
A λ-Calculus for Resource Separation

Robert Atkey

LFCS, School of Informatics, University of Edinburgh
Mayfield Rd, Edinburgh EH9 3JZ, UK

bob.atkey@ed.ac.uk

Abstract. We present a typed λ-calculus for recording resource sepa-
ration constraints between terms. The calculus contains a novel way of
manipulating nested multi-place contexts augmented with constraints,
allowing a concise presentation of the typing rules. It is an extension
of the affine αλ-calculus. We give a semantics based on sets indexed
by resources, and show how the calculus may be extended to handle
non-symmetric relations with application to allowable information flow.
Finally, we mention some future directions and questions we have about
the calculus.

1 Introduction

Functional programming languages present the programmer with the neat ab-
straction that they are dealing with pure values. The programmer is lead into
the comfortable illusion that these values have no physical presence, that they
may be created and discarded as one creates and discards thoughts. However, on
a real computer these values occupy memory space. Different values may share
sections of memory, potentially inhibiting techniques which speed up functional
code by using imperative techniques [5, 7], see also the benign sharing condi-
tion in [6]. The same information can often be useful for the programmer in
imperative languages for reasoning about aliasing [15, 10].

This paper presents a system of typed λ-calculus, λsep, which attempts to
record in the typing judgements the separation between the resources used by
the values of the system. We adapt the techniques used by other substructural
type systems such as the αλ-calculus [9, 12] and Reynolds’ SCI [15, 16] to record
and enforce the separation required between the values of the system.

The recording of separation constraints allows us to give the basic operations
of the language types that enforce the constraints. For example, consider an
application where we construct jobs to be run on two items of data in parallel,
but we require that the items of data occupy separate regions of memory to
allow for temporarily destructive operations:

mkJob : [1#2](D,D) −→ J

The notation [1#2] expresses that mkJob takes two arguments which must occupy
separate regions of memory. We call such specifications separation relations.

To incorporate separation relations in the typing judgements we adopt a
strategy, inspired by that of the αλ-calculus, of introducing new ways of forming
contexts. We no longer think of the context as a list or set of type assignments.
Rather, we now regard the context as an undirected graph of type assignments,
with edges recording the required separation between members. To allow the
piecemeal construction of larger contexts, we also consider sub-contexts that
have a uniform relationship to the rest of the context. The allowable manip-
ulations on contexts, the structural rules, correspond to separation constraint
preserving manipulations. The context also represents the union of all the re-
sources occupied by the term.

The αλ-calculus uses two different context formers, represented by the comma
and semicolon. Both are binary constructors used to construct contexts from
nested “bunches” of type assignments. The two constructors obey different struc-
tural rules; the comma disallowing everything except reordering, and the semi-
colon allowing the full range of intuitionistic structural rules. The two construc-
tors may then given different semantics; a common one is that the comma com-
bines two contexts which use separate resources, the semicolon combines two
contexts which may use overlapping resources. In this way, the system can ex-
press relationships between objects. The system presented here, λsep, generalises
this situation to n places with attached binary relations expressing separation
constraints between members. An example typing judgement is:

[1#2, 1#3](a : D, b : D, c : D) ` (mkJob(a, b), mkJob(a, c)) : (J, J) (1)

The separation between a and b and a and c recorded in the context is induced by
the separation required by mkJob. This separation configuration can be expressed
in the αλ-calculus as (a : D, (b : D; c : D)).

Our extension to n-place separation relations on contexts, rather than binary
bunches of contexts, is justified by looking at the possible graphs of separation
between members expressible by both schemes. Obviously, any bunched con-
text may be translated into an n-place context by writing out all the induced
separations in full. Conversely, however, binary context formers only allow the
expression of the series-parallel graphs; graphs that are constructed recursively
from the one point graph by two operations of either complete non-separation,
or complete separation. The following fact [2, 18] shows that this does not cover
all graphs:

Fact 1 (SP-graph Characterisation) A graph is series-parallel iff its restric-
tion to any four vertices is not equal to ({a, b, c, d}, {(a, b), (b, c), (c, d)}).

To see an example of how this separation relation may occur, consider the context
required for typing the construction of 3 jobs in sequence over 4 items of data:

[1#2, 2#3, 3#4](a : D, b : D, c : D, d : D)` (mkJob(a, b), mkJob(b, c), mkJob(c, d))

Another example of this configuration is shown in section 4.
As mentioned above, the structural rules of the calculus correspond to sepa-

ration preserving manipulations of the context. To allow concise presentation of

complex separation relations we permit nested contexts. For example, judgement
(1) may also be written as:

[1#2](a : D, [](b : D, c : D)) ` (mkJob(a, b), mkJob(a, c)) : (J, J) (2)

Since a was required to be separate from both b and c, we may group b and c
into a nested context with uniform separation from a. The equivalence of these
two contexts is justified by considering that an object is separate from a group
of objects if and only if it is separate from them all individually. This operation
is encoded in the type system by the formalisation of substitution of separation
relations into separation relations.

To preserve the correctness of separation relations when variables are used
multiple times in a term we restrict the use of the rule of contraction. We only al-
low contraction between two variables when they are not required to be separate.
Hence, given judgement (2) we may infer:

[1#2](a : D, b : D) ` (mkJob(a, b), mkJob(a, b)) : (J, J) (3)

This step is justified by thinking of contraction as semantically inducing the
duplication of references to resources. Obviously two references to the same
resource cannot be considered separate, so the typing judgement may not rely
on them being so.

2 The Type System

Separation Relations. We first introduce separation relations; these represent
the relationships of relative separation between objects.

Definition 1. A separation relation of size n is a binary, irreflexive, symmetric
relation on the set {0, . . . , n− 1}.

We write |S| for the size of a separation relation. Define the relation S ⊆ S′

between two separation relations to hold if and only if |S| = |S′| and, for all
x and y, xSy implies xS′y. We write specific relationship specifiers as lists of
related pairs [r1, . . . , rk]n, where each ri is of the form x#y, denoting the related
pairs of the relation, and n is the size.

Definition 2 (Relation Substitution). For separation relations S and S′,
with sizes n and n′ respectively, define the operation of substitution S{S′/i},
where 0 ≤ i < n, as:

(x, y) ∈ S{S′/i} iff

{

(x− i, y − i) ∈ S′ if normi
n′(x) = normi

n′(y) = i
(normi

n′(x),normi
n′(y)) ∈ S otherwise

where:

normi
n′(x) =







x if x < i
i if i ≤ x < i+ n′

x− n′ + 1 if x ≥ i+ n′

S

S’

S{S’/2}

Fig. 1. Substitution of Separation Relations

Substitution of relations may be visualised as in figure 1. For a pair of positions
x and y in S{S′/i}, either both x and y are in the range of S ′, or at least one
of them is in the range of S. In the first case we use the relation S ′; otherwise,
we map the positions back to S (up the diagram) and use S to judge whether x
and y are related. The function normi

n does the mapping back to S. Note that
if a member of S is related to any member of S ′ then it is related to all of them.

Lemma 1. The following properties hold of substitution:

1. S{S′/i} is a separation relation;
2. S{[]1/i} = S;
3. S{S1/i}{S2/j + n1 − 1} = S{S2/j}{S1/i}, where i < j and |S1| = n1;
4. S{S1{S2/j}/i} = S{S1/i}{S2/i+ j}.

Properties 3 and 4 ensure that if we perform two non-interfering substitutions
in two different orders then we always finish in the same state. This is useful for
reasoning about the allowable manipulations of contexts, since a nested context
may always be substituted out to a single flat context. The 0-place separation
relation []0 acts as a unit under substitution, since substituting []0 into a position
i effectively causes that position to be removed.

Types and Contexts. The types of the calculus are generated by the following
grammar, given a set of primitive types T :

A,B ::= X ∈ T | A1, . . . , An
S
−→ B | S(A1, . . . , An)

where S is a separation relation of size n + 1 for function types and size n for
tuple types. The extra place in the function types represents the resources used
by the body of the function. The types then generate the contexts, using the
nested structure described in the introduction:

Γ,∆ ::= x : A | S(Γ1, . . . , Γn)

where S is a separation relation of size n, A is a type and no variable x appears
more than once in a context. We identify the context x : A with the one-place
context []1(x : A). We define v(Γ) to be the list of variables in Γ built from a
depth-first, left-to-right traversal. The notation Γ (−) represents a context with a

x : A ` x : A
(Id)

Γ (∆′) ` e : A ∆
φ
⇒ ∆′

Γ (∆) ` φ(e) : A
(Struct)

Γ1 ` e1 : A1 . . . Γn ` en : An

S(Γ1, . . . , Γn) ` S(e1, . . . , en) : S(A1, . . . , An)
(S-I)

Γ ` e1 : S(A1, . . . , An) ∆(S(x1 : A1, . . . , xn : An)) ` e2 : B

∆(Γ) ` let S(x1, . . . , xn) = e1 in e2 : B
(S-E)

S(Γ, x1 : A1, . . . , xn : An) ` e : B

Γ ` λS(x1, . . . , xn).e : A1, . . . , An
S
−→ B

(→-I)

Γ ` f : A1, . . . , An
S
−→ B for 1 ≤ i ≤ n. ∆i ` ai : Ai

S(Γ,∆1, . . . , ∆n) ` f@S(a1, . . . , an) : B
(→-E)

Γ ` e : A f : A −→ B ∈ F

Γ ` fe : B
(Prim)

Fig. 2. Typing Rules

“hole” at some position in the tree, and Γ (∆) is the context with ∆ substituted
for the hole. This will be used for selecting nested sub-contexts for particular
attention. We write Γ ≡α Γ ′ to denote equivalence of contexts up to renaming
of variables.

A context Γ determines a separation relation, SΓ , on all the variables it
contains, by substituting out all the nested separation relations. It is unique by
Lemma 1.

Structural Rules. We give the structural rules of the calculus in a uniform fashion,
collected in the typing rule Struct in figure 2. This rule is parameterised by

labelled transitions ∆
φ
⇒ ∆′, where ∆ and ∆′ are contexts and φ is an operation

on terms. The allowable transitions are shown in figure 3.

Transition Effect on the context φ(e)

Flatten S(
−→
Γ , S′(

−→
∆),

−→
Γ ′)⇔ S{S′/i}(

−→
Γ ,
−→
∆,
−→
Γ ′) e

S-Weak (S′ ⊆ S) S(
−→
Γ)⇒ S′(

−→
Γ) e

Contr (Γ ≡α Γ
′) Γ ⇒ []2(Γ, Γ

′) e[v(Γ)/v(Γ ′)]
Weak Γ ⇒ []0() e

Perm S(
−→
Γ)⇔ σS(σ

−→
Γ) e

Fig. 3. Structural Transitions

We can justify the structural rules by appeal to the properties of separation.
The Flatten and Contr transitions were justified in the introduction, here they
appear in their general form. The transition S-Weak is justified by observing
that (reading the Struct rule from bottom to top) if we have a context which
promises more separation than we require, then we may forget about the extra
separation. Transitions Weak and Perm are justified by the fact that we consider
the underlying combination of values to be given by a normal product type.

Using these contexts and structural rules we can simulate the bunches of the
αλ-calculus. If we replace the context former “,” with [1#2](−,−) and “;” with
[](−,−) we can rewrite an αλ context into a λsep context. The associativity of the
two context formers is then a two-way derived rule formed from two applications
of Struct with Flatten and its inverse (S = []2 or [1#2]):

Γ (S(∆1, S(∆2,∆3))) ` e : A

Γ (S(S(∆1,∆2),∆3)) ` e : A

Since we have S-Weak and Weak we are simulating the affine αλ-calculus. An-
other useful derived rule is a generalised form of contraction:

Γ (x : A)(y : A) ` e : B ¬(xSΓ y) ∀z.xSΓ z ⇔ ySΓ z

Γ (x : A)() ` e[x/y] : B

This is derived by completely flattening out the context Γ (x : A)(y : A) and
then grouping the pair x, y. This is possible since they have exactly the same
relationship to all other members of the context. Then, since x and y are not
required to be separate then we may apply Contr. Another sequence of Flatten

applications reconstructs the original context’s structure.

Connective Rules. The typing rules for tuple and function types are also shown
in figure 2. By reading the contexts as representing the resources used by the
term we obtain an informal justification of the typing rules. The rule S-I uses the
same relationship between the contexts on the left as for the terms on the right;
therefore, if the free variables of the terms obey the required separation then
so will the corresponding terms. The elimination rule for tuples, S-E, exploits
the structure of the contexts. The position of the hole in ∆(−) indicates the
relationships that the resources used by the variables xi must have with the
rest of ∆; by substituting Γ directly into this hole we are maintaining the same
relationships.

The rules →-I and →-E can be understood similarly; in the introduction rule
we have the nested sub-context Γ representing the resources used by the function
body, treated as a single block. The required separation between the function’s
arguments and the function itself are recorded in S, which becomes part of
the function’s type. The relations are then reconstituted in the elimination rule.
Using these function types we may simulate the function types of the αλ-calculus:

A→ B becomes A
[]
−→ B and A —∗ B becomes A

[1#2]
−→ B.

The Prim rule incorporates a set of primitive operations F of the form f :
A→ B where A,B are types. We assume that primitive operations consume no
resources themselves.

We have the usual admissible substitution rule for the calculus. We consider
n-ary substitution both in order to have a strong enough induction hypothesis to
handle the Contr structural rule and because it is needed for the well-definedness
of the equational theory.

Lemma 2 (Substitution). The following rule is admissible:

Γ (x1 : A1) . . . (xn : An) ` e : B ∆1 ` e1 : A1 . . . ∆n ` en : An

Γ (∆1) . . . (∆n) ` e[e1/x1, . . . , en/xn] : B

Definition 3 (Equational Theory). Given a set of axioms of the form Γ `
e1 = e2 : A such that Γ ` ei : A, i ∈ {1, 2}, define the judgement of equation-in-
context (Γ ` e1 = e2 : A) to be given by the axioms, plus: extensions of the usual
βη rules for linear tuple and function types; commuting conversions for tuple
elimination; uniqueness for terms of type []0(); surjective pairing for []2(−,−)
types; and congruence, symmetry and transitivity rules.

Proposition 1. If Γ ` e1 = e2 : A is derivable in the equational theory then
Γ ` ei : A, i ∈ {1, 2}.

The proof of this proposition is mostly straightforward, given the substitution
lemma, apart from the commuting conversion rules which, due to the syntax free
structural rules, are treated using a variant of the structural extensions of [10].

3 Semantics

This section describes the semantics of the calculus. We first briefly mention
the categorical semantics of the system. This fixes the structure we require and
provides generic coherence and soundness results for models. The main body
of the section covers a resource-indexed sets semantics which shows how the
calculus models resources and their separation.

Categorical Semantics. We give the syntax a categorical semantics by requiring
a category C with endofunctors S : C |S| → C for each separation relation S. These
model the product types and contexts of the syntax. The structural rules are
natural transformations between these functors, subject to several commuting
conditions, corresponding to the (term syntax invisible) reordering of structural

rules. Function types are modelled as functors, [A1, . . . , An
S
−→ −] : C → C, right

adjoint to the S functors. The semantics extends a map I of primitive types and
operators to objects and arrows in C to a map J−KI from derivations to arrows
in C. We have the following results for the categorical semantics:

Theorem 1 (Coherence). If π1 and π2 are two derivations of the judgement
Γ ` e : A then Jπ1KI = Jπ2KI .

Theorem 2 (Soundness and Completeness). Γ ` e1 = e2 : A if and only
if in all categorical models JΓ ` e1 : AKI = JΓ ` e2 : AKI .

Resource indexed sets. We will model the types of the system as sets indexed by
a partially ordered set of “resources”. A binary relation on the resources provides
our semantical interpretation of separation.

We start with a partially ordered set R that has finite joins r1 ∨ . . . ∨ rn.
The ordering represents the inclusion of small resources inside larger ones, and
joins represent the combination of resources. To model separation we require a
relation −#− ⊆ R×R with the following properties:

1. r1#r2 iff r2#r1;
2. If r1#r2 and r′1 v r1 and r′2 v r2 then r′1#r

′
2;

3. r#(r1 ∨ . . . ∨ rn) iff r#r1, . . . , r#rn.

Intuitively these properties are those of separation: separation is symmetric; if
two resources are separate and we have two other resources contained in them
then the two smaller resources are separate; and if a collection of resources is
separate from a resource then they are all separate individually.

Types are modelled as functors from R to Set, the category of sets and func-
tions. Terms are modelled as natural transformations between these functors.
The constructions for tuple and function types are instances of Day’s general
construction for monoidal closed structures in functor categories [4].

Tuple and contexts S(A1, . . . , An) are modelled by the sets, at resource r:

{(a1, . . . , an) ∈ A1r × . . .×Anr :
∃r1 v r, . . . , rn v r, a′1 ∈ A1r1, . . . , a

′
n ∈ Anrn s.t.

∀i.ai = Ai(ri v r)a′i and ∀i, j.iSj ⇒ ri#rj}

An element of a tuple is a tuple of elements (a1, . . . , an); each one represents a
value in its own resource ri, projected forward into the containing resource r. The
resources for each of the elements must be related as dictated by the separation
relation. For natural transformations modelling terms f1, . . . , fn, S(f1, . . . , fn)
is defined pointwise in the evident way.

The function types A1, . . . , An
S
−→ B are modelled at resource r0 as the

family of functions:

Π(r1,...,rn)∈R.A1r1 × . . .×Anrn ⇒ B(r0 ∨ r1 ∨ . . . ∨ rn)

where R = {(r1, . . . , rn) ∈ R : ∀i, j.iRj ⇒ ri#rj} and ⇒ is the set-theoretic
function space. The resource r0 represents the resources that the function itself
occupies. Given resources r1, . . . , rn for the argument positions that satisfy the
separation relation we get a function from arguments at these resources to the
result using the combined resources of the function and all its arguments. This
matches the justification of the typing rule using the contexts to represent the
resources and their relationships.

Theorem 3. The above definitions on the category [R,Set] for tuple and func-
tion types, together with the evident natural transformations for the structural
rules, give a sound class of models for λsep.

Memory Regions. Our main example of the above construction is given by mem-
ory regions. Starting from some set of memory locations L, we take our set of
resources to be the powerset of L and inclusion as the order. The relation is then
defined as r1#r2 ⇔ r1 ∩ r2 = ∅. Hence, two regions of memory are separate if
they do not share any memory locations. It is easy to see that this relation obeys
the required properties, and so [P(L),Set] is a model of λsep.

Representing Resources. This semantics suggests a useful way to extend the
calculus via a simple application of the Yoneda embedding [8]. The Yoneda
embedding allows us to represent resources r ∈ R directly in the calculus as
types Yr. Separation with a value of type Yr indicates separation from the fixed
resource r. Following Yoneda we define:

Yr(r
′) =

{

{∗} if r v r′

∅ otherwise

Thus Yr is the empty type at resources inadequate for r and the singleton type
at resources containing r.

Following on from the memory regions example, consider an example where
we have a region k representing kernel memory in an operating system. Calls
from the operating system kernel to user programs must not pass references to
kernel memory, since it is inaccessible to user programs. This constraint may be
typed as follows:

callUserProgram : [1#2](Yk,Message)→ Result

The representation of named resources in the calculus has a precedent in the
nominals of hybrid logic. See, e.g. [1].

4 Non-symmetric Relations

A potentially useful variation of λsep is to allow non-symmetric relations in place
of the separation relations. We can then model such constraints as allowable
information flow or temporal ordering. We outline the changes required to the
calculus and its semantics after a short example.

Take the base types to be Src, Sink and Integer, with primitive operations:

read : Src→ [](Src, Integer) write : [1 . 2](Integer, Sink)→ Sink

Thus, read takes a Src element and returns the next integer in that source,
with the new state of the source; write takes a Sink and an integer, with the
guarantee that the information in the integer may flow to the sink and returns
the new state of the sink. We write the relations with .s to indicate the lack of
symmetry. A simple example judgement is:

Γ ` let [](a′, i) = read(a) in [](a′, write[1 . 2](i, x)) : [](Src, Sink)

This types under Γ = [1 . 2](a : Src, x : Sink), but not Γ = [](a : Src, x : Sink)
since the typing of write requires information to be able to flow from (the source
of) the integer to the sink.

By manipulating the typing context we may set up networks of allowable
information flow between sources and sinks. For example, programs that satisfy
the typing judgement cannot pass data from a source to a sink that is not
explicitly allowed by the context. This context sets up a network that allows
information to flow from a to x and b to x and y, but nothing else:

[1 . 3, 2 . 3, 2 . 4](a : Src, b : Src, x : Sink, y : Sink) ` e : [](Src, Src, Sink, Sink)

Note that this network is not expressible using binary constraints since it takes
the shape not expressible in series-parallel graphs (Fact 1).

The relaxation to non-symmetric constraints has almost no effect on the
typing rules. However, our suggested applications of non-symmetric relations
indicate an additional structural transition for the calculus; transitive closure of
relations (TC(S) is the transitive closure of S):

TClosure S⇒ TC(S) φ(e) = e

The resource indexed semantics is easily extended to the non-symmetric case by
dropping the requirement of symmetry on the relation # between resources and
adding a requirement of transitive closure.

An instance of the resource indexed sets semantics may be constructed as
follows. Take a set Id of “identities” – people’s names for instance – with a
binary relation . ⊆ Id× Id, denoting which people are allowed to talk to other
people. This relation should be transitively closed. Extend the relation . to sets
of identities by I . I ′ iff ∀(i, i′) ∈ I × I ′.(i . i′). Now take P(Id) as the set
of “resources” with this relation and union as the combining operation. By a
variation of the above theorem, [P(Id),Set] has the correct structure to model
the calculus with non-symmetric relations and transitive closure.

To take this example further we wish to compare the effectiveness of this
extension with type systems designed for secure information flow such as [17]. In
particular, we have not considered the effect of control flow on the information
flow; a large factor in type systems for security.

5 Conclusions

We have presented the calculus λsep and shown how the separation relations in
the syntax may be interpreted as separation constraints on the resources used
by values. We have shown how the calculus may be extended to deal with non-
symmetric relations between values and how it can model properties such as
allowable information flow.

The idea of augmenting contexts with a relation on the members has also been
used in Retoré’s Pomset Logic [14], an extension of linear logic. Pomset (Partially
Ordered Multiset) logic extends linear logic by adding a “before” connective

A < B, such that A ⊗ B ` A < B ` A℘B. This is interpreted, via proof nets,
as being possible uni-directional communication, with ⊗ as no communication
and ℘ as possible bi-directional commmunication. Retoré gives a coherence space
semantics and a sequent calculus, but does not define n-ary tuple or implication
formulae, nor does he consider nesting as a way of managing contexts. We believe
that Retoré’s coherence space semantics also works for a cut down variant of λsep

with non-symmetric relations, but without contraction, weakening or function
types. The “before” connective has also been considered by Reddy [13], da S.
Corrêa, Haeusler and de Paiva [3] as a way of modelling temporal ordering in
languages with state. da S. Corrêa et. al. also describe a semantics based on
Dialectica Categories.

Reynolds’ Syntactic Control of Interference (SCI) [15, 16], a variant of Ide-
alized Algol, also controls the aliasing of values in the system by disallowing
contraction, except in the case of passive variables that do not update shared
storage. O’Hearn [9] describes a form of SCI based on the αλ-calculus.

We plan further work with this calculus and its semantics to answer some
questions we have not yet been able to solve and to attempt to extend and apply
this calculus in other areas. The first question is that of completeness for the
resource-indexed sets semantics. It is easy to generalise the semantics to use a
category of resources, and attempt to build such a category from the syntax.
The primary problem is that there does not seem to be an obvious way to build
the relation −#− from the syntax. The second question is that of conservativity
over the αλ-calculus; we conjecture this to be true, but have not yet found a
proof.

We are also investigating several extensions of λsep. Following SCI’s passive
types, we want to extend the calculus with resource-insensitive types. That is,
types whose values do not occupy any resources and so separation constraints
involving them have no meaning and can be added and removed arbitrarily.

We expect that the nested context structure of λsep will be useful for adapting
the calculus to other uses. Having separation relations rather than binary context
formers means that we maintain a linear ordering on the context where the αλ-
calculus would have to reorder context members to express some separation
configurations. This means that the system should easily combine with ordered
type systems for memory layout such as that of Petersen et. al. [11].

Lastly, we mention that the initial motivation for this calculus was to devise
a higher-order version of the in-place update type system of Hofmann [5]. We
have deviated from this goal in that it is not possible to directly express the
separation of an object from everything, which is required to support in-place
update. However, we note that one can express this using λsep using continuation
passing style:

cons : [1#2, 1#3, 2#3, 3#4](A,List(A),3, List(A)→ R)→ R

where 3s represent memory locations.

Acknowledgements I would like to thank David Aspinall and Michal Konečný
for helpful discussions on the work presented here.

References

1. Carlos Areces and Patrick Blackburn. Bringing them all together. Logic and
Computation, 11(5), 2001. Editorial of special issue on Hybrid Logics.

2. Denis Bechet, Philippe de Groote, and Christian Retoré. A complete axiomatisa-
tion for the inclusion of series-parallel partial orders. In Proceedings of RTA’97,
volume 1232 of Lecture Notes in Computer Science, pages 230–240, 1997.

3. Marcelo da S. Corrêa, Edward H. Haeusler, and Valeria C. V. de Paiva. A dialec-
tica model of state. In CATS’96, Computing: The Australian Theory Symposium
Proceedings, January 1996.

4. B. J. Day. On closed categories of functors. In S. Mac Lane, editor, Reports of the
Midwest Category Seminar, volume 137 of Lecture Notes in Mathematics, pages
1–38. Springer-Verlag, 1970.

5. Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

6. Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. In Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pages 185–197. ACM Press,
2003.

7. Michal Konečný. Functional in-place update with layered datatype sharing. In
Proceedings of TLCA 2003, pages 195–210, 2003. LNCS 2701.

8. Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
2nd edition, 1998.

9. P. W. O’Hearn. On bunched typing. Journal of Functional Programming,
13(4):747–796, 2003.

10. P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic control
of interference revisited. Theoretical Computer Science, 228:211–252, 1999.

11. Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for
memory allocation and data layout. In G. Morrisett, editor, Conference Record of
the 30th Annual Symposium on Principles of Programming Languages (POPL’03),
pages 172–184, January 2003. ACM Press.

12. D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications,
volume 26 of Applied Logic Series. Kluwer Academic Publishers, 2002.

13. Uday Reddy. A linear logic model of state. Electronic manuscript:
http://www.cs.bham.ac.uk/~udr/, October 1993.

14. Christian Retoré. Pomset logic: a non-commutative extension of classical linear
logic. In In proceedings of TLCA’97, volume 1210 of Lecture Notes in Computer
Science, pages 300–318, 1997.

15. John C. Reynolds. Syntactic control of interference. In Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of Programming Languages, pages
39–46. ACM Press, 1978.

16. John C. Reynolds. Syntactic control of interference, part 2. In G. Ausiello,
M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, Automata, Languages
and Programming, 16th International Colloquium, pages 704–722. Springer-Verlag,
1989. Lecture Notes in Computer Science 372.

17. Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.
Special issue on Formal Methods for Security.

18. J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series-parallel di-
graphs. SIAM Journal of Computing, 11(2):298–313, May 1982.

