
Analysing Web Service Composition with PEPA

Bryce Mitchell
�

Jane Hillston
�

June 4, 2004

1 Introduction

Web services are an emerging paradigm aiming to offer the interoperability afforded
by web applications combined with rich client interaction. Web service compo-
sition allows a distributed application to be constructed from a number of pre-
viously published web services. This component-based style of implementation
offers many benefits to the developer, but the reliance of third party hardware and
software only exacerbates the unpredictability of application performance. In this
paper we present a first step towards addressing this problem, demonstrating an
automatic mechanism for developing a performance model based on a web service
composition.

The web service composition language that we consider is the Business Pro-
cess Execution Language for Web Services (BPEL4WS or simply BPEL) [3]. It is
an XML-based language and is implemented as a high level specification. This
specification provides a means for using a composition of web services to perform
applications, normally the automation of a business process incorporating:

� the ordering constraints between operations provided by different web ser-
vices;

� how data is shared between web services; and

� the different organisations or partners involved in the process.

BPEL is described in more detail in the following section.
The performance models we generate are written in the stochastic process alge-

bra, PEPA [2]. PEPA was chosen because it was anticipated that its compositional
structure would be a good match to the compositional specification in a BPEL
description.

The rest of the paper is structured as follows. In Section 2 we give a brief intro-
duction to web services in general and BPEL in particular. The mapping between
BPEL and PEPA is presented in detail in Section 3, including some information

�

School of Informatics, University of Edinburgh, Edinburgh EH9 3JZ

1

about the implementation. This is illustrated in Section 4 by an example based on
a loan approval application. We conclude in Section 5 with a brief summary of
what has been achieved and an overview of the outstanding issues.

2 Web Service Composition

Web services are applications that maintain a modular structure and use the Internet
to communicate using XML messages. Web service applications are built using a
stack of specifications to define, invoke and find web services. Each protocol is an
open standard developed by industry and overseen by the W3C [4]. The diagram
in Figure 1 shows the stack, and each layer is briefly described below.

Figure 1: The Web Service Stack

XML: XML or Extensible Markup Language is a markup language similar to
HTML. However, XML focuses on describing data, rather than describing
formatting and layout as HTML does. The extensible nature of XML comes
from the lack of a fixed set of tags — an XML document can contain any tag
or element the author wishes.

SOAP: SOAP is the specification used for communicating between web services.
SOAP is a very lightweight protocol and is generally implemented on top of
the HTTP message layer; however SOAP is a protocol independent specifi-
cation.

2

WSDL: The WSDL or Web Service Description Language describes a web ser-
vice in the sense of providing details of the operations offered by that web
service. These details include type information about the parameters of the
operation and how the service likes to interact i.e. what protocols may be
used to invoke it.

UDDI: The UDDI is similar to a directory service for looking up a required ser-
vice. UDDI is an industry-wide project to standardise the discovery of web
services.

BPEL4WS: BPEL provides an extension to the web services architecture to allow
both the abstract description of these processes and a method for executing
these processes. In this work we focus on the abstract description properties
of BPEL to allow us to create a model of the interaction of web services
needed to provide a process, and predict key metrics such as throughput.

2.1 BPEL Syntax

This section provides a brief overview of the syntax of a BPEL document. The
definition of any service consists of four key sections:

Process: This is the root element of the document. It provides information such
as the name of the process, namespace prefixes and also allows for a process
to be declared as abstract.

Partner Links/Partner Link Types: These define the relationship between the
different partners that interact in the process. Typically a partner will be
seen as both a consumer and provider of a service, for example a buyer of
some goods and a seller of others. Within partner link types roles specify the
portType provided by each service for use in the process. Each partner
may have more than one role, e.g. one for buying and one for selling.

Variables: These are used to store intermediate values that relate to the state or
history of the process.

Fault Handlers: These provide contingency activities in the event of a failure.
Failures may occur due to internal or invoked events. This aspect of the
specification is not addressed in the current work.

A BPEL process allows operations to be executed sequentially or concurrently
as appropriate and also supports familiar programming structures such as while
loops and if then else statements.

The basic structure of the process follows the definition provided by the above
sections and defined by outer structural elements, �

sequence � , �
flow � and

�
pick � . Within the structure a number of activities can be performed, these

can include other structure activities in a hierarchical fashion. For example, it is

3

common to find a �
flow � activity within a �

sequence � . The full set of valid
BPEL activities is:

�
receive � A receive element is used to wait for a request.

�
reply � A reply activity is used to send a response to a request

received through a �
receive � .

�
invoke � The basic activity of invoking an operation provided

by a service.
�
assign � This activity is used to assign data from one variable to

another.
�
throw � Allows a process to throw an exception.

�
terminate � Used to finish the entire process.

�
wait � This activity causes a delay for a specified period of time.

�
empty � An activity that does nothing, for example to suppress

an error.
� sequence � Activities in a sequence must be executed sequentially in

the order specified in the document.�
switch � Allows for conditional control structures.

�
while � This activity provides the typical while loop

functionality.
� pick � A number of activities are specified in a pick and they are

executed concurrently with execution continuing as soon
as the first of th ese activities returns or a specified timeout
has elapsed in which case the activity corresponding to the
timeout is executed and the process continues.� flow � Activities within a flow activity may be executed concur-
rently in the sense that there is no causal ordering between
them. Note that activities within flows may be sequence
activities.�

scope � This element is optional, but can be used to define the
scope of a group of activities.

�
compensate � This activity provides for the cancellation of activities

if a web service is not available.

Of these, our current work focuses on �
sequence � , �

flow � and �
pick � .

These three elements define the order in which operations are executed within the
process.

3 Automatically generating PEPA from BPEL

In this section we present the mapping from BPEL to PEPA which is at the core of
the tool, and discuss some issues relating to its implementation.

4

3.1 PEPA Mapping

There are several key elements to our mapping from BPEL to PEPA which can be
summarised as follows:

� We create a separate PEPA representation, as a component, for each of the
involved partners.

� Each BPEL atomic activity is represented as a PEPA activity. For clarity the
name of the BPEL activity is used as the type for the corresponding PEPA
activity.

� Furthermore we create an additional PEPA component which represents the
BPEL process itself and serves to coordinate the behaviours of the other
components. Data and state handling activities are attributed to this com-
ponent. For example, an �

assign � activity allocates data between the
local variables in the process. In the XML representation such activities do
not have a name attribute; therefore such an activity is mapped to a PEPA
activity of type “unnamedElement” followed by a unique number.

� We assume that each partner runs on one single-threaded processor, meaning
that it has bounded capacity to carry out computation. Thus when a flow of
activities are all assigned to a single partner we assume that they are carried
out in an arbitrary sequential order, reflecting this bounded capacity and the
lack of causality constraints.

� The interactions within the process are captured in a system equation defin-
ing the cooperations between the PEPA components.

When the BPEL structuring activities are encountered they are mapped to the
PEPA combinators as follows. A �

sequence � activity is mapped to the PEPA
prefix (�) in the sense that all activities that are within �

sequence � tags are
mapped to a chain of PEPA activities separated by the prefix combinator.

An example of this mapping is shown in Figure 2 where a customer and airline
interact to book a flight.

When creating a PEPA representation for activities within �
flow � elements,

based on the assumptions outlined above, we also map to a sequence of PEPA
activities linked by the prefix operator.

The final structural element, �
pick � , is mapped to the PEPA choice (

�
)

operator. The race condition in operation in a BPEL �
pick � activity maps well

the race condition governing the choice operator in PEPA. When creating the map-
ping we include all activities within the �

pick � element and also the timeout
activity. The continuous nature of the probability distributions in PEPA ensures
that two actions in the choice cannot occur simultaneously. This maintains the
property that a BPEL �

pick � activity completes as soon as one of the nested
activities or the timeout has completed. Figure 3 continues the travel example to

5

<sequence>
<receive name="sendItinerary"
partnerLink="customer" portType="itineraryPT"
operation="sendItinerary" variable="itinerary"/>

<invoke name="requestTickets"
partnerLink="airline" portType="ticketOrderPT"
operation="requestTickets" inputVariable="itinerary"/>

</sequence>

maps to...

� def� �������
	�����������������������
�
�������� !�"��$#%�'&�()��*������+,�

�
�

Figure 2: PEPA Mapping of �
sequence � element

illustrate the pick mapping. The example shows a web service attempting to book
a room at one of two hotels (Hilton or Marriott). The booking is made with the
first hotel to return a price, or if no price is received by either within an hour just
the airline tickets are sent to the customer.

Further, the provision for nesting of elements within XML allows the possibil-
ity of nesting of activities within BPEL. This nesting can result in more compli-
cated structures, such as flows, within picks, within sequences.

To control the interaction between activities we create a PEPA component to
represent the entire process. The component is built up by applying the above
mappings for each of the structural activities. This component then enforces the
scheduling of activities.

Finally we represent the interaction between the process and the partners by
using the PEPA co-operation operator (-/.). This defines the interaction between
the partners and the component representing the scheduling of the activities.

3.2 Implementation

The JAXB framework is used for accessing the data held within the BPEL doc-
ument. To use the framework a set of classes must be created to represent the
data. These classes are generated automatically using the xjc compiler, provided
with the JAXB framework, from the BPEL Schema. Once the classes have been
generated it is then possible to marshall documents between XML and Java.

Once a process object is available it is possible to access the other elements in
the document in order to construct the internal representation that is used to build
the PEPA model.

The information about the partners in the process is extracted first. We extract
in this order because we need to know what partners are available in order to be
able to match activities to the correct partners later.

6

<pick>
<onMessage partnerLink="hilton" portType="roomPT"
operation="requestRoom" inputVariable="itinerary">
<invoke name="bookHilton"
partnerLink="hilton" portType="roomPT"
operation="reserve" inputVariable="itinerary" />

</onMessage>
<onMessage partnerLink="marriott" portType="roomPT"
operation="getRoom" inputVariable="itinerary">
<invoke name="bookMarriot"
partnerLink="hilton" portType="roomPT"
operation="reserveRoom" inputVariable="itinerary" />

</onMessage>
<onAlarm (until="1H")>
<receive name="justSendTickets"
partnerLink="customer" portType="itineraryPT"
operation="sendTickets" variable="tickets"/>

</onAlarm>
</pick>

maps to...

� def� ��������(�� ����	��� �����
�
� � ��������(�
 ����������� ��� + �

�
� � ��� !� �� ���
	�# �'&�()�������� + +��

�
�

Figure 3: PEPA Mapping of �
pick � element

A substantial part of the implementation deals with the activity information. It
is currently assumed that all processes begin with a sequence — although this not
a requirement imposed by the formal specification or schema. A distinct method
deals with each of the three structure elements (�

sequence � , �
flow � and

�
pick �). Each of these methods uses the list of objects attached to its element.

For each element in the list we use the instanceof keyword to determine the
type of activity. If the activity is not an �

invoke � , �
receive � , �

reply � ,
�
flow � , �

sequence � or �
pick � we map it to the special Bpel partner

used to represent internal events; this applies to activities such as �
assign � ,

�
copy � etc.

Once we have determined the activity type we extract useful information such
as the name of the activity, the partner needed to execute the activity, the portType
and operation. The portType and operation data is required for looking up the
operation in the WSDL at a later stage for validation purposes.

The information for each individual activity is stored in a PepaActivity object.
Each activity is then added to a List in the object representing the current structure
element, e.g. a SequenceActivity or FlowActivity object. Objects that represent

7

<partnerLinks>
<partnerLink name="customer"

partnerLinkType="lns:loanApprovalLinkType"
myRole="approver"/>

<partnerLink name="approver"
partnerLinkType="lns:loanApprovalLinkType"
partnerRole="approver"/>

<partnerLink name="assessor"
partnerLinkType="lns:riskAssessmentLinkType"
partnerRole="assessor" />

</partnerLinks>

Figure 4: Partners in the Loan Approval Process[1]

structural elements can include other objects, also representing structural elements.
This allows for the nesting of activities. These objects are used to generate the
PEPA syntax when the separate PepaExtractor class is creating the model in a
format suitable for the PEPA Workbench. The separation of the generation of the
PEPA, from the actual syntax implementation allows for changes to be made to
either independently of one another.

3.3 Annotated WSDL

The BPEL specification gives us the structure of a PEPA model but gives us no
information of suitable rates for the activities represented. Moreover, apart from
the internal activites attributed to the BPEL component, this does not seem to be
the natural place for such information to reside. Nevertheless such information is
needed if the model is to be satisfactorily parameterised.

Some recent efforts have linked “quality of service” (QoS) information with
WSDL, so we enriched the XML schema for WSDL with an optional latency esti-
mate for each offered service.

Once the internal representation of the PEPA model is constructed, the asso-
ciated WSDL definition is accessed for each used web service. This allows the
activities in the component corresponding to the partner to be validated against the
operations offered according to the WSDL, and to extract the latency information
which is then used to set the rate of the corresponding activity. The rate is calcu-
lated as ��� � ��*���
& � .

This value does not take into account any communication delay that a request
for the service may encounter. The communication delay is not taken into account
because a WSDL only describes the service and should be independent of the plat-
form and network the service is operating on.

8

4 Example

In this section we present a small case study illustrating the use of the tool to create
and solve a model for an example BPEL process.

<sequence>
<receive name="receive1" partnerLink="customer"

portType="apns:loanApprovalPT" operation="approve"
variable="request" createInstance="yes" />

<invoke name="invokeAssessor"
partnerLink="assessor" portType="asns:riskAssessmentPT"
operation="check" inputVariable="request"
outputVariable="riskAssessment" />

<assign name="assign">
<copy>
<from expression="’yes’" />
<to variable="approvalInfo" part="accept" />

</copy>
</assign>
<invoke name="invokeapprover" partnerLink="approver"
portType="apns:loanApprovalPT" operation="approve"
inputVariable="request" outputVariable="approvalInfo" />

<reply name="reply" partnerLink="customer"
portType="apns:loanApprovalPT" operation="approve"

variable="approvalInfo" />
</sequence>

Figure 5: Activities in the Loan Approval Process[1]

The example is based on a tutorial on BPEL by IBM[1] that describes a process
for handling a loan application submitted by a customer. In this process we have
the customer and the two web services provided by the financial institution: loan
assessor and loan approver. In BPEL each of these are represented as a partner in
the process and the relevant extract from the BPEL document is shown in Figure 4

Within the model, a PEPA component is created to represent each partner, and
the activities the partner is involved in. Figure 5 shows the BPEL extract that
defines the activities within the process. A brief explanation of the process is pro-
vided below:

� The process waits to receive a request.

� The process invokes a web service to perform a risk assessment based on the
application details

� The result of the assessment is assigned to an internal variable within the
process

9

� A further web service is invoked to decide if the application should be approved

� The result is sent back to the customer

For this example the WSDL for the risk assessment web service has been anno-
tated to reflect that the service, on average, takes 4 seconds to complete the assess-
ment. Figure 6 shows an extract of the annotated WSDL.

<portType name="riskAssessmentPT">
<operation name="check" latency="4">
<input message="loandef:creditInformationMessage"/>
<output message="tns:riskAssessmentMessage"/>
<fault name="loanProcessFault"

message="loandef:loanRequestErrorMessage"/>
</operation>

</portType>

Figure 6: Annotated WSDL for Risk Assessment Web Service

When the BPEL document is loaded into the tool the source document is
accepted by the JAXB framework, and a model successfully generated. The model
created is shown in Figure 7.

/*
* This file is autogenerated from a BPEL4WS document
* by s0094815 using bpel2pepa
* on Mon May 24 22:24:05 BST 2004
*/

BPEL = (assign,1.0).BPEL;
CUSTOMER = (receive1,1.0).CUSTOMER+(reply,1.0).CUSTOMER;
APPROVER = (invokeapprover,1.0).APPROVER;
ASSESSOR = (invokeAssessor,0.25).ASSESSOR;

P = (receive1,1.0).(invokeAssessor,0.25).(assign,1.0)
.(invokeapprover,1.0).(reply,1.0).P;

P<receive1,invokeAssessor,assign,invokeapprover,reply>
(BPEL||CUSTOMER||APPROVER||ASSESSOR)

Figure 7: Model generated for the Loan Approval Process

By comparing the structure of the process and the partners shown (Figures 5
and 4 respectively) and the output shown in Figure 7 we can confirm the behaviour

10

of the program is as expected. For each partner a PEPA component has been
created showing the activities the partner is involved in. In the case of the Cus-
tomer, receive and reply activities have been associated. The assignment of the
loan approval information to an internal variable has been correctly mapped to the
Bpel component for representing the internal activities.

Figure 7 also shows the rate for the invokeAssessor activity reflects the value
placed within the operation attribute in the annotated WSDL.

All of the activities in this process are within �
sequence � elements, and

thus mapped to the PEPA prefix operator(�). The PEPA representation of the pro-
cess, (denoted as

�
) shows this mapping has been successfully applied.

1 0.12500000000000022
2 0.5000000000000007
3 0.12499999999999997
4 0.12499999999999993
5 0.12499999999999997

Figure 8: Solution for model generated for the Loan Approval Process

Once the model has been created the next step is to solve the model, this step
also ensures the PEPA syntax generated is valid. The PEPA workbench is success-
fully called from within the tool and Figure 8 shows the results that are calculated.
From these results we can calculate measures such as the throughput of the process.

5 Conclusions

We have presented a proof-of-concept implementation of a tool to automatically
generate compositional performance models from a web service composition described
in BPEL. Moreover we have proposed a means to parametrise the web service ele-
ment of the model via an annotated version of WSDL.

This is preliminary work and several issues remain to be addressed. In partic-
ular more work is needed on appropriate parameterisation of the model.

� At the moment all communication costs are ignored;

� The Annotated WSDL will necessarily give a static view of the timing of
each operation, not taking into account the current load on the host offering
the service.

� The timing of local operations, within the component BPEL are currently
allowed to default to 1.0, and a more realistic and differentiated estimate
should be used.

Nevertheless we believe this offers a valuable first investigation into the auto-
matic generation of PEPA models from BPEL and WSDL specifications.

11

References

[1] IBM. Business Process with BPEL4WS: Learning BPEL. http:
//www-106.ibm.com/developerworks/webservices/
library/ws-bpelcol2/.

[2] Hillston J. A Compositional Approach to Performance Modelling. PhD thesis,
University of Edinburgh, 1994.

[3] Andrews T., Curbera F., Dholhkia H., Goland Y., Klein J., Leymann F.,
Liuk K., Koller D., Smith D., Thattle S., Trickovid T, and Weerawaran
A. Specification: Business Process Execution Language for Web Ser-
vices Version 1.1. http://www-106.ibm.com/developerworks/
library/ws-bpel, May 2003.

[4] W3C. Web Services. http://www.w3.org/2002/ws/.

12

