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Abstract. Camelot is a resource-bounded functional programming lan-
guage which compiles to Java byte code to run on the Java Virtual Ma-
chine. We extend Camelot to include language support for Camelot-level
threads which are compiled to native Java threads. We extend the exist-
ing Camelot resource-bounded type system to provide safety guarantees
about the heap usage of Camelot threads.

1 Introduction

Functional programming languages allow programmers to express algorithms
concisely using high-level language constructs operating over structured data, se-
cured by strong type-systems. Together these properties support the production
of high-quality software for complex application problems. Functional programs
in strongly-typed languages typically have relatively few programming errors,
when compared to similar applications implemented in languages without these
beneficial features.

These desirable language properties mean that developers shed the burdens of
explicit memory management but this has the associated cost that they typically
lose all control over the allocation and deallocation of memory. The Camelot
language provides an intermediate way between completely automatic memory
management and unassisted allocation and deallocation in that it provides type-
safe storage management by re-binding of addresses. The address of a datum is
obtained in pattern matching and used in an expression (to store a different data
value at that address), overwriting the currently-held value. An affine linear type
system prevents addresses from being used more than once in an expression.

The Camelot compiler targets the Java Virtual Machine but the JVM does
not provide an instruction to free memory, consigning this to the garbage col-
lector, a generational collector with three generations and implementations of
stop-and-copy and mark-sweep collections. The Camelot run-time disposes of
unused addresses by adding them to a free list of unused memory. On the next
allocation caused by the program the storage is retrieved from the head of the
free list instead of being allocated by the JVM new instruction. When the free
list becomes empty the necessary storage is allocated by new.

This storage mechanism works for Camelot, but not for Java, because
Camelot uses a uniform representation for types which are generated by the
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compiler, allowing data types to exchange storage cells. This uniform represen-
tation is called the diamond type [1,2], implemented by a Diamond class in the
Camelot run-time. The type system of the Camelot language assigns types to
functions which record the number of parameters which they consume, and their
types; the type of the result; and the number of diamonds consumed or freed.

One example of a situation where type-safe reuse of addresses can be used is
in a list updating function. As with the usual non-destructive list processing, this
applies a function to each element of a list in turn, building a list of the images
of the elements under the function. In contrast to the usual implementation of
a function such as map, the destructive version applies the function in-place by
overwriting the contents of each cons cell with the image of the element under
the function as it traverses the list.

The following simple function increments each integer in an integer list. The
Camelot concrete syntax is similar to the concrete syntax of Caml. Where ad-
dresses are not manipulated, as here, a Camelot function can also be compiled
by Caml.

let rec incList lst =
match lst with

[] -> []
| h::t -> (h + 1) :: incList t

This non-destructive version of list processing allocates as many cons-cells as
there are elements in the list. With the destructive implementation the storage
in the list is reused by overwriting the stored integers with their successors. Thus
this version does not allocate any storage.

let rec destIncList lst =
match lst with

[] -> []
| (h::t)@d -> ((h + 1) :: destIncList t)@d

In a higher-order version of this function, a destructive map, we would have the
memory conservation property that if the function parameter does not allocate
storage then an application of the destructive map function would not either.

Selective use of in-place update in this way can be used to realise deforesta-
tion, a program transformation which eliminates unnecessary intermediate data
structures which are built as a computation proceeds.

As an example of a function which is not typable in Camelot we can consider
the following one. This function attempts to create a modified copy of a list,
interleaved with the original list. The (deliberate) error in implementing this
function is to attempt to store the cons cells at the front of the list and the cons
cell in second place at the same location, d.

let rec incListCopy lst =
match lst with

[] -> []
| (h::t)@d -> let tail = ((h + 1) :: t)@d

in (h :: tail)@d (* Error: d used twice! *)
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This function is faulted by the Camelot compiler with the following diagnostic
error message.

File "incListCopy.cmlt", line 4-5, characters 18-80:
! ..................let tail = ((h + 1) :: t)@d
! in (h :: tail)@d.............
! Variable d of type <> used non-linearly

The destIncList function above demonstrates storage re-use in Camelot. As an
example of programmed control of storage deallocation consider the destructive
sum function shown below. Summing the elements of an integer list—or more
generally folding a function across a list—is sometimes the last operation per-
formed on the list, to derive an accumulated result from the individual values
in the list. If that is the case then at this point the storage occupied by the list
can be reclaimed and it is convenient to do this while we are traversing the list.

let rec destSumList lst =
match lst with

[] -> 0
| (h::t)@_ -> h + destSumList t

Matching the location of the object against a wildcard pattern (the symbol)
indicates that this address is not needed (because it is not bound to a name)
and thus it can be freed. The destSumList function frees the storage which is
occupied by the spine of the list as it traverses the list. In a higher-order version
such as destructive fold we would have the memory reclamation capability that
the function passed in as a parameter could also free the storage occupied by the
elements of the list, if these were other storage-occupying objects such as lists
or trees.

2 Using Threads in Camelot

Previously the JVM had been used simply as a convenient run-time for the
Camelot language but a recent extension to Camelot [3] allows the Java names-
pace to be accessed from a Camelot application. Thus a Camelot application can
now create Java objects and invoke Java methods. Additionally, the Camelot lan-
guage has now been extended with syntactic support for the definition of classes
and objects. Figure 1 shows the implementation of a simple clock in Camelot.

This example shows the Camelot syntax for method invocation
(obj#meth()), field access (obj#field) and mutable field update (f <- exp).
The application simply shows a small window into which is written the current
date and time. The parameter to the built-in sleep function for threads is given
in milliseconds so the application sleeps for a tenth of a second before refreshing
the display in the text area on screen with the current date and time.

In the object-oriented fragment of the language the types of parameters and
results typically need to be specified by the programmer whereas in the functional
part types are inferred. Polymorphic functions are monomorphised in compila-
tion to Java byte code.
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(* The ticker class, a thread implementing a clock *)
class ticker = java.lang.Thread
with

field ta : javax.swing.JTextArea

field formatter : java.text.SimpleDateFormat

method setTextField (f : javax.swing.JTextArea) : unit =
ta <- f

method setFormatting (s : string) : unit =
formatter <- new java.text.SimpleDateFormat s

method run() : unit =
let _ = sleep 100 in
let now = new java.util.Date() in
let s = this#formatter#format now in
let _ = this#ta#setText s in this#run()

end

(* The main function of the application *)
let main args =

let frame = new javax.swing.JFrame "Camelot clock" in
let ta = new javax.swing.JTextArea() in
let clock = new ticker() in
let _ = clock#setTextField ta in
let _ = clock#setFormatting "EEE MMM dd hh:mm:ss yyyy" in
let _ = clock#start() in
let f = new javax.swing.JFrame() in
let _ = f#setContentPane ta in
let _ = f#setSize 180 60 in

f#setVisible true

Fig. 1. An implementation of a threaded clock in Camelot

3 Management of Threads

In designing a thread management system for Camelot our strongest requirement
was to have a system which works harmoniously with the storage management
system already in place for Camelot. One aspect of this is that the resource
consumption of a single-threaded Camelot program can be computed in line
with the reasoning explained in Section 1.



310 S. Gilmore

In moving from one to multiple threads the most important question with
respect to memory usage is the following. Should the free list of storage which
can be reused be a single static instance shared across all threads; or should each
thread separately maintain its own local instance of the free list?

In the former case the accessor methods for the free list must be synchronised
in order for data structures not to become disordered by concurrent write oper-
ations. Synchronisation incurs an overhead of locking and unlocking the parent
of the field when entering and leaving a critical region. This imposes a penalty
on program run-time.

In the latter case there is no requirement for access to the free list to be
synchronised; each thread has its own free list. In this case, though, the free
memory on each free list is private, and not shared. This means that there will
be times when one thread allocates memory (with a Java new instruction) while
another thread has unused memory on its local free list. This imposes a penalty
on the program memory usage, and this form of thread management would lead
to programs typically using more memory overall.

We have chosen the former scheme; we have a single static instance of a free
list shared across all threads. Our programs will take longer than their optimum
run-time but memory performance will be improved. Crucially, predictability of
memory consumption is retained.

There are several possible variants on this second scheme which we consid-
ered. They were not right for our purposes but might be right for others. One
interesting alternative is a hybrid of the two approaches is where each thread had
a bounded (small) local free list and flushes this to the global free list when it
becomes full. This would reduce the overhead of calls to access the synchronised
global free list, while preventing threads from keeping too many unused memory
cells locally. This could be a suitable compromise between the two extremes but
the analysis of this approach would inevitably be more complicated than the
approach which we adopted (a single static free list).

A second alternative would be to implement weak local free lists. In this
construction each thread would have its own private free list implemented using
weak references which are references that are not strong enough by themselves to
keep an object alive if no genuine references to it are retained. Weak references
are typically used to implement caches and secondary indexes for data structures.
Other high-level garbage-collected languages such as O’Caml implement weak
references also. This scheme was not usable by us because the Camelot compiler
also targets small JVMs on handheld devices and the J2ME does not provide
the necessary class (java.lang.ref.WeakReference).

The analysis of memory consumption of Camelot programs is based on the
consumption of memory by heap-allocated data structures. The present analysis
of Camelot programs is based on a single-threaded architecture. To assist with
the development of an analysis method for multi-threaded Camelot programs
we require that data structures in a multi-threaded Camelot program are not
shared across threads. For example, it is not possible to hold part of a list in one
thread and the remainder in another. This requirement means that the space
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consumption of a multi-threaded Camelot program is obtained as the sum of per-
thread space allocation plus the space requirements of the threads themselves.

At present our type system takes account of heap allocations but does not
take account of stack growth. Thus Camelot programs can potentially (and some-
times do in practice) fail at runtime with a java.lang.StackOverflowError
exception because tail calls of Java methods are not optimised by the JVM.

4 A Simple Thread Model for Camelot

To retain predictability of memory behaviour in Camelot we restrict the multi-
threaded programming model significantly from that offered by Java’s threads.

Firstly, we disallow use of the stop and suspend methods from Java’s threads
API. These are deprecated methods which have been shown to have poor pro-
gramming properties in any case. Use of the stop method allows objects to be
exposed in a damaged state, part-way through an update by a thread. Use of
suspend freezes threads but these do not release the objects which they are hold-
ing locks on, thereby often leading to deadlocks. Dispensing with pre-emptive
thread interruption means that there is a correspondence between Camelot
threads and lightweight threads implemented using first-class continuations,
call/cc and throw, as are usually to be found in multi-threaded functional
programming languages [4,5].

Secondly, we require that all threads are run, again for the purposes of sup-
porting predictability of memory usage. In the Java language thread allocation
(using new) is separated from thread initiation (using the start method in
the java.lang.Thread class) and there is no guarantee that allocated threads
will ever be run at all. In multi-threaded Camelot programs we require that all
threads are started at the point where they are constructed.

Finally, we have a single constructor for classes in Camelot because our type
system does not support overloading. This must be passed initial values for
all the fields of the class (because the thread will initiate automatically). All
Camelot threads except the main thread of control are daemon threads, which
means that the Java Virtual Machine will not keep running if the main thread
exits.

This simplified idiom of thread use in Camelot allows us to define derived
forms for Camelot threads which abbreviate the use of threads in the language.
These derived forms can be implemented by class hoisting, moving a generated
class definition to the top level of the program. This translation is outlined in
Figure 2.

5 Threads and (Non-)Termination

The Camelot programming language is supported not only by a strong, expres-
sive type system but also by a program logic which supports reasoning about
the time and space usage of programs in the language. However, the logic is a
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let rec threadname(args) =
let locals = subexps in threadname(args)

. . .
let threadInstance =

new threadname(actuals) in . . .
�

class threadnameHolder(args) = java.lang.Thread
with

let rec threadname() =
let locals = subexps in threadname()

method run() : unit =
let = this#setDaemon(true)
in threadname()

end
. . .
let threadInstance =

new threadnameHolder(actuals) in
let = threadInstance#start() in . . .

Fig. 2. Derived forms for thread creation and use in Camelot

logic of partial correctness, which is to say that the correctness of the program
is guaranteed only under the assumption that the program terminates. It would
be possible to convert this logic into a logic of total correctness which would
guarantee termination instead of assuming it but proofs in such a logic would
be more difficult to produce than proofs in the partial correctness logic.

It might seem nonsensical to have a logic of partial correctness to guarantee
execution times of programs (“this program either terminates in 20 seconds
or it never does”) but even these proofs about execution times have their use.
They are used to provide a bound on the running time of a program so that
if this time is exceeded the program may be terminated forcibly by the user
or the operating system because after this point it seems that the program will
not terminate. Such a priori information about execution times would be useful
for scheduling purposes. In Grid-based computing environments Grid service
providers schedule incoming jobs on the basis of estimated execution times
supplied by Grid users. These estimates are sometimes significantly wrong,
leading the scheduler either to forcibly terminate an over-running job due to an
under-estimated execution time or to schedule other jobs poorly on the basis of
an over-estimated execution time.
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6 Conclusions and Further Work

Our programme of research on the Camelot functional programming language
has been investigating resource consumption and providing static guarantees of
resource consumption at the time of program compilation. Our thread manage-
ment system provides a layer of abstraction over Java threads. This could allow
us to modify the present implementation to multi-task several Camelot threads
onto a single Java thread. The reason to do this would be to circumvent the
ungenerous thread limit on some JVMs. This extension remains as future work
but our present design strongly supports such an extension.

We have discussed a very simple thread package for Camelot. A more sophis-
ticated one, perhaps based on Thimble [6], would provide a much more powerful
programming model.
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