeing bounded resource consumption of mobile code
is one important facet of improving the security of distributed, decen-
tralised systems. To achieve an independent verification of resource prop-
erties we employ a proof-carrying-code approach: the mobile code is sent
together with a certificate that can be checked by the consumer before
executing the code. In our case, the certificate makes a statement about
the resource consumption, in particular its memory consumption, and
has the form of a condensed formal proof.

In this document we outline the proof-carrying code infrastructure that is
being developed in the MRG project. We discuss the foundational work of
developing a program logic that is powerful enough to express intensional
properties of resource consumption on a JVM-like machine, yet simple
enough to enable the application of automated theorem proving tools.
This logic has been encoded in the Isabelle/HOL theorem prover, and
it has been proven sound and complete. The infrastructure is built on
the Grail intermediate language, an abstraction over a subset of the
JVM bytecode language to facilitate formalisation while retaining a close
correspondence to JVM’s cost model. For Grail an operational semantics
is defined, and on top of that a VDM-style program logic is built that
additionally tracks resource consumption such as execution time.

1 Introduction

In many distributed systems, security issues need to be addressed to provide high
quality of service. For example in a Grid architecture a provider of computation
resources might only make these resources available to programs that do not
exceed certain limits on execution time or heap consumption. Current security
mechanisms for mobile code delegate the issue of program behaviour to one
of trust and cryptographic methods for signing mobile code are used for user
authentication. Our approach is to directly certify properties of the program
behaviour, without requiring any authentication of the code producer.

In the MRG project [19] we use proof-carrying-code (PCC) technology [13]
to endow mobile code with proofs of bounded resource consumption. Thus, a
service provider can easily check that a given resource policy is adhered to, and
based on this rigorous proof permit execution of the code. Since such certificates
are only based on the transmitted code and not on its producer, they can be
independently checked, providing a scalable, decentralised security model. The

2 H-W. Loidl

feasibility of this approach relies on the observation that, while it is difficult to
produce a proof of a program property, it is far less time consuming to check this
property. Furthermore, in our context we are interested in resource properties,
rather than more general correctness properties, which are harder to verify.

One important component of such an infrastructure is a resource-aware pro-
gram logic for the language of the transmitted code. In our case we define a slight
abstraction of the JVM language to decouple this level from the underlying vir-
tual machine. We call this intermediate language Grail [4] (Guaranteed Resource
Aware Intermediate Language) and it is in essence a first-order functional lan-
guage. It is suitably simple to permit an encoding of a big-step, operational
semantics in the Isabelle/HOL theorem prover. Because of syntactic restrictions
on Grail it can also be read as an imperative language of assignments, closely
modelling the costs incurred by JVM operations. The imperative reading of Grail
is isomorphic to a subset of the Java Virtual Machine Language (JVML), which
is why we sometimes call the logic for Grail a “bytecode” logic.

The infrastructure built in our project, requires that the logic is implemented
and can be used to automatically check resource properties. Therefore we have
used the theorem prover Isabelle/HOL [17] right from the start of designing
the logic. This enabled us to explore various design decisions for the program
logic, and we summarise the most important ones in Section 3. The use of an
automated theorem prover also helped to prove soundness and completeness for
the program logic. Since the program logic and its implementation is part of the
trusted code base (TCB) of the PCC infrastructure, it is essential for the overall
security of the system to have such results available.

2 Design of a Proof-carrying-code Infrastructure

The prototype infrastructure is shown in Figure 1. The left hand side shows the
code producer and the right hand side the code consumer. The main compo-
nents on the producer side are a certifying compiler, which translates high-level
Camelot programs into the Grail intermediate code and additionally generates
a certificate of its heap consumption. At the moment only the top level theo-
rem, stating the predicted resource consumption is automatically generated. The
proof itself currently has to be produced by the user within the Isabelle/HOL
theorem prover. The Grail code is processed by an assembler, the Grail de-
functionaliser (gdf), to generate JVM bytecode. This bytecode is transmitted
together with the Isabelle proof script as the certificate of its heap consump-
tion to the code consumer. On the consumer side, the Grail code is retrieved
via a disassembler, the Grail functionaliser (gf). Then Isabelle/HOL is used in
batch mode to automatically check that the resource property expressed in the
attached certificate is indeed fulfilled for this program. Once this has been con-
firmed the code can be executed on the consumer side.

We have used this infrastructure in certifying heap consumption of list pro-
cessing programs such as sorting algorithms and are currently extending the set
of test programs to other data structures such as trees. We have implemented a

A Resource-aware Program Logic for a JVM-like Language 3

1 1
Producer | Network | Consumer
Camelot 1 1
| 1
1 |
1 | 0k?
Camelot | |
1 |
Compiler i i
(with space inference) 1 1
1 |
| | Proof
Resource 1 1 Checker
Predicate
1 | (Isabelle)
Grail | |
Program Theorem | 1
Prover 1 | Proof Grail v
(Isabelle) | 1 (Graily Program Program
| |
Proof ! !
GDF Seript | | GF
VM | Certificate |
Program I Code I
I I

Fig. 1. PCC infrastructure with shared theorem prover and proof checker

small application to be executed on a PDA, using the MIDP standard for small
devices, which provides a restricted set of Java libraries and is partially based
on Suns KVM.

3 Operational Semantics and Program Logic

In this section we sketch the structure of the operational semantics of Grail and
of its resource-aware program logic. We give an example of applying the logic in
a list reversal function.
The operational semantics is based on the functional view of Grail, with
judgements of the form
Et+ hye | (K ,v,p)

to be read as “in variable environment F and starting with a heap h, code e
evaluates to the value v, yielding the heap h’ and consuming p resources.”

In developing a program logic, we consider two different styles: VDM-style [10]
and Hoare-style [7]. The more commonly used Hoare-style is based on triples of
the form {P} e {Q} stating that if the assertion P is valid before executing
the expression e, then the assertion @ is valid after execution. In order to cap-
ture intermediate values in the execution of a program, auxiliary variables are
used. These variables have to be universally quantified in the formal definition
of validity. In his thesis Kleymann [11] shows that a rather intricate rule of

4 H-W. Loidl

adaptation is necessary in a Hoare-style logic with auxiliary variables. A similar
treatment is given by von Oheimb [20] in a program logic for a Java subset.
For example the specification of the exponential function ezp, returning its re-
sult in variable v, can be written with auxiliary variables X and Y as follows
{0<yAz=X ANy=Y} exp(z,y) {v=XY}. In contrast, a VDM-style logic
uses tuples of the form e : @ stating that an assertion @ is valid for expression
e, where () can refer to variables in both pre- and post-state of the execution of
e. Variables in the pre-state are written as “hooked” variables, e.g. &, as in the
specification of an exponential function ezp(z,y) : {0 <y = v = 3¥}.

In our encoding of the program logic into Isabelle/HOL we use a shallow
embedding that represents specifications as predicates in the meta-logic, rather
than defining a separate data type of specifications.

A state in our language consists of a store (environment) of local variables (of
type £) and the heap (of type H). As can be seen from the operational semantics,
only the heap is modified in the evaluation of an expression, returning a value
(of type V) and a resource tuple (of type R). The overall type of a VDM-style
specification is a function returning a boolean value (B), i.e.

With this type, the informal statement “specification P is fulfilled for pre-state
(E, h), post-state (E, h') with result value v and resource consumption p” is
written formally P Ehh’vp = true. An expression e satisfies a specification P,
written as e : P, iff for every (terminating) execution of e the predicate P is true,
ie.

VEhKW vp. EFhel (b, vp) implies PEhRKvp.

The requirement that this holds for every derivable statement e : P is the sound-
ness criterion for our logic. The judgement of the program logic

Gre: P

is read as “under the assumptions G, the Grail code e satisfies the specification
P,” where G is a set of expression-specification pairs, e is a (Grail) expression
and P of type A.

For the details of the program logic we refer the interested reader to [2].

4 Example

In this section we give an example of proving a resource property of a Grail
program for insertion sort. This Grail program has been automatically produced
by the compiler out of the Camelot code given below.

In our high-level language, insertion sort can be expressed as follows:

type iList = INil | Cons of int * ilList
let ins al = match | with Nl -> Cons(a,Nil)
| Cons(x,t)@ ->if a < x then Cons(a, Cons(x,t))
el se Cons(x, ins at)
let sort | = match | with NIl -> NI
| Cons(a,t)@ ->ins a (sort t)

A Resource-aware Program Logic for a JVM-like Language 5

Camelot [12] is an ML-like language and most of its syntax should be obvious.
The @_ construct is a special annotation in Camelot, which turns the match into
a destructive match by returning the Cons cell to the freelist that is managed by
the Camelot compiler explicitly. The behaviour of this freelist is also modelled
in the heap inference and encoded in the program logic, which is the basis for
our the automatic handling of resource consumption in our proof-carrying-code
infrastructure.

The following theorem states that the heap consumption of the method sort
in the class InsSortM is bounded by the length of the input list:

myTable A\ V1. > InvokeStatic InsSortM init 1 : initSpec | =
Vzs. > LET rf 1 = InvokeStatic InsSortM init zs
IN InvokeStatic InsSortM sort [RNarg 1] END :
AEhh vp.V n. h=emptyheap N E = emptyenv A n = length xs
—|dom b | < n

We assume that the method specification table contains specifications for all
methods in the code. These specifications always have a specific form, which is
in essence a direct translation of the meaning of the extended type system used
in the inference of heap consumption in [9]. No additional knowledge about the
behaviour of the program is required for proving this resource consumption. The
proof for this top level theorem is then reduced to proving the specifications for
each of the methods, and finally proving a theorem on the goodContext predicate.
This predicate states that for each code-specification pair (e, P) in the method
specification table, the specifications of the other methods are strong enough to
prove > e : P. This unusual treatment of mutual recursion is discussed in more
detail in [2].

The judgement on the right hand side of the above resource theorem says that
for all possible inputs, if the pre-heap h is empty, the environment F is initially
empty, and the input is a list of n elements, then the size of the post-heap A’ is
bounded by n. Thus, the overall heap consumption is bounded by the size of the
input list xs. This is exactly the upper bound on the heap consumption that we
can automatically infer out of the Camelot program [9].

5 Related Work

Our program logic is most closely related to the one developed by Nipkow [16]
for an imperative language and by von Oheimb [20] for a Java subset. In contrast
to these logics, we use a VDM-style and handle mutual recursion directly in our
derivation system, rather than developing a second derivation system over sets
of code-specification pairs. Kleymann’s [11] work provides the basis for many
technical details in the logic and motivated us to focus on a VDM-style logic.
The development of the program logic and its completeness proof are based on
earlier work of one of the developers of the Grail logic [8].

Several systems use LF terms [6] as format for certificates: the Touchstone
system [14, 15] with its PCC infrastructure and the ConCert system [5] for prov-
ing safety properties of an assembler language. The implicit representation of LF

6 H-W. Loidl

terms used in Touchstone to limit certificate size is similar to the compressed
proof terms in Isabelle [3]. A reconstruction algorithm can retrieve a full LF
term. One possibility to reduce certificate size further would be the use of Or-
acle strings, that guide the proof search by a non-deterministic proof checker
through a logic containing structural rules. This approach has the advantage
that the domain specific knowledge of the safety policy can be used to limit the
certificate size: a “simple” logic will result in a highly-directed proof checker,
that only rarely needs guidance by an oracle string.

Appel et al use a foundational PCC approach, that emphasises a minimal
trusted code base [1]. It works directly on the operational semantics of an assem-
bler language, proving lemmas akin to those usually defined in a program logic.
Being lemmas their correctness has to be proven when stated, and no meta-
theorems relating program logic with operational semantics are needed. Taking
this approach no trusted VCGen is necessary. It uses a higher-order logic aug-
mented with axioms for arithmetic, is embedded in LF and tools of the Twelf [18]
system are used for proof checking.

As further reading we recommend [4] on the intermediate language Grail, [2]
on the program logic, [12] on the Camelot high-level language, and [9] on the
heap inference in Camelot.

6 Summary

We have discussed the foundations of an infrastructure for checking resource
bounds of mobile code. Our prototype employs a proof-carrying-code approach
by attaching certificates, in the form of Isabelle proof scripts, to the mobile
code. These scripts can be independently checked at the consumer side before
executing the mobile code. We restrict our attention to certificates of resource
consumption, in particular memory consumption, so as to enable the automatic
generation of these certificates out of a high level type system [9].

The logic currently used for proving heap bounds of Grail programs is simple
enough to give the proof a structure of verification condition generation followed
by standard simplifications, enhanced with lemmas on manipulating contexts
and some knowledge about the inequalities generated by the VCGen. Since this
logic is tuned for expressing heap consumption, and accurately models the mem-
ory management discipline of the high-level language, the proofs are considerably
shorter than those working directly over the general program logic. By developing
these more sophisticated logic in Isabelle/HOL, we can also send the soundness
proof w.r.t. the underlying logic, and thus in principle obtain the small trusted
code base favoured by the foundational proof-carrying-code approach.

The current prototype of this infrastructure is available as an online demon-
stration at: http://lionel.tcs.ifi.lmu.de/mrg/pcc. Details about the com-
ponents of the infrastructure, the logics developed for Grail, and the high-level
language can be found in the publications section of the MRG web page at:
http://groups.inf.ed.ac.uk/mrg.

A Resource-aware Program Logic for a JVM-like Language 7

References

1.

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Appel. Foundational Proof-Carrying Code. In LICS’01 — Symp. on Logic in
Computer Science, June 2001.

D. Aspinall, L. Beringer, M. Hofmann, H-W. Loidl, and A. Momigliano. A Program
Logic for Resource Verification. In TPHOLO4 — Intl. Conf. on Theorem Proving
in Higher Order Logics, Park City, Utah, September 2004.

S. Berghofer and T. Nipkow. Proof Terms for Simply Typed Higher Order Logic. In
TPHOL’00 — Theorem Proving in Higher Order Logics, LNCS 1869, pages 38—52.
Springer, 2000.

L. Beringer, K. MacKenzie, and I. Stark. Grail: a Functional Form for Imperative
Mobile Code. Electronic Notes in Theoretical Computer Science, 85(1), 2003.

C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A Certifying
Compiler for Java. In PLDI’00 — Conf. on Programming Language Design and
Implementation, pages 95-107. ACM Press, 2000.

R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. Journal
of the Association for Computing Machinery, 40(1):143-184, 1993.

C.A.R. Hoare. An Axiomatic Basis for Computer Programming. Communications
of the ACM, 12(10):576-580, 1969.

M. Hofmann. Semantik und Verifikation. Lecture Notes, 1998. TU Darmstadt.
M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In POPL’03 — Symp. on Principles of Programming Lan-
guages, New Orleans, LA, USA, January 2003. ACM Press.

C. Jones. Systematic Software Development Using VDM. Prentice Hall, 1990.

T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Complete-
ness Proofs. PhD thesis, LFCS, Univ. of Edinburgh, 1999.

K. MacKenzie and N. Wolverson. Camelot and Grail: Compiling a Resource-aware
Functional Language for the Java Virtual Machine. In TFP’03 — Symp. on Trends
in Functional Programming, Edinburgh, Scotland, September 9-11, 2003.

G. Necula. Proof-carrying Code. In POPL’97 — Symp. on Principles of Program-
ming Languages, pages 106116, Paris, France, Jan. 15-17, 1997. ACM Press.

G. Necula and P. Lee. Safe, Untrusted Agents Using Proof-Carrying Code. In
Special Issue on Mobile Agent Security, LNCS 1419. Springer, 1998.

G. Necula and P. Lee. Proof Generation in the Touchstone Theorem Prover. In
CADE’00 — Conf. on Automated Deduction, Pittsburgh, PA, June 2000.

T. Nipkow. Hoare Logics for Recursive Procedures and Unbounded Nondetermin-
ism. In CSL’02 — Computer Science Logic, LNCS 2471, pages 103-119. Springer,
2002.

T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, January 2002.

F. Pfenning and C. Schiirmann. System Description: Twelf — a Meta-logical
Framework for Deductive Systems. In CADE’99 — Conf. on Automated Deduction,
LNAI 1632, pages 202-206, Trento, Italy, July 1999. Springer.

D. Sannella and M. Hofmann. Mobile Resource Guarantees. WWW page.
http://groups.inf.ed.ac.uk /mrg/.

D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Compu-
tation: Practice and Ezperience, 13(13):1173-1214, 2001.

