
Analysing Performance of LiftSystems in PEPAAmani El-Rayes and Marta Kwiatkowska and Steven Minton�AbstractWe use the stochastic process algebra PEPA [8] to specify lift sys-tems and analyse their performance. We focus on the mean passengerwaiting time versus the speed of the lift (given by the slowest ratesuch as the closing of the doors) and the rate of passengers arrivals.The results are obtained by compiling the speci�cation in the PEPAworkbench, and then solving the resulting equilibrium state equationin Matlab. The outcome of the PEPA analysis is compared with tra-ditional engineering methods for lift tra�c analysis known from theliterature [2]. We �nd that PEPA has potential for �ner grain analysisthan existing methods. Finally, we briey discuss our experience withthe PEPA workbench.1 IntroductionPerformance modelling is concerned with the capture of the dynamic be-haviour of computer and communication systems, and with their subsequentanalysis. Traditionally, analytical and numerical techniques such as Markovchain analysis are applied, as in e.g. queuing theory, but they su�er fromthe following problems: for complex systems the models become large andunwieldy, and the structure of the solution rarely corresponds to the often hi-erarchical structure of the system. A relatively recent proposal is to combineprocess algebras, i.e. speci�cation languages such as CCS [12] which allowcompositional design, with stochastic modelling, usually in terms of Markovprocesses. This is typically achieved by augmenting the process algebra no-tation, where actions are assumed to be instantaneous, with timing infor-mation, usually an exponentially distributed random variable. As examples�School of Computer Science, University of Birmingham, Edgbaston, Birmingham B152TT, UK. Email: fahe,mzk,smmg@cs.bham.ac.uk



of thus obtained stochastic process algebras we mention PEPA (PerformanceEvaluation Process Algebra) [8], TIPP [7] and EMPA [3].We use PEPA, and more speci�cally the PEPA workbench [4], to modeland analyse a variety of lift systems. Although the PEPA tool is still inearly stages of development and rather rudimentary, it has already beensuccessfully applied to industrial problems, e.g. the robot control system[5, 10]. However, all the models encountered by us were linear in structure,as is often the case with production lines. Our aim is to evaluate PEPA fromthe point of view of modelling and analysing a highly concurrent and non-deterministic system. We choose lift systems as an object of our attentionfor the following reasons:� they range from simple to quite complex multi-lift systems, with a highdegree of parallelism and non-determinism present (e.g, if we considera lift serving n oors then at any one time it may receive n calls fromthe oors and a number of requests to go to one of the n oors)� their performance, e.g. mean waiting time, is sensitive to the timing in-formation, type of distribution, as well as the actual control algorithm,yielding a non-trivial domain for a stochastic analysis� established tra�c analysis methododology exists for lift systems, seee.g. [2], thus making comparisons possible.As we mentioned before, the PEPA workbench is still under development,and, in particular, handling models with large number of states in the toolis rather tedious. To cater for this, we shall aim for our speci�cations to bescalable, that is, speci�ed and analysed for a small number of oors, whichcan then be transformed in a straightforward manner (when feasible for theworkbench) to a full-scale model, and also as accurate as possible. Whenanalysing performance we focus on the mean waiting time characteristics,but other performance measures can also be considered.Some techniques have been presented for model simpli�cation and statespace aggregation to make it easier to tackle large problems; these methodstypically require generation of the original state space before they can beapplied. We reject those in favour of detailed description as we believe thatsimpli�cations lead to approximate characteristics, which conicts with oneof our goals. Techniques also have been proposed that operate at the level ofthe PEPA model, thus avoiding the generation of the original state space, seee.g. [9]. Whilst undoubtedly useful, these methods as they currently standare unlikely to have a major bearing the main arguments put forward in thispaper.



The outcome of our evaluation should provide useful feedback for futuredevelopment of the PEPA tool.2 The PEPA language and workbenchIn this section we overview the PEPA language [8] and the workbench [5].In performance modelling, an appropriate representation of a system isused to capture the essential characteristics of that system, so that its per-formance can be reproduced. Such models are usually based on stochasticmodels, from which performance measures can be easily obtained.PEPA is intended to maintain many of the characteristics of a processalgebra, whilst incorporating the necessary features to make it suitable forspecifying stochastic processes. In particular, the stochastic processes un-derlying PEPA models are continuous time Markov processes, which can besolved for a steady state probability distribution.2.1 Syntax and semantics of PEPAIn PEPA, a system is modelled as a set of components which perform actions,either individually or multiply. Each component will correspond to someelement of the system which can be considered in isolation, be it a physicalcomponent or a mode of behaviour. The actions correspond to the possibleactivities of that element.The actions themselves have associated with them a rate. This determineshow quickly that activity may occur, and distinguishes PEPA from otherprocess algebras where such actions are instantaneous. Each activity consistsof a pair, (�, r), of the activity name and its associated rate. The rate willbe either a parameter of an exponential distribution (so that if the rate is�, the expected time at which the action occurs is 1=� with the probabilityP (t0 < t) = 1 � e��t), or the distinguished symbol >, which can be readas unspeci�ed. In this latter case, the action is performed in communicationwith another component, and this component is passive, in that it may onlyperform the action when the other component does.The exclusive use of the exponential distribution is a necessary feature ofPEPA as it stands. In particular, specifying activities with constant duration,say t0, or complying with Poisson or other distributions is not possible atpresent. The restriction to exponential distributions is needed to guaranteethat the underlying stochastic process is a continuous time Markov process.Components and activities can be combined in a number of ways. Thefollowing constructions allow for components to be expressed in terms of



other components, and give PEPA its expressive power.The syntax for terms in PEPA is as follows:P ::= (�; r):P jP ��L QjP +QjP=LjXjAwhere (�; r):P denotes pre�x, P+Q choice, P ��L Q cooperation, P=L hiding,X variable and A def= P constant.The component (�; r):P commences by performing activity �, which takessome time �t drawn from the distribution, and then behaves as componentP . P + Q may perform as either P or Q, which is possible even if theybegin with the same activity. P ��L Q consists of the two components, Pand Q, proceeding independently, except that they cooperate over all actiontypes represented in the set L. In other words, each component can performany activities not found in the set L entirely independently. However, theymay only commence performing an activity from L (such activities are calledshared) when they are both in a position to do so. The component P=L actsas component P , except that activities whose type occurs in L are hidden,meaning that their type is not witnessed upon completion. Instead, theyappear as the unknown type � , and can be regarded as an internal delay bythe component. Constants A def= P are components whose meaning is given bya de�ning equation such as A def= P which gives the constant A the behaviourof the component P .For a PEPA model we can derive a derivation graph (a multigraph inwhich terms are nodes and arcs represent the transitions between them).The stochastic process underlying the PEPA model has as states the nodesof the graph, and the transition rate between states is the sum of the rateslabelling arcs between the corresponding nodes. Formally, the stochastic pro-cess X(t) determined by a PEPA model is the Markov process X(t) = Ci,meaning that the system behaves as the component Ci at time t. The in-�nitesimal generator matrix Q of the Markov process is formed by taking thetransition rate Q(Ci; Cj) as the o�-diagonal elements Qij, and the negativesum ��j 6=Qij as the diagonal elements Qii. Under certain conditions (i.e.if the Markov process is time-homogenous irreducible whose states are posi-tive recurrent, and also strongly connected and �nite-state) the equilibriumprobability distribution � can be computed by solving the equation � = Q0(subject to the normalising condition �i�(Ci) = 1).



2.2 Performance measures in PEPAIn order to derive a performance measure in PEPA reward structures areused. PEPA di�ers from the traditional Markov process modelling by beingaction based, as opposed to state based, and so rewards can be associatedwith activities. The performance measure is de�ned as the total reward Rbased on the steady state probability distribution � of the underlying Markovprocess, i.e. R = �i�i�(Ci).A typical state-based measure is utilisation; to calculate this associatea reward of 1 with the states in which a resource is used, and 0 otherwise,and then calculate the total reward. We often require action-based measures,i.e. those in which the rate of an activity must be taken into account. Anexample of such is the average rate of arrival, which is obtained by taking thearrival rate as the reward and multiplying it with the probability of being inone of the states from which the activity may occur. Combinations of state-and action-based measures, such as the mean waiting time, are also used.2.3 The PEPA workbenchThe PEPA workbench inputs the model (.pepa text �le) and after checkingfor syntax errors, it computes the transition rate matrix Q (.m �le). This �le,intended for use with a suitable mathematics package (in our case Matlab),can be used to solve the underlying Markov process for the steady stateprobability distribution � necessary for performance analysis. As PEPAis in an early stage of developemnt, no tools are provided for automatic orsemi-automatic calculation of desired performance measures directly from thesymbolic representation (i.e. directly from the PEPA model). Instead, suchcalculations are performed at the level of Matlab, which requires translationbetween the symbolic representation of states and the corresponding indicesin the transition rate matrix (two more �les, .table and .hash, are generatedto ease the translation process). Understandably, the handling of modelswith large numbers of states is rather tedious, although the workbench andthe Matlab package have been known to solve the steady state equation formodels of over 100,000 of states.3 A simple lift systemWe �rst illustrate our approach by analysing a simple lift system in PEPA.Consider a simple one-person lift operating between two oors, which isserved on each oor by a one-person queue. It must wait on a oor untilsomeone arrives from the associated queue, or until there is a call from a



person on the other oor. Then it must move to the other oor, and subse-quently behave as before. These two modes of behaviour correspond to thestates Lift0 and Lift1 when the lift is on the `ground' oor, and to statesLift2 and Lift3 when the lift is on the �rst oor.The two queues are independent, but communicate with the lift via theactivities ArrivalN , CallN and NoArrivalN where N = 0; 1. PEPA doesnot o�er parametrization, and so the oor index N has to be instead encodedin the process identi�er. When the lift �rst arrives at oor N , it can onlyaccept an arrival from the queue, or the message NoArrivalN . This is tomake sure that the lift does not wait on oor N if there is no-one waitingthere, in which case the lift is ready to accept a call from the other oor.Lift0 def= (Arrival0;>):Lift1 + (NoArrival0;>):Lift0aLift0a def= (Arrival0;>):Lift1 + (Call1;>):Lift1Lift1 def= (Up; r1):Lift2Lift2 def= (Arrival1;>):Lift3 + (NoArrival1;>):Lift2aLift2a def= (Arrival1;>):Lift3 + (Call0;>):Lift3Lift3 def= (Down; r2):Lift0Queue00 def= (OneOn0; r3):Queue01 + (NoArrival0; r4):Queue00Queue01 def= (Arrival0; r4):Queue00 + (Call0; r5):Queue01Queue10 def= (OneOn1; r6):Queue11 + (NoArrival1; r4):Queue10Queue11 def= (Arrival1; r7):Queue10 + (Call1; r8):Queue11(Queue00 ��; Queue10) ��S Lift0where S = (Arrival0; Arrival1; Call0; Call1)Suppose the lift is on the ground oor, and there is no new arrival onground oor. A possible scenario in this lift is: a person joins the �rst-oor queue (via OneOn1), calls the lift (Call1), the lift ascends (Up), thepassenger enters the lift (Arrival1), and the lift returns (Down).For the analysis, we concentrate on the mean waiting time for passengerson the ground oor. We use Little's Law, which states that the averagenumber of entities in a system is equal to the product of the average rate atwhich entities arrive and the average time an entity is resident in the system.Thus, we need to �nd the average number of people waiting, and the averagerate at which they arrive. The average number of people waiting is obtained



0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

1

2

3

4

5

6

7

Lift Time in SecondsArrival Rate

W
ai

tin
g 

T
im

e 
in

 S
ec

on
ds

Figure 1: Performance of a Simple Liftby associating a reward 1 (in general, the number of people waiting, but inthe simpli�ed model we assumed 1-person queues) with all states in whichan arrival activity (Arrival0) is enabled. The average rate at which peoplearrive is given by associating the rate of arrival with the arrival activity, andmultiplying it by the probability of being in one of the states from whicharrival can occur (i.e. the states corresponding to the queue being empty).This means associating a reward of r3 with the activity OneOn0.We summarise the results in a three-dimensional graph of average waitingtime against a measure of lift speed (the average time taken for the Up andDown actions, r1 and r2) and arrival rate (the values r3 for ground oorand r6 for �rst oor). Since the mean of an exponential distribution withparameter � is 1=�, the lift time is given by the reciprocal of the rate r1(= r2). The remaining rates are assumed to be insigni�cant (= 500). Theunderlying stochastic model has 24 states.This exhibits the kind of behaviour we might expect. For low lift times(in other words for a fast lift) the waiting time is low, even for high arrival



rates. On the other hand, if the lift is slow, the waiting time quickly buildsup as the arrival rate increases, resulting in a disproportionate `jump'.The PEPA workbench does not allow any execution traces of the model,and so it is possible for errors in the model to remain undetected for sometime. We further gain con�dence in our model by the following analysis.An arrival rate of one corresponds, on average, to one arrival every second.Consider this rate coupled with a lift time of four seconds. Now supposethe lift is on the ground oor. It departs for the �rst oor, and, one secondafter it leaves, there is an arrival on the ground oor. Three seconds later,the lift arrives at the �rst oor, and it will take a further four seconds toreturn to the ground oor. Thus, the arrival must wait seven seconds, whichis consistent with the graph. Notice that if we did not have the activityNoArrivalN then the waiting time could double, as demonstrated in thefollowing scenario. Suppose that there are arrivals at each oor before thelift arrives at the �rst oor. When the lift arrives, instead of, as expected,the person on the �rst oor getting in, the lift could respond to the call onthe ground oor, and immediately return there, thus forcing the passengerto wait longer.We are now in a position to exploit the compositionality of PEPA andquickly create an interesting variation on our lift, by extending the model toinclude more than one lift. We need only alter the last line:(Queue00 ��; Queue10) ��S (Lift0 ��; Lift0)where S = (Arrival0; Arrival1; Call0; Call1)The analysis yields the graph given in Figure 2. The underlying stochasticprocess has 144 states, as opposed to 24 for the previous model. We cansee that this system has similar characteristics to the previous one, but isapproximately twice as fast.We should point out that, in general, such a simplistic approach to theincrease in complexity would not work, as we must ensure that there is nopossible timing of arrivals and lifts that leads to a deadlock situation, which isnot always easily seen by considering a single component { in fact, `multiply-ing' components may result in the introduction of deadlock where deadlockwas not originally present. In the case of deadlock, the solution to the steadystate equation, if it can be approximated, yields probability 1 for the dead-locked state and 0 for remaining states. The workbench has no support forautomatic deadlock detection at present.The above description can now serve as a basis for a variety of perfor-mance and cost measures.



0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

0.5

1

1.5

2

2.5

3

3.5

Lift Time in SecondsArrival Rate

W
ai

tin
g 

T
im

e 
in

 S
ec

on
ds

Figure 2: Performance of a Simple Two-Lift System



4 Analysing more complex systemsOur next task is to add more features of a realistic lift system. To achievethis goal we have considered two directions: increasing the number of oorsand multi-person queues.The main problem which we will encounter is an exponential state explo-sion, which is already known from model checking [11]1. When componentswith a large number of states, acting fairly independently of the other com-ponents, are introduced, the number of states of the underlying process isincreased dramatically. For example, taking two entirely independent lift sys-tems, each identical to the two-lift system from the previous section (whichhas 144 states), yields 144�144 = 20736 states. Analysis of such a model, bymeans of the PEPA workbench as it stands, would then be time-consuming.Another issue that we have to deal with is the lack of parametrizationand modularity in the workbench at present, as well as restrictions in thesyntax.Due to the large number of states we separately considered two orthogonaldesigns: a many-oor system with up and down call buttons and a realisticcontrol element (we are in the process of analysing a two-lift system basedon this), and a simpli�ed lift with up buttons only, but many-person queues.In all cases, the trends observed were very similar to those described below.4.1 Multi-oor liftInitially, we aim to specify a three-oor system, which we can then scaleup by increasing the number of middle oors. This means that a modelwhere the interaction between the lift and the oors is made explicit is notacceptable. Thus, a naive extension of the simple two-lift system with anextra oor and lines like:Liftx def= (UpOne; r9):Lifty + (UpTwo; r10):Liftzwill not be feasible.What we require, instead, is some mechanism whereby the lift is passedup or down one oor at a time, but only stops at a oor when it needs to.We will need three elements: the control component (to determine where thelift should go from each stop), the lift (which we make oblivious to which1The state explosion problem has been researched widely in the model checking commu-nity, leading to approaches that make the handling of 1020 binary states feasible. Tools forstochastic process algebras have not reached comparable maturity, but one would expectthat some of the methods can be transferred from model checking to the SAPs.



oor it is on) and the oors. In addition, we shall need a `translator' isneeded to overcome the restriction of the workbench which limits the numberof cooperating processes to two. It acts as a go-between passing messagesbetween components.These restrictions make the system unnecessarily complex, as the major-ity of the detail in each component has to do with the communications withthe other elements, and it is not always possible to have these meet withintuition, due to the limitations of the language.The lift itself is as follows.Lift0 def= (OneIn;>):Lift4 + (Go; l0):Lift0Lift1 def= (LiftUp; l1):Lift2 + (LiftDown; l1):Lift3Lift2 def= (Stop; l2):Lift0 + (LiftHere; l3):Lift5Lift3 def= (Stop; l2):Lift0 + (LiftHere; l3):Lift6Lift4 def= (InOK; l6):(Go; l0):Lift1+(Call1; l4):(Go; l0):Lift1+(Call2; l4):(Go; l0):Lift1Lift5 def= (Up; l5):Lift7Lift6 def= (Down; l5):Lift7Lift7 def= (Fail; l2):Lift0 + (LiftUp; l1):Lift2 + (LiftDown; l1):Lift3The lift is in state 0 when it is sitting on a oor. It may either take onpassengers (OneIn), or it may be told to Go. If it takes on passengers (state4), they will place a call, and then the lift will be told to Go as before (InOKis needed to communicate with the oors). Once it has received this message,it is told which direction to head in via LiftUp and LiftDown. At the nextoor (state 2 or 3), it will either be told to Stop, in which case it returns tostate 0, or it will be acknowledged with a LiftHere communication. Thislatter possibility is for when the lift passes through a oor without stopping.In this case, it will tell the oor which direction it is heading in via Up andDown, and go to state 7. From here, the lift will be sent on its way viaLiftUp and LiftDown. It may also Fail if it is attempting to go up fromthe top oor, or down from the bottom oor, and will stop (this is includedas a safety catch).The algorithm for the control element is as follows. We require a lift whichwill always go upwards, picking people up and dropping them o� on the way,until there is no-one waiting on a oor above the lift, and no-one inside thelift wishes to get o� on a higher oor. Then it will change direction andalways go downwards, picking people up and dropping them o� as before,until there are no calls or passengers waiting below, and so on repeatedly.



ControlUp def= (Ready0;>):ControlU1+(Ready1;>):ControlU2+(Ready2;>):(F loorUp; c0):ControlDownControlDown def= (Ready0;>):(F loorDown; c0):ControlUp+(Ready1;>):ControlD0+(Ready2;>):ControlD1ControlU1 def= (CallOn1;>):(F loorUp; c0):ControlUp+(NoCallOn1;>):ControlU2ControlU2 def= (CallOn2;>):(F loorUp; c0):ControlUp+(NoCallOn2;>):(Failure; c2):ControlDownControlD1 def= (CallOn1;>):(F loorDown; c0):ControlDown+(NoCallOn1;>):ControlD0ControlD0 def= (CallOn0;>):(F loorDown; c0):ControlDown+(NoCallOn0;>):(Failure; c2):ControlUpThe states ControlUp and ControlDown correspond to the overall gen-eral heading of the lift. In other words, when the lift is `always going up-wards', the control element will be in state ControlUp. When the lift stopsat a oor, the control element receives a Ready communication from thatoor. It then looks through the states above or below the lift, depending onthe direction the lift is heading in, for a call. If it �nds one, it tells the oorto send the lift on. If it doesn't, it changes the overall lift direction.This is best demonstrated with an example. Suppose the lift is headingdownwards and has arrived at the ground oor. Then the control is in stateControlDown and receives a Ready0 communication, which puts it in stateControlDown2. From this state, it tells the oor to send the lift down(F loorDown), and changes direction by going to state ControlUp. It isobviously not possible for the lift to go down, and when we come to the oorcomponent we will see that it treats this message as a failure, and sends theReady0 message again. This time the control is in the ControlUp state. Itreceives the message, and goes into state ControlU1.Now suppose there is a call on oor 1. Then the control recieves theCallOn1 communication and goes into state ControlU2b, from where it tellsthe oor to send the lift up, and goes back to state ControlUp. Conversely,suppose there is no call on either oor 1 or oor 2. Then the control compo-nent goes viaNoCallOn1 andNoCallOn2 to state ControlU2c. From here itreports a Failure to the oor, and changes direction again, to ControlDown.Note that there is some redundancy here, since the Failure communicationachieves the same e�ect as the F loorDown message when it is sent to theground oor. This is a side-e�ect of the development process, and is needed



to ensure correctness.Each oor can be loosely divided into two sections. The �rst section,given below (for the ground oor), models the behaviour of the oor whenthe lift is not there.F loor00 def= (Arrival; f0):F loor01 + (Call0;>):F loor02+(Ex0;>):F loor03 + (NoCallOn0; f1):F loor00F loor01 def= (CallOn0; f1):F loor01 + (Call0;>):F loor01+(Ex0;>):F loor04F loor02 def= (CallOn0; f1):F loor01 + (Call0;>):F loor01+(Arrival; f0):F loor01 + (Ex0;>):F loor05F loor03 def= (Arrival; f0):F loor04 + (Call0;>):F loor05+(LiftHere;>):F loor08 + (NoCallOn0; f1):F loor03F loor04 def= (CallOn0; f1):F loor04 + (Call0;>):F loor04+(Stop;>):F loor07F loor05 def= (CallOn0; f1):F loor05 + (Call0;>):F loor05+(Arrival; f0):F loor04 + (Stop;>):F loor06This part of the oor component was designed after the following paradigm.The oor can have three things: it can have an arrival, it can receive a call(from someone inside a lift, to get out on that oor), and it can have anexpect lift token (indicating that the lift is about to arrive at the oor). Itmust also respond to queries from the control about whether or not it has acall (in this case, if it has an arrival it will respond a�rmatively).The rest of the oor description is concerned with the control of the liftas it passes through the oor, or stops at the oor and moves o� again.F loor06 def= (Ready0; f2):F loor09F loor07 def= (OneIn; f4):(InOK;>):F loor06F loor08 def= (Up;>):(ExOn1; f3):(Sent;>):(LiftUp;>):F loor00+(Down;>):(Fail;>):F loor06F loor09 def= (F loorUp;>):(ExOn1; f3):(Sent;>):(Go;>):(LiftUp;>):F loor00+(F loorDown;>):(Ready0; f2):F loor09+(Failure;>):F loor06



State 6 is for when the lift is stopping on the oor. It sends the Readycommunication to the control which we discussed earlier. State 7 lets arrivalsinto the lift and then behaves as state 6. State 8 is for a lift passing through.If it receives an Up message from the lift, it will pass the lift on via theExOn1, Sent and LiftUp messages. These respectively tell the next oor toexpect the lift, wait for acknowledgment of this message (lest the lift be senton before the next oor is expecting it, and trace of the lift is lost), and toactually send the lift on. If it receives a Down message, it fails and stops thelift (again, this should not be possible in practice). State 9, for the stoppedlift, receives instruction from the control element, and subsequently behavesin much the same way as state 8.For completeness, we include now the translation component, althoughits operation should be self-explanatory. We also give the cooperation setunderneath.T = (ExOn0;>):(Ex0; t0):(Sent; t1):T+(ExOn1;>):(Ex1; t0):(Sent; t1):T+(ExOn2;>):(Ex2; t0):(Sent; t1):T((((F loor06 ��; F loor10)��; F loor20)��P T )��Q Lift0) ��R ControlUpwhere P = (ExOn0; ExOn1; ExOn2; Ex0; Ex1; Ex2; Sent);Q = (OneIn;Go; LiftUp; LiftDown; Stop; LiftHere;Call0; Cal1; Call2; Up;Down; Fail);and R = (CallOn0; CallOn1; CallOn2; Ready0; Ready1; Ready2; Failure;NoCallOn0; NoCallOn1; NoCallOn2; F loorUp; F loorDown)This model, and the thought processes behind its design, has been de-scribed in detail, to try and demonstrate the inherent di�culty in describingsuch a lift in PEPA while maintaining correctness assurance.4.2 Analysing the multi-oor liftThe analysis of mean waiting time is performed similarly to the previousmodel, except that now the model has 658 states in the case of three oors.The results are given in Figure 3.We note �rst that this once more exhibits the trends we have seen through-out. We also note that this is somewhat faster than our previous attempt,which had 860 states and did not include the InOK communication. Thiswas quite unexpected, but can be explained as follows. Suppose, for exam-



0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

25

30

Lift Time in SecondsArrival Rate

W
ai

tin
g 

T
im

e 
in

 S
ec

on
ds

Figure 3: Performance of the Multi-Floor Lift



0
1

2
3

4

0

0.2

0.4

0.6

0.8

1
0

5

10

15

20

Door Time in SecondsArrivals per Second

W
ai

tin
g 

T
im

e 
(%

)

Figure 4: Graph of Engineer's Lift Analysisple, that the lift is on the �rst oor, heading up, and someone has just gotinto it. If the system is as lift 4, then the lift could be sent down, even ifthe person who just got in wanted to go up. This is because the lift can�nish communicating with the control before the call communication fromthe person inside is placed. On the other hand, if the system is as lift 5,then the lift will always go up in these circumstances, as the call from thepassenger will be placed before the control is consulted.4.3 Comparing with traditional engineering techniquesWe are now in a position to compare our results with those we would haveobtained using tradition engineering methods. In Figure 4, we have appliedan equation based method detailed in Barney [2] to a similar system to thelift above.We notice, �rstly, that the two methods produce models exhibiting re-markably similar trends (they are not likely to be numerically comparableas they model slightly di�erent types of lift). However, the engineering ap-



proach is certainly not as accurate for low arrival times and lift speeds. Itsuggests that the average waiting time can be zero in such cases, which isclearly not reasonable. It is likely that the PEPA approach is more numeri-cally accurate over all values of arival rate and lift speed, but this is hard toestablish in general in this case.5 ConclusionsOur experience with the PEPA workbench was largely positive, in the sensethat we did not encounter any aws and the results obtained were consistent,while at the same time more accurate, than those obtained by the tra�canalysis methods [2]. While the derivation of the model is a non-trivialtask, we found that once this has been obtained, introducing desired cost orperformance measures is straightforward, and so a variety of analyses can bedone on the model.We did, however, �nd a number of features di�cult in the tools as itstands. We list them for the bene�t of future developers of the tool.First, we found that high level of con�dence in the correctness of themodel was required. This is because there are no means for tracing execu-tion (whether `running' the model or unfolding the multi-graph), debugging,emphdeadlock detection, or (automatic or semi-automatic) veri�cation ofproperties. Some work on code generation [6] may o�er partial help in thiscase, but also the development of the necessary methodologies and tools,based e.g. on the recent work of [1], seems a worthwhile long-term goal.Two other issues that we would like to raise were the lack of parametricityand modularity. The former would have allowed us to specify a multi-oorlift by describing the ground and top oors, and then the middle oor couldbe indexed by the parameter i, where i could be instantiated to some value,say 5, before analysis. The latter could be used e.g. to replace a lift controlalgorithm with another one. Clearly de�ned interfaces are needed for thispurpose, and also equivalence / simulation testing to ensure that substitutioncan be made.The handling of models with a large number of states was also uncessarilytedious because de�ning performance measures directly at the level of PEPA,where attaching rewards to symbolic process names is possible, is not allowedat present. More work in this direction, as well as towards full exploitationof compositionality, is needed, although it is di�cult to imagine that one candispose of Matlab completely.



References[1] A. Aziz and K. Sanwal and V. Singhal and R. Brayton. Verifying ContinuousTime Markov Chains. In R. Alur and T. Henzinger, editors, Proceedings ofComputer Aided Veri�cation (CAV), volume 1102 of Lecture Notes in Com-puter Science. Springer Verlag, 1996.[2] G.C.Barney. Theoretical design aspects of lift tra�c, In G.C.Barney, editor,Elevator Technology, Ellis Horwood, 1986.[3] M.Bernardo, L.Donatiello and R.Gorrieri. Integrating performance and func-tional analysis of concurrent systems with EMPA, Technical Report, Depart-ment of Computer Science, University of Bologna, 1995.[4] S.Gilmore and J.Hillston. The PEPA Workbench: A tool to Support a Pro-cess Algebra-based Approach to Performance Modelling. In G.Haring andG.Kotsis, editors, volume 794 of LNCS, Springer-Verlag, 1994. Pages 353-368.[5] S.Gilmore, J.Hillston, D.R.W.Holton, and M.Rettelbach. Speci�cations ina Stochastic Process Algebra for a Robot Control Problem. InternationalJournal of Production Research, 1995.[6] S.Gilmore, J.Hillston, and D.R.W.Holton. From SPA models to programs. InProceedings of PAPM96, to appear.[7] N. Gotz, U. Herzog and M. Rettelbach. TIPP - a language for timed pro-cesses and performance evaluation. In U.Herzog and M.Rettelbach (editors).Proceedings of the 2nd workshop on performance modelling, Erlangen, Ger-many, 1994.[8] J. Hillston. A Compositional Approach to Performance Modelling. CambridgeUniversity Press, 1996.[9] J.Hillston and U.Mertsiotakis. A simple time scale decomposition techniquefor stochastic process algebras, The Computer Journal, vol.38, no.3, 1995.[10] D.R.W.Holton and J.P.N.Glover. An SPA Performance Model of a ProductionCell. Preprint, 1996.[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,1993.[12] R.Milner. Communication and concurrency, Prentice Hall, 1989.


