
Towards certificate generation for linear heap consumption

Lennart Beringer1, Martin Hofmann2, Alberto Momigliano1, Olha Shkaravska2

1 Laboratory for Foundations of Computer Science, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland;
{lenb,amomigl1}@inf.ed.ac.uk

2 Institut für Informatik, Ludwig-Maximilians-Universiẗat München, Oettingenstraße 67, 80538 München;
{mhofmann,shkaravska}@informatik.uni-muenchen.de

Abstract. We present a program logic for verifying the heap consumption of programs written in an abstract
representation of the Java virtual machine language. The logic is defined by an expansion into the more general
program logic presented in [2], but concrete program program verification may be performed purely on the abstract
level, without recourse to the base logic. Format and interpretation of assertions closely match the interpretation of
[9]’s type system for functional programs where the consumption of heap space is bounded by a linear function on
the input size. The derived proof rules enable us to replay typing derivations in a theorem prover, given assertions
about individual methods. The resulting verification conditions are of limited complexity, and may be discharged
without significant programmer intervention.

1 Introduction

For the effective use of mobile code, certifying the resource consumption of a program is of great concern. The Mobile
Resource Guarantees (MRG) project [20] is developing Proof-Carrying Code (PCC) technology [17] to endow mobile
code with certificates of bounded resource consumption. These certificates are generated by a compiler which, in
addition to translating high-level programs into machine code, derives formal proofs based on programmer annotations
and program analysis. The specific architecture developed by MRG considers programs written in the high-level
languageCamelot[15], an ML-like functional language with type systems for reasoning about resource consumption.
The compilation targets the Java bytecode language (JVML) and proceeds in two steps. The first step transforms
Camelot programs into an abstract form of JVML calledGrail [4] by performing well-known functional program
manipulations such as monomorphisation and let-normalisation. Datatypes are represented using a single class of
objects, while Camelot functions translate into static method invocations [15, 23]. Subsequently, Grail programs may
be expanded into virtual machine format in areversibleand resource-preserving way. Relying on a bijection between
an (impure) functional and an imperative semantics of Grail, this expansion allows us to certify programs at the Grail
level while employing Java’s classfile mechanism for program transmission: at code consumer side, a transmitted
program is simply translated back into Grail before proof checking.

As the basis for reasoning and certificate generation, we employ a VDM-style [10] program logic for Grail where
assertions are boolean functions over evaluation environments, pre- and post-heaps, and result values (see below).
In [2] we reported on a full formalisation of the operational semantics and the program logic in the theorem prover
Isabelle/HOL and proved the soundness and (relative) completeness of the logic with respect to an interpretation
of partial correctness, extending previous work on formalisations of Hoare-style program logics for imperative lan-
guages [8, 11, 18].

While this formalisation was useful for obtaining the desired meta-logical properties, it proved less suited for
concrete program verification. In particular, the complexity of side conditions and the necessity to instantiate existential
quantifiers and perform case-splits on the form of data values made automatic verification difficult to achieve.

In this paper we therefore present a derived logic which is defined on top of [2]’s logic (henceforth dubbed the
coreor baselogic) and is more directly related to Camelot’s compile time analysis. Indeed, by encoding a Grail-level
interpretation of the type system of Hofmann and Jost for heap space consumption [9], we obtain a smooth transition
from program analysis to program verification. Certificate generation amounts to providing the correct invariants
and proving auxiliary lemmas which are needed to discharge side conditions occurring from a verification condition
generator. The complexity of the side conditions in the new logic is significantly lower than that of side conditions in
the base logic, making automatic verification more feasible.

The encoding of the type system is achieved by introducing a fixed form of assertions whose definition in terms
of the base logic corresponds to the soundness condition of [9]. During program verification, however, this definition

does not need to be unfolded – we give aderivedVDM proof system where judgements only mention assertions of
the restricted form, and the only side conditions are arithmetic (in-) equalities, context lookup operations and updates.
The only time when the definition of restricted assertions is unfolded is thus the proof of the derived rules. We have
performed such proofs for the rules presented in this paper, and are currently working on extending them to a more
general setting (see Section 7). Continuing our earlier work on formalisation, the whole development presented in
this paper has been formalised in Isabelle/HOL: each proof rule given in this paper is in fact a lemma which has
been formally proven. Any proof for a concrete program using the logic of derived assertions may thus conceptually
be expanded into a proof in the base logic, and thus (via the soundness result) ultimately into a statement about the
operational semantics. Indeed, the aim to produce machine-checkable proofs was one of the reasons for formalising
the development in a general-purpose theorem prover instead of using more specialised (but at the time still un-
mechanised) logics such as Separation Logic [19].

Outline The remainder of this document is structured as follows. We first summarise some main components of the
MRG architecture, including the two language levels, the type system of [9] and the memory management strategy
implemented in the Camelot compiler. We then define the syntax and the semantics of derived assertions in Section 3
and give some proof rules and auxiliary lemmas in Section 4. Finally, we outline the application of the logic to example
programs in Sections 5 and 6, before discussing extensions and future and related work in Section 7.

2 Components of the MRG architecture

2.1 Grail

The Grail representation of code retains the object and method structure of Java bytecode and represents method
bodies as sets of mutually tail-recursive first-order functions. The syntax comprises instructions for object creation
and manipulation, method invocation and primitive operations such as integer arithmetic, as well as let-bindings to
combine program fragments. The main characteristic of Grail is its dual identity: its (impure) call-by-value functional
semantics may be shown to coincide with an imperative interpretation of the expansion of Grail programs into the Java
Virtual Machine Language, provided that some mild syntactic conditions are met. In particular, we require that actual
arguments in function calls coincide syntactically with the formal parameters of the function definitions. Together with
Administrative-Normal-Form (ANF)-style normalisation of let-expressions, this allows function calls to be interpreted
as immediate jump instructions since register shuffling at basic block boundaries is performed by the calling code rather
than being built into the function application rule. Consequently, the consumption of resources at virtual machine level
may be expressed in a functional semantics for Grail: the expansion into JVML does not require register allocation or
the insertion of gluing code [4]. The formal syntax of expressions

e∈ expr ::= null | int i | var x | prim op x x| new c [t1 := x1, . . . , tn := xn] |
x.t | x.t:=x | c� t | c� t:=x | let x=ein e | e ; e | if x then eelse e | call f | c.m(a)

a∈ args ::= var x | null | i

is defined over mutually disjoint sets of method names, class names, function names (i.e. labels of basic blocks),
(static) field names and variables, ranged over bym, c, f , t, andx, respectively. In the grammar,i ranges over integers
andop denotes a primitive operation of typeV ⇒ V ⇒ V such as an arithmetic operation or a comparison operator.
HereV is the semantic category of values (ranged over byv), comprising integers, referencesr, and the special symbol
⊥, which stands for the absence of a value. Heap references are eithernull or of the formRef l wherel ∈L is a location
(represented by a natural number). Formal parameters of method invocations may be integer or object variables, where
self is a reserved variable name. Actual arguments are sequences of variable names or immediate values.

Expressions represent basic blocks and are built from operators, constants, and previously computed values (names).
Expressions correspond to primitive sequences of bytecode instructions that may, as a side effect, alter the heap. For
example,x.t andx.t:=y represent (non-static)getfield andputfield instructions, whilec� t andc� t:=y denote
their static counterparts. The bindinglet x=e1 in e2 is used if the evaluation ofe1 returns an integer or reference
value on top of the JVM stack whilee1 ; e2 represents purely sequential composition, used for example ife1 is a
field updatex.t:=y. Object creation includes the initialisation of the object fields according to the argument list: the
content of variablexi is stored in fieldti . Function calls (call) follow the Grail calling convention (i.e. correspond to

2

immediate jumps) and do not carry arguments. The instructionc.m(a) represents static method invocation. Although a
formal type and class system may be imposed on Grail programs, our program logic abstracts from these restrictions;
heap and class file environment are total functions on field and method names, respectively.

We assume that all method declarations employ distinct names for identifying inner basic blocks. A program is
represented by a tablefuntablemapping function identifiers to an expression and a list of formal arguments, and a
tablemethtableassociating method parameters and initial basic blocks to class names and method identifiers. The
formal basis of the program logic is an operational semantics that models the functional interpretation of Grail and
is expressed as a big-step evaluation relationE ` h,e⇓ h′,v. For expressione, such a judgement relates an (initial)
variable environmentE ∈ E and an initial heaph∈H to a final heaph′ ∈H and the result valuev∈ V .

2.2 The core program logic

In our program logic [2], judgements take the formGBe : P wheree is a Grail expression,G a VDM context used for
storing verification assumptions for recursive methods and functions, andP an assertion, i.e. a predicate (in the meta-
logic) over semantic components that relates the initial and final heaps, the initial environment, and the result value:
P : E →H →H →V → B, whereB is the set of booleans. Satisfaction of a specificationP by programe is denoted
by |= e : P and asserts thatE ` h,e⇓ h′,v impliesPE h h′ v. While the rules for defining the operational semantics are
omitted, the rules defining the program logic are given in Appendix A. In [2] we proved the soundness and (relative)
completeness of the program logic with respect this (partial) interpretation, i.e. the statement/0Be : P⇐⇒ |= e : P.

2.3 Analysis and compilation of Camelot programs

The high-level programming language used in the MRG project, Camelot, is an ML-like first-order functional lan-
guage with polymorphism and algebraic datatypes. In the type system of [9], the syntax of types includes annotations
indicating the amount of free heap required for each occurrence of a constructor for that type. For example, the datatype

type iList = Nil | Cons of int * iList

where aNil value is represented by thenil pointer is given a typeL(k) wherek is an annotation indicating how much
free heap space is required for each occurrence of aCons-node. A list of lengthN thus comes equipped withN∗k free
heap cells. The typingΓ,n` e : T,mof an expressionenot only gives a (conservative) estimaten of the amount of free
heap space required for evaluatinge, but also contains an (again conservative) estimatem of the amount of heap left
over after the evaluation. The latter annotation is measured relative to the size of the result value, not the (input) free
variables. Thus, typing judgements may be combined in a compositional way, as shown in the rule forlet-expressions

Γ1,n` e1 : A,k Γ2,x : A,k,` e2 : B,m

Γ1,Γ2,n` let x = e1 in e2 : B,m

The typing rule associated to a constructor stipulates that enough space be provided for allocating the data, including
the annotation value. For example, the rule for the constructorCons is

n≥ 1+k+m

Γ,h : int, t : L(k),n` Cons(h, t) : L(k),m

During pattern-matching, the heap space inhabited by the value may either be reclaimed (in which case the cell is
destroyed and may not be referred to in the continuation of the program) or be retained:

Γ,n` e1 : A,m Γ,h : int, t : L(k),n+1+k` e2 : A,m

Γ,x : L(k),n` match x with Nil⇒ e1| Cons(h, t)@ ⇒ e2 : A,m

Γ,n` e1 : A,m Γ,h : int, t : L(k),n+k` e2 : A,m

Γ,x : L(k),n` match x with Nil⇒ e1| Cons(h, t)⇒ e2 : A,m

The program annotation @indicates the destructive nature of the pattern match in the first rule, as used in the
following example, insertion sort:

3

let ins a l = match l with
Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)

As a result, this program may be given a type which indicates that no space is consumed during the evaluation:

ins : 1, int -> L(0) -> L(0), 0
sort : 0, L(0) -> L(0), 0.

In functionins, a single additional cell is needed: if the list is empty, we need to construct one node, while in the case
wherel is non-empty, either twoCons cells are needed immediately, or one immediately and one in the recursive call
to ins, but one cell is also gained during the destructive pattern match. Functionsort does not consume heap space
since the one cell needed when callingins has been gained during the destructive pattern match.

The process of type inference first builds a skeleton typing derivation where the numerical valuesn,m, . . . are inter-
preted as (rational) variables. The side conditions over these variables are then fed into a solver for linear-programming
problems [9]. At the Camelot level, the soundness of the type system with respect to memory consumption relies on a
notion ofbenign sharingwhich ensures that deallocated cells cannot be accessed in the code following the deallocation
primitive. As a by-product, this condition also ensures functional correctness.

The Grail code emitted for a program such as insertion sort contains a hand-crafted memory manager, independent
from the JVM garbage collection and implemented as a freelist, pointed to by the static fieldFLIST. The @ directive
results in the cell against which the pattern match is performed being inserted into the freelist, using the methodfree
with parameternodeand body

let f=D�FLIST in node.NEXT:=f ; D�FLIST:=node

The application of a datatype constructor translates into the invocation of methodmake, which draws an entry from
the freelist if that is non-empty, and allocates a new object otherwise:

methtable≡


D.alloc() 7→ let f=D�FLIST in let b=prim isNull f f in

if b then new D [] else let tl=f.NEXT in D�FLIST:=tl ; f
D.fill(x,tag,v,w) 7→ x.TAG:=tag ; x.HD:=v ; x.TL:=w ; x
D.make(tag,v,w) 7→ let x=D.alloc() in D.fill(x,tag,v,w)


Thus, the Grail-level interpretation of a typing judgementΓ,n ` e : T,m says that no object allocation takes place
during the evaluation ofe, provided the initial freelist is of length (at least)n. The task of our (derived) program logic
is to verify this property for the Grail code emitted by the compiler1.

3 Format and interpretation of assertions

For the purpose of the following three sections, derived assertions are defined over the types

T ∈ T ::= 1 | I | L(n)

which represent, respectively, the unit (void) type, the integer type, and the type of lists where each occurrence of the
Cons constructor is equipped withn∈ N additional free heap cells and theNil constructor does not consume space.
Assertions take the form

JU,n,Γ I T,mK

with the following components:

1 In addition to the code mentioned, our compiler also emits code for creating the initial freelist. At the top-level, an appropriate
soundness criterion would thus claim that the execution of the whole program (wrapper code and application code) does not
consume more memory than claimed by the annotations. While we have indeed verified such statements formally, our discussion
concentrates on the correctness of inner functions, using the interpretation where an initial freelist is assumed to exist.

4

n,m∈ N represent the numerical results from the analysis which relate the initial and final length of the freelist. While
Camelot’s resource inference permits rational weights, our formalisation is restricted to naturals.

Γ (a partial map from program variables to types) represents the typing context in which an expression may be typed.
U (a finite set of program variables) is used to restrict the variables to which a statement may refer.
T indicates the return type.

The proof rules (given in the following section) are defined such that the verification of a program infers the setU
during the verification condition generation. In effect, the restricted contextΓ�U amounts to the minimal context in
with an expressionemay be typed.

The semantic definition of an assertionJU,n,Γ I T,mK yields a VDM assertion in the base logic, i.e. a boolean
function over the semantic components environment, pre-heap, post-heap and return value. We first define some aux-
iliary predicates. For each typeT, we define a representation predicate which associates to each valuev of type T
the heap regionR inhabited byv in a heaph, and the numbern of free heap cells associated with it. For the above
collection of types these predicatesv,h |=T R,n are defined as follows:

LIST(n, r,R,h)
r,h |=L(k) R,k∗n

REGL
i,h |=I /0,0

REGI
v,h |=1 /0,0

REGU

Here, the list predicateLIST(n, r,R,h) is satisfied if referencer in heaph points to a (cycle-free) linked list of length
n, whose cells inhabit exactly locationsR. The definition directly reflects the layout of data values implemented by the
Camelot compiler, and resembles the predicates used in [19].

Next, we define a predicateΓ,U |=E
h n,R that indicates the amountn of free heap associated to the variables inΓ�U

and the heap regionR inhabited by the corresponding data structures. The predicate is defined by induction onU :

Γ, /0 |=E
h 0, /0

SIZE1
x∈U E〈x〉,h |=Γ(x) R1,n Γ,U \{x} |=E

h m,R2 R1∩R2 = /0
Γ,U |=E

h n+m,R1∪R2
SIZE2

and incorporates a separation condition between different data structures.
The interpretation of an assertionJU,n,Γ I T,mK is now defined by

JU,n,Γ I T,mK≡ λ E h h′ v. ∀ q F R. (∃ N K. freelist(h,F,N) ∧ Γ,U |=E
h K,R∧R∩F = /0∧ n+K +q≤ N)

−→ (∃ R′ S M G. v,h′ |=T R′,S ∧ freelist(h′,G,M) ∧ R′∩G = /0 ∧
modified(F ∪R,h,h′) ∧ (R′∪G)⊆ (R∪F) ∧
m+S+q≤M ∧ dom(h) = dom(h′))

and asserts that, whenever

– the initial heap contains a freelist of lengthN, inhabiting regionF ,
– the regionR inhabited by the data structuresΓ�U is disjoint from the freelist regionF , and
– the lengthN of the freelist is at least the amountK of heap owned byΓ�U , plus the additionally required sizen

and some constantq,

then there exist numbersM andS, and regionsR′ andG such that

– the resultv (according to the typeT) inhabits regionR′ (in the final heap) and is of sizeS,
– the final heap contains a freelist of lengthM inhabiting regionG,
– the result and the final freelist do not overlap,
– bothG andR′ are contained in the initial freelist regionF , extended by the regions pointed to (in the initial heap)

by the variables inΓ�U ,
– locations that are neither part of the freelist nor used by variables fromΓ�U remain unchanged,
– the freelist grows (or shrinks) as predicted by the analysis of [9], i.e. the final lengthM is at least the size of the

result, plus the analysis numbermand the offsetq, and
– no new objects are allocated.

The first auxiliary predicate,freelist, is defined by

freelist(h,F,N) ≡ FL(N,h〈D.FLIST〉,F,h)

and expresses that in heaph, the static fieldD.FLIST points to a list of lengthN inhabiting locationsF , where
FL(, , ,) is defined analogously to the predicateLIST(, , ,). The second auxiliary predicate is defined by

modified(X,h,h′)≡ ∀l ∈ dom(h)\X. h(l) = h′(l).

5

4 Proof rules

The design of the proof rules was guided by the aim to minimise the complexity of verification conditions that arise
from side conditions, and to mirror the high-level typing rules. Indeed, the granularity of the proof rules matches that of
the typing system: match statements and constructor applications are verified as single entities, i.e. only the soundness
proof of the rules inspects the constituent instructions of the corresponding methods. In order to statically approximate
the condition of benign sharing, we adopt a largely (affine) linear context management, which in combination with the
separation condition in the predicateΓ,U |=E

h n,R results in a rather strict typing discipline. While this clearly leaves
room for future improvement (see Section 7), the system as given suffices for verifying a significant class of example
programs. The rules come in three groups.

Syntax-directed rulesWe first present the rules for the various syntactic constructs of Grail. There are no proof rules
for object creation and (virtual or static) field access instructions, since these operations are only performed inside the
memory management methods.

m≤ n
GBnull : J /0,n,Γ I L(k),mK

NULL
m≤ n

GBint i : J /0,n,Γ I I ,mK
INT

m≤ n
GBvar x : J{x},n,Γ I Γ(x),mK

VAR
{x,y} ⊆ dom(Γ) m≤ n

GBprim op x y: J{x,y},n,Γ I I ,mK
PRIM

GBe1 : JU1,n,Γ I 1,mK GBe2 : JU2,m,Γ I T,kK U1∩U2 = /0
GBe1 ; e2 : JU1∪U2,n,Γ I T,kK

COMP

GBe1 : JU1,n,Γ I L(k), lK GBe2 : JU2, l ,Γ,x : L(k) I T,mK U1∩ (U2 \{x}) = /0
GBlet x=e1 in e2 : JU1∪ (U2 \{x}),n,Γ I T,mK

LET

GBe1 : JU1,n,Γ I T,mK GBe2 : JU2,n,Γ I T,mK
GBif b then e1 else e2 : JU1∪U2,n,Γ I T,mK

IF

(G∪{call f ,JU,n,Γ I T,mK)B (funtable f) : JU,n,Γ I T,mK
GBcall f : JU,n,Γ I T,mK

CALL

(G∪{(c.M(ā),JU,n,Γ I T,mK)})B
(methtable c M) : (λ E h h′ v. ∀E′.E = framenull (params c M) ā E′ −→ JU,n,Γ I T,mK E′ h h′ v)

GBc.M(ā) : JU,n,Γ I T,mK
INVS

In the last two rules the VDM context in the hypothesis is extended by entries which allow the verification of
the (function or method) bodies to use the recursive assumption. The construction ofE in rule INVS corresponds to
the creation of a new frame. This treatment of recursive invocations is directly lifted from our base logic and follows
previous work on formalised program logics with procedures [8, 18].

Rules for freelist managementWe have rules for non-destructive and destructive match operations, and for constructor
Cons.

Γ(x) = L(k) h 6= t x /∈ {h}∪ (U \{t}) GBe : JU,n+k,Γ,h : I , t : L(k) I T,mK
GBlet h=x.HD in let t =x.TL in e : J(U \{h, t})∪{x},n,Γ I T,mK

MATCH

Γ(x) = L(k) GBe : JU,n+k+1,Γ,h : I , t : L(k) I T,mK x /∈U ∪{h, t}
GBlet h=x.HD in let t =x.TL in D.free(x) ; e : J(U \{h, t})∪{x},n,Γ I T,mK

DMATCH

Γ(y) = L(k) Γ(x) = I
GBD.make(1,x,y) : J{x,y},m+k+1,Γ I L(k),mK

CONS

Treating the freelist management operations atomically reflects the fact that their implementation should be shielded
from the program verification. Indeed, the states at intermediate program points of these composite statements do not
satisfy formulae of the restricted form – they contain dangling pointers and incompletely built data structures.

6

Logical rules Finally, we give three structural rules.

GBe : JU,n,Γ I T,mK n≤ n′ m′ ≤m U⊆V
GBe : JV,n′,Γ I T,m′K

GENERALISE

GBe : JU,n,Γ I T,mK
GBe : JU,n+k,Γ I T,m+kK

SHIFT
GBe : JU,n,Γ I T,mK ∀ x∈U. ∆(x) = Γ(x)

GBe : JU,n,∆ I T,mK
CONTEXT

5 Example: verification of Insertion sort

For the Camelot code given in Section 2.3, our compiler emits Grail code which extends the earlier method table to

methtable≡

 . . .
InsSort.ins(a,l) 7→ call fIns

InsSort.sort(l) 7→ call fSort


with function definitions

fun fIns(a,l) = let b=prim isNull l l in if b then call f0 Ins else call f1 Ins

fun f0 Ins(a) = let l=null in D.make(1,a,l)
fun f1 Ins(a,l) =let v3=l.HD in let v2=l.TL in D.free(l) ;

let b=prim lessa v3 in if b then call f2 Ins else call f3 Ins

fun f2 Ins(a,v2,v3) = let l=D.make(1,v3,v2) in D.make(1,a,l)
fun f3 Ins(a,v2,v3) = let l= InsSort.ins(a,v2) in D.make(1,v3,l)
fun fSort(l) = let b=prim isNull l l in if l then call f0 Sort else call f1 Sort

fun f0 Sort() = null

fun f1 Sort(l) =let v3=l.HD in let v2=l.TL in D.free(l) ;
let l= InsSort.sort(v2) in InsSort.ins(v3,l)

The outcome of the compile time type analysis (see Section 2.3) amounts to assertions

Ins Spec≡ J{a, l},1, [a : I , l : L(0)] I L(0),0K
Sort Spec≡ J{l},0, [l : L(0)] I L(0),0K

when formalised from the perspective of the method body: the variable names are the formal method parameters. In
order to satisfy the requirements of rule VADAPTS, we collect these assertions in a method specification table

MST≡ λ M b̄ E h h′ v. if M = Ins then InsSpec(framenull ((paramsInsSort ins)@[self]) b̄ E) h h′ v else
if M = Sort then SortSpec(framenull ((paramsInsSort sort)@[self]) b̄ E) h h′ v else
False,

but we can immediately prove that the entries are in fact of the restricted assertion form:

Lemma 1. For any x and y, we have

MST ins[x,y,null] = J{x,y},1, [x : I ,y : L(0)] I L(0),0K
MST sort[y,null] = J{y},0, [y : L(0)] I L(0),0K

Next, we construct a VDM context containing all syntactically occurring method invocations:

GInsSort≡
{

(InsSort.ins(a,v2),MSTins [a,v2,null]), (InsSort.ins(v3,l),MSTins [v3,l,null]),
(InsSort.sort(v2),MSTsort [v2,null])

}
Each invocation is related to the corresponding entry in the method specification table.

Then, we show that each method body satisfies its specification:

Lemma 2. We have GInsSortBmethtableInsSort ins : Ins Spec and GInsSortBmethtableInsSort sort : Sort Spec.

7

In both cases the fully automated verification proceeds by unfolding the definitions of the method body and the
specification, applying rule GENERALISE and then the syntax-directed rules and the memory management rules until
invocations of application methods are hit. Such invocations are verified by applying a specialisation of the general
axiom rule VAX weakened according to rule SHIFT and CONTEXT and exploiting Lemma 1.

From Lemma 2 and rule VADAPTS (again see Appendix A or [2]) we finally obtain, again automatically, the
correctness of invocations ofinsandsort for arbitrary method arguments, in the empty VDM context:

Theorem 1. We have/0B InsSort.ins(x,y) : MST ins[x,y,null] and /0B InsSort.sort(x) : MST sort[x,null].

6 Improved treatment of merge points

While all Grail functions in the previous example have a single call point, a function may in general be called from
more than one place. Indeed, the Camelot compiler avoids code duplication when compiling conditionals with non-
trivial branch conditions by introducing merge points. As an example, the compilation of thesiftdownfunction

let siftdown w t1 t2 =
match t1 with Leaf -> Node(w,Leaf,Leaf)

| Node(v,t11,t12)@_ ->
begin

match t2 with
Leaf -> if w < v then Node(w, Node(v,Leaf,Leaf), Leaf)

else Node(v, Node(w,Leaf,Leaf), Leaf)
| Node(u, t21,t22)@_ ->

if w < u & w < v then
Node(w, Node(v,t11,t12), Node(u,t21,t22))

else if u < w & u < v then
Node(u, Node(v,t11,t12), siftdown w t21 t22)

else Node(v, siftdown w t11 t12, Node(u,t21,t22))
end

in an implementation of heapsort yields a call graph with merge points in the two conditionals where the branch
condition is a conjunction. Using the proof rules given in Section 4, each call to the first merge point function would
cause the corresponding function body to be unfolded once, and each verification of that body would involve three
verifications of the inner merge point function. In order to achieve a verification in which each function is verified only
once, one could add entries for such merge points in the VDM contextG – but then the program analysis would be
required to communicate analysis results for functions. An alternative uses the additional VDM rule

G∪{(call f ,Q)}Be : P provable(G∪{(call f ,Q)},G)
GBe : P

CUTCALL

Here the propertyprovable(D,G) holds ifG andD are finite and for alleandQ, (e,Q) ∈D impliesGBe : Q. This
rule follows immediately from the rule VCUT given in Appendix A, and allows the VDM context to be extended by
further entries. Applying this rule in the (immediate) dominator of a merge point forces all calls to the merge point
function to use the same specificationQ. In the case of the special assertionsJU,n,Γ I T,mK, we now apply rule

(call f ,JU,n,Γ�params(f) I T,mK) ∈G U ⊆ params(f)
GBcall f : JU,n,Γ I T,mK

CALL MP

when calling a merge point function, while other calls use a simplified call rule

GB funtable f : JU,n,Γ I T,mK
GBcall f : JU,n,Γ I T,mK

JUMP

that unfolds the body without inserting a recursive assumption to the context. Notice that both hypotheses of rule
CALL MP are side conditions. In effect, an application of this rule instantiates the unknown assertionQ from rule

8

CUTCALL to JU,n,Γ�params(f) I T,mK. The verification that thebodyof f satisfies this specification is performed
once, in the proof of the predicateprovable.

Using these rules we have indeed verified the implementation of heapsort alluded to above, visiting each function
exactly once. To that end, we extended the syntax of types to

T ∈ T ::= . . . | T(n) | R(n1,T,n2)

whereT(n) represents binary trees where each inner node consumesn heap cells andR(n1,T,n2) denotes an option
type with contents of typeint×T, with annotations for the two constructorsNone andSome. In addition, we introduced
the appropriate representation predicates and derived proof rules for constructor applications and (destructive and non-
destructive) pattern matches, similar to those given in Section 4. The proof of

/0BHpSort.sort(x) : J{x},0, [x : L(0)] I L(0),0K

uses a verification of thesiftdownmethod that visits each function body exactly once.

7 Conclusion

Because the MRG project aims to verify the consumption of a variety of resources, we have employed a general pur-
pose logic as the basis of our formalisation. Our work is thus best compared to other work on mechanical or at least
formal verification of pointer programs using variants of traditional (general purpose) Hoare logic. The first, though
flawed, automated verification of pointer programs is [21] (see also [14] and [13]), where a model of the store is
incorporated in the assertion logic. More recent is the verification of several algorithms, including list manipulating
programs and the Schorr-Waite graph-marking algorithm, by Bornat [6] using the Jape system. This approach em-
ploys a Hoare logic for a while-language with components that are semantically modelled as pointer-indexed arrays.
Separation conditions are expressed as predicates on (object) pointers.

Mehta and Nipkow [16] employ the same semantic model of the heap for reasoning about pointer programs in
higher-order logics; the way in which datatypes are represented on the heap is very similar to ours. This effort extends
earlier work by Nipkow et al. [18] on formalised proofs in HOL of soundness and (relative) completeness properties
of program logics with respect to operational semantics. Again, an interactive proof in ISAR of the Schorr-Waite
algorithm is given as an example. Tang [22] formalises the logic of Abadi and Leino [1] and implements a verification
condition generator which includes a type inference algorithm.

An alternative to the usage of general purpose logics are specialised ones such as Separation Logic [19]. Indeed,
the primitives of Separation Logic appear well suited to express the mutual separation of data structures, and their
separation from the freelist, more succinctly. On the other hand, the VDM-style of our logic allows us to relate pre-
and post states without the usage of auxiliary variables. Furthermore, properties such as the heap preservation in pred-
icatemodifiesare more intensional than is usually the case in (Hoare-style) Separation Logic. Non-trivial applications
of Separation Logic to date include Yang’s treatment of the Schorr-Waite algorithm [24], the partial correctness of
Cheney’s copying garbage collector [5] and the verification of graph algorithms with aliasing and internal sharing [7].

In this paper, we have described a logic for derived assertions that allows the results of [9]’s analysis to be verified in
Grail’s bytecode logic. We have presented the logic for some specific datatypes and future work will aim to extend the
development to algebraic datatypes in general. While the region calculation can be adapted relatively easily, the proofs
of the memory management rules (destructive and non-destructive matches, constructors) appear more problematic.
Another limitation of our system is the linear typing discipline, which we will aim to replace by more generous sharing
and separation systems by transferring high-level type systems such as Konečný’s [12] system for layered sharing and
Aspinall and Hofmann’s work on usage aspects [3] to the bytecode level.

Comparing the verification of the example programs with the verification of similar programs in the core bytecode
logic demonstrates the general benefit of a proof system of derived assertions, concerning both the proof complexity
and the potential for automation. Indeed, while verification in the bytecode logic appears to depend on the machinery
of a general purpose theorem prover and manual intervention, a logic of derived assertions may be implementable in a
stand alone prover with access to special solvers for arithmetic equalities and set containments.

AcknowledgementsThis research was supported by the MRG project (IST-2001-33149) which is funded by the EC
under the FET proactive initiative on Global Computing. We would like to thank all members of the MRG project for
the numerous discussions on program logics and proof generation.

9

References

1. M. Abadi and R. Leino. A logic of object-oriented programs. In M. Bidoit and M. Dauchet, editors,TAPSOFT ’97: Theory
and Practice of Software Development, 7th International Joint Conference CAAP/FASE, Lille, France, volume 1214, pages
682–696. Springer-Verlag, New York, N.Y., 1997.

2. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic for resource verification. In
Proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics (TPHOLs2004), 2004. To
appear.

3. D. Aspinall and M. Hofmann. Another type system for in-place update. InProccedings of the European Symposium On
Programming. Springer LNCS, 2002.

4. L. Beringer, K. MacKenzie, and I. Stark. Grail: a Functional Form for Imperative Mobile Code.Electronic Notes in Theoretical
Computer Science, 85(1), 2003.

5. L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying garbage collector. InProceedings of the 31st
ACM Symposium on Principles of Programming Languages (POPL’04), 2004.

6. R. Bornat. Proving Pointer Programs in Hoare Logic. InMathematics of Program Construction, pages 102–126, 2000.
7. R. Bornat, C. Calcagno, and P. W. O’Hearn. Local reasoning, separation and aliasing. InProceedings of SPACE 2004, 2004.
8. M. Hofmann. Semantik und Verifikation. Lecture Notes, WS 97/98 1998. TU Darmstadt.
9. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs. InProceedings of the 30th

ACM Symposium on Principles of Programming Languages, 2003.
10. C. Jones.Systematic Software Development Using VDM. Prentice Hall, 1990.
11. T. Kleymann.Hoare Logic and VDM: Machine-Checked Soundness and Completeness Proofs. PhD thesis, LFCS, University

of Edinburgh, 1999.
12. M. Koněcný. Functional in-place update with datatype sharing. InProceedings of the 6th International Conference on Typed

Lambda Calculi and Applications. Springer LNCS, 2003.
13. K. R. M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technology, 1995. Available as

Technical Report Caltech-CS-TR-95-03.
14. D. C. Luckham and N. Suzuki. Verification of array, record, and pointer operations in Pascal.ACM Transactions on Program-

ming Languages and Systems, 1(2):226–244, Oct. 1979.
15. K. MacKenzie and N. Wolverson. Camelot and Grail: Resource-aware Functional Programming for the JVM. In S. Gilmore,

editor,Proceedings of the Fourth Symposium on Trends in Functional Programming, 2003.
16. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In F. Baader, editor,Automated Deduction —

CADE-19, volume 2741 ofLecture Notes in Computer Science, pages 121–135. Springer, 2003.
17. G. C. Necula. Proof-carrying code. InProceedings of the 24th ACM Symposium on Principles of Programming Languages,

pages 106–119. ACM Press, 1997.
18. T. Nipkow. Hoare Logics for Recursive Procedures and Unbounded Nondeterminism. InComputer Science Logic (CSL 2002),

LNCS 2471, pages 103–119, 2002.
19. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. InLICS’02 — Symposium on Logic in Computer

Science, Copenhagen, Denmark, July 22–25, 2002.
20. D. Sannella and M. Hofmann. Mobile Resource Guarantees. EU Project IST-2001-33149, 2002–2004.

http://groups/inf.ed.ac.uk/mrg/.
21. N. Suzuki.Automatic verification of programs with complex data structures. PhD thesis, Stanford University, 1976.
22. F. Tang. Towards feasible, machine assisted verification of object-oriented programs. PhD thesis, School of Informatics,

University of Edinburgh, 2002.
23. N. Wolverson and K. MacKenzie. O’Camelot: Adding Objects to a Resource Aware Functional Language. In S. Gilmore,

editor,Proceedings of the Fourth Symposium on Trends in Functional Programming, 2003.
24. H. Yang. Local reasoning for stateful programs. PhD thesis, Department of Computer Science, University of Illinois at

Urbana-Champaign, 2001.

10

A Proof rules of the core program logic

We summarise the proof rules of the program logic presented in [2]. Judgements there contain a further component
for reasoning about other resources. This has been deleted here for purposes of readability. Furthermore, we have
simplified the rule VADAPTS and omitted the rules for virtual method invocation.

(e,P) ∈ Γ
ΓBe : P

VAX
ΓBe : P ∀E hh′ v. PE hh′ v−→QE hh′ v

ΓBe : Q
VCONSEQ

ΓBnull : λE hh′ v.h′ = h∧ v = null
VNULL

ΓBint i : λE hh′ v.h′ = h∧ v = i
V INT

ΓBvar x : λE hh′ v.h′ = h∧ v = E〈x〉
VVAR

ΓBprim op x y: λE hh′ v.v = op E〈x〉 E〈y〉 ∧ h′ = h
VPRIM

ΓBx.t : λE hh′ v.∃l.E〈x〉= Ref l∧ h′ = h ∧ v = h′(l).t
VGETF

ΓBx.t:=y : λE hh′ v.∃l.E〈x〉= Ref l∧ h′ = h[l.t 7→ E〈y〉] ∧ v =⊥
VPUTF

ΓBc� t : λE hh′ v.h′ = h ∧ v = h(c).t
VGETST

ΓBc� t:=y : λE hh′ v.h′ = h[c.t 7→ E〈y〉] ∧ v =⊥
VPUTST

ΓBnew c [t1 := x1, . . . , tn := xn] : λE hh′ v.∃l .freshloc(l,h) ∧ v = Ref l ∧ h′ = h[l 7→ (c,{ti := E〈xi〉})]
VNEW

ΓBe1 : P1 ΓBe2 : P2

ΓBif x then e1 else e2 : λE hh′ v. (E〈x〉= true−→ P1E hh′ v) ∧
(E〈x〉= false−→ P2E hh′ v) ∧
(E〈x〉= true ∨ E〈x〉= false)

V IF

ΓBe1 : P1 ΓBe2 : P2

ΓBlet x=e1 in e2 : λE hh′ v.∃ h1 w.(P1E hh1w) ∧ w 6=⊥ ∧ (P2 (E〈x := w〉)h1h′ v)
VLET

ΓBe1 : P1 ΓBe2 : P2

ΓBe1 ; e2 : λE hh′ v.∃ h1.P1E hh1⊥ ∧ P2E h1h′ v
VCOMP

Γ∪{(call f ,P)}B funtable f : λE hh′ v.PE hh′ v

ΓBcall f : P
VCALL

Γ∪{(c.m(a),P)}Bmethtable c m: λE hh′ v.∀ E′. E = framenull (params c m) a E′ −→ PE′hh′ v
ΓBc.m(a) : P

V INV S

finite(D) DBe : P G⊆ D provable(D,G)
GBe : P

VCUT

goodContext MST G finite(G) (c.m(y),MST m(y@[null])) ∈G
/0Bc.m(z) : MST m(z@[null])

VADAPTS

ThegoodContextproperty requires that whenever a method invocation is associated to its specification table entry
in G, the method body satisfies the specification for any arguments passed to the body via the formal parameters. See
the slightly more general definition in [2].

11

