
“bxh097” — 2005/6/20 — page 385 — #1

© The Author 2005. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org

Advance Access published on May 3, 2005 doi:10.1093/comjnl/bxh097

The Needham Lecture
Tuning Systems: From Composition

to Performance
Jane Hillston

School of Informatics, University of Edinburgh, Scotland, UK
Email: Jane.Hillston@ed.ac.uk

This paper gives a summary of some of the work of the Performance Evaluation Process Algebra
(PEPA) project, which was awarded the 2004 Roger Needham Award from the BCS. Centred on
the PEPA modelling formalism, the project has sought to balance theory and practice. Theoretical
developments have been tested and validated by application to a wide range of problems and such
case studies have provided the stimulus for new directions in theory. Both aspects of the work are

presented in summary as well as some current and future research topics.

1. INTRODUCTION

The Performance Evaluation Process Algebra (PEPA)
project was started in Edinburgh in 1991. It was
motivated by problems encountered when carrying out
performance analysis of large computer and communication
systems, based on numerical analysis of Markov processes.
Performance analysis seeks to predict the behaviour of a
system with respect to dynamic properties such as the number
of requests that can be satisfied per unit time (throughput)
and response time. Markov processes, whilst offering
general applicability, are difficult to construct for large
systems, so an intermediate system description language is
often used. In the early 1990s the most common of these
were queueing networks and stochastic Petri nets (SPNs).
Queueing networks, whilst very powerful when applicable,
have limited expressiveness and lack formal interpretation.
SPN models have formal interpretation but do not have the
explicit structure found in queueing networks, which greatly
eases model construction.

Process algebras such as calculus of communicating
systems (CCS) and communicating sequential processes
(CSP) [1, 2] offer a compositional description technique
supported by apparatus for formal reasoning. From a
performance perspective, however, they lack the timing
information essential to derive performance estimates:
actions are instantaneous and choices are non-deterministic.
PEPA sought to address these problems by the introduction
of a suitably quantified process algebra. By associating
an exponentially distributed delay with each activity of the
process algebra, it is possible to generate a continuous time
Markov chain (CTMC) using PEPA.

The PEPA project has sought to investigate and exploit the
interplay between process algebra and the underlying CTMC.

The remainder of this paper is structured as follows. In
Section 2 a more detailed account of the motivation and

background of the project is given. Some of the theoretical
developments of the PEPA project are described in Section 3.
It is unwise practice to develop theory without checking it
against real applications and some of the case studies which
have been undertaken using PEPA are outlined in Section 4.
This section also gives an account of the tool support for
PEPA and recent efforts to extend the applicability of PEPA
modelling. To conclude, some directions for future and
ongoing work are presented in Section 5.

2. BACKGROUND

In this section we explain in more detail the context in
which PEPA was developed, that of performance modelling
of computer and communication systems using CTMCs.
This is followed by a brief overview of process algebras,
and an introduction to the idea of stochastic process
algebra (SPA).

2.1. Performance modelling using CTMCs

There are a variety of approaches available for the
performance evaluation of computer and communication
systems. If the system exists it may be possible to monitor
the system directly. However, in general, such an approach
is time-consuming, difficult and lacks generality. Therefore,
it is often preferable to model the system rather than use such
direct experimentation. Indeed when the system is yet to be
constructed, modelling is the only option.

Performance models may be analysed by simulation,
numerical solution or analytical solution. Simulation models
have the advantage of being insensitive to state space
size. Unfortunately, such models are time-consuming to
analyse and bring the intellectual burden of evaluating the
trustworthiness of the results by the calculation of confidence
intervals.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 386 — #2

386 J. Hillston

In contrast, analytic solution, in which an expression for
the performance measure of interest is derived in terms of
the input parameters of the model, can be extremely efficient
to use. However, constructing such solutions is very much
the domain of the expert and typically each system requires
a bespoke solution.

The numerical solution of a Markov chain offers a
compromise between these two extremes. Some assumptions
about the system, particularly with respect to the timing of
events, are needed. But the resulting models are relatively
straightforward to solve, relying only on simple linear algebra
techniques. For moderately sized models the generator
matrix of the Markov chain can be stored as a dense matrix,
admitting direct solution methods with good numerical
accuracy. For larger models sparse matrices are needed,
necessitating the use of iterative solution techniques with
some loss of numerical precision. The largest models require
even more ingenuity in the representation of the matrix using
Kronecker methods or binary decision diagram (BDD)-based
storage. Here, convergence becomes an issue and these
storage schemes inevitably lead to much longer solution times
because they are data structures tuned for compactness not
speed of access.

2.2. Process algebra

Process algebras are abstract languages used for the
specification and design of concurrent systems. The most
widely known process algebras are Milner’s CCS [1] and
Hoare’s CSP [2]. SPAs take inspiration from both these
formalisms.

In the process algebra approach systems are modelled as
collections of entities, called agents, which execute atomic
actions. These actions are the building blocks of the
language and they are used to describe sequential behaviours
which may run concurrently, and synchronizations or
communications between them.

In CCS two agents communicate when one performs an
action, say a, while the other performs the complementary
action ā. The resulting communication action has the
distinguished label τ , which represents an internal action
that is invisible to the environment. Agents may proceed
with their internal actions simultaneously, but it is important
to note that the semantics given to the language imposes an
interleaving on such concurrent behaviour.

The communication mechanism in CSP is different as there
is no notion of complementary actions. In CSP two agents
communicate by simultaneously executing actions with the
same label. Since during the communication the joint action
remains visible to the environment, it can be reused by other
concurrent processes so that more than two processes can be
involved in the communication (multi-way synchronization).
This is the communication mechanism adopted by most of
the SPA languages.

In either case the language is given a small-step structured
operational semantics [3], and this is used to generate a
labelled transition system. This can be regarded as a
derivative tree or graph, in which language terms form the

FIGURE 1. Functional analysis of process algebra.

nodes and transitions (actions) are the arcs, which records all
the possible evolutions of a language expression or model.
This graph can be used for functional verification. For
example (Figure 1):

Reachability analysis considers whether there is an evolution
of the system which will arrive at a particular state or
exhibit a particular behaviour, e.g. establishing freedom
from deadlock or livelock.

Specification matching contrasts a process algebra expression
of the expected behaviour of the system, a specification,
with a model of the actual implementation. If under an
appropriate notion of equivalence the two are equivalent,
it can be verified that the implementation will deliver the
expected behaviour.

Model checking. Many process algebras are equipped
with complementary logics which allow properties of
the system or its evolution to be expressed.1 Model
checking is a procedure for establishing whether a
particular property φ will be respected by the system.

Various forms of equivalence relations have been defined
for process algebras, based on the structured operational
semantics, and they play a fundamental role in model
analysis. An important class of relations are based on the
notion of bisimulation: two agents are bisimilar if, from
the perspective of an observer, each is able to mimic the
behaviour of the other.

Consider the agents, P and Q, below:

1Specifications can be expressed in such a logic as an alternative to a
process algebra model.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 387 — #3

Tuning Systems: From Composition to Performance 387

Although the two are trace equivalent, i.e. they can generate
identical sequences of actions, they are not bisimulation
equivalent because when Q has performed an action a it
cannot offer the choice of a b or a c in the manner of P .

2.3. Stochastic process algebra

In order to carry out performance analysis of a system,
it is essential to record information about the timing
characteristics of the system and the relative probabilities of
alternative behaviours. Without this quantified information
it is not possible to derive quantitative measures such
as expected response time or throughput. Therefore, in
order to create a process algebra suitable for performance
modelling, this quantification was added by associating a
random variable with all of the actions of the algebra [4].
In the case of PEPA it is assumed that these random variables
are governed by a negative exponential distribution [5]. This
is because it is only in that case that it is possible, in general, to
associate a CTMC with the process algebra model. Explicit
probabilities need not be used to differentiate alternative
behaviours—implicit probabilities may be derived from the
relative timings of the actions involved.

The benefits of adding quantification can be seen if we
reconsider the functional analysis scenarios presented in
Figure 1. In each case we can enrich the question asked
to take into account timing or probability information. For
example, we can now query how long it might take to reach a
particular state or behaviour, whether the probability profiles
of the specification and the implementation models match,
and the probability that a particular property holds.

3. THEORY

The theoretical development underpinning PEPA has focused
on the interaction between the process algebra and the
underlying mathematical structure, the CTMC. The work
can be broadly categorized into three areas:

• designing the language
• manipulating models
• solving models and deriving measures.

These will be discussed in the following subsections.

3.1. Designing the language

In the early 1990s several SPAs, motivated by the desire
to add quantification to process algebra models and make
them suitable for performance modelling, appeared in the
literature. These included TIPP [6] from the University of
Erlangen, EMPA [7] from the University of Bologna and
SPADE [8] from Imperial College, in addition to PEPA.
PEPA was the first language to be developed with the
intention of generating a CTMC which could be solved
numerically, but versions of TIPP and EMPA from around
the same time were similarly Markovian based.

As previously mentioned, PEPA extends classical process
algebra by associating a random variable, representing
duration, with every action. These random variables are
assumed to be negative exponentially distributed and this

leads to a clear relationship between the process algebra
model and a CTMC. Via this underlying CTMC performance
measures can be extracted from the model.

PEPA models are described as interactions of components.
Each component can perform a set of actions: an action
a ∈ Act is described by a pair (α, r), where α ∈ A is the
type of the action and r ∈ R

+ is the parameter of a negative
exponential distribution governing its duration. Whenever a
process P can perform an action, an instance of the proba-
bility distribution is sampled: the resulting number specifies
how long it will take to complete the action in this instance.

A small but powerful set of combinators is used to
build up complex behaviour from simpler behaviour. The
combinators are familiar from classical process algebra:
prefix, choice, parallel composition (cooperation) and
abstraction (hiding). Each of the combinators is informally
introduced below in terms of a very simple model of a
web-based information system, and the formal operational
semantics are shown in Figure 2.

Prefix (.): A component may have purely sequential
behaviour, repeatedly undertaking one activity after another
and eventually returning to the beginning of its behaviour.
A simple example is a web server, which allows one data
transfer at a time. Each browser requiring web pages will
need to acquire access to the server and only when the
transfer is complete will the server be released and available
again for acquisition.

Server
def= (get, �).(downld, µ).(rel, �).Server

In some cases, as here, the rate of an action is outside
the control of this component. Such actions are carried
out jointly with another component, with this component
playing a passive role. For example, the server is passive
with respect to the get action and this is recorded by the
distinguished symbol � (called ‘top’).

Choice (+): A choice between two possible behaviours is
represented as the sum of the possibilities. For example, if we
consider a browser in the information system, displaying the
current data may have two possible outcomes: demand for
access to data available in the local cache (with probability
p1) or demand for access to data stored at the remote server
(with probability p2 = 1 − p1). These alternatives are
represented as shown below:

Browser
def= (display, p1λ).(cache, m). Browser

+ (display, p2λ).(get, g).(downld, �).(rel, r).Browser

A race condition governs the behaviour of simultaneously
enabled actions and the continuous nature of the probability
distributions ensures that the actions cannot occur simultane-
ously. Thus a sum will behave as either one summand or the
other. When an action has more than one possible outcome,
e.g. the display action in the browser, it is represented by
a choice of separate actions, one for each possible outcome.
The rates of these actions are chosen to reflect their relative
probabilities.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 388 — #4

388 J. Hillston

Prefix

(α, r).E
(α,r)−→ E

Choice
E

(α,r)−→ E′

E + F
(α,r)−→ E′

F
(α,r)−→ F ′

E + F
(α,r)−→ F ′

Cooperation

E
(α,r)−→ E′

E ��
L

F
(α,r)−→ E′ ��

L
F

(α /∈ L)

F
(α,r)−→ F ′

E ��
L

F
(α,r)−→ E ��

L
F ′

(α /∈ L)

E
(α,r1)−→ E′ F

(α,r2)−→ F ′

E ��
L

F
(α,R)−→ E′ ��

L
F ′

(α ∈ L)

where R = r1

rα(E)

r2

rα(F )
min(rα(E), rα(F ))

Hiding

E
(α,r)−→ E′

E/L
(α,r)−→ E′/L

(α /∈ L)

E
(α,r)−→ E′

E/L
(τ,r)−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A
def= E)

FIGURE 2. PEPA structured operational semantics.

Cooperation (��
L

): We have already anticipated that the

browser and the server in the example will be working
together within the same system. This will require them to
cooperate when the browser needs to download data which
is not available locally. In contrast, the local activities of
the browser can be carried out independently of the server.
Cooperation over given actions is reflected in the cooperation
by the cooperation set L = {get, download, rel} in this case.
Actions in this set require the simultaneous involvement of
both components. The resulting action, a shared action, will
have the same type as the two contributory actions and a rate
reflecting the rate of the action in the slowest participating
component. This is discussed in more detail in the following
subsection.

If, for simplicity, we assume that the system consists of just
two browsers, the system is represented as the cooperation
of the browsers and the server as follows:

WEB
def= (Browser ‖ Browser) ��

L
Server

L = {get, download, rel}

The combinator ‖ is a degenerate form of the cooperation
combinator, formed when two components behave com-
pletely independently, without any cooperation between them
(i.e. L = ∅), as in the case of the two browsers.

Abstraction (/): It is often convenient to hide some actions,
making them private to the component or components
involved. The duration of the actions is unaffected, but their
type becomes hidden, appearing instead as the unknown type
τ . Components cannot synchronize on τ . For example, as
we further develop the model of the information system we
may wish to hide the access of a browser to its local cache.
This might lead to a new representation of the browser:

Browser′ def= Browser/{cache}

and a corresponding new representation of the system:

WEB′ def= (Browser′ ‖ Browser′) ��
L

Server

L = {get, download, rel}
The use of the hiding combinator in this way has two
implications. First, it ensures that no components added
to the model at a later stage can interact, or interfere,
with this action of the browser. Second, private actions
are deemed to have no contribution to the performance
measures being calculated and this might subsequently
suggest simplifications to the model.

Throughout the simple example above we have used
constants (names) such as Server to associate identifiers
with behaviours. Using recursive definitions we are able to
describe components with infinite behaviours.

3.1.1. Cooperation
Communication or parallel composition is the essence of
compositionality in process algebras. It gives structure
to models, indicating which actions can be undertaken
concurrently and which cannot. In PEPA there is no concept
of conjugate or complementary actions, as there is CCS,
because the aim was to capture something more general than
a communication. Thus, there need not be strict input and
output roles assigned to the participants. Instead, a multi-
way synchronization framework is adopted as in CSP. This
means that components or agents jointly perform actions of
the same type, when the parallel composition dictates it. Note
that in PEPA the cooperation combinator is in fact a family
of combinators, since its meaning varies according to the
contents of the cooperation set L.

Additional consideration is needed since the actions which
are to be performed jointly may each have been assigned rates
(durations) in their respective components. The issue of what
it means for two timed actions to synchronize is a vexed one
and the various SPAs have adopted a variety of solutions to
this problem. This issue is discussed in [9] and in detail in
Bradley’s thesis [10].

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 389 — #5

Tuning Systems: From Composition to Performance 389

In PEPA it is assumed that each component has bounded
capacity to carry out activities of any particular type,
determined by the apparent rate. For a component P and
action type α, the apparent rate of α in P , denoted rα(P ),
is the sum of the rates of each action α enabled in P . This
corresponds to the rate at which P appears to an external
observer to carry out an action α, due to the superposition
principle of the negative exponential distribution. The
definition of cooperation in PEPA is based on the assumption
that a component cannot be made to exceed its bounded
capacity, meaning that the apparent rate of the shared action
will be the minimum of the apparent rates of the components
involved.

3.1.2. Semantics and equivalence relations
The semantic rules of PEPA generate a labelled transition
system, just as in the case of classical process algebra.
However, there are some significant differences introduced
by the inclusion of quantified information. In particular, it
is important to note that the semantics gives rise to a multi-
transition system, i.e. it is not sufficient to record the existence
of a transition or arc between two nodes. The multiplicity of
the transition is also important. This is because the apparent
rate of a term which has two copies of the same arc, generated
by two instances of the same action, will differ from that of
a term with only one instance.

Once a derivation graph has been generated for a particular
model, this forms the basis of the underlying CTMC on which
performance analysis will be carried out. A state of the
CTMC is associated with each node of the graph, and the
transition rate between states is simply the sum of the rates
of actions labelling arcs between the corresponding nodes.
Thus, during its evolution each syntactic term of the PEPA
model corresponds to a state of the CTMC. It is established
in [5] that this generates a unique Markov process.

PEPA has been equipped with a number of equivalence
relations which have been shown to be useful for a variety
of purposes [5]. The most significant is strong equivalence,
sometimes termed Markovian bisimulation. Just as with the
bisimulation for classical process algebra, the central notion
here is that each of the pair of components should be able
to mimic the behaviour of the other from the perspective of
an external observer. This observer is now assumed to have
the ability to time the behaviour over many repetitions and
thus deduce information about the apparent rates of actions.
This means that for components to be strongly equivalent
they must have the same apparent rate for all action types.
Therefore, if we consider again the two processes, P and Q,
considered earlier, now enhanced with activity rates,

we can immediately deduce that they are not bisimilar
because the apparent rates with respect to a in the initial

states are not the same. Note that this is a bisimulation in the
same style as the bisimulation defined by Larsen and Skou
for a probabilistic variant of CCS [11].

In 1960, Kemeny and Snell established that if we partition
the state space of a CTMC and then form a new stochastic
process in which each partition forms a state and the transition
rate between states is the superposed transition rate of all
transitions in one partition to the other, this stochastic process
will satisfy the Markov property if and only if the partition
has a property called lumpability [12]. An important property
of strong equivalence in PEPA is that it induces a lumpable
partition on the underlying CTMC. This forms the basis of an
exact model reduction technique termed aggregation, which
is discussed in the next subsection.

3.2. Manipulating models

PEPA, like all state-based modelling techniques, suffers from
problems of state space explosion. The compositionality
of the process algebra can greatly aid model construction,
but it can readily result in a model which is too large
to be solved directly. As explained earlier, the study of
techniques which can reduce the state space of models,
or otherwise make them more amenable to solution, has
been an active area of research in performance modelling
for over 20 years. Two such techniques are model
simplification and model aggregation, and the application
of these techniques in the process algebra setting has been
investigated. The challenge for PEPA has been to define such
model manipulation techniques, in the context of the process
algebra, in such a way that they can subsequently be applied
automatically, based on the formally defined equivalence
relations.

3.2.1. Model simplification
In model simplification the objective is to replace one model
by another. Thus, an equivalence relation is used to establish
behavioural or observational equivalence between models.
The aim is to find a replacement model which is more
desirable from a solution point of view, e.g. smaller state
space, special class of the model, and so on. Once the
desirable model has replaced the original, the underlying
CTMC is generated as usual by associating one state with
each node in the labelled transition system generated by the
semantics. Equivalence relations that have been used in this
way are weak isomorphism [5, 13] and strong bisimulation
[5] in PEPA.

3.2.2. Model aggregation
In model aggregation the objective is to take a more abstract
view of the system, and thus regard the model at a coarser
granularity. Here, an equivalence relation is used to establish
behavioural or observational equivalence between states
within a model. In effect, this results in an alternative
mapping from the labelled transition system, given by
the semantics of the model, to the underlying CTMC. The
equivalence relation is used to partition the nodes of the
labelled transition system into equivalence classes. Then,

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 390 — #6

390 J. Hillston

(a)

(c)

(b)

FIGURE 3. State-state equivalence for aggregation (a) original
state space; (b) applying an equivalence relation to form partition;
(c) aggregate; reducing each partition to a single state.

instead of the usual one-to-one correspondence between
nodes and states, one state in the CTMC is associated with
each equivalence class of nodes (Figure 3) [14].

Establishing the link between strong equivalence and
lumpability in the underlying Markov process forms the basis
for an automatic procedure to reduce the size of models.
Moreover, since the equivalence relation is a congruence the
reduction can be applied to isolated components of the model,
meaning that the state space of the complete model need never
be constructed [14]. An algorithm to apply this technique
on the fly, at the process algebra level, during state space
generation has been developed and implemented for PEPA
models [15].

3.3. Solving models

Despite the successes that have been gained in techniques
for model manipulation, it still remains the case that in many
instances the matrix characterizing the underlying CTMC
and the corresponding steady state probability vector are
simply too large to be readily stored on standard computing
equipment. A variety of approaches to this problem
for numerical solutions of CTMCs have appeared in the
literature, including using disk-based storage [16], Kronecker
and BDD-based representation of these entities [17, 18] and
decomposed solutions of various forms [19].

Much of the work on PEPA has studied the use of
decomposed solutions. It is clear that there is great advantage
to be gained if the compositional structure of a PEPA model
can be used during model solution, i.e. if the CTMCs
corresponding to the components can be solved separately
and their solutions combined to obtain a solution, exact or

approximate, of the whole CTMC. This work is discussed in
this subsection.

In many cases the techniques which are applied are well
known at the CTMC level. The advantage of characterizing
the corresponding class of PEPA models is that by ‘lifting’
the definition from the stochastic process level to a formally
defined high-level modelling paradigm we can facilitate the
automatic detection of these structures when they occur, thus
avoiding the construction of the original CTMC.

3.3.1. Product form models
One class of CTMCs which are susceptible to an efficient
solution technique are those which exhibit a product form
equilibrium distribution. Consider a CTMC X(t), whose
state space S is of the form S ⊆ S1 × S2, i.e. each state
s = s1 × s2 contains two pieces of information capturing
different aspects of the current state. In general, these
aspects may be dependent in many ways. When the process
X(t) exhibits a product form solution, i.e. the steady state
probability of an arbitrary state s, π(s), can be expressed as
π1(s1)×π2(s2), it indicates that these different aspects of the
state description are independent with respect to the steady
state.

Product form distributions have been widely used in the
analysis of queueing networks and, owing to their efficient
solution, have contributed to the popularity of queueing
networks in performance analysis. For example, Jackson
networks [20] and their generalization BCMP networks [21],
have been widely employed. In these cases the underlying
CTMC is known to have a reversible or quasi-reversible
structure.

Work on finding PEPA models which give rise to product
form solutions has drawn on the previous work on queueing
networks. Essentially, this can be seen as an investigation
of when components interact and yet remain statistically
independent at steady state. It is clear that when a PEPA
model consists of completely independent components, i.e.
P ‖ Q, the steady state distribution will have product form:

π(P ‖ Q) = πP (P ) × πQ(Q)

where πP and πQ are the steady state distributions over
the local states of P and Q respectively. However, few
real systems consist of components which are independent
in this way. The challenge has been to find circumstances
in which components P and Q which interact, still exhibit
statistical independence. A number of classes of such models
have been identified.

Reversible models. Informally, a reversible Markov
process is one which behaves identically when we observe it
with time reversed as when we observe it with time flowing
forward. More formally, an irreducible, stationary CTMC
X(t) is reversible if it satisfies the detailed balance equations:

π(j)q(j, k) = π(k)q(k, j) (1)

where q(j, k) is the instantaneous transition rate from state j

to state k and π(·) is the steady state probability distribution.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 391 — #7

Tuning Systems: From Composition to Performance 391

An initial study of the structure of the state space of SPA
models giving rise to reversible CTMCs was presented by
Bhabuta et al. in [22]. In [23], Hillston and Thomas, identify
syntactic conditions which a PEPA model must satisfy in
order for the underlying process to be reversible. The
problem is tackled in two stages. First, a basic class
of sequential components which give rise to reversible
structures are identified. Then, assuming that a known class
of reversible PEPA components exist, the authors investigate
under what circumstances the conditions for reversibility will
be preserved if reversible components are composed using the
combinators of the PEPA language.

Fundamental to the basic class of reversible sequential
components is the notion of a reverse pair. A pair of action
types (α, −α) forms a reverse pair if, in any state, any α

transition leads to a state in which a −α transition leads back
to the original state. This ability to ‘undo’ any transition
in the subsequent transition seems to be fundamental to
reversibility. It is clear to see that this is a necessary condition
for Equation (1) to be satisfied.

Quasi-reversible models. Like reversibility, quasi-
reversibility originates in queueing theory. Formally, a
stationary CTMC X(t) is quasi-reversible if for all times t0
the state X(t0) is independent of

(i) the input process after t0 and
(ii) the output process before t0.

Rather than the detailed balance equations which character-
ized reversibility, a quasi-reversible process satisfies partial
balance equations:

π(i)
∑

j∈S′
q(i, j) =

∑

j∈S′
π(j)q(j, i) (2)

for all states i and a corresponding subset of states S′. More
details of the definition of quasi-reversibility can be found
in [24].

In [25], a PEPA characterization of this class is presented.
As in the work on reversibility, the approach is to first
find simple instances of PEPA processes which give rise to
quasi-reversible structures in their underlying CTMC. Then,
conditions are established under which these components
can be composed whilst maintaining the quasi-reversible
property. Again the notion of a reverse pair is important
and strong restrictions are placed on the interactions between
components: each must be a flow cooperation. This means
that the ‘positive’ half of a reverse pair in one component is
carried out in cooperation with the ‘negative’ half of a reverse
pair in another.

Routing process models. Sereno’s work, reported in [26],
derives product form criteria for PEPA models based on
earlier work on product form criteria for SPNs [27]. The
SPN results rely on defining a Markov chain whose states
correspond to the transitions of the SPN, the so-called routing
chain. This chain exists only when severe restrictions
are placed on the forms of synchronization and resource
contention which can be represented in the net.

Sereno’s approach to PEPA is completely analogous to the
earlier work on SPNs—he defines a Markov chain in which
the states correspond to the actions of the SPA model. This is
called the routing process. Sereno shows that if the state space
of the routing process can be partitioned into equivalence
classes of enabling actions (roughly speaking, one action
enables another if the post-set of one is the pre-set of the
other; we take the transitive closure of that relation), then a
product form solution exists. Moreover, the partition forms
the basis for the decomposition.

Boucherie resource contention models. Other classes of
models have been considered in which the interaction
between components is indirect, i.e. the components
themselves are composed in parallel (without cooperation)
in the model definition, but they compete over cooperation
with a third component. Boucherie characterized a class of
Markov chains which fit this framework. According to his
definition, CTMCs which are otherwise independent compete
for exclusive access to shared resources, causing blocking
while a resource is held [28].

In [29] Hillston and Thomas characterize this class of
CTMC in PEPA. As in the underlying CTMCs, the PEPA
models consist of non-interacting components which give rise
to the constituent processes of the underlying CTMC. These
components compete, via synchronization with resource
components. A PEPA component is termed a resource if
it is never free to act independently. The general form of
these process algebra terms and the resulting product form
is, schematically:

π((P ‖ Q) ��
L

R) = B × πP (P ��
L

R) × πQ(Q ��
L

R)

where the component R represents the resource, πP and
πQ are the steady state distributions over the derivatives of
P ��

L
R and Q ��

L
R respectively, and B is the normalizing

constant. The decomposition is formed by considering
each of the model terms (P and Q in this case) acting in
cooperation with the resource (R) in isolation. Although
presented here informally, these conditions are defined as
formal syntactical conditions which can be checked on the
model specification.

Queueing discipline models. In his PhD thesis [13], Clark
defined a new combinator QA,ξ for PEPA which forces
sequential components within its scope to observe a first-
come-first-served (FCFS) discipline with respect to action
types within the set A. Moreover, the rates of activities
of those types are no longer controlled by the individual
components but by the vector ξ . This is a derived combinator,
meaning that any expression involving the combinator can
be re-expressed using the existing PEPA combinators. In
particular, for a set of components, S1, . . . , Sn,

QA(S1, . . . , Sn) ≡ (S1 ‖ · · · ‖ Sn) ��
Mξ

Rξ

for suitably chosen Mξ and Rξ .

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 392 — #8

392 J. Hillston

This class of models is shown to be insensitive and
therefore to have a product form solution so that the steady
state probability of the complete model can be written as
an expression involving the steady state probabilities of the
individual models solved in isolation. In [30] it is established
that this class of models is related to BCMP queueing
networks, capturing infinite server and FCFS stations from
the user’s perspective.

Unlike the other classes which have been discussed
above, characterization does not necessitate the definition
of syntactic rules which may be used to check whether any
model instance belongs to the class or not. Instead, the use of
the derived combinator means that models can be constructed
with a guaranteed product form solution.

Quasi-separable models. As with reversibility and quasi-
reversibility, the notion of quasi-separability is one which
has been developed in relation to queueing networks, in
particular queueing networks in which breakdowns occur
[31]. It is assumed that the CTMC is comprised of a number
of components and that there are two pertinent pieces of
information for each component. A representation of the
whole process can then be formed as a pair of vectors,
each vector capturing one piece of information for each
component. For a process to be quasi-separable it must
be possible to analyse the behaviour of a component, say
component i, given the ith element of the first vector and
all elements of the second, or vice versa. This allows the
complete process to be reduced to a number of submodels,
each of which contains all the information about exactly one
component.

For such processes it is not possible to find the exact
solution of the steady state distribution as a product of the
local steady state distributions. Nevertheless, decomposed
solutions can lead to exact results for the local steady state
distributions and many performance measures.

In [32], Thomas and Gilmore present a characterization
of PEPA models which are quasi-separable. It is assumed
in this characterization that the information which must be
included in each decomposed submodel is not distributed
between the components but maintained by a single scheduler
component. There are several conditions for the way in which
this component may interact with the other components of
the model. Furthermore, the individual components have no
direct interaction between them—they must be in parallel
composition with no synchronization, i.e. each of these
components interacts only with the scheduler. The model is
decomposed into a set of models, each comprising of a single
component considered with the scheduler, in isolation.

Recent work on product form PEPA models has taken a
slightly different form. In Harrison’s work on the Reversed
Compound Agent Theorem (RCAT) the process algebra has
been used to establish a framework in which the relationships
between different classes of product form CTMCs can be
compared [33]. Within this framework Harrison has been
able to demonstrate that the product forms which arise in
Jackson networks [20] and G-networks [34] are based on the

same fundamental mechanisms: this becomes apparent when
they are represented in PEPA.

3.3.2. Aggregated decomposed solutions
Product form models have the benefit of yielding the exact
solution of the complete model. A variety of other techniques
have been developed for decomposed solutions of CTMCs
which impose less stringent conditions on the candidate
models but which yield only approximate results. In many
cases these are forms of aggregated decomposed solutions.
Owing to the richer interactions between submodels it is
not sufficient to only consider the submodels in isolation
when forming a solution to the whole model. In addition,
the decomposed solution involves a stochastic representation
of the interactions between the submodels, the aggregated
model. Some work has been done on considering PEPA, and
other SPA, models in this framework.

Time scale decomposition. The work on time scale
decomposition in SPA is based on the notion of near
completely decomposable CTMCs [35] and inspired by
previous work on time scale decomposition of SPN models
[36]. A characterization of a near completely decomposable
CTMC at the matrix level is that the matrix is block structured
with elements in the diagonal blocks being at least an order
of magnitude larger than elements in the off-diagonal blocks.
This implies that the model is made up of subsystems
whose internal interactions are much more frequent than the
interactions between subsystems. As a consequence it can
be assumed that the subsystems reach an internal equilibrium
between external interactions.

The initial classification of SPA models susceptible to time
scale decomposition [37], relied on a classification of the
sequential components within a model into fast or slow; this
in turn was based on a classification of all actions relative to
some threshold rate. A component is considered to be fast if
it enables fast or passive actions; a component is considered
to be slow if it enables only slow actions. Only models
comprised of fast and slow components were considered.
Submodels were formed by allowing evolution only via fast
actions. The aggregated model was formed by allowing
evolution between such subsets of states via slow actions [37].

Later work by Mertsiotakis [38], tackles the problem of
hybrid components—sequential components which cannot
be classified as either fast or slow since they enable both fast
and slow actions.

Related work on other SPAs includes:

• Mertsiotakis and Silva’s work on decomposition of a
class of SPA models, termed decision free processes
[38, 39], based on an earlier work on throughput approx-
imation in a class of SPNs called marked graphs [40].

• Bohnenkamp and Haverkort’s work on near-
independence [41], exploiting the notion of near-
independence introduced by Ciardo and Trivedi in [42]
in the context of SPNs.

• This was later expanded by the same authors in [43],
which aims to reformulate the underlying Markov
process of an SPA model as a set of semi-Markov

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 393 — #9

Tuning Systems: From Composition to Performance 393

processes. These are then solved via their embedded
Markov chains and evaluations of the time distri-
butions between synchronizations between the SPA
components.

4. APPLICATIONS

Developing models for real applications has always been
part of the PEPA project. This allows us to demonstrate
to ourselves and others that the theory we have developed
is useful. It is also a valuable source of inspiration for new
theories and future directions.

In this section we provide a brief overview of some of
the case studies which have been undertaken by ourselves
and others using PEPA, followed by an account of some of
the tools that support modelling with PEPA and then more
detailed accounts of two recent projects which seek to make
PEPA modelling more accessible to practitioners.

4.1. Case studies

As originally intended, PEPA has been applied to study the
performance characteristics of a number of computer and
communication systems. Initial examples focussed on well-
known standard performance evaluation abstractions such as
multi-server, multi-queue systems [5] and various queueing
systems [44]. However, over time more realistic case studies
emerged, both from the PEPA group and from others. For
example, in [45] the performance impact of fault-tolerant
protocols within a distributed system framework is evaluated.
In [46] Bowman et al. develop a model of multimedia traffic
characteristics and use it to derive the quality of service
measures such as jitter, throughput and latency. In an
investigation of the ways in which to ease the development of
parallel database systems, the STEADY group at the Heriot-
Watt University proposed the use of performance estimators.
PEPA was used to verify the output of the performance
estimators for a number of particular configurations and
therefore improve confidence in the approach [47].

In recent work a group at the PRiSM Laboratory of the
University of Versailles are working on a novel, active,
rule-based approach to active networks (networks in which
intermediate nodes supplement routing of data with some
computation) [48]. A PEPA model was used to study
the impact of the ‘active’ traffic on the non-active cross-
traffic in terms of loss rate and latency within an active
switch [49]. Furthermore, the models were validated against
simulation models of the same system and showed very good
agreement [50].

In addition, the formalism has been applied to a number of
other problems which are beyond the usual arena of computer
performance evaluation.

Inland shipping. Luk Knapen of Hasselt applied PEPA to
study traffic flow within the inland shipping network
of Belgium, focussing in particular on the locks and
movable bridges.

Robotic workcells. Robert Holton of the University of
Bradford used PEPA models to analyse the performance

FIGURE 4. Tool support for PEPA modelling.

and functional correctness of a robotic workcell desig-
ned for an automated manufacturing system [51, 52].

Cellular telephone networks. A team from the PRiSM
Laboratory at the University of Versailles considered
the problem of dimensioning in a cellular telephone
network. They used a PEPA model to study the impact
of allocating bandwidth resources between micro and
macro-cell levels on call blocking and dropping [53],
by taking advantage of automatic aggregation [15].

Automotive diagnostic expert systems. Console et al. of the
University of Turin constructed a PEPA model of an
automatic diagnostic system to be deployed in a car. A
large number of sensors were placed around the car and
some number could trigger an alarm. The role of the
PEPA model was to provide probabilistic reasoning to
resolve the likely cause of the alarm based on previous
observations of the timing and frequency of individual
faults [54].

4.2. Tool support

Case studies of the size and complexity described in the
previous subsection are only possible if the modelling process
has adequate support. Fortunately, the PEPA formalism
has been supported in a number of different tools offering
a variety of different analysis techniques. Such support
has been a strong factor in encouraging others to use the
formalism.

The major tools which support PEPA are summarized in
Figure 4 and briefly described in the subsections below.

4.2.1. The PEPA Workbench
Initially developed in 1993, the PEPA Workbench has
undergone several revisions, but has nevertheless maintained
the same core functionality. It provides a parser which
can apply the operational semantics to derive the derivation
graph capturing all the possible evolutions of the model.
It can render this as the infinitesimal generator matrix of
a CTMC in formats suitable for both internal numerical
solvers (biconjugate gradient algorithm or successive over-
relaxation) or external numerical computing platforms such
as Maple and Matlab. In addition, it includes facilities to

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 394 — #10

394 J. Hillston

automatically derive some performance measures such as
throughput, and a one-step debugger which can show the
evolution of a model one activity at a time [55, 56].

The tool exists in two versions: the original version written
in the functional programming language Standard ML, and
a later edition written in Java [57]. The simple high-level
tool was used to gain experience and insights. This was
subsequently extended to a better engineered, more portable
version. The ML edition of the PEPA Workbench is still
used in this way, as a test bed for extensions of the PEPA
language, such as PEPA nets [58], and for new algorithms
[15]. In contrast, some less research-oriented extensions,
such as the inclusion of transient solution facilities [59], are
found only in the Java edition.

Generating the CTMC underlying a PEPA model and
finding its steady state probability vector is rarely, if ever, the
final objective of PEPA modelling. Formal tool support for
querying performance models is an area which has received
little attention until recently, despite its practical importance.
Whilst some effort has been applied in this direction for PEPA
models, it remains an area in which there is much scope for
future work.

At the most basic level the modeller wishes to construct
a reward structure over the state space of the CTMC, to be
used in conjunction with the steady state probability vector
to derive performance measures. For steady state measures
the reward structure is a vector recording a ‘reward’ for each
state, although for many states the reward value will be zero.
Thus, the problem becomes one of identifying the appropriate
set of states to attach a non-zero reward to. Clearly, when the
CTMC arises from a stochastic process algebra model we
prefer to characterize the state at the process algebra level.
PEPA analysis tools have been developed which tackle this
problem in two distinct ways.

The PEPA State Finder. The PEPA State Finder is used
with the ML edition of the PEPA Workbench. It identifies
subsets of states using regular expression pattern matching,
applied to the table of PEPA expressions which make up
the states of the model. Recall that there is a one-to-one
correspondence between the syntactic forms of the PEPA
process as it evolves and the states of the CTMC. The
Workbench maintains a table to record this correspondence
and using regular expression pattern matching the PEPA State
Finder is able to extract the states of interest. For example, it
is possible to use an expression such as *|(next,r).* to
return the state numbers of all the states in which the second
component enables a (next, r) activity. This could then be
used to construct a reward structure suitable for calculating
the throughput of next in the second component: the value r
is placed in the reward vector at each position corresponding
to a (numerical) state found by the PEPA State Finder.

PMLµ. A more sophisticated means of specifying rewards
is described in Clark’s PhD thesis [13], and developed around
the stochastic logic PMLµ. Inspired by the probabilistic
modal logic of Laren and Skou, PML [11], PMLµ is able to
differentiate PEPA terms which perform the same activities

but at different rates. The key to this is a modification to
the Hennessy–Milner logic in which the diamond operator
becomes decorated with a rate. The semantics of an
expression in the logic is a subset of states, and thus logical
expressions may be used, in conjunction with a value, to
specify a reward structure. Clark extended the ML edition
of the PEPA Workbench to include support for PMLµ and
associated reward structures [13].

4.2.2. The Imperial PEPA Compiler
The recently developed Imperial PEPA Compiler (IPC)
incorporates an alternative parser for PEPA models [60], thus
providing a bridge to alternative analysis tools developed at
Imperial College by Knottenbelt and his group [61, 62].

The IPC tool translates an input PEPA model into the Petri
net notation provided by Dnamaca [61]; its support for the
PEPA language is comprehensive. Apparent rates are sup-
ported, as are anonymous components. These are two advan-
tages over the PEPA-to-PRISM compiler, and a richer class
of PEPA models can be analysed by IPC/Dnamaca as a result.

The steady state probability distribution represents the
behaviour of the system at equilibrium, where the influence
of the initial state of the system is no longer measurable.
Some performance measures of interest cannot be derived
from the results of steady state analysis. Examples of
performance measures in the class of non-equilibrium
measurements include mean time to failure analysis,
as computed in the evaluation of dependable systems.
Other examples include the probabilistic quality-of-service
guarantees which underpin most commercial service level
agreements (SLAs): e.g. the probability that a 10-node cluster
should be able to process 3000 database transactions in <6 s
should be > 0.915; or a train service should not run >10 min
late >20% of the time.

More generally, such measures necessitate the computa-
tion of passage-time quantiles which detail the probability
of passing through the system evolution from a start state to
an end state (or set of starting states to a set of end states).
The computation of such measures depends on the aggregate
time behaviour across a whole system of complex interac-
tions. The computation of passage-time quantiles depends
on transient analysis of the CTMC, which is more expen-
sive than steady state analysis at both run-time and memory
consumption.

Via IPC, the unique solution capabilities of Dnamaca
become available and because of this it is possible
to efficiently perform passage-time analysis over PEPA
models [60, 62]. Start and end points are specified using the
concept of stochastic probes developed by Argent-Katwala,
Bradley and Dingle [63]. Stochastic probes are themselves
PEPA components which have been generated from regular
expression-based inputs.

4.2.3. PEPAroni simulation engine
Simulation has proved to be a useful alternative to numerical
analysis of the underlying CTMC in two cases. First, if the
size of the model is prohibitively large for numerical analysis

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 395 — #11

Tuning Systems: From Composition to Performance 395

simulation can be used, although issues of run length can
arise. Second, in the context of extending the expressiveness
of PEPA with general distributions [13] numerical solution
is no longer exact in most cases. Principally motivated by
this second case, Clark implemented a simulator for PEPA
models, called the PEPAroni simulator.

4.2.4. The PRISM model checker
PRISM is a probabilistic model checker developed by
Kwiatkowska’s group at the University of Birmingham. It
supports discrete time Markov chains and Markov decision
processes as well as CTMCs. The standard input to PRISM
is a model described in a simple reactive modules language.
PEPA was integrated into the tool via a compiler which
translates PEPA models into this language. There was also
some work required to extend the model checker to support
PEPA’s combinators (cooperation and hiding).

Integration into PRISM enables model checking of
the CTMC underlying a PEPA model against properties
expressed in continuous stochastic logic [64]. It also provides
access to the efficient numerical solutions of PRISM based on
MTBDDs [18] and sparse matrix representation. PRISM has
been applied successfully to a number of PEPA (and PEPA
net) case studies [65, 66].

4.2.5. The Möbius modelling platform
The Möbius modelling framework [67] was developed at the
University of Illinois Urbana-Champaign. It is both a multi-
formalism and multi-paradigm modelling tool, i.e. it aims
to offer the user a choice of model description techniques
and solution methods. Moreover, it is designed to allow a
model to be composed of submodels which may be expressed
in different formalisms. It has a broad spectrum of users
in North America. Integrating PEPA into Möbius offered
opportunities to present SPA to users who were previously
unfamiliar with the formalism, and to explore the possibilities
of interaction between modelling formalisms [68].

4.3. New application areas

In this section we describe two recent research projects which
have sought, in different ways, to extend the applicability
of PEPA. In both cases the use of PEPA becomes much
more transparent to the users, who interact with the tools
through other high-level system descriptions. Whilst the use
of PEPA has been more widespread than perhaps anticipated,
it remains the case that the majority of users are academic.
Our objective is not to increase the user community of PEPA
per se but to encourage the use of sound performance analysis
as the basis for design and deployment decisions. Thus, in
these latest developments the use of PEPA is in some ways
hidden from the user.

4.3.1. The DEGAS project
In the CEC-funded DEGAS project2 we have been
investigating ways to make performance modelling using

2Design Environments for Global ApplicationS project IST-2001-32072
funded by the FET Proactive Initiative on Global Computing.

FIGURE 5. Architecture of the DEGAS analysis environment.

PEPA more accessible to software designers who may be
unfamiliar with process algebra. We have sought to take
advantage of the popularity of the unified modelling language
(UML) by providing a way to derive performance measures
from a suitably annotated UML model. A schematic view of
this process is shown in Figure 5.

The key functionality is provided by a pair of software
modules, the extractor and the reflector [69]. These form
a bridge between the UML modelling environment and the
PEPA tools. Annotations are added to the UML model
according to a predetermined stereotype. The UML is then
saved in the usual way in .xmi format. The extractor
produces a corresponding .pepa format which can be
loaded into the PEPA Workbench. This allows a steady
state probability distribution corresponding to the states of
the PEPA model to be derived. However, this is still
inaccessible to the UML modeller—it is essential that results
are reported in terms which make sense to the software
designer, i.e. in terms of the original UML model. This
functionality is provided by the reflector module which
aggregates the steady state probability distribution data to
produce suitable annotations to the UML model. This has
required a modification to the PEPA Workbench so that
results can be written out in XML format. The reflector then
combines these with the original .xmi file.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 396 — #12

396 J. Hillston

This scheme is not specific to UML models. For
example, an extractor has recently been developed for models
developed in BPEL 4WS, a web service composition langu-
age [70].

4.3.2. The ENHANCE project
The EPSRC-funded ENHANCE project3 seeks to assist
in the development of efficient applications in computational
grid environments. The thrust of the project is two-fold.

• The use of high-level programming schemes such as
Cole’s skeletons facilitate correct high-level implemen-
tation of systems with complex coordination patterns.
These patterns (the ‘skeletons’) are abstracted into a
reusable, efficient library of coordination combinators.
The use of this library elevates the programming model
and eliminates low-level parallel programming errors
such as sends with unmatched receives.

• Predefined performance models (PEPA components)
corresponding to these skeletons, as well as the grid
infrastructure, can be appropriately parameterized to
represent any given configuration. Thus, alternative
configurations can be evaluated prior to scheduling (and
re-scheduling) in order to select the schedule with the
best predicted performance.

A prototype tool, AMoGeT, supporting this framework
has been developed [71]. This tool uses the Network
Weather Service to query the available grid in order to
obtain a short-term forecast of compute load on these
machines. It assimilates this information with a PEPA model
composed of the present program and grid infrastructure. In
fact, a set of PEPA models are constructed, one for each
candidate schedule. Solving these models within AMoGeT
derives performance information which can be used to place
processes on processors in order to reduce the makespan of
the application overall.

5. FUTURE WORK

As in the past the plan is to continue the development of both
new theory and new applications of PEPA in tandem. In this
section we provide brief overviews of the current work in
both areas.

5.1. New theory

5.1.1. PEPA nets
Over the last decade mobility has had a major impact
on the way we design, implement and manage many
computer systems. Mobility may be manifest in the
form of devices which change location and spontaneously
connect/disconnect, or in the form of executable code which
is moved around the network for a variety of reasons. In
either case the effect is that the context in which computation
is taking place is dynamically changing, and these changes

3Enhancing the Performance Predictability of Grid Applications with
Patterns and Process Algebras, EPSRC grant number GR/S21717/01.

will affect the performance of the system. The PEPA nets
formalism has been designed to capture information about
mobility and so allow performance models of such systems
to be readily and naturally developed [72].

A PEPA net is an SPN with coloured tokens. The tokens
represent mobile objects with state and behaviour, where we
use the term mobile loosely to characterize objects which
may find themselves in different contexts during execution.
The tokens are described using PEPA.

The use of SPNs for performance models is well
established [73] and coloured variants, e.g. stochastic well-
formed nets (SWNs) [74], have also been developed.
However, the use of colours in PEPA nets offers something
quite distinct—the possibility of differentiating between
two types of change of state within a system. Unlike
SWNs where tokens remain indistinguishable within their
colour classes, tokens within PEPA nets are autonomous
components. Firings of the net will typically be used to
model macro-step (or global) changes of state, whereas
transitions within the PEPA tokens are typically used to
model micro-step (or local) changes of state as components
undertake activities. Thus, modelling with PEPA nets
uses both Petri nets and process algebra together as
a single, structured performance modelling formalism.
Moreover, we have demonstrated that PEPA nets offer some
expressivity which is not directly offered by either PEPA
or Petri nets [72]. Their modelling capabilities have been
demonstrated in a number of case studies including MobileIP
[75], a decentralized peer-to-peer emergency medical
application [76] and a distributed multi-user role-playing
game [77].

5.1.2. New mathematical models
As detailed earlier, a major challenge for all discrete state-
based performance modelling formalisms (i.e. queueing
networks, SPNs and SPAs) is the problem of state space
explosion. Much of the research effort of the performance
analysis community for the last 20 years has been devoted
to tackling this problem, using techniques such as those
discussed in Section 3.3. However, recent work in the
PEPA group has been studying an alternative approach.
In this approach we move away from the assumption
of discrete state space and instead consider continuous
approximations. Where there are sufficient numbers of
components, early indications are that this is a viable
alternative to steady state Markovian analysis [78] for some
problems.

When the state variables are assumed to be continuous,
and activity rates are taken to be constant, the evolution of
the system can be described by a set of ordinary differential
equations. When this is generalized to allow activity rates
to be governed by probability distributions rather than being
deterministic the evolution of the system can be described
by a set of random differential equations [79]. A further
generalization, introducing more uncertainty, is offered by
stochastic differential equations [80]. The investigation of
the use of these alternative mathematical models is the subject
of ongoing research.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 397 — #13

Tuning Systems: From Composition to Performance 397

5.2. New application domains

As already mentioned, the elegance of the PEPA modelling
language, the available tool support and the access to
quantified analysis have attracted researchers from other
fields to develop PEPA models. This has lead to the
development of models in some novel areas. We conclude
by outlining two of these areas below.

Biochemical signalling pathways. We have begun
exploratory work in the area of biochemical signalling path-
ways using the ERK signalling pathway as an example [81].
A PEPA model has been developed to represent the path-
way and was subsequently analysed using both standard
Markovian analysis [82] and the continuous state space
approximation technique described above [83].

In the longer term it is anticipated that new description
languages and solution techniques will be needed for this
new domain of application.

• Process algebras model a system by focusing on the
activities and agents that undertake them. Whilst this
view of a system comprised of individuals who interact
to produce a collective behaviour has strong resonances
within the biological community, the forms of activity
and interaction which may be witnessed are more
complex. For example, the interaction which captures
inhibition without blocking is not readily represented in
existing process algebras.

• Issues of scalability of analysis mechanisms have been
a major concern within the work on performance
evaluation, but the systems considered in the biological
domain take this problem even further. In many
instances existing techniques are not going to adequately
cope, suggesting that new analysis techniques, or at least
new mappings between the process algebra and analysis
techniques, are needed.

Security and timing attacks. Many security analyses can be
undertaken without information about the timing of message
exchanges and therefore the system description does not need
to record timing information. However, timing attacks are a
form of security breach in which the timing, rather than just
the ordering, of events is crucial.

Timing attacks can be mounted by timing the exchange
of messages during a session between two parties. The parts
of the communication which do not require user interaction
have sufficient repeatability such that the timings of these
interactions can be used to derive information. (Any user
interaction usually introduces sufficient random delay to
mask any information which could have been obtained from
the timing information.) Where a secure session between
two parties can be monitored by an eavesdropper, then
information about the time parts of the interaction can be
recorded. In the case where there is a difference in the
time taken by different types of interactions (e.g. between
a successful interaction and one that fails), then information
can be leaked from the communication via the time recorded.
One approach to this problem is to introduce delays into the

faster interactions in order to mask the difference between
fast and slow interactions.

In [84] we have investigated the use of PEPA to analyse
modified protocols to ensure that the introduced delays
do indeed have the desired effect of masking the timing
differences between interactions.

ACKNOWLEDGEMENTS

Many people have contributed to the PEPA project in a
variety of ways. In particular, the author would like to thank
Ashok Argent-Katwala, Anne Benoit, Jeremy Bradley, Linda
Brodo, Muffy Calder, Catherine Canevet, Graham Clark,
Nick Dingle, Amani El-Rayes, Stephen Gilmore, Zully
Grant-Duff, Valentin Haenel, Peter Harrison, Robert Holton,
Jon Hunter, Leïla Kloul, Marta Kwiatkowska, Vassilis
Mertsiotakis, Amdjed Mokhtari, Gethin Norman, Dave
Parker, Corrado Priami, Matthew Prowse, Marina Ribaudo,
Matteo Sereno, Fotis Stathopoulos, Joanna Tomasik, Nigel
Thomas and Feng Wan.

TOOL AVAILABILITY

The PEPA tools are mostly available in open-source form
under the GNU Public License. The PEPA Workbench
and related tools are available from the PEPA web site at
www.dcs.ed.ac.uk/pepa. The Möbius multi-paradigm mod-
elling framework is available from the University of Illinois
at www.crhc.uiuc.edu/PERFORM/mobius-software.html.
PRISM is available from www.cs.bham.ac.uk/∼dxp/prism/.
The IPC is available from www.doc.ic.ac.uk/ipc/.

REFERENCES

[1] Milner, R. (1989) Communication and Concurrency.
Prentice-Hall.

[2] Hoare, C. A. R. (1985) Communicating Sequential Processes.
Prentice-Hall.

[3] Plotkin, G. D. (1981) A structural approach to operational
semantics. Technical Report DAIMI FN-19, University of
Aarhus.

[4] Herzog, U. (1990) Formal description, time and performance
analysis: a framework. Technical Report 15/90, IMMD
VII, Friedrich-Alexander-Universität, Erlangen-Nürnberg,
Germany.

[5] Hillston, J. (1996) A Compositional Approach to Performance
Modelling. Cambridge University Press.

[6] Götz, N., Herzog, U. and Rettelbach, M. (1992) TIPP—a
language for timed processes and performance evaluation.
Technical Report 4/92, IMMD7, University of Erlangen-
Nürnberg, Germany.

[7] Bernardo, M. and Gorrieri, R. (1998) A tutorial on EMPA:
a theory of concurrent processes with nondet erminism,
priorities, probabilities and time. TCS, 202, 1–54.

[8] Strulo, B. and Harrison, P.G. (2000) Spades—a process
algebra for discrete event simulation. J. Logic Comput., 10(1),
3–42.

[9] Hillston, J. (1994) The nature of synchronisation. In Herzog,
U. and Rettelbach, M. (eds) Proc. 2nd Int. Workshop on

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 398 — #14

398 J. Hillston

Process Algebras and Performance Modelling, Erlangen, July,
pp. 51–70.

[10] Bradley, J. (1999) Towards Reliable Modelling with
Stochastic Process Algebras. PhD thesis, Department of
Computer Science, University of Bristol.

[11] Larsen, K. and Skou, A. (1991) Bisimulation through
probabilistic testing. Inform. Comput., 94(1), 1–28.

[12] Kemeny, J. G. and Snell, J. L. (1960) Finite Markov Chains.
Van Nostrand.

[13] Clark, G. (2000) Techniques for the Construction and
Analysis of Algebraic Performance Models. PhD thesis, The
University of Edinburgh.

[14] Hillston, J. (1995) Compositional markovian modelling using
a process algebra. In Stewart, W. J. (ed) Numerical Solution
of Markov Chains. Kluwer.

[15] Gilmore, S., Hillston, J. and Ribaudo, M. (2001) An
efficient algorithm for aggregating PEPA models. IEEE Trans.
Software Eng., 27(5), 449–464.

[16] Deavours, D. D. and Sanders, W. H. (1998) An efficient
disk-based tool for solving large Markov models. Perform.
Evaluation, 33, 67–84.

[17] Hillston, J. and Kloul, L. (2001) An efficient Kronecker
representation for PEPA models. In de Alfaro, L. and
Gilmore, S. (eds) Proc. First Joint PAPM-PROBMIV
Workshop, Aachen, Germany, September 12–14, LNCS 2165,
Springer-Verlag.

[18] Hermanns, H., Meyer-Kayser, J. and Siegle, M. (1999) Multi-
terminal binary decision diagrams to represent and analyse
continuous time Markov chains. In Proc. 3rd Int. Workshop
on the Numerical Solution of Markov Chains, Zaragoza, Spain,
September 6–10, pp. 188–207.

[19] Hillston, J. (2001) Exploiting structure in solution:
decomposing composed models, FMPA Lecture Notes.
Springer-Verlag.

[20] Jackson, J. R. (1963) Jobshop-like queueing systems.
Manage. Sci., 10, 131–142.

[21] Baskett, F., Chandy, K. M., Muntz, R. R. and Palacios, F. G.
(1975) Open, closed and mixed networks of queues with
different classes of customers. J. ACM, 22(2), 248–260.

[22] Bhabuta, M., Harrison, P. G. and Kanani, K. (1995) Detecting
reversibility in Markovian Process Algebra. In Performance
Engineering of Computer and Telecommunications Systems,
Liverpool John Moores University, Springer-Verlag.

[23] Hillston, J. and Thomas, N. (1998) A syntactical analysis of
reversible PEPA models. In Proc. 6th Process Algebra and
Performance Modelling Workshop, Nice, France, September
11–12. University of Verona.

[24] Kelly, F. (1979) Reversibility and Stochastic Processes.
Wiley.

[25] Harrison, P. and Hillston, J. (1995) Exploiting quasi-reversible
structures in Markovian process algebra models. Comput. J.,
38(6), 510–520.

[26] Sereno, M. (1995) Towards a product form solution of
stochastic process algebras. Comput. J., 38(6), 622–632.

[27] Henderson, W. and Taylor, P. G. (1991) Embedded processes
in stochastic petri nets. IEEE Trans. Softw. Eng., 17(2),
108–116.

[28] Boucherie, R. J. (1994) A Characterisation of Independence
for Competing Markov Chains with Applications to Stochastic
Petri Nets. IEEE Trans. Softw. Eng., 20(7), 536–544.

[29] Hillston, J. and Thomas, N. (1999) Product form solution
for a class of PEPA models. Perform. Evaluation, 35(3–4),
171–192.

[30] Clark, G. and Hillston, J. (2002) Product form solution for
an insensitive stochastic process algebra structure. Perform.
Evaluation, 50(2–3), 129–151.

[31] Mitrani, I. and Wright, P. E. (1994) Routing in the presence
of breakdowns. Perform. Evaluation, 20, 151–164.

[32] Thomas, N. and Gilmore, S. (1998) Applying quasi-
separability to markovian process algebra. In Proc. 6th
Process Algebra and Performance Modelling Workshop, Nice,
France, September 11–12. University of Verona.

[33] Harrison, P. G. (2003) Turning back time in Markovian
process algebra. TCS, 290, 1947–1986.

[34] Gelenbe, E. (1991) Queueing networks with negative and
positive customers. J. Appl. Probab., 28, 656–663.

[35] Courtois, P. J. (1977) Decomposability: Queueing and
Computer System Applications. ACM Series. Academic
Press, New York.

[36] Blakemore, A. and Tripathi, S. (1993) Automated time
scale decomposition of SPNs. In Proc. of 5th International
Workshop on Petri Nets and Performance Models (PNPM ’93),
Toulouse, October 20–22.

[37] Hillston, J. and Mertsiotakis, V. (1995) A simple time
scale decomposition technique for stochastic process algebras.
Comput. J., 38(7), 566–577.

[38] Mertsiotakis, V. (1998) Approximate Analysis Methods
for Stochastic Process Algebras. PhD thesis, Universität
Erlangen–Nürnberg, Martensstraße 3, 91058 Erlangen.

[39] Mertsiotakis, V. and Silva, M. (1997) A throughput
approximation algorithm for decision free processes. In
Ribaudo, M. (ed.) Proc. 7th Int. Workshop on Petri Nets and
Performance Models, St Malo, France, June 3–6.

[40] Jungnitz, H. (1992) Approximation Methods for Stochastic
Petri Nets. PhD thesis, Rensselaer Polytechnic Institute.

[41] Bohnenkamp, H. and Haverkort, B. (1997) Decomposition
methods for the solution of stochastic process algebra models:
a proposal. In Brinksma, E. and Nymeyer, A. (eds) Proc.
5th Process Algebra and Performance Modelling Workshop,
Enschede, The Netherlands, June 26–27.

[42] Ciardo, G. and Trivedi, K. S. (1992) A decomposition
approach for stochastic petri net models. Perfor. Evaluation,
18, 37–59.

[43] Bohnenkamp, H. and Haverkort, B. (1998) Semi-Numerical
Solution of Stochastic Process Algebra Models. In Priami, C.
(ed.) Proc. 6th Process Algebra and Performance Modelling
Workshop, Nice, France, September 11–12.

[44] Thomas, N. and Hillston, J. (1997) Using Markovian
process algebra to specify interactions in queueing systems.
Technical Report ECS-LFCS-97-373, LFCS, The University
of Edinburgh.

[45] Clark, G., Gilmore, S., Hillston, J. and Ribaudo, M. (2000)
Exploiting modal logic to express performance measures.
In Proc. 11th Int. Conf. Computer Performance Evaluation:
Modelling Techniques and Tools, Schaumburg, Illinois, USA,
March 27–31, LNCS 1786, pp. 211–227. Springer-Verlag.

[46] Bowman, H., Bryans, J. and Derrick, J. (1998) Analysis
of a multimedia stream using stochastic process algebra.
In Priami, C. (ed.) 6th Int. Workshop on Process Algebras
and Performance Modelling, Nice, France, September 11–12,
pp. 51–69.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 399 — #15

Tuning Systems: From Composition to Performance 399

[47] Dempster, E. W., Tomov, N. T., Lü, J., Pua, C. S., Williams,
M. H., Burger, A., Taylor, H. and Broughton, P. (1998)
Verifying a performance estimator for parallel DBMSs. In
Proc. EuroPar (EuroPar’98), Southampton, September 2–4.

[48] Bouzeghoub, M., Kloul, L. and Mokhtari, A. (2002) A new
active network framework based on active rules. Technical
Report 2002/21, PRiSM, Université de Versailles.

[49] Hillston, J., Kloul, L. and Mokhtari, A. (2003) Active
nodes performance analysis using PEPA. In Proc. 19th UK
Performance Engineering Workshop, University of Warwick,
July 9–10, pp. 244–256.

[50] Hillston, J., Kloul, L. and Mokhtari, A. (2004) Towards
a feasible active networking scenario. Telecommun. Sys.,
27(2–4), 413–438.

[51] Gilmore, S., Hillston, J., Holton, D. R. W. and Rettelbach,
M. (1996) Specifications in Stochastic Process Algebra
for a Robot Control Problem. Int. J. Prod. Res., 34(4),
1065–1080.

[52] Holton, D. R. W. (1995) A PEPA specification of an industrial
production cell. Comput. J., 38(7), 542–551.

[53] Forneau, J. M., Kloul, L. and Valois, F. (2002) Performance
modelling of hierarchical cellular networks using PEPA.
Perform. Evaluation, 50(2–3), 83–99.

[54] Console, L., Picardi, C. and Ribaudo, M. (2000) Diagnosis
and diagnosability analysis using process algebras. In
Proc. 11th Int. Workshop on Principles of Diagnosis (DX00),
Morelia, Mexico, June 8–11.

[55] Gilmore, S. and Hillston, J. (1994) The PEPA workbench:
a tool to support a process algebra-based approach to
performance modelling. In Proc. 7th Int. Conf. on
Modelling Techniques and Tools for Computer Performance
Evaluation, Vienna, Austria, May 3–6, LNCS 794, pp. 353–
368. Springer-Verlag.

[56] Clark, G., Gilmore, S. and Hillston, J. (1999) The PEPA
performance modelling tools. In Hillston, J. (ed.) Proc. 7th
Workshop on Process Algebra and Performance Modelling,
Zaragosa, Spain, September 6–10. University of Zaragosa
Press.

[57] Hunter, J. (1999) Re-evaluation of the PEPA Workbench.
Master’s thesis, School of Computer Science, The University
of Edinburgh.

[58] Gilmore, S., Hillston, J. and Ribaudo, M. (2002) PEPA
nets: a structured performance modelling formalism. In
Proc. 12th Int. Conf. on Modelling Tools and Techniques
for Computer and Communication System Performance
Evaluation, London, UK, April 14–17, LNCS 2324,
pp. 111–130. Springer-Verlag.

[59] Wan, F. (2000) Interface Engineering and Transient Analysis
for the PEPA Workbench. Master’s thesis, School of
Computer Science, The University of Edinburgh, UK.

[60] Bradley, J. T., Dingle, N. J., Gilmore, S. T. and Knotten-
belt, W. J. (2003) Derivation of passage-time densities in
PEPA models using IPC: the imperial PEPA compiler. In Proc.
11th IEEE/ACM Int Symp. on Modeling, Analysis and Simula-
tion of Computer and Telecommunications Systems, Orlando,
FL, October 12–15, pp. 344–351. IEEE Computer Society
Press.

[61] Knottenbelt, W. J. (1996) Generalised Markovian analysis of
timed transition systems. Master’s thesis, University of Cape
Town, South Africa.

[62] Bradley, J. T., Dingle, N. J., Gilmore, S. T. and Knottenbelt,
W. J. (2003) Extracting passage times from PEPA models with

the HYDRA tool: a case study. In Jarvis, S. (ed.) (2003) Proc.
of 19th UK Performance Engineering Workshop, University of
Warwick, July 9–10, pp. 79–90.

[63] Argent-Katwala, A., Bradley, J. T. and Dingle, N. J.
(2004) Expressing performance requirements using regular
expressions to specify stochastic probes over process
algebra models. In Proc. 4th Int. Workshop on Software
and Performance, Redwood Shores, CA, January 14–16,
pp. 49–58. ACM Press.

[64] Kwiatkowska, M., Norman, G. and Parker, D. (2002)
PRISM: Probabilistic symbolic model checker. In Proc.
of 12th Int. Conf. on Modelling Tools and Techniques for
Computer and Communication System Performance Evalu-
ation, London, UK, April 14–17, LNCS 2324, pp. 200–204.
Springer-Verlag.

[65] Gilmore, S. and Kloul, L. (2003) A unified tool for per-
formance modelling and prediction. In Proc. 22nd Int Conf.
on Computer Safety, Reliability and Security (SAFECOMP
2003), Potsdam, Germany, September 21–24, LNCS 2788,
pp. 179–192. Springer-Verlag.

[66] Gilmore, S., Hillston, J., Kloul, L. and Ribaudo, M. (2004).
Software performance modelling using PEPA nets. In Proc.
4th Int. Workshop on Software and Performance, Redwood
Shores, CA, January 14–16, pp. 13–24. ACM Press.

[67] Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S.,
Doyle, J. M., Sanders, W. H. and Webster, P. (2001) The
Möbius modeling tool. In Proc. 9th Int. Workshop on Petri
Nets and Performance Models, Aachen, Germany, September
11–14, pp. 241–250.

[68] Clark, G. and Sanders, W. H. (2001) Implementing
a stochastic process algebra within the Möbius modeling
framework. In de Alfaro, L. and Gilmore, S. (eds)
Proc. First Joint PAPM-PROBMIV Workshop, Aachen,
Germany, September 12–14, LNCS 2165, pp. 200–215.
Springer-Verlag.

[69] Canevet, C., Gilmore, S., Hillston, J., Prowse, M. and
Stevens, P. (2003) Performance modelling with UML and
stochastic process algebras. IEE Proc. Comput. Dig. Tech.,
150(2), 107–120.

[70] Mitchell, B. and Hillston, J. (2004) Analysing web service
composition with PEPA. In Proc. 3rd Workshop on Process
Algebras and Stochastically Timed Activities, Edinburgh, UK
June 10–11, pp. 33–44.

[71] Benoit, A., Cole, M., Gilmore, S. and Hillston, J. (2005)
Realistic performance evaluation of skeleton-based grid
applications using the Network Weather Service. Comput. J.
(to appear).

[72] Gilmore, S., Hillston, J., Ribaudo, M. and Kloul, L. (2003)
PEPA nets: A structured performance modelling formalism.
Perform. Evaluation, 54(2), 79–104.

[73] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S.
and Franceschinis, G. (1995) Modelling with Generalized
Stochastic Petri Nets. John Wiley.

[74] Chiola, G., Dutheillet, C., Franceschinis, G. and Haddad, S.
(1993) Stochastic well-formed colored nets and symmetric
modeling applications. IEEE Trans. on Comput., 42(11),
1343–1360.

[75] Gilmore, S., Hillston, J. and Kloul, L. (2004). PEPA
nets. In Calzarossa, M. C. and Gelenbe, E. (eds)
Performance Tools and Applications to Networked Systems:
Revised Tutorial Lectures, LNCS 2965, pp. 311–335.
Springer-Verlag.

The Computer Journal Vol. 48 No. 4, 2005



“bxh097” — 2005/6/20 — page 400 — #16

400 J. Hillston

[76] Gilmore, S., Haenel, V., Hillston, J. and Kloul, L. (2004).
PEPA nets in practice: modelling a decentralised peer-to-peer
emergency medial application. In Núũez, M. et al. (eds)
Applying Formal Methods: Testing, Performance, and M/E-
Commerce, Proc. EPEW 2004, Toledo, Spain, September 30–
October 2, LNCS 3236, pp. 262–277. Springer-Verlag.

[77] Gilmore, S., Kloul, L. and Piazza, D. (2004) Modelling role-
playing games using PEPA nets. In Proc. 19th Int. Symp.on
Computer and Information Sciences (ISCIS 2004), Kemer-
Antalya, Turkey, October 27–29, LNCS 3280, pp. 523–532.
Springer-Verlag.

[78] Benoit, A., Cole, M., Gilmore, S. and Hillston, J. (2005)
Enhancing the effective utilisation of grid clusters by
exploiting on-line performability analysis. In Proc. 2nd Grid
Performability Workshop, 2005. to appear.

[79] Soong, T. T. (1973) Random Differential Equations in Science
and Engineering. Academic Press.

[80] Oksendal, B. K. (2003) Stochastic Differential Equations.
Springer.

[81] Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O.,
McFerran, B. and Kolch, W. (2003) Mathematical modeling
of the influence of RKIP on the ERK signaling pathway. In
Priami, C. (ed.) Computational Methods in Systems Biology
(CSMB’03), Rovereto, Italy, February 24–26, LNCS 2602,
pp. 127–141. Springer-Verlag.

[82] Calder, M., Gilmore, S. and Hillston, J. (2004) Modelling
the influence of RKIP on the ERK signaling pathway using
the stochastic process algebra PEPA. In Proc. BioConcur’04,
London, England, August 30.

[83] Calder, M., Gilmore, S. and Hillston, J. (2005) Automatically
deriving ODEs from process algebra models of signalling
pathways. To appear in CMSB’05, Edinburgh, Scotland,
April 3–5.

[84] Buchholtz, M., Gilmore, S., Hillston, J. and Nielson, F. (2004)
Securing statically-verified communications protocols against
timing attacks. In Proc. 1st Int. Workshop on Practical
Applications of Stochastic Modelling, Royal Society, London,
September 4, pp. 61–79.

The Computer Journal Vol. 48 No. 4, 2005


