
Visual representation of stochastic process algebra
models

Nigel Thomas† Malcolm Munro†

{nigel.thomas|malcolm.munro}@durham.ac.uk
Peter King‡ Rob Pooley‡

{pjbk|rjp}@cee.hw.ac.uk

ABSTRACT
Performance models are of increasing interest to professionals who
do not have a background in mathematical analysis, it is important
to provide additional mechanisms by developers may improve their
confidence in the models they evaluate accurately reflect the
systems they are studying. In this paper we discuss these issues,
suggesting some basic techniques from program comprehension
that be applied to models in a stochastic process algebra

Keywords
Visualisation, process algebra, model comprehension.

1. INTRODUCTION
In traditional software engineering visualisation techniques are
established aids to understanding complex software systems.
Performance modelling tools supporting graphical representations,
using Petri nets and queueing theory, can aid model comprehension
for practitioners used to those formalisms, but offer little to the
uninitiated. Because of the properties of compositionality,
parsimony and expressiveness, the possibility of including domain
information and the ability to automatically derive performance
measures, stochastic process algebra (SPA), are an extremely
good modelling paradigm for application in a wide variety of
different domains. It has been successfully demonstrated that
performance models can be derived from design specifications in
UML [4] and that SPA models can be related directly to code.
These developments have led to performance models being studied
by software engineers with little or no experience of stochastic
modelling. Some earlier work with classical process algebra has
investigated the use of visual techniques for model construction,
e.g. CCS [6]; our objectives are to aid post developmental
understanding, although some of the approaches are similar.

A typical performance oriented development process starts with an
elementary design, or system specification, which is then used to
specify a performance model of the system. To facilitate easier
solution, or in order to include additional features such as reward
structures the model may be manipulated into an alternative form,
which is then solved to derive performance measures. Since
measures are insufficient in themselves to fully analyse the system,
they must be applied, or interpreted, to facilitate the evaluation of

the design and development of improvements. Clearly, it is vital
that the designer has confidence in the measures that are derived in
order that any changes made to the design are valid. Measures
taken from the model must therefore be related to properties of the
system rather than the model and must be accurate and predictable.
In addition the designer must have confidence that the model which
is solved accurately depicts the behaviour of the system which is
being designed. By using an established design notation, such as
UML, and automatically deriving a performance model, in SPA for
example, the designer can have some confidence that there is a
strong relationship between the model and the design. The model
specification process, as presented by Pooley and King [4], relies
on identifying the observable behaviour and interaction between
objects in the design specification in order to identify the action
sequences and synchronisation that need to be included in the
model. In addition, because the objects in the design and the model
are the same, the design notation may be used to explicitly define
performance measures in terms of these objects. It is clear that
much is being done to promote confidence in performance models
and measures, but these techniques only address specification,
solution and application; there have not, as yet, been any attempts
to relate the original model, or the altered model, to the design.

The mechanisms by which a specification is altered to derive a new
model that has desirable properties, e.g. simplicity and solvability,
are varied. Because stochastic process algebra, such as PEPA [1],
are formally defined and have formal notions of equivalence it is
possible to define transformations which automatically translate
one specification to one or more others in a provably correct
manner. However, the majority of the motivations for performing
such transformations and some of the notions of equivalence used
relate more to the state space of the solution than the behaviour of
the model as related to the design. It is therefore necessary for the
designer to be able to have confidence that the altered model still
relates to the design in an understandable way from a design
perspective. A solution to this problem might be to derive a UML
specification directly from a SPA model, unfortunately the known
set of UML mappings to SPA models is limited. If the reverse
process were to be possible it would be necessary to ensure that
the model manipulation does not perform transformations that
derive models which lay outside this restricted subset.

2. VISUAL REPRESENTATIONS OF PEPA
DERIVATION GRAPHS
In the analysis of a PEPA model a derivation graph is formed in
order to compute the states of the underlying Markov chain. This
graph is not presented to the modeller by the PEPA Workbench
tools [1], but rather is an important mechanism used to study the
PEPA model and derive a numerical solution. There is a clear
relation between the properties of the graph and the properties of
the PEPA model, for instance if the graph is cyclic, then so is the
PEPA model and vice versa. The derivation graph is a directed
graph where the nodes represent the evolution of the cooperating

Permission to make digital or hard copies of part or all of
this work or personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.

WOSP 2000, Ontario, Canada
© ACM 2000 1-58113-195-X/00/09 ...$5.00

18

PEPA agents and the arcs represent the activities that are carried
out. If a steady state solution to the model exists then the graph is
strongly connected and cyclic, with every node reachable from
every other. This type of graph structure is extremely similar to call
graphs used in program comprehension and as such the same set
of tools can be used to visualise them. The graph may be enhanced
using colour to show what agents are participating in the actions
and are subsequently evolved. Given a large state space the size of
the full derivation graph in this form quickly becomes
unmanageable. Several possibilities exist for handling problems of
scale in presentation: elimination, aggregation, decomposition,
highlighting, layering, abstraction and windowing.

Thus far we have presented information in a solution oriented
manner, that is, with nodes being equivalent to states in the
underlying Markov process. Nodes are the primary conceptual foci
of graph representations and so in viewing a derivation graph, the
user places state as the principal model object. However, designers
generally have little or no concept of state, but rather tend to
consider software systems as collections of functions or activities
performed according to certain ordering constraints. The
translation from the state based derivation graph to an activity
oriented view is a simple matter of exchanging nodes and,
alternatively we could use call stack representations which have
been used successfully in program visualisation [5].

3. REPRESENTING COMPONENT
INTERFACES
In the previous section we discussed representations from
performance and behavioural viewpoints that aid understanding of
the evolution of the entire model. We now concentrate on views of
the high level objects and the interfaces that are formed between
them by synchronised actions. Visualisations such as these allow
the designer to observe that the objects in the model correspond to
objects in the design and that the way in which those objects
interact is similarly represented. At this level of abstraction it is not
necessary for us to present the detailed sequences of behaviour
that lead to these interactions, rather how the interaction is
facilitated (the shared action) and possibly any pre-conditions.
Much of the necessary information for this is contained in
statements containing the cooperation combinator. Consider for
example this statement taken from a production cell model [2]:

}ready_blank{S}put_to_ready{S
}blank_load,ready_DBelt,blank_unload,pick_to_ready{S

))Crane
S

DBelt(Press)Table
S

Belt((
S

RobotWorkcell

==
=

32

1

221

 || || <><><>def

Robot, Belt, Table, Dbelt, Crane and Press are the initial agents of
each of the five components representing a robot arm, a feed belt,
an elevating table, a deposit belt, a lifting crane and a press
respectively. Parsing this statement it is easy to deduce that Belt
(the feed belt) interfaces with Table (elevating table) and Dbelt
(deposit belt) interfaces with Crane (the crane). Furthermore, each
of these subsystems operates without direct interface to each other
or with Press, but all components possibly interface with the robot.
Working only from this model component it is not possible to
deduce what actions the robot shares with each of the other
individual components. This problem may be overcome by also
parsing the component specifications to determine what
components participate in which actions. As well as providing a
useful high level representation in its own right, the visualisation of

component interfaces also provides a useful navigation mechanism
to support more detailed behaviour. We have developed a
prototype navigation tool written in HTML, incorporating three
frames; one contains the visual representation of the component
interfaces, one contains the entire PEPA specification and the third
contains a derivation graph view of a single component. The
different representations are colour coordinated so that the user
can see what component is in view by the colour it is displayed in.
The interface diagram acts as a map; clicking on a component
changes the PEPA script to the corresponding position. This
prototype tool demonstrates how even very simple graphical
representations can collectively give an aid to comprehension.

4. CONCLUSIONS AND FURTHER WORK
The focus of this paper is quite different from most previous work
with stochastic process algebra in that it is not mathematically
challenging neither does it enable larger or more complex models to
be studied. However, it is crucial that performance analysis with
stochastic process algebra is made more accessible if it is to gain
general acceptance in software engineering practice. In this paper
we have shown how some simple graphical representations can aid
the understanding of model specifications and promote confidence
in those models amongst system designers. To date all the graphs
we have used have been prepared manually, this is adequate for the
purposes of demonstration with moderately sized models, but for
practical purposes it will be necessary to automate this process
further. To this end we aim to produce a set of visualisation tools
to further develop the ideas we have presented in this paper. Other
techniques to be investigated further include the use of symbolism
and shape to identify different object types, size, texture, tone and
hue to present different object properties and layout and lines to
depict relational properties. Another possible direction is to exploit
concepts from the application domain to provide more meaningful
graphical representations. We also hope to be able to depict the
stochastic nature of these models.

5. REFERENCES
[1] G. Clark, S. Gilmore, J. Hillston, and N. Thomas,

Experiences with the PEPA performance modelling tools, IEE
Proceedings - Software, 146(1), 1999.

[2] D.R.W. Holton, A PEPA specification of an industrial
production cell, The Computer Journal, 38(7), 1995.

[3] C. Knight and M. Munro, Visualising software - a key
research area, Proceedings of IEEE International Conference
on Software Maintenance, 1999.

[4] R.J. Pooley and P.J.B. King, Using UML to derive stochastic
process algebra models, Proceedings of the Fifteenth UK
Performance Engineering Workshop, 1999.

[5] P.J. Young and M. Munro, Visualising software in virtual
reality, Proceedings of IEEE 7th International Workshop on
Program Comprehension, 1998.

[6] R. Milner, Communication and concurrency, Prentice-Hall,
1989.

† Research Institute in Software Evolution, University of Durham,
Durham, UK
‡ Department of Computing and Electrical Engineering, Heriot Watt
University, Edinburgh, UK

19

