
Rapid Prototyping of

High-Performance Concurrent

Java Applications

K.J.R. Powell

Master of Science

School of Computer Science

School of Informatics

University of Edinburgh

2002

(Graduation date:December 2002)

Abstract

The design and implementation of concurrent applications is more challenging than

that of sequential applications. The aim of this project is to address this challenge by

producing an application which can generate skeleton Java systems from a high-level

PEPA modelling language description. By automating the process of translating the

design into a Java skeleton system, the result will maintain the performance and be-

havioural characteristics of the model, providing a sound framework for completing the

concurrent application. This method accelerates the process of initial implementation

whilst ensuring the system characterisics remain true to the high-level model.

i

Acknowledgements

Many thanks to my supervisor Stephen Gilmore for his excellent guidance and ideas.

I’d also like to express my gratitude to L.L. for his assistance above and beyond the

call of duty in the field of editing.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(K.J.R. Powell)

iii

Table of Contents

1 Introduction 1

1.1 Principal Goal . 1

1.2 PEPA and Java . 2

1.3 Project Objective . 2

2 Performance Evaluation Process Algebra 4

2.1 Overview of PEPA and its role in design 4

2.2 The Syntax of PEPA . 6

2.3 Existing Tools and Related Work . 8

2.3.1 Java PEPA Workbench . 8

2.3.2 Pepa2Ada . 8

3 Design 9

3.1 Overview and Design Decisions . 9

3.1.1 Concurrent and Distributed Systems: Practicalities of Initial

Implementation . 10

3.1.2 Inherent Limitations: Deterministic and Probabilistic Behaviour 10

3.1.3 Design Decision: PEPA Hiding 11

3.2 The PEPA2Java API . 12

3.2.1 Package independence . 12

3.2.2 Specified Objects and Methods 12

3.3 The Barebones and the Simulator Packages 13

3.3.1 Simulating the Race Condition 13

3.3.2 Concurrency Control . 14

iv

3.4 The PEPA2Java Translator . 14

3.4.1 Lexer and Parser . 15

3.4.2 The Translator’s Data Structures 15

3.4.3 Integration into the PEPA Workbench 16

3.5 Evaluation . 16

4 Prototype A: Specification & Implementation of a Flawed API 17

4.1 Overview . 17

4.2 First Steps: Proof of Concept . 18

4.2.1 A Simple Client-Proxy-Server System 18

4.2.2 Activities as Method Calls 19

4.3 Prototype A . 19

4.3.1 The Component and Activity Classes 20

4.3.2 The SynchSet Class . 23

4.3.3 The Rate Class . 23

4.3.4 The Ref Class . 23

4.3.5 The Simulator Class . 24

4.3.6 Model Implementations . 24

4.3.7 Translator . 25

4.4 Problems with Prototype A . 25

4.4.1 Synchronisation Sets . 26

4.4.2 Activities and Actions . 27

4.4.3 The Form of Components 27

4.4.4 The Method-Call Stack . 28

4.4.5 Conclusion . 28

5 Prototype B: Specification & Implementation of the PEPA2Java API 29

5.1 Overview . 29

5.2 The PEPA System . 29

5.3 Forcing Lock-step: The Waiter and Lock classes 30

5.4 Simulating Race Conditions . 31

5.5 Components and Scripts . 32

v

5.6 Actions . 33

5.7 Activities . 35

5.7.1 The SharedActiv class . 36

5.7.2 The IndivActiv class . 38

5.8 Synchronization Trees and the SSNode class 38

5.9 The choice Method . 41

5.9.1 Registering Interest . 43

5.9.2 Locking and Deciding . 43

5.10 Rates and Sleep-time . 45

5.10.1 Determining Rates of an Action 46

5.10.2 Determining Rates in choice 46

5.11 The Simulator Package Extensions 47

5.11.1 Debugging . 47

5.11.2 The SimWindow . 48

5.11.3 Simple Analysis . 50

6 Implementation of the Translator 52

6.1 Overview of the Translation Process 52

6.2 The Translator Grammar . 53

6.3 Lexing . 53

6.4 Parsing . 55

6.5 Analysis Algorithms . 56

6.5.1 SSNode . 56

6.5.2 Creating Components and Scripts 59

6.6 Form of the Output . 61

6.6.1 Generating Valid Class, Object and Package Names 63

6.7 Using the Translator . 64

6.7.1 Automatically Generated Makefiles 65

6.7.2 Running the Translator from the command line 65

6.7.3 Integration with the PEPA Workbench: The P2J Dialog Window 66

vi

7 Evaluation 69

7.1 Quantitative Comparison to the PEPA Workbench 69

7.2 Qualitative Evaluation . 73

7.3 Results of Model Tests . 74

7.4 Evaluation of Results and Suggestions for Improvement 75

7.4.1 Drawbacks to the “choice-pause” Mechanism 75

7.4.2 Drawbacks to Choice Committing 79

7.4.3 Fixing the choice method . 80

7.5 Suggestion for Extension . 81

7.5.1 Full Stated-based Analysis 81

7.5.2 Minor Improvements/ Extensions 82

7.6 Future Work . 84

8 Conclusion 85

A The Client-Proxy-Server PEPA Model 87

B Prototype A Example: the Client-Proxy-Server System 88

C Prototype B Example: the Client-Proxy-Server System 95

D Default Constants Defined in the Translator 102

E The Modified PC LAN 4 Model 104

F Model Evaluation Results 106

Bibliography 122

vii

List of Figures

1.1 A Process for the Rapid Prototyping of High-Performance Java Con-

current/ Distributed Applications . 3

5.1 The SSNode/ Activity class hierarchy 37

5.2 A Simple Synchronization Tree . 39

5.3 Synchronization Tree of (Client1||Client2||Client3)< serve > Server 42

5.4 The SimWindow: Running the Client-Proxy-Server model 48

5.5 The SimResults Window: Client-Proxy-Server model results 51

6.1 The Translation Process . 52

6.2 The Java PEPA Workbench’s PEPA Grammar 54

6.3 The data structure created from A < m > B < n > C 57

6.4 Action M’s Unpruned Synchronization Tree for A < m > B < n > C . 58

6.5 Action M’s Pruned Synchronization Tree for A < m > B < n > C . . . 59

6.6 CompScript generated from: A = (m,1.0).A+(n,2.0).A+(o,3.0).((x,0.5).A+

(y,0.5).A) . 62

6.7 The PEPA2Java Translator Dialog Window 67

viii

List of Tables

2.1 ASCII equivalents of PEPA constructs 7

7.1 Comparing the Workbench’s steady-state and simulation results . . . 73

7.2 Runs per Action as percentage of all Runs 76

ix

Chapter 1

Introduction

1.1 Principal Goal

The design and implementation of distributed and concurrent systems has proved prob-

lematical, as the interaction of multiple executing processes can lead to unexpected and

unwanted behaviour, such as deadlock, live-lock and starvation. Creation of these sys-

tems is a far more error-prone process than the creation of sequential systems. The

objective of this project is to develop a methodology and supporting tools that auto-

mate much of the process in order to remove some of the pitfalls associated with the

design of higher performance concurrent and distributed systems.

One common technique is to use modelling languages to aid the design process

as they allow a particular design to be tested and refined so as to deliver maximum

performance whilst eliminating dangers such as deadlock. However, because there

is usually no clear parallel between modelling language constructs and the facilities

provided by programming languages, there is the danger that the design of the system

may veer away from the design suggested by the model once actual implementation

of the system begins. As a result, the possibility of reintroducing unwanted behaviour

into the system arises.

Automating the process of the model’s translation to a ‘skeleton’ implementation

means the desirable performance and behavioural properties of the model are main-

tained. This working skeleton would provide a sound framework for completing the

1

Chapter 1. Introduction 2

implementation of the system whilst ensuring the system characterisics remain true to

the high-level model.

1.2 PEPA and Java

Performance Evaluation Process Algebra (PEPA) is a stochastic process algebra that

uses probabilistic branching to model a system. It includes timing attributes for all

system activities and uses race conditions to determine state transitions. This allows

PEPA to evaluate performance as well as testing for correct functional behaviour in

a model. It can model parallel composition and synchronisation behaviour. These

features mean it is well suited as a high level design aid for concurrent and distributed

systems.

Java is the target language because of its flexibility, its widespread adoption, its

mobility between platforms and its rich set of standard libraries. Additionally, it has

native support for multiple threading and remote method invocation. As an object

oriented language, it allows us to take advantage of inheritance, making it simpler to

run a PEPA model as a Java process whilst hiding all the underlying mechanics from

the user.

Should the techniques developed prove valuable, it would be possible to re-use the

methodology with similar PEPA-equivalent APIs for other programming languages.

The Translator’s output could then be modified to cater for these new APIs.

1.3 Project Objective

The aim of this project is to produce two things:

1. an Application Programming Interface (API) for running PEPA systems in Java,

and

2. a Translator which takes as input any PEPA model and produces a set of Java

classes that use the API to run with the same functional and performance char-

acteristics as the PEPA models they are based on.

Chapter 1. Introduction 3

1. Design the system in PEPA;

2. Evaluate and refine the resulting model with the PEPA Workbench;

3. Translate the model to its PEPA2Java equivalent using the PEPA2Java Transla-

tor;

4. Confirm the Java skeleton is behaving correctly by running it with the

PEPA2Java Simulator package enabled;

5. Flesh out the skeleton by implementing actual functionality in the Actions and

replacing the probabilistic branching with deterministic behaviour;

6. Use the Simulator package to ensure the system is still running as it should— if

it is not, return to stage 5 to fix the problem;

7. To complete implementation, switch from using the Simulator package to using

the Barebones package.

Figure 1.1: A Process for the Rapid Prototyping of High-Performance Java Concurrent/

Distributed Applications

The API should be flexible and easy to use, whilst providing a clear parallel to the

PEPA syntax so that manual modification, translation, and extension remain feasible.

Additionally, it should not impose an excessive burden in terms of running cost.

The Translator should be able to successfully translate any PEPA model into clear,

efficient Java code. As an added convenience it should be integrated into the Java

PEPA Workbench.

These tools could then be used in the process described in figure 1.1 to facilitate

an improved methodology for the design and implementation of concurrent and dis-

tributed systems.

Chapter 2

Performance Evaluation Process

Algebra

The following two sections are based heavily on material from Jane Hillston’s “A Com-

positional Approach to Performance Modelling” [Hillston, 1996]. It should give the

reader a brief overview of PEPA and why it is useful as a modelling language and

design tool.

The second part of the chapter is a brief overview of some of the existing PEPA

tools that are relevant to this project.

2.1 Overview of PEPA and its role in design

Process Algebras are valuable in system design because a language like PEPA offers

both qualitative (i.e. testing for deadlock) and quantitative (performance measurement)

output from the same system description. Additionally, the hierarchical composition

of PEPA models is familiar to system designers, whilst the Component and Activity

constructs are similar to the object and method constructs of object-oriented languages.

A stochastic representation of the system may be generated from the derivation

graph of the PEPA model. When activity rates are based on randomly-sampled expo-

nential distributions, this stochastic model is equivalent to a continuous time Markov

process, meaning the steady-state equilibrium (if one exists) can be found. In terms of

4

Chapter 2. Performance Evaluation Process Algebra 5

performance analysis, this corresponds to the system’s long-term “settled” behaviour,

showing all the states that it will visit— deadlock is detected if the system gets ’stuck’

in one state. Moreover, because we add timing in terms of rates, the mean residence

time in each of these states is also calculated, enabling the discovery of any potential

bottlenecks in the system.

A system is modelled in PEPA by splitting it into its component parts. The inter-

action of these components determines the behaviour of the system as a whole. The

components may be atomic or define the behaviour of larger collections of compo-

nents. Each component’s behaviour is defined by the activities in which it may par-

ticipate and how it determines which of those activities to execute. A compositional

approach allows the system to be analysed at varying granularities depending on the

degree to which components are broken into sub-components. The macro behaviour

of the system will remain the same. The components represent the state of the system,

and the activities represent the transitions.

Activities perform actions either individually or as part of a cooperating set. Each

activity has an associated rate. The rate at which an action is carried out is determined

by the rates of the participating activities. A rate may be specified as a sample from

an exponential distribution or left unspecified and denoted > (TOP). > means the

component is a passive participant in the Action. Passive participants rely on actively

partipating components to execute the action.

Exponentially-distributed rates give the process algebra its probabilistic behaviour,

making it suitable for performance modelling, and also allows activities to be memo-

ryless. This memoryless property means that the time to the next event is independent

from the time of the last event occurring. Therefore it can be used to model activities

which continue their execution each time they are resumed after interruption as well as

activities which restart their execution from scratch after each interruption.

Race conditions are used to determine the branching in the system— if multiple

activities participate in an action, the one to finish first determines what happens next.

All other activities are aborted. Similarly, if a component has a choice of activities, all

are started. The first activity to complete determines the component’s behaviour.

The random sampling means any activity may be the first to finish but the proba-

Chapter 2. Performance Evaluation Process Algebra 6

bility of an activity completing is given by the ratio of its rate over the sum of the rates

of all the activities participating in the action. In the long term, this probability will

determine the number of completed runs for each activity.

Unlike sequential systems, distributed and concurrent systems have multiple, si-

multaneously active, interacting processes. PEPA represents this cooperation of com-

ponents in its composition line, defining synchronisation sets which specify which

components must cooperate on which actions.

2.2 The Syntax of PEPA

The syntax of PEPA is given as:

P ::= (α,r).P | P +Q | P ��
L

Q | P/L | A

The ASCII equivalents (used in this paper) are given in table 2.1. The functionality

of the above constructs is given below.

Prefix: (α,r).P

Prefix is used to specify the behaviour of components. In the above example, the com-

ponent carries out activity (α,r) which participates in action α at rate r. The component

then behaves as component P .

Choice: P +Q

A choice in PEPA means that the system may behave as either P or Q . The current ac-

tivities of P and Q are both enabled and whichever activity completes first determines

whether the system will next behave as P ′ or Q ′.

Cooperation: P ��
L

Q

The cooperation set L determines the interaction between components P and Q . Specif-

ically the set is made up of all those actions on which P and Q must synchronise— the

Chapter 2. Performance Evaluation Process Algebra 7

Prefix (a, r).P

Choice P + Q

Hiding P / Q

Constant #A = P

Synchronisation P <L> Q

(P <> Q or P || Q for parallel composition)

Table 2.1: ASCII equivalents of PEPA constructs

actions require the simultaneous participation of both components. Shared actions are

made up of the activities of components P and Q which participate in the action.

Shared actions will complete at a rate determined by the slowest participant. Pas-

sive activities (i.e. those with rate >) may be required participants but do not affect the

action’s rate.

Activities present in components P and Q whose actions do not appear is set L are

termed individual activities and do not require synchronisation.

Parallel composition (where there is no cooperation between components) is de-

noted P ��
/0

Q or P ||Q . In this case, both components run concurrently and indepen-

dently.

Hiding: P/L

The component P/L behaves as P except that any activities in set L are hidden— they

participate in special action type τ, behaving as an individual activity. They are not

externally observable and may not synchronise with other components.

Constant: A def
= P

Constants are used to define the behaviour of components. In the example above, we

say that constant A is defined by the behaviour of component P. In this way, names are

assigned to components so they can be referred to more easily elsewhere: for example

in the system composition line or defining the behaviour that some other component

will take on at the end of a prefix construct.

Chapter 2. Performance Evaluation Process Algebra 8

2.3 Existing Tools and Related Work

2.3.1 Java PEPA Workbench

The PEPA Workbench [Gilmore and Hillston, 1994, Hunter, 1999] is a tool used for

the analysis of PEPA models. It can compute the underlying Markov process and the

transition matrix of a model.

As detailed in the previous section, the steady-state can be calculated, giving rel-

ative frequencies of the system states. This information is written to a text file which

can be analysed to discover the model’s behavioural and performance characteristics.

Additionally, the “walkabout” tool can be used to step through a model manually

to detect live-lock (i.e. when a model is stuck in a small loop, limited to a small subset

of all the states) or to discover where a model is deadlocking.

The Workbench also includes a “simulation” tool [Fotis, 2001] which allows a

model to be run as a SimJava simulation. Also provided is a facility allowing the

simulation results to be compared to the steady-state solution.

As it stands, the Workbench is a tool for evaluating and exploring a model. By

adding a translation function, it will enhance the tool’s capabilities as a design aid,

extending its use into the early implementation stages of a system.

2.3.2 Pepa2Ada

The Pepa2Ada translator [Gilmore et al., 1996] is a tool for producing PEPA-equivalent

Ada programs. Although the paper describing the process was very useful in provid-

ing pointers and the possible pitfalls, Java is a very different language from Ada and

so the approach taken was also different. For example, the problems that needed to

be addressed regarding internal choice [Gilmore and Hillston, 1996] were not of rele-

vance to this project. Also, using Java’s inheritance means most of the mechanics of

synchronisation and choosing can be hidden and should make it easier to extend an

automatically generated program.

Chapter 3

Design

3.1 Overview and Design Decisions

The project plan is made up of six stages, of which implementation was always going

to be the most time-consuming and challenging:

1. Orientation and Exploration– study related work, investigate the issues surround-

ing the project and identify possible designs.

2. Design– select and finalise a design then review it with the supervisor of the

project.

3. Implementation– bring the design to realisation.

4. Review and Refinement– scrutinise the implementation and make any necessary

adjustments and corrections.

5. Extension and Improvement– as far as time permits, take the project beyond its

original scope by considering possible additions and enhancements.

6. Documentation– write the project report and review/ complete the commenting

of the code.

In the event, difficulties and unforeseen obstacles relating to the implementation

resulted in this phase absorbing a disproportionately large amount of the time and

9

Chapter 3. Design 10

effort invested. The difficulties encountered are described in the next chapter. They

arose mainly from the challenge of creating efficient and correct equivalents of PEPA

constructs in Java.

Because this report has been produced at the end of the project, this design chapter

describes the whole process of ongoing design. The design ideas were as much affected

by the process of implementation and its changing needs as the implementation was

determined by the initial ideas and designs. There is no clear split between design and

implementation stages, so this chapter records some of the ideas (i.e. the concept of

Scripts) that developed only as implementation progressed.

The implementation has been carried out in Java and in line with object-oriented

design the different parts of the implementation were modularised as far as possible.

Three things have been produced: the API (section 3.2), the Barebones and Simulator

packages implementing the API (section 3.3) and the Translator (section 3.4).

3.1.1 Concurrent and Distributed Systems: Practicalities of Initial

Implementation

The original title of the project was “Rapid Prototyping of High-Performance Dis-

tributed Java Applications”. However, in order to focus on the core problem of en-

suring a close fit of PEPA2Java to PEPA, an early decision was made to build a con-

current implementation of the API. The difference between a concurrent system and

a distributed system is not large, especially if there is an API such as Java’s Remote

Method Invocation available. In essence, the main differences of a concurrent system

are the more efficient communication between components and the sharing of a com-

mon memory. To reflect the shift of emphasis, the project has been re-titled “Rapid

Prototyping of High-Performance Concurrent Java Applications”.

3.1.2 Inherent Limitations: Deterministic and Probabilistic Behaviour

One clear limitation of translating from a PEPA model to an actual implementation is

that of branching. In a model, the choice of which branch to execute is simplified. In

the case of PEPA, it is determined by a race condition of randomly sampled, exponen-

Chapter 3. Design 11

tially distributed rates. However, in an implemented system, branching is decided by

the system’s past choices— namely, it is deterministic.

For example, consider a system which is made up of a server and three clients. The

server serves one client at a time, participating in a shared action, such as sending the

client some requested data. In a PEPA system, which client is served at any one time

is determined randomly. However, in a real system, client’s requests will be triggered

by some other action, such as a user’s interactions.

The generated skeleton’s behaviour will be probabilistic, rather than deterministic.

This is not a problem as over the long term a client’s requests may be adequately

modelled by a random distribution. Therefore, performance measures will still be

useful as long as rates are carefully chosen. However, the skeleton will be useful

only as a starting point in implementation: one of the first things which will be done

in implementation is to replace the probabilistic choice branching with deterministic

branching.

In section 3.3.1 below, the determination of branching is discussed further.

3.1.3 Design Decision: PEPA Hiding

In consultation with the project supervisor, it was realised that whilst the Hiding con-

struct may be valuable for the process of abstract model design and evaluation, its

importance in an actual system implementation is not obvious.

Hiding is used to simplify complex models, so that some of the details of the un-

derlying complexity may be hidden. The process of top-down implementation works

in the opposite direction— adding the underlying complexity abstracted away in mod-

elling languages (for example, PEPA’s replacement of actions with delays and its use

of probabilistic branching).

As PEPA2Java is a tool for speeding implementation, there is no need to include

support for Hiding— the tool exists to aid in the process of adding the underlying

detail, not to remove it. Accordingly, there is no equivalent for Hiding constructs in

the API and the Translator will fail to translate any model including them.

Chapter 3. Design 12

3.2 The PEPA2Java API

3.2.1 Package independence

The heart of the project is the API for executing PEPA-equivalent commands in a Java

program, which provides a clear, straight-forward manner to do this.

One of the benefits of the API is that it is general and flexible enough to work

with different packages, each providing different functionality. For example, in the

next section the two packages implemented for this project are introduced. The API-

implementing packages can be used interchangeably to provide different functionality

for executing a PEPA model.

In the same vein, if would be possible to create a PEPA2Java package which imple-

ments Remote Method Invocation. Then, any translated model could be run as either

a simulation, a concurrent system or a distributed system. It should be possible to

re-use a great deal of the current code if this were attempted. The algorithms for syn-

chronisation and the form of the objects would remain the same, though some of the

synchronisation code would need to be modified to reduce the number of method calls

and sharing of data structures. There are more details on the actual API in the next two

chapters.

3.2.2 Specified Objects and Methods

The final API defines Component and Action objects. Inheritance is used to extend

these objects and make use of their methods to will provide PEPA-like functionality.

Components also contain nested classes called Scripts which define their behaviour.

Each Component is run as a separate Java Thread in the system, executing its scripts.

Each script returns a reference to the next script which should be run.

In addition, a Rate class and Activity class are defined. The Rate class provides

methods for accessing an exponentially distributed random number generator. The

Activity class provides methods for a Component to interface with global and individual

Actions (also defined as separated executing Threads).

Finally, a PepaSystem class is defined that creates the Components and their Scripts,

the Actions and their synchronisation sets, initialises all these objects and starts the

Chapter 3. Design 13

whole system running.

3.3 The Barebones and the Simulator Packages

These two packages are the concurrent system implementations of the PEPA2Java API.

Their functionality (and their code) is for the most part identical, except that the Sim-

ulator package includes (as the name suggests) the ability to display the state of the

system. This is useful for debugging purposes and discovering what is happening in

the system. In order to keep the two packages working identically they are generated

from the same source code, except that in the case of the Barebones package the de-

bugging statements are disabled and the Simulator window class is removed. They

therefore run identically but the Barebones package requires less overhead as there is

no Simulator window to update.

All fields and methods are protected where appropriate to prevent the models from

being able to disrupt the correct functioning of the underlying system.

3.3.1 Simulating the Race Condition

The race condition (see section 2.1) can be viewed as a form of speculative execution

of multiple branches. There are two forms of branching in PEPA. Choice constructs

are the obvious form. The more subtle form is the case where multiple Components

are all vying for the chance to cooperate on some shared Action where not all may

cooperate at the same time. An example of this is two clients trying to synchronise

with one server. A model of this seen will be seen in section 4.4.1.

Using race conditions means that in cases of branching, all branches are specula-

tively executed and the first one to finish is the winner. The winning branch then dic-

tates the ensuing behaviour of the Component, whilst all other executions are aborted.

Using speculative execution in the form of race condition is not an option when pro-

ducing skeletons that are to become full implementations (in which each Component

represents a single Thread of computation). Speculative branching would mean the

forking of execution and aborting of the actions pre-completion, which would make

the skeleton impossible to “flesh out”. Instead, simulating the race condition, as is

Chapter 3. Design 14

done in these implementations, allows some certainty:

• once committed to an Action, a Component will not do anything else until the

Action has completed;

• once started, an Action must complete;

• if a branch has been chosen, the other branches will definitely not be chosen, and

will therefore not be able to affect the system.

These certainties are not of value in evaluating a model but they are necessary for

creating a full implementation. Speculative execution would mean Actions might not

complete and this would lead to the system being left in an inconsistent state, were it

actually performing commands. Apart from this point, it would mean spawning a new

thread for each branch and then culling the losing branching, leading to very inefficient

runtime characteristics.

3.3.2 Concurrency Control

In accordance with tried-and-tested design patterns [Lea, 1997], concurrency control is

separated from the functionality through the creation of separate utility classes. This is

especially important where inheritance is used— the Component objects of the system

are extended and these extensions may use the object’s synchronising object monitor

lock. When using inherited methods, unexpected behaviour may arise when the dif-

ferent layers of code lock or wait on the object monitor whilst it is also being used

separately in another layer.

3.4 The PEPA2Java Translator

The API and its implementations handle running a PEPA-like model as a Java system,

but it is the job of the Translator to create the classes that make up the implementation

of a particular model. It is designed to be very easy to use and creates clear code which

may be compiled and run automatically (by creating “Makefiles”).

Chapter 3. Design 15

3.4.1 Lexer and Parser

The process of lexical analysis is one of pattern-matching input text to recognise spec-

ified tokens such as keywords and operators, and returning them to a tool such as a

parser for further processing.

A parser is a program or a component of a program that analyses the grammatical

structure of an input, with respect to a given formal grammar [Hidders, 2001]. It takes

its input from the lexical analyser and uses a specified grammar to break the PEPA

model into its constituent definitions and commands.

The lexer of the PEPA Workbench can be re-used as-is. However, as the Transla-

tor will need to create different types of objects than the Workbench (because of the

its different functionality), the parser needed to be modified . The PEPA Workbench

uses a Look-Ahead Left-Right (LALR) parser, generated by the YACC-like Java CUP

tool[Appel, 1998, Hudson, 1999]. This helpful utility enables quick generation of Java

LALR parsers. It was possible to reuse the PEPA Workbench’s CUP grammar speci-

fication, specifying new actions for each rule the parser comes across. CUP was then

used to generate a new parser suited to the project’s needs.

3.4.2 The Translator’s Data Structures

After parsing, the Translator has all the information from the model available to it.

However, this is not yet in the correct form for easy generation of a skeleton. There-

fore, the Translator first scans the various data structures it has built during parsing to

determine how many components there are, whether any of them are multiple instances

of the same type, how many actions there are, which ones are shared, which ones are

private, and the synchronisation sets. It collects this information and stores it in new

data structures of a “friendlier” form, making it more easily available to the processes

generating Java code.

On the whole, this approach needs more memory but not excessive amounts. Pro-

ducing a correct translation is of higher priority than minimising memory usage. In

any case, once the Translator exits on completion, the memory will be made available

by the garbage collector should it be needed for running a model.

Chapter 3. Design 16

3.4.3 Integration into the PEPA Workbench

Integration into the PEPA Workbench is straightforward— a matter of adding a menu

item, which opens a Translator dialogue window. From this window, options such as

translation type, debug level and simulation speed can be set. Buttons in the window

allow the model to be translated, compiled and run. The model translated is the one that

is currently being worked on in the Workbench. Keeping the Translator in a separate

package and using a separate “pop-up” window means that it will be easy to integrate

in different versions of the Workbench, or removed if necessary.

3.5 Evaluation

The evaluation has been carried out on the models produced by the Translator to see

whether they compile and run correctly, and also to see whether their performance is

the same as predicted by the Workbench.

Evaluation has been carried out on the numerous existing PEPA models already

distributed as part of the Workbench. Some additional models which test areas not

covered by the existing models were also created.

Though time has not allowed, it would be worthwhile attempting to take a simple

model of a practical application through the full process shown in figure 1.1. One such

example might be to take a very simple Client-Server model where the Server controls

a resource such as a printer, and turn it into a working Java system. This exercise could

highlight any problems with this idealised process of design and implementation.

Chapter 4

Prototype A: Specification &

Implementation of a Flawed API

4.1 Overview

The process of implementation is one of discovery, of hacked solutions and of re-

design. Designing the perfect system is impossible and this implementation is no ex-

ception. Various ideas were tried and evaluated. Some ideas survived right through to

the final version but most came and went. The most dramatic stage was when, after

Prototype A and its Translator were fully completed, it was discovered to have major

shortcomings. Almost all the code was scrapped and Prototype B was started.

As disheartening as starting from scratch was, the time and effort that went into

Prototype A (described in this chapter) was certainly not wasted. Prototype B is

much stronger for the process and eventually became the finalised PEPA2Java pack-

age. Chapter 5 describes the functionality of the completed version. However, it is also

worthwhile recounting the evolution of the implementations and the ideas that didn’t

work, as well as the ones that did.

17

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 18

4.2 First Steps: Proof of Concept

The first step to building the API and its implementation is to take a simple PEPA

example and build a working Java model of it. Through this process, ideas are tested.

A practical working system helps to give substance to the concepts and highlight those

areas where the ideas do not work.

4.2.1 A Simple Client-Proxy-Server System

The model chosen for the Proof of Concept is a simple system made up of three com-

ponents: a client that makes requests for information, a server that is the authoritative

provider of the requested information, and a proxy that serves the client but may also

need to query the server when it can’t fulfil a request itself. The ASCII-formatted

PEPA model is:

%a = 1.0;

%b = 2.0;

%c = 3.0;

#Client = (cReq, a).(cRep, T).Client;

#Proxy = (cReq, T).Proxy’;

#Proxy’ = (cRep, b).Proxy + (pReq, a).(pRep, T).(cRep,b).Proxy;

#Server = (pReq, T).(pRep, c).Server;

Client <cReq, cRep> Proxy <pReq, pRep> Server

This model provides a simple example which nevertheless contains all the PEPA con-

structs most important to the project.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 19

4.2.2 Activities as Method Calls

In the Proof of Concept version, method calls are used by the passive participant of an

activity to call a method of the actively participating Component. This works because

all shared Actions in the model contain one active and one passive participant. This

is also the case with most of the example PEPA models distributed with the PEPA

Workbench. Using method calls, each request has an implicit reply so the “request”

and “reply” Activities can be merged. Each passive participant needs a reference to the

active participant, so it can call, for example, Proxy.request(info).

There is only one thread of execution in such a system, which follows the method

calls through the system. For example, the client calls the proxy’s request method.

This request method either returns a reply straight to the client (i.e. if it can fulfil

the request), or calls the server’s request method (i.e. if the proxy can not fulfil the

request). This choice is determined by a randomly generated number. When the proxy

does need to call the server’s request method, the server will reply. Finally the proxy

passes back the reply to the client, completing one loop of the system.

The method call concept fits very nicely with traditional programming ideas but is

quite different from the way a PEPA model functions. In a PEPA model, each Compo-

nent is executing separately and shared activities are places in the system where mul-

tiple threads synchronise on a single action. This is also more akin to an actual client-

server relationship where both computers are executing independently. The server is

idle until a request comes in. It processes the incoming request, and then becomes

idle again. The original concept will work only for those PEPA models which follow

the passive-active activity cooperation scheme and where one thread of execution is

sufficient to capture all system behaviour. This is clearly unacceptable.

4.3 Prototype A

Given these rather severe limitations, a new concept sprung to mind. The new concept

allowed the system to behave much more like a genuine PEPA model and became

Prototype A.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 20

4.3.1 The Component and Activity Classes

Instead of having one thread of execution which moves between Components, each

Component object should be a separately executing Thread object. Each Thread

should loop through its Activities. Shared Activities, needing synchronisation, should

pause until all Component members of the synchronisation set are in the right state and

ready to cooperate on the Activity. A semaphore mechanism, which is decremented

each time a Component commits to the Activity, holds them and only lets the Activity

run when the counter hits zero. It continues holding the Components until the Activity

completes, then releases them to continue their separate executions.

Activities are a separate class from Components and Components receive refer-

ences to the Activities they participate in from a central Reference object. One of the

active participants in an Activity starts it when all participants are in the correct state.

Component.run and Component.loop

The run method of the Thread superclass will repeatedly call this.loop() as long as the

system is running. The loop method cycles through this Component’s instructions.

Components in this prototype equate not to the Components as defined in the com-

position line of the PEPA model but rather to the definition lines of Components in the

model. Furthermore, a separate Component class is created for each derivative. The

PEPA composition line is used to determine which Threads begin started and which

ones do not. Take, for example, the simple model:

#A = (a, r).A’;

#A’ = (b, s).A;

A

The translation of this model would yield two Component objects, A and A’. At the

beginning of the simulation A would be set running. The last instruction of its loop

method (after it had completed Activity (a,r)) would execute the this.call(A’) method

call. Respectively, Component A’ would issue this.call(A) as its last instruction.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 21

This is the first problem with Prototype A: the method call stack will continue to

grow as these loop methods never complete but instead keep calling each other in a

cycle.

Component.init and Component.addMeTo

The init method is an abstract method which needs to be defined for each particular

Component. It gets and sets the references to other Components and Activities it needs

and also calls the addMeTo method to add itself to particular Activities it participates

in, as either a passive or an active participant.

Component.call

A call method is defined for Component objects, which takes as an argument an Ac-

tivity to join. This locks the Component into running that Activity (and also sets the

ready flag). Individual activities are always able to execute immediately but shared

ones require synchronisation between multiple Components. Shared Activities con-

tain a SynchSet object which holds a Ready and a Locked flag for each Component

that participates in the Activity. Only once all the Locked flags are set have the re-

quired participants joined and the Activity may start.

Alternatively, the call method can take a Component as its argument. In this case,

it starts that Component by calling Component.loop.

Component.choice

Component objects have a choice method defined that takes as argument two Activities

and returns either 1 or 2 as the decision on which Activity to run. It is used in a switch

block in the Component’s loop method to choose which branch a model should take,

as illustrated below:

switch(this.choice(activity1, activity2)) {

case 1:

this.call(activity1);

break;

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 22

case 2:

this.call(activity2);

break;

}

On calling choice the ready flag is set in the Activity’s synchronisation set object,

indicating that this Component may choose to join this Activity. The execution of

this Component is then paused briefly to allow other Components to join this Activ-

ity or evaluate their own Choices with this Component marked as Ready for the two

Activities.

When it awakes, the Choice method then checks whether either Activity is able to

execute— i.e. all Ready flags are set. If so, that Activity may be chosen, depending

on whether the other Activity is ready or not. Activities are prioritised for choosing,

with Shared Active as highest priority, then Shared Passive, and Individual as lowest.

If both Activities are ready to go, and also of the same priority, the faster one (the one

with the smaller sleep-time) is chosen.

If neither Activity is ready to run, the Component cycles through the pause/ re-

check routine until one of the Activities becomes available to run.

Activity.run

When all synchronising Components have joined an Activity, it is run. It pauses for a

period determined by its rate and then exits.

Activity problems

A problem with the Activity class is that there is no separation of Activities and Ac-

tions as there is in PEPA. In this implementation, an Activity is behaving more like

an Action. In PEPA, Actions are global, whereas Activities specify for a single Com-

ponent which Action it is partaking in and at what rate. In this implementation, all

Components are referencing the same global Activity and submit the rate at which

they wish to participate.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 23

4.3.2 The SynchSet Class

This class represents the synchronisation set for a particular Action (or Activity in

this implementation), specifying which Components must join before it can run. Each

Component can declare that it is Ready to join, or that it has Locked. A Ready Compo-

nent may or may not join— it is notifying the Activity that it is choosing between this

Activity and another.

Locking is a notification that the Component has committed to this Activity and

is waiting for the Activity to execute. Once committed, the Component must halt its

execution until the the Activity has run.

The SynchSet class is the fatal flaw in Prototype A because it failed to take into

account the facility of PEPA to contain more complex synchronisation sets (See 4.4.1).

4.3.3 The Rate Class

Exponential rate distributions were first built directly into Activity objects and were

used to determine how long the delay was when the Activity ran. In order to separate

functionality, Rate objects were created. These Rate objects were initialised with the

distribution’s rate and used to calculate a sleep-time:

sleep-time = ExpDist(rate).sample() * baseSleep;

To generate useful delays, the base sleep time was set to 1000. When an Activity

was run, sleep(sleep-time) was called on the executing Thread, which paused it

for so many milliseconds.

The ExponentialDistribution class used generates properly balanced distributions

and is included in a GNU General Public License package. The package originates

from the Probability/ Statistics Object Library of the Department of Mathematical Sci-

ences, University of Alabama in Huntsville [Siegrist and Duehring, 2001].

4.3.4 The Ref Class

The Ref class contains Vector objects that hold references for all the system’s Com-

ponent and Activity objects. It defines two methods: getActivity and getComponent

which take as argument the “id string” of the Activity or Component (usually just the

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 24

name as given in the PEPA model) and returns a reference to the object representing

that construct in the system or, if no match can be found, throws an Exception.

References are added automatically to the appropriate vectors of the Ref object

by the Component and Activity constructors— calling new Component(‘‘CompA’’)

will automatically add a reference to the newly created object to Ref’s Components

Vector. Other Components may then obtain the reference to Component A by calling

Ref.getComponent(‘‘CompA’’).

4.3.5 The Simulator Class

This class creates all the Activity and Component objects, starts those Components

mentioned in the composition line and handles all Simulator calls to do with updating

the Simulator Window. It defines abstract methods createActivities and createCompo-

nents, which is the place where a model implementation should issue the appropriate

Component and Activity creation statements. This is necessary because the Simula-

tor needs to perform background commands on the Activities and Components be-

fore it can start the system, such as calling Component.init on all Components and

Component.start on all Components which are set to begin on start-up.

In addition, the Simulator adds the various Threads of the system to appropriate

ThreadGroup objects, so that it can perform actions such as pausing the execution of

the system or force Activities to awake from long sleep delays.

4.3.6 Model Implementations

The Client-Proxy-Server model (given in Appendix A) is implemented using the Pro-

totype A package and executes as desired. The Java code (given in Appendix B) is

relatively straightforward— the parallels between the PEPA constructs and the Java

constructs are clear.

The PC-LAN 4 model has also been manually translated to run the Prototype A

package. With Prototype A seemingly capable of running models correctly and a few

manual translations implemented, the API and its implementations were frozen to be-

gin work on creating an automatic translator.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 25

4.3.7 Translator

As chapter 6 is dedicated to describing the implementation of the Translator and much

of the final Translator is very similar to the first Translator, this section will only give

a brief overview of the first incarnation.

The first translator is quite simple in its functioning, as the initial API takes a rather

rudimentary view of the way PEPA works. It parses the various data structures created

by the parser but does not need to do a lot of maniplation to create its output. For

example, each definition line in the PEPA model becomes a Component; each Compo-

nent in the composition line has a flag set so that it is started by the Simulator when the

system is started; and for each Action in the composition line, all Components found

in the set to the left and right of it call the addMeTo(thisActivity) method.

Although the code of the CPS model (Appendix B) was manually translated, the

first Translator produces exactly the same code.

With both Prototypes A and B, the Java code needed to define a PEPA system is

purposely kept as straightforward as possible and is also as similar as possible to the

PEPA model code. This is to make manual translation, extension and comprehension

of the code as simple as possible but has the added side-effect of making an automatic

Translator’s work easier. Unfortunately, however, the first API was too simple to run

many PEPA models.

4.4 Problems with Prototype A

Two months into the project there was a fully working PEPA2Java package and Trans-

lator. At this stage, testing began by using the Translator to generate Java equivalents

of many of the PEPA models found in the Java Workbench package. However, whilst

some models were successfully translated, and ran as desired, there were many cases

where this was not the case.

It was now clear that this version of the PEPA2Java API was fundamentally flawed

in the sense that it did not provide PEPA-equivalent constructs, a key condition for

meeting the objective of the project. Considerable effort was spent to try and correct

the problems but eventually these endeavors were abandoned in favour of taking a new

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 26

approach, as outlined in the next chapter. The new approach would maintain the parts

of Prototype A that work well, whilst replacing those that do not.

Prototype A’s API differed to the semantics of PEPA in three ways:

4.4.1 Synchronisation Sets

The biggest problem with Prototype A was its implementation of synchronization sets.

Each Activity had one synchronization set and this set contained all the Components

that cooperate on the Activity. However, the implementation was overly simple: it

allowed only for one set per Activity and thus limited the number and type of PEPA

models that could be translated.

In Prototype A, an Activity may not run until all the members of its synchronization

set have committed to it. Consider, for example, the model:

%a = 1.0;

%b = 2.0;

#Server = (req, T).(rep, b).Server;

#Client = (req, a).(rep, T).Client;

Server <req, rep> (Client || Client)

This system cannot be modelled correctly in Prototype A. In order to implement

a system such as this one, Activity req would need to be split into Activity req1 and

req2. The two Activity objects would have slightly different synchronization sets, each

containing the Server and one of the two Client Components.

This type of hack may work but adding extra Activities is undesirable as it breaks

the parallel between the Java Skeleton and the PEPA model. Also, there are some

models where this fix would cause the model to act differently. Finally, it results in the

creation of extra objects, which negatively affects running efficiency. The SynchSet

problem is the main reason why Prototype A was scrapped.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 27

4.4.2 Activities and Actions

In Prototype A, Activities performed a combination of the function that Actions and

Activities perform in PEPA. There was no Action class at all because the Activity class

was a hybrid of the two constructs. There was no clear separation of an Activity, which

is local to a Component, and an Action, which is a global construct that may or may

not be joined by multiple Activities.

This difference did not cause any real problems when it came to running a model

as a Java system but was counterintuitive to the user. Therefore, Prototype B should

specify separate Activity and Action classes.

4.4.3 The Form of Components

Consider the simple PEPA model:

A = (a, 2.0).A1;

A1 = (b, 1.0).A;

A

In a true PEPA interpretation of the model, the separate Components of the system

are defined in the final composition line. Each variable in the composition line equates

to a separately executing process and the Actions they cooperate on are held in the

synchronization sets between them. Therefore A is the only Component in the system

above. Component behaviour is defined above in the process definitions, so A can

exhibit both the behaviour defined by A and the behaviour defined by A1.

However, in Prototype A, each definition is taken as a separate Component, capable

of being executed as a separate Thread. Those Components that are referred to in the

composition line are started on system start-up but are otherwise no different to other

Components. So, in a Prototype A translation of the above system, Component A

executes an Activity a, then calls A1 to execute. Similarly, A1 executes b and then calls

A. For Prototype A, the composition line is used only to determine that the Thread

object holding A should be started on system start-up.

Chapter 4. Prototype A: Specification & Implementation of a Flawed API 28

Again, the system functions as one would expect a PEPA system to function. How-

ever, there is a lack of equivalence between a PEPA Component and a PEPA2Java

Component, potentially causing confusion. Also, this means that more Component

classes are created by the Translator than necessary and Thread objects are created

which are never started. These problems lead to less efficient run-time performance

once all the objects are created.

4.4.4 The Method-Call Stack

This final problem with Prototype A is not a problem with the translation of PEPA se-

mantics but an implementation problem. The way Components call other Components

without ever exiting their loop method leads to a forever growing method-call stack.

Consider the model introduced above in Section 4.4.3. The final action of both

Component A and A1 is to call the other. Due to the cycle, neither of the loop method

calls will ever return, so the stack will continuing growing until it eventually over-

flows. This is a problem with the definition of Components and the implementation

mechanism used to mimic PEPA Component behaviour.

4.4.5 Conclusion

Any one of these problems might have been solved but taken together they indicated

a serious rift between PEPA constructs and their PEPA2Java equivalents. Specifically,

the composition line, being the core definition of a PEPA system, was not the core

definition of a PEPA2Java system. Also, as Prototype A had started life as a proof-of-

concept, the code was becoming more and more convoluted. To solve these discrep-

ancies and end up with a more elegant implementation, the slate was wiped clean and

Prototype B was created.

Chapter 5

Prototype B: Specification &

Implementation of the PEPA2Java API

5.1 Overview

In developing Prototype B, the flawed ideas and the shortcomings of its predecessor

were left on the drawing board but the lessons learnt and the sound principles estab-

lished provided a solid base from which to move forward. Prototype B is both a versa-

tile and powerful tool. It is the blueprint for the final PEPA2Java API specification and

has evolved into the Barebones and Simulator packages which implement that API.

5.2 The PEPA System

Central to the implementation is the PepaSystem class. This class performs essentially

the same function as the Simulator class did in Prototype A. It defines three abstract

methods which must be defined by implementing models — namely createComponents,

createActions and initSynchs. Examining Appendix C shows an example of the

Client-Proxy-Server PEPA model (given in Appendix A) implemented using Prototype

B. It demonstrates the form and use of the PepaSystem-extending Sim class that imple-

ments the required abstract methods. The PepaSystem object will create and initialise

all the model objects, and start the model running. If the Simulator package is used, it

29

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 30

will also control the GUI and the debugging messages.

The PepaSystem object also maintains three vectors, holding references to all the

Components, Activities and Actions that make up the system. Two methods, comp(id)

and action(id) provide similar functionality to the Ref object’s functionality (see

section 4.3.4) in Prototype A. These vectors and methods are used by the SimWindow

class.

The preferred manner for Components to get references to the other global objects

is to access them through static references which should be defined in the PepaSystem-

implementing class for each model. This is the form of the output as created by the

Translator. However, the API is flexible enough to allow the user to assign references

in whichever manner she finds convenient.

5.3 Forcing Lock-step: The Waiter and Lock classes

As in Prototype A, the most important part of the implementation deals with ensuring

that the Java skeleton of a model runs as the PEPA model dictates it should. However,

there is no native support for the concept of synchronising multiple threads of execu-

tion for cooperation on an action. Therefore, much of the challenge lies in getting Java

to behave in this way. The Action class, specified in section 5.6, ensures the proper

synchronisation of multiple threads on cooperating sections. To accomplish this, the

Action class, and also the Component class, make use of two simple concurrency con-

trol helper classes (see section 3.3.2), the Lock class and the Waiter class.

The Waiter class is a very simple extension to java.lang.Object. It uses the ob-

ject monitor each Java object has and provides wrapper methods (w and n) around its

wait and notifyAll methods. These wrapper methods are synchronised because the

caller must own the object monitor before it can call wait or notifyAll. In addition,

it catches any thrown InterruptedException and exits the method, performing no

further action. The Waiter class exists to avoid any user-defined extending subclass

inadvertently locking or releasing the object monitor and interfering with the function-

ing of the PEPA2Java implementation. It also allows as many Waiter objects to be

created as needed and allows these objects to be private to an object or shared within

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 31

the package as a protected object.

These objects are used throughout the implementation wherever an object must

wait on a condition being true. It is used, for example in choice checking when a Com-

ponent is waiting on any branch to become available for running, or when an Action

is waiting for all cooperating Components to join. This replaces the unnecessary and

inefficient constant re-checking of conditions— checking only occurs after an influ-

encing condition has changed.

The Lock class is more complex and is intended to replace the object monitor when

multiple locks are required to be held simultaneously. It is specifically built for use in

the choice method. It defines two public functions, request and release which,

respectively, request the lock and release it. Requesting a lock holds the caller until the

lock is available. The method locks the object again, and returns. Releasing the lock

allows the next waiting requester to acquire the lock. Note, however, that there is no

guarantee of fairness: the lock will go to one of those waiting, but not necessarily the

one that has been waiting longest. Because locks are held only very briefly, inside the

Component.choice method, this is not a problem.

This functionality on its own adds no new behaviour but the class specifies several

protected methods that do. The Lock[] getLockers(Activity[]) method takes a

multi-set of Activity objects and returns a globally sorted set (i.e. no duplicates) of the

Lock objects of the Actions referred to by those Activities (each Action contains a Lock

object). The static methods request(Lock[]) and release(Lock[]) are similar to

their non-static cousins, except that they lock an array of Lock objects, rather than

a single one. Because the Locks arrays are returned in a globally sorted order (by

Hashcode), two threads simultaneously requesting Lock sets with shared members

will never cause deadlock.

5.4 Simulating Race Conditions

To address the schism between PEPA models and working systems, the race condition

(see section 3.3.1) is simulated in the following manner in the Simulator and Barebones

packages that make up Prototype B:

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 32

1. Rate samples are decided a priori— the branch with the smallest sleep-time will

be chosen. This is the case for both types of branching— choosing and multiple

Components vying to join an Action (see section 3.3.1).

2. Losing branches are resampled to simulate speculative execution— this prevents

branches that get a high sleep-time from losing again and again because of one

“unlucky” sample.

3. The winning branch will pause for its sleep-time, resample and then execute its

next behaviour.

4. Before a branch can be chosen, it must be ready to execute— all the members

of the synchronisation set must be prepared to participate. Otherwise, another

branch will be chosen. If no branches are ready, the system will execute the first

branch that becomes ready. However, choosing commits the system to execute

that branch— it cannot be interrupted by a faster branch that becomes ready later.

5. Because the first ready branch wins, the choice method necessarily needs a pause

to allow participants of shared Actions to join. Otherwise, individual Actions

would unfairly dominate choice branching as they are always ready. The length

of this pause is defined as a constant value in the Component class, at present set

to 100 milliseconds.

The first three mechanisms allow the PEPA2Java system to mimic a PEPA system

perfectly but the last two are not ideal— they cause some models to execute incorrectly.

Chapter 7 gives more detail.

5.5 Components and Scripts

The Component class extends the Java Thread class— each is started on system startup.

Each Component represents one of the Components as defined in the composition line

of the PEPA model. A Component class on its own defines no behaviour. For this, the

CompScript interface is used.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 33

The CompScript interface is similar in idea to the Runnable interface. It defines a

single method, actions. The method takes no argument but, crucially, it must return

a CompScript object reference.

Each Component has a reference to a CompScript object, which is initially set

by the Component.setStartScript method. The Component run method calls the

current CompScript’s actions method. This executes the behaviour of the Component

as it is defined for one particular definition, for example by executing Activities or

making branching choices. The final action of the CompScript.actions method is to

return a reference to a CompScript object, possibly itself. The Component.runmethod

will then run the actions method of the newly assigned CompScript.

This implementation solves two problems of Prototype A. First, it resolves the po-

tential for Method Call Stack overflow, because each method returns a CompScript

reference and exits. Second, Components in this implementation may take on many

varying behaviours as defined by scripts, but their synchronisation sets and their rep-

resentation remain constant. Thus Prototype B Components are equivalent to Compo-

nents as defined in the PEPA composition line, and the Component’s CompScripts are

equivalent to a Component’s sequential process definitions in a PEPA model.

CompScript-implementing classes are defined as inner classes of their Component,

which means they have access to all the references of their holding Component, in-

cluding the references to any other CompScript classes it may define.

The new translation mentioned in Section 5.2 of the Client-Proxy-Server example

from the previous chapter demonstrates the new form of Components and their Scripts

in Prototype B. This translation is given in full in Appendix C.

Finally, the other public method in Component class is the choice method, which

is detailed in section 5.9.

5.6 Actions

Each shared Action of the model is represented by an Action object, which implements

the Runnable interface. It also holds the root to a synchronisation tree (section 5.8)

which is used to determine whether the Action is ready to run or not. An Action steps

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 34

through five stages:

1. Wait for noRunners: The first command of a running Action object is to hold

until all Component members of its synchronisation set have their runner flag

set to false. This indicates that the Component believes the previous run of

the Action to be completed, which is a prerequisite of the next run. When all

Components know that the last run has completed, the next step can take place.

This is necessary because if an Action is very short, there is the possibility that

in the multi-threaded concurrent execution environment, one or more of the the

last chosen Component threads may not have executed since the last run. If the

next run were to be allowed to start before all Components were aware that the

last had ended, deadlock might occur— while one of the Components might

still be waiting for the already executed Action to run, those Components aware

that the last Action already ran might be waiting for the next Action to occur.

Neither Action could then ever execute because neither would have a complete

synchronisation set. Therefore, the Action will pause between runs until all

Components have acknowledged its execution.

2. Wait for allLocked: The next step in the execution of this Action is to pause

until the allLocked method returns true. This happens only when all the Com-

ponent members of any particular subset of the synchronisation set have joined

the Action and committed to its running. The determination of the subsets is

detailed in section 5.8.

3. Set the Runners: Now the Action is ready to be run, it notifies the members

of a particular cooperation set that they have been chosen to participate in this

run of the Action. The Action passes these members a reference to its holder

Thread. They set their runner flags to true, and join this Thread, meaning they

will cooperate in the Action. The join method is a Thread object method which

causes the calling Thread to wait for the target Thread to die before it can resume

execution.

4. Start the Action: The Action calls its action method, which will cause the

Thread to sleep for a number of milliseconds set by its determining rate. (Deter-

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 35

mining rates are described in section 5.10.1.) Alternatively, in user implementa-

tions, the sleep action will be replaced by the actual functionality required.

5. Reset: The reset method is the final command of this run of Action. It creates

a new Thread object and assigns the Action’s holder reference to it. The Action

object is passed to the Thread as a Runnable argument. The Action’s Rate is reset

to TOP, so that any Rates submitted by Activities will dominate. The final action

of the method is to start the newly created Thread. This old holder Thread will

then die, releasing the joined Runners, which will immediately set their runner

flags back to false, signalling they are aware that the current run of this Action

has completed.

Note that on system start-up, the PepaSystem object (section 5.2) will call the

reset method of all Actions, which will start them.

5.7 Activities

An Activity is joined when a Component calls its join or joinAt method. These are

the only public methods of the Activity class.

Conceptually, there is a subtle difference between Activities as specified in PEPA

and PEPA2Java. Namely, Activities in Prototype B are objects held by their execut-

ing Component. Every Component participating in an Action holds one Activity per

Action. This means that if a Component runs multiple Activities at different rates, but

the Activities are participating in the same Action, they will be represented by a single

Activity object in the Component. The only difference is that the Component will join

that Activity at different Rates at different times. This is done by changing the Rate

reference the Activity holds.

The join method commits the Component to running the Activity, at whichever

Rate the Activity is currently set to run at. When the Action is about to run, it calculates

its determining Rate from all the participating Activities. The mechanism for deciding

the determining rate of the Action is described in section 5.10.1. The joinAt method

is identical to the join method except that it also allows the caller to specify the Rate

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 36

at which this Activity should be performed. This second method is the recommended

implementation of the PEPA prefix construct, and is the method always used in Trans-

lator generated code. It is equivalent to a setRate call, immediately followed by a call

to join. Otherwise, the Activity will use whichever Rate it is currently assigned.

There are two sub-classes of the Activity class, IndivActiv and SharedActiv. In-

divActiv is used for executing individual Activities— those without synchronization.

SharedActiv is used to execute Activities which require synchronization between mul-

tiple Components.

5.7.1 The SharedActiv class

The SharedActiv class is quite complex. Synchronization is handled by creating Syn-

chronization Set trees from SSNode objects. As is clear from figure 5.1, the Activity

class and its subclasses inherit SSNode class functionality. These objects are detailed

below in section 5.8. The most complex methods of the SharedActiv and the SSNode

classes deal with choice branching, and the manner this is accomplished is detailed in

section 5.9.

An individual Activity may execute an Action immediately on calling joinAt,

whereas a shared Activity will most likely need to wait for additional Components to

join. Also, even if a Component does join an Action, it may or may not be chosen as

a participant if there are multiple possible combinations of cooperators for an Action.

Using an example from a previous chapter, consider the composition line:

(Client || Client) <serve> Server

In this case, the Server Component will always participate whenever the serve

Action is run. However, only one of the two Client Components may join each run.

Therefore, if both Client Components are waiting for serve, one must be chosen at

random to be a Runner whilst the other will need to wait for a future run of the Action.

As outlined above, the Action will designate the Runners when it is ready to execute.

The setRunnersmethod traverses the synchronisation set tree and picks the “fastest”

subset which is ready to go. The rates of the losing subsets are resampled to ensure

they aren’t continually passed over.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 37

java.lang.Object

Pepa2Java.SSNode

Pepa2Java.Activity

(Abstract)

Pepa2Java.IndivActiv Pepa2Java.SharedActiv

Figure 5.1: The SSNode/ Activity class hierarchy

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 38

5.7.2 The IndivActiv class

In essence, the IndivActiv class exists to increase efficiency of execution, as individual

Activities may always run immediately on joining, whereas shared ones may need to

pause until other Components are ready. Therefore, a lot of the “check and wait”

methods needed to synchronize multiple objects, such as isReady and choice locking,

are not needed in the case of individual activities, and return immediately without

performing any commands. This allows the rest of the framework to treat individual

and shared activities identically.

5.8 Synchronization Trees and the SSNode class

Synchronization set trees connect Actions to their participating Activities. An Action

is constantly waiting to run. Each time an Activity joins it, the Action will re-check

the status of its synchronization tree to see whether it may run. This waiting is ac-

complished with the usual wait/notify Waiter methods (see section 5.3). The tree is

made up of SSNode objects. There are three types of SSNode objects, two used as

the branches and one as the leaves— AND nodes and OR nodes are the branches, and

Activity objects are the leaves. Each branch node has a left child and a right child.

Though the leaves of the tree are specified as Activity objects, only SharedActiv ob-

jects are used as part of a sychronization tree because individual Activities require no

synchronization.

Consider the Composition line from section 5.7.1 again:

(Client || Client) <serve> Server

From this line, we can see that the synchronization set has two subsets of cooper-

ating Runners. Both sets include the Server Component, and either one or the other

of the two Client Components.

This would yield the synchronization tree specified in figure 5.2. The most im-

portant function of the synchronization tree is to determine whether the Action may

run or not. This is checked each time the Action object calls isLocked on the root

node of the tree. The method is recursively called on the nodes. AND nodes return

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 39

serve

Action

AND

ORServer’s serve

Activity

Client’s serve

Activity

Client’s serve

Activity

Figure 5.2: A Simple Synchronization Tree

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 40

true iff both the left and the right child return true, whereas OR nodes return true iff

either (or both) of the children return true. The tree construct is equivalent to the com-

position line because the serve action requires the Server Component and either of

the two Client Components to cooperate before it can execute. Using these trees, an

arbitrarily complex synchronization set can be represented.

When the Action runs, it calls the setRunners(actionThread) method on the

root of the tree. This passes the reference to the running Thread that will execute the

Action, on which the Runners should call actionThread.join. (N.B.: the naming

of the Activity.join method is not ideal, as it could easily be confused with the

Thread.join method, which is another reason to instead use Activity.joinAt.)

Also, the setRunners method returns the determining Rate of the subset it has chosen,

which will specify the pause length simulating the Action running.

Calling setRunners on an AND node will recursively call the method on both the

node’s children, whereas calling it on an OR node will cause it to be recursively called

on only one of the node’s children.

Which child is chosen in an OR node is determined firstly by whether either or both

the children return true for isLocked. If both are locked, then the faster branch will

be returned. If they are the same speed (i.e. because they both run at rate >), then the

choice is decided by a weighted random function: the chance of setRunners being

called on the left branch is equal to the proportion of leaves in the left subtree over the

total number of leaves in the two subtrees. If only one of the two subtrees returns true

for isLocked, then setRunners is called on the locked subtree.

If there were three Client Components (see figure 5.3), they all operated at rate

>, and only one was needed to join the Action, then the first OR node would return the

right child (Client1’s node) one-third of the time, and the left child (another OR node)

two-thirds of the time. The lower OR node would contain the final two Client nodes

and would return them with equal probability.

This method is quite fair, except that Client2 and Client3 have a slight advantage

over Client1. Imagine Client1 and Client2 are committed to join, but Client3 is

not. In this case, Client2 will be chosen with a two-thirds probability, and Client1

with a one-third probability, whereas it should be even. To fix this, the weight used

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 41

should be the number of children in the locked state, rather than just the total number

of children. However, to fix this for larger mixed AND and OR subtrees would confuse

the matter further, and require more complex algorithms. In any case, in most models,

the synchronization set is quite simple, and the Action runs as soon as the first subset

returns true for isLocked. If not, the fastest branch usually decides matters. Never-

theless, this is an area which could be looked into, to see if a solution exists which

still runs efficiently but chooses completely fairly. One final note is that the members

which are ready but are not set as Runners have their Rates resampled to avoid them

being passed unfairly over and over again.

The other defined methods are used in the evaluation of choices and are therefore

described in section 5.9.

5.9 The choice Method

The mechanism for evaluating choice constructs fairly, together with the mechanisms

for ensuring lock-step (section 5.3), is the most complex part of the implementation.

The Component class defines a method choice, that takes as argument an array of

Activity objects and an array of their respective Rate objects. It returns an integer,

which is the position in the array of the chosen Activity. The choice method should

be used in a switch statement, just as it was in Prototype A (see section 4.3.1 for the

switch syntax).

However, this implementation of choice is quite different from that in Prototype A.

There is no prioritization of choices as there was in the first implementation. Rather,

this implementation sticks more closely to the original PEPA mechanism— the fastest

branch which is ready to run is the one that is chosen. Determining the rate of individ-

ual Activities is simple: there is only one Rate object. However, in shared Activities,

the Rate of the Action is determined by the slowest actively participating Activity. In

section 5.10.2, the mechanism for finding the correct determining Rate for an Action

in a choice block is described. Only those Actions which are ready to run are consid-

ered. In order to discover which Actions are ready to run without the Component first

committing to join any of them, a two-phase process is carried out.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 42

serve

Action

AND

ORServer’s serve

Activity

Client3’s serve

Activity

Client1’s serve

Activity

Client2’s serve

Activity

OR

Figure 5.3: Synchronization Tree of (Client1||Client2||Client3)< serve > Server

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 43

5.9.1 Registering Interest

The first phase is a “registering of interest” in all the Activities which could possibly be

chosen (i.e. all those in the array). This involves setting the ready flag on the Activity

to true, indicating to other Components that this Activity may by chosen. These other

Components evaluating choices of their own make use of this when deciding which

of their branches may run. This way two or more simultaneously executing choice

methods may choose branches where there is not yet a fully-ready cooperation set (i.e.

not all Activities in the set are committed to the Action). Without some ready-but-not-

locked provision, there would be starvation for some branches. For example, consider

the example:

A = (m, T).A + (n, T).A

B = (m, 1.0).B + (i, 1).B

C = (n, 1.0).C

C <n> A <m> B

After registering interest in the set of Activities, this Component pauses for “choice-

pause” (a constant set in the Component class). Any other choice methods that had

previously yielded may discover that there are now additional Activities that may po-

tentially run that will complete the set of an Action they themselves are considering

choosing. They may then choose a branch that was previously believed to be unready

for running.

Without the “choice-pause” and some provision for discovering potential choices,

B would always choose individual Activity i, and A would always cooperate with C on

n. This is incorrect behaviour, as we can see from the Rates that Action m is the fastest

of the three Actions. The yielding increases the probability of two choice blocks to

coming together at the same time and choosing Action m.

5.9.2 Locking and Deciding

After pausing, once the Thread resumes execution, it will attempt to gain the Locks

of all the Actions it is considering joining. As described in section 5.3, the Locks are

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 44

requested in a globally sorted order, meaning deadlock cannot occur. Without a global

ordering, for example, Component A holding Lock 1, and requesting Lock 2, will wait

forever for Component B to release its holding of Lock 2 because B may be waiting

forever to acquire Lock 1 from A. This circular deadlock will not occur if Lock 1 is

always requested before Lock 2 by all Components.

Once the Thread acquires the Locks of all the Actions it is considering, it will

create a null reference which will eventually point to the fastest Activity it finds and

a reference (named best) to the fastest Rate it has found. These are initially null and

TOP, respectively. It then performs the following steps on each Activity:

1. Set the Rate of the Activity to be an almostClone (same Rate, different sample)

of the one found in the corresponding position in the Rate array. This is neces-

sary for cases such as A = (x,1) + (x, 2), where there are different Rates for

identical Activities in the same choice. Also, the almostClone method means

two Activities can share the same Rate object outside the choice method with-

out having identical sleep-times within it.

2. Use the getPriority method to get the determining Rate of this Activity’s Ac-

tion.

• For individual Activities, this returns its Rate.

• For shared Activities, if the Action the Activity participates in is ready to run, the

method calls getRate(myPath) on the synchronization tree (see section 5.10.2)

to return the determining Rate. If the Activity is not ready, the method returns

null, signifying this Activity is unavailable for choosing. An Activity is ready

to run if the subset of cooperating Runners that contains this Activity are either

Locked (joined), or Ready (as set by another choice method).

3. If the determining Rate returned from getPriority is faster than that referred

to by best, this Activity is the current winner. Note that in the case of equal

sleeptimes, one is chosen at random.

After checking all Activities, if a winner is found, those Activities that are not

chosen have their ready flags set back to false, all locks are released, and the position

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 45

of the winner in the Activities array will be returned as the result of the choicemethod.

Alternatively, if after checking all the Activities there are no ready Actions, all locks

are released, the Thread will pause again, and the process (beginning with the locking)

will repeat, until a choice is returned.

If a winner is chosen, all the losers’ Rates are resampled to avoid a branch being

passed over unfairly again and again. Notice that this includes the resampling of all the

branch’s cooperators— resampling a > rate has no effect and if that passive Activity’s

partner has sampled a very big sleep-time, that branch may be skipped many times.

The requesting and releasing of locks is necessary to avoid deadlock when there is

more than one Component considering joining the same Action at the same time. For

example, consider the following:

A = (m, 1) + (n, 1)

B = (m, T) + (n, T)

At the beginning, both A and B register their interest in perhaps joining their Ac-

tivities m and n. If they are allowed to continue without first acquiring the locks to the

Actions m and n, their concurrent execution might mean A chooses m whilst B chooses

n. This is possible because all the ready flags are still set to true after one Component

has chosen, whilst the other is still choosing. Locking ensures a ready flag is only ever

set to true when it should be, by controlling access to the critical section.

5.10 Rates and Sleep-time

The Rate object is least changed between Prototype A and Prototype B. Each Rate

object contains an ExponentialDistribution object [Siegrist and Duehring, 2001], and

is used to calculate the period that an Action runs for, as well as determining race

conditions in branching. TOP rates have the specified flag set to false, and return

Long.MIN_VALUE as their sleep-time. Specified Rates return a sleep-time which is

a random sample from an Exponential Distribution. Each time an Activity runs it

generates a new sample by calling Rate.next. Losing branches are also resampled to

simulate a race condition.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 46

In addition, there is a final static unspecified Rate named UNSPEC which is

defined for convenience and to avoid the unnecessary creation of multiple TOP Rate

objects.

The static slowerRate method takes two Rates as parameters and returns the one

with the longer sleep-time. Similarly, the compare method is used to compare this

Rate to another. If this Rate is faster it returns 1, if it is slower it returns -1 and if the

sleep-times are identical or they are both > it returns 0.

5.10.1 Determining Rates of an Action

An Action’s Rate is the determining rate, meaning that when the Action eventually

runs, it will use this Rate to determine the sleep-time. The determining rate is also used

to decide the branching in choice constructs, where the fastest branch is chosen. The

determining rate is defined as the slowest rate of all actively participating Activities.

Participating Activities are those members of whichever subset of the synchronization

set is currently set as the Action’s Runners.

5.10.2 Determining Rates in choice

In choice constructs, the participating components have not been set yet— therefore

the determining Rate is not yet known. In this case, the determining Rate is retrieved by

the getRate(myPath) method. This method returns the determining Rate of the Com-

ponents included in the synchronization tree containing all the required participants of

the subset which includes the Activity the choice method is currently considering. For

example, in the three client/ one server model, a call to getRate(pathToClient1)

would return the slower of the two Rates of Client1’s serve Activity and Server’s

serve Activity, but would not consider the serve Activities’ Rates for Client2 or

Client3.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 47

5.11 The Simulator Package Extensions

All the details given so far describe the working of both the Barebones and the Simula-

tor implementations. However, the Simulator implementation has added functionality

in the form of debugging output and the SimWindow.

These extra functions are embedded into the source code of the Barebones im-

plementation, but are marked by special comment tags. These tags allows the extra

commands to be “commented out” automatically with a simple script. These tagged

commands call the methods of the SimWindow and Debug class to do things like no-

tify the SimWindow of state changes to each individual PEPA object, or send debug

messages that give specific information on what the objects are doing.

It was important to be able to use one source for both implementations, as during

development so much of the code was being constantly fixed, or scrapped and replaced.

Maintaining two sets of code that were meant to operate identically in all ways except

the debugging information and the GUI updates would have proven impossible.

5.11.1 Debugging

If run with the Simulator package included, every object in the PEPA2Java model will

contain an instance of a Debug object. This provides two core methods.

The first method is debug.println, which takes a String and an integer as argu-

ments. This method will echo the message to screen and to the SimWindow, providing

it is not filtered. The filter works by only printing those messages with a integer less

than or equal to the current Debug level set. There are final static integers set in

the Debug class naming the various granularities of debug messaging for convenience

(i.e. NONE, CALLS, ALL, etc.)

The second method is debug.setState, which takes as argument an integer repre-

senting the state of the object. These integers, like the debugging level, reference a set

of predefined final static integers defined in the Debug class, and allow the state to

be set to things like Debug.JOINED. This information is used to keep the SimWindow

updated.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 48

Figure 5.4: The SimWindow: Running the Client-Proxy-Server model

5.11.2 The SimWindow

The SimWindow is a GUI intended to allow the user to understand the state of the

running model, pause and resume simulation, interrupt sleeping Actions, and adjust

the execution speed and the level of debug messaging.

All the elements in the window, including the window itself can be resized to allow

the user to monitor the parts she is interested in even in particularly large models. As

can be seen in figure 5.4, the initial space allocated to the various tables is propor-

tional to the number of rows in each of them, so that if possible, all elements may be

monitored at the same time.

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 49

Consulting figure 5.4, there are three main parts to the SimWindow, the state tables,

the debug message panel and the control panel. There are three state tables, each

displaying information on the three main different types of PEPA objects of the model.

5.11.2.1 The System State Tables

The top table displays information on the Components running in the system, giving

the state they are currently in, the name of the script they are running, the current Activ-

ity (if any) they are participating in, and the number of scripts they have run. Possible

states are things such as “Waiting for others”, “Joined” and “Choosing”. To draw at-

tention to the active elements, Components that have joined an action are highlighted.

The second table displays information on the Activities in the system, giving their

state, their currently assigned Rate, their type (shared or individual) and the number of

times they have run. Activities which are in the state “Joined” (those that have been

selected as Runners) are highlighted.

The bottom table displays information on the Actions in the system, again giving

their state, but also their determining Rate, the state of their synchronization tree, and

the number of times they have been run. The full synchronization tree is given, and

those nodes which are ready or locked are marked with an asterisk. The two most

common states for an Action are “Waiting on Synch” and “Started”. Those Actions

which have been started are highlighted.

5.11.2.2 The Message Window

In the middle portion of the SimWindow lies the message window. Here, all system

and object debug messages are displayed, along with the name and type of the ob-

ject from which the message originates. By default, only system status messages are

displayed, but the level of detail can be modified below in the control panel, to the

point where a great deal of information can be discovered on exactly what is happen-

ing not only in the PEPA model but also what the API’s methods are doing below the

surface. Set to the least discriminating level, for example, lock requests and releases,

the status of all Activities in a choice call and the eventual outcome, and even Rate

comparison messages are available. This is useful if the model is behaving incorrectly

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 50

or unexpectedly.

5.11.2.3 The Control Panel

The controls available are play and pause for resuming and pausing the running of

the simulation, and interrupt for prematurely ending long-running Actions. The in-

terrupt command will wake any sleeping Thread. Because the Thread.suspend and

Thread.resume methods are depracated since the release of JDK1.3, it is possible that

the Simulator package may display warnings on compilation. This is because careless

use of these methods can lead to deadlock. However, in this package the use of these

methods is the best way to control the simulator’s behaviour and is perfectly safe.

Additionally, there are two pull-down lists where simulation speed and the level

of debug messaging can be specified. There are five speeds to choose from which

affect the multiplier used to determine the sleep-time of Actions as calculated by Rate

objects. The level of debugging too can be set to five levels of detail, ranging from no

feedback to very detailed feedback.

5.11.3 Simple Analysis

Finally, when the simulation is halted (by closing the window), another window (fig

5.5) will pop-up, displaying some basic statistics to allow analysis of the model. Unlike

solving for steady-state in Markov chains, this analysis is much more simple. Because

the model runs concurrently, and is therefore made up of multiple Threads of execu-

tion, rather than the percentage spent in each state, the percentages spent running each

Action are given. Each time an Action runs, it adds the length of time it will sleep to

the global sleep-time total, as well as its own internal sleep-time total. Then, at the

end of the simulation, it calculates how much time, as a percent of the system total,

it accounted for in the global running time. Note this does not include the time taken

waiting for synchronization or internal system actions (such as acquiring locks, status

checking, etc.). Also displayed are the mean sleep time of each run and the number

of times each Action (shared and internal) was executed. This facility is meant only

to provide basic feedback to help the user determine whether the model is working

Chapter 5. Prototype B: Specification & Implementation of the PEPA2Java API 51

Figure 5.5: The SimResults Window: Client-Proxy-Server model results

correctly or not, and to see whether the PEPA2Java results are similar to the PEPA

Workbench results.

Chapter 6

Implementation of the Translator

This chapter starts by describing how the Translator works and concludes with how to

go about using it.

6.1 Overview of the Translation Process

Figure 6.1 shows the four steps involved in translating a PEPA model into its PEPA2Java

equivalent. For the lexing and parsing stages, it was possible to build upon previous

PEPA-related work and also make use of standard lexer- and parser-generators. The

latter stages— analysing the parser output and extracting the necessary information to

build the data structures for the final Java code output— were the most challenging

part of creating the Translator.

Lexing Parsing

Analysis
Creation of

Data Structures
Java output

PEPA input

Figure 6.1: The Translation Process

52

Chapter 6. Implementation of the Translator 53

6.2 The Translator Grammar

The PEPA grammar that the Workbench accepts, in EBNF notation [Gilmore, 2001], is

given in figure 6.2. This same grammar is used in the Translator’s parser. However, the

Workbench does not accept the full grammar and neither does the Translator. Rather,

it accepts a subset of the grammar, known as guarded PEPA. Specifically:

• As justified in section 3.1.3, there is no provision for Hiding in PEPA2Java.

• The composition line may contain only Cooperation constructs and Component

identifiers.

• The composition line is also the only place that Cooperation constructs may be

placed.

• Prefixes, additional Choices or grouping structures holding either type of con-

struct are the only valid branches of choice constructs. This is because the

choice method chooses by comparing the determining Rate of the Action of

the Activities of each branch. Choices may have any number of branches and

may also be nested as long as there is always be an Activity to evaluate for each

branch. For example,

#A = (a,1).A + (b,2).B + (c,3).((d,4).D + (e,5).E)

is a valid construct, but

#A = B + (c, 1.0).C

is not, regardless of what B defines.

6.3 Lexing

Developing a lexer and parser for the PEPA input was straightforward because the

PEPA2Java Translator accepts the same input syntax as the PEPA Workbench (see

figure 6.2).

Chapter 6. Implementation of the Translator 54

program ::== declaration + composition

declaration ::== #id = seq_component ;

seq_component ::== seq_component / { [idseq] } [hiding]

| seq_component + seq_component [choice]

| (id, rate) . seq_component [prefix]

| id [variable]

| (seq_component) [grouping]

composition ::== seq_component < [idseq] > seq_component

| seq_component < [idseq] > composition

| (composition)

idseq ::== id

| id, idseq

rate ::== id

| int

| infty

id ::== alphanumeric sequence

int ::== unsigned numeric sequence

Figure 6.2: The Java PEPA Workbench’s PEPA Grammar

Chapter 6. Implementation of the Translator 55

Graham Clark created a lexer for the PEPAroni tool [Clark et al., 1999] using a

JLex-like tool, which allows the quick generation of Java lexical analysers. The lexer

was also incorporated into the PEPA Workbench and is now again used in the Transla-

tor, as the scanner for the parser.

6.4 Parsing

Unlike the lexer, the parser could not be used as it was. The previous PEPAroni work

was of use, however. The parsers used in PEPAroni, the PEPA Workbench, and this

Translator are all generated by the Java CUP program from the same grammar. Whilst

the three parsers use the same grammar, what they do with the input and the objects

they create are different. For example, the Translator needs to create a completely

different type of object and perform different analysis than the Workbench does when

it comes across a Rate definition, an Action or the constructs in the composition line.

The CUP program takes as input a grammar specification with embedded com-

mands for each rule, and generates the Java parser accordingly. The definition of the

grammar can be quite tricky, so being able to re-use the grammar whilst defining dif-

ferent actions sped its implementation.

The parser creates five types of object:

ProcObj Process objects are linked to each other in a tree-like structure and represent

the PEPA constructs Prefix, Choice, Hiding and Cooperation.

CompScript A Component Script object is created for each process definition line.

It consists of an identifier and the process tree (consisting of ProcObj objects).

These definitions are used to specify a Component’s behaviour, and are named

to reflect the fact that they will be translated into the CompScript classes in the

final Java output.

RateObj Rates are created from rate declarations (e.g α=1.0) and within prefix con-

structs, where they may be given as unspecified (>, infty), as a numerical value

(e.g. 1.0), or refer to a previously declared Rate (e.g. α).

Chapter 6. Implementation of the Translator 56

ActivObj When a Prefix is found, an ActivObj is created which holds two references—

one to a RateObj representing the rate at which the Activity runs, and the other

to an ActionObj which represents the global Action this Activity participates in.

If the name of the Action does not correspond to an already-defined ActionObj,

a new one with that identifier is created.

ActionObj Unlike Rates or Activities, the set of Actions may not contain duplicate

identities. Each Action is a global entity, even when they are executed without

synchronisation. Therefore, when the parser comes across an Action, if the Ac-

tion has already been defined, a reference to the existing Action is returned. If

the Action is not already defined, a new ActionObj is created.

ActionSet ActionSet objects are created within Cooperation constructs and define

which Actions Components must synchronise on. They can also be used in

Hiding constructs, but PEPA2Java accept these constructs (see section 3.1.3).

These objects are either created as components of the ProcObj trees, or are put into

static vectors so that they can be easily referenced in the analysis stage. Note that no

Component objects exist yet— the parser returns as it’s final result a ProcObj, which

corresponds to the model’s composition line. This composition line will be analysed

to create the Components and the synchronisation set trees.

6.5 Analysis Algorithms

Once the parsing has been completed, the input has been transformed into a collection

of Java objects holding the model’s details. Several steps need to be performed to

manipulate this data into the correct form for outputting a PEPA2Java skeleton.

6.5.1 SSNode

One of the most challenging problems is that of generating the PEPA2Java commands

for building correct synchronisation trees from the composition line. The composition

line returned by the parser is of a tree form. For example, take the the composition

Chapter 6. Implementation of the Translator 57

Cn

BmA

ActionSet

Cooperation

Component

Figure 6.3: The data structure created from A < m > B < n > C

line:

A <m> B <n> C

The parser will return the tree as shown in figure 6.3. For PEPA2Java, a setSynch

method call must be made by each Action, to create the synchronisation tree. To

generate this call, the algorithm goes through two stages— create a full synchronisation

set tree, and then prune the tree. The four steps for generating the full synchronisation

tree from the composition line tree are (for each Action):

1. Set a SharedAction flag to false.

2. Start at the top of the composition line tree (fig. 6.3).

3. If the current node is a Cooperation node:

• If the current Action is in this node’s ActionSet, return a new AndNode in our

synchronisation tree. Also, set the SharedAction flag to true.

Chapter 6. Implementation of the Translator 58

C

B

m

A

Action

&&

Component

||

AndNode

OrNode

&&

||

Figure 6.4: Action M’s Unpruned Synchronization Tree for A < m > B < n > C

• If the current Action is not in this node’s ActionSet, return a new OrNode in our

synchronization tree.

• Set the left and right child to be the return result of a recursive descent into those

nodes.

4. If the current node is a Component identifier, return the reference to it.

For Action m, this would return the unpruned tree shown in figure 6.4. The next

step is to prune the tree to contain only Components that cooperate on this Action. If

the SharedAction flag is still set to false, this is an individual Action which requires

no cooperation— the synchronization tree is scrapped. Otherwise, we set the Action’s

synchronization tree to be the result of the method unpruned_root.prune, which will

return a pruned version of the tree. The three steps in the pruning algorithm are:

1. Call the contains(thisAction) method on the left child node. This method

returns true if this sub-tree contains a Component that contains an Activity that

participates in this Action.

• If the method returns false, return the result of right_node.prune— this node,

and it’s left sub-tree have been pruned. The ends the algorithm for this node.

Chapter 6. Implementation of the Translator 59

B

m

A

&&

Figure 6.5: Action M’s Pruned Synchronization Tree for A < m > B < n > C

2. Call the contains(thisAction) method on the right child node.

• If the method returns false, return the result of left_node.prune.

• If no result has been returned, then both children must have returned true for

contains. The left node is set to the result of left.prune and set the right

node to right.prune.

3. Finally, return this as the result of this.prune— this node has not been pruned.

Action M’s resulting pruned tree is shown in figure 6.5. Because the right child

of the OrNode did not contain any Activities participating in Action M, but its left

subtree did, the left subtree was returned as the result of calling prune on the root. The

OrNode and its right subtree were dropped. The left subtree survived intact because

both its children contained Components that participate in Action M. Performing these

two algorithms on all the Actions in the model will create the synchronization set trees

needed to define the PEPA2Java API’s abstract initSynchsmethod in the PepaSystem

object.

6.5.2 Creating Components and Scripts

Apart from generating the synchronization set trees, the composition line is also used

to create the Components of the system. Each Component identifier found in the com-

Chapter 6. Implementation of the Translator 60

position line will be made into a running instance of a Component-extending class.

There may be multiple instances of a single class as is the case in this composition line

from the model example given before:

(Client || Client) <serve> Server

In this example the multiple instances of Client will be given names such as

client_i0_Comp and client_i1_Comp, and will be of the Client_Comp class.

For the initial behaviour of the Components, equality of identifier is searched for

between the Component definition in the composition line and the sequential process

definitions. When the sequential process definitions are turned into CompScript ob-

jects, the setStartScript method is used to set the reference to the initial script that

Component should execute.

The parser returns a tree made of ProcObj objects for each sequential definition.

Turning the tree into an actions method of a CompScript object is difficult, especially

as correct nesting is important not only for proper execution but also for comprehen-

sibility. Good tabbing (e.g. indentation of nested blocks) is also equally important for

comprehension by the user.

First, the Component’s behaviour trees are traversed to gather a list of all the Rates,

Activities and CompScripts this Component uses. These will be defined as fields in the

Component class.

Next, to generate the CompScript output classes, the CompScript.createScript

method is called on each CompScript object. This method will recursively traverse the

ProcObj tree generated by the parser and translate it into PEPA2Java commands. A

small example should help to illustrate. Consider the input model:

#A = (m, 1.0).A + (n, 2.0).A + (o, 3.0).((x, 0.5).A + (y, 0.5).A);

A

This results in the CompScript A_Script given in figure 6.6. Handling references to

sequential process definitions is simple—they are translated into return statements

that return the name of the CompScript object which defines the process behaviour.

Chapter 6. Implementation of the Translator 61

This exits the current actions method and causes the parent Component to call the

actions method of the newly returned CompScript.

For Prefix constructs, the result is also quite simple— the appropriate joinAt(Rate)

method call is inserted.

Processing a Choice construct is more difficult, because any number of branches is

allowed. However, since each Choice ProcObj has only two branches, some account

must be kept of whether each encounter with another Choice ProcObj is part of a new

choice block, or adding another branch to an existing choice block. Therefore, as well

as receiving a reference to the current ProcObj, a reference to the previous ProcObj is

also passed.

Additionally, a ChoiceData object is created for each new choice block to hold

information on the Activity of each branch and its corresponding Rate. This is used

to create the ch_Act and ch_Rate arrays defined in each CompScript. The arrays are

passed to the choice method at the top of each choice block. The ChoiceData object

is also used to guarantee a unique name is given to each choice block. It also holds the

case number of the current branch and registers tabbing information for formatting

the output.

A ChoiceData object is passed along with the current ProcObj and the previous

ProcObj as arguments to the createScript method, which recursively descends the

tree and eventually returns a String which will be written to disk as the final Comp-

Script object.

6.6 Form of the Output

To see an example of the type of output the Translator creates, consult Appendix C.

A file holding the Component class and its nested CompScript classes will be created

for each of the Components. Also, a PepaSystem-extending class will be created in

a file, by default named Sim (see Appendix D for a full list of Translator defaults).

These files define the behaviour of the system. Important to note is that all these files

will import one of the two PEPA2Java API implementing packages. Therefore, it is

important to make sure the API package is in the classpath for compiling and running.

Chapter 6. Implementation of the Translator 62

public class A Script implements CompScript {

Activity [] ch Act 0 = {m Activ, n Activ, o Activ};

Rate [] ch Rate 0 = {new Rate(1.0), new Rate(2.0), new Rate(3.0)};

Activity [] ch Act 1 = {x Activ, y Activ};

Rate [] ch Rate 1 = {new Rate(0.5), new Rate(0.5)};

public CompScript actions () {

switch(choice(ch Act 0, ch Rate 0)) {

case 0:

m Activ.joinAt(new Rate(1.0));

return a Script;

case 1:

n Activ.joinAt(new Rate(2.0));

return a Script;

case 2:

o Activ.joinAt(new Rate(3.0));

switch(choice(ch Act 1, ch Rate 1)) {

case 0:

x Activ.joinAt(new Rate(0.5));

return a Script;

case 1:

y Activ.joinAt(new Rate(0.5));

return a Script;

}

throw new Error (”Problem with choice: no valid case

returned!”);

}

throw new Error (”Problem with choice: no valid case returned!”);

}

}

Figure 6.6: CompScript generated from: A = (m,1.0).A + (n,2.0).A +

(o,3.0).((x,0.5).A+(y,0.5).A)

Chapter 6. Implementation of the Translator 63

6.6.1 Generating Valid Class, Object and Package Names

To generate names for the different classes, objects, files and directories the Translator

takes the identifiers from the PEPA model and performs some manipulation. Naturally,

all the names to be used in the Java output must be legal— a Java identifier may begin

with any alphabetic character, a currency symbol (such as “$”) or an underscore (“_”).

The rest of the identifier must also be made up of these characters but may also include

numeric characters.

Therefore the first step is to pass the PEPA identifier to the legalize method. This

method takes as input any string and returns a legal Java identifier by removing illegal

characters or replacing them with legal ones. If the name cannot be legalized, an error

is thrown informing the user to modify the identifier in the PEPA input. A character

that is often seen in PEPA models is “’”, denoting derivative behaviours. Also, some

of the models include the dash symbol (“-”). These characters may not be used in Java

identifiers (or as file/ directory names, for that matter) and are therefore replaced by

the underscore character. The result may be used as both legal Java and file system

identifiers.

In line with common coding practice, class identifiers begin with an upper-case

letter, whilst object identifiers begin with a lower-case letter. Additionally, objects and

classes are suffixed with an abbreviation indicating their type. These suffixes are set as

final static strings in the Main class of the Translator. Other defaults (Appendix

D) control the name of the PepaSystem-extending class, the default output directory

and the names of the implementing packages. The full list of the Translator’s default

constants is given in .

Finally, because multiple instances of the same Component may exist in a system,

each Component instance has the infix “_iX” inserted between the identifier and the

type suffix, where X is incremented for each new instance. This scheme ensures that all

objects are easily identifiable. The suffix clearly identifies the object class, regardless

of the context in which it is used. Most importantly, however, this scheme also ensures

that the unintentional clashing or multiple-declaration of identifiers is minimised. The

package name for the output is derived from the legalized version of the PEPA model’s

filename.

Chapter 6. Implementation of the Translator 64

6.7 Using the Translator

The Translator can be interfaced via either the command line or via the P2J Dialog

window (see section 6.7.3). Either of these methods gathers the necessary information

to begin translation and spawns a new Translator. Due to the use of some static data

structures, only one Translator can be started at any one time. The following informa-

tion is gathered from user interaction with either the dialog window or the command

line invocation and passed to the Translator:

Filename The path to, and the name of, the PEPA model file that should be translated.

The filename is also used to generate the Package name (see section 6.6.1);

Output Path The path to the directory in which the new model should be created. In

accordance with Java package naming rules, a subdirectory will be created with

the name of the package. Note that whilst the subdirectory will be created, the

output path must be an already existing directory. Otherwise, the translation will

fail.

Output type A flag is passed that is used to determine which API-implementing pack-

age the model should run with. If the flag is set to true, the Simulator package

is imported, otherwise it is the Barebones package which will be imported. The

import statements may of course always be changed manually later.

Overwrite flag If this flag is set to true, any files in the output directory with the same

name as newly created files will be overwritten. If set to false, the Translator

will exit without overwriting the existing files. The default value is false. Note

that the Makefile entry will be created/ appended regardless of this flag.

Write files flag If this flag is set to false, the Translator will perform as usual, except

that no files will be written to disk. This is used mainly for debugging and

accordingly is not very useful unless the debug level is set high.

Simulator Speed and Debugging Level The initial speed and debugging level at which

to run the Simulator. These have no effect on the Barebones package.

Verbosity Additionally, the debug level of the Translator may be set on initialisation.

Chapter 6. Implementation of the Translator 65

6.7.1 Automatically Generated Makefiles

In order to make the generated PEPA2Java model package easier to compile and run,

a Makefile is placed in the output path directory (usually models/p2jgens), if there

is not already one there. If a duplicate entry is found in the already existing Makefile,

it will be replaced. The classpath, the directory path to the Workbench and the com-

mands for running the Java compiler and runtime are held as default constants in the

Main class of the translator (see Appendix D).

This Makefile contains a target entry for each model generated. In order to

compile and run any model found in a package subdirectory of the one holding the

Makefile, the command “make run ModelName” can be issued from the command

line. This is useful for running Barebones models because these models cannot be

run from the PEPA Workbench— as they contain no GUI, there would be no way to

halt a running model. Additionally, the last model translated is also the default for the

Makefile, so typing “make” is sufficient.

6.7.2 Running the Translator from the command line

The Translator may be initialised from the command line, in case the only required

argument is the name of the input file. The Translator should be run by issuing the

command:

java Pepa2Java.translator.Main -in <PEPA input file>

Ensure the CLASSPATH environmental variable is defined to include the two jar

files in pepa/Pepa2Java/lib. Alternatively, the classpath may be passed directly to

the java interpreter with the -classpath argument.

The optional command line arguments are:

-in <Pepa Input File> : File to translate (Required)

-out <output path> : A <packagename> subdirectory will

be created here.

-skel : Output Skeleton System, not Simulation.

-ow : If set, overwrite files in the output

Chapter 6. Implementation of the Translator 66

directory.

-debug <0-6> : set Debug Message level 0(none) - 6(all)

-dry : Dry run - write only to screen.

-simDebug <0-5> : Simulation debug level

-simSpeed <0-4> : Sim. speed: 0 = slowest, 4 = fastest

These are used to set the Translator’s parameters as described in Section 6.7. Any

messages will be printed to the screen.

6.7.3 Integration with the PEPA Workbench: The P2J Dialog Win-

dow

An easier way to control the Translator is by accessing it through the PEPA Workbench.

Selecting Translate model from the Pepa2Java will open the PEPA2Java Translator

Dialog window, as shown in figure 6.7.

The Translator Dialog window is passed whichever PEPA model file is currently

open in the PEPA Workbench— the current file is displayed at the top of the Dialog

window. The window allows the user to specify the output directory, whether to use

the Simulator or the Barebones package, the initial Simulation speed and Debug level.

The text area displays any messages from the translation process. At the bottom of

the screen, the user may select to overwrite existing files and to get extra information

about the Translation process as it is carried out. Finally, action is invoked by the two

buttons at the bottom of the window. Selecting the first will cause the Translator to

process the model and output the PEPA2Java equivalent. Selecting the second will

compile and run the resulting model. Naturally, the model cannot be compiled or run

before it has been translated. On translation, a dialog window will pop up to inform

the user if translation was successful or, if not, the cause of the failure.

Though the Dialog window allows a more user-friendly interface with the Trans-

lator, it comes at a cost. Because calling the Java Compiler from within the runtime

environment is not supported in most versions of the Java Developer Kit, the compile

and run button instead causes the runtime to execute the “make run ModelName” com-

mand as a new system process. There are two problems with this approach— firstly, the

Chapter 6. Implementation of the Translator 67

Figure 6.7: The PEPA2Java Translator Dialog Window

Chapter 6. Implementation of the Translator 68

compile and run command can therefore only be used in systems with make installed.

Therefore, the Translator cannot automatically compile and run the model in some

less developer-friendly operating systems, such as Microsoft Windows. Secondly, and

more importantly, any error messages from the compilation or running process are lost.

If the model does not run after pressing the compile and run button, or it is acting

strangely or freezing, run the “make” command from the command line in the output

directly to see any error messages.

Chapter 7

Evaluation

7.1 Quantitative Comparison to the PEPA Workbench

One goal of testing is to discover whether or not a PEPA2Java translation maintains

the same running properties as the PEPA model’s steady-state solution as calculated

by the PEPA Workbench.

It is not evident how to compare the Action sleep-times provided by the Simulator’s

Simple Analysis to the steady-state solution analysis of the Workbench. This is because

the steady-state solution gives the proportion of time the system is in each state. For

example, for a basic two-component model:

%m=4;

%n=5;

#P = (read,m).(write,n).P;

P || P

the PEPA Workbench calculates the various states of the system to be:

1 P || P

2 (write,5.0).P || P

3 P || (write,5.0).P

69

Chapter 7. Evaluation 70

4 (write,5.0).P || (write,5.0).P

and gives the steady-state solution as:

1 0.30864197530864207

2 0.24691358024691354

3 0.24691358024691354

4 0.19753086419753074

where the first number refers to the state as calculated above, and the second gives

the mean of the residence in that state— the proportion of time the system is in that

state. For example, the above system is in state 4 (where both P Components are

independently executing Activity write) 19.75% of the time. State 1 is the system

state when both Components are executing the read Activity. Note that each state is a

“global” snapshot, describing the behaviour of every Component in the system at that

point.

It can be very difficult to interpret the result of the steady-state analysis of even

moderately-sized models, as PEPA is prone to “state-space explosion.” For example,

by adding an extra P Component to the system, which is wholly independent to the

other two doubles the number of states from four to eight. If an intermediary Activity

is added (i.e. read, analyse, write), the number of states jumps from eight to 27. The

ability to get such exact results is very useful but if one considers that the PAPM model

has six components but 1557 states and 6155 possible transitions between states, it

becomes clear that analysing such in-depth results for more complex systems can be

very tricky.

The results returned from the PEPA2Java Simulator are quite different. It does not

return the type of global snapshot that the Workbench does— hence the name, Simple

Analysis. It returns the behaviour of the Actions— the parts which will perform the

actual work of the finished system. Some sample results of it running the same model

are:

Total sleeptime: 170.871 seconds

Actions:

Chapter 7. Evaluation 71

Indiv. Activities:

(p_i0_Comp.read,m) sleepTime: 47.432 secs (27.7589527 %)

Runs: 91(AVG 0.5212308 secs/run)

(p_i0_Comp.write,n) sleepTime: 38.78 secs (22.6954837 %)

Runs: 90(AVG 0.4308889 secs/run)

(p_i1_Comp.read,m) sleepTime: 44.374 secs (25.9692985 %)

Runs: 101(AVG 0.4393465 secs/run)

(p_i1_Comp.write,n) sleepTime: 40.285 secs (23.5762651 %)

Runs: 101(AVG 0.3988614 secs/run)

We can see from the results how much of the total Action running time this partic-

ular Action accounted for, how many times it ran and the average duration of the runs.

For example, we can see that the second instance of P (p_i1_Comp) running Action

write accounted for approximately 23.58% of the total running time. It does not give

information regarding which Activity the other Component (p_i1_Comp) was running

at the same time.

Providing the same complete state analysis that the Workbench provides would be

useful and is therefore a suggested extension to the Simulator package (section 7.5).

There is an alternative to using the steady-state results of the PEPA Workbench.

The Workbench’s simulation menu allows a model to be run as a simulation (using

Edinburgh’s SimJava package). The results from the simulation include a summary

of how many times each Action ran. So although it is not possible to quantitatively

test whether the PEPA2Java model is behaving as the steady-state solution predicts

the model should, it is possible to test whether the PEPA2Java system runs as the

Workbench simulation does.

However, this may not be as useful as it first seems. Firstly, the results of the

simulation give the number of times each Action has been run, but does not, in the

case of individual Actions, distinguish between the different Components. The results

for one run are:

event (read,4.0) fired, times =1505,

event (write,5.0) fired, times =1506

Chapter 7. Evaluation 72

The results for this model are hardly surprising as each read must be followed by

a write. More useful would be the residence times for each Action but unfortunately

these are not given. Instead, the mean residence times are given for the states as defined

for the steady-state solution. The Workbench allows the two to be easily compared.

It might still be possible to use the simulator’s results as a “bridge” between the

PEPA2Java results and the steady-state solution. If:

• the Workbench’s simulation results (for the number of times each Action is run)

are equivalent to the PEPA2Java Simple Analysis results, and;

• the Workbench’s simulation results for state residence means are equivalent to

the Workbench’s steady-state solution’s calculated state residence means,

then it might be possible to argue that the PEPA2Java system is behaving as the steady-

state solution predicts the PEPA model should, by using the Workbench’s simulation

results as a common comparison measure.

However, this tenuous “transitive” comparison of results falls at the first hurdle.

No statistical test is needed to realise that the results (given in Table 7.1) comparing

the mean state residences of the simulation and the steady-state solution for the simple

two-component model (given at the beginning of this section) are different. There is

no chance that these two are equivalent. The results in Table 7.1 are for a relatively

short run of the simulation (<5 minutes) but the model is also very basic. It is stated

[Fotis, 2001] that for very long simulation runs (>20 hours), even large state space

models are completely sampled and that the closeness of fit of the simulation and

steady-state results is directly proportional to the simulation length. Unfortunately it

is at this time wholly inpractical to run the simulation for such long periods of time

to establish what would be at best a tenuous link between the PEPA2Java results and

steady-state results.

Therefore, comparing the PEPA2Java system to the Workbench’s simulation results

still does not get us closer to the real goal— discovering whether or not a PEPA2Java

translation maintains the same running properties as the PEPA model’s steady-state

solution.

This goal is not achievable with the current PEPA2Java Simulator implementation.

Chapter 7. Evaluation 73

In order to do this, the Simulator package would need to be extended to provide mean

residences in each of the states as defined by the Workbench (section 7.5.1).

That said, it has been possible to appraise the important aspects of the performance

of the API and to identify areas for extension and improvement.These are described

below.

7.2 Qualitative Evaluation

Even if it is not possible to test for statistical equivalence between the PEPA2Java

output and the steady-state solution to a model, qualitative evaluation is still feasible.

To achieve this, the Translator will be used to translate the majority (just under

50) of the models included with the PEPA Workbench distribution to see if it can

successfully create a PEPA2Java equivalent. If a model can be successfully translated,

the resulting Java code will be compiled and run, using the Simulator package.

The SimWindow, debugging messages and Simple Analysis window results can then

be examined to judge approximately how the Simulator’s execution compared to the

expected behaviour. The expected behaviour is found through the manual examination

of the PEPA model and the steady-state solution found by the PEPA Workbench. The

clearest sign of a problem are Actions that are being chosen much more frequently

than others, or which are rarely/ never chosen. In either case, the model would need to

be examined to see whether this is the correct behaviour.

Special attention will be given to the larger models, such as the Big and Workcell2

models as well as the PAPM and TOMP series of models. Also, any models that fail

to translate, compile or run correctly will be more closely examined to discover the

State Workbench Steady-state Workbench Simulation

(write,5.0).P ||(write,5.0).P 19.753086419753075 % 28.693142 %

P ||(write,5.0).P 24.691358024691354 % 12.711846 %

(write,5.0).P ||P 24.691358024691354 % 12.228244 %

P ||P 30.864197530864207 % 46.366653 %

Table 7.1: Comparing the Workbench’s steady-state and simulation results

Chapter 7. Evaluation 74

reason for the problems.

7.3 Results of Model Tests

The Translator managed to produce compilable and runnable equivalents for every

valid input model tested, which is an excellent result. Three of the models (“test19”,

“test21” and “tools”) were not evaluated because they make use of non-exponential

distributions. They specify Normal or Uniform distributions. Although the PEPA2Java

API does not currently support these alternative distribitions, it is a trivial matter to add

them (see section 7.5.2).

Secondly, one of the other models, “test4c” performs “rate maths” in a rate defini-

tion. The parser does not allow this. Because there is already support for “rate math”

when it occurs directly in a prefix construction, modifying the CUP parser-generator’s

grammar-defining file to allow this should be straightforward. However, as this con-

struct occurs in only one of the models, it is not a high priority.

In short, the PEPA2Java Translator can produce compilable and runnable code from

any model that the Workbench can read, with one exception (“test7”, mentioned be-

low).

Whilst the models can be successfully transformed, compiled and run, some of

them do not execute as the Workbench predicts they should. The full list of results can

be found in Appendix F. The following models are the ones which caused problems.

In increasing order of severity, they are:

Deadlock Running this model results in deadlock but (the clue is in the name) this is

the correct behaviour.

Maple This model refers to the rates α, β, γ and δ but does not define them anywhere.

The model was completed by specifying all these rates to be equal to 1.0. This

version was saved as maple-mod.pepa and now works as it should in both the

Workbench and as a PEPA2Java system.

test9, test10, test17 These models deadlock when running because they are invalid.

Specifically, they define and try to start Actions which do not contain any active

Chapter 7. Evaluation 75

participants.

test7 The composition line of this model refers to Actions that are not used anywhere

in the model. The Translator creates code to initialise these Actions but compi-

lation fails because the Actions are not defined anywhere.

PC-LAN4 The PC-LAN 4 system demonstrates the second short-coming of the choice

algorithm, more serious than the first. This problem is related to the race condi-

tion problems of “Big”. In this case, under certain circumstances, a branch may

never be chosen. As the models are so similar, this same starvation occurs in PC-

LAN 6. One potential solution is to modify the model itself to fix the problem—

a modified version of the PC-LAN 4 model named “p2j PC-LAN4-mod.pepa”

was created and runs without problems. The problem is explained in full in the

next section.

Big The “Big” model results in deadlock.The problem concerns the mechanisms used

to replace race conditions and determine choices. It is also described in the next

section.

The PEPA2Java translations of all the other models performed as expected.

7.4 Evaluation of Results and Suggestions for Improve-

ment

Whilst the PEPA2Java API-implementing packages do a fine job at running almost all

the PEPA models, some problems have been found. These are caused by one aspect of

the implementation— simulation of the race condition as described in section 5.4.

The choice algorithm was a very difficult one to develop and it is still not perfect.

It involves complex checks for readiness of branches, locking and unlocking of large

numbers of objects, wait/ notify mechanisms and prioritizing of branches. Despite the

careful design of the algorithm, there remain two flaws, described below.

Chapter 7. Evaluation 76

7.4.1 Drawbacks to the “choice-pause” Mechanism

The choice-pause mechanism described in section 5.4 leads to undesirable variation in

execution patterns. For example, the ability of shared Actions to run when competing

against individual actions depends on two factors: the speed of the simulation and the

length of the choice-pause. The shorter the choice-pause and the slower the simulation,

the less chance there is of all the members of a synchronisation set arriving in time

(before the choice-pause expires) to be considered as a “ready” branch. As it is always

“ready”, individual Actions have an unfair advantage, regardless of the branch rates.

For example, with the model:

#A = (m, infty).A + (n, infty).A;

#B = (m, 1.0).B + (i, 1.0).B;

#C = (n, 1.0).C;

A <m, n> (B <> C)

we can see the effects the value of choice-pause and the speed of simulation have

on defining behaviour by examining table 7.2. The behaviour of the system is variable

depending on the values chosen. This underlines the difficulties surrounding choice

when true race conditions are not used.

In the example above, this implementation’s particular method for simulating race

conditions means behaviour is not wholly dependent on the model but also on other

parameters (specifically, the value of “choice-pause”). This is undesirable but is not

fatal except in the case of the two PC-LAN models.

Sim.Speed, Choice-pause

Normal, 100ms Fastest, 500ms

Action m 4.268 % 25.369 %

Action n 45.122 % 38.635 %

Action i 50.61 % 36.074%

Table 7.2: Runs per Action as percentage of all Runs

Chapter 7. Evaluation 77

The PC-LAN models execute incorrectly using PEPA2Java. In these models, there

are 4 or 6 PCs (respectively) being served by a token-ring LAN. Access to the LAN

is passed around the ring of 4 or 6 PCs. If the current PC has a network request, it

participates in the serve Action, otherwise it participates in the walkon Action. In

either case, once the Action is complete, access to the LAN is passed on to the next

PC. The model is given as:

%lambda=2;

%omega=3;

%mu=1;

#PC10 = (arrive,lambda).PC11 + (walkon2,infty).PC10;

#PC11 = (serve1,infty).PC10;

#PC20 = (arrive,lambda).PC21 + (walkon3,infty).PC20;

#PC21 = (serve2,infty).PC20;

#PC30 = (arrive,lambda).PC31 + (walkon4,infty).PC30;

#PC31 = (serve3,infty).PC30;

#PC40 = (arrive,lambda).PC41 + (walkon1,infty).PC40;

#PC41 = (serve4,infty).PC40;

#S1 = (walkon2,omega).S2 + (serve1,mu).(walk2,omega).S2;

#S2 = (walkon3,omega).S3 + (serve2,mu).(walk3,omega).S3;

#S3 = (walkon4,omega).S4 + (serve3,mu).(walk4,omega).S4;

#S4 = (walkon1,omega).S1 + (serve4,mu).(walk1,omega).S1;

(PC10 <> PC20 <> PC30 <> PC40)

<walkon1,walkon2,walkon3,walkon4,

serve1,serve2,serve3,serve4> S1

The first PC starts in state PC10. A race condition between the internal arrive

Chapter 7. Evaluation 78

Action and the shared walkon2 Action governs which behaviour the PC exhibits. The

arrive Action is used to model other processes on the PC issuing LAN requests.

On completion of the arrive Action, the Component will take the PC11 derivative

behaviour, indicating it requires network access. Alternatively, if the walkon Action

completes, this indicates access to the LAN became available to this PC when there

were no outstanding requests. Therefore, it moved on the next PC in the ring.

Using a race conditions as PEPA does means that the arrive Action can be started

whilst the the walkon2 Action must await synchronisation with the Server Component

(i.e. must wait for it to enter its S1 state). However, once the Server becomes available,

it participates in walkon2. If that Action completes before the arrive Action does,

the Component will abort the arrive action.

The problem with translating this model into the PEPA2Java equivalent is that only

“ready” branches may be chosen, as outlined in points four and five in section 5.4. The

arrive Action is always ready, whilst the walkon2 Action requires synchronisation.

In most models, the “choice-pause” mechanism provides a chance for synchronisers to

arrive but in this model the Server needs to make three other choices (with the three

other PCs) before it returns to the first state. This means it needs to await three “choice-

pause” expiries before returning. By that time, the “choice-pause” of this branch will

of course have expired. Therefore, the walkon branch will never be executed, always

losing to the individual Action. This is a major drawback of using the “choice-pause”

mechanism in place of an interruptable race condition.

It is possible to modify the program so that it behaves in the same manner but does

not require the use of a race condition. Namely, adding a separate process (“PR”)

to model the arrival of network requests means the Component is only committed to

the “serve” Action when the “arrive” Action has completed. It does not “lock-out”

the possibility of executing the “walk-on” Action. The modified model is given in

Appendix E.

Admittedly, this has made the model more complex but it will now work with a

system, such as PEPA2Java, where Actions may not be aborted. Note that this also

means that it is not necessary to isolate the “serve” Action in a separate derivative as

was the case before (using “PC10” and “PC11”)— once the “serve” Action has been

Chapter 7. Evaluation 79

chosen it will not be usurped by the “walkon” Action.

7.4.2 Drawbacks to Choice Committing

This second problem is the more serious of the two and also arises from the simulation

of the race conditions that govern branching in PEPA. As detailed in previous sections

(3.3.1 and 5.4), tentative execution of all branches is not an option in a skeleton im-

plementation of a model. Instead, the program must somehow choose one branch to

execute but behave in the same way as the PEPA model does. In the choice mechanism

there is currently a two stage algorithm of expressing readiness: pausing for “choice-

pause” and then choosing the fastest “ready” branch. However, in the“Big” model,

when three Components come together at one choice at the same time, deadlock may

result. The conditions leading to this are quite complicated but once understood, the

problem is clear.

The “choice” method utilises locking of Actions when evaluating branches to avoid

the deadlock. Consider the example:

#A = (m, 1.0).A + (n, 1.0).A;

#B = (m, infty).B + (n, infty).B;

A <m, n> B

Without locking, both “A” and “B” could register interest in both Actions “m” and

“n” at the same time. Without locking, both would believe “m” and “n” “ready”. “A”

might choose “m” and “B” might choose “n”, resulting in deadlock. Instead, “A” will

lock the two Actions and commit to one, then withdrawing its “ready” flag from the

other before unlocking. “B” would then receive the locks but see only one of the

Actions as “ready” and therefore choose the same one as “A”, avoiding deadlock.

The problem with the “Big” model is that there are parts of the model where three

Components come together in a choice block. The participation of one (the “Node”

Chapter 7. Evaluation 80

Component) is required by both of the other Components (the “Bidder” Components).

However, the Action is exclusive— only one of the two “Bidder” Components may

join. Occasionally, all three Components arive at the choice almost simultaneously.

They register their “readiness” to choose between the multiple branches. Seeing

that the “Node” Component is “ready” to join either branch, “Bidder1” might commit

to the first branch. “Bidder2”, also seeing that “Node” is prepared to join either branch,

might then register to join the second branch’s Action. Say then that the “Node” Com-

ponent chooses to participate with “Bidder2” on the second branch. The Action will

run, and in this particular model, “Bidder2” now goes into another part of the model,

interacting with other Components.

The “Node” then continues running before entering a derivative state where it must

run again the Action it just ran with “Bidder2”, this time without a choice. The model

designer anticipated that “Bidder1” would still be choosing between the two branches

and could then cooperate with “Node”. However, in this implementation, the “Bid-

der1” has already committed to executing the other branch and is stuck there— it can’t

change branches. At this point, the model’s execution ends in deadlock.

7.4.3 Fixing the choice method

The two problems above can be solved. Introducing true race conditions is one way

but is undesirable for the reasons given previously.

To address the first problem, there should be a finer prioritizing of branches. At

the moment, after pausing for some time, the fastest “ready” branch wins. Instead, the

model should pause only if there are no shared Action branches ready to go. In this

case, it could pause for a time to allow other Components the opportunity to join the

Action before deciding. The value of “choice-pause” is also fixed to a value which

gave good results for the models. However, perhaps the pause could be related to the

length of the slowest branch, or be drawn as a random sample from an exponential

distribution. None of these suggestions are ideal but they would improve the situation.

The second problem, being the more serious, can thankfully also be solved. Unfor-

tunately, it requires extra steps and therefore introduces a higher overhead to running.

The solution lies in a more sophisticated commital algorithm, similar to the “two-phase

Chapter 7. Evaluation 81

commit” protocol seen in distributed systems. Using this would avoid “Bidder1” com-

mitting without guarantee that “Node” is also going to commit.

This would necessitate an extra stage in the choice algorithm between the “ready”

to run and the “committed” to run stages. Each Component would advertise the branch

it had chosen by removing the “ready” to run flags from the other branches and setting

a “chosen” flag on its choice. It would then keep monitoring the other choices until the

full set of runners had “committed” or “chosen” the Action it had “chosen”. Only at

this point would it change from “chosen” to “commit”.

If, before committing, whilst monitoring the other branches it noticed another

branch was “ready” to run, it could change its choice. Critically though (to avoid

any other Components getting stuck in a deadlocked choice) this Component would

only be allowed to change its choice if no other members in its “chosen” branch had

changed from “chosen” to “committed”.

Being able to change would avoid the deadlock in “Big”. It would not affect the

running characteristics except for the extra processing stages: the Component did not

“commit” to running the Action but only “chose” it. The difference is that the “chosen”

Action would not be able to run until all members “committed”. Finally, the requesting

and releasing of locks using the current globally-ordered mechanism would ensure that

switching choices at any point would not cause deadlock.

This solution seems quite complex and would certainly be overkill for most mod-

els which use only basic choosing. However, if the PEPA modelling system were to

be used to design genuine concurrent or distributed systems, such a mechanism in

PEPA2Java would be needed to avoid possible deadlock.

7.5 Suggestion for Extension

7.5.1 Full Stated-based Analysis

In addition to the Simple Analysis already included in the Simulator package, the ad-

dition of a method for calculating the mean residence times of the states as done in

the Workbench would be very helpful, as it would allow statistical equivalence testing

between the two. One way of doing this, for example, would be to parse the state-table

Chapter 7. Evaluation 82

structure the Workbench writes to disk and parse it to build an table of all the system

states in the Simulator. Then, each time a Component performs an action that means

a global state transition, such as executing an Activity, it could submit the details of

the change, along with a global timestamp taken from the system clock, to a static

queue-like mechanism.

Once the execution of the system has completed, the queue could be processed,

beginning from the initial system state (which is known) and look-up each transition in

the state-table. A similar lookup mechanism, the PEPA State Finder, already exists in

the Workbench. The lookup would give the state index numbers and using this together

with the timestamp would be enough to calculate the mean residence time of each state

because the queue contains all the Component transitions.

7.5.2 Minor Improvements/ Extensions

Simple Analysis

If the user changes the speed whilst a model is running with the Simulator, the Simple

Analysis at the end of the model run is invalid. Because the Simple Analysis tallies

sleep-times, changing the multiplier used for calculating those sleep-times from the

exponential distribibuted random samples will skew the results. There are two possible

solutions:

1. reset the sleep-counters and the Action/ Activity run-counters each time the

speed is changed, or

2. tally the sample rather than the sleep-times, and calculate the totals at the end

using a single multiplier.

The second is the more elegant of the two solutions.

Alternative Distributions

The Java CUP grammar already specifies a syntax for creating Rates with either Uni-

form or Normal distribution. This part of the grammar is commented out for the PEPA

Chapter 7. Evaluation 83

workbench, however, presumably because these distributions lack the properties al-

lowing memoryless analysis (where resumed and restarted activities may be treated in

the same fashion).

However, should these distributions be required, modification of the PEPA2Java

system would be simple. The package containing the ExponentialDistribution class

[Siegrist and Duehring, 2001] also contains Uniform- and NormalDistribution classes

that may be created and used in exactly the same way (because they share a common

parent which defines the sample methods, etc.) Therefore, it would only be a matter of

“plugging” them in to the Rate class and would require a minimum of further alteration.

Supplying Action Scripts

It should be possible to pass an object that implements Runnable to an Action object

in the same way that can be done with Thread objects. This would define the Action’s

behaviour in the actual implementation, over-riding the default sleep behaviour when

run.

Avoiding the Creation of extra Rate Objects

Currently the Translator equates the PEPA phrase: (a,1.0) with the PEPA2Java

equivalent: a_Activ.joinAt(new Rate(1.0). This means a new object is created

each time the Activity is called. To avoid this inefficiency, the Translator could define

a Rate object (say, called Rate_1_0) for the Component calling this Activity, so the

Rate could be re-used and resampled, rather than recreated each time.

Echo “stdin” and “sterr” to the P2J Dialog Window

Code to catch the messages and errors from running an external process is already

included in the P2J Dialog Window class but at present does not work correctly. Being

able to see the messages (especially error messages) during compilation and running

of models from within the Workbench would be very useful.

Chapter 7. Evaluation 84

7.6 Future Work

It would be an interesting follow-up exercise (as outlined in section 3.5) to use the

tools produced to work through the design and implementation of an actual system,

however simple, following the plan stipulated in figure 1.1.

Chapter 8

Conclusion

The principal goal of the project was to devise a method for the “Rapid Prototyping

of High-Performance Concurrent Java Applications.” This was accomplished by au-

tomating the creation of “skeleton” Java implementations from designs specified in the

high-level modelling language, PEPA.

Automating the process means undesirable behaviour such as deadlock will not be

introduced. Also, the performance characteristics of the model, tweaked to deliver the

best results in the Workbench, will be maintained into implementation. In order to

fulfill the goal of the project, two objectives were set.

The first objective was to produce and implement an API for creating and using

PEPA-equivalent constructs in Java. The PEPA2Java API has been specified and is

implemented by the Barebones and Simulator packages. These can run any PEPA

model as a concurrent system.

The second objective was to build an application that could translate PEPA models

into Java. The PEPA2Java Translator produces running “skeleton” implementations

which use the commands specified in the PEPA2Java API to run as PEPA-equivalent

systems.

The evaluation of the finished tools found that all models were able to be trans-

lated successfully into PEPA2Java-compatible Java packages. Compiling and running

these systems with the Simulator package found that in all but two cases, the resulting

systems performed as expected. The two special cases arose as a consequence of the

necessity of replacing genuine race conditions with simulated race conditions. Sug-

85

Chapter 8. Conclusion 86

gestions made to extend and improve the Barebones and Simulator packages would,

if put into effect, enable the implementations to run these final two models correctly.

They will also provide the facility for statistical comparison of the PEPA2Java execu-

tion of a model to the steady-state solution found in the PEPA Workbench in order to

see whether they are truly equivalent.

By automating the process of creating the initial Java implementation from a PEPA

model, the result will maintain the performance and behavioural characteristics of the

model, providing a sound framework for completing the concurrent application.

Not only do these tools ensure the system characterisics remain true to the high-

level model, they remove uncertainty and the potential of introducing human error,

whilst also greatly speeding the process of prototyping and implementation.

Appendix A

The Client-Proxy-Server PEPA Model

Note that all the working models used in this paper have been added to the models

directory and may be recognized by their p2 j prefix.

%a = 1.0;

%b = 2.0;

%c = 3.0;

#Client = (cReq, a).(cRep, T).Client;

#Proxy = (cReq, T).Proxy’;

#Proxy’ = (cRep, b).Proxy + (pReq, a).(pRep, T).(cRep,b).Proxy;

#Server = (pReq, T).(pRep, c).Server;

Client <cReq, cRep> Proxy <pReq, pRep> Server

87

Appendix B

Prototype A Example: the

Client-Proxy-Server System

/*********************************/

/********* Client.java ***********/

/*********************************/

package csp;

import prototypeA.*;

/**

* <p>Title: Client-Proxy-Server Prototype 2</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Edinburgh University</p>

* @author K. J .R. Powell

* @version 1.0

*/

88

Appendix B. Prototype A Example: the Client-Proxy-Server System 89

public class Client extends Component {

Activity proxyRequest, proxyReply;

public Client() {

super(”Client”, true);

}

protected void init () {

proxyRequest = Ref.getActivity(”proxyRequest”);

proxyReply = Ref.getActivity(”proxyReply”);

try {

addMeTo(proxyReply, false);

addMeTo(proxyRequest, false);

} catch (AlreadyInitializedException aie) {

aie.printErrMsg();

}

}

public void loop() {

call(proxyRequest);

call(proxyReply);

}

}

/*********************************/

/********* Proxy.java ************/

/*********************************/

package csp;

import prototypeA.*;

Appendix B. Prototype A Example: the Client-Proxy-Server System 90

/**

* <p>Title: Client-Proxy-Server Prototype 2</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Edinburgh University</p>

* @author K. J .R. Powell

* @version 1.0

*/

public class Proxy extends Component {

Activity proxyRequest, proxyReply, serverRequest, serverReply;

public Proxy() {

super(”Proxy”, true);

}

protected void init () {

proxyRequest = Ref.getActivity(”proxyRequest”);

proxyReply = Ref.getActivity(”proxyReply”);

serverRequest = Ref.getActivity(”serverRequest”);

serverReply = Ref.getActivity(”serverReply”);

try {

addMeTo(proxyRequest, true);

addMeTo(proxyReply, true);

addMeTo(serverRequest, false);

addMeTo(serverReply, false);

} catch (AlreadyInitializedException aie) {

aie.printErrMsg();

}

}

public void loop() {

Appendix B. Prototype A Example: the Client-Proxy-Server System 91

switch (choice(proxyRequest, proxyRequest)) {

case 1:

call(proxyRequest);

call(proxyReply);

break;

case 2:

call(proxyRequest);

call(serverRequest);

call(serverReply);

call(proxyReply);

break;

}

}

}

/*********************************/

/********* Server.java ***********/

/*********************************/

package csp;

import prototypeA.*;

/**

* <p>Title: Client-Proxy-Server Prototype 2</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Edinburgh University</p>

* @author K. J .R. Powell

* @version 1.0

Appendix B. Prototype A Example: the Client-Proxy-Server System 92

*/

public class Server extends Component {

Activity serverRequest, serverReply;

public Server() {

super(”Server”, true);

}

public void init(){

serverRequest = Ref.getActivity(”serverRequest”);

serverReply = Ref.getActivity(”serverReply”);

try {

addMeTo(serverRequest, true);

addMeTo(serverReply, true);

} catch (AlreadyInitializedException aie) {

aie.printErrMsg();

}

}

public void loop() {

call(serverRequest);

call(serverReply);

}

}

/*********************************/

/********** Sim.java *************/

/*********************************/

package csp;

import prototypeA.*;

Appendix B. Prototype A Example: the Client-Proxy-Server System 93

/**

* <p>Title: Client-Proxy-Server Prototype 2</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Edinburgh University</p>

* @author K. J .R. Powell

* @version 1.0

*/

public class Sim extends Simulator {

public static final double rP = 1,

rS = 1;

// Server server;

// Proxy proxy;

// Client client;

public Sim(int debugLevel) {

super(”Client-Proxy-Server System”, debugLevel);

}

public void createComponents() {

new Client();

new Proxy();

new Server();

}

public void createActivities() {

new Activity(”proxyRequest”, Sim.rP);

new Activity(”proxyReply”, Sim.rP);

Appendix B. Prototype A Example: the Client-Proxy-Server System 94

new Activity(”serverRequest”, Sim.rS);

new Activity(”serverReply”, Sim.rS);

}

public static void main(String[] args) {

Sim sim1 = new Sim(Simulator.DEBUG ALL);

// Sim sim1 = new Sim(30, 5);

}

}

Appendix C

Prototype B Example: the

Client-Proxy-Server System

/************************************/

/********** Client Comp.java ********/

/************************************/

package CPS;

import pepa.Pepa2Java.Simulator.*;

/** Skeleton generated by Pepa2Java Translator v.0.1

* Built: 29 August 2002 12:00:18 CEST

* Source: /home/kip/PEPA/jpwb2/models/CPS.pepa

*/

public class Client Comp extends Component {

Rate a Rate = new Rate(”a”, 1.0);

Rate TOP Rate = new Rate();

Activity cReq Activ = new SharedActiv(Sim.cReq Act, this);

Activity cRep Activ = new SharedActiv(Sim.cRep Act, this);

95

Appendix C. Prototype B Example: the Client-Proxy-Server System 96

Client Script client Script = new Client Script();

public Client Comp(String name) {

super(name);

}

public class Client Script implements CompScript {

public CompScript actions () {

cReq Activ.joinAt(a Rate);

cRep Activ.joinAt(TOP Rate);

return client Script;

}

}

}

/************************************/

/********** Proxy Comp.java *********/

/************************************/

package CPS;

import pepa.Pepa2Java.Simulator.*;

/** Skeleton generated by Pepa2Java Translator v.0.1

* Built: 29 August 2002 12:00:18 CEST

* Source: /home/kip/PEPA/jpwb2/models/CPS.pepa

*/

public class Proxy Comp extends Component {

Rate TOP Rate = new Rate();

Rate b Rate = new Rate(”b”, 2.0);

Rate a Rate = new Rate(”a”, 1.0);

Appendix C. Prototype B Example: the Client-Proxy-Server System 97

Activity cReq Activ = new SharedActiv(Sim.cReq Act, this);

Activity cRep Activ = new SharedActiv(Sim.cRep Act, this);

Activity pReq Activ = new SharedActiv(Sim.pReq Act, this);

Activity pRep Activ = new SharedActiv(Sim.pRep Act, this);

Proxy Script proxy Script = new Proxy Script();

Proxy Script proxy Script = new Proxy Script();

public Proxy Comp(String name) {

super(name);

}

public class Proxy Script implements CompScript {

public CompScript actions () {

cReq Activ.joinAt(TOP Rate);

return proxy Script;

}

}

public class Proxy Script implements CompScript {

Activity [] ch Act 0 = {cRep Activ, pReq Activ};

Rate [] ch Rate 0 = {b Rate, a Rate};

public CompScript actions () {

switch(choice(ch Act 0, ch Rate 0)) {

case 0:

cRep Activ.joinAt(b Rate);

return proxy Script;

case 1:

pReq Activ.joinAt(a Rate);

pRep Activ.joinAt(TOP Rate);

cRep Activ.joinAt(b Rate);

return proxy Script;

}

Appendix C. Prototype B Example: the Client-Proxy-Server System 98

throw new Error (”Problem with choice: no valid case returned!”);

}

}

}

/************************************/

/********** Server Comp.java ********/

/************************************/

package CPS;

import pepa.Pepa2Java.Simulator.*;

/** Skeleton generated by Pepa2Java Translator v.0.1

* Built: 29 August 2002 12:00:18 CEST

* Source: /home/kip/PEPA/jpwb2/models/CPS.pepa

*/

public class Server Comp extends Component {

Rate TOP Rate = new Rate();

Rate c Rate = new Rate(”c”, 3.0);

Activity pReq Activ = new SharedActiv(Sim.pReq Act, this);

Activity pRep Activ = new SharedActiv(Sim.pRep Act, this);

Server Script server Script = new Server Script();

public Server Comp(String name) {

super(name);

}

public class Server Script implements CompScript {

public CompScript actions () {

pReq Activ.joinAt(TOP Rate);

Appendix C. Prototype B Example: the Client-Proxy-Server System 99

pRep Activ.joinAt(c Rate);

return server Script;

}

}

}

/************************************/

/************ Sim.java **************/

/************************************/

package CPS;

import pepa.Pepa2Java.Simulator.*;

/** Skeleton generated by Pepa2Java Translator v.0.1

* Built: 29 August 2002 12:00:18 CEST

* Source: /home/kip/PEPA/jpwb2/models/CPS.pepa

*/

public class Sim extends PepaSystem {

/* Shared Actions */

static Action cReq Act;

static Action cRep Act;

static Action pReq Act;

static Action pRep Act;

/* Components */

static Client Comp client i0 Comp;

static Proxy Comp proxy i0 Comp;

Appendix C. Prototype B Example: the Client-Proxy-Server System 100

static Server Comp server i0 Comp;

public Sim() {

super(”GenSkel.CPS”, 2, 1);

}

public void createActions() {

cReq Act = new Action(”cReq”);

cRep Act = new Action(”cRep”);

pReq Act = new Action(”pReq”);

pRep Act = new Action(”pRep”);

}

public void initSynchs() {

cReq Act.setSynch(SSNode.AND(Sim.client i0 Comp.cReq Activ,

Sim.proxy i0 Comp.cReq Activ));

cRep Act.setSynch(SSNode.AND(Sim.client i0 Comp.cRep Activ,

Sim.proxy i0 Comp.cRep Activ));

pReq Act.setSynch(SSNode.AND(Sim.proxy i0 Comp.pReq Activ,

Sim.server i0 Comp.pReq Activ));

pRep Act.setSynch(SSNode.AND(Sim.proxy i0 Comp.pRep Activ,

Sim.server i0 Comp.pRep Activ));

}

public void createComps() {

client i0 Comp = new Client Comp(”client i0 Comp”);

client i0 Comp.setStartScript(client i0 Comp.client Script);

proxy i0 Comp = new Proxy Comp(”proxy i0 Comp”);

proxy i0 Comp.setStartScript(proxy i0 Comp.proxy Script);

server i0 Comp = new Server Comp(”server i0 Comp”);

server i0 Comp.setStartScript(server i0 Comp.server Script);

Appendix C. Prototype B Example: the Client-Proxy-Server System 101

}

public static void main(String[] args) {

Sim sim = new Sim();

}

}

Appendix D

Default Constants Defined in the

Translator

API-implementing packages:

Simulator package "pepa.Pepa2Java.Simulator.*"

Barebones package "pepa.Pepa2Java.Bare.*"

For model output:

PepaSystem-extending Class: "Sim"

Default output path "./models/p2jgens/"

Write output to disk: true

Overwrite existing files: false

Class and Object identifiers:

Action suffix: "_Act"

Activity suffix: "_Activ"

Component suffix: "_Comp"

CompScript suffix: "_Script"

Rate suffix: "_Rate"

102

Appendix D. Default Constants Defined in the Translator 103

Choice Switch-block variables:

Choice Activity array prefix: "ch_Act_"

Choice Rate array prefix: "ch_Rate_"

For creating and updating Makefiles:

Default "makefile" name "Makefile"

Java compiler command "javac"

Java runtime command "java"

Workbench $HOME "../../";

(from model subdirectory)

Classpath:

"$HOME:$HOME/pepa/Pepa2Java/lib/distributions.jar:."

Appendix E

The Modified PC LAN 4 Model

%lambda=0.1;

%omega=3;

%mu=1;

%sigma=10;

#PR1 = (arrive, lambda).(request1, sigma).PR1;

#PC10 = (request1, infty).(serve1,infty).PC10 +

(walkon2,infty).PC10;

#PR2 = (arrive, lambda).(request2, sigma).PR2;

#PC20 = (request2, infty).(serve2,infty).PC20 +

(walkon3,infty).PC20;

#PR3 = (arrive, lambda).(request3, sigma).PR3;

#PC30 = (request3, infty).(serve3,infty).PC30 +

(walkon4,infty).PC30;

#PR4 = (arrive, lambda).(request4, sigma).PR4;

#PC40 = (request4, infty).(serve4,infty).PC40 +

(walkon1,infty).PC40;

104

Appendix E. The Modified PC LAN 4 Model 105

#S1 = (walkon2,omega).S2 + (serve1,mu).(walk2,omega).S2;

#S2 = (walkon3,omega).S3 + (serve2,mu).(walk3,omega).S3;

#S3 = (walkon4,omega).S4 + (serve3,mu).(walk4,omega).S4;

#S4 = (walkon1,omega).S1 + (serve4,mu).(walk1,omega).S1;

((PC10 <request1> PR1) <>

(PC20 <request2> PR2) <>

(PC30 <request3> PR3) <>

(PC40 <request4> PR4))

<walkon1,walkon2,walkon3,walkon4,

serve1,serve2,serve3,serve4> S1

Appendix F

Model Evaluation Results

The following results are taken from translating, compiling and running the models in

the jpwb2/models directory.

Badge.pepa:

********* SIM RESULTS ********

GenSkel.badge

Total sleeptime: 141.798 seconds

Actions:

reg14 sleepTime: 10.669 secs (7.5240836 %) Runs: 77(AVG 0.1385584 secs/run)

reg15 sleepTime: 17.235 secs (12.1546143 %) Runs: 96(AVG 0.1795312 secs/run)

reg16 sleepTime: 8.579 secs (6.0501559 %) Runs: 37(AVG 0.2318649 secs/run)

rep14 sleepTime: 6.709 secs (4.7313784 %) Runs: 77(AVG 0.0871299 secs/run)

rep15 sleepTime: 7.569 secs (5.337875 %) Runs: 96(AVG 0.0788438 secs/run)

rep16 sleepTime: 3.284 secs (2.3159706 %) Runs: 37(AVG 0.0887568 secs/run)

Indiv. Activities:

(p14_i0_Comp.move15,m) sleepTime: 42.094 secs (29.6858912 %) Runs: 104(AVG 0.40475 secs/run)

(p14_i0_Comp.move14,m) sleepTime: 24.135 secs (17.0206914 %) Runs: 61(AVG 0.3956557 secs/run)

(p14_i0_Comp.move16,m) sleepTime: 21.524 secs (15.1793396 %) Runs: 43(AVG 0.5005581 secs/run)

Big.pepa

********* SIM RESULTS ********

GenSkel.big

Total sleeptime: 199.154 seconds

Actions:

bid_in sleepTime: 5.11 secs (2.5658536 %) Runs: 19(AVG 0.2689474 secs/run)

preq_in sleepTime: 6.965 secs (3.4972936 %) Runs: 22(AVG 0.3165909 secs/run)

forward_accept sleepTime: 19.142 secs (9.6116573 %) Runs: 13(AVG 1.4724615 secs/run)

106

Appendix F. Model Evaluation Results 107

forward_reject sleepTime: 8.542 secs (4.2891431 %) Runs: 4(AVG 2.1355 secs/run)

forward_presp sleepTime: 17.274 secs (8.6736897 %) Runs: 20(AVG 0.8637 secs/run)

bid’_in sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

preq’_in sleepTime: 0.214 secs (0.1074545 %) Runs: 1(AVG 0.214 secs/run)

forward_accept’ sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

forward_reject’ sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

forward_presp’ sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

accept_s sleepTime: 14.305 secs (7.1828836 %) Runs: 8(AVG 1.788125 secs/run)

reject_s sleepTime: 5.563 secs (2.7933157 %) Runs: 4(AVG 1.39075 secs/run)

presp_s sleepTime: 22.077 secs (11.0853912 %) Runs: 16(AVG 1.3798125 secs/run)

forward_bid sleepTime: 27.16 secs (13.6376874 %) Runs: 12(AVG 2.2633333 secs/run)

forward_preq sleepTime: 31.837 secs (15.9861213 %) Runs: 16(AVG 1.9898125 secs/run)

forward_accept_sc sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

forward_reject_sc sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

forward_presp_sc sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

forward_bid_nc sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

forward_preq_nc sleepTime: 0.0 secs (0.0 %) Runs: 0(AVG NaN secs/run)

accept_sc sleepTime: 9.665 secs (4.8530283 %) Runs: 6(AVG 1.6108333 secs/run)

reject_sc sleepTime: 8.198 secs (4.1164124 %) Runs: 1(AVG 8.198 secs/run)

presp_sc sleepTime: 4.84 secs (2.4302801 %) Runs: 4(AVG 1.21 secs/run)

forward_bid_cs sleepTime: 16.241 secs (8.1549956 %) Runs: 7(AVG 2.3201429 secs/run)

forward_preq_cs sleepTime: 2.021 secs (1.0147926 %) Runs: 4(AVG 0.50525 secs/run)Indiv. Activities:

bug1.pepa

********* SIM RESULTS ********

GenSkel.canon1

Total sleeptime: 235.49 seconds

Actions:

a sleepTime: 92.18 secs (39.1439127 %) Runs: 45(AVG 2.0484444 secs/run)

Indiv. Activities:

(a_i0_Comp.b,r) sleepTime: 46.83 secs (19.8861947 %) Runs: 45(AVG 1.0406667 secs/run)

(a_i0_Comp.c,s) sleepTime: 25.261 secs (10.7269948 %) Runs: 44(AVG 0.5741136 secs/run)

(b_i0_Comp.f,m) sleepTime: 35.625 secs (15.1280309 %) Runs: 22(AVG 1.6193182 secs/run)

(b_i0_Comp.g,m) sleepTime: 35.594 secs (15.1148669 %) Runs: 23(AVG 1.5475652 secs/run)

bug2.pepa

********* SIM RESULTS ********

GenSkel.bug2

Total sleeptime: 127.904 seconds

Actions:

a sleepTime: 46.985 secs (36.7345822 %) Runs: 25(AVG 1.8794 secs/run)

Indiv. Activities:

(a_i0_Comp.b,r) sleepTime: 25.381 secs (19.8437891 %) Runs: 25(AVG 1.01524 secs/run)

(a_i0_Comp.c,s) sleepTime: 13.133 secs (10.2678571 %) Runs: 24(AVG 0.5472083 secs/run)

Appendix F. Model Evaluation Results 108

(b_i0_Comp.f,m) sleepTime: 27.026 secs (21.1299099 %) Runs: 18(AVG 1.5014444 secs/run)

(b_i0_Comp.g,m) sleepTime: 15.379 secs (12.0238616 %) Runs: 7(AVG 2.197 secs/run)

canon1.pepa

********* SIM RESULTS ********

GenSkel.canon1

Total sleeptime: 151.717 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,r) sleepTime: 151.717 secs (100.0 %) Runs: 62(AVG 2.4470484 secs/run)

canon2.pep

********* SIM RESULTS ********

GenSkel.canon2

Total sleeptime: 504.129 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,m) sleepTime: 137.316 secs (27.2382664 %) Runs: 290(AVG 0.4735034 secs/run)

(a_i0_Comp.b,n) sleepTime: 116.791 secs (23.1668878 %) Runs: 290(AVG 0.4027276 secs/run)

(b_i0_Comp.c,s) sleepTime: 131.918 secs (26.1675087 %) Runs: 422(AVG 0.3126019 secs/run)

(b_i0_Comp.d,t) sleepTime: 118.104 secs (23.4273371 %) Runs: 422(AVG 0.2798673 secs/run)

canon3.pepa

********* SIM RESULTS ********

GenSkel.canon3

Total sleeptime: 389.188 seconds

Actions:

b sleepTime: 92.057 secs (23.653607 %) Runs: 218(AVG 0.4222798 secs/run)

Indiv. Activities:

(a_i0_Comp.a,m) sleepTime: 104.435 secs (26.834075 %) Runs: 219(AVG 0.4768721 secs/run)

(b_i0_Comp.c,s) sleepTime: 106.461 secs (27.3546461 %) Runs: 306(AVG 0.3479118 secs/run)

(b_i0_Comp.d,t) sleepTime: 86.235 secs (22.1576719 %) Runs: 306(AVG 0.2818137 secs/run)

canon4.pepa

********* SIM RESULTS ********

GenSkel.canon4

Total sleeptime: 118.249 seconds

Actions:

a sleepTime: 46.773 secs (39.5546685 %) Runs: 34(AVG 1.3756765 secs/run)

b sleepTime: 37.541 secs (31.7474144 %) Runs: 17(AVG 2.2082941 secs/run)

Appendix F. Model Evaluation Results 109

c sleepTime: 33.935 secs (28.6979171 %) Runs: 17(AVG 1.9961765 secs/run)

Indiv. Activities:

deadlock.pepa

********* SIM RESULTS ********

GenSkel.deadlock

Total sleeptime: 1.771 seconds

Actions:

a sleepTime: 0.4 secs (22.5861095 %) Runs: 1(AVG 0.4 secs/run)

b sleepTime: 1.371 secs (77.4138905 %) Runs: 2(AVG 0.6855 secs/run)

Indiv. Activities:

*** java*.pepa -- skipped

maple-mod.pepa : K.P. added rates (all 1.0)as they were referred to

but undefined.

********* SIM RESULTS ********

GenSkel.maple_mod

Total sleeptime: 148.965 seconds

Actions:

a sleepTime: 78.08 secs (52.4149968 %) Runs: 44(AVG 1.7745455 secs/run)

b sleepTime: 26.949 secs (18.0908267 %) Runs: 22(AVG 1.2249545 secs/run)

c sleepTime: 43.936 secs (29.4941765 %) Runs: 21(AVG 2.0921905 secs/run)

Indiv. Activities:

p2j_bigchoice.pepa

********* SIM RESULTS ********

GenSkel.p2j_bigchoice

Total sleeptime: 166.673 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.m,1.0) sleepTime: 28.88 secs (17.3273416 %) Runs: 13(AVG 2.2215385 secs/run)

(a_i0_Comp.n,2.0) sleepTime: 19.539 secs (11.7229545 %) Runs: 18(AVG 1.0855 secs/run)

(a_i0_Comp.o,3.0) sleepTime: 14.671 secs (8.8022655 %) Runs: 23(AVG 0.6378696 secs/run)

(a_i0_Comp.x,0.5) sleepTime: 74.183 secs (44.5081087 %) Runs: 13(AVG 5.7063846 secs/run)

(a_i0_Comp.y,0.5) sleepTime: 29.4 secs (17.6393297 %) Runs: 10(AVG 2.94 secs/run)

p2j_choiceyielding.pepa -- two sets of results

Appendix F. Model Evaluation Results 110

first with choicetime = 100 and speed = normal.

********* SIM RESULTS ********

GenSkel.p2j_choiceyielding

Total sleeptime: 641.919 seconds1414

Actions:

m sleepTime: 20.155 secs (3.1398042 %) Runs: 14(AVG 1.4396429 secs/run)

n sleepTime: 302.401 secs (47.1089031 %) Runs: 148(AVG 2.04325 secs/run)

Indiv. Activities:

(b_i0_Comp.i,1.0) sleepTime: 319.363 secs (49.7512926 %) Runs: 166(AVG 1.9238735 secs/run)

p2j_choiceyielding.pepa -- two sets of results

second with choicetime = 500 and speed = fastest.

********* SIM RESULTS ********

GenSkel.p2j_choiceyielding

Total sleeptime: 339.335 seconds

Actions:

m sleepTime: 79.142 secs (23.3226752 %) Runs: 327(AVG 0.2420245 secs/run)

n sleepTime: 114.75 secs (33.8161404 %) Runs: 498(AVG 0.2304217 secs/run)

Indiv. Activities:

(b_i0_Comp.i,1.0) sleepTime: 145.443 secs (42.8611844 %) Runs: 465(AVG 0.3127806 secs/run)

p2j_PC-LAN4-mod.pepa

********* SIM RESULTS ********

GenSkel.p2j_PC_LAN4_mod

Total sleeptime: 944.303 seconds

Actions:

request1 sleepTime: 0.717 secs (0.075929 %) Runs: 8(AVG 0.089625 secs/run)

serve1 sleepTime: 15.272 secs (1.6172775 %) Runs: 8(AVG 1.909 secs/run)

walkon2 sleepTime: 20.564 secs (2.1776908 %) Runs: 33(AVG 0.6231515 secs/run)

request2 sleepTime: 0.355 secs (0.0375939 %) Runs: 3(AVG 0.1183333 secs/run)

serve2 sleepTime: 2.374 secs (0.2514024 %) Runs: 3(AVG 0.7913333 secs/run)

walkon3 sleepTime: 24.473 secs (2.591647 %) Runs: 38(AVG 0.6440263 secs/run)

request3 sleepTime: 3.022 secs (0.3200244 %) Runs: 10(AVG 0.3022 secs/run)

serve3 sleepTime: 13.605 secs (1.4407452 %) Runs: 10(AVG 1.3605 secs/run)

walkon4 sleepTime: 20.915 secs (2.2148611 %) Runs: 30(AVG 0.6971667 secs/run)

request4 sleepTime: 1.943 secs (0.2057602 %) Runs: 12(AVG 0.1619167 secs/run)

serve4 sleepTime: 38.393 secs (4.0657501 %) Runs: 12(AVG 3.1994167 secs/run)

walkon1 sleepTime: 20.094 secs (2.1279187 %) Runs: 28(AVG 0.7176429 secs/run)

Indiv. Activities:

(pR1_i0_Comp.arrive,lambda) sleepTime: 199.215 secs (21.0965125 %) Runs: 9(AVG 22.135 secs/run)

(pR2_i0_Comp.arrive,lambda) sleepTime: 200.32 secs (21.21353 %) Runs: 4(AVG 50.08 secs/run)

Appendix F. Model Evaluation Results 111

(pR3_i0_Comp.arrive,lambda) sleepTime: 187.686 secs (19.875612 %) Runs: 11(AVG 17.0623636 secs/run)

(pR4_i0_Comp.arrive,lambda) sleepTime: 177.873 secs (18.8364328 %) Runs: 13(AVG 13.6825385 secs/run)

(s1_i0_Comp.walk2,omega) sleepTime: 6.881 secs (0.7286856 %) Runs: 8(AVG 0.860125 secs/run)

(s1_i0_Comp.walk3,omega) sleepTime: 1.653 secs (0.1750497 %) Runs: 3(AVG 0.551 secs/run)

(s1_i0_Comp.walk4,omega) sleepTime: 4.798 secs (0.5080996 %) Runs: 10(AVG 0.4798 secs/run)

(s1_i0_Comp.walk1,omega) sleepTime: 4.15 secs (0.4394776 %) Runs: 12(AVG 0.3458333 secs/run)

p2j_Server_3Client.pepa

********* SIM RESULTS ********

GenSkel.p2j_Server_3Client

Total sleeptime: 1517.454 seconds

Actions:

req sleepTime: 692.002 secs (45.6028321 %) Runs: 829(AVG 0.8347431 secs/run)

rep sleepTime: 825.452 secs (54.3971679 %) Runs: 828(AVG 0.9969227 secs/run)

Indiv. Activities:

papmmodel.pepa

********* SIM RESULTS ********

GenSkel.papmmodel

Total sleeptime: 2976.565 seconds

Actions:

reqlock11 sleepTime: 11.459 secs (0.384974 %) Runs: 45(AVG 0.2546444 secs/run)

writelock11 sleepTime: 9.242 secs (0.3104921 %) Runs: 44(AVG 0.2100455 secs/run)

reqlock12 sleepTime: 4.381 secs (0.1471831 %) Runs: 19(AVG 0.2305789 secs/run)

writelock12 sleepTime: 3.549 secs (0.1192314 %) Runs: 19(AVG 0.1867895 secs/run)

reqlock13 sleepTime: 3.252 secs (0.1092535 %) Runs: 16(AVG 0.20325 secs/run)

writelock13 sleepTime: 5.471 secs (0.1838025 %) Runs: 16(AVG 0.3419375 secs/run)

reqlock21 sleepTime: 11.011 secs (0.369923 %) Runs: 39(AVG 0.2823333 secs/run)

writelock21 sleepTime: 6.476 secs (0.2175662 %) Runs: 39(AVG 0.1660513 secs/run)

reqlock22 sleepTime: 8.239 secs (0.2767956 %) Runs: 37(AVG 0.2226757 secs/run)

writelock22 sleepTime: 12.037 secs (0.4043923 %) Runs: 37(AVG 0.3253243 secs/run)

reqlock23 sleepTime: 5.444 secs (0.1828954 %) Runs: 19(AVG 0.2865263 secs/run)

writelock23 sleepTime: 4.731 secs (0.1589416 %) Runs: 19(AVG 0.249 secs/run)

reqlock31 sleepTime: 2.056 secs (0.0690729 %) Runs: 8(AVG 0.257 secs/run)

writelock31 sleepTime: 2.49 secs (0.0836535 %) Runs: 8(AVG 0.31125 secs/run)

reqlock32 sleepTime: 2.873 secs (0.0965207 %) Runs: 9(AVG 0.3192222 secs/run)

writelock32 sleepTime: 2.401 secs (0.0806634 %) Runs: 9(AVG 0.2667778 secs/run)

reqlock33 sleepTime: 1.625 secs (0.0545931 %) Runs: 9(AVG 0.1805556 secs/run)

writelock33 sleepTime: 2.145 secs (0.0720629 %) Runs: 9(AVG 0.2383333 secs/run)

Indiv. Activities:

(txnc1_i0_Comp.think1,t1) sleepTime: 822.015 secs (27.6162288 %) Runs: 72(AVG 11.416875 secs/run)

(txnc1_i0_Comp.fork,w1xr11) sleepTime: 72.565 secs (2.4378772 %) Runs: 151(AVG 0.4805629 secs/run)

(txnc1_i0_Comp.finish,a11xonemq) sleepTime: 27.5 secs (0.9238837 %) Runs: 150(AVG 0.1833333 secs/run)

(txnc1_i0_Comp.reqlock1r,rl1r) sleepTime: 18.025 secs (0.6055638 %) Runs: 71(AVG 0.2538732 secs/run)

Appendix F. Model Evaluation Results 112

(txnc1_i0_Comp.readlock,r1) sleepTime: 18.709 secs (0.6285433 %) Runs: 71(AVG 0.263507 secs/run)

(txnc2_i0_Comp.think2,t2) sleepTime: 469.267 secs (15.7653873 %) Runs: 118(AVG 3.976839 secs/run)

(txnc2_i0_Comp.fork,w2xrr2) sleepTime: 196.637 secs (6.6061719 %) Runs: 380(AVG 0.5174658 secs/run)

(txnc2_i0_Comp.finish,a2rxq) sleepTime: 70.859 secs (2.3805628 %) Runs: 379(AVG 0.1869631 secs/run)

(txnc2_i0_Comp.reqlock2r,rl2r) sleepTime: 69.625 secs (2.3391056 %) Runs: 285(AVG 0.2442982 secs/run)

(txnc2_i0_Comp.readlock,r2) sleepTime: 73.355 secs (2.4644179 %) Runs: 285(AVG 0.257386 secs/run)

(txnc3_i0_Comp.think3,t3) sleepTime: 887.557 secs (29.8181629 %) Runs: 21(AVG 42.264619 secs/run)

(txnc3_i0_Comp.fork,w3xr31) sleepTime: 94.145 secs (3.162874 %) Runs: 104(AVG 0.9052404 secs/run)

(txnc3_i0_Comp.finish,a31xonemq) sleepTime: 20.961 secs (0.704201 %) Runs: 104(AVG 0.2015481 secs/run)

(txnc3_i0_Comp.reqlock3r,rl3r) sleepTime: 17.848 secs (0.5996173 %) Runs: 78(AVG 0.2288205 secs/run)

(txnc3_i0_Comp.readlock,r3) sleepTime: 18.615 secs (0.6253853 %) Runs: 78(AVG 0.2386538 secs/run)

papmmodelsmall.pepa

********* SIM RESULTS ********

GenSkel.papmmodelsmall

Total sleeptime: 2400.003 seconds

Actions:

reqlock11 sleepTime: 29.18 secs (1.2158318 %) Runs: 112(AVG 0.2605357 secs/run)

writelock11 sleepTime: 29.209 secs (1.2170401 %) Runs: 112(AVG 0.2607946 secs/run)

reqlock21 sleepTime: 53.016 secs (2.2089972 %) Runs: 217(AVG 0.2443134 secs/run)

writelock21 sleepTime: 51.7 secs (2.154164 %) Runs: 217(AVG 0.2382488 secs/run)

reqlock31 sleepTime: 14.884 secs (0.6201659 %) Runs: 63(AVG 0.236254 secs/run)

writelock31 sleepTime: 16.613 secs (0.6922075 %) Runs: 63(AVG 0.2636984 secs/run)

Indiv. Activities:

(txnc1_i0_Comp.think1,t1) sleepTime: 676.594 secs (28.1913814 %) Runs: 65(AVG 10.4091385 secs/run)

(txnc1_i0_Comp.fork,w1xr11) sleepTime: 48.949 secs (2.0395391 %) Runs: 112(AVG 0.4370446 secs/run)

(txnc1_i0_Comp.finish,a11xonemq) sleepTime: 22.601 secs (0.9417072 %) Runs: 112(AVG 0.2017946 secs/run)

(txnc2_i0_Comp.think2,t2) sleepTime: 272.293 secs (11.3455275 %) Runs: 80(AVG 3.4036625 secs/run)

(txnc2_i0_Comp.fork,w2xr21) sleepTime: 347.694 secs (14.4872319 %) Runs: 217(AVG 1.6022765 secs/run)

(txnc2_i0_Comp.finish,a21xonemq) sleepTime: 44.083 secs (1.8367894 %) Runs: 217(AVG 0.2031475 secs/run)

(txnc3_i0_Comp.think3,t3) sleepTime: 580.623 secs (24.1925948 %) Runs: 9(AVG 64.5136667 secs/run)

(txnc3_i0_Comp.fork,w3xr31) sleepTime: 199.65 secs (8.3187396 %) Runs: 63(AVG 3.1690476 secs/run)

(txnc3_i0_Comp.finish,a31xonemq) sleepTime: 12.914 secs (0.5380827 %) Runs: 63(AVG 0.2049841 secs/run)

papmmodel-smaller-exp.pepa

********* SIM RESULTS ********

GenSkel.papmmodel_smaller_exp

Total sleeptime: 1675.943 seconds

Actions:

reqlock11 sleepTime: 11.882 secs (0.708974 %) Runs: 53(AVG 0.2241887 secs/run)

writelock11 sleepTime: 13.319 secs (0.7947168 %) Runs: 53(AVG 0.2513019 secs/run)

reqlock12 sleepTime: 4.657 secs (0.2778734 %) Runs: 23(AVG 0.2024783 secs/run)

writelock12 sleepTime: 8.524 secs (0.5086092 %) Runs: 23(AVG 0.3706087 secs/run)

reqlock21 sleepTime: 8.211 secs (0.4899331 %) Runs: 30(AVG 0.2737 secs/run)

Appendix F. Model Evaluation Results 113

writelock21 sleepTime: 6.898 secs (0.4115892 %) Runs: 30(AVG 0.2299333 secs/run)

reqlock22 sleepTime: 6.437 secs (0.3840823 %) Runs: 29(AVG 0.2219655 secs/run)

writelock22 sleepTime: 8.242 secs (0.4917828 %) Runs: 29(AVG 0.2842069 secs/run)

Indiv. Activities:

(txnc1_i0_Comp.think1,t1) sleepTime: 671.494 secs (40.0666371 %) Runs: 69(AVG 9.7317971 secs/run)

(txnc1_i0_Comp.fork,w1xrr1) sleepTime: 74.486 secs (4.4444232 %) Runs: 168(AVG 0.443369 secs/run)

(txnc1_i0_Comp.finish,a1rxonemq) sleepTime: 31.2 secs (1.8616385 %) Runs: 168(AVG 0.1857143 secs/run)

(txnc1_i0_Comp.reqlock1r,rl1r) sleepTime: 22.553 secs (1.3456902 %) Runs: 92(AVG 0.2451413 secs/run)

(txnc1_i0_Comp.readlock,r1) sleepTime: 20.308 secs (1.2117357 %) Runs: 92(AVG 0.2207391 secs/run)

(txnc2_i0_Comp.think2,t2) sleepTime: 445.238 secs (26.5664166 %) Runs: 101(AVG 4.408297 secs/run)

(txnc2_i0_Comp.fork,w2xrr2) sleepTime: 167.083 secs (9.9694918 %) Runs: 312(AVG 0.5355224 secs/run)

(txnc2_i0_Comp.finish,a2rxonemq) sleepTime: 59.238 secs (3.5346071 %) Runs: 312(AVG 0.1898654 secs/run)

(txnc2_i0_Comp.reqlock2r,rl2r) sleepTime: 54.705 secs (3.2641325 %) Runs: 253(AVG 0.2162253 secs/run)

(txnc2_i0_Comp.readlock,r2) sleepTime: 61.468 secs (3.6676665 %) Runs: 253(AVG 0.2429565 secs/run)

tomp11.pepa

********* SIM RESULTS ********

GenSkel.tomp11

Total sleeptime: 1110.276 seconds

Actions:

get1 sleepTime: 56.881 secs (5.1231406 %) Runs: 217(AVG 0.2621244 secs/run)

use sleepTime: 557.138 secs (50.1801354 %) Runs: 435(AVG 1.280777 secs/run)

rel sleepTime: 126.014 secs (11.3497905 %) Runs: 434(AVG 0.2903548 secs/run)

get2 sleepTime: 59.103 secs (5.323271 %) Runs: 218(AVG 0.2711147 secs/run)

Indiv. Activities:

(p1_i0_Comp.think,lambda1) sleepTime: 93.792 secs (8.4476292 %) Runs: 218(AVG 0.4302385 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 217.348 secs (19.5760333 %) Runs: 218(AVG 0.9970092 secs/run)

tomp111.pepa

********* SIM RESULTS ********

GenSkel.tomp111

Total sleeptime: 1597.932 seconds

Actions:

get1 sleepTime: 54.598 secs (3.4167912 %) Runs: 202(AVG 0.2702871 secs/run)

use sleepTime: 316.467 secs (19.8047852 %) Runs: 786(AVG 0.4026298 secs/run)

rel sleepTime: 227.13 secs (14.2139966 %) Runs: 786(AVG 0.2889695 secs/run)

get2 sleepTime: 68.465 secs (4.2846003 %) Runs: 284(AVG 0.2410739 secs/run)

get3 sleepTime: 74.908 secs (4.687809 %) Runs: 300(AVG 0.2496933 secs/run)

Indiv. Activities:

(p1_i0_Comp.think,lambda1) sleepTime: 393.418 secs (24.6204469 %) Runs: 203(AVG 1.9380197 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 255.933 secs (16.0165138 %) Runs: 285(AVG 0.8980105 secs/run)

(p3_i0_Comp.think,lambda3) sleepTime: 207.013 secs (12.9550569 %) Runs: 301(AVG 0.6877508 secs/run)

tomp12.pepa

Appendix F. Model Evaluation Results 114

********* SIM RESULTS ********

GenSkel.tomp12

Total sleeptime: 1080.811 seconds

Actions:

get1 sleepTime: 55.259 secs (5.1127348 %) Runs: 218(AVG 0.2534817 secs/run)

use sleepTime: 551.965 secs (51.0695209 %) Runs: 437(AVG 1.2630778 secs/run)

rel sleepTime: 122.218 secs (11.30799 %) Runs: 436(AVG 0.2803165 secs/run)

get2 sleepTime: 52.528 secs (4.8600542 %) Runs: 219(AVG 0.2398539 secs/run)

Indiv. Activities:

(p1_i0_Comp.think,lambda1) sleepTime: 2.902 secs (0.2685021 %) Runs: 9(AVG 0.3224444 secs/run)

(p1_i1_Comp.think,lambda1) sleepTime: 74.876 secs (6.9277607 %) Runs: 211(AVG 0.3548626 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 221.063 secs (20.4534373 %) Runs: 219(AVG 1.0094201 secs/run)

tomp221.pepa

********* SIM RESULTS ********

GenSkel.tomp221

Total sleeptime: 2954.024 seconds

Actions:

get1 sleepTime: 92.134 secs (3.118932 %) Runs: 386(AVG 0.2386891 secs/run)

use sleepTime: 566.574 secs (19.1797358 %) Runs: 1409(AVG 0.4021107 secs/run)

rel sleepTime: 396.82 secs (13.4332016 %) Runs: 1408(AVG 0.2818324 secs/run)

get2 sleepTime: 119.724 secs (4.0529122 %) Runs: 511(AVG 0.2342935 secs/run)

get3 sleepTime: 129.078 secs (4.369565 %) Runs: 512(AVG 0.2521055 secs/run)

Indiv. Activities:

(p1_i0_Comp.think,lambda1) sleepTime: 271.142 secs (9.1787338 %) Runs: 123(AVG 2.2044065 secs/run)

(p1_i1_Comp.think,lambda1) sleepTime: 511.888 secs (17.3284983 %) Runs: 265(AVG 1.9316528 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 114.281 secs (3.8686551 %) Runs: 129(AVG 0.8858992 secs/run)

(p2_i1_Comp.think,lambda2) sleepTime: 411.184 secs (13.9194536 %) Runs: 384(AVG 1.0707917 secs/run)

(p3_i0_Comp.think,lambda3) sleepTime: 341.199 secs (11.5503124 %) Runs: 512(AVG 0.6664043 secs/run)

tomp333.pepa

********* SIM RESULTS ********

GenSkel.tomp333

Total sleeptime: 1846.95 seconds

Actions:

get1 sleepTime: 68.134 secs (3.6890008 %) Runs: 324(AVG 0.2102901 secs/run)

use sleepTime: 355.151 secs (19.2290533 %) Runs: 886(AVG 0.4008476 secs/run)

rel sleepTime: 248.436 secs (13.4511492 %) Runs: 885(AVG 0.2807186 secs/run)

get2 sleepTime: 27.177 secs (1.4714529 %) Runs: 121(AVG 0.2246033 secs/run)

get3 sleepTime: 116.976 secs (6.3334687 %) Runs: 441(AVG 0.2652517 secs/run)

Indiv. Activities:

Appendix F. Model Evaluation Results 115

(p1_i0_Comp.think,lambda1) sleepTime: 54.973 secs (2.9764206 %) Runs: 34(AVG 1.6168529 secs/run)

(p1_i1_Comp.think,lambda1) sleepTime: 216.597 secs (11.7272801 %) Runs: 120(AVG 1.804975 secs/run)

(p1_i2_Comp.think,lambda1) sleepTime: 362.521 secs (19.6280896 %) Runs: 172(AVG 2.1076802 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 1.196 secs (0.0647554 %) Runs: 2(AVG 0.598 secs/run)

(p2_i1_Comp.think,lambda2) sleepTime: 28.217 secs (1.527762 %) Runs: 29(AVG 0.973 secs/run)

(p2_i2_Comp.think,lambda2) sleepTime: 81.416 secs (4.4081323 %) Runs: 93(AVG 0.8754409 secs/run)

(p3_i0_Comp.think,lambda3) sleepTime: 2.21 secs (0.1196567 %) Runs: 5(AVG 0.442 secs/run)

(p3_i1_Comp.think,lambda3) sleepTime: 44.028 secs (2.383822 %) Runs: 71(AVG 0.6201127 secs/run)

(p3_i2_Comp.think,lambda3) sleepTime: 239.918 secs (12.9899564 %) Runs: 368(AVG 0.6519511 secs/run)

tomp433.pepa

********* SIM RESULTS ********

GenSkel.tomp433

Total sleeptime: 1892.025 seconds

Actions:

get1 sleepTime: 69.039 secs (3.6489476 %) Runs: 302(AVG 0.228606 secs/run)

use sleepTime: 346.353 secs (18.305942 %) Runs: 888(AVG 0.3900372 secs/run)

rel sleepTime: 247.468 secs (13.0795312 %) Runs: 888(AVG 0.2786802 secs/run)

get2 sleepTime: 53.165 secs (2.8099523 %) Runs: 221(AVG 0.2405656 secs/run)

get3 sleepTime: 88.314 secs (4.6676973 %) Runs: 366(AVG 0.2412951 secs/run)

Indiv. Activities:

(p1_i0_Comp.think,lambda1) sleepTime: 17.787 secs (0.9401039 %) Runs: 10(AVG 1.7787 secs/run)

(p1_i1_Comp.think,lambda1) sleepTime: 83.844 secs (4.4314425 %) Runs: 39(AVG 2.1498462 secs/run)

(p1_i2_Comp.think,lambda1) sleepTime: 187.636 secs (9.9172051 %) Runs: 100(AVG 1.87636 secs/run)

(p1_i3_Comp.think,lambda1) sleepTime: 338.937 secs (17.9139811 %) Runs: 157(AVG 2.1588344 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 8.988 secs (0.4750466 %) Runs: 5(AVG 1.7976 secs/run)

(p2_i1_Comp.think,lambda2) sleepTime: 54.511 secs (2.881093 %) Runs: 55(AVG 0.9911091 secs/run)

(p2_i2_Comp.think,lambda2) sleepTime: 154.33 secs (8.156869 %) Runs: 163(AVG 0.9468098 secs/run)

(p3_i0_Comp.think,lambda3) sleepTime: 9.232 secs (0.4879428 %) Runs: 5(AVG 1.8464 secs/run)

(p3_i1_Comp.think,lambda3) sleepTime: 35.921 secs (1.8985479 %) Runs: 63(AVG 0.5701746 secs/run)

(p3_i2_Comp.think,lambda3) sleepTime: 196.5 secs (10.3856979 %) Runs: 301(AVG 0.6528239 secs/run)

tomp444.pepa

********* SIM RESULTS ********

GenSkel.tomp444

Total sleeptime: 347.86 seconds

Actions:

get1 sleepTime: 2.964 secs (0.8520669 %) Runs: 343(AVG 0.0086414 secs/run)

use sleepTime: 66.025 secs (18.9803369 %) Runs: 1006(AVG 0.0656312 secs/run)

rel sleepTime: 52.026 secs (14.9560168 %) Runs: 1006(AVG 0.0517157 secs/run)

get2 sleepTime: 2.982 secs (0.8572414 %) Runs: 335(AVG 0.0089015 secs/run)

get3 sleepTime: 2.739 secs (0.7873857 %) Runs: 328(AVG 0.0083506 secs/run)

Indiv. Activities:

(p1_i0_Comp.think,lambda1) sleepTime: 26.965 secs (7.7516817 %) Runs: 74(AVG 0.3643919 secs/run)

Appendix F. Model Evaluation Results 116

(p1_i1_Comp.think,lambda1) sleepTime: 37.571 secs (10.8006094 %) Runs: 101(AVG 0.3719901 secs/run)

(p1_i2_Comp.think,lambda1) sleepTime: 31.7 secs (9.1128615 %) Runs: 90(AVG 0.3522222 secs/run)

(p1_i3_Comp.think,lambda1) sleepTime: 29.097 secs (8.364572 %) Runs: 82(AVG 0.3548415 secs/run)

(p2_i0_Comp.think,lambda2) sleepTime: 16.341 secs (4.6975795 %) Runs: 85(AVG 0.1922471 secs/run)

(p2_i1_Comp.think,lambda2) sleepTime: 13.688 secs (3.9349163 %) Runs: 86(AVG 0.1591628 secs/run)

(p2_i2_Comp.think,lambda2) sleepTime: 13.659 secs (3.9265797 %) Runs: 80(AVG 0.1707375 secs/run)

(p2_i3_Comp.think,lambda2) sleepTime: 15.573 secs (4.476801 %) Runs: 88(AVG 0.1769659 secs/run)

(p3_i0_Comp.think,lambda3) sleepTime: 8.847 secs (2.5432645 %) Runs: 86(AVG 0.1028721 secs/run)

(p3_i1_Comp.think,lambda3) sleepTime: 8.832 secs (2.5389525 %) Runs: 84(AVG 0.1051429 secs/run)

(p3_i2_Comp.think,lambda3) sleepTime: 10.113 secs (2.907204 %) Runs: 83(AVG 0.1218434 secs/run)

(p3_i3_Comp.think,lambda3) sleepTime: 8.738 secs (2.5119301 %) Runs: 79(AVG 0.1106076 secs/run)

workcell2.pepa

********* SIM RESULTS ********

GenSkel.workcell2

Total sleeptime: 6740.892 seconds

Actions:

ready_to_pick sleepTime: 90.013 secs (1.3353277 %) Runs: 306(AVG 0.2941601 secs/run)

unload_blank sleepTime: 93.325 secs (1.3844607 %) Runs: 306(AVG 0.3049837 secs/run)

DBelt_ready sleepTime: 91.985 secs (1.364582 %) Runs: 306(AVG 0.3006046 secs/run)

load_blank sleepTime: 93.565 secs (1.3880211 %) Runs: 304(AVG 0.3077796 secs/run)

ready_to_put sleepTime: 94.057 secs (1.3953198 %) Runs: 308(AVG 0.3053799 secs/run)

blank_ready sleepTime: 91.491 secs (1.3572536 %) Runs: 304(AVG 0.3009572 secs/run)

Indiv. Activities:

(robot_i0_Comp.pick_posn_arm_1,A1_T1) sleepTime: 333.815 secs (4.9520894 %) Runs: 153(AVG 2.1817974 secs/run)

(robot_i0_Comp.safe_posn_arm_1,A1_T2) sleepTime: 288.383 secs (4.2781133 %) Runs: 305(AVG 0.945518 secs/run)

(robot_i0_Comp.at_press_arm_2,R_2) sleepTime: 71.418 secs (1.059474 %) Runs: 153(AVG 0.4667843 secs/run)

(robot_i0_Comp.pick_posn_arm_2,A2_T1) sleepTime: 331.113 secs (4.9120057 %) Runs: 153(AVG 2.1641373 secs/run)

(robot_i0_Comp.at_belt_arm_2,R_3) sleepTime: 50.024 secs (0.7420976 %) Runs: 153(AVG 0.3269542 secs/run)

(robot_i0_Comp.put_posn_arm_2,A2_T2) sleepTime: 157.448 secs (2.3357146 %) Runs: 153(AVG 1.0290719 secs/run)

(robot_i0_Comp.safe_posn_arm_2,A2_T3) sleepTime: 89.599 secs (1.3291861 %) Runs: 153(AVG 0.5856144 secs/run)

(robot_i0_Comp.at_press_arm_1,R_4) sleepTime: 50.143 secs (0.743863 %) Runs: 152(AVG 0.3298882 secs/run)

(robot_i0_Comp.put_posn_arm_1,A1_T2) sleepTime: 149.609 secs (2.2194244 %) Runs: 152(AVG 0.9842697 secs/run)

(robot_i0_Comp.at_table_arm_1,R_1) sleepTime: 100.453 secs (1.4902034 %) Runs: 152(AVG 0.660875 secs/run)

(belt_i0_Comp.B_sensor_On,F_T) sleepTime: 327.529 secs (4.8588377 %) Runs: 155(AVG 2.1130903 secs/run)

(belt_i0_Comp.B_sensor_Off,F_B) sleepTime: 328.627 secs (4.8751263 %) Runs: 154(AVG 2.1339416 secs/run)

(table_i0_Comp.move_table,T_T) sleepTime: 620.198 secs (9.2005331 %) Runs: 308(AVG 2.0136299 secs/run)

(press_i0_Comp.move_press,P_b2m) sleepTime: 587.978 secs (8.7225548 %) Runs: 305(AVG 1.9277967 secs/run)

(dBelt_1_i0_Comp.delay,D_B) sleepTime: 261.216 secs (3.8750955 %) Runs: 153(AVG 1.7072941 secs/run)

(dBelt_1_i0_Comp.D_sensor_On,D_T) sleepTime: 355.034 secs (5.2668697 %) Runs: 153(AVG 2.3204837 secs/run)

(dBelt_1_i0_Comp.D_sensor_Off,D_B) sleepTime: 347.618 secs (5.1568546 %) Runs: 152(AVG 2.2869605 secs/run)

(crane_i0_Comp.mag_u,C_V) sleepTime: 603.12 secs (8.9471838 %) Runs: 305(AVG 1.9774426 secs/run)

(crane_i0_Comp.over_belt2,C_H) sleepTime: 305.073 secs (4.5257067 %) Runs: 153(AVG 1.9939412 secs/run)

(crane_i0_Comp.mag_d,C_V) sleepTime: 537.962 secs (7.9805759 %) Runs: 304(AVG 1.7696118 secs/run)

(crane_i0_Comp.over_belt1,C_H) sleepTime: 246.025 secs (3.6497395 %) Runs: 152(AVG 1.6185855 secs/run)

Appendix F. Model Evaluation Results 117

(crane_i0_Comp.can_accept,xi) sleepTime: 44.071 secs (0.6537859 %) Runs: 152(AVG 0.2899408 secs/run)

test.pepa

********* SIM RESULTS ********

GenSkel.test

Total sleeptime: 652.918 seconds

Actions:

a sleepTime: 261.614 secs (40.0684313 %) Runs: 114(AVG 2.2948596 secs/run)

Indiv. Activities:

(a_i0_Comp.b,a2) sleepTime: 120.681 secs (18.4833318 %) Runs: 114(AVG 1.0586053 secs/run)

(a_i0_Comp.c,a4) sleepTime: 61.918 secs (9.4832736 %) Runs: 114(AVG 0.5431404 secs/run)

(b_i0_Comp.f,a1) sleepTime: 108.981 secs (16.6913763 %) Runs: 60(AVG 1.81635 secs/run)

(b_i0_Comp.g,a1) sleepTime: 99.724 secs (15.2735872 %) Runs: 54(AVG 1.8467407 secs/run)

test1.pepa

********* SIM RESULTS ********

GenSkel.test1

Total sleeptime: 175.816 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,r) sleepTime: 67.926 secs (38.634709 %) Runs: 37(AVG 1.8358378 secs/run)

(a_i0_Comp.b,u) sleepTime: 76.544 secs (43.5364244 %) Runs: 98(AVG 0.7810612 secs/run)

(a_i0_Comp.c,t) sleepTime: 31.346 secs (17.8288665 %) Runs: 12(AVG 2.6121667 secs/run)

test2.pepa

********* SIM RESULTS ********

GenSkel.test2

Total sleeptime: 1990.241 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,r) sleepTime: 1319.121 secs (66.2794606 %) Runs: 678(AVG 1.9456062 secs/run)

(a_i0_Comp.b,s) sleepTime: 671.12 secs (33.7205394 %) Runs: 678(AVG 0.9898525 secs/run)

test4.pepa

********* SIM RESULTS ********

GenSkel.test4

Total sleeptime: 1990.039 seconds

Actions:

Indiv. Activities:

Appendix F. Model Evaluation Results 118

(a_i0_Comp.a,u) sleepTime: 1990.039 secs (100.0 %) Runs: 4206(AVG 0.4731429 secs/run)

test5.pepa

********* SIM RESULTS ********

GenSkel.test5

Total sleeptime: 1894.211 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,a1) sleepTime: 1894.211 secs (100.0 %) Runs: 2615(AVG 0.7243637 secs/run)

test5c.pepa

********* SIM RESULTS ********

GenSkel.test5c

Total sleeptime: 2037.121 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,1.143) sleepTime: 2037.121 secs (100.0 %) Runs: 2181(AVG 0.9340307 secs/run)

test6.pepa

********* SIM RESULTS ********

GenSkel.test6

Total sleeptime: 719.956 seconds

Actions:

a sleepTime: 503.17 secs (69.8889932 %) Runs: 202(AVG 2.4909406 secs/run)

Indiv. Activities:

(a_i0_Comp.b,3.0) sleepTime: 131.189 secs (18.221808 %) Runs: 201(AVG 0.6526816 secs/run)

(b_i0_Comp.c,4.0) sleepTime: 85.597 secs (11.8891988 %) Runs: 201(AVG 0.4258557 secs/run)

test8.pepa

********* SIM RESULTS ********

GenSkel.test8

Total sleeptime: 661.429 seconds

Actions:

reqlock11 sleepTime: 10.939 secs (1.6538434 %) Runs: 44(AVG 0.2486136 secs/run)

writelock11 sleepTime: 10.585 secs (1.6003229 %) Runs: 44(AVG 0.2405682 secs/run)

Indiv. Activities:

(txnc1_i0_Comp.think1,t1) sleepTime: 540.541 secs (81.7232084 %) Runs: 54(AVG 10.0100185 secs/run)

(txnc1_i0_Comp.fork,w1xr11) sleepTime: 43.172 secs (6.52708 %) Runs: 113(AVG 0.3820531 secs/run)

(txnc1_i0_Comp.finish,a11xonemq) sleepTime: 21.696 secs (3.2801707 %) Runs: 113(AVG 0.192 secs/run)

(txnc1_i0_Comp.reqlock1r,rl1r) sleepTime: 17.11 secs (2.5868234 %) Runs: 69(AVG 0.247971 secs/run)

Appendix F. Model Evaluation Results 119

(txnc1_i0_Comp.readlock,r1) sleepTime: 17.386 secs (2.6285512 %) Runs: 69(AVG 0.251971 secs/run)

test11.pepa

********* SIM RESULTS ********

GenSkel.test11

Total sleeptime: 304.026 seconds

Actions:

reqlock11 sleepTime: 7.82 secs (2.5721484 %) Runs: 37(AVG 0.2113514 secs/run)

writelock11 sleepTime: 7.415 secs (2.4389361 %) Runs: 37(AVG 0.2004054 secs/run)

reqlock12 sleepTime: 5.156 secs (1.6959076 %) Runs: 23(AVG 0.2241739 secs/run)

writelock12 sleepTime: 4.284 secs (1.40909 %) Runs: 22(AVG 0.1947273 secs/run)

Indiv. Activities:

(txnc1_i0_Comp.think1,t1) sleepTime: 234.115 secs (77.0049272 %) Runs: 25(AVG 9.3646 secs/run)

(txnc1_i0_Comp.fork,w1xr12) sleepTime: 35.648 secs (11.725313 %) Runs: 60(AVG 0.5941333 secs/run)

(txnc1_i0_Comp.finish,a11xq) sleepTime: 9.588 secs (3.1536776 %) Runs: 59(AVG 0.1625085 secs/run)

test12.pepa

********* SIM RESULTS ********

GenSkel.test12

Total sleeptime: 205.491 seconds

Actions:

reqlock11 sleepTime: 18.661 secs (9.0811763 %) Runs: 84(AVG 0.2221548 secs/run)

writelock11 sleepTime: 23.261 secs (11.3197172 %) Runs: 84(AVG 0.2769167 secs/run)

reqlock12 sleepTime: 20.171 secs (9.8160017 %) Runs: 59(AVG 0.3418814 secs/run)

writelock12 sleepTime: 15.362 secs (7.4757532 %) Runs: 58(AVG 0.2648621 secs/run)

Indiv. Activities:

(txn1_i0_Comp.fork,w1xr12) sleepTime: 102.332 secs (49.7987746 %) Runs: 143(AVG 0.7156084 secs/run)

(txn1_i0_Comp.finish,a11xq) sleepTime: 25.704 secs (12.508577 %) Runs: 142(AVG 0.1810141 secs/run)

test13.pepa

********* SIM RESULTS ********

GenSkel.test13

Total sleeptime: 87.586 seconds

Actions:

reqlock11 sleepTime: 14.896 secs (17.0072843 %) Runs: 70(AVG 0.2128 secs/run)

writelock11 sleepTime: 19.7 secs (22.4921791 %) Runs: 70(AVG 0.2814286 secs/run)

reqlock12 sleepTime: 16.36 secs (18.6787843 %) Runs: 72(AVG 0.2272222 secs/run)

writelock12 sleepTime: 17.533 secs (20.0180394 %) Runs: 72(AVG 0.2435139 secs/run)

Indiv. Activities:

(txn1_i0_Comp.finish,a11xq) sleepTime: 19.097 secs (21.8037129 %) Runs: 142(AVG 0.1344859 secs/run)

Appendix F. Model Evaluation Results 120

test14.pepa

********* SIM RESULTS ********

GenSkel.test14

Total sleeptime: 642.681 seconds

Actions:

reqlock11 sleepTime: 88.077 secs (13.7046217 %) Runs: 348(AVG 0.2530948 secs/run)

writelock11 sleepTime: 87.669 secs (13.6411377 %) Runs: 348(AVG 0.2519224 secs/run)

reqlock12 sleepTime: 57.617 secs (8.9651009 %) Runs: 218(AVG 0.2642982 secs/run)

writelock12 sleepTime: 53.147 secs (8.269577 %) Runs: 217(AVG 0.2449171 secs/run)

Indiv. Activities:

(txn1_i0_Comp.fork,w1xr12) sleepTime: 356.171 secs (55.4195627 %) Runs: 566(AVG 0.6292774 secs/run)

test15.pepa

********* SIM RESULTS ********

GenSkel.test15

Total sleeptime: 791.742 seconds

Actions:

r11 sleepTime: 68.367 secs (8.6350099 %) Runs: 104(AVG 0.657375 secs/run)

w11 sleepTime: 43.683 secs (5.5173276 %) Runs: 104(AVG 0.4200288 secs/run)

r12 sleepTime: 131.339 secs (16.5886109 %) Runs: 252(AVG 0.5211865 secs/run)

w12 sleepTime: 80.032 secs (10.1083434 %) Runs: 252(AVG 0.3175873 secs/run)

Indiv. Activities:

(txn1_i0_Comp.f,a2) sleepTime: 468.321 secs (59.1507082 %) Runs: 357(AVG 1.3118235 secs/run)

test16.pepa

********* SIM RESULTS ********

GenSkel.test16

Total sleeptime: 1167.068 seconds

Actions:

r11 sleepTime: 363.436 secs (31.1409447 %) Runs: 529(AVG 0.6870246 secs/run)

w11 sleepTime: 209.64 secs (17.9629636 %) Runs: 528(AVG 0.3970455 secs/run)

r12 sleepTime: 156.115 secs (13.3766841 %) Runs: 343(AVG 0.4551458 secs/run)

w12 sleepTime: 105.045 secs (9.0007609 %) Runs: 343(AVG 0.3062536 secs/run)

Indiv. Activities:

(txn1_i0_Comp.f,a2) sleepTime: 332.832 secs (28.5186467 %) Runs: 343(AVG 0.9703557 secs/run)

test18.pepa

********* SIM RESULTS ********

GenSkel.test18

Total sleeptime: 1298.439 seconds

Appendix F. Model Evaluation Results 121

Actions:

r11 sleepTime: 280.892 secs (21.6330532 %) Runs: 427(AVG 0.6578267 secs/run)

w11 sleepTime: 149.964 secs (11.5495607 %) Runs: 426(AVG 0.3520282 secs/run)

Indiv. Activities:

(txn1_i0_Comp.f,a1) sleepTime: 867.583 secs (66.8173861 %) Runs: 427(AVG 2.0318103 secs/run)

test22.pepa

********* SIM RESULTS ********

GenSkel.test22

Total sleeptime: 1193.328 seconds

Actions:

Indiv. Activities:

(a_i0_Comp.a,m) sleepTime: 375.132 secs (31.435783 %) Runs: 48(AVG 7.81525 secs/run)

(a_i0_Comp.b,n) sleepTime: 818.196 secs (68.564217 %) Runs: 47(AVG 17.4084255 secs/run)

Bibliography

[Appel, 1998] Appel, A. W. (1998). Modern Compiler Implementation in Java. Cam-

bridge University Press.

[Clark et al., 1999] Clark, G., Gilmore, S., Hillston, J., and Thomas, N. (1999). Expe-

riences with the PEPA performance modelling tools. IEE Proceedings—Software,

146(1):11–19. Special issue of papers from the Fourteenth UK Performance Engi-

neering Workshop.

[Fotis, 2001] Fotis, S. (2001). Enhancing the PEPA Workbench with simulation and

and experimentation features. Master’s thesis, School of Computer Science, Divi-

sion of Informatics, The University of Edinburgh.

[Gilmore, 2001] Gilmore, S. (2001). The PEPA Workbench: User’s Manual. LFCS,

University of Edinburgh.

[Gilmore and Hillston, 1994] Gilmore, S. and Hillston, J. (1994). The PEPA Work-

bench: A Tool to Support a Process Algebra-based Approach to Performance Mod-

elling. In Proceedings of the Seventh International Conference on Modelling Tech-

niques and Tools for Computer Performance Evaluation, number 794 in Lecture

Notes in Computer Science, pages 353–368, Vienna. Springer-Verlag.

[Gilmore and Hillston, 1996] Gilmore, S. and Hillston, J. (1996). Refining internal

choice in PEPA models. pages 49–64, Department of Computer Science, The Uni-

versity of Edinburgh.

122

Bibliography 123

[Gilmore et al., 1996] Gilmore, S., Hillston, J., and Holton, D. (1996). From SPA

models to programs. pages 179–198. Dipartimento di Informatica, Università di

Torino, CLUT.

[Hidders, 2001] Hidders, J. (2001). Wikipedia definition: Parser.

http://www.wikipedia.org/wiki/Parser.

[Hillston, 1996] Hillston, J. (1996). A Compositional Approach to Performance Mod-

elling. Cambridge University Press.

[Hudson, 1999] Hudson, S. E. (1999). LALR Parser Generator for Java: CUP User’s

Manual. Graphics Visualization and Usability Center, Georgia Institue of Technol-

ogy, http://www.cs.princeton.edu/ appel/modern/java/CUP/manual.html.

[Hunter, 1999] Hunter, J. (1999). Re-evaluation of the PEPA Workbench. Master’s

thesis, School of Computer Science, The University of Edinburgh.

[Lea, 1997] Lea, D. (1997). Concurrent Programming in Java: Design Principles and

Patterns. Addison-Wesley.

[Siegrist and Duehring, 2001] Siegrist, K. and Duehring, D. (2001). The prob-

ability/ statistics object library: Mathematical distributions java package

(edu.uah.math.distributions). The Department of Mathematical Sciences, The Uni-

versity of Alabama in Huntsville (http://www.math.uah.edu/psol/). GNU General

Public License.

