Dependently Typed Functional Programs
and their Proofs

Conor McBride

Doctor of Philosophy
University of Edinburgh

1999

Abstract

Research in dependent type theories [M-L71a] has, in the past, concentrated on its use
in the presentation of theorems and theorem-proving. This thesis is concerned mainly
with the exploitation of the computational aspects of type theory for programming, in

a context where the properties of programs may readily be specified and established.
In particular, it develops technology for programming with dependent inductive fami-
lies of datatypes and proving those programs correct. It demonstrates the considerable
advantage to be gained by indexing data structures with pertinent characteristic infor-
mation whose soundness is ensured by typechecking, rather than human effort.

Type theory traditionally presents safe and terminating computation on inductive
datatypes by means of elimination rules which serve as induction principles and, via
their associated reduction behaviour, recursion operators [Dyb91]. In the programming
language arena, these appear somewhat cumbersome and give rise to unappealing code,
complicated by the inevitable interaction between case analysis on dependent types
and equational reasoning on their indices which must appear explicitly in the terms.
Thierry Coquand’s proposal [Coq92] to equip type theory directly with the kind of
pattern matching notation to which functional programmers have become used over
the past three decades [Bur69, McB70] offers a remedy to many of these difficulties.
However, the status of pattern matching relative to the traditional elimination rules has
until now been in doubt. Pattern matching implies the uniqueness of identity proofs,
which Martin Hofmann showed underivable from the conventional definition of equal-
ity [Hof95]. This thesis shows that the adoption of this uniqueness as axiomatic is
sufficient to make pattern matching admissible.

A datatype’s elimination rule allows abstraction only over the whole inductively de-
fined family. In order to support pattern matching, the application of such rules to spe-
cific instances of dependent families has been systematised. The underlying analysis
extends beyond datatypes to other rules of a similar second order character, suggesting
they may have other roles to play in the specification, verification and, perhaps, deriva-
tion of programs. The technique developed shifts the specificity from the instantiation
of the type’s indices into equational constraints on indices freely chosen, allowing the
elimination rule to be applied.

Elimination by this means leaves equational hypotheses in the resulting subgoals,
which must be solved if further progress is to be made. The first-order unification
algorithm for constructor forms in simple types presented in [McB96] has been ex-
tended to cover dependent datatypes as well, yielding completely automated solution
to a class of problems which can be syntactically defined.

The justification and operation of these techniques requires the machine to construct
and exploit a standardised collection of auxiliary lemmas for each datatype. This is
greatly facilitated by two technical developments of interest in their own right:

e amore convenient definition of equality, with a relaxed formulation rule allowing
elements of different types to be compared, but nonetheless equivalent to the
usual equality plus the axiom of uniqueness;

e atype theory, QeG, which incorporates incomplete objects, accounting for their
‘holes’ entirely within the typing judgments and, novelly, not requiring any no-
tion of explicit substitution to manage their scopes.

A substantial prototype has been implemented, extending the proof assistant LEGO
[LP92]. A number of programs are developed by way of example. Chiefly, the in-
creased expressivity of dependent datatypes is shown to capture a standard first-order
unification algorithm within the class of structurally recursive programs, removing any
need for a termination argument. Furthermore, the use of elimination rules in specify-
ing the components of the program simplifies significantly its correctness proof.

Acknowledgements

Writing this thesis has been a long hard struggle, and | could not have done it without a
great deal of friendship and support. | cannot thank my official supervisor Rod Burstall
enough for his constant enthusiasm, even when mine was straining at times. Supervi-
sions with Rod, whatever else they achieved, always managed to make me happy. It has
also been a pleasure to be part of the LEGO group, and indeed, the LFCS as a whole.
My slightly less official supervisors, successively James McKinna, Healf Goguen and
Martin Hofmann, deserve my warmest gratitude. | hope | have done them justice. A
word of thanks, too, must go to Randy Pollack for his implementation of LEGO—if it
were not for his code, | could not have built mine.

My friends and family have been a constant source of love and encouragement. Thank
you, all of you. Finally, | cannot express how much | appreciate the flatmates | have
lived with over the last four years. Phil, Carsten, Melanie, even Firkin the cat, your for-
bearance is something for which | shall always be profoundly grateful. Your friendship
is something | treasure.

Declaration

| declare that this thesis is my own work, not submitted for any previous degree.

Table of Contents

Chapter 1 Introduction 6
1.1 0OVerview 7
1.2 thisthesisincontext., 10
1.3 implementation 15
Chapter 2 OLEG, a type theory with holes 16
21 the@QEGCOre. o v i 17
2.2 the QeGdevelopmentcalculus 25
2.2.1 positionsandreplacement 30
2.2.2 the state informationorder 32
23 lifeofahole. 34
2.4 displayingan ©EGstateo 35
2.5 basic componentmanipulations 37
2.6 movingholes 39
2.7 refinementand unification 40
2.8 discharge and other permutations 43
2.9 systems with explicit substitution L. 45
2.10 sequences, telescopes, families, triangles 46
Chapter 3 Elimination Rules for Refinement Proof 52
3.1 propositional equality (definition deferred) 54

3.2 anatomy of an eliminationrule 55

3.3 examples of eliminationrules... 57
3.4 legitimatetargets. 61
3.5 schemingwithconstraints. 63
3.5.1 simplification by coalescence 66
3.5.2 whattofix, whattoabstract 67
3.5.3 abstracting patterns fromthegoal. 69
3.5.4 constraints in inductive proofs 70
3.6 aneliminationtactic., 71
3.6.1 preparing the application 72
3.6.2 fingeringtargets 73
3.6.3 constructingthescheme 75
3.6.4 provingthegoal 77
3.65 tidyingup. 77
3.7 anexample-NEq 78
3.7.1 constructindNEq 80
3.7.2 provingNEgRecl 81
3.7.3 provingNEqQInv 83
3.7.4 proving the ‘introductionrules’ 85
Chapter 4 Inductive Datatypes 87
4.1 construction of inductive datatypes 89
4.1.1 simple inductive datatypes|iN 89
4.1.2 parameterised datatypeslike 92
4.1.3 datatypes with higher-order recursive argumentsgike . . 94
4.1.4 dependentinductive families likethies 96
4.1.5 inductively defined relationslike 98

416 recordtypes.
4.2 acompendium of inductive datatypes
4.3 abolishing:-types and reinventingthem

4.3.1 theblunderbusstactic...
4.4 constructingcase andFix oL

4.4.1 case analysis for datatypes and relations

4.4.2 the guarded fixpointprinciple

Chapter 5 Equality and Object-Level Unification
5.1 two nearly inductive definitions of equality...
5.1.1 Martin-lof’s identitytype
5.1.2 uniqueness of identityproofs
5.1.3 ~,or‘JohnMajor equality
5.1.4 equalityforsequences.

5.1.5 therelationship betweenand~

5.2 first-order unification for constructor forms

5.2.1 transition rules for first-order unification

5.2.2 an algorithm for constructor form unification problems

5.2.3 conflictand injectivity.
524 cycle

5.2.5 abrieflook beyond constructor form problems.

Chapter 6 Pattern Matching for Dependent Types
6.1 pattern matchingin ALF L.
6.2 interactive pattern matchingin®s
6.2.1 computational aspects of elimination.
6.2.2 conservativity of pattern-matching over&s

6.2.3 constructingprograms

3

6.3

6.4

recognising Programso e e e
6.3.1 recursionspotting.
6.3.2 exactproblems
6.3.3 splittingproblems oL
6.3.4 emptyproblems. oL
eXteNSIONS
6.4.1 functionswithvaryingarity

6.4.2 moreexoticrecursion...o

Chapter 7 Some Programs and Proofs

7.1

7.2

7.3

concrete categories, functorsand monads

7.1.1 recordsforcategories...
7.1.2 recordsforfunctors
7.1.3 records for ‘concrete’ monads

substitution for the untypedcalculus
7.2.1 |lift,thinandthick

7.2.2 the substitution monad splits the renaming functor

a correct first-order unification algorithm

7.3.1 optimistic optimisation
7.3.2 optimistic unification
7.3.3 dependent types to the rescue

7.3.4 correctnessaohgu
7.3.5 what substitution tells us about the occurs check
7.3.6 POSItIONS
7.3.7 checkandFlexRigid

7.3.8 comment. e e e

Chapter 8 Conclusion

226
230
233
236

240

8.1 furtherwork 242

Appendix A Implementation 245
Bibliography 247
Index 254

Chapter 1

Introduction

‘The philosophers have merely interpreted the world in various ways. The
point, however, is to change it’ (Marx and Engels)

Computer programs are not expected to make sense. In fact, they are seldom expected
to work, which is as much as to say that computer programmers are not expected to
make sense either. This is understandable—programming is primarily a form of giving
orders.

Nonetheless, there are grounds for optimism. This is because programmers do not
really want genuinely stupid orders to be obeyed, and we understand that the more
sense we are able to make, the shorter our orders need be. The benefit comes by taking
the sense within the programmer’s mind and manifesting it explicitly in the program.

From named variables and looping constructs through to functional abstraction and
method encapsulation, the evolution of programming languages has greatly facilitated
the programmer who actively seeks to make sense. In particular, type systems now
allow so much sense to be made that they are even becoming compulsory in some
industrial programming languages. Where the purpose of typing in C is to indicate the
number of bits left an array subscript should be shifted, strongly typed languages like
Java genuinely reduce the gullibility with which machine faces human.

It is with the objective of promoting sense in programs that | have pursued the research
documented in this thesis. Its main purpose is to show the advantigpeadenttype
system lends to the cause of principled programming.

Briefly, the principal contributions are these:

e OLEG, a type theory with ‘holes’ (or ‘metavariables’) standing for the missing

parts of constructions explained entirely within the judgments of the calculus—
the state of a theorem prover may thus be represented as a valid judgment

¢ the identification of what must be added to conventional type theories (such as
those underlying EGO or CoQ) to facilitate pattern matching for dependent
types (as implemented in ALF)

e a systematic view of elimination rules, leading to the usdesfvedelimination
rules to characterise and indeed specify programs in a compact and powerful
way

1.1 overview

This thesis records my development of technology to support functional programming
over dependent datatypes by pattern matching and structural recursion in an intensional
type theory. This technology also suggests novel tools and techniques for reasoning
about such programs. Let me give an overview, identifying the innovations.

| open with an account of a theorem proving in a type theong&* which is based

on Luo’s ECC [Luo94], but includes an account of ‘hofeisi terms. There is a lot of
theorem proving in this thesis. Some of it is done by hand. Much of it is done by ma-
chines, manufacturing and exploiting standard equipment for working with datatypes
and equational problems. | therefore feel obliged to give a precise treatment not only
of theorems but also theorem proving.

The novelty is that holes are handled much as other variables and accounted for by
binding entirely within the judgments of the system. This system is workable because

the core calculus of terms is embedded in a ‘development calculus’, which is where

the hole-bindings are to be found—a core term in the scope of a hole may nonetheless
refer to that hole. The effect of the separation is to prevent troublesome interaction

between computation and holes. Consequently, terms (called ‘partial constructions’)

in the development calculus enjoy the property that one may safely be replaced by
another of the same type—remarkably good behaviour for a dependent type system.

As a result, theorem proving inKBG consists exactly of editing KEG judgments
in ways which are guaranteed to preserve their derivability. Althougbhdds more

1The name ‘QEG’ is a tribute to Randy Pollack’s proof assistankto. The new treatment of
partial proofs required only a minor rearrangement.

2also known as ‘metavariables’, ‘existential variables’, ‘question marks’ and many other names be-
sides

restrictive than systems with explicit substitution, those restrictions will not hinder us
in the slightest.

The inductive datatypes we shall be concerned with are much like thosead, L
CoQ[Coq97] or ALF [Mag94]. Their elements are introduced by constructor symbols
whose recursive arguments satisfy a strict positivity condition. Recursive computation
and inductive proof are provided in the old-fashioned ‘elimination rule’ style. This
necessitated the innovation of principled tactical support for such rules, documented
in chapter three. However, the technology is not restricted to elimination rules arising
from datatypes.

The contribution from this thesis to the methodology of program verification lies in
the use of derived elimination rules to capture the leverage exerted by a given piece
of information on an arbitrary goal. The abstraction of the predicate in an induction
principle or the return type in a datatype fold operator point the way. Given a piece
of information, we have been indoctrinated to ask what we can deduce from it—we
should rather ask how we can dedwekat we wantrom it. The tactics of chapter
three were developed to support datatype elimination rules, but they allow us to exploit
a wide class of rules which similarly abstract the type of their conclusions. | give
numerous examples capturing the behaviour of programs in this way, and | believe |
demonstrate the efficacy of the policy.

Once we understand elimination rules, we may give proper attention to inductive
datatypes. In particular, we may use chapter three’s technology to derive from each
‘conventional’ eliminator a pair of alternative eliminators which usefully untangle the
treatment of case analysis and recursion on structurally smaller terms. This gives ef-
fectively the same presentation as tbase andFix constructs which are primitive
notions in @Q. The equivalence was established by Eduardodbiea’ [Gim94]—

only minor adaptations are required to mechanise his construction. Chapter four is
reassuringly unremarkable.

Case analysis on a restricted instance of an inductive family (hencefsuibfamily)
inevitably involves equational reasoning. For example, we may define the family of
listsindexed by their length-when analysing the instance constrained to contain only
nonemptylists, we rule out the ‘nil’ constructor because the list it generates does not
satisfy that constraint. More generally, for each constructor, we must represent at the
object-level the constraint that its return type unifies with the subfamily under analy-
sis. These constraints are similar to the unification problems which arise in ‘unfolding’
transformations for logic programs [TS83, GS91]. My MSc work involved a system-
atic solution for simply typed problems in constructor form, implemented in the form

8

of a tactic [McB96].

Chapter five extends the treatment to dependent types. Of necessity, this requires us
to compare sequences of terms where later elements may have propositionally equal
but computationally distinct types, an area which has always proved troublesome for
intensional type theory. | present a new, slightly more relaxed definition of equality
which scales up to sequences without significant attendant clumsiness. It turns out to
be equivalent to the more traditional inductive definition augmented by the axiom that
identity proofs are unique. So equipped, we may easily prove for each datatype its ‘no
confusion’ property—constructors are injective and disjoint—in the form of a single
elimination rule. | also give a systematic proof that each datatype contains no cycles.
It is these lemmas which justify the transitions of the unification tactic.

In [Cog92], Thierry Coquand characterises a class of ‘pattern matching’ programs over
dependent types which ensure that patterns cover all possibilities (deterministically)
and that recursion is structural. This is the class of programs made available (with
unrestricted recursion) in the ALF system [Mag94]. Chapter six contains the principal
metatheoretic result of this thesis, confirming that the same class of programs can be
constructed from traditional datatype elimination rules, given uniqueness of identity
proofs. The meta-level unification in Coquand’s presentation is performed at the object
level by the tactic developed in chapter five.

By way of illustration, if not celebration, the work of the thesis closes with two sub-
stantial examples of verified dependently typed programs. Both concern syntax:

e substitution for untyped-terms, shown to have the properties of a monad

e astructurally recursivdirst-order unification algorithm, shown to compute most
general unifiers

It is well understood, at least in the type theory community, that we may only really
make sense of termelative to a contextvhich explains their free variables. Both

of these examples express that sense directly in their data structures, a gain which is
reflected in the correctness proofs.

Neither example is new to the literature of program synthesis and verification. Substi-
tution has been treated recently [BP99, AR99] via polymorphic recursion, and | include
it simply to show that dependent types easily offer the same functionality, without re-
course to counterfeiting index data at the type level.

The existing treatments of unification turn on the use of an externally imposed termi-
nation ordering. The novelty here is that by indexing terms with the number of vari-

9

ables which may occur in them, we gain access to computation over that index—this
is enough to capture the program for structural recursion. Witness the benefit from a
program which captures much more precisely the sense of the algorithm it implements.

Both developments adopt the methodology of characterising the behaviour of their sub-
programs by means of elimination rules. Establishing program correctness becomes
sufficiently easy that in presenting the proofs, | cut corners only where to do otherwise
would be monotonous in the extreme.

| would like to apologise for the length and linearity of this thesis. | hope it is not
nearly as much trouble to read as it was to write.

1.2 this thesis in context

‘I do press you still to give me an account of yourself, for you certainly
did not spring from a tree or a rock. ’ (PenelopeOdysseyHomer)

| sprang from a little-known Belfast pattern-matcher in 1973. | have spent my whole

life surrounded by pattern matching, | have implemented pattern matching almost ev-
ery year since 1988, and now | am doing a PhD about pattern matching with Rod
Burstall. Fortunately, my mother was not a computer scientist. Enough about me.

Martin-Lof’s type theory [M-L71a] is a well established and convenient arena in which
computational Christians are regularly fed to logical lions—until relatively recently,
much more emphasis has been placed on type theory as a basis for constructive logic
than for programming. Comparatively boring programs have been written; compara-
tively interesting theorems have been proven. This is a pity, as the expressiveness of
type theory promises much benefit for both. But things have changed.

Induction on the natural numbers was presented explicitly in different guises by Pascal
and Fermat in the seventeenth century, although it has been used implicitly for a lot
longer. Frege and Dedekind independently gave inductive definitions an explanation in
impredicative set theory. ‘Structural induction’ had been widely used in mathematical
logic [CF58, MP67] by the time Burstall introduced the notion of inductive datatypes
to programming, with elements built from constructor functions and taken apart by
case analysis [Bur69].

Inductive datatypes have escaped from programming languages [McB70, BMS80]
and arrived in type theory [M-L84, CPM90]. Since then, they have become more

3My father’s LISP-with-pattern-matching was a programming language which escaped from an in-
ductive datatype.

10

expressive, with the indexing power of dependent type theory giving a natural home to
inductive families of types [Dyb91]. For example, as hinted above, the polymorphic
datatypdist A, with constructors

h: A t:listA
nil A : list A consht:listA

can be presented in a usefully indexed way as vectors—elisigiven length

h: A t:vectan
Vnila : vecta 0 vconsht:vects sn

Typing is strong enough to tell when a vector is empty, so potentially disastrous de-
structive operations like ‘head’ and ‘tail’ can be safely defused.

However, there are significant ways in which dependent datatypes are more
troublesome—the question is ‘what datatypes shall we have and how shall we com-
pute with them?’. The datatypes and families proposed by Thierry Coquand, Christine
Paulin-Mohring and Peter Dybjer have been integrated with type theory in a number
of variations.

Zhaohui Luo’s UTT [Lu094] is closest to the traditional presentation, equipping fam-
ilies based on safe ‘strictly positive’ schemata with elimination constants doubling as
induction principles and recursion operators. This is a conservative treatment for which
the appropriate forms of good behaviour were established by Healf Goguen [Gog94].
Unfortunately, recursion operators make somewhat unwieldy instruments for program-
ming, as anyone who has ever added natural numbers@olPol94] will tell you.

Thierry Coquand’s 1992 presentation of pattern matching for dependent types [Coq92],
implemented in the ALF system by Lena Magnusson [Mag94], was shown to be non-
conservative over conventional type theory by Hofmann and Streicher, since it implies
uniqueness of identity proofs [HoS94]. Pattern matching for the full language of in-
ductive families is contingent on unification, which is needed to check whether a given
constructor can manufacture an element of a given family instance. Unification, once
it escapes from simple first-order syntaxes, becomes frightening to anyone with a well
developed instinct for survival, although some do survive.

Subsequent systems in the ALF family, such as Agda [Hal99], have been much more
cautious about what datatypes they will allow, in order to be much more generous with
facilities for working with them. In particular, the question of unification is avoided by
forbidding datatype constructors to restrict their return types to a portion of the family

11

(eg, empty vectors, nonempty vectors). Families are declared in a similar manner to
datatypes in functional programming languages:

datafamily x;...x, = conT;... T, | ...

The indice¥; . . . x,, are distinct variables, indicating that each constructmn, what-
ever its domain types,; . .. T,, its range is over the entire family Pattern matching over
an instantiated subfamily just instantiates xfsein the types of the constructors, rather
than generating an arbitrarily complex unification problem.

This is a sensible restriction with a sound motivation. It is also a serious one, for-
bidding, for example, the formulation of the identity type—the reflexivity constructor
restricts its return type to the subfamily where the indices are equal. As we decompose
elements of these datatypes, their indices can only become more instantiated—Agda
datatype indices only ‘go up’.

Some of the power lost in this way is recaptured by computing types from data. For
example, the type of vectors, although not a datatype in Agda caormeutedrom
the length index:

vect, 0 = 1
vecty sn = Ax(vectan)

This kind of computed type is good for data which are in some way measured by the
indices—elements are finite, not because they contain only finitely many constructor
symbols per se, but because, as we decompose them, their indices recursively ‘go
down’ some well-founded ordering. There is no place, in this setting, for inductive
families whose indices, like those of the stock exchange, can go down as well as up.

The practical limitations of this system require further exploration. Certainly, the re-
moval of unification from the pattern matching process makes it considerably more
straightforward to implement attractively and to grasp. It has been even been im-
plemented outside the protective environment of the interactive proof assistant—in
Lennart Augustsson’s dependently typed programming language, Cayenne [Aug98].
Cayenne allows general recursion, hence its typechecker requires a boredom threshold
to prevent embarrassing nontermination. Of course, the programs which make sense
do typecheck, and some interesting examples are beginning to appear [AC99].

On the other hand, two recent examples—both implementations of first-order unifica-
tion, as it happens—cannot be expressed as they stand in this restricted system. Ana

12

Bove’s treatment [Bove99] shows that a standard Haskell implementation of the algo-
rithm can be imported almost systematically into type theory. However the general
recursion of the original is replaced by ‘petrol-powered recuréiowér an inductively
defined accessibility predicate [Nor88] which can be expressed in ALF, but not its
SUCCeSSOors.

My implementation, in chapter seven of this thesis, is dependently typed, and exploits
the power of ‘constraining constructors’ to represent substitutions as association lists in
a way which captures the idea that each assignment gets rid of a variable. Variables are
from finite sets indexed by sizén n, and terms are trees over a number of variables,
tree n. Association listsalist m n, represent substitutions from variables to terms
overn:

x:finsm t:treem g:alistmn
anil, : alistnn aconsxtg: alistsmn

Having said that, | am quite sure that ‘gravity-powered’ unification can be implemented
in Agda using the restricted type system. | only use association lists because my ap-
plication of substitutions is delayed and incremental. If you are happy to apply substi-
tutions straight away, a functional representation suffices. Nonethelessljsthiype
stands as a useful data structure—a ‘context extension'—which one might reasonably
hope to represent as a datatype.

The CoQ system [Coq97] has inductive families of types with strictly positive
schemata [P-M92, P-M96]. However, they have moved away from the traditional
‘one-step’ elimination operator, following a suggestion from Thierry Coquand: they
now divide elimination into &£ase analysis operator and a constructor-guarblisd-

point operator. Eduardo Giemez’s conservativity argument [Gim94] is bolstered by a
strong normalisation proof for the case of lists [Gim96]—he has recently proved strong
normalisation for the general case [Gim98]. Bruno Barras has formalised much of the
metathory for this system [Bar99], including the decidability of typechecking.

This Case-Fix separation is a sensible one, and it makes practical the technology
in this thesis—working in what is effectively Luo’s UTT [Luo94], | start from the
traditional ‘one-step’ rule, but | have mechanised the derivatidbasfe andFix for

each datatype. Everything which then follows applies as muclo & to LEGO.

There is, though, a noticeable gap between programmir@dse with Fix in CoqQ
and programming by pattern matching in ALF or Cayenne. This gap has been ad-
dressed by the work of Cristina Cornes [Cor97]. She identifies a decidable class of

4my phrase

13

second-order unification problems which captures many pattern matching programs
viewed as collections of functional equations. Solving these problems mechanically,
she has extendedd®@ with substantial facilities for translating such programs in terms

of Case andFix .

This takes the form of a macK@ases which allows pattern matching style decompo-
sition of multiple terms fromunconstrainednductive families (eyect n—vectors of
arbitrary length) and combines wiffix to yield recursive function definition in the
style of ML. Although the full gamut of dependent families can be defined, she has
adopted an Agda-like solution to the problem of computing with them.

The task of implementing pattern matching émnstrainednstances of inductive fam-

ilies (or ‘'subfamilies’, egrect sn—nonempty vectors) she leaves to the future. Where
she leaves is where | arrive. | have not attempted to duplicate her machinery for the
translation of equational programs. Rather, | have concentrated on the problem of case
analysis for subfamilies, the last gap between her work and dependent pattern matching
in ALF.

As | have already mentioned, we have known for some time that dependent pattern
matching is not conservative—it implies the uniqueness of identity proofs, which does
not hold in Hofmann’s groupoid model of type theory [HoS94, Hof95]:

ldUnique : VA:Type. Va:A. Ve:a=a. e=refla
ldUnique A a (refla) =refl (refla)

This points to a very real connection between pattern matching and the power of equal-
ity in type theory. Case analysis on inductive subfamilies (also known as ‘inversion’)
necessarily involves equational reasoning—for each constructor, we must check that its
return type unifies with the subfamily we are analysing. These unification problems re-
semble those which arise in unfold/fold program transformation [BD77, TS83, GS91].
They are treated at the meta-level in ALF [Coq92, Mag94].

Cristina Cornes made some progress in this area with her tactics for inverting induc-
tively defined relations over simply typed data in@CT95]. My MSc project was to
import this technology for EGo. | made explicit the separation between, on the one
hand, the splitting of the family into its constructors, with the subfamily constraints
becoming object-level equations, and on the other hand, the simplification of those
constraints. | implemented a complete first-order unification algorithm for object-level
equations over constructor forms in simple types [McB96].

The uniqueness of identity proofs contributes directly to the extension of this first-
order unification algorithm to dependent types, yielding explicit object-level solutions

14

to the same class of unification problems which ALF handles impli¢illize last gap
between programming with datatypes iado or CoQ and pattern matching in ALF
has now been bridged.

Building that bridge has involved many engineering problems and the development of
some, | feel, fascinating technology. In particular, the tactic which I built for deploying
the elimination rules of inductive datatypes has a potential far beyond that purpose. |
have begun to explore the use of rules in that style for specifying and proving properties
of programs: this thesis contains several examples.

1.3 implementation

| have implemented a prototype version of the technology described in this thesis as an
extension to EGO. It contributed to, rather than benefiting from the full analysis set
out here. Nonetheless, let me emphasise at this stage that although the prototype could
work better, it does work.

Enough technology has been implemented to support all the example programs and
proofs in this thesis. They have all been built withE&’s assistance and checked

with LEGo—core QLEG is a subset of EGO's type theory for which Randy Pollack’s
typechecker runs unchanged. Sometimes | have had to hand-crank techniques | have
subsequently shown how to mechanise, but the developments described in the thesis
are an honest account of real machine proofs.

SIn fact, ALF rejects cyclic equations as unification problems which are ‘too hard’, while | disprove
them, so four years’ work has been good for something.

15

Chapter 2

OLEG, a type theory with holes

Although you have just started reading this chapter, | have nearly finished writing it.
When | started, a long time ago, | intended it to be an unremarkable summary of a
familiar type theory, present largely out of the need to present the notational conven-
tions used in this thesis. However, despite my best intentions, this chapter does contain
original work—it describes a type theoryL©G, which gives an account of incomplete
constructions quite different from those in existing use.

Let me say from the outset that | did not set out to invent such a thing. For some
years | have been writing programs which construetb proofs of standard datatype
equipment—constructor injectivity and so forth—together with tactics to deploy them.

| began, in my MSc work, with direct synthesis of proof terms in the abstract syntax—
this was, frankly, rather painful. However, as time went on, the tools | was building
myself looked more and more like a theorem-prover. Eventually, the penny dropped—
synthetic programming and proof is only for clever people with nothing better to do;
busy people and stupid machines need an analytic framework with a sound treatment
of refinement. What had previously been ‘voodoo’, an ad hoc assortment of syntactic
trickery, became OEG, a type theory for machines as well as people.

OLEG was thus manifest in code long before it was rationalised in this chapter. |
put it together with the help of many spare parts from Randy Pollacksd.code.
LEGO's treatment of ‘metavariables’ is remarkable in what it allows—too remarkable,

in fact. Scope is not quite managed properly, so that the reliabilityedfd_still lies

in the final typecheck of the completed term. | did not consider it my business to
repair this problem—I was looking for a more convenient way to represent proofs-
with-holes for mechanical manipulation. | hit upon the ideaifding holes in the
context because it required very little alteration of the term syntax, and because it made
operations like refinement’s ‘turn the unknown premises into subgoals’ just a matter of

16

turningVvs into?s. This treatment of holes resonates strongly with Dale Miller’s explicit
binding of existential variables in the ‘mixed’ quantifier prefix of unification problems
[Mil91, Mil92].

At the time, explicit substitution was not even an issue. If | had wanted to main-
tain the scope of holes via such technology (as is found in the ALF family [Mag94]
and Typelab [vHLS98]), | should have had to re-engineer the wheted.syntax, re-
duction mechanism and typechecker. As it turned out, my adaptations were minimal.
There is a profound reason for this—where explicit substitution relies on ingenuity,
OLEG relies on cowardice. Instead of repairing the troublesome interactions between
holes and computation by propagating bits of stack through the term structLge, O
simply forbids them.

However, let me keep you in suspense no longere@®consists of a computational
core—Luo’s ECC [Luo94] with local definition [SP94] but withauttypes—wrapped

in a development calculus, in much the same way that Extended ML [KST94] wraps
core Standard ML [MTH90]. My reason for the separation is precisely the aforemen-
tioned cowardice with respect to holes and computation.

Extended ML's treatment of holes profits from the fact that, in simple type systems, it
is always safe to replace a term (eg, the placeholder ‘?’) with another of the same type.
Although there is no way that core terms in a dependent type theory could ever hope to
have such a replacement property (for a counterexample see section 2.2), it does hold
for the terms (or ‘partial constructions’) of (BG’'s development layer. This single
metatheorem does most of the work in&®’s successful reconstruction of refinement
proof as we know it.

2.1 theOLEGcore

DEFINITION: universes, identifiers, bindings, terms

universes U ::= Prop | Typej
wherej is a natural number

identifiers 1:=x |y | ...
Let us allow ourselves countably many identifiers.

| define families of bindings and terms indexed by the finite set of variables
V C | permitted to appear free in them. My motivation is to ensure that

17

identifiers are only used where they are meaningful.

For any seV of variables, and any not inV the setsB{/ of bindings of =
extendingV andT,, of terms overV are defined inductivefas follows:

SeTy SeTy $,S€Ty
VX:SGB{’/)\x:SEB{/ !x:s:SeBi’/
yev. ueu - fseTy BEBy telyyy

yeTy UeTy fseTy BteTy

Binding is the means of attaching to an identifier properties such as ‘type’, ‘value’ and
any other behavioural attributes in which we may be interested. A structural linguist,
following Saussure [Saul6], might point out that identifiers, like words, have no intrin-
sic significanceVariables on the other hand, are signs. Binding creates a sign, linking

signifier and signified.

Syntactically, abinding is a binding operator, followed by an identifier, followed by

a sequence of properties each introduced by a special piece of punctuation, eg *:’ for
‘type’ or ‘=" for ‘value’. The binding operator determines the computational role of
the variable. 1 would encourage you to think of bindings as important syntactic entities
in their own right, and the ‘. as a combinator which attaches a binding to its scope
which, by convention, extends rightwards as far as possible.

OLEG's core binding operators comprise the usddbften writtenII) for universal
guantification and\ for functional abstraction, together witlfpronounced ‘let’) rep-
resenting local definition. | describe those bindings where the bound variable occurs
nowhere in its scope datuous.

As usual, application is indicated by juxtaposition and associates leftwards. | shall
denote byx € T that variablex occurs free in ternT. Whenx ¢ T, | shall freely
abbreviaté/x : S. T by S — T. Further, otherwise identical consecutive bindings of
distinct variables may be abbreviated with commas; S. Ay : S. T, for example,
becoming\x,y:S. T.

a-convertible terms are identified, witke representing the consequent notiorspi-

tactic identity. Let[S/x]T denote the result of substitutirfgyfor free occurrences of

x in T. Formally, we might prefer to live in a de Bruijn-indexed world [deB72]; infor-
mally, let us grant ourselves the luxury of names and the associated luxury of ignoring
the issue of variable capture.

IMy ulterior motive is to prepare the ground for the application of dependently typed functional
programming to syntax in chapter seven.
2Natural deduction is the best style | have found for presenting indexed inductive families.

18

Having introduced all this syntax, let us abuse it wherever it suits us. We are not
machines, and we can suppress inferrable information which machines might demand.
To be sure, the machines are catching up, with work on implicit syntax from [Pol90]
and beyond. | do not propose to give any mechanistic account of the arguments |
shall omit, the parentheses | shall drop and the ad hoc notations | shall introduce—the
purpose is purely presentational.

DEFINITION: contexts and judgments

The seCtxt of contextsis defined inductively:
() € Ctxt

FeCixt SeTr x¢gTl FeCixt s,SeTr x¢gT
[';x: S e Ctxt ['x=s:S e Ctxt

Note that we may treat a context ‘forgetfully’ as a set of variables, hence
Tr is the set of terms ovdr.

If I' € Ctxt, thenJ; is the set ofi’-judgments. If J € J, we may assert
that.J holds by writing

= J

Jr contains context validity and typing judgments:

t,TeTr
valid € Jp t:Tel

In many presentations, a context is an assignment of types to identifiers. Here, value
assignments are also permitted. Let us also indulge in a slight abuse of notation and
write whole bindings in the context, effectively annotating entries with binding oper-
ators and perhaps additional properfieSeen as a data structure, for example in the
implementation of EGO, a context is a stack of bindings. We can recover the ‘formal’
contexts defined above simply by forgetting the extra annotations. We shall often need
to check whether a given variable has a particular property, whether or not it may have
others. Let us, for example, wriié x: T; I for a context wher& has the property that

its type isT, regardless of other annotations.

As we explore a term, each variable we encounter is given its meaning by the stack of
bindings under which we have passed. A variable is not a name; it is a reference to a

3|t is often useful to know what colour a variable is.

19

binding. Names arise as a social phenomenon—just as in the story of Rumpelstiltskin,
naming things gives us power over them.

Let us now define computation with respect to a context. We should feel no apprehen-
sion at this. Quite the reverse, syntax only makes sense relative to the context which
explains its signs. Goguen’s typed operational semantics for type theory [Gog94] nec-
essarily and naturally involves the context, significantly reducing the cost of metathe-
ory. Although the contextual information he requires is active in typing and passive
in computation, this is more an accident of ECC than an inevitable restriction. Com-
pagnoni and Goguen’s more recent typed operational semantics for higher-order sub-
typing [CG99] exploits the potential to the full.

MANTRA:
" is with me, wherever | go.

, too, feel strongly provoked to exploit the potential he reveals by increasing the activ-
ity of the context in computation. Real programming language implementations keep
values in stacks.

We may still employ the usual technique of supplying a numbecaftraction
schemeswhich indicate the actual computation steps, together with a noticorof
patible closurewhich allows computation to occur anywhere within a term.

DEFINITION: contraction schemes
OLEG's contraction schemesare shown in table 2.1.

Subterms susceptible to ti¥e § or ! contraction schemes are, respectivgly,d- and
I-redexes Note that the property of beingyaredex is implicitly context-dependent. A
term is innormal form if it contains no redexes.

It is perhaps helpful to think of+# and~-? as ‘work’, while ~' is ‘waste disposal'.
As a fan of Fritz Lang’s 1926 classic silent film, ‘Metropolis’, | like to imagine what
computation sounds likgi-reduction sounds like paper-shufflingreduction sounds
like filing cabinets and photocopierspops like sudden suction.

DEFINITION: compatible closure

If ~"is a contraction scheme, its compatible closure, is given by 2.2

20

I - (Ax:S.t)s ~PIx=s:S.t

'x=s:S:I" - x ~% s

|
' FFx—sstot <%t

Table 2.1: contraction schemes

| N
' s~ ¢

'k s~ ¢ 't~ t

' Fst~. &t ' F st~ st

'S ~. ¢ 'S ~. 9
I F ¥YW:S. T ~. ¥:S".T L - AX:S.t~. Mx:S'.t
's~s. ¢ S~ ¢
' FIx=5s:St ~. Ix=¢:S.t I FIx=s:S.t ~. Ix=s:5".1
['BE Ht~ t

T BEt ~. Bit

Table 2.2: compatible closure

PFS=T
TFS<T
IFR=<S T FS<T
FFR=T

j<k

I Prop < Type, L' k- Type; < Type,

PFS=>S Ivx:S FT=<T
[F VxS T=<vx:S. T

Table 2.3: cumlativity

21

empty

declare

define

prop

type

var

imp

all

abs

app

let

cuml

0 F vaid

' S: Typej

I'; Bx:S F valid B e{v,A}

Fs:S
I';!x=s:S F valid

[+ valid
[' = Prop : Type,

[- valid
I+ Type, : Type,

I vali
I FE X

I;x:S d
[';x:S S
[vx:S = P : Prop
I' F vx:S.P : Prop

=S Typej vx:S ET: Typej

' W:S.T: Typej

;A xX:SkHt:T
I' F Ax:S.t: ¥x:S. T

r-f.:vwx:SST I'+s:S
' - fs :Ix=s:S. T

[IXx=s:SHt:T
' F!Ix=s:S.t:!Ix=s:S. T

—t:S
ree. T L PS=T

Table 2.4: QEG core inference rules

22

METATHEOREM: Church-Rosser

s =t
implies existence of aommon reductr such that
'Eser T'HEt>T
METATHEOREM: strengthening
OB FHt: T xgIt,T
implies
M Et:T
METATHEOREM: subject reduction
F's: T I'kFs>t
implies
r=t:T
METATHEOREM: strong normalisation

r=t:T
ensures thatis strongly normalising.

METATHEOREM: cut
Dix=s:S;IVFHt: T
implies

Ly [s/xX]T F [s/x]t : [s/X|T

Table 2.5: metatheoretic properties

23

Henceforth, | shall elide the context in casual discussion. | weiteor the union of the
labelled compatible closures, andor its finite transitive closure. A term strongly
normalising if admits only finite sequences of reductions. The smallest equivalence
relation closed under is calledconversionand denoted@:.

Observe thatbinding allows us to avoid meta-level substitution in describing compu-
tation. Explanations of identifiers are activated by putting them into the context, not by
propagating them through terms. The traditiofialontraction

(AX:S.t)s ~ [s/X]t
becomes a ‘noisier’ reduction sequence
(AX:S.t)s ~F Ix=5:S.t ~ss5--- IX=5:S. [s/X]t ~' [s/X]t

Following Luo, | combine the notions of conversion and universe inclusion in a type
cumulativity preorder with respect &:

DEFINITION: cumulativity
Thecumulativity relation, <, is defined inductively in table 2.3.

In [Luo94], Luo shows thaK is antisymmetric and hence a partial order with respect
to =. In fact, every well-typed termh(underl’) has a principal typ& in the sense that

FrFt: T < T FT<XT.

Consequently it will be my habit to omit the index Tigpe where uncontroversial—

this phenomenon is known &gical ambiguity [HP91]. In practice, the cumulativity
constraints required to ensure consistency of any development can be stored as a finite
directed graph and checked for offending cycles.

The system of inference rules for the validity of contexts and typing judgments in the
OLEG core calculus is given in table 2.4. The formulation is slightly unusual in that
it involves no meta-level substitution in types—the same job is done by the computa-
tional behaviour of local definition, as performed by thanl rule.

All the usual metatheoretic properties (see table 2.5) hold as we might expect them to.
They contribute no insight unavailable from the Luo’s treatment of ECC in [Lu094].
Severi and Poll have shown how to extend dependent type systems with local defini-
tions [SP94]. The Church-Rosser property follows by the ‘parallel reduction’ argu-
ment of Tait and Martin-bf, as modernised by Takahashi[Tak95]. Subject reduction,

24

strengthening and cut follow by induction on typing derivations, differing only in mi-
nor details from the proofs for ECC. | have omitted weakening from the list because it
is a special case of thrmonotonicity property which | shall prove in section 2.2.2.

Strong normalisation for the &G core is a direct consequence of strong normalisation
for ECC. In the style of Severi and Poll, a type-preserving translation majgs O
terms to ECC terms adding apparently pointlésedexe$, so that each step in an
OLEG reduction sequence can then be simulated by a step in an ECC reduction of its
translation. Consequently, an infinite reduction sequence for a well-typed @rm
becomes an infinite reduction sequence for a well-typed ECC term, and we know that
no such thing exists.

The interesting aspect ofl®G is its development superstructure. Let us now give our
attention to that.

2.2 theOLEG development calculus

‘You can't put a hole where a hole don’t belong.” (Bernard Cribbins)

Holes stand for the parts of constructions we have not yet invented. Every hole should
tell us two things about the candidates which may fill it:

e theirtype, T

e thecontext, I, of variables they may employ

We may ascribe these properties to the hole itself, by way of convenient abbreviation.
The point is that it must be safe to fill such a hole with @asuch that™ - t : T.
Solutions must béocally checkableif working with holes is to be practicable.

As | have already mentioned, the treatment of holes for simple type systems is greatly
helped by the fact that terms do not ‘leak’ into types. Consequently, any subterm
may safely be replaced by another of the same type, without affecting the type of the
containing term—Ilocal checkability of hole solutions is just one special case. Holes
may safely be represented by unlabelled ? symbols, as typing places no dependency
between them.

41t may help to think of the translation to ECC as tying old tin cans onto terms to make the ECC
reduction as noisy as theL®aG reduction.

25

However, the application of a dependently typed function smuggles the argument term
into the result type—this is why the replacement property fails. Consider the following
example, in a context defining an equality symbol for natural numbers:

A=y N — N — Prop
Arefly :vVn:N. n=yn
Asym:vVm,n:N. m=yn — n=ym

It may be reasonable to infer that
sym,, 7?7 (refly ?) :7=57
but we may not instantiate any of the ?s and retain this typing unless we instantiate

them all—sym s first two arguments appear in the required typérefly 7).

Somehow we must represent the information that the three &g, ? ? (refly 7)
signify the same, and what more natural way could we choose than to give them a
single sign?

Hence, let us invent a new binding operator “?° (pronounced ‘hole’) to introduce vari-
ables standing for holes in a proof which must be instantiated by a common candidate
of an appropriate type. We may now add to the context

7x: N
and infer
sym,, x X (refly x) : x=yx

When we think of a suitable candidate, we may ‘solve the hole’ by changing-the
binding to, say!x = 0: N, and the typing will stand.

However, the danger has not gone away. We could quite reasonably infer
symy (?n:N.n) (?n:N.n) (refly 7n:N.n) :?n:N.n=y5 ?n:N.n

since one bindingn : Nl. n is syntactically identical to another, even if we regard the
bound variables as distinct (indeed, not in the same scope). We are not free to solve
one without the others, so we must avoid this situation.

The point is that although there is nothing wrong with holes leaking into types, disas-
ter strikes if we permif-bindingsto do so. The QG development calculus ensures

26

that?-bindings are always in safe places—ie, that they may always be solved indepen-
dently. Indeed, this arises as a corollary of a more general replacement property, just
like in the simply typed case.

By introducing an explicit binding operator for holes., €% follows Dale Miller’s lead
[Mil91, Mil92] in representing the state of the system as a judgment whose context or
‘mixed prefix’ explains the variously quantified variables involved.

The QLEG development calculus represents the store of a theorem prover directly at
the judgment level. Theorem provers tend to contain four kinds of information:

e assumptions
e proved theorems
e unproved claims

e partial proofs of claims

These fourromponentsare each represented by a form of binding—respectively, the
four given in the definition below. Atateis a context of such bindings. The terms of
the development calculus are calleartial constructions.

DEFINITION: states, components and partial constructions

states State

A eState C e C{/
() € State A; C € State

components C{/ forxel -V

SGTV S,SGTV
)\X:SEC{/ !X:S:SEC%
SeTy qgePy SeTy
?x:SeC(’/ ?qu:SeC(‘/

partial constructions Py,

teTV CGC{/ pePVU{X}
te Py C.pePy

27

Observe that partial proofs, or ‘guesses’ are attached to holes withsymbol, indi-

cating that they have not the computational forcé-bbund values attached with ‘=",
Indeed, we may view any state as a core context by forgetting all but the *:” and ‘=’
properties of each variable. This, in particular, means that guesses are invisible to the
core.

StatesA in the development calculus are equipped witHudgment formsDevJ,
corresponding to those of the core. Af € Devl,, we may assert that holds by
writing A IF J.

Devl, is given by

pe PA Te TA
valid € Devl, p:Ta € Devla

Even the abstract form of the typing judgment contains an important piece of
information—the development calculus does not extend the type system, only the lan-
guage of terms. Holes are never bound to the right of the *:". This only serves to
emphasise the analytic view that types come before terms—we do not explain terms
with types, we search for terms inside types.

Table 2.6 shows the new inference rules. Note that core judgments only validate
A viewed forgetfully as a core context—any guessea iwill not be checked. This
accounts for the extra I+ valid premises appearing in some rules.

The analogous metatheoretic properties from table 2.5 continue to hold for this ex-
tended system. The parallel reduction treatment for Church-Rosser and the derivation
inductions for subject reduction, strengthening and cut can easily be adapted. Strong
normalisation for the development calculus reduces to strong normalisation for the
core by a translation argument which adds the assumptiagine : VA : Type. A at the

root of the context and turningtbindings intol-bindings: every hole without a guess,

7X : S, become8x ~ ImagineS:S, then the translated guesses bechieund values.

The core terms are embedded in the partial constructions. The forgetful interpretation
of states as core contexts allows variables to appear in partial constructions via the
term rule. The effect of the core/development separation is thus to restrict where holes
may bebound A partial construction containing ribbindings is said to bpure, that

is, expressible as a core term. Pure terms may, of course, refer to vafiddmasad in

their context.

In particular,?-bindings cannot occur inside applications!dround values. This is
enough to ensure that they have no interaction whatever with computatmdings

28

state validity

empty O F valid
A lFvalid AR S: Type;)
declare A CX:S TF valid Ce{r?y
: AlFvalid AFs:S
define A;!x=s:S IF valid
construct AlEDp:S
A;?X~p:S IF valid
typing partial constructions
AlFvalid AFt:T
term AFT:T
abs A;XX:SIEp . T
A lF AX:S.p : VX:S. T
let A;Ix=s:SIFp:T
A lF!Ix=s:Sp :Ix=s:S.T
A;?X:SIEp:T
hole ATFxSp:T X&T
A;2X=q:SIFp: T
guess AFx~qSp: T XE7T
cuml ﬁ:tgf.?.Al—S<T

Table 2.6: development calculus inference rules

29

are allowed to appear in ‘guesses’—partial constructions attached to holes as potential
solutions. However, unlikebindings, guesses are merely typechecked annotations—
they have no computational behaviour and hence no effect on subsequent typing.

In fact, the only contraction scheme at the partial construction levet@traction
removing spent value bindings.

AT ix—sSpo'p (¢P

All the other computations occur within embedded terms via the closure rules given
below. Of cours@-reduction in terms can expldicomponents in the context.

AFt~
AlFt~ t
AFS~. ¢ AFS~. ¢
A TF AX:S.p ~. Ax:S.p A TF?7x:S.p ~.?x:S'.p
AFs~. ¢ AFS~. &
ATFIX=s:S.p~.Ix=¢:S.p AFIX=s:S.p~.Ix=5s:S.p
AlF g~ AFS -~ &
ATF?X=~q:S.p ~.?Xx~(q:S.p AF?7x=q:S.p ~.7x~q:S.p

A;CR T p o~ pf
AlFCX.p~. CX.p

A crucial role is played by the side-conditions in th@le andguessrules. These insist

that although the term under?abinding may exploit the bound variable, its type may
not. Without them, we should have to allétbindings in types. Furthermore, these
restrictions simply reflect the natural ways in which holes arise—in a refinement style
proof, we only make claims motivated by the need to construct an inhabitant of a type
which we already know.

The inability to leak into types is something partial constructions share with terms in
simply typed systems. We should expect thplacementproperty to follow easily,

and in exactly the same manner—replacing the typing subderivation for the replaced
term.

2.2.1 positions and replacement

The positionsPosy, are formed from the partial constructiobg by deleting one sub-
partial construction. A positioR € Posa ‘forgetfully’ induces a context extension

30

P which collects the components under which the deletion point liep. df Pas
thenP[p] denotes the partial construction obtained by inseniagP’s deletion point.
Positions are defined inductively as follows

DEFINITION: positions

Forxel -V
Pe Posvu{x} PePosy, SeTy g€ PVU{X}
o € Posy, C{,.P € Posy X~ P:S.q € Posy
olp] = p A;s=A)
(CA-P)[p] = CX.Plp] A;CR.P=A;C;P
(?x =~ P:S. q)[]—7x~ Plp]:S.q A;?x=x~P:S.q=A;P

Crucially, any derivation of\ I P[p] : T follows from a subderivation of some

AP IFp:S.

We may compose positions, writigy P’ for the position obtained by replacing the
in P by P’. Clearly (P; P')[p] = P[P'[p]] andP;P’ = P;P'.

METATHEOREM: replacement

If AFPp T

follows from A;P I p : R

and A;PIFp R

then AlFPp]:T
PROOF

The proof is by induction over the derivation &f I+
the position.

P[p] : T, then case analysis on

In all cases where the positiondsie P[p] = p, the typing derivations foP[p] andp
must be the same, yielding thHatis T—the conclusion is exactly the typing pf

We only need the strength of the induction when the position is nontrivial.

e term—o is the only position

e abs
We have A IF Ax:S.P[p] : ¥x:S. T
sowe musthave A;Ax:S |- P[p] = T
following from A;Mx:S;P IF p : R
Suppose AXx:S;PIFp R
Inductively A;AX:SIF PP - T
Hence A IF AX:S.P[p'] - ¥x:S.T

e let, hole

We go under the component in the same way asiar

e guess

If the position goes under the component, the above argument applies. If the
position goes into the guess:

We have A lF?X~P[p]:S.q: T
so we must have A |- P[p] : S
followingfrom A;P IFp: R

Suppose AP IFpP @R
Inductively A IFPp]:S
Hence A lF?X~P[pT]:S.q: T

Note that the typing off and the side-conditior ¢ T are not affected by the
change of guess.

To claim that the simplicity of this theorem belies its utility is to misunderstand the
pragmatics of theory. There is no utility without simplicity.

2.2.2 the state information order

We shall need a little more metatheoretical apparatus before we are ready to reconstruct
theorem proving in ©EG. In particular, we shall need a notion of ‘progress’ between
OLEG states. The idea is that a staké ‘improves’ A if it contains at least as much
information—A’ must simulate the behaviour of every variable\n

DEFINITION: state information order

For valid states\ andA’, we sayA C A/, if

e Foreachk e A,if A - x : TthenA’ - x : T.
e Foreachx € A,if A F x ~? sthenA’ + x & s,

C is clearly a preorder.
Notice that inserting new components idtanoves it up the order. So does replacing a

type-only binding or?-with-guess by &-binding of an appropriately typed value. Fur-
thermore, guesses may be added to holes, removed or modified at will, so long as their

32

intended type is respected—the replacement property helps us to check modifications.
On the other hand, once a variable has a computational behaviour, we may not take it
away.

If A C A’then, viewed as variable setssC A’, soDevl, C Devla:. As the ordering
preserves all the observable behaviour of a state, we should expect to find the following
holds

METATHEOREM:. monotonicity
If A C A/, thenforallJ € Devia, A IF J impliesA’ IF J

PROOF

We must first generalise a little:

If A; C A
then A, Ay IE T implies A}, Ay I+ J
and AT J implies Ay;T' F J

provided A captures no variables fror, or I'

This allows us an easy induction on derivations. From the definition,ofve shall
acquire exactly the components we need to replace those subderivations which look
up types fromA,, performd-reductions fromA; or simply validateA;. That is, the
interesting cases are

e thevar rule

If the variable being typed lies i, the definition ofZ tells us how to derive the
same type from\’. Otherwise, the result follows from the inductive hypothesis,
which replaces the prefix in the premise, and vhe rule, which recovers the
type from the unchanged suffix.

e the validity rules

If the context being validated i&;, replace the entire derivation with that of
Al F valid. Otherwise, the context strictly contaids, so the premise context
containsA, hence the inductive hypothesis applies.

e thecuml rule

The inductive hypothesis supplies the modified premise. As for the computa-
tional side condition, the definition @ enables us to replace everyeduction
for variables inA; with an equivalent conversion valid i, .

33

2.3 life of a hole

| now present four basic replacement operations which act as a basis for working with
holes.

AlFp: T AFS: Type

claim - (birth) ATFSp:T

try (marriage) A ”_;Xf??(%ESAp I:FTq .S
regret (divorce) AAW ﬁx?j:g ?) p T T

oo o 3EREEEET e

It is clear that each of these rules is admissible. We may read them as justifying the
replacement at any position of the construction in the premise by the construction in
the conclusion. Monotonicity justifies the corresponding steps which insert and modify
new?-components in the state.

Effectively, claim allows us to insert a new hole at any position. Holes are naturally
born this way—we claim tha® holds in order to develop our proof @t The side-
condition on thehole typing rule holds as a matter of course.

Thetry andregret steps allow us to attach and discard guesses repeatedly—hopefully
our judgment improves as we go round the cycle. Once the guess contails no
components, it has become a core term—death is not the end of the journey, but the
transition by which a hole isolved, becoming a local definition.

These four rules allow us to extend the notion of ‘information ordepdsitions This
gives us the means to relate operations which are focused at a particular position to the
amount of information available at that position.

DEFINITION: position information order

For valid states\ andP, P’ € Pos,, theposition information order A I+
P C P'is given inductively by the following rules:

34

refl

ATFPCP
AFPCP AP CP
trans AFPCP
aim A;P S @ Type
AF PP C P;7x:S. P

t A;PIFg:S

ry AT PSP C P;7x~(Q:S. P

regret AIFP;?x~q:S.P" C P;?x:S. P

solve qpure

AlFP;?x~q:S.P" C P;!x=q:S.P

The admissibility of the four basic replacement operations given above ensures that if
A IF P C P,then

e if A;P IF valid then A;P’ |- valid and A;P C A; P/

oif AIFP[p]: TthenAIFPlp : T

We may now reconstruct the familiar tools of refinement proof as operations which
manipulate QEG states, preserving their validity. Moreover, we can make assurance
double sure at any stage by rederiving the state’s validity judgment. This direct corre-
spondence between judgments of the type theory and states of the machine, and thus
between admissible rules and tactics, is quite a solid basis on which to build a proof
assistant.

2.4 displaying anOLEG state

The prototype implementation oft®@G was written for use by other programs, rather
than by people. However, this thesis is full of €5 proofs, so we shall need some
way to see what we are doing. Let us think how we might display elmdstate.

| propose to list the components of a state vertically, so that the more local bindings
are literally as well as metaphorically under the more global ones. For each binding,
we should give the binding operator, the identifier, then a table showing the property
indicators ("’ or ‘'=") with the associated terms (types or values). It will serve the cause

35

of brevity if we sometimes relax vertical alignment, combining bindings when more
than one identifier is being given the same treatment.

Now, any term can be viewed as a subterm under a context of binders—Ilet us allow
ourselves to format these contexts in the same way as the ‘main’ state and write the
subterm directly underneath. For example, we might have the state shown on the right.

The initial four assumptions introduce a| AN : Type

type N of natural numbers, its two con- |A0 N
AS :N— N

structors and a primitive recursion opera- Arec : Vo : Type

tor. Following this, | have shown a par- Vo,: ®
tial development of the addition function. Vg: @ — @
Observe the completed successor case in- vn:N

P
7plusx 7plus,: N — N
'plus,= Aplus,: N — N

troduced by a binding, while the zero
case is still an unknown bound with?a

The partial proof is bound with &, in- Ay ‘N
dicating that it still containg’-bindings s(plus, y)
which must not be duplicated. Note also : :ﬁ m —N
that!-binding enables us to inspect terms N

such agplus, which would otherwise be rec (N — N) plus, plus,
stuck beneath the application r&fc. :N—N-—-N

In general, then, a state is displayed as a tree whose forking nodes are bindings. From
each binding, one edge points ‘underneath’ to its scope, and others point ‘sideways’
into the terms attached by the property indicators' =’ and ‘~’. The sequence of
components which make up a state form a spine of the tree, vertically aligned at the
left hand side, starting at the root and following the ‘underneath’ edges until the last
component is reached. In the above example, the spine consists of the bindings for
N, 0, s, rec and plus. The subtrees reached by going ‘sideways’ from this spine
(representing, for example, the typereifc, or the incomplete development pfus)

have terms or partial constructions at the leaves. As we have seen, wherever we find a
partial construction, we may replace it by another of the same type.

It is unlikely that we should always want to see the whole tree of a large state fully
expanded as above. You can, perhaps, imagine using a mouse to draw clouds round
uninteresting parts of proofs, introducing a cloud symbol in the state display. Perhaps
we can double-click on the cloud to restore the expanded tree.

36

Let us expand in detail only where we are interested,@

keeping connected subtrees of uninteresting proof obZPlus~ 7plus_: vy: N
scured by clouds. For instance, if we are simply inj N
terested in unsolved goals, the above example can be C:)
reduced to this picture.

| like this interface for obscuring irrelevant details because | can focus on a subtree

without displaying the full path back to the root. Further, if we allow subtrees contain-
ing clouds to be obscured by bigger clouds, we can structure our lack of interest—when
we expand the larger cloud to return to that part of the development, the bits marked as
dull remain hidden.

Now that we can visualise the state, let us visualise tactics as direct manipulations of the
displayed image. Each symbol is given a tangible presence by its binding. Operations
which affect a symbol should be addressed, by mouse or whatever, to its binding. We
shall soon find ourselves dragging bindings about the place, and so forth. Itis, perhaps,
an advantage of makirigbindings explicit that they afford such visual metaphors.

2.5 basic component manipulations

I shall present tactics as qualified state transitions. The valigd-
ity of the final state must follow from that of the initial state,| |before = |after|
given the side-conditions.

side-conditions
Table 2.7 shows some basic tactics for manipulating compp-

nents at the outer level of theL®G state. These tactics are
justified by monotonicity, except faut andabandonwhich
are standard metatheoretic properties.

We may also represent replacement as a tactic,
instantiating it to acquire tactics which work | | A A
at any position in the development. Conseq | ‘X ~ P[p]:S|=|7x~ P[p']:S

AI Al
quently, we may applglaim, abandon, try,
regret, solve and cut within guesses. How- AP IEp:R
ever, we are not free to create and destkey A; PIFp' "R

as these would not preserve the type of the par

tial construction.
Of course, we will want to operate with a little more sophistication than to edit partial

constructions directly witkry andregret. What we have established is the machinery

37

assume justify claim

A A A A A A

A,:>)\x:s AX:S|=|7x:S A,:>?x:S
A A’ A’ A’

A F S : Type A F S : Type

try regret solve

A A A A A A

X:S|=|?X~p:S Xap:S|=|7X:S|||?X~p:S|=|Ix=p:S

A A’ A’ A’ A’ A

AlFp:S p pure

cut abandon postpone

A A A A A A

!X:S:S:[S/X]A’ ?x:S:>A, X:S|=|AX:S

A A’ A’ A

xg A

Table 2.7: basic component manipulations

38

attack intro -V intro -!
‘C:) — | TX~ 7X: S X VY:S | | AY:S X ly=s:S |4 |ly=s:S
X :S X T ™>: T T > T
: S X X X X
retreat raise-v raise-!
C:) 7X:Vy: S 7X:ly=s:S
7y~ 7X: S = oy S iy:_Sr - T ;yzi_;s N -
‘Tt yat: T ||| AY: S e ly=s:S
: (xy/x]t t

Table 2.8: moving holes through their types

for making holes appear and disappear in a given place. Just like the cinema, if we
work this machinery fast enough, we create the illusion of movement.

2.6 moving holes

Traditionally, we may ‘introduce’ a term of functional type by filling a hole with-a
binding whose body is a new hole—the context of the new hole contains the argument
of the function. We may ‘animate’ this manoeuvre by pretending thatthimding

has moved under the argument and shortened its type.

Another familiar manoeuvre undoes the effect of introduction, generalising a hole func-
tionally over the assumptions from which it was to be proven. Theding moves
outwards through the binding of the assumption, and its type gets longer. Miller calls
this ‘raising’ [Mil91]. We may also shuffle holes in and out throdgfindings appear-

ing in their types.

These moves are collected in table 2.8.

Notice that the two introduction tactics only replace constructions of the far8. x.
If the body was some arbitraty the introductions would affect thes in t, rather than
the whole expression. Fortunately, any hole not of this form can be made ready for

39

introduction by theattack tactic.

The raising tactics, however, have no such restriction. They allow us to move holes out
through assumptions and definitions, becoming more functional as they go, until they
are outermost in a guess. Tredreat tactic may then be used to extract them from the
development. A partial construction can always be made pure by raising and retreating
its remaining?’-bindings.

2.7 refinement and unification

Theintros-V tactic makes progress by filling a hole witb\&erm. This section builds
tactics to fill holes with applications.

Let us begin with a very simple motivating example, say, de C:b
veloping thedouble function for natural numbers in terms | “double: vVn: N
of plus. N

We may introduce the argument btack, thenintros-\. ‘C:)
?double~ An: N
7d: N
d

At this point, we might decide to solve fat by adding 5::)
two numbers together. We can do this, even if we have’doublex~ An : N

? .
not yet decided which two numbers, by inserting holes ‘.?zj(,y: m
for the numbers. That is, we firstaim . . . q
... thensolved with plus x y andcut. ‘(::)
_ _ _ ’doublex~ An :N
We have filled one old holel, with plus applied to two 7%,y: N
new holes—that is, we have ‘refinddy plus’. plus xy
To complete the development, refine eack ahdy by Q
n. ldouble= An: N
plusnn

40

The tacticnaive-refine solves one hole by a given func- | naive-refine
tion applied to unknowns represented by new holes. |t

is a combination o€laim, try andsolve SN IV
i 7y: T 7%: S
Note that | have not explained how the length of the ar- e £ %
. , ly=fX
gument sequencéis to be chosen. We could leave it y‘ T

to the user. However, since convertability is decidable,
we can simply try the successively longer sequences af-f . vg.§ T
forded by thevs in the type off until either one works
or we run out of arguments.

Hence, in the above example, we effectively solddny naive-refinewith plus, then
each ofx andy by naive-refinewith n.

While naive-refineis good for simple types, as one might c:)

expect, it is not sufficiently powerful to be of real use in An o N
. . . . ansym: vVx N
the dependently typed setting. Consider this (admittedly VIex 11 = x
e - S =N
somewhat artificial) problem. X=y N
Aam N

We have to find & such thatm =5 y. Careful exami- Anem -n =y m
nation shows that will do, with a derivation viansym. 7y N
However, we cannot simply daaive-refine on mey with mey :m=yYy
nsym, becaus@sym provesx =y n, notm =y y.

We can, however, start by building an applicatiomsym in (::)

a!-binding. x N

nex : n=y X
If we could solvex andy so that the types ofen andmey IXen = nsym X nex
became convertible, we could complete the refinement. That * X=ny N

mey: m=yy

is, we need taunify the two types. Note that it is unifica-
tion we need, not just one-sided matching—we need to infer

values for holes in the goal, not just unknown arguments.

This thesis is not the place for a discussion of unification for proof search—there is
much work on this in the literature [Pym90]. For my purposes, something similar
in power to first-order unification on normalised terms will prove adequateeG3
explicit bindings of holes and assumptions, and its support for various operations which
permute them, suggest that Miller’s technology for unification ‘under a mixed prefix’
[Mil92] could be imported very easily.

Let us therefore imagine ‘buying in’ a pre-existing unification tool and use it to drive
the tactic shown below.

41

~

!/

P
<T

> > b
T F I
T v b
w1

The idea is thatinify solves holes until enough newreductions have been added to
giveS < T. At that point, the desiresl temporarily stored in &binding, can be filled
in as the value fox.

Note that there is nothing to stomify creating new holes, although this is unusual for
first-order algorithms. Nor do | require the unification process to terminate, although
this sometimes helps.

We may now build a two-phase tactic which incorporates unification in the refinement

process.
unify-refine
A
A 77 . R
Py I/ — fF.
yap | 6T o p | X=12:8

Co

f.VZ:R.S

2. unify X’ andx (at positionP; ?7 : R)

As with naive-refing, it is not necessary to specify how many argumérsisould have
in advance. Provided we are willing to wait for the unification attempts, we may simply
start with none and keep trying successively until either the unification succeeds or we

42

run out ofvs. This is exactly the behaviour oEilc0's notorious Refine '’ tactic.®

An alternative to this search behaviour is a more precise ‘drag-and-drop’ technique.
We can imagine a mouse action picking up a hypothesis by a suffix of the functional
part of its type and dropping it on a hole. The arguments of the hypothesis before the
point we selected would be the ones made holesrify-refine.

Perhaps you are familiar with the children’s toy which consists of a postbox with var-
ious holes of different shapes in the top. The toy comes with a number of blocks, and
the object of the exercise is to post each block through the correct hole. In order to do
this, the child is given a refinement tactic which takes the form of a blue plastic ham-
mer. There is an initial phase where the connection between the shape of the block and
the shape of the hole has not yet been made—a phase characterised by violent ham-
mering and tantrums. Everyone who has ever learresld_has undergone a similar
experience.

2.8 discharge and other permutations

Let me complete this reconstruction of basic theorem-proving iE®with some

more technology for shuffling components around. It is fairly clear that we may per-
mute components in the state in any way which preserves the dependencies between
them.

Where dependency does arise, we may still reorder the components, but we have to
account for it by introducing appropriate functional behaviour. In particular, this allows
us todischargean assumption by making everything which follows from it functional
over it. LEGO implements this transformation by itBischarge ' tactic. We may
reconstruct it piecewise by the four manipulations given in table 2.9.

Although we may read each of the ‘four discharges’ as pulling the bindirdglobugh

the binding ofy, this is just a cinematic illusion. They are, of course, proven by creating
an earlier binding foy, then expressing the later one in terms of it. By monotonicity,
we may make the same permutationsfaromponents as we can farcomponents.

We may also make permutations and deletions in the argument types of functional
holes, so long as we do not break any dependencies. See table 2.10. If we bracket such
moves with raising and introduction, we can make similar permutations and deletions
in arguments which have already been introduced.

SLecotries quite hard to keep going, applying weak head-normalisation at each step, in an attempt
to reveal a fresi-binding.

43

A-through-A A-through-!
A
Ve \x -
X : S Ay Wx:S. T AX: S ly=Ax:S.t
= = : WX:S. T
Ay : T AX: S !y:tT
! ! / AX: S
A [y x/ylA A N
I-through-\ I-through-!
A
A A A
e Ix — s
x=s:S| _|dy:x=s:8.T|||x=s:5| |V~ s:S.t
= =| :Ix=sS.T
Ay = T IX =5:S y=tT| 7| 03
A/ A A/ Al_ .

Table 2.9: the four discharges

swap-independent delete-unused
2 . § 7f . WX: S Q) Q)
”V:Y - Vz: Z VXS || VXS
s vy: Y vy: Y T
T T T If =X, y. X
f=XXy,z.f Xzy
YEZ yET

Table 2.10: permuting and deleting arguments

44

2.9 systems with explicit substitution

Now seems a good time to compareEd’s treatment of holes with that of other
systems.

The key issue is how to cope with holes leaking out of the scope of their explanation.
LEGoignores this issue and reaps the consequent frightful harvest—although instanti-
ations are typechecked, they may involve out-of-scope values which are only detected
once the completed ‘proof’ is being verified.LEG deals with the problem by for-
bidding it—a hole may not escape its scope, but its scope may be widened by raising,
keeping the dependency information explicit and intact.

The real comparison lies with systems which treat this problem via explicit substi-
tution, such as TypelLab [VHLS98] and ALF [Mag94]. Holes appear in the calculi
underlying both systems without explicit binding. Instead, the context and type of a
hole are recorded in an external ledger. By good design, this context coincides with
the collection of bound variables under which the hole makes its initial appearance, but
computation may destroy this coincidence, so explicit substitution is required to fix it

up.
[VHLS98] illustrates this with a simple example. Suppdse defined to have typ&
in contextr : T'. That is, its ledger entry is : T +7 : T. Now consider the term

Az :T.7)t

We are told that the-abstracted: is ‘the same object’ as thein the ledger. On the
one hand, we may instantiatewith = and s-reduce to get. On the other, we may
(3-reduce to get which we can then instantiate with The two do not commute, as
they show in this diagram:

{? .=z}
Az :T.7)t > (Az:Tx)t
B B
T, x t
{?:=z}

The trouble is that performing th&reduction first introduces a discrepancy—the term
no longer contains a binding occurrencexotorresponding to the in the ledger,

45

hence the subsequent instantiation is a touch anachronistic. In fact, the substitution im-
plicit in the §-reduction has passed througtvithout stopping to consider the fact that
somez’s might appear when it is instantiated, hence the solution is to delay explicitly
the application of the substitution tbo When? is instantiated, the substitution may
proceed. That is, we repair the leak in scope by attaching an explicit substitution to the
hole:

{?: =z}

Az :T.7)t (Ax:T.x)t

Y

~)
8
Il
il
Yy
~

{?:=z}

The extrajz := ¢] is really a kind of binding which maintains consistency with the
ledger, so that remains a ‘function’ ofz. That is, the problem remains ‘think of a
T — T function’, and the value remains ‘whatever-it-is applied’to

The OLEG approach to this problem is total cowardice—since such situations cause
trouble, they are forbidden. In particular, we may not bind holes inside an application,
so there is no relationship withreduction to untangle.

We can, of course, have the state shown on the right. Howevent: T
the guess fof has no computational force. We cannot redfite A T
unless we widerf’'s scope by raising and retreating, undoing the T
introduction of theA and leaving us with an explicitly functional | ¢ Y
hole.
Is this an unbearable restriction? | can assure you that it will give us no trouble in the
course of this thesis. The point is that €% offers a genuine compromise between
the ingenuity of explicit substitution and the pain of representing holes as, say, skolem
functions over the entire context—holes need only be kept functional as far as they are
used computationally.

2.10 sequences, telescopes, families, triangles

Finally, for this chapter, let me digress for a moment to introduce an important nota-
tional convenience which will serve both to abbreviate and clarify what follows. We
will frequently encounter sequences of terms, often as arguments to functions or in-

46

dices of type families. | wish to avoid the traditiortal . . t, for a number of reasons:

e it's too wide
e itintroduces a subscript which is frequently irrelevant

e our binding syntax involves significant dots—throwing more dots around (in
threes, no less) can only cause confusion

Forswear therefore the pointillist sequence in favour of de Bruig@lescopenota-

tion [deB91]. A sequencg indicates a finite, perhaps empty sequence of terms, and,
following that primitive monoidal urge, we have composition operatand empty
sequence.

de Bruijn explains how to give such a sequence a ‘type’. In a simply typed setting, we
could just writeT, but things are a little more complicated for us: in our dependently
typed world, the values of earlier terms in a sequence can affect the types of later terms.
We cannot afford to lose this dependency information, hence we must incorporate some
kind of placeholder into the type sequence notation.

DEFINITION: telescope

If Vis a set of variables not containing. . . x,,, andT; € TVU{xl...x-_l} for
1 <i<n,thenTis anX-telescopgwherex abbreviatex;;. . . x, andT
abbreviateg,;...T,).

That is, we define a sequence of types relative to a sequence of identifiers
which become bound in turn and stand as placeholders for earlier values
in later types.

For example, th&-telescope

X1 X9 X3

N —— ~
Type ; X; — Prop; Vy:X;. Xo Y

represents a triple of, respectively, a typea predicate, overx;, and a prooks; that
all elements ok; satisfyx,.

We may now exploit telescopes in all sorts of circumstances. For examﬁlés @n
X-telescope, the judgmefth t : T abbreviates the conjunction of the judgments

47

I' - tl : Tl
F l_ t2 : [tl/XI]TQ

.F F oty [t X [0/ X0]T,

Further, the bindingy : T abbreviates the sequenceok-bindings givingy, the type
T, with y's for thex’s, while ly = t: T abbreviates the corresponding-bindings, and
similarly for the other binding operators.

We may thus speak of a sequence of bound variables as having a telescope where
we would speak of a single bound variable as having a type. | shall glibly omit a
telescope’s placeholding variables, unless they are necessary to avoid ambiguity. When
essential for clarity, | shall attach the placeholder variables to the types in situ, rather
than naming them beforehand, making the above example

X1 : Type; Xo @ Xy — Type; X3 : VY:X1. Xo Y

The term ‘telescope’ comes from its notation-shrinking power, inspired by the kind

of collapsible telescope that Horatio Nelson once famously put to his blind eye. It is

a more appropriate metaphor for abbreviating a dependent type sequence than other
collapsible structures such as accordions or opera hats because each of the concentric
cylinders which makes up the telescope has a lip which constrains the next (and hence
all the following cylinders).

The optical behaviour of telescopes is helpful also. Broadly speaking, the longer an
optical telescope, the smaller the field of view and the greater the magnification. Sim-
ilarly, as you extend a type telescope, each new type acts as a new constraint, so the
collection of inhabiting sequences ‘visible through the telescope’ becomes smaller but
more informative®

There is another sense in which type telescopes are collapsible—if we instantiate the
first placeholder, we acquire a more specific telescope shorter by one.

DEFINITION: telescope application

If Tis thex; ,-telescopd;T,y;... T, andt: Ty, then theapplication

—

Tt

is thex,._ ,-telescope

6de Bruijn talks of sequences ‘fitting into’ telescopes, but | prefer to avoid the mixed metaphor.

48

(/%] Tos .. [t/X1] Ty
Observe that if; T : T thent : T t.

This notion of application for telescopes may be iterated over a term se-
guence in the same way as function application, shortening a telescope by
instantiating any prefix. That s, &is anx-telescope andl: S then(S; T)§

is just[s/X]T.

Note that the use semicolon for sequential composition leaves the comma free for its
usual role, indicating multiple inhabitation of the same type or telescope. TKafis,

T means that each afandy inhabitsT, whereX; ¥ : T means that the concatenation

of X andy inhabitsT.

Let us also introduce a notation for making multiple copies of a telescope.

DEFINITION: iterated sequence or telescope

If Tis a sequence of terms or a telescope, then
{i}
is the sequential composition afcopies oft.
If t; is a sequence of terms or telescope containing a free subsatiph
{t},
13
is the sequential composition

—

The empty sequence or telescope is t{l}Ps

Hence we may say thatlus has type{INI}2 — N and still intend the curried form of
the function.

Observe thatif;, ... t, : fthen{ﬁ-}n : {f}n

Similarly {fﬁ-}yf abbreviatesf .);. .. (fE,).

Now that we have the telescope notation for expressing types of indices, we may define
the notion of an indexed family.

DEFINITION: indexed family

49

If Sis a telescope antis a type, then a§-indexedT-famin is an inhab-
itant of vX:S. T.

For example, if for alh : Nl we defindinn to be the finite datatype withelements, we
may say thatin is Nl-indexedType-family. Or, perhaps perversely, we may describe the
function which decides equality on the natural numbers N i-indexed2-family.

For anyType-family (henceforth ‘type family’), we may define the following telescope:
DEFINITION: free telescope for a type family

If Tis anx-telescope and\ is aT-indexed type family therA, thefree
telescopédor A, is

T; (AX)
For examplefin is justn : Ni; x : fin n.

What is visible through this telescope? Every member of the fafilyf course! That
is, if a: A, thent;a : A. Note also thaA t is the same as one element telescapé

Finally, let us consider how to abstract over arbitrary telescopes. Simply taking
VT {Typel". ...

does not capture the potential for type dependency within the teles€op®ay depend
on a value of typd; and so on. We may represent this by taking T, — Type. We
then have not a telescope of types, but a telescope of type families:

Ty : Type;
T2 : T1 — Type,
T3 : th §T1. (T2 tl) — Type,

;I'n Vi {T,- {tj};'.}j_l. Type

This is a very speciaf-telescope which | calh"Type, and any sequence which in-
habits it is atriangle of lengthn. That is, a triangle is a sequence which represents a
telescope.

Itis not hard to convert aﬁtelescopéf into a triangle: we simply turn the abstractions
implicit in the telescope notation into-bindings which capture the earligks in later
T's. The resulting triangle is

50

Ty
)\Xl :Tl- Tg,
AX1 T AXg: To. T3,

MAT LT,
Correspondingly, i is a triangle, thel-telescope it represents is

X - Sl,
Xa : Sp Xi;
X3 : 83 X1 Xo;

X, 0 S, {x;)0

There is no ambiguity between triangles and the telescopes they represent. You can
easily spot which is which by which side of the colon they appear. | shall happily write

VT:A"Type. hereT is a triangle
VT hereT is the represented telescope

What couldT mean as a triangle in a type position? Its elements are type families and,
apart from the first unindexed one, these type families are not types.

Observe that iff; S is then + 1 length triangle representing telescopel andt : T,
then the triangle representind; 'f) tis {S; t};. Telescope application is thus repre-
sented in the triangle coding by function applications.

These notational forms give us the syntactic power to manipulate dependent type fami-
lies and their inhabitants cleanly and with hardly any more effort than for simple types.
Since dependent type families feature strongly in this thesis, we are sure to be glad of
the convenience.

51

Chapter 3

Elimination Rules for Refinement
Proof

Introduction rules tell us how to establish new information. Elimination rules tell us
how to exploit what we know. This chapter identifies a particularly useful class of
elimination rule and develops a tactic to deploy them in refinement proof.

My first encounter with things described as ‘elimination rules’ was when | was being
taught natural deduction as an undergraduate mathematician. In particular, | learned
elimination rules for the propositional connectivesndV:

Pl Q]

PAQ PAQ PVQ s o
P Q o

| recall thinking the twon-elim rules uncontroversial, whilst being somewhat confused
by the convoluted behaviour ofelim. It was only when | caught my supervisor build-

ing a proof from the bottom of the blackboard upwards that | began to see the point.
V-elim tells us how to exploit a disjunctive hypothesis to gain leverage on whatever
® it is we are trying to prove. The-elim rules seem somewhat undermotivated by
comparison—they project out one or other conjunct, so we have to arrange to want the
conjuncts.

We can reformulate tha-elim rules as a single rule in the stylewfelim:

52

This rule (often called ‘uncurrying’) makes explicit the ‘see if you can prove it from
the conjuncts’ technique which the original pair of rules tacitly require the reasoner to
apply. And that is the key point. Elimination rules should supply a proof technique
which analyses the hypothesis in question to give leverage on whatever the objective
may be. The ‘projective’ rules only manage to be both applicable and motivated if we
are lucky enough to be trying to prove one or other of the projections.

MANTRA:
The end motivates the means.

It is only because\ is a pretty boring connective—there is no choice about how to
proveP A Q—that we can get away with projective elimination rules. A disjunctive
hypothesis yields no definite conclusion, so forward synthesis is blocked—we have to
work analytically, reasoning by cases.

V-elim helps us prov@ from P v Q by splitting the task into two subtasks, decom-
posing the hypothesis. However, this is not the only way a well-designed elimination
rule can make analytical progress. We can also decompose the objective (or ‘goal’)
into more specific cases, our favourite example being the ‘principle of mathematical
induction’:

(@ n]
d0 &sn
VYn:N. ®&n

This rule explains how to prove an arbitrary gdeindexed by a natural numbar we

must show that proofs @b are made the same way that numbers are. The subgoals in-
stantiate the index with more specific natural numbers. This instantiation may provide
us with the concrete data we need to perform some computation or simplification, and
this is, by and large, how inductive proofs work.

Henceforth, | shall intend by ‘elimination rule’ only this kind of rule whose conclu-
sion is an arbitrary goal, possibly abstracted over indices. This characterisation is very

53

broad, including rules where there is nothing being eliminated. This may seem odd,
but it is sometimes useful to characterise what progress we can make towards an arbi-
trary goal without exploiting anfurther information. Good examples to bear in mind

are the impredicative encodings of the true proposition and the absurd proposition, re-
spectivelyv® : Prop. & — & andV® : Prop. . The former exploits no information in

the cause of proving its arbitrady, and consequently exerts no leverage, leadirag

a subgoal. The latter is only derivable in the context of a contradiction, and it indicates
that we already have all we need to establish whatéwse want.

In order to exploit elimination rules whose conclusion is abstracted over indices, we

need to make the corresponding abstractions from the goal we are trying to prove. It
is, of course, obvious how to do this when the goal already looksvikeN. & n.

This chapter is largely devoted to explaining how to make the abstractions under less
obvious circumstances.

3.1 propositional equality (definition deferred)

One of the tools we shall shortly require igpeopositionalnotion of equality. The
conventional formulations become awkward once type dependency enters the picture.
The trouble is that two instances of a type family with indices which are not convertible,
just propositionally equal, are not the same type. The familiar definitions permit only
equations within one type—they forbid us even from stating the equality of elements
drawn from the two instances of the family.

Huet and Sdji encounter a similar problem in their formalisation of category theory
[SH95]—they need to state the equality of arrows whose domains are not necesssarily
computationally equal. Their solution is to relax the formulation rule for equations on
arrows whilst still supplying only the reflexive constructor. With care, this approach
may be extended to the commonplace propositional equality, and that is what | propose
to do.

Rather than presenting my definition at this stage, with slender motivation and less
context, | shall defer the treatment until we have more idea of what its properties should
be, and more language with which to describe them.

Since | do not use a familiar equality, | shall not presume to use the fansiliaymbol.
Instead | shall write~’. Experienced readers who dislike suspense will find its defini-
tion in chapter 5. Otherwise, read on here—let us look out for the required behaviour
of ~ as we go.

54

3.2 anatomy of an elimination rule

Let us first establish notation for elimination rules and give names to their compo-
nents. Presenting elimination rules as raw types, or even in the conventional natural
deduction style is relatively uninformative, as | have found in the past to my cost. In
this section, | shall motivate what | hope is a clearer presentation (arising from a black-
board conversation with Rod Burstall). It is important that we come to some systematic
understanding of these rules, for we shall need to teach machines to use them.

In order to make sense of any elimination rule, we need to know

e what it eliminates—itsarget Ninduction
e what family of arbitrary goals it proves—issheme ® :Vn:N. Prop
For example, mathematical induction (right) eliminates a nat- on

®0 Psn
n:N|&n

I mark the target with a box. We can tdllis the scheme because it stands at the head
of the rule’s return type.

ural numbern, and proves goals of the fordn, where® is
a family of propositions (ie, a predicate) ovNt

If we want to apply this rule, the target marker tells us that we must select a natural
number to eliminate, which will stand in the placerofHaving done so, we will need

to abstract it from the goal to make an appropriate scheme.ftiris important to type

the scheme prominently. The index types are not always so obvious as here. Further,
we may need to be precise about which type universe the goal must inhabRragie *

in the above rule makes it suitable only for propositional goals—this rule cannot be
used for programming.

Schemes always have types of foxm: I. U. I call theT the rule’sindices, and the
indexed telescopEthe rule’saperture. Later we shall see elimination rules for the
same thing, but with different apertures. We shall also see how to change the aperture
of arule. In conventional proofs by mathematical induction, the scheme is often called
the ‘induction predicate’. However, we shall have need of schemes which are not
predicates and rules which are not inductive.

Whereverd is applied, its arguments are callpdtterns. The universally quantified
variables appearing in patterns g@eagdtern variables. Target selection must instantiate
all the pattern variables in the conclusion of the goal—otherwise we will not know

55

what to abstract to build the scheme. For mathematical induction, the only pattern
variable involved is the target itself, so this requirement is clearly fulfilled.

Above the solid line are the ruletsaseseach of which prove® applied to somease
patterns (such af) andsn above). Any subgoal-specific assumptions appear above a
dotted line, the horizontal cousin of natural deduction’s vertical ellipsis. Those which
do not involve® arecase data Those which do are describediaductive hypotheses

or recursive calls

The visual aspect of this presentation is intended to convey the idea that the cases of an
elimination rule are the ghosts of the corresponding introduction rules. Prawitz’s ‘in-
version principle’ captures this relationship between the introduction and elimination
rules of natural deduction [Pra65]—he attributes the idea to Gentzen who in [Gen35]
expresses the property as follows:

In eliminating a symbol, we may use the formula with whose terminal
symbol we are dealing only ‘in the sense afforded it by the introduction of
that symbol'.

In essence, elimination rules show us how to mimic the structure of the hypotheses on
which they act. Mathematical induction shows us to how to mikeimitaten : N. |

will freely suppress implicit assumptions (such asrheN in the ‘successor’ subgoal
above) in order to strengthen this resemblance.

MANTRA:
Decomposition is the exposition of construction.

Before | describe how to work with elimination rules in more detail, let me place the
discussion in context by exhibiting a number of variations on the theme.

56

3.3 examples of elimination rules

Parameterised data structures like lists have palistElim

rameterised elimination rules.
A : Type

In particular, we say that an elimination rule’s| & : (list A) — Type
parameters are those hypotheses on which the
scheme’s and cases’ types depend. They may, h:A &t

where interesting, be listed at the top of the rule. e
® (nilA) & (consht)

VIl listAl &I

Note that | supply the case datum A explicitly, despite its appearance in toens
case pattern, in order to emphasise the imitation of the constructor.

A class of elimination rule which we will construct and use over and over again in this
thesis is thease analysi®r inversion principle. For any notion given by introduction
rules, the corresponding inversion principle asserts that those introduction rules are
exhaustive There is one case for each introduction rule, and there are no inductive
hypotheses.

m<n

Consider, by way of example; for NI, presented here in its m<m m<sn

‘suffix’ variant.
The traditional ‘Clark completion’ [Cla78] presentation represents the choice of deriva-
tions as a disjunction of existentially quantified equations.

Yym,n. m<n —
V dm’. m~m’ A n~m’
am’, n". m~m’ A n~sn’ A m'<n’

There is one disjunct for each introduction rule—the schematic variables become ex-
istentially quantified over equations demanding that the conclusion proves the inverted
hypothesis and that the premises hold. This construction is somewhat mechanical, in
that it explicitly constrains each argument of the hypothesis even if the constraint is

redundant, like thém’... m~m’ in each case.

In [McB96], | gave a standardised ‘elimination rule’ presentation of inversion, essen-
tially currying the Clark completion. For example, the generic class of hypothesis
would be inverted thus:

YIn fact, it is good to think of induction as inversion augmented with recursive information.

57

<Clarkinv

® : Prop

m andn are parametric to the whole rule. Once they have been instantiated, the equa-
tions in the subgoals may be simplified automatically. This approach is somewhat
clumsy, but it is very easy to apply, as the schemmay be any proposition—no ab-
straction is necessary. We shall shortly develop the abstraction technology required
to exploit a more streamlined version, with an indexed scheme removing the need for
equational constraints on the parameters:

This inversion principle differs from the Clark rule | <Inv
only in its aperture. They are, of course, interderiv
able, suggesting that there might be a systemat
way to change the aperture of an elimination rule|
In fact, that is the essence of the tactic this chapte
develops. Fmm

éI):Vm,n:INI.Prop

-

dmsn
vym,n.im<n|— ®&mn

The process which simplifies the constraints arising from inversion makes critical use
of the fact that constructors are injective and disjoint (the ‘no confusion’ property). For
natural numbers, we might plausibly choose to derive two of Peano’s postulates:

e VYm,n:N.smx~sn — mx~n

e Vn:N. 0~sn
The above formulation of injectivity is essentially projective after the fashion of the
awkwardA-elim rules—directly useful only if it isn~n we are trying to prove. For
non-unary constructorg;ons for example, the problem gets worse—we either have

separate head and tail injectivity theorems, or a single result which yields a tuple of
equations which we then eliminate.

58

Consequently, | present injectivity as an inversion rule for sinjective
an equation of successors. This is really just the ‘tuple’
version in curried form—the ‘predecessor’ equations are

the hypotheses of the rule’s only case.

® : Prop

Turning to the ‘constructors disjoint’ result, if we think of | ~
‘not’ as ‘implies false’ and ‘false’ as the absurd propositior o
‘anything is true’, we discover that we had an elimination — ®
rule all along, with a fortunate number of cases.

| shall show how to prove rules like these in chapter 5. 0-not.s

® : Prop

0=~sn| - @

We should not think of elimination rules as solely belonging to datatypes and relations.
They also provide neat tools for reasoning about functions. After all, what is the ex-
tension of a function, but a relation on which a total and deterministic computational
mode has been imposed.

An equational presentation of a function corresponds to a set of introduction rules,
with recursive calls becoming inductive premises. It makes sense to reason about the
behaviour of the function by the corresponding elimination rule.

ConsiderNIEg—the function which decides the equal-|NEq 0 0 =true
ity of two natural numbers. Later, we shall see howNEQsm 0 = false

to define it by recursive pattern matching equations aﬂgg s(r)n :2 i 1|;\IIaI|ES§m m
shown.

The corresponding elimination rule allows us to do what John McCarthy regiis-
sion induction [McC67], effectively packaging up the recursive structurd&q as a
single induction principle.

NEgRecl

@:Vm,n:N.v@:Z. Prop

®00true ®Osnfalse dsmOfalse dsmsnb

vm,n.®mn| NEgmn

59

Many proofs about functions operate by choosing the right combination of inductions
and case analyses on the arguments to make the computation unfold. Recursion in-
duction on functions does away with the apparent cunning of this choice by wrapping
up ‘the right combination’ in a derived rule which targegsplicationsof the function
directly. The proof of a recursion induction principle follows the construction of the
function it describes, step by step.

In order to make proper use of such a recursion induction principle, or any other rule
eliminating a function application, we must choose a sché@mwhich abstracts that ap-
plication from the goal. Each subgoal thus replaces the application by the appropriate
value.

Such abstractions are usually unnecessary when eliminating datatypes or relations.
However, exactly when and where this abstraction behaviour is required seems to vary
from rule to rule, and even from problem to problem—I cannot see how to infer it
reliably from the structure of the rule or its target.

The user must be free to indicate which arguments are to be abstracted in any given
case—I put a box in the type of the scheme around any index for which abstraction
IS to be attempted. Wheanis boxed inNEgRecl, it indicates that we would like to
abstract occurrences @NEq m n) asb.

For many functions, typically of a ‘searching’ or ‘testing’ character, recursion induc-
tion is still too close to the implementation to be really useful. For example, regardless
of how the test works, we should like to know tHMEq returnstrue for equal and

false for unequal arguments. We can represent these requirements as ‘extensional’
introduction rules, via the propositional equality:

These equations may not be computational, but we can NEQ XX~ true
still use them for conditional rewriting, should we be lucky X Ay
enough to encounter applications NEq which look like NEqQ X y ~ false

the left hand sides.
We are often less lucky. Imagine we are trying to prove a property of a program

vx,y. P (if | NEq x y | thenS elseT)

The computation is blocked at the box, because the ‘if’ will only reduce given a
boolean value, and inside the box becaxsady are not numerals. Neither rewrite
rule applies, because we do not know whether oxrastdy are equal. We can remove
the blockage if we split the problem into the two cases whereNBg call returns
true andfalse respectively.

60

This is exactly the behaviour of the inversion| NEqInv

principle corresponding to the rewrite rules.
P : Vm,n:INI.VIE:Z. Prop
Inverting aNIEq call yields two cases: one

where the arguments are the same and the r
sultistrue, the other where the arguments dif-|
fer andfalse is returned. dnntrue @ mnfalse

[92)
]

vm,n.®mn|NEgmn

Again, boxing b |indicates thatNEqmn) is to be abstracted from the scheme. Conse-
quently, it is replaced in one subgoal bye and in the other byalse. In both cases,
the ‘if’ reduces—further, in thérue case x andy are coalesced:

e VX. [X/Y](PS)

o VX,y. X2y — PT

Inversion requires much less effort than extracting the same information from ‘charac-
terisation theorems'’ like the following (from theelc o library):

vm,n:N. m~n < NEQ m n~true

To achieve the effect of the inversion, you need to combine this lemma with projection
from the ‘', boolean case analysis and a rewriting mechanism.

MANTRA:
Invert the blocking computation.

The point is simple. Introduction rules construct information. Elimination rules ex-
ploit information. It is a serious weakness to confuse these purposes. In my view, an
equational specification is the wrong tool to exploit the properties of one program in a
proof about another. By construction, elimination rules, especially those which invert
blocked computations, are much better tools for that purpose. Over the course of this
thesis, you will see this point reinforced in example after example.

3.4 legitimate targets

In order to refine a goal by an elimination rule, we must do two things:

61

e select a target of the kind the rule eliminates

e construct a suitable scheme from the goal

| shall discuss the latter in the next section, but the first issue requires comment now,
because it impacts on how we should present elimination rules in the first place.

The point is that, in order to be able to select a target, we must know what kind of
target the rule eliminates. We must define what it means to be a ‘legitimate target’ of
a rule, so that when we tell the machine which rule we want to use, it can tell us what
we may use it on.

As we have just seen, there are many different kinds of elimination rule, eliminating
many different kinds of target. The elimination rule for a datatype eliminates an ar-
bitrary element of that type, abstracted in the rule and appearing in the concluding
pattern:

vin:Nj@n

Inverting an inductively defined relation like eliminates hypothetical inhabitants of
the relation, but the patter®(m n) only involves the relation’s indicesn(andn), not
the target (the proof ah<n) itself:

vm,n.[m<n| — dmn

An elimination rule for a function specifically eliminates applications of that function,
rather than arbitrary elements of the result type, so the target appears only in the pat-
terns.

vm,n.® mn|NEgq mn

More diverse variations include ‘double induction’, where we must provide two targets
for a nested analysis. There is no way we can expect a machine to cope with this
diversity, looking only at a type and trying to second-guess the intention behind it.

Let us place the burden of specifying what an elimination rule targets where it
belongs—with the manufacturer of the rule. In the Northern Irish tradition, a legiti-
mate target is whatever we say it is.

Consequently, the boxes around targets become more than a notational courtesy be-
tween you and me—they are annotations which the machine can also see. One way to

62

represent such annotations is to store the boxed term and type in a fatoiodsng
with a special identifier,C1", below:

e VN:N.'O=n:N.®n
e Vm n.VH:m<n.!O=H:m<n.®mn

e Vm,n.!O=NEgqmn:2. »mn (NEgq mn)

Given the ‘manufacturer’s instructions’, the machine can ask us for legitimate targets in
the order that the annotations appear in the type. When we indicate what to eliminate, a
process known in the businesdimgiering, the machine can match it against the target
annotation, inferring the universally quantified variables therein.

This opens the interesting possibility that the type of an elimination rule might be
computed from its targets. After all, we cannot compute the elimination scheme until
we know what it is we intend to eliminate. We will see an example of this technique
later—the ‘injectivity’ and ‘conflict’ rules for a given datatype will be combined into a
single rule which computes the inversion appropriate to the equation being eliminated
once targetting has instantiated the two sides with constructor expressions. This is not
a caprice on my part—it really is the easy way to prove the Peano-style properties of
dependent datatypes.

3.5 scheming with constraints

‘You can have any color you like, as long as it's black.” (Henry Ford)

Undergraduates should count themselves fortunate that the exercises in inductive proof
with which they are traditionally presented involve goals of form:

‘For all n € NI, rhubarb rhubark..’

The formulation of the ‘base’ and ‘step’ cases then involves mindless copying of the
‘rhubarb’ bit, with appropriate values substituted for theé Even if they cannot com-

plete the question, they can still manufacture the proof template (once any tendency to
write ‘supposer = k, shown = k + 1’ has been beaten out of them, that is) and thus
collect some credtt.

2For such purposes ‘rhubarb rhubarb’ makes as worthy a predicate as any.

63

When reasoning about even modestly complex notions, sughfas NI, we are less
likely to be favoured by goals bearing so close a resemblence to an elimination rule
conclusion, such as that efinv:

<lnv:...vmn.[m<n] —» ¢mn

<Inv’'s scheme abstracts over arbitrary pairs of natural numbers, but how are we to
deal with less arbitrary pairs? How can we cope with particular restrictions of rela-
tions, datatypes and so forth? How might we apply a generic ruledikg to a more
restricted instance of ? Consider the boxed hypothesis in

?0least : VX. — Xx~0

We need to construct a scheme which is constrained according to the problem in hand,
but still abstracted over the entire aperture of the rule. The constraint we need can be
expressed by means of propositional equality, taking

® = \x,n.n~0 — x~0

As it were, ‘you can have any: N you like, as long as it'®)’.

Plugging in this scheme, the conclusion<dhv becomes
vm, n. — n~0 — m~0

Now, if we fill in the details of our selected targek 0, this is further instantiated to
0~0 — x~0

and we can surely prov@~0—Iet us presume there is some

refl : VA:Type. Va: A. a~a

More generally, suppose we have an elimination rule proy-® : vr. U

ing some schemé for patternsp[y], as shown to the right.
rule subgoals

The notatiorp|y] represents the sequence of patterns with the ===
ply] rep q p %Y. ® 5]

pattern variables abstracted: more generall}, means ‘the
patterns witht’s substituted for thg’s’.

We may apply this rule to a more specific goal—let us presume that targetting has pro-
duced a matching giving the rule’s pattern variables in terms of the goal’s hypotheses.

That is, consider a goal which looks like
64

VX. U[p[oy]]

We may choose a schenewith explicit equational constraints:

AT VX, T~ploy] — U[F[oy]]

What isi~p[oy]? It is atelescopic equation in general, ifS andt are sequences of
lengthn, then the telescopic equatisit abbreviates the telescope of equations:

{s;~t;};

Observe, though, that we must be able to express these constraints even in the presence
of type dependency. For example, if we were building constraints on an aperture

n:MN;v:vectn
we might need something like
Ny1>~Ny; Vi Vs
even thouglv, : vectn; andv, : vectn,. That is, we need a notion of equality which

scales to telescopes—exactly whawill provide.

Let us instantiate the rule’s conclusion, filling in the pattern variables according to
and® with the scheme we have constructed:

VX. ploy]~play] — W[ploy]]

If we can solve the equations, we will recover the target goal. Fortunately, they are
reflexive.

The point is this: in much the same way that Henry Ford’s customers could ask for
any colour of Model T, but would only receive satisfaction if they happened to choose
black, the above scheme is indeed abstracted over the entire aperture, but the patterns
to which it applies are subject to equational constraints which recover their specificity.

Notice that the formulation of this scheme requires no abstraction. UTpley]] re-
mains untouched. It is targetting which identifies fiiey|—they need not even occur
in the goal, although the exercise is perhaps a little pointless if they do not.

65

We have established the basic technique for constructing schemes when our goal is
more specific than the conclusion of the elimination rule. It is broadly effective, but it
sometimes generates redundant information. For example, constraints are unnecessary
wherever the goal really is as general as the rule—there is no point in saying ‘you can
have any color you like, as long as it’s a color’. We should try to avoid equations where
abstraction will do.

The next three subsections describe techniques to make the basic scheme less clumsy,
in accordance with the following three observations:

e wherever a fresh variable is constrained to equal an index, we can coalesce the
two and remove the constraint

e Wwe can avoid abstracting the scheme over redundant information

e if an index is constrained to equal a complex pattern (for example, when we
apply an elimination rule characterising a function) we may sometimes simplify
the scheme by replacing copies of the pattern with the index

3.5.1 simplification by coalescence

The simpler the example, the more unnecessary constraints there are likely to be: if we
wanted to prove

vn:N. rhubarb rhubarin
the generic constrained scheme would be

Am:N. Vn:N. m~n — rhubarb rhubarin
This is not the scheme which | want my students to write down, so it had better not
be the scheme which the machine computes. Wherever a scheme consirbiosral
index to a equal fresk-bound variable of the same type, we may coalesce the two.
Our example becomes

An:N. rhubarb rhubarim

as we might hope for.

66

When we coalesce two variables, we have a choice of which name to keep—it is polite
to preserve the name from the goal. Note that if the s&rbeund variable is con-
strained to equal more than one index, that effectively forces those indices to be the
same—we may only make one coalescence, otherwise we lose this ‘diagonalisation’.

3.5.2 what to fix, what to abstract

Which of the goal’s premises do we really want the scheme to abstract? Which should
remain fixed over the whole scope of the elimination? Unfortunately, these can be
quite subtle questions. Imagine, for example, that we are buildingtap function

for polymorphic lists:

map : VS, T:Type. Vf:S — T.Vx:listS. list T

In order to do recursion ornwe must certainly fixS—the element type is parametric
to the elimination rule folist. We may fixT andf or not as we please.

On the other hand, when we are constructing functions which require nested recursion,
we may not be so free to fix arguments. Consider, for example, Ackermann’s function:

ack:N—-N— N

ackOn = sn

acksm0 = ackms0
acksmsn = ackm (acksmn)

When we apply the outer recursion on the first argument, we must not fix the second
argument—as you can see, the recursive calls which decrease the former also vary the
latter.

Abstracting wherever we are not forced to fix sounds like a promising policy—it does
not hurt us to have too much flexibility, only too little.

However, sometimes abstraction is definitely re; <lnv
dundant. Recall our earlier example, proving

VX. — x~0

perhaps by<Inv (shown to the right). dmm Pdmsn

® : ¥Vm,n:N. Prop

vym,n.im<n|— ®mn

67

As things stand, the basic scheme abstracts all the premises
® = xm,n. Vx. x<0 - m~x — n~0 — x~0

Coalescence removgg (and renamen):
® =, nx<0 - n~0 — x~0

Plugging this into the conclusion of the rule, we find we have a proof that
vx,n.x<n — x<0 — n~0 — x~0

The extra inequalityx<O0, is redundant. It is present because we have abstracted over
what we were eliminating, but it is not in any way useful because the scheme is not
indexed over the proof of the inequality.

Typically, once targetting has filled in what is being eliminated, the application of an
elimination rule looks like

rule® ¢ oy : @ ploy]

The premises occurring in the inferred argumenisare the ones being eliminated.
However, somg’s may not appear in the patterns, so some eliminated premises may
not appear in the instantiated pattephsy]. The elimination thus tells us nothing about
them, so we may omit them from the scheme provided type dependency permits.

That is, we may omit a premiseon grounds of redundancy provided

e x occurs in the arguments of the elimination rule inferred by targetting
e x does not occur in the instantiated pattegfis/|

¢ the remainder of the goal does not dependcon

Inductive relations like< are usually formulated in exactly this ‘proof irrelevant’ way.
In our example, the eliminated hypothesisO satisfies the three conditions. We omit
it, leaving

® = \x,n.n~0 — x~0

This is the scheme we want.
68

3.5.3 abstracting patterns from the goal

Rules with indices marked for abstraction| NEgInv
oblige us to carry out further simplification
on the scheme, in order that they have the in
tended ‘rewriting’ effect.

_@:Vm,n:N.v@:Z.Prop

mn
Recall NEgInv from section 3.3—we might |
use this rule to rewrite an application NfEq dnntrue @ mnfalse
in a goal like the following: vm,n.dmn|NEgmn

vx,y. U[if | NEqQ x y | thens elset]

Targetting infergx/m|[y/n]. The coalesced scheme is thus

® = Ax,y,[b] b~ NEqxy — Wif NEqxy|thens elset]

The boxe@ tells us that we should abstract away occurrencéd&i x y) from the
goal. Once we have done this, we can throw the constraint away.

® = \x,y,b. ¥[if b thens elset]

Abstracting arbitrary terms in dependent type theory is a sensitive business—we are
not always free to replace a given subterm by a variable of the same type, because the
typing of the whole term may depend on the particular intensional properties of the
subterm being replaced. However, it is worth a try—if unsuccessful, we may leave the
constraint as it is and continue.

This rewriting technique is very powerful. The trouble caused by the intensionality
of the type theory is a real pity. Perhaps a part of the problem could be avoided with
appropriate facilities for reconstructing broken typings from propositional equalities,
as proposed by Hofmann [Hof95].

69

3.5.4 constraints in inductive proofs

Let us see how constrained schemes affect inductiv
proofs. We will acquire constraints on the inductive
hypotheses, as well as those on the conclusions
the subgoals.

Consider applying the weak induction principfer
< (see right) in a proof of

of

@ : VYm,n:N. Prop

dmm dmsn

vym,n.im<n|— ®mn

?strict: VX, y. — X<y

Targetting gives = [sx/m][y/n], so we infer the scheme (coalescingndn):

® = Am,y. VX. m~sX — X<y

The corresponding subgoals are shown to the right.”base: vm, x: N
The constraints which appear agpotheses the Ve, :mosx

i : . X<m
subgoalsg, ande,, are frlendly. they restrict thg 7step: Ym. n: N
m’s andx’s we have to deal with. The constraint vhyp : Vx': N
in the inductive hypothesisg,, is ‘unfriendly’—it Vey,: ma~sx’
restricts our choice of'. x'<n

VX N

A closer examination of these constraints reveals ja Ve, :mosx
more subtle but crucial distinction. X<sn

The variables appearing in these constraints come from two sources:

¢ the pattern variables for each case of the elimination mlandn above—these
become premises of the subgoals, and appear deftiegand side of constraints

e the variables universally quantified in the scherandx’ above—these become
premises of the subgoals and also parameters of the inductive hypothesis: they
appear on theght-hand side of constraints

The ‘friendly’ constraints tell us useful information about the variables which occur
as subgoal premises, whether they come from the scheme or the patterns. In chapter

3An inductively defined relation like< also has a strong induction principle—the distinction is ex-
plained in section 4.1.5.

70

5, we will see how to simplify them, solving for variables appearingither side—
‘friendly’ constraints constitutenificationproblems.

In our example, let us imagine we can perform this ?hase’: Vx: N
simplification one, ande,, instantiating them’s to X<SX
7step’: Vx,n: N
leave the subgoals shown. ,
Vhyp: VX': N
Ve, : SX~sx'
x'<n
X<sn

The ‘unfriendly’ constraints cannot tell us anything about the variables which occur as
subgoal premises¢; does not allow us to infex. Rather, they narrow our choices for
the copies of the scheme variables (IKgwhich parameterise inductive hypotheses.
That is, ‘unfriendly’ constraints can only determine variables appearing orighie

hand side—they amnatchingproblems.

Look back before we simplified the ‘friendly’ constraints:| ?base”: ¥x: N
we cannot find arx’ to solve the matching problem X<SX

, e | 7step”:Vx,n: N
m~sx’. However, now that we have done the unification whyp: x<n
a solution has become available. Inferrintpr X’ we can X <§n

obtain the subgoals shown on the right.

Something interesting has happened, and we will see what it is if we present these
subgoals in natural deduction style:

X<n

1"
base X<sn

"
X<SX step

This looks like a plausible recursive specification<df In fact, what we have done

is apply the standard unfold/fold technique for logic programs [TS83, GS91] to trans-
form our goal, viewed as a specification<ofin terms of<, into subgoals which give

< recursively. The unification problems in the conclusions are those which arise in
unfolding; the matching problems in the inductive hypotheses are those involved in
folding.

3.6 an elimination tactic

In this section, | shall present a tactadiminate, which refines a given goal by a given
elimination rule—the user is required to finger the targets, then the tactic constructs an
appropriate scheme and solves the goal, generating a subgoal for each case.

eliminate operates in five stages:

71

preparing a proforma application of the elimination rule to arguments initially
unknown

fingering the targets and inferring the pattern variables

constructing a constrained scheme

proving the goal

tidying up

| have implemented a prototype of this tactic with much of the functionality described
here as a key component in my extension @Glo. Of course, if | had known then
what | know now, it would have all the functionality. This section is the blueprint for
the revised version.

| shall present each stage as a little tactic. ¥he |A<Elim:V® :Vm,n: N
induction we have just seen in the previous sec- Prop
: . n Vo, :Vm: N
tion makes a useful running example. The tacti¢ »mm
should reproduce exactly the effect we manur Vo, :¥m,n:N
factured by hand. Vémn: @mn
®msn
The rule we shall use and the goal we shall vm,n: N
prove are shown in CEG notation on the right. YL : m<n |
The boxed premise in the rule is the inequality dmn
it eliminates: the boxed inequality in the goal is Q
the one we shall target. TleGoal: Vx,y : N
{H Xy
X<y

3.6.1 preparing the application

The preparation step could be carried out for any goal to be solved by any lemma. It
is just an administrative manoeuvre, getting everything in the right place for the real
work which follows.

TACTIC: eliminate-prepare

72

elim: vs: S. R[S] elim : Vs:S. R[S]
7goal: VX: X 7goal~ AX ¢ X
Y[¥] 75 :S
lapp =elims
: R[]
7conc: Y[X]
conc
The goal’s hypotheses are introduced; the?leGoal~ Ax,y : N
lemma’s hypotheses are inserted as unknowns. A H X<y |
— . 7P
A ‘proforma’ application of the lemma is then 2
manufactured and stored as-hinding. Ulti- 7¢:n
mately, this application will be used to solve m,n: N
conc. We must first fill in some of thé. 7L : m<n |
lapp =<Elim ®...L
The prepared application for our example is :dmn
shown on the right. fconc: X<y
conc

3.6.2 fingering targets

Having installed an application of the rule in the proof of the goal, the next step is

to infer some of its arguments by targetting. We may presume that the rule has a
sequence of targets marked by its manufacturer. The user must now finger a sequence
of matching expressions to be eliminated.

We may make use of thanify tactic to do our matching, although this may be a slight
overkill. Something like the following happens:

= 7goal~ AX ¢ X
7goalx M : X ‘goal i;‘ | >§<
app = g;g‘_sgl;]s? lapp = elim &; F[]
peone « YRl : R[Sy; FIX]]
zconc : Y[X] = 2conc: Y]
conc .conc‘
t[S] : T[S,] target ~
e[X] : E[X] to be eliminated :[E[Fg_(),ﬂ] ~ el[E)g?]

That is, targetting tries to match terms and types. If successful, some of the rule’s
arguments, will be inferred ag7x]. Otherss;, will not be inferred. The two kinds do
not have to be bound in separate clumps—it is just easier to write down that way.

If a rule has more than one target, we will have to repea@

this step for each. 'm =sx
'n =y
In our example, we successfully matehto L. Matching |IL =H

the types also infen andn. lapp= <Elm &...H
: Dsxy

Now, if an elimination rule is particularly complicated, its later structure may be com-
puted from earlier arguments inferred by targetting. The instantiated tyg@aohay
reduce, revealing more premises to be inferred. The tactic should create holes for these
and add them to the application. Computation may also reveal more targets. Incorpo-
rating this possibility, the real behaviour of the targetting step is as follows

TACTIC: eliminate-target

7goal~ \X 1 X
- 22, . &
7goal~ AKX X o _f’h]
7815821 S15Sy 7§§) §3
| L alime . [:
PP : g;?.sgl',]SZ lapp’ = elim §}; r[X]; S5
: 1,92 nNo. 2 .
) . R'X; 5158
7conc : Y[X] = 2conc Y[E(] 1553
conc cone.
t[Sy] : T[S,] target ~
e[X] : E[X] to be eliminated :[E[Fg_(),ﬂ] ~ I[E)g?]
R[Sy; IX]] > VS; S R'[X; §1; S5

Observe that not only have tisge been inferred and turned intebindings, but some
S; have appeared as a result of computation. The proforma application is extended
accordingly.

74

3.6.3 constructing the scheme

If the targetting phase has left the state as shown?goal~ \d A

the tactic may proceed to construct the elimination XX .

scheme. The scheme variablg,has been uncovered 7P MHE

and the patterngj[X], have been inferred. The task is v

now to computeb. We must put the analysis of section C::)

3.5 into practice. app = e“T r
: @ p[X]

Recall that the basic scheme is manufactured by ab- ?conc: Y[X]

stracting all the premises and constraining the indices cone

to equal the instantiated patterns.

Correspondingly, the tactic begins by building a basi¢ Q

scheme, copying the non-parametric premigdsom the | 7@~ Al : I:[é']

goal and constraining all the indices. A preméses con- Vg‘ Z< o

sidered parametric exactly when it occurs in the typ@ of v:([%',]: pIX]

The tactic may fail at this point if the goal being addresse

is too ‘big’ for the universe over which the rule eliminates.

The remainder of this phase prunes the basic scheme down to something less clumsy,
wherever this is possible. Of course, in a real implementation, we would try to save
work by approaching the desired scheme more directly, but | suspect that ‘pruning the
basic scheme’ gives a clearer exposition. There are two passes:

e For decreasiryj, removevx; from the scheme if it is redundant, ie

if x;er (X; has been targetted.)
and Xx; ¢ p[X] (... butis not being ‘inspected’ in the patterns)
and Xx; & X, Y[X] (... ordepended on by the rest of the goal)

e Forincreasingk, try to simplify constraint/ey, : i, ~ p, [X]

There are two simplifications to check for: in order,

— coalescence
if p,issomex; (index constrained to equal fresh variable)
and |, = X; (... of same type)

then replace; by iz, removevx; from scheme
Strictly, we should then renangto X, keeping the name from the goal,
but that would make this presentation more complex than it already is.

“4Later redundant premises must not be used as excuses to retain earlier redundant premises.
SSimplifying earlier constraints may unify the types of later constraints.

75

— abstraction for rewriting
Wheni,, is marked for abstraction wi in the type of®, try replacing
all occurrences df, in the scheme biy.. If the resultis well-typed, discard
e, otherwise leave the scheme alone.

Once simplification is complete, the pruned scheme is made accessible by changing
the?® to !®. The type ofapp can then reduce.

In our example, the basic scheme is more complex thangb
it needs to be. Reflecting the ‘proof irrelevant’ nature of &~ Am,n: N

. . . . vx',y': N
inductive relations, thél’ is redundant. Furthermore, we VH;y X! <y
may remove,, by coalescence. Ve,, :m ~ sx/
Ve, :nx~y
X <y

The pruned scheme is exactly the one we came up wi th@
when we did this example by hand. The typeapp | '® = m,y:N

. vx" N
reduces accordingly. Ve, :m~ sx
m 1M
X <y

Co

lapp= <Elim & ... H
VX' N
Ve,,: SX ~ sx’
X' <y

| summarise the behaviour of this phase as a tactic step:

TACTIC: eliminate-scheme

£ NENh
70 VT[4 1® = AT : I[4]
U V_’;:)_(;
£ Ve, [T - B, %)
lapp=elim ... Y[X,
L @ P[] O
lapp=celim ...
: V)?L:)_{,
V8, : P, [%,] = B, [X)]
Y'[P(X]; X,

The X are what remain of th& after pruning—, is the corresponding
76

selection fronK.

The€, are what remain of théafter pruning, equating a pruned sequence
of indicesi, to a pruned sequence of pattefrlg{i;,].

Recall that the conclusion we are trying to prové&'[€]: by construction,

YRR %,] = YIX

3.6.4 proving the goal

TACTIC: eliminate-goal

O NIl
lapp =elimr lconc=app X, (refl p_[X
1/ P pep
: V)_(';,: Xp : Y[ﬂ
V&, B, %] =~ B, %)
Y'[p[X]; X,
7conc : Y[X]

This phase provesonc from app by instantiating the (::)
premises abstracted in the scheme with their ‘originals|/@Pp = <Elm & ... H

. ! .
making the constraints reflexive and the return type the ' z)e(:S":"(N o
desiredY[X]. Xf,n-< v =
lconc=
The effect on our example is shown on the right. -cones ipg ;; (refl sx)

3.6.5 tidying up

TACTIC: eliminate-tidy

—

7goal~ AX ¢ X
o =...
7sub : S
5 =¥

lapp = elim ® sub F[X]
lconc=app X, (refl g, [X,])

conc
=
?sub’ : V)_()d : X4 S
lgoal= AX: X

elim. .. (sﬁbl Xd) ...

77

Eachsub;’ provesS; generalised over thg; it depends on.

Firstly this phasecuts the!-bindings for inferred argumens and also®, app and
conc.

The task is then to shuffle the subgoals—the rule arguments not inferred by targetting—
outside the proof ofoal. This is done by discharging the through them, so that they

are generalised over only what their types depend on (as opposed to raisitg) the
which would generalise over everything regardless). Typically, this will re-abstract the
fixed parameters.

Once the?’s are outside thes, theretreat tactic moves them outside the binding of
goal. At this point, smart implementations try tereduce the proof ofjoal. Finally,
goal is solved, becoming &-binding.

In our example, the subgoals do not depend on any of the premises, so no generalisation

is necessary. The final subgoals and proof term are as follows:

7sub; : Vm,x: N
Ve :mo~sx

X' <m
7sub, :Vm,n: N
Vhyp : VX': N
Ve :m~sx’
X' <n
vx N
Ve :m~sx
X' <sn
leGoal= A\x,y: N
AH sx <y

<Elim (Am,y’. ¥x'. m~sx’ — xX'<y’)
sub; sub, sxy H
X (refl sx)
: VX, y: N
VH :sx<y
X<y

3.7 an example—NEq

We have built our hammer—Iet us bang in a few nails. | propose to synthesinitipe
function described earlier in the chapter, and to prove some useful theorems about it.
We will make use of theliminate tactic for both programming and proof.

78

NEq is a recursive function oiN, so the starting point for
the development will bdN’s elimination rule,NElim, which
doubles as the traditional induction principle and its primitive

recursion operator.

The sequence of work is then as follows:

e Use NElIim to build an implementation of
NIEqQ corresponding to the obvious functional

program.

NEIm

[P - Vn:IN. Type

NEgq 0 0 =true
NEq sm 0 = false
NEqg 0 sn =false

NEqQ smsn=NEqg mm

e UseNEIlim again to proveNIEQ’s recursion induction principle:

NEqgRecl

@:Vm,n:N.v@:Z. Prop

®00true ®O0snfalse & smO false

vYm,n. ® mn

e UseNEqgRecl to prove a more con-
venient elimination rule foNEqQ—
the inversion principle suggested

earlier in the chapter.

e UseNEqInv to show thaNE(Q satisfies its equa-
tional specification, given here as ‘introduction

rules’.

dmnb
dsmsnb
NEgmn
NEqInv
o : Vm,n:N.v@:Z. Prop
m+n
¢nntrue ¢ mnfalse
vYm,n.®mn|NEq mn
NEqQ x X ~ true
X2y
NEq x y ~ false

79

3.7.1 constructingNEq

Let us implemenNEQ by a nested recursion, on the first argument and then the second.

PROGRAM: NEQq

INEQ= m,n:N. 2

?NEqQ : Ym,n:N. NEQ[m]|n
satisfying

NEq O 0 =true

NEq sm 0 = false

NEq 0 sn=false
NEg smsn=NEgmm

DEVELOPMENT

The above goal is shown with a box around our first target. Noté-bireding which
replaces the return type B¥EqQ with a more informative alias.

See how the return type ®§Eq looks a bit like the left-hand side of a pattern matching
definition? We can find our target there.eliminate it with NElim!

We now have a base case and a step cas€NEq, : Vn: N

Note the way the return types have picked NEQO
up the patterns corresponding to the casa?NEQS »vm N
" vrec: Vn: N
analysis. NEQ mn
L vn : N
In the base case, we are readyetoni- NEQ smn

nate the second argumerm, again with INEq = NElim (Am. ¥n. NEQ m n)
NElim. NEq, NEq;

We can now ‘fill in the right-hand sides’ by in- ‘(::)
troducing the premises, then refining tye | ’NEGy : NEQOO

? . .
for NEq,, andfalse for NEq,. "NEQ, - zpec: mEQ on

NEQ O sn
'NEq, = NElim (An. NEQ 0 n)
NEQqy, NEq,

The step case is kept neat by introducmg |?NEg,~ m :N

and its associated recursive call before elimt Arec :vn:N

. . . NEQ mn
inating n Wlth NElim. Note th.at the type 7NEQ,: vn: N

of the recursive call tells us which argument NEQ sm
patterns it is good for. NEq,

80

We solveNIEqQ,, with false. For NEq,,, we
introduce the premises and refine by the re
cursive callrec n.

We have built our first function witkliminatel!

3.7.2 provingNEqgRecl

Co

L”NEQ,, : NEQsmO
’NEqQ,,: Vn :N
Vrec: NEQ smn
NEQ smsn
'NEqg, = NElim (An. NEQ smn)

NEqSO NEqss

U

There is a standard technique for proving the recursion induction principle for a func-
tion. We fix an arbitrary schemeindexed by the function’s arguments and result type.
We also assume that is preserved by each ‘introduction rule’, ie recursive equation.
We then prove thab holds for any arguments and the corresponding result—this proof
has exactly the same recursive structure as the function itself. Discharging the fixed

assumptions will give us the general rule.

THEOREM. NEgRecl

AP

Adoo
)\QSOS
)\QSSO
APss

:Vm,n:N.Vb:2. Type
: 00 true

:Vn:N. ® 0 sn false
:Vm:N. ® sm 0 false
:Vm,n: N

Vb 2
Vhyp:dmnb
dsmsnb

?NEgqRecl: Vm,n: N

® mn (NEq[m]n)

81

PROOF

For ourNEq example, we fixp and assume | \® :¥Vm,n:N.Vb:2. Type
it is preserved by each of the four equations|A®oo :®00true

AQos :vVn:N. ® 0 sn false
We are left provingb m n (NEq m n) for [\g, :¥Ym:N. ® sm O false
any m and n, where before we computed | A®ss :Vm,n: N
NEQ m n. We eliminate withNIElim in ex- Vo -2

Vhyp: dmnb

actly the same places. ®smsnb

?NEqRecl: Vm,n: N

®mn (NEq[m]n)

I will show one base case and the step case.
Once elimination has instantiated the argumentNEqRecl,,: ® 0 0 (NEq 0 0)
of NEq appropriately, it reduces in each sub- >®00true

goal, making them vulnerable to the assump-
tions constructed with exactly that purpose. The
base cases follow directly.

Similarly, the conclusion of the step C:)
case reduces to the conclusion of the Arec :Vn: N
®mn (NEg mn)
) _ ’NEgRecl;:Vn : N
® smsn (NEqQ smsn)
>® smsn (NEgq m n)

relevant assumptiom,,, with b suit-

rec n computed the recursive call
in the construction of the function.

Here,rec n fills in the premise ofp,,
to complete the proof.
Discharging the subgoals proves the general rule we want. O

Let us markNEqRecl as targettindNEq m n), and by default abstracting it.

This proof method gives a recursion induction principle for many of the functions we
can build in Q EG—it mimics exactly their construction. In effect, it packages up the
sequence of eliminations which made the function, so that they can be used at one
stroke in proofs of its properties.

82

3.7.3 provingNEqInv

The proof ofNEqInv by NEgRecl is a good example of deriving an inversion prin-
ciple from a recursion induction principle. It illustrates a technique which | shall use
relentlessly in similar circumstances for the rest of this thesis.

The proof of recursion induction principles is relatively simple. They directly describe
the computational behaviour of the function in question, so we should not be surprised
to find that the computational mechanism of the underlying calculus does all the hard
work. Recall that in each subgoal of the inductive proof, the conclusidacesto
exactly what is proven by the corresponding premise.

Contrarily, inversion principles often cut against the computational grain, characteris-
ing the extensional properties of functions, rather than the mechanism by which they
operate. The key to proving them is not to fix their schemes-lasmdings outside the
induction, but rather to let them vanysidethe induction. This means that the inductive
hypotheses are themselves inversion principles—we use inversion, not computation, to
simplify the inductive steps.

THEOREM: NEqInv

?NEqQInv: V& :Vm,n:N.Vb:2. Type
Vo, :VYm:N.dmmtrue
Vor :Vm,n: N
Yuneg: m#n
® mn false
vYm,n: N
dmn NEgmnN

PROOF

We fix nothing in the context and eliminate BEqQRecl, abstractingNEg m n).

The scheme generated bliminate is abstracted | Am,n: N

over the scheme of the rule we are trying to prove. AP~ 2
V& :V¥Ym,n:N.Vb:2. Type

Observe that the origindINEq m n) in the con- | V¢; :Vm:N.® mm true

clusion has been replaced by Vor :vVm,n:N
Yuneq: m#n
® mn false
dmnb

The recursion induction gives us directly the three base cases and the step case. Again,
one base case is sufficently representative.

83

In this off-diagonal case, the recursion| 7NEqQInv,,: ¥n : N

induction has already filled in the an- V® :vm,n:N.Vb:2. Type
. , Vo,: VM:N. & m m true

swer false. Hence, introducing the

_ o Vor:Vm,n: N
premises and refining by;, we are left Yuneg: m =n
proving0 #sn. This is not difficult, as ® m n false

® 0 sn false

we shall see in chapter five.
The step case is more entertaining. We do not know whether t¢,usey,, because
we do not yet know whdit is. However, the inductive hypothesis is an elimination rule
telling us aboum, n andb. | have called the schemieto reduce confusion.

?NEqgInv,,~ Am, n N
Ab 12

Ahyp VO m],[n]:N. Vb]: 2. Type
Vo : Vm:N. ¥ m m true

Vipp:Vm,n: N
Yuneq: m#n
¥ mn false
¥Ymnb
AP :Vm, n:N.v@:Z. Type
pYoy :Vm:N. ® mm true
Ay :Vm,n: N
Yuneq: m#n
® m n false
?NEqgInv,,: ®smsnb

NEqginv,,

Introducing everything, we may noeliminate the conclusion withyp, abstracting
all the indices. No targetting is necessary as the patterns are fully instantiated. The
generated scheme abstrattsn andb:

¥ = Am,n,b. ®smsnb

We are left with two subgoals, each with the equality decided:

Co

?NEqgInv,,, : Ym:N. & sm sm true
?’NEgInv ,:Vm,n: N
Yuneq: m#n
® sm sn false

84

These follow respectively fronp, and ¢; without much difficulty, completing the
proof. O

As with NEgRecl, markNEqInv as targettindNEQ m n) and by default abstracting
it.

3.7.4 proving the ‘introduction rules’

THEOREM: NEqtrue

?NEqtrue: vm: N
NEgQ m m|~ true

PROOF

Eliminating withNIEgInv introduces a constraint because the target is diagonalised:

® = Am,n:N. \b:2. m~n — b~true

Both subgoals are easy.

?NEqtrue;: Ym: N
Ve : m>~m
true ~ true
’NEqQtrue;: Vm,n: N
Yuneq: m#n
Ye :mx~n
false ~ true

THEOREM: NEqgfalse

?NEqgfalse: vm,n: N
Yuneq: m#n
NEqg mn|~ false

PROOF

Eliminating withNIEgInv, both subgoals are even easier.

85

?NEqgfalse;:Vm : N
Yuneq: mo£m
true ~ false
?’NEqgfalse;: Vm,n : N
Yuneq : m#n
Yuneq': m#n
false ~ false

86

Chapter 4

Inductive Datatypes

This chapter gives a formal definition of the class of inductive datatypes and families
with which we shall work in QeG. | shall broadly follow Luo’s choice of which defi-
nitions to admit, and show how their elimination and computation rules are generated
[Luo94]. Goguen has checked that the usual metatheoretic properties such as strong
normalisation continue to hold for ECC extended with this notion of datatype [Gog94].

Basically, we shall have the datatypes and families arising from strictly positive
schemata, as proposed by Coquand, Paulin-Mohring and Dybjer [CPM90, Dyb91].
These are the datatypes 0bG, LEGO and ALF. Induction and recursion over them

will be provided by means of the traditional elimination rules, which do exactly one
step of case analysis, attaching an inductive hypothesis to each recursive subterm so ex-
posed. Each type is equipped with an ‘elimination constant’ whose type codes up the
elimination rule—computation is then added by associating the appropriate contrac-
tion schemes (or-reductions) with these constants. Elimination rules for inductively
defined relations were first formulated by Martioflifi [M-L71b].

This is the exactly the presentation described in Luo’s book [Luo94] and implemented
in LEGQ[Pol94] by Claire Jones. @Q has basically the same datatypes, but separates
the ‘inversion’ and ‘recursion’ aspects of elimination by providinGase construct

for the former and &ix construct for the latterfFix is carefully checked to ensure
that recursive calls are made only on terms whichguarded by constructors and
hence strictly smaller than the term being decomposed.

TheCase/Fix presentation is much the neater one, for two reasons:

e Even if there is a particular argument on which | wish my function to do recur-
sion, that is no reason to suppose it is the first argument on which it should do
case analysis. Sometimes | want to look at another argument first, and then, per-

87

haps in not all of the cases arising, to decompose the recursive argument. The
conventional eliminator ties the two notions together inappropriately.

e The conventional eliminator only facilitates recursion after exactly one construc-
tor has been stripped away. Thix operator allows recursion on any subterm
exposed byCase. This serves a more useful purpose than merely to admit in-
efficient definitions of the Fibonacci function. Working interactively, we do not
need to predict so precisely in advance the inductive structure you require.

Eduardo Ginehez showed the conservativity and confluenc&€ase and Fix in
[Gim94]. He showed strong normalisation for the Calculus of Constructions extended
with lists in this style [Gim96], and there seems no reason to suppose this does not
extend to other types. Intuitively;reductions make a sound like the clanking of a
giant metal cog in a ratchet. However deeply under skyscraping storeys afd
d-‘administration’ the real work may be buried, we can still hear the great machines
going clank—we know that the hands of the clock will go forward and that the bell
will ring for midnight.

This is a rather prosaic chapter in which | show how to mechanise@ais argument

in OLEG. The summary, for those who would rather skip the detalil, is that | equip each
datatype with two alternative elimination rules, in the sense of the previous chapter. It
is, of course, theliminate tactic which provides the means of their construction.

At this point, | should remark that | have omitted some classes of datatype found in
LEGO and Q. Both these systems permmitutually definedypes: for example,

even and odd numbers given by a ‘zero’ constructor (which makes an ‘even’) and two
‘successor’ constructors (taking ‘even’ to ‘odd’ and ‘odd’ to ‘even’). | omit them,
not because they are awkward in principle, but because discussing them in general
terms is a notational nightmare: | have no examples in this thesis which require them.
However, all of the technology developed here for solitary inductive definitions extends
to the mutual case without any difficulty—indeed the implemented system does handle
mutual definitions. In any case, a mutual definition can always be represented as a
single inductive family of datatypes indexed by a finite type whose elements label the
branches—we might define a famiarity : 2 — Type with Parity true containing

the even numbers arthrity false the odd numbers.

CoqQ also allowsembeddedlatatypes, where an existing datatype is used as an auxil-
liary to a new datatype—for example, defining the finitely branching trees by a single
‘node’ constructor which takeslet of subtrees. This facility is both neat and labour-

saving, but it adds no extra power. As Paulin-Mohring observes in [P-M96], embedded

88

datatypes can be turned into mutual dataypes with extra branches duplicating the be-
haviour of the auxiliary types—we may define ‘finitely-branching-tree’ mutually with
‘list-of-finitely-branching-trees’.

4.1 construction of inductive datatypes

Rather than plunging at the deep end and drowning in subscripts, let us establish a
simply-typed theme, then examine variations: parameterised (or, when the parameters
are themselves types, polymorphic) types, types with higher-order constructors and
dependent inductive families, then degenerate types like relations and records.

The components of any inductive datatype definition are as follows
e Thetype former is the new constant which names the type or type familjNleg
list, vect.

e Theconstructors (or ‘introduction rules’) are the means of forming the canoni-
cal elements of the datatype, @gnds for N.

e Theelimination rule (or ‘induction principle’) provides the mechanism for de-
composing elements of the datatype in the cause of constructing something else,
be it a proof ‘by induction’ or some recursively computed value. This rule must
be marked with a target so theliminate can use it.

e The:-reductionsanimate this mechanism, defining the computational behaviour
of the elimination rule for each canonical element.

4.1.1 simple inductive datatypes likeNl

Componentwise
e Thetype former is a constant which inhabits some universe

Ind : Type
N is an example of such dnd.

e Theconstructors are function symbol€on; ... Con,, where for eacly in
1...¢c

89

Con, : va:A;. vX:{Ind}". Ind

The Aj are called thenon-recursive arguments because they may not refer to
Ind. Neither may they involve any universe as large as that wimdhinhabits,

in order to avoid the paradoxical embedding of a larger universe inside a smaller
one—we may usually rely on Harper and Pollack’s universal policeman [HP91]
and use the unlabelledype regardless.

We say thatCon; hasr; recursive arguments. Think of elements bfd as

tree structures made from nodes of different kinds given by the constructors, a
Con; node having-; out-edges and a label of telescoég Actually, there

is no need for the recursive arguments to come after the non-recursive ones,
but it makes the presentation simpler if we pretend they always do—since non-
recursive arguments cannot have types involvirdy, they may certainly always

be permuted to the front.

We may also think of constructors as introduction ruledriat:

ézﬁj Xp:ind ... X, :Ind
Con; dax: Ind

The derivation trees composed from such rules correspond exactly to the tree
notion of inductive data structures mentioned above.

N has two constructors:

n:N
O: N sn: N

Observe also that, ihd is to be inhabited, it will need at least one constructor
with no recursive arguments.

Let us examinéndElim, the constant whose type gives tekmination rule
for Ind, in accordance with the general analysis of elimination rules presented
earlier.

The pattern whichndElim eliminates is théree | IndElim
pattern on Ind, which matches any element of
Ind. HencelndElim has a scheme indexed by
Ind, ie ® : Vx:Ind. Type and a rule goal targetting o

the element to be eliminated.x : Ind | ® x. The . D x

outline of the rule is as shown.
In order to build a proof ofb x for an arbitraryx, we need a method for each

constructor, showing how for its conclusion follows from® for its recursive

® : Vx:Ind. Type

90

arguments—more succinctly, that eaClon; preserves®. We may think ofd
as a property which must hold wherever its argument ithah hence it must
have ‘introduction rules’—the rule subgoalsinflElim—analogous to those of
Ind. Thus we manufacture the rule subgoalsradElim from the introduction
rules oflnd by writing ® p in the former wherever the latter hps Ind:

Note that the recursive argumerits {Ind}"’ have not disappeared entirely. The
types of the recursion hypotheses depend on them, hence we may infer that they
are themselves present as case hypotheses, and suppress them from the writ-
ten rule accordingly. Functional programmers may be more familiar with ‘fold
operators’—the cut down version, whebas a constant and the recursive argu-
ments are supplanted by the recursion hypotheses.

We now have all the pieces we need to completériglim rule:

® : Vx:Ind. Type
i A DX P X, i:A. DX ® X,
P (Con,; @X) d (Con. &x)
VIx:Ind| ®x

Or, more inscrutably,
IndElim : V& :Ind — Type.
(Va: Ay VX:{Ind}™. {® x;}]" — & (Con, &X)) —

(Va:A,. VX: {Ind}"". {® x;}* — & (Con,&X)) —

7x: Ind]. @ x

For the natural numbers, then, we get NElim

. ® :Vn:N. Type
NElim : V& :Vn:N. Type.

(®0) —
(Vn:N.(®n) = ®sn) —» |

vn:N|en ®0 Psn

91

e Those of us given to a skeptical disposition would be unlikely to accept the va-
lidity of IndElim if we did not see how to plug the proofs of its rule subgoals
together to build an inhabitant df for any particularx which we might make
from Ind’s constructors. This process is represented in our type theory by the
t-reductions associated withd. By this means we imbu@dElim with a com-
putational meaning, allowing us to evaluate recursive functionsioaer

We add an-reduction for the effect adhdElim on each constructor:
|ndam1¢$(cOnj5@»wL¢jgz{deanL5&}g

)

For the natural numbers, we get two such rules:

NEIM & ¢, ¢, s ~», 6, n (NEm & ¢, ¢, n)

Given the type former and constructors for a simple inductive datatype, the elimination
rule and:-reductions can be computed in a straightforward way.

4.1.2 parameterised datatypes likdist

It is not hard to represent datatypes such as lists of natural numbers via the above
mechanism:

n: N t: MNlist
Nilist: Type ~ Nnil: Nllist Nconsnt: Nilist

However, it seems much preferable to define lists opolymorphicallyand instantiate

that definition for each type of element we encounter than to define a new list type
for every element type. That is, we should be able to define lists in a way which is
parameterised by the choice of element type, allowing us to write the functions which
operate on arbitrarily-typed lists once and for all. For eAchType, list A should be

the simple inductive datatype of listsAfelements. Such entities are sometimes called
‘families of inductive datatypes’, because each element of the family is an inductive
datatype.

This kind of parameterisation is very simple—once the parameters have been instanti-
ated, they are fixed for the entire inductive definition—constructors, elimination rule,
the lot. For a given parameter telesccpio:eﬁ, then, we need merely bind it parametri-
cally to each of the defined constants and rewrite rules, correspondingly replacing each
C by C p wherever they are applied.

Hence
92

e type former

Ind : Vp:P. Type
e constructors
Con; : Vp:P.va:A;. vX:{Ind }". Ind §
(or as an introduction rule)

ézﬁj Xp:Indp ... X, :Indp
Con; ax: Indp

e elimination rule

® : (Ind p) — Type
i A DX ® X, i A DX ® X,
® (Con; pax) ® (Con.pax)
Vx:Indp| ®x

(or as a type)
IndElim : Vp:P. V®: (Ind p) — Type.
(Va: A VX {Ind B} {® x;}* — & (Con, faX)) —

(Va:A,. VX:{Ind p}"*. {® x;}}* — ® (Con, faX)) —
Vix:Indp| ®x

e ,-reductions
Tj
7

INndElmp & ¢ (Con; pax) ~, ¢; aX {IndEIim p o q?xz}
The family of datatypedist, is thus given by

h:A t:listA
listA:Type nilA:listA consht:listA

93

listElim

® : (list A) — Type

® (nilA) & (consht)
YI:listAl &I

listElim A @ ¢, ¢, (nilA) ~, ¢,
listElim A ® ¢, ¢. (consht) ~, ¢.ht(listEimA & ¢, ¢, t)

Note that | suppress the parametewhen writingcons ht, because it can be inferred
from the type oth, conversely leaving it visible ilist A andnil A. In general, | shall
avoid mentioning parameters wherever convenient.

4.1.3 datatypes with higher-order recursive arguments, likeord

So far, each of the datatype constructors we have seen has a fixed number of recursive
arguments—in the tree metaphor, a fixed number of out-edges to smaller subtrees.
One might choose to see these as a family of out-edges indexed by a finite set, and
proceed to wonder whether any other types might be acceptable for indexing recursive
arguments. And yes, any small enough type (telescope) can be used to index a recursive
argument, as long as it does not involve the type being défigadng us the increased
power ofhigher-order recursive argumentsaddressing infinite families of subterms.

Higher-order recursive arguments are thus functions returning elements of the in-
ductive datatype. The elimination thus rule has higher-order recursion hypotheses—
functions returning proofs cb.

For example, we may construct a type of ordinal numbers which supplements the
‘zero’ and ‘successor’ constructors with the ‘supremum’ of a possibly infinite family
of smaller ordinals:

X : ord f:N — ord
zero:ord sucx:ord supf: ord

Thesup constructor takes a family of ordinals indexedNy admitting a notionally
transfinite structuré. The corresponding subgoal in the elimination rule gives access

La restriction known astrict positivity
20f course N — ord has only countably many inhabitants.

94

to a family of recursion hypotheses:

ordElim

® : Vx:ord. Type

d x vn:N. @ (fn)

How can we compute over such a type? Fhe branch expects a family of proofs
of ® for the image of its functional argument—we may manufacture such a family by

A-abstracting over the recursive call:
OordEIm @ ¢, ¢s ¢sup (SUPT) ~r, Psup T (AN:NLOrdEIM @ ¢, p5 Py (FN))

In the same way, we can allow constructors of an arbitrary inductive datatype to have
families of recursive arguments, with the elimination rule acquiring families of recur-

sion hypotheses:
e type former
Ind : Type
e constructors
R (e T
Con; : Va:A,;. Vf: {Vh,-;H,-. Ind}_ .Ind
(or as an introduction rule)

é’:/&j fl:Vﬁl:I:il.Ind f_:Vﬁrj:I:i,j.lnd
Con;, &f: Ind

e elimination rule
® : Ind — Type

(or as atype)
95

IndElim : V& :Ind — Type.
(Va:A,. V- {vﬁ,- H. Ind}
{Vﬁizl:i,-. & (f, F\i)}h — @ (Con, af)) —

i

r1
i

— —

(\;a:Al. W {vﬁi H;. |nd}
{Vﬁzﬁz ® (f, Hz)}r — & (Con, af)) —

Ax:Ind]. @ x l

Tc
7

e ,-reductions

IndElim @ & (Con, &) ~, ¢, 5?{Aﬁi ;. IndElim @ ¢ (f, Hi)}f"

)

4.1.4 dependent inductive families like thdins

Let us now extend the notion of inductive datatypes to include inductively defined
indexed families of types as in [Dyb91].

For example, consider the finite sets. For anyt is not hard to define a simple type
with n elements. Types such 8 1 and2 are commonplace. However, our choice

of n is at the meta-level, and we must define each type separately. How much more
useful if we could definéin : N — Type, enabling us to reason at the object level about
arbitary finite sets. Of courséin 0 had better be empty, and we can méikesn by
inventing a ‘new’ element, then embedding all the ‘old’ elementsroh. That is,fin

is a mutually defined family of datatypes with constructors:

X:finn
fzn: finsn fsx : finsn

By convention, | choose to think of these sets growing in a ‘push-down’ fashion. The
new element introduced bfz is ‘zero’, while the old elements are embedded by a
‘successor’ function. By a deBruijn influenced predisposition, | see the newest as the
closest and lowest in number. Note that we may leaas an implicit argument tfs.

fin has a family of elimination rules with a family of schemes
® :Vn:N. (finn) — Type

We form the rule subgoals by demanding tfeat holds wherevefin n is inhabited—
that is, we select the scheme corresponding to the relevant branch of the mutual defini-
tion. HencefinElim

96

finElim

® :Vn:N. (finn) — Type

®sn(fzn) @ sn (fsx)

Vn:N.VIx:finn|. ®nx

with computational behaviour

finElim @ ¢y, ¢f SN (fzNn) ~», ¢ N
finElim @ ¢, ¢z sn (fsX) ~», ¢z X (INEIM @ ¢y, ¢ N X)

fin is thus an inductively defined family of types—the instances of the family are not
inductive datatypes taken in isolation; only collectively do they form a mutual inductive
definition. Contrast this with a family of inductive datatypes suchsaswhere each
member, edist Nl is an inductive datatype in its own right.

In the light of this example, let us generalise to dependent inductive families,
Fam : VT:1. Type
The constructors now take recursive arguments from and return values in any instance

of the type family being defined, that is afam t for termst : I. Thus, in the
‘introduction rule’ style, we get

i:A x,:Famt, ... x, :Famt.
Conax:Famt,,

The scheme agfamElim must be indexed over the entirety of the types being defined,
that is

& : VIt1. (FamT) — Type

Recall that the ‘free telescope’ notation abbreviates thi t¢Fam — Type.

The rule subgoals demand that for @kp " holds whereveFam T'is inhabited; more
succinctly thatb holds whereveFam is inhabited. Hence we géameElim:

97

® : Fam — Type

VI [x]:Fam. @ T; x

Observe that there is still only one targetter: unifying term and type gives enough
information to infer an inhabitant ¢glam.

The reduction rule for each constructor is thus:

—

FAmMEImM @ ¢ t.o,,; (CON AX) ~», deon AX {FamElim 4t xj}r'
J

4.1.5 inductively defined relations like<

Inductively defined relations bear a strong resemblance to dependent inductive families
of datatypes. However, their presentation is differently motivated: inductive relations
are families ofpropositionsand their role is in reasoning rather than computation—
they sit outside the domain of programs and data characterising aspects of it.

Propositions are types, and the terms which inhabit them constitute proofs. An induc-
tive relation’s inhabitants are built by constructor functions, just like a datatype—we
may think of these constructors ederence rules-but their elimination rules do not
inspect proofs explicitly in terms of their constructors.

Technically, the difference between inductive relations and datatypes is manifested in
two ways:

¢ the type formers of an inductive relation range over the impredicative universe
Prop, and correspondingly, the schemes of their elimination rules are also fami-
lies of propositions

¢ inductive relations areroof irrelevant—the apertures of their elimination rules
abstract théndicesof the relation, but not the proofs themselves, hence the rule
cases never identify the constructors to which they correspond

We shall need at least one relation whidmn interfere with computation, and that is
~. We use~ to represent constraints in the elimination process for datatypes as well

98

as relations, and hence we must allow it to eliminate dypr as well asProp. Indeed,

this is not the only way in which- does not fit the presentation of inductive relations
given here. It is treated specially, and gets the next chapter to itself. For the moment,
let us consider inductive relations for reasoning.

Many dependent datatypes have relational analogues. For examla,fdmaily cor-
responds to the ‘less than’ relation:

< :¥Vm,n:N. Prop
There are two introduction rules far:

<old

<hew n<sn m < sn

The names of the rules are really the constructor symbols, but taking them to the side
emphasises the proof irrelevant nature of relations. This leaves us free to write propo-
sitions with no prefixed proofs in the introduction rules.

Comparan < n with fin n. m < 0 is clearly empty. For eacin, <new proves than
is the ‘new’ thing only just smaller, whilstold lifts the proofs for thosen’s already
smaller tham: exactly adz creates the ‘new’ element of each finite set fmembeds
the ‘old’ ones.

The elimination rule QEG provides for< is sometimes known as is$rong induction
principle, <Elim:

<Elim

® : Vm,n:N. Prop

®nsn d msn

Ym,n:NL.V/H: m<n|. ®mn

Note that the scheme is indexed only over the two numbers, not the proof that the
first is less than the second. Correspondingly, the targéfteldes not occur in the
goal patterns, nor do the constructor symbotseew and<old appear in the subgoals.
Consequently, the step case hypothesis n is no longer implicitly given by the in-
ductive hypothesis, so we must write it explicitly if we mean it to be there. As a matter

99

of fact, we can choose to omit it from the rule, obtaining wesak induction princi-

ple. The two are equivalent given an appropriate notion of conjunction, but the strong
version is more useful in practice: it is generally preferable to discard unnecessary
hypotheses than to reconstruct necessary ones.

It is not clear to me why inductively defined relations should be equipped with com-
putational behaviour: computation belongs within the realm of datatypes, and any of
these inductive relations over which computation is desired can easily be redefined as a
dependent family. On the other hand, in the sense that computation explains induction,
it should be possible to equip relations with reduction rules which are meaningful, if
not desirable. Fok, we get

<EIM @ ¢pery ora NSN (KNEWN) ~) ey N
<EIM @ ¢,y g msn (<old H) ~, ¢yq H (<EIIM ® @00y g MmN H)

With < to guide us, here is the general treatment:

e proposition former
Rel : VT:1. Prop
e inference rules (constructors)

i:A x :Relty ... x :Relt,
Rule X : Relt, .

¢ elimination rule (strong induction principle)

® : V- 1. Prop

vi:[H]:Rel. ® T

e ,-reductions

RelElim @ ¢ €, (Rule %) ~», Grue &X {ReIEIim @ 4P, x,}r

)

100

4.1.6 record types

We can represent (dependent) record types as a degenerate case of inductive datatypes.
A simple datatyp&ec with one constructorec which has no recursive arguments is

just a tupling wrapper for the non-recursive argumentdjetis, as we might like to

call them.

The typical type former and constructor are as follows:

e type former

Rec : Type
e constructor (singular)

field : A
rec field : Rec

The ‘official’ field namesfield are significant in that they allow us to adopt a more
conventional named-tuple notation as syntactic sugar—I ite=- Y to indicate
thatX is a sugared notation fof:

<fi(—:7|d = f> — rect

This presumes that the sequence of nafiegd determines which of the defined record
types is intended. Underneath the layer of sugar, the names of fields are irrelevant.

Having established this syntax, the elimination and computation rules become

e elimination ruleRecElim

® : Rec — Type
T:A

® <ﬁ€|d - f>

X :Rec| & x

e ,-reduction

RecElim @ ¢ <fiéd — f> ~, ot

101

These record types do not come ready-equipped with projections. Instead, their elim-
ination rules require a function of the fields: introducing the arguments effectively
extends the local context witk-bindings for the fields. That iRecElim has a sim-

ilar behaviour to pattern-matching for named tuples, SML's ‘open’ for structures or
Pascal’s ‘with... do’ construct. Underneath thes, you are entitled to place any well-
typed expression you choose, involving as many or as few fields as you like.

In an interactive, analytical setting, eliminating RgcElim is preferable to projection
because it is more focused on the goal. Also, a single elimination exposes all of the
fields together, where projection gives you but one at a time. To me it seems a rather
more honest account, especially when there may be type dependency between fields.
Understanding records by atomising them into fields in spite of the structure which
weaves them together is a bit like understanding London in terms of discrete hinter-
lands for each tube station. Plenty of people (including me) navigate London on that
basis, but they are not the Londoners.

Let us nonetheless define the projections with the conventional notatibeld;. Type
dependency requires us to do so in order—earlier projections appear in the types of
later ones.

Presuming we have definéd.field, ... (-).field,, (-).field,; is

(-).field,;+; =RecElim
(AR:Rec. {[Rfield;/field;]}A,11)
(AG:A. 8,41)
: VR:Rec. {[Rfield;/field;]}! A1

| refer to this use of *." as ‘spot’ because | think of it as an ugly thing which | wish to
distance from the ‘dot’ used for binding. ‘dot’ marks a scope which may contain any
well-typed expression whose identifiers have been explained. ‘spot’ only allows the
name of a field. Let us apply generous makeup to hide our aciie: Kec, we may

write

R[X.t = IX = R field: A t

This syntactic sugar abbreviates a bunchlihdings whichopenthe record with our
chosen local names. The dot introduces the scope of the bindings—we may naturally
have anything we like under it. Let us abbreviate further, in the case where the chosen
names are the ‘offical’ ones:

Rt = R[field].t
102

If t happens to be a field name, we recover the effect of projection. HoweRer=f
(x=3;y=>5;2z="7),thenRxxy=*z = 105.

There is a superficial resemblance between this ‘opening’ notation and the ‘explicit
environments’ of Sato, Sakurai and Burstall [SSB99]. However, their treatment prop-
agates environments through the term structure in the manner of explicit substitutions,
rather than giving them the ‘action at a distance’ effect-binding. | have imple-
mented these ‘first class local definition’ records as an experimental extension to LISP
[McB92].

4.2 acompendium of inductive datatypes

This section defines formally a number of familiar datatypes as used in this thesis and
in everyday functional programming. Its purpose is partly to consolidate the material

of the previous section, but mostly to confine to one contiguous portion of this thesis a
lot of boring definitions.

Some finite types, see table 4.1, are standard equipf@df@mpty’), 1 (‘unit’) and 2
(‘bool’). The constructok) is pronounced ‘void'.

Let us also have disjoint sums, and, specificallynaybe: table 4.2.

A dependent family, often to be found in the examples of this thesis are the vectors,
vect: table 4.3. Note the suppression of inferrable arguments.

4.3 abolishing¥-types and reinventing them

Luo supplies dependent pairs,itypes as basic features of ECC, equipped with first
and second projections. However, with our facility for datatypes, it seems preferable
to present pairing as a parameterised record type. Also, pairs might as well acquire the
apparatus we shall shortly build for other datatypes.

e record former

B:A — Type
B : Type

e fields
1:A
2:B1
103

: Type 1: Type 2 : Type

true : 2

<>
=2

false : 2

Table 4.1: standard finite types

L, R : Type X : Type
L+R : Type maybe X : Type
l: L r:R X: X
inL1:L+R inRr: L+R yesx : maybe X no: maybe X

Table 4.2:+ andmaybe

A:Type n:N
vecta n : Type

h: A t:vectan
vnila : vecta 0 vconsht: vecta sn

Table 4.3: vectors

104

intro -X- raise-Y

Co = SO ||| CO |5 CO

XXy S 7y: S 7y: S XXy S
T ™>: T ™>: T T
X {y; %) u x.[1/y][2/x]u

Table 4.4: tactics foE-types in goals

The only penalty we risk paying is slightly clumsy syntax, but it is in our power to
sugar this problem away. Let us have lots.

¥X:S. T = X (Ax:S.T) ¥ is a fake binding operator
SXT = ¥_:S. T the usual special case

(s;t) = (1=s;2=1) unlabelled pairs

E{}0 = 1 empty telescope gives unit type
28T = % :51. ...5%,: S, T nonempty telescope givéstype
(3" = ¢ empty sequence gives void
§;t) = (s1;(..- (S t)...)) nonempty sequence gives pair

There is no conflict between usingboth for binding and as an operator which turns
telescopes into the types of tuples, represented as pairs nested to the right. Also, we
still have the dot-notation from record types as sugasieirm. Our cunning choice

of field names gives us the familiér.1 and(-).2 projections as a special case.

We should equip OeG with the tactics for dragging-bindings through our fak&-
bindings. See table 4.4. Both are replacements. Applied recursivedy;v andintro -
Y turn a goal full ofvs andXs into a partial proof full ofAs and?s. Correspondingly,
raise-> combines withraise-V to allow multiple subgoals teetreat from a partial
contruction as a single outstanding proof obligation.

4.3.1 the blunderbuss tactic

intro -3 caters forX-types in goals, allowing us to solve them piecewise. What about
Y-types in hypotheses? Although we usually try to curry them away wherever possible,
we do still findX-types in inductive hypotheses, for example, when the original goal
was to compute a pair.

105

It is awkward to exploit such hypotheses with tactics suchesds Refine which
are specifically geared to use functional information. | therefore propose the following
‘blunderbuss’ tactié,which will search insideC as well as undey: . .

TACTIC: blunderbuss

This tactic tries to use sonsgo solve agoal by a depth- C::)
first search strategy. The nodes of the search tree argOOt: $:S
given by !-bindings of proofs to try. Initially, the root 'goal : G

node is set t@.
At each!node = s:S, starting withroot, blunderbussbehaves as follows:

e try to unify node with goal—if successful, stop, otherwise.
e reduceS to weak head-normal form

e generate subnodes by the type-directed methods given in table 4.5
and tryblunderbuss with each in turn—blunder-refl subnodes are
tried beforeblunder-V subnodes

We recover exactly EGOs Refine tactic if we only haveblunder-v. However, now
we can just as well blunder unde&a

| have taken this opportunity to sneak btunder-refl. Recall that whereliminate
generates a constrained scheme, the equations generated appear as a matching problem
in any inductive hypotheses which may aribkinder-refl is intended to make it easier

to exploit such hypotheses whenever the matching problem has an obvious solution.

Hence, whenever an equational premise is requirkethderbusstries to unify the two
sides in order to supplyrefl proof. If this fails, therblunder-V introduces the premise

as normal. It would be very unusual if making a possible unification turned out to be
an unfortunate choice.

The construction of the ‘guarded fixpoint’ operator in the next section uses a style of
hypothesis for whose exploitatidriunderbussis exactly the right tactic.

3A blunderbuss is an old-fashioned kind of gun with a barrel which opens out like a horn. It fires
almost anything at almost everyone in awide spread. The phrase ‘blunderbuss tactics’ is used to describe
the technique of throwing everything you have got at a problem in the hope that something will work.

106

blunder-refl

A = 1A
[Inode=s [Isub = s (refl t)
VXt~ t : [refl t/x|B
B v P’ :
7y~ P ly~P :
: 7goal : G
7goal : G P
- o
t andt’ unify, ie
ALC A
AlFPCP
AP Rt et
blunder-v
A A
[Inode= s [72x A]
VXA 'sub =sx
B : B
7y~ P , 7y~ P ,
7goal : G 7goal : G
P l P 1
blunder-X
A]] A)
'node=s Isub;=s.1: A
D YXA Isuby,=1s.2
B : [sub; /x|B
7y~ P 7y~ P _ [subi /]
7goal : G 7goal : G
| P 1 L P 1

Table 4.5:blunderbuss search methods

107

4.4 constructingCase and Fix

This section shows how to derive two alternative eliminators for each datatype, corre-
sponding to th&€€ase andFix operators in ©Q.

4.4.1 case analysis for datatypes and relations

From the elimination rule given for a datatype or relation, NCase
we may construct a ‘sawn-off’ version which embodies th¢
notion that we may reason about an arbitrary inhabitant ofq) +vn:N. Type

1”4

the type by considering each of the possibilities for its oute
most ‘head’ constructor, but without any recursive informar
tion. ForN, we getNCase. 0

qn:Njen

This construction builds theorem and proof together by a technique whichiutaik:

we proudly attempt to prove a blatantly false claim and fail, turning the remaining
subgoals into premises, just like a lecturer leaving the bits he has forgotten how to do
as exercises for the students. The trick ipéstponethe remaining’-bindings at the
outside level, turning them intd-bindings, and then tdischargethem.

CONSTRUCTION case analysis

Suppose we have a inductive family

Fam : Vi 1. U,
where Tare the indices (as in dependent datatypes or relations)
U; is the universe the family of types inhabits

We need only consider indices, fixing the parameters of familieditike
andvect for the whole construction.

This family will have an elimination ruléameElim

d:VZ. U,

subgoals
vy, : Fam. ® p

where 7 inhabits a prefix oFam
p is the corresponding prefix ¢t y
U, is the universe over which the family of types eliminates

108

For our inductive definitions, the subgoa_%i’shave conclusions which are
applications ofb.

Let us boldly fix a® and attemptto | A
"FamCase: Vy; : Fam
This is patently untrue, but never dp

mind, eliminate usingFamEelim.

Note that the holes may not appear s@ C:)
neatly ordered, but no matter. 79 P d. ..
. 75)
The subgoalsp correspond to the | IFamcase= FamElim ® ...
constructors of the datatype. - WY : Fam
p
For eachg;, we divide its hypotheses into | ?¢: V¢ :C
case dat& and inductive hypothesaecs. Vrecjp: TR O
 gc]
For our inductive definitions, | A
nothing is permitted to depend | A® - VZ. U,
on the inductive hypotheses. i? : ZC' ® q[c]
. S :
Hence we may remove them with IFamCase— FamElim &
delete-unused vy Y| Fam
Having modified the subgoals in dp

this way, let uspostponethem.
The state is now as shown.

Finally, we may discharge the |![FamCase= \®:VZ. U
assumptions, recovering the case Ap:VC. @

analysis principle as we might ex- A§:S _
i FamElim @ ...
pect it.

Ve :VZ. U,
Vo Ve @q[e]
vs§ .S

VY, : Fam

®p

qg

It is not hard to see that the following reductions hold

FamCase ® ¢ T (Con, X) > ¢; X

109

4.4.2 the guarded fixpoint principle

Before giving the construction of the elimination rule which performs the joba$'€
Fix construct, let us look at an example which motivates both the need for it and the
manner in which it is done.

Itis that famous old troublemaker: the Fibonaccifunc: fib 0 = sO
tion, which is used for counting rabbits, drawing at{ fib sO = S0
tractive rectangles and making Euclid’s algorithm gg fib ssn - ,

_ plus (fib n) (fib sn)
as slowly as possible:

Let us see what goes wrong if we just blunder in WMBIlim, lFib=\A_:N. N
trying to mimic this definition. Here is the initial state, with| N — Type
the return type decorated tpinding, so we can see what is fib - vgi:bN
happening.
Let useliminate n. c:)

. o | ™iby: Fib O
Again, the!-binding tracks the arguments. We can certainly »fip .vn . N
fill in fib,. Now watch what happens when wéminate vfib, : Fib n
again to split the successor case: Fib s[n]

The Fib sO case is fine, but for double-successor ®
disaster has struck! We have ofib sn safely | ”fibso: Vfiby: Fib O
enough, but what has happened witb n? It has Fib 50

. . 7fibg: VN N
appeared, all right, but in the wrong place—we have vhyp: Vfib_: Fib n
no hope of accessing it. Fib sn
Vfib_ : Fib sn
Fib ssn

Of course, the classic definition of the Fibonacci function is famous for its abominable
run-time# The traditional remedy is to write a linear recursion computing a pair of
successive values. In [BD77], Burstall and Darlington transform the above definition
into the following more efficient form:

fib 0 = s0

fib sO = sO

fib ssn = (fibssn)[u;v].plusuv
fibss 0 = <s0,s0>
fibss sn = (fibssn)[u;v].<v,plusuv>

4Exercise: compute this.

110

By design, the auxiliary functiofibss computes exactly the information required to
complete the double-successor case, and it does so by a one-step recursion. The main
function is thus reduced to a case analysis.

In [Gim94], Giménez effectively generalises this technigue to an encoding of recursion
onguarded arguments, and it this technique which | present below.

DEFINITION: guarded

e if Con is a datatype constructor with non-recursive argum@atsl
recursive arguments then eachn; is guardec® (by Con) in Conar

e if ris guarded irs ands is guarded irt, thenr is guarded irt

The idea is to introduce an intermediate data structure whichb : Vn:N. Type
stores for each input the recursive values we need to compute
the output. We may code this up as an elimination rule: Auxg n

Once we have applied this rule, case analysis @tlows us to split the subgoal into
cases for the separate patterns we wish to treat: for each pati@enmust proveb p
using the information supplied iAuxg, p.

Of course, to prove this rule, we shall have to be able to show
vn:N. Auxg n

This proof will go by recursion om: we must generate the auxiliary information for

sn from the corresponding information far Just as in the Fibonacci function, we may
carry over any information we need to keep, together with computing the new value in
exactly the same way as the ‘main’ function does.

What shouldAuxg, be? Different depths of recursion necessitate different amounts of
auxiliary information. For Fibonacci, we may choose

Auxgp, 0 = 1
Auxg, SO = 1
Auxgy ssn = (Fib n)x(Fib sn)

Smore carefully, ifr; is a higher-order recursive argument of ty\tﬁa: H., then itisr; h which is
guarded, for any

111

Stylish users may choose to develop their auxiliary data structure as they develop their
function, for each follows the case analysis of the other.

More generally, we may give a single auxiliary structure suitable for all occasions.
Giménez defines it inductively for a parametdic

dn INIAuxDataq, n
INIAuxDataq, 0 INIAuxDataq, sn

For each datatype, the auxiliary mimics the constructors and recursion pattern. Each
recursive argument is decorated witt @roof, so that for each element of the original
type, the auxiliary store$ for all its proper subterms. Proofs of

vn:N. (NAuxDatag sn) — ®n

then go by case analysis &hAuxData, at the same time splitting tid-patterns and
surfacing the recursions for the exposed subterms.

My treatment differs only pragmatically, in that | compute the auxiliary structure rather
than defining it inductively.

NAux® 0 = 1
NAux®sn = (& n)x(NAux ® n)

As case analysis feedAux constructor expressions, it unfolds like one of those wal-
lets for people with too many credit cards, revealing the proof$ &r the exposed
subterms. Thélunderbusstactic can be used to extract the required hypothesis, pro-
vided it can be identified from its type.

Let us try to prove
Vn:N. NAux ¢ n

by induction om. The base case is trivial. The step case is
vn:N. (NAux ® n) — NIAux @ sn

which reduces to

vn:N. (NAux ® n) — (@ n)x(NAux ® n)

112

We can clearly establish the second component of the pair. This leaves the requirement

vn:N. (NAux ®n) — &n

Again using the ‘hubris’ technique, we mpgstponeanddis- NIFix
chargethis subgoal, we have the auxiliary generation lemmga
NAuxGen: ® :Vn:IN. Type
vn:N. (NAux®n) — &n NAuUx ® n
vn:N. NAux®n e
®n
and hence the elimination ruNFix.

| shall give the general construction for simple types, then discuss extensions.

CONSTRUCTION guarded fixpoint

Consider an inductive family of datatypes ind : Type
with ¢ constructors as shown right. . _
a:A; X:{Ind}"
The & are non-recursive and théarer; Con; ax: Ind
recursive arguments. LémdElim be its
standard elimination rule.
Let us fix the components to be | A® : vx:Ind. Type
supplied by the user and make| !'lNdAUX = Ax:Ind. Type
holes for the components to be “IndAux + vx:Ind
_ P INdAUX x
supplied by machine. Al- Abody . vx :Ind
binding INAdAUX helps us track Yaux: IndAux x
the development dhdAux. ® x
?IndAuxGen : Vx: Ind
IndAux x
7IndFix
vV X : Ind
d x

We may immediately provimdFix with
IndFix = Ax:Ind. body x (IndAuxGen x)

Now let us eliminate the& in both the auxiliary and its generator, aquiring
a subgoal for each constructor. One is enough to illustrate the point, and
reduces the subscript terror.

113

Co

—

?INdAUX,on, : Va: A
vX: {Ind}"
VT: {IndAUX x;}}
INdAUX (Con ax)
'IndAux = IndElim IndAUX IndAuUX,,), . . .

o,

?IndAuxGen,,, : Va: A
vX: {Ind}"
Vt: {IndAux x;}!
INdAuUX,,, aXt
'IndAuxGen = IndElim IndAux IndAuxGen,,, . ..

To buildIndAux.,,,, we introduce the arguments and return the iterated
of pair-types collecting, for each recursive argumenboth® x; andT;,
which the lovely let-binding reminds us is reallyd Aux X;.

For IndAuxGen,,,, we introduce the arguments and return the corre-
sponding iterated tuple of pairs, passing on the accumulated praotl
adding the next layer, computed bgdy.

£
INndAux,,p, —)\3: A
AX: {Ind}"
AT: {IndAUX x;}!
S{(® x;)xT;}7

o,

IndAuxGen,,, = \d: A
AX: {Ind}’
AL: {IndAux x; }/

({(body x; t;;t;)}})
INndAuxGen = IndElim IndAux IndAuxGen,,, ...

CuttingInd AUX and the proofs of the subgoals, then discharging the fixed
hypotheses, we are left with

114

'Ind Aux = ...
: V&: Vx:Ind. Type
VX : Ind
Type
IndAuxGen= ...
: VO :VInd:x. Type
Vbody: Vx :Ind
Yaux: IndAux x
d x
VX :Ind
IndAux X

IndFix = ... ® : Vx:Ind. Type
VO vx:Ind. Type
Vbody: ¥x :Ind

X
v x : Ind | P x

I x v|x:Ind . & n

The following conversions hold:

INdAux @ (Con ax) = L{(® x;)x(INdAux ® x;)};
INndAuxGen @ f (Con ax) 2

({{IndFix @ fx;; IndAuxGen @ fx;)}.)

IndFix ® fx = f (IndAuxGen @ fx) x

For dependent familidgsam, we have exactly the same construction, replagmahby
Fam or somecam T'as appropriate:

115

A\ . VX:Fam. Type
IFamAUX = AX:Fam. Type
IFamAUX.,, =Aa:A

MX: {Fam§;};
AT: {FamAUX§;; x;}!
S{(® 85 %) X T,),

'FamAux = FamElim FamAUX FamAuUX.,, . . .
Abody : VX :Fam
Yaux: FamAux X
d X

IFamAuxGen,,,= \d: A
X: {Fam§;};
A {FamAux§s;; x; }
({((body §;; ; t;); t;) }7)
'FamAuxGen = FameElim FamAux FamAuxGenm -
IFamFix = \X:Fam. body X (FamAuxGen X)

If we have higher-order recursive arguments, we must abstract the pairs over them:

Co

'IndAux;, =...
AX: Vh:H. Ind
AT: vh:H. IndAUX (x h)
S ...vh:H. (@ (xh))x(Th)
'IndAuxGeny,=
Ax: Vh:H. Ind

vﬁﬁ IndAux (x h)
< AR ((body (xh) (£F); (£R)))

Now that we have built these useful elimination rules, let us move on to consider the
technology we need to solve the constraints which arise when we use them for depen-

dent subfamilies.

116

Chapter 5

Equality and Object-Level Unification

This chapter examines different notions of propositional equality in Type Theory, to-
gether with the forms of equational reasoning they support.

In particular, | shall give a formal treatment of thepredicate which | have been ex-
ploiting glibly until now: it is merely a convenient packaging of Martiofls identity

type together with the ‘uniqueness of identity proofs’ axiom proposed by Altenkirch
and Streicher [Str93]. The reason for reformulating equality in this way is to improve
the treatment of equality faequencesf terms in the presence of type dependency.

Once we have a definition of equality we can work with, the task is then to build
a tactic, simplify, which solves first-order constructor form equations appearing as
premises to goals. To achieve this, we will need to construct still more machinery for
each inductive datatype:

e a proof that constructors are injective and disjoint

e adisproof of cyclic equations like~sn

117

5.1 two nearly inductive definitions of equality

5.1.1 Martin-L 6f’s identity type

a,b: A -
a=b : Prop idElim
a:A ® :Vb:A. (a=b) — Type
refl-a: a=a

® a (refl- a)
Vb:A.V|q:a=b Pbq

idEIm A a® ¢,.qa(refl-a) ~, drep

idElim is known in the business as ‘J’, for historical reasons.

We may easily prove that this equality is|idSubst

substitutive in the usual sense.
®: A — Type
The proof fixes® and the proof of the

single case, then appliesdiminate with ®a

idElim. The generated scheme makes np VP:A-V[q:a=b). &b
use of the equation’s proofidSubst is
‘proof irrelevant’.

It will prove convenient to have some sugar for applicationisl6tibst:

e substitution

P . g:a=b s:®a
S = idSubstAa®sb
[a]= q s o
e coercion
Type. :S=T s:S
qs = 2™ s T

The computational behaviour adSubst follows from that ofidElim:

refl- a]g’ tot

118

5.1.2 uniqueness of identity proofs

Altenkirch and Streicher suggest thatshould be equipped |idUnique
with the additional elimination rule shown, together with its

computational behaviour. ® : (a=a) — Type

o (refl- a)

idUnique Aa ® ¢,q (refl-a) ~, ¢ , dq

This rule is sometimes known in the business as ‘K’, largely because it comes after
lJl. 1

For a given element typd), the aperture ofdElim, ie the space of equations over
which its scheme must range is two dimensionAlxA. However,idUnique’s
scheme ranges only over the diagonal. Of course, it is only the diagonal which is
inhabited.

Hofmann and Streicher have shown thdtUnique is not derivable fromidE-
lim[HoS94]. On the other hand, Streicher adds td&tim is unnecessary itiISubst
andidUnique are taken as axiomatic: we may first ud8ubst to replaceb by a, say,
thenidUnique to reduce the remaining arbitrary proofasfa to (refl- a). Effectively,

we divide theidElim process into two phases: the proof irrelevant phadgupst)
reduces the= family to its inhabited subfamily of reflexive equations, so the proof
relevant phasedUnique) need only be concerned with that restricted case.

5.1.3 ~, or ‘John Major’ equality

It is now time to reveal the definition af, the ‘John Major’ equality relatioA.John

Major’s ‘classless society’ widened peopl@spirationsto equality, but also the gap
between rich and poor. After all, aspiring to be equal to others than oneself is the
politics of envy. In much the same way, forms equations between members of any
type, but they cannot be treated as equals (ie substituted) unless they are of the same
type. Just as before, each thing is only equal to itself.

LAficionados of the trombone might fondly imagine that the two rules are named after legendary jazz
duo J.J. Johnson and Kai Winding. | do not propose to pour cold water on this explanation.

2John Major was the last ever leader of the Conservative Party to be Prime Minister (1990 to 1997)
of the United Kingdom, in case he has slipped your mind.

119

a:A b:B

a~b : Prop eqgElim
a:A ®:vVa':A. (a~a’) — Type
refla : a~a

® a (refl a)

vVa:A.Vl:a~a' | ®a'l

egElim A a® ¢, a(refla) ~, drep

Observe thaegElim is not the elimination rule which one would expect~if was
inductively defined.

The ‘usual’ rule eliminates over all the | eqIndElim
formable equations, and it is quite use-
less: it cannot be used to substitute
two values of the same type because th

® : VB:Type. Vb:B. (a~b) — Type

(D

® Aa(refla)
scheme must be abstracted over an arb|- VB:Type. Vb:B. Ve : a~b|. ®Bbe

trary type.

By contrast,eqElim eliminates only over the subfamily where the two types are the
same, the ‘type diagonal’: of course, all the inhabitants lie in this subfamily.

5.1.4 equality for sequences

The reason for adopting rather than= when working with dependent types can be
seen clearly when we attempt to extend the notion of equality to cover not just two
terms in a type but two sequences of terms in a telescope. Suppose wieshavdor
some%—telescope'f We may not, in general, state the equality of sequena@sls as

1=S1;M=Sy; ... (X)

sincer, : To[r] while s, : Ty[s;], and these may be different.

There is, of course, nothing to stop us writing
r12>~S1;re>~Sy; ...

which will henceforth be abbreviated as tiedescopic equationr~s.

We may correspondingly abbreviate the sequence of reflexivity proofs

(reflry); (reflry);. ..
120

by refl .

Let us not stop at that: in fact, we may prove substitutivity and uniqueness for tele-
scopic equations.

CONSTRUCTION telescopic substitution

For each natural number, we may derive | eqSubst,
a substitution principle for telescopic equa-

tions of lengthn. ©: T — Type

The reduction behaviour will be as follows: dr
€

eqSubst, TF® ¢,.q T (refl) > ¢

The construction is by recursion an effectively iteratingegElim.

The zero case is proved by the polymorphic identity func-eqSubst,
tion. Clearly the reduction behaviour is correct.
d : Type
LY
P
Now, assuming we have al- |eqSubst,
ready constructeeeqSubst,, .
let us construceqSubst,, , ;. ©: T T — Type
or;r
Vs:§:T;T.Ve;€:r:T~s:§| &s;§
Fixing T; T, r; ¥, ® and the proof ofo r; F, we ®
have the goal shown. 7goal: vs;§ : T; T
Vel & r;r~s;s
ds:S

Now, e is a proof that~s, where both have typ€, hence we may elimi-
natee by eqElim. The generated scheme includes allSlagde:

AS:T. A_:ir>~s.V5:T.VE:7~5. & s; §

Note that, as nothing depends @rthe proof relevance atgElim is not
necessary for this construction, just as in the constructionSafbst from
idElim.

121

The elimination leaves with the subgoal C:)

shown. 7subgoal: V§ : (T;T)r
])
Note that(T; T) r is just[r/x|T, which is dr;s

exactly the telescope @f
Now thatr andS have the same telescope, we may eliminate the remaining
€ by eqSubst,,: the scheme is jusp r. This leaves us with the subgoal

® r; ¥, a proof of which we fixed in the context.

From the.-reduction associated witagElim and then the inductive hy-
pothesis, we may deduce that

eqSubst, ., T;Tr;F® ¢, r; F (reflr); (refl F) >

eqEimTr(...) (eqSubst,...)r (reflr)... >

eqSubst, (T; T) 1) F(Dr) ¢, T (refl F) >

Or
Observe that the same proof structure alsp eqSubstLR,,
yields substitutivity in the other direction. .

®: T — Type

Although the roles of ands are reversed,
we may still fix ther and abstract over d3
the§ (the right hand sides) as required by| VF:T.V|g: F~5] & F

egElim.

CONSTRUCTION telescopic uniqueness

For each natural numbet, we may derive a | eqUnique,
substitution principle for telescopic equations of

lengthn. ® : t~t — Type

The reduction behaviour will be as follows: ® (refl 1)
VE: t~t|. B E

eqUnique, TF® Grep T (reflF) > ¢pe

This construction also proceeds by recursiompagain with polymorphic
identity as the base case. The step case is slightly more subtle than for
eqSubst.

Suppose we have already construceedUnique,,: let us construct
eqgUnique,,

122

This time we fix everything except the proofs C:b

of the equations. ?goal: V[e] € t; t~t; T
de €

We have little choice but to eliminatewith eqgElim. Perforce, this intro-
duces equational constraints in the scheme:

As:T. M :tvs. Ve 8:t; Tt T (svt) — (I'~e) — De; €

Neither of these constraints is disposable, smdefinitely occurs in the
goal, and, in general, we may expétbd occur (implicitly) in the types of

thee€.

Consequently, the subgoal we get is as;C:)

shown. ?subgoal: Ve; & t; t~t; t
ve' o tet

We may discard’, then eliminateE with : refl t~e

eqSubst,. de; €

Now we are ready to appeal to C:)

equnique,,, with schemeb (refl t). ?subgoal: V| &]: t~t
o (refl t); €

This turns the remaininginto (refl), so that the fixed proof b (refl t)
completes our obligations.

As far as the reduction behaviour is concerned, forgive me if | omit the de-
tail. The construction successively applies elimination rules for equations
which reduce to their single subgoals when those equations are instantiated
with reflexivity. Consequently, eaadqUnique,, inherits this behaviour.

Itis not impossible to build a notion of telescopic equality with substitution usjroyt

it is considerably more cumbersome. The method forces each equation to typecheck,
by explicit appeal to the substitution operator for the prefixed equations. That is, we
need the firstu operators in order to formulate a telescopic equation of length

1, let alone establish its own substitutivity. Furthermore, in order to make the step
in the construction, it is not sufficient simply to substitute for the first equation with
idSubst, but rather we must eliminate it witldElim, not only substituting the terms,

but also instantiating the proof with reflexivity, allowing the substitutions repairing the
remainder of the equations to reduce. By adoptingve achieve at least this telescopic
extension without acquiring proof relevant dirt under our fingernails.

123

5.1.5 the relationship betweerr and ~

Having argued for the practicality of using instead of= when working with depen-

dent types, | nonetheless feel obliged to point out that the two are equivalent—provided
we mearr equipped withdUnique. Let me now give the mutual construction. First,
the easy direction:

CONSTRUCTION = from ~

This is so easy that | will just tell you the answers—by constructiois,
just telescopic equation for telescopes of lenigth

I= = MA :Type
Aa, b: A
a~b
: VA :Type
Va, b: A
Prop
Irefl- =refl
: VA: Type
Va:A
a=a
lidSubst = eqSubst,
: VA :Type
Va A
Vo A — Type
Vo :da
vb A
Ve : a=b |
db
lidUnique= eqUnique,
: VA :Type
Va :A
Vo :a~a — Type
Vo @ (refl-a)
Ve : a=a
de

Furthermore, the reduction behaviour faiSubst andidUnique is ex-
actly that foreqSubst, andeqUnique,.

The other direction is the interesting one.

CONSTRUCTION = from = with idUnique

Let us assume we haweand construct:

124

T~ : VA: Type
Va:A
VB : Type
Vb:B
Prop
Trefl : VA: Type
Va:A
a~a
?egElim: VA : Type
Ya A
Vo :va':A.a~a — Type
Vo :Pal(refla)
va A
w e : a~a ‘
dal

Let us first make a little abbreviation:
cell = YA : Type. A
cell packages up a typed term. The idea is thas just= for cells:

I~ = MA: Type
Aa A
AB: Type
Ab:B
(A;a)=(B;b)
refl= AA: Type
AacA
refl- (A;a)

This makes the elimination rule

N,

?egElim: VA : Type

Va :A
Vo Vb A
Ve: (A;a) =(A;b)
Type
Vo :Dal(refl- (A;a))
Vb A
Ve : (A;a)=(A;b) |
Pbe

If we could only deduce@=b from e, we would be most of the way there.
For that, we need a proof that equal cells have equal second projections.

125

The equivalence oidUnique and equality of second projections from
dependent pairs is folklore knowledge, but | shall do the work nonetheless.

It is even difficult to state the equality of the second projections, because
they are not of convertible types—we must use the substitutivity of equal-
ity to make a type coercion.

The lemma we need is as shown. Let us?sproj: VAa, Bb: cell
claim it globally and work on the main ve : Aa=Bb
oal AalA, a
Joa Bb[B, b
Observe that v(q : A=B
([a]-a)=b

sproj e : Vq:A=A. ([g]-a)=b
so that

sproj e (refl- A) : a=b

Let us exploit this discovery. Introducing C:)
all the hypotheses, this is the goal we now 'ab = sproje (refl- A)
must solve. + a=b

7goal: ®be
As the type ok containg, it is wise to Qb
reabstract it: ! =sproj e (refl- A)
a=b
We may now eliminate ab by ?7goal’ : Ve': (A;a) = (A;h)
idSubst. dbe
Igoal : goal'e

Now ¢’ is a reflexive equation! c:)

o _ . . ?subgoal: Ve': (A;a) = (A;a)
We mayeliminate it by idUnique. Pae

The subgoal we acquire follows C:)
from ¢. 7immediate: ¢ a (refl,, (A;a))

All that remains is to proveproj. Firstly, weeliminate the equation on
the cellsg with idSubst.

126

Although the two pairs unpacked by the bind- C:)
ing sugar are the same, we have two names for’same: Vi cell
each projection. We can clear this up by elimi- 2:%;"&]
natingAa, reducing the projections and cutting Vg ’: A=B
the sugared-bindings. ([g]-a)=
Now we may usedUnique to remove the reflex- C:b
ive g. 7open: VA: Type
Va:A
Vg : A=A
([a)-a)=a
The remaining subgoal has exactly the typeedi-! ‘(::)
7refl: VA: Type
VA: a
a=a

As far as reduction behaviour is concerned, first observe that
sproj (refl- (A;a)) (refl-A) = (refl-a)

This is becauseproj eliminates in succession the first equation, the cell,
then the second equation, and all three are in constructor form. Conse-
quently, whereqElim is applied to(refl a), the computed equality proof

ab turns out to bdrefl- a). Since both these equations are reflexive, both
theidSubst andidUnique steps reduce as required.

5.2 first-order unification for constructor forms

A typical application of an elimination rule with scheme variathle V1" I. Type will
engender a scheme

d = ALVX.T~X] — O

Correspondingly, cases of form

127

yield subgoals in the proof of form
VY. VX, S[y|~t[X] — ¥
The equational constraints constitute a unification problem: if there is no solution,

then the goal follows vacuously; if there is a most general unifier, we may use it to
instantiate thg/ andX.

Suppose, for example, we wish to write the ‘vector tail’ C:)

function, whose type prevents application to a null vect *Vtail: vn: N
tor: Yv: vect (sn)

vectn

Note that | have fixed the element typeto avoid clutter.

Eliminatingv with vectCase creates a constrained scheme

Ai:N. Ax:vecti. Vn:N. Yv:vect (sn). i~sn — Xx~v — vectn

The corresponding subgoals are as shown. ?vtaily, :Vn: N
_ _ _ Vv : vect (sn)
The vtail,, subgoal features the impossible Ve,: O~sn
premise that zero equals a successor, whilst in Ve, X2V
thevtail,cons Case the equations conveniently con vectn
9 i . .
strain the type of the tail to be the return type of the "Viailcons: :hm w
function. Vt - vectm
vn: N
Vv : vect (sn)
Ve, : sm~~sn
Vey: X2V
vectn

If we could solve these unification problems, we would ?vtailycons: Vn: N

be left with this goal. vh: A
Vt:vectn

vectn

We would then introduce the arguments and return the tail.

The task does seem to hinge on solving the unification problems generated in the course
of elimination. In [McB96], | presented a tactic (‘Qnify’) for solving such problems,
provided the terms comprised constructor forms in simple datatypes. | shall largely
follow that treatment, extending the same procedure to dependent datatypes.

128

5.2.1 transition rules for first-order unification

The ‘Qnify’ tactic operates by successively eliminating from the goal hypothetical
equations between constructor forms:

VX. s>t — P

DEFINITION: constructor form

tis aconstructor form over variable sev if either

etcV
e t=cont

where eachi; is a constructor form over

In the above goal, supposeandt have the same type and are constructor forms over
theX. We may distinguish six possibilities by the following decision table:

s ~ t]x | cheese t |
X identity if x € tthencycle
y coalescence elsesubstitution
chalk s apply conflict
cheese s || symmetry | injectivity

For each of these six kinds of constructor equation, there is an elimination rule. They
are shown in table 5.1

These six rules, once we have proven them, will constitute the transition rules of a
unification algorithm which is complete for the following class of problem:

DEFINITION: constructor form unification problem

A constructor form unification problem is a goal of form:

VX. §~t — P[X]
where thes andt are sequences of constructor forms oxer
inhabiting some telescope

3chalk andcheese are constructors as different as chalk and cheese.

129

d : Type
identity q)
— @
® T — Type
coalescence b x
Vy:T.|y=x| — &y
d : Type
cycle xet
x~cheese t| — @
® T — Type
substitution & cheese T X¢t
vx:T.|x~cheese t| — ®x
d : Type
conflict
chalk §~cheeset| — ®
® : Type
injectivity ST B
cheese s~cheeset| — @

Table 5.1: elimination rules for constructor form equations

130

Sincesy, t; : Ty, the leading equation has both sides the same type, so that exactly one
of the above rules must apply (using symmetry if necessary). We must also check that
each of these rules preserves this structure.

LEMMA: transition rules preserve problem structure

Given a constructor form unification problem
VX. Ve; €:5; 5~t; L. O[X]

eliminatinge by the appropriate transition rule either solves the goal or
leaves a subgoal which is also a constructor form unification problem.

PROOF

Let us check, rule by rule:

e identity

Before, we have

?before: VX: X
Ve: X;~X;
VE: S~t
P

wherex;; §, x;; t : T. Afterwards, we have

2after: VX: X
VE: §~t
o

wheres, : T x;. Since the variable set is unchanggdndt are still constructor
forms.

e coalescencandsubstitution

Up to a permutation of the goal (performed by the elimination tactic) we start
with
?before: VX: X
vx: Ty
Ve: x~t
vy: Y[X]
VE: §[X|~t[X]
®[x]

131

wherex ¢ t andx;s, t; t: T After elimination, we have

7after: VX: X
vy: Y]t]
Ve’ 5t ~t[t]
ft]

Although,x has vanished from the variable set, it has been replaced by construc-
tor formt which does not contair. As for the remaining problend[t], f[t] : T t.
cycleandconflict
There are no subgoals.
injectivity
Before:

?before: VX: X

Ve: cheese §~cheese t

VE: §~t
()

where(cheeses); s, (cheese f’); t: T. Now, the type of constructaheese
must be

vy Y. T[]
with§ T : Y. After elimination:
7after: VX: X

4
Ve 5 ~t
Ve : 5~t

Certainly, the problem still consists of constructor forms ovektHeurthermore,
boths'; § andt ; t inhabit the telescopg : Y): (T (cheese ¥)).

Now we have checked that each transition rule preserves the structure of constructor
form unification problems, the next step is to put them together to make a unification
algorithm.

132

5.2.2 an algorithm for constructor form unification problems

The algorithm is very straightforward: it consists of repeatedly applying the transition
rule appropriate to the leading equation until either the goal is proved outright or no
equations remain.

From the above lemma, it is clear that if one step leaves a subgoal, the next step can
be made. However, we must still show that unification terminates and computes most
general unifiers:

DEFINITION: unifier, most general unifier

If S~t is a constructor form unification problem ovéando is a substitu-
tion from theX to terms over somg, theno is unifer of s~t if 65 = ot.

In addition, o is amost general unifier or mgu of $~f if any unifier of
§~t can be factorised - o, wherep is a substitution on thg’.

LEMMA: unification terminates

For all constructor form unification problems, the sequence of transition
rule applications determined at each stage by the leading equation is finite.

PROOF

| shall use the traditional proof: we may establish a well-founded ordering on unifica-
tion problems, being the lexicographical ordering on the following three quantities:

e the number of variableg
e the number of constructor symbols appearing in the problem

e the number of equations in the problem

We may then check case by case that each transition rule either terminates directly or
reduces this measure.

e cycleandconflict terminate directly
e coalescencandsubstitution decrement the number of variables

e injectivity preserves the number of variables but reduces the number of con-
structor symbols

133

e identity preserves the number of variables and the number of constructor sym-
bols, but reduces the number of equations

LEMMA: unification correct

For any initial goal which is constructor form unification problem
VX. §~t — P[X]

eithers andt have no unifier, in which case the algorithm proves the goal,
or there is a subsef C X and a substitutioa from theX to constructor
forms over thed' such thatr is a mgu ofS with t and the algorithm yields
subgoal

vX'. ®[oX]

PROOF

It is enough to check that at each step of the problem, either

¢ the goal has been proven and there is no unifier, or
e the goal is of form

= —
~t — ®[oX]

wy

VX',

such that a most general unifigrof remainder §~t induces a most general
unifier p - o of §~t

This invariant holds initially, withaccumulator o the identity substitution. If it holds
finally with no goal, there was no unifier. Otherwise it holds finally with the empty
remainder whose mgu is the identity substitution, so the accumulator is the mgu of
§t.

Case by case, then:

e cycleandconflict prove the goal in cases where there is no unifer

e identity andinjectivity change neither the accumulator nor the unifiers of the
remainder

134

e coalescencandsubstitution
remainder accumulatg
before| x;§~t;t o
after | [t/x[S~[t/x]t [t/X]-o
Supposep is a mgu of the remainder after the transition. It is enough to show
that p - [t/x] is a mgu of the remainder beforehand, with the invariant forcing
p-[t/x] - o to be a mgu of~t.

-

—

Clearlyp - [t/x] unifiesx; S ~t; .

—

Now suppose also unifies;§~t;t. Thenr = 7 - [t/x], because

— 7 - [t/X]X = 7t = 7X by hypothesis
— 7 [t/X]y = Ty wheny # X

Hencer unifies [t/x]?:[t/x]f’ and can thus be factorised p. Butt = 7 - [t/
X] =wv - p-[t/x]. Thusp - [t/X] is most general as required.

| feel I should make some comment on these proofs, not that there is anything unusual
about them, quite the reverse. | have deliberately given a conventional ‘measure’ proof
of termination, by way of comparison with the structurally recursive algorithm | shall
exhibit later as an example of programming with dependent datatypes.

Now that we have an algorithm which exploits the transition rules, it remains only to
construct proofs of themidentity is trivial. coalescenceand substitution are just
applications okqSubst, . conflict, injectivity andcycleall require some work.

Before | give the constructions, | want to draw attention to the computational aspect
of the proofs built by the unification algorithm: we shall need this technology to build
programs as well as proofs. If the algorithm generates

Co

7soFar : VX.§~t — ®[oX]
Istart = ...
. VX, §~t — D[]

we shall need the computational behaviour (for arbitséyy

start oX (refl 0S) = soFar X (refl§)

135

Recall that the elimination tactic suppliesfl proofs for the constraints. When an
elimination rule with associated reductions is applied to a constructor-headed target,
it reduces to one of the subgoal proofs, liart, and therefls are passed for the
subgoal’s constraint arguments—this must allow the subgoal proof to reduce to its
simplified versionsoFar, and ultimately to the value the user has supplied for that
case.

Once again, we may check this property stepwigkentity is implemented by a-
abstraction with the appropriatebehaviour, whilecoalescencandsubstitution ex-
ploit the established reduction efjSubst,. Forconflict andcyclethere is nothing to
prove, but we must pay attention in the casenggctivity .

5.2.3 conflict and injectivity

Consider an inductive family of datatypes
Fam : VT:1. Type

with n constructors
Con; : VZ:Z;. Fam t,[7]

We have already seen how to compute the case analysis prifaipi€ase:

® : Fam — Type

Let us now uséamCase to prove conflict and injectivity theorems for this class of
datatype.

The conventional way to prove injectivity for the constructors of simple datatypes is
to define a suite of predecessor functions for each argument of each constructor and
use the fact that equality respects function application. This is the presentation used in
[CT95, McB96]. We cannot do this in general for dependent types, as it is not always

136

possible to supply dummy values for predecessor functions applied to constructors
for which they were not originally intended. It is my contention, in any case, that
predecessor functions are immoral: the whole idea of pattern matching is to expose
the ‘predecessors’ locally to each constructor case—we should never apply techniques
appropriate for one constructor only to arbitrary elements of a type.

Fortunately, the computational power of dependent type theory comes to our rescue.
Instead of proving:? Peano-style conflict or injectivity theorems, we may manufacture

a single ‘Peano concerto’ which eliminates any constructor-headed equation, comput-
ing the appropriate rule by case analysis.

CONSTRUCTION Peano concerto

We begin by establishing the structure of the development: we wish to
compute the Peano theorem appropriate to a given pair of elements, then
prove it for an equal pair of elements:

?FamPEANO: ¥X: Fam
Vy: Fam
Type
?FamPeano : VI : |
vx :FamT
Vy :FamT
Ve: x>y |
FamPEANOT; X T}y

Note that it is perfectly reasonable to prove the theorem only &rdy in

the same instance of the famlBam T, because this is exactly the situation
in which the theorem will be used: eliminating the leading equation in a
unification problem, where both terms have the same type.

Looking first to the ‘statement’ problerRamPEANO, we may eliminate
each ofX andy by FamCase, giving n? subgoals, of two varieties.

In the first ‘off-diagonal’ kind, we are asked to compute the conflict theo-
rems for unlike constructoiSon; andCon;

?FamPEANO,;: VX: Z,
VY: Zj
Type
We simply introduce all the premises and supply the rather useful elimina-
tion rule

137

® : Type

[

After all, an equation with unlike constructors at the head is very unlikely
to be true.

More interestingly, on the diagonal, we must compute the injectivity theo-
rems for like constructors

?FamPEANO;;: VX: Z;
Type
Fortunately, the case analysis has exposed the predecessors we need, so all
we do is pair them off. Introducing théandy, we supply the rule

d : Type

Xy — @
P

Crucially, the reduction behaviour B&mCase really means that
FamPEANOYX; (Con;X)y; (Con,y') = FamPEANO;; X'y

Now let us show that the rule we have assigned to each kind of constructor-
headed equation really holds if the equation does. Recall the goal

Co

?FamPeano: Vi : I
vx :FamT
Yy :FamT
Ve : x>y |
FamPEANOT; X1}y

We have quite a choice of things to eliminate here, but by far the most
useful is the equatioar Applying eqSubst,, we are left with

Co

?FamPeanoy;,,: Vi: |
vx: FamT
FaAamPEANOT; X T: X

138

By eliminating the equation, we have restricted our attention exclusively
to the diagonal, sparing ourselves the trouble of considering the untrue
equations, let alone deducing their untrue consequences.

Now we may eliminate with FamCase, yieldingn subgoals

Co

?FamPeano;: V7: Z,
FamPEANO t;[Z]; (Con; 7) t;[Z]; (Con; 7)

ReducingFamPEANO, now that its case analyses have been fed con-
structor symbols, we obtain

TS

?FamPeano;:VZ :Z;

Vo :Type
Vhyp: V€: Z~7
o
d

From here, we simply introduce all the hypotheses and pfowgth

=

hyp (refl Z)
Checking the reduction behaviour, we find

FamPeanoT; (Con; X) T; (Con; X) (refl (Con, X)) =
FamPeanoy, 1; (Con, X) =

FamPeano, X =

AD : Type. Ahyp:X~X — ®. hyp (refl X)

This ensures that thdentity transition decomposeefl proofs as required
for its use in programs.

Note the critical use of targetting in making this rule applicable. It is not obvious that

VI:1. VX, y:FamT. — FAmMPEANOT X T'y

is an elimination rule, but that does not stop us unifying the targetter with a candidate
equation. If the equated terms have constructor heads, then the instantiated rule will
reduce, revealing the scheme variable and subgoals we would normally expect.

Although the unification algorithm only requires us to prove the Peano theorems for
two elements of a particular instanEam T, and that is the construction | have given

139

above, it is nonetheless possible to prove the stronger theorem which operates on any
two sequences iRam:

FamsStrongPeano : VX, y:Fam. | X~y | — FAamPEANO X y

If we eliminate all but the last equation, we have reduced the probléanmPeano!

It is possible to use this theorem to eliminate a constructor-headed equation from any-
where in a telescopic problem, not just at the front. This can improve the efficiency of
unification: if we can see a conflict later in the telescopic equation, we can solve the
goal without first hacking through the earlier stages of the problem. Such measures are
not necessary when everything is in constructor form, but increase our efficacy for the
wider class of problems polluted by non-constructor terms. It is much more difficult
to work with inductive families involving indices which are not in constructor form.
Such problems are beyond the technology developed in this thesis—I shall discuss
them briefly in section 5.2.5.

5.2.4 cycle

Showing that cycles do not occur in our inductive datatypes is quite a subtle business.
Even proving

?nNotSn: Vn: N
n~sn — |

requires quite a lot of technology. Let us do it. Eliminatmg

?0NotSO : 0~s0 — L
7SnNotSSn: vn : N
Vhyp: n~sn — L
Ve :sn~ssn
1

Applying unification (without cycle elimination) to both subgoals, we can at least sim-
plify the two constructor-headed equations vialNieeano theorem. This eliminates
theO case by conflict, while injectivity leaves us with an immediate step:

Co

7easy:vVn : N
Vhyp: n~sn — L
Ve :n~~sn
s

140

In fact, we can follow the same structure for any numberyfout this is only because
the natural numbers are deceptively symmetrical. Watch what happens if we throw in
a spare successor constructpmaking typeN’) and try to prove

Co

?nNotSTn: Vn: N
n~stn —

Induction onn yields0 andt cases which perish by conflict. Teease is as follows:

Co

?SnNotSTSn: vn : N’
Vhyp: n~stn — L
Ve :sn~stsn

1
Injectivity yields
?tricky: Vn N/’
Vhyp: n~stn — L
Ve :n~~tsn
1

Oh dear! We have the wrong inductive hypothesis! The extappeared at the very
inside, rotating the cycle: it is only because one successor usually looks much like
another that these theorems are so easiior

In order to prove the result in this style, we must first strengthen it:

Co

7noCycleST: vn: N’
(n~stn — L) x(n~tsn — 1)

By including not just thest cycle, but also all its rotations, we will have more to do:
there will be work in both successor cases, although one is enough to show what hap-
pens:

Co

?noCycleST :Vn : N’
Vhyp: (n>~stn — L)x(n~tsn — L)
(sn~stsn — L) x(sn~tssn — L)

141

The right conjunct follows by conflict. The left reduces by injectivity:

W,

?repaired: Yn : N’
Vhyp: (n>~stn — L)x(n~tsn — 1)
n~tsn — L

The rotated conclusion follows by projecting the appropriately rotated conjunct of the
inductive hypothesis.

This technique can be generalised to arbitrary cycles in arbitrary datatypes. The draw-
back is that (up to rotation), we need a new theorem for every cycle pattern. This leaves
us little choice but to generate them on the fly.

A slightly more cunning technique, arising from a conversation with Andrew Adams,
is mentioned in [McB96]. It constructs for a given cycle patterrp[x] 4 in some type
Ind a quotient functiomquot, : Ind — N

quot,px] = s(quot, x)
quot, _ 0

Applying quot, to both sides of the cycle, we get
(quot, x)~s(quot, x)

We have already seen a disproof of that!

While the guarded recursion principles we have constructed for each datatype make
these functions relatively easy to manufacture—indeed | have implemented this
techniqgue—we have still not escaped from the burden substantial on-the-fly construc-
tion work, cycle by cycle.

Remember, though, that in cycte-p[x], p[X] is a constructor form, and hence we can
compute by structural recursion on it: perhaps there is a way to compute the proof we
want. Unfortunately, though, there is no way to test whether we have decomposed as
far as a non-canonical symbol like our programs have no access to the decidable
conversion relation of the type theory which describes them.

Nonetheless, we can adopt blunderbuss tactics: for any elenafra datatype, we
can construct the property of ‘not being a proper subterri iof such a way that when
X has a constructor head, the property reduces to a product explicitly enforcing ‘not

4without loss of generality, assumpfx] has fresh variables in argument positions off the ‘cycle-path’.

142

being any of the exposed subterms’. The idea works in the same as the auxiliary data
structure with which we earlier constructed guarded recursion. In fact, the predicate
we need is just an instance of that structure.

We may define this property fdM, together with its non-strict counterpart as follows:

INUnequal= \x,y: N
X~y — L
INNotPSub= Ax: N
NAux (NUnequal x)
INNotSub = Ax,y: N
(NUnequal x y) x (NNotPSub x y)

with conversion behaviour

1
NINotSub x n
(NUnequal x n) x (NINotPSub x n)

NNotPSub x 0
NINotPSub x sn

11111

NNotPSub x y is thus inhabited exactly whenis not a proper subterm gf whilst
NINotSub x y adds the requirememt £y to indicate thak is not any subterm oy.
NINotPSub x y unfolds computationally to reveal a proof thats not equal to any
guardedsubterm ofy. Observe, for example,

NINotPSub x ssx = (NUnequal x sx) x
(NUnequal x x) x (NNotPSub x x)

Suppose we can prove
VX, t:Nl. x>t — NINotPSub x t

Then for any hypothetical proof of~p[x], we have a proof oNNotPSub x p|x],
which will expand to a product containing

NUnequal x x

from which contradiction the goal should surely follow.

The first step in the proof is to eliminate the equation, leaving the highly plausible

7cycle: Vx: N
NNotPSub x x

143

You could be forgiven for hoping that we might get a cheap proof byNkeixGen
theorem we have already built, but sadly, that only prdNiéaix® when® is a constant

and all we have to do at each stage is pass on the accumulated information, adding just
the new layer. Here, the scheme varies over the recursion, so we must be more cunning.

Our next move is unsurprising: induction gn

Co

7cycle,: NNotPSub 00
Tcycle,: VX : N
vxh: NNotPSub x x
NINotPSub sx sx

The base case is trivial as its type reducek.tynfortunately, the step is genuinely dif-
ficult: NNotPSub fixes its first argument, so there is no way, as things stand, that we
can reduce the conclusion to the inductive hypothesis. Some intelligent strengthening
will be necessary. First reduce the conclusion to its non-strict expansion:

Co

7cycle,: VX : NI
¥xh: NNotPSub x x
NINotSub sx x

We must prove that ik is not a proper subterm of itseHx is certainly not a subterm.

We can see that §x were a subtermx would be a proper subterm, nomatter what

is on the right hand side. Let us make the corresponding generalisation. That is, we
introduce the hypotheses, create a hole for the more general version of the goal, then
use it to solve the original:

o

7eycle,~ Ax N
Axh : NNotPSub x x
7gen: Yy : N
VXNPy: NNotPSub x y
NINotSub sx y
gen x xh

Why is this a good move? Well, we have fixed the first argument of the predicates, and
we are now free to let the second vary in an inductioryavhich corresponds to the
computational behaviour iINotPSub.

144

Co

7gen,: YXNPO: NNotPSub x 0
NNotSub sx 0
7gen : Vy :N
Vyh : YXNPy: NNotPSub x 'y
NINotSub sx 'y
VXNPsy: NNotPSub x sy
NINotSub sx sy

Applying a little computation, the base case becomes

Co

7gen,: VXNPO: 1
(NUnequalsx0)x1

This is easily proven, with a little help frolNPeano.

Reducing the step case, we get

o

7gen_: Vy N
Vyh : YXNPy: NNotPSub x y
NINotSub sx y
VXNPsy: (NUnequal x y) x (NNotPSub x y)
(NUnequal sx sy) x (NNotSub sx y)

The implication between the two right conjuncts is exactly given by the inductive hy-
pothesis. As for the left conjuncts, expanding the conclusiitumequal gives us a
proof of sx~~sy from which we must prove.. NPeano exposes a proof of~y, for
which we have a disproof at the ready.

Having established this property for the natural numbers, there is always the nagging
suspicion that we have exploited in some hidden way the symmetry of that datatype,
just as we would be wary of generalising to all triangles a property which held in the
equilateral case. When there is only one step constructor, with only one recursive
argument, the issue of whether phenomena behave conjuctively or disjunctively can
become blurred. However, in this case, everything fits together perfectly.

CONSTRUCTION cycle
Consider type former

145

Ind : Type
andc constructors

i A X: {Ind}’
Con; ax:Ind

Note that | really should write;, as the number of recursive arguments
may vary from constructor to constructor. However, the proof will be even
less readable if | start subscripting superscripts.

We may define the inequality property

IndUnequal = Ax,y:Ind. x>~y — L

We can then add the proper subterm relation
IndNotPSub = Ax:Ind. IndAux (IndUnequal x)

and the non-strict subterm relation

IndNotSub = Ax,y:Ind.
(IndUnequal x y) x (IndNotPSub x y)

The computational behaviour of these definitions is as one would hope:
IndNotPSub x (Con; ay) = “{IndNotSubxy, }

We may now prove the cycle theorem:
?IndCycle: Vx, t: Ind

W e 1 X~t
IndNotPSub x t

First, we eliminate the equation, leaving

o

7IndCycle’: vx: Ind
IndNotPSub x x

Next, weeliminate thex.

O
?case;: Va: A,
vX: {Ind}"
vh: {IndNotPSub x;, X}/
IndNotPSub (Con; @X) (Con; &X)

146

The conclusion expands, yielding a product

?case;: Va: A,
vX: {Ind}"
vh: {IndNotPSub x;, X},
Y{IndNotSub (Con; &X) X},
Now we come to the strengthening step. The conclusion we are trying to
show isr-fold now. The trick is to prove each separately, abstracting away
the right hand, in r separate lemmas:

2case;~ \d ;A
X {Ind}"
Ah : {IndNotPSub x, x;}7

?lem: vy :Ind
VXNPy: IndNotPSub x; y
IndNotSub (Con; ax) y

({lemy, xi hi. 1)
The proof of each lemma is again inductive. We agpigiElim, Thus for
each of the-, lemmas, we acquireconstructor cases:

7|em] Vé)l A]
vy {Ind}"

k

vh :{ VxNPy,: IndNotPSub x; y,
IndNotSub (Con; &X) y,

VxNPc: IndNotPSub x; (Con; b)
IndNotSub (Con; &X) (Con, by)

l

Now, a little computation is in order:

7|em] Vé” l&]
vy {Ind}’

=

v :{VXNPyl:IndNotPSub X5 Y, }
IndNotSub (Con; ax)y,),
VxNPc: ©{(IndUnequal x, y,) x (IndNotPSub x;, y,) }1
¥_ :IndUnequal (Con %) (Con; by)
2 {IndNotSub (Con; &%)y, },

147

Firstly, each
IndNotSub (Con; @X) Yy,
follows by h; applied to the proof of
IndNotPSub x; y,

projected fromxNPc.

Secondly, we must establish
IndUnequal (Con; &X) (Con; by)
That is, we must prove
(Con, aX)~(Con, by) — L

so we applyndPeano. If the constructors are different £ j), the goal
is proved at once, otherwige= j and we must show

d~b — Xy — L
But look! xPNc contains proofs for eachof
IndUnequal x; y,

We may select the proof of,~y, from the injected equations, and the
proof of

IndUnequal x; y,

from xPNc establishing a contradiction and completing the construction.
Let me remark only briefly on the extension to dependent families. For

Fam : Vi'1. Type
the appropriate notion of inequality is

FamUnequal = MX,y:Fam. (X~y) — L
We can then construEeamNotPSub andFamNotSub as before:

FamNotPSub = MX:Fam.FamAux (FamUnequalX)
FamNotSub = XX, y:Fam. (FamUnequalxXy)x (FamNotPSub X ¥)

148

Since all three of these take two sequencdsm, rather than two elements in some
Fam T, no problem arises in the strengthening step: we are free to abstract away the
whole right hand sequence, ensuring the induction is on the entire family.

As for the equational reasoning, suppose we are trying to prove some inequality
X:x~y;y — L where both sequences inhaBam, with bothx andy constructor-
headed. Rather than trying to unify tiendy, we may apply the ‘strong’ version of

the Peano theorem directly to the telescopic equation, solving the goal in the case of
different constructors, and exposing the equations of the predecessors if the construc-
tors are the same.

In effect, then, the construction scales up without any difficulty from elements of sim-
ple types to sequences in sofam.

This construction also generalises easily to datatypes which use higher-order construc-
tors to represent infinitely-branching structures. When the higher-order arguments ap-
pear as hypotheses they may simply be fixed, so that they may be used as the appro-
priate witnesses for higher-order arguments in goal positions. However, it is not easy
to exploit this proof automatically, as it is undecidable whether an infinitely-branching
structure contains a cycle. Suppose we have a hypothetical ordit@dether with a
functionf : N — ord which yieldsx for input37. If we have a hypothesis

x=>~sup f

we acquire a proof obrdNotPSub x (sup f), which expands to uncover a proof of
vn:N. x~f — 1 but the machine has no reliable way of guessing 3fias the right
number to expose the contradiction. Of courseyéfknow which branches a cycle
takes, we can still applgrdCycle by hand.

5.2.5 a brief look beyond constructor form problems

There is nothing which restricts our use of dependent families to indices in constructor
form. More complex indices lead to more complex unification problems, and the gen-

eral case is inevitably undecidable. There are two ways in which such problems can
arise, and they are not mutually exclusive:

¢ Non-constructor-form indices may appear in the type of a constructor. For ex-
ample, we might definsizedbinary treesstree : N — Type as follows:

X:streex Y :streey
empty : stree 0 node XY : stree s(plusxy)

149

e Non-constructor-form indices may appear in the type of an argument over which
case analysis is to be performed. For example, we might wish to write

vprefix : VA:Type. Vm, n: N. Vv:vecta (plusmn). vecta m

The tractability of such problems, even by hand, depends ornythesof the non-
constructor-form expressions:

e Many problems involving the comparison of types or functions are simply be-
yond us. On the one hand, we do not have theorems suotméigct at the level
of types—we cannot disprol~2. On the other hand, the intensionality-of
prevents us from solving even such simple higher-order problems as

VE:N — N. (VX:N.fx~sx) — ...

Even though the extensional behaviourf & completely determined, there are
many intensionally distinct terms which exhibit that behaviour.

e Equations within datatypes involving defined functions Iess are less trou-
blesome, especially if we have equipped those functions with derived elimination
rules which do constructor-based analysis of the return values.

Let us examine the example wprefix. Induction onv will leave subgoals containing
unsolved equational problems, such asuhé case:

?vprefix, : VA:Type. Vm, n:N. Vv:vecta (plusmn).
O~(plusmn) — vnil~v — vectam

Case analysis om will get us out of this predica- | plusRecl
ment, but only because we know hg@hus works.

A more cunning approach is to address the trou
blesomeplus directly, constructing/prefix with

plus’s recursion induction principle, shown on the
right. Note that thgolus symbol is completely ab- dOyy
sent from the cases.

_®:VX,y,[z]:N. Type

d sxysz

VX, y:N. ® xy|plusxy

Targetting theplus m n) in goalvprefix yields subgoals:

150

?vprefix, : VA:Type. Vn:N. Vv:vecta n. vect, 0
?vprefix, : VA: Type. Vm,n, z: N.
(W :vecty z. vectam) —
YV:vecty sz. vecty sm

The remaining indices are in constructor form!

| draw two conclusions from this discussion. Firstly, dependently typed program-
ming with non-constructor-form indices is difficult—a principled machine treatment
is a long way off. Secondly, for hand treatments of such problems, derived elimination
rules describing the behaviour of non-constructor functions are of considerable benefit.

151

Chapter 6

Pattern Matching for Dependent Types

We are now in a position to build tools for programming with dependent datatypes.
In this chapter, | shall first discuss the interactive development of programs. How-
ever, | believe it also important to consider the translation of functional programs from
the conventional equational style into real&® terms based on the elimination rules
primitive for each datatype.

Why should we be interested in these programs? Some people like to write prdgrams,
and raw type theory is hard to write, especially as it must record explicitly the unfica-
tion attendant to the elimination of dependent datatypes. That is why we get machines
todoit.

| am an enthusiastic advocate of the analytic style of programming afforded by proof
editors. For me, the key point is that the search for programs is carried out in a struc-
tured space of partial objects constrained to make sense: the machine performs most
of the bookkeeping and checks for type errors locally and incrementally.

Synthesising programs in the conventional way involves unconstrained search amongst
arbitrary sequences of potential gibberish for completed objects which a compiler ei-
ther accepts or rejects. The incremental programming afforded by interactive declare-
before-use environments common in the ML community is almost entirely useless
because it is incremental from the bottom up: it requires the details to be presented
before the outline and thus supports only the kind of lonely obsessiveness that gives
programming a bad name. The module system offers some compensation, at a coarse
granularity.

The trouble with raw type theory is not that it is hard to write, but that it is hard to
read. Even if a program is generated with machine help, it is still a good thing if

10thers are merely paid to do it.

152

we can represent it in a way which is comprehensible to humans. Sequences of tactic
applications are not especially informative and, in any case, run counter to the demands
of a good user interface.

| hope, therefore, you will agree that it is good to have a high-level representation
for synthesised proofs and programs which nonetheless exposes the analysis both by
which it operates and by which it can be constructed. Pattern matching notation has
been with us for three decades in theory and in practice [Bur69, McB70]. Perhaps it
is because | have been brought up in these old ways that | am so slow to change, but
| still prefer equational presentations of programs to this newfangled ‘pointer derefer-
encing’ or whatever it is the young people do these days. One side effect of a concise
and readable notation is that we can still write programs on the backs of quite small
envelopes.

What do these programs look like? Let us simplify matters for the time being, and
consider only solitary functions:

f vX:S. T
f §1 - t1
f S, = t,

Eachs; will contain some ‘free’ variableg : Y, which are really universally quantified.

f may not appear in any of th&. Bothf and they may appear in;. It is, of course,
impossible to guess thé; for arbitrary§ ands;, although it is not hard to imagine
classes of problem for which it is routine. Let us assume they are also supplied by the
programmer, but nonetheless omit them informally when unremarkable.

What do we mean by such a program? | suggest that we mean to determine the type
and theintensionabehaviour of the defined symbblit is not enough that the program
should determine for each closed in§ut§ aunique output: thatis merely to describe

the extension of a function—to give equations which must cover all the cases and
be true. The programs must also reflect a deterministic and terminating computation
mechanism, even on open terms, and taking canonical inputs to canonical outputs. That
is, the equations must have computational, not just propositional force. The programs
must decode internally into combinations of abstractions, applications, case analysis
and terminating recursion. This requirement is reflected to a considerable extent in
the task of translating such programs in terms of the effective computational behaviour
primitive to OLEG datatypes.

153

A common notion of pattern matching from functional programming with simple types
requires the patterns (tSgabove) to be in constructor form, nonlinear, exhaustive and
disjoint. This is not sufficient to guarantee the intensional behaviour required here.
The classic counterexample (due, as far as | know, to Berry) is the threemajarity
function:

majority : verdict —» verdict — verdict — verdict
majority innocent innocent innocent = innocent
majority guilty innocent z =z
majority innocent y guilty =y
majority X guilty innocent = X
majority guilty guilty guilty = guilty

Now, imagine you are in a low-budget remake of the Henry Fonda film, ‘Twelve Angry
Men’, entitled ‘Three Mildly Peeved Men’, and your task is to find out what the ma-
jority verdict is. The three jurors do not each know what the others think, so the only
way you can gain any information is to ask them individually for their verdicts: you
cannot ask ‘should you have the casting vote’. Represent what you know by a pattern:
initially, you know nothing, so the pattern is

Xyz

When you ask a question, of the first juror, say, your state of knowledge divides in two
possibilities

innocenty z
guiltyy z

Based on this choice, you can adopt different strategies of questioning, ultimately giv-
ing you a set of possibilities from each of which you draw a conclusion. Does Berry’s
collection of patterns represent a set of such possibilities, arising from a conditional
questioning strategy? No: each juror appears undeclared in at least one pattern, and at
least two jurors must declare in order to determine the answer.

The following shorter and intensionally realisable function has the same extensional
behaviour?

majority : verdict —» verdict — verdict — verdict
majority innocent innocent z = innocent
majority innocent guilty z =z
majority guilty innocent z =z
majority guilty guilty z = guilty

2|t also has an advantage in some cases if you are the third juror and prone to moments of angst.

154

Extensional presentations of functions are not useless: they are merely non-
computational. It is highly desirable, at times, to give such extensional properties in
specifications of functions. The question is then whether they can be transformed into
intensional programs, preserving the extensional requirements.

The fact that intensionally realisable patterns arise from such questioning strategies
militates strongly in favour of the analytic view of programming: generating pat-
terns by case splitting not only guarantees their computational meaningfulness, but
also gives some guidance to the way we think about problems in the first¥place.

Generatingcoveringsof patterns by splitting is central to Thierry Coquand’s charac-
terisation of pattern matching for dependent types [C0q92], as implemented in ALF
[Mag94]. It is worth taking the time to review this now, not only to place the work of
this chapter in its wider context, but also because it is in his meta-level footsteps that |
have followed with my object-level treatment.

6.1 pattern matching in ALF

Coquand proposes to admit functions defined in pattern matching style directly to the
type theory as constants with reduction rules given by the equations provided they sat-
isfy certain safety conditions, more stringent than necessary, but nonetheless allowing
considerable freedom of expression. For

. VX:S. T
Vyl?l. f §1 = t1
VV:?H. f S, = t,

he demands

no nesting : for eachf r'in anyt;, f does not occur in ang;

guarded recursion : for somej and everyi, every recursivér in t; hasr; guarded in
Sij

covering : thes; form acovering of S, in the sense to be defined below

3When teaching students ML, | have so frequently found myself asking ‘What do you do with the
empty list? What do you do with const?’ that it has become something of a mantra, for me, if not for
them.

155

The definition of covering captures the notion of successive case-splitting. We shall
first need a definition of such a split elementary covering—this we iterate to yield
covering.

DEFINITION: elementary covering

Thes; form anelementary coveringof Y if there is an argument position
j such that

e s;; is constructor-headed for each

e for any argument sequencevith r; constructor-headed, there is ex-
actly onei and instantiation of thg : Y; which makes; = ¥

Note that, in particular, sequences with different constructors headingthhargu-
ment must be covered by different patterns, and that all possible constructors must be
covered: we have just asked tfjth argument to reveal which constructor is at its head.

DEFINITION: covering

e thefree pattern*y : S is a covering of

e if 5; (overy : Y;) is an elementary covering 8fandr;; (overZ : Z;;)

are coverings of th¥;, then theF;; /¥]s; also form a covering of

Which coverings we can build interactively depends on which elementary coverings
we can recognise as such—this is where unification comes in. Let us suppose that we
have a family of typeSam, and that we wish to form an elementary covering of some
telescope

—/

:\?;y: Fams.y : Y

—

<

by case-splitting ory. Fam has constructors

)?l >_<z
Con; X: Fampt;

so the possible cases are those wheré tiréfy with thet;, the flexible variables being
XXy Y.

We apply an appropriate unification algorithm, such as the constructor unification from
last chapter, getting one of three responses

“my term

156

e a most general unifier; from variablest : X;;¥ : Y to terms over somi: Z
e indication that there is no unifier

e failure due to ambiguity or getting stuck

If the unification is conclusive for each constructor case, then our elementary covering
has one pattern for each mgy given by

o¥; (Con; 0;X):y (overZ:Z:y : U,»?I)
We can now build coverings by starting with the free pattern and repeatedly applying
case-splitting, as allowed by the unification. Note that unification is a meta-level notion
here: it must be sound with respect to the computational equality. Apart from that, we
can make it as clever or as stupid as we like. Constructor unification is already quite
generous—this is essentially what the implementation of ALF provides.

Programming then proceeds in a type-directed way, building a covering for the argu-
ment telescope of a function, then filling in the right-hand sides by refinement, allowing
recursive calls, provided the appropriate termination check is satfsfied.

It is not hard to see that all thereductions so far presented in this thesis fall into this
class of definable function (provided we make the appropriate straightforward exten-
sion for mutually defined functions on mutually defined datatypes): the elimination
rules for datatypes have been constructed to yield elementary coverings of them, with
one-step guarded recursion. In fact, we do not even need the unification algorithm to
handle conflict, injectivity or cycles: coalescence and substitution are enough for the
datatype-reductions, and we must add identity if we wish to supeayElim.

What about the other way around? If we fix on constructor form unification as that
which informs the case-splitting process, then we may follow this treatment at the
object-level.

6.2 interactive pattern matching in OLEG

This section contains the main metatheoretic result of this thesis: it proves that func-
tions which can be manufactured interactively in ALF can be manufactured interac-
tively in OLEG. Furthermore, the simulation is at an intensional level—the functions

5In the original ALF implementation, this was left as a moral obligation, but Coquand’s criterion
above is not hard to enforce.

157

we manufacture from CeG elimination rules have the same computational behaviour
as those defined directly in ALF.

Before we can progress to the theorem, we must examine computation with elimination
rules in more detalil.

6.2.1 computational aspects of elimination

Suppose a functiohcan be given in terms of anothgras follows:
f = \X:X.g5§

What can we infer about the computational behaviourfodm that ofg?

This is a very common situation. & is an elimination rule and we construicby
eliminating some of its arguments wid)) this is exactly the structure whidhwill take.

If g has a reduction behaviour given byeductions or a pattern matching function in
the Coquand style, we may be able to infer the corresponding behaviofir feor
example, we have already seen how to constNiGtase from NEIlim in this way:

how doedNICase reduce when it is fed constructor-headed numbers? It is not hard to
check that it inherits the appropriate behaviour fridiflim:

NCase ¢ ¢y p;0 = ¢y
NCase ¢ ¢y p,Sn = ¢, n

Similarly, if we want to implement the pattern matching versiomphis by means of
NEIlim, we need to be sure that the defining equations are intensionally recoverable.
In particular, we need to show that any recursive callNlEim in the implementation

can be replaced by recursive callsgtus convertible to them. We can achieve this

by a process of unfold/fold transformation on functional programs which respects the
computational equality of CEG.

Let us consider unfolding first.

Suppose is given by a pattern matching program

<l

g:Vv ST
gs i

. =t (over pattern variableg: Y;)

158

From the definition of, we can infer the lengthened equation
fX = gs (anyX:X)
For eacls;, there are two possibilities
e Sis atleast as long &
e Sis shorter thas;

In the former case, we may spitast: I’, so that,s; : S. If o is a substitution from
X:V to terms ovez : Z which unifiess; andf, then we have

—

foX = go(fi¥) = goS;;of = (ot;)of (overZ: Z)

In the latter case, it i§; which we split ag’ I’ so thafs, 7 : R, whereR is a prefix ofS.
If o is a unifying substitution, then we have

I

foX = goS = gor

and therefore

-

foX;of =2 go(i;7) = gos; & ot;
Note that we may not, in general, pad out the applicatiohtwfore the unification,
becausd X may not have functional type until thehave been instantiated.

Folding is more straightforward. If we know that

fX =2 r wherexis the free pattern, and

f§ = tlor] (overy:Y)

f§ =~ tffoX] (overy:Y)

| have not explained where these substitutionsome from® but | do not have to:
unfolding and folding are a pair of techniques by which we can derive new intensional
equations from old ones. | do not propose to use them to construct pattern matching
programs, but rather to confirm their intensional status. For example, the prpgmam

may be written in pattern matching notation

5Perhaps you can guess.

159

plus 0y = vy
plus sx y = s(plusxy)

This quite clearly falls within Coquand’s class of definable functions. We have already
seenplus defined somewhat less perspicuously ireG:

plus = NEIm (A:N.N — N)

(Ay:N.y)
(AX:N. Aplus,:N — N. A\y:N.s(plus, y))

We can check that the pattern matching equations hold intensionally for the O
definition. First unfolding with respect to eacieduction ofNElim:

plus 0 = JAy:N.y

plus sx = Ay:N.s(NElm...xy)

Folding with respect to the G definition:

plus 0 = JAy:N.y

plus sx = Ay:N.s(plusxy)
Lengthening:

plus 0y = vy

plus sx y = s(plusxy)

We have checked our implementation of the pattern matching program!

In fact, we can use lengthening, unfolding and folding to check all the dervived com-
putation laws in this thesis, and we shall use them in particular to ensure the intensional
validity of the pattern matching programs we shall shortly construct.

Of particular interest is the computational effect of case analysis followed by unifica-
tion.

Suppose we face the goal

o

27 vX:S. T

whereS; is some-am p, with thep in constructor form. LeEam have constructors

160

Z: 2]
Con; Z: Famp;,

Eliminatingx; by FamCase yields, in general:

1P (Con; Z) ~ P X;

If =\X:S
FamCase @ ...f;... p;x; (refl p); (refl x;)

Now let us apply the unification algorithm fo. Either there is no unifier, in which
case we have no need of a computational explanation, or there is a most general unifier
;. In this case, the new subgoal looks like

o

?f;-: vy ?j
O'jT

Furthermore, having found;, we may also unfold the definition dfwith respect to
FamCase, discovering that for a§f

f; 0,Z; 0;%; (refl o;(P; %))

The latter conversion holds by the computational properties of the proof term generated
by the unification algorithm established in the previous chapter.

This shows us that case analysis with constructor form unification really does corre-
spond intensionally to Coquand’s case-splitting step. We are now in a position to prove
a crucial metatheorem.

161

6.2.2 conservativity of pattern-matching overOLEG

THEOREM: conservativity of pattern-matching over OLEG

Suppose
. VX:S. T
VV:?I. f §1 = t1
VV:?H. f S, = t,

is an admissible program according to the characterisation of the previous
section, with

e thes; (overy : \?i) a covering of built interactively by case-splitting
with constructor form unification

e recursive calls structurally smaller on thien argument

Then there is an CEG termf : VX:S.T satisfying for each, for anyy : Y,

1

PROOF

Let us present the main problem as one of theorem proving. We must prove goal

Co

7f:vX:S. T

However, we must check that however we implenteiit satisfies the computational
laws intended by the pattern matching equations.

One of the key aspects of this construction is justifying the recursive calls. We can help
ourselves in this regard if we give them highly distinctive types. As they stand, they

just have whatever type it is the function returns for the given arguments, which might
be something dull. We can introduce a much more informative type as follows

Co

G . VX:S. Type

7call : VX:S.(GX) =T
7return: VX:S. T — G X
79 . VX:S. G X

If = \X:S. call (g X)

162

What has happened? | have defirfien terms ofg, a function which returns elements
of an as yet unknowé-indexedType-famin, G. Of courseG is going to turn out to
be \X:S. T, in the style of the decorativiebindings from previous chapters, but for
now, it remains obscure: we transfer values betweandG X by means of a pair of
unknownscall andreturn, both of which will turn out to be the identity function. As
things stand, though, the type of a callgadentifies precisely its arguments—when
we wish to make a recursive call, we, and alsolihenderbusstactic, shall be able to
find the hypothesis we need just by looking at its type!

The next step is to eliminate théh argument ofy with the appropriate guarded recur-
sion principle. Supposg. is Fam [, whereFam is a dependent family of datatypés.
The guarded recursion principle we need is thamFix. Eliminating, we obtain the
scheme

[-,

® = \Z:Fam.VX:S.Z~p;x, — GX

In fact, this scheme will have had its constraints optimised in the usual way—there will
be none at all iFam is a simple type. Let us nonetheless consider the general case.
The immediate subgoal is

Co

?Quardea: VZ - FaM
Vrecs: FamAux ¢ 7
vX :S
V€ Z~piX,
GX

Intensionally speaking, unfolding the definition @fwith respect tdcamFix tells us
that

g X = FamFix ® gguarded 55 Xy X (reﬂ 5; Xr)
= gguarded 55 Xy (FamAUXGen o gguarded 5; XT‘) X (reﬂ 5; XT‘)

The subgoal constraints require exactly that Xhere well typed arguments @, so
they reduce by unification to

G fpeet VX S
Vrecs: FamAux @ p; X,
GX

"We may consider any parameters fixed.

163

That is, we have the same goal as before, but with the addition of the auxiliary premise
which is ready to unfold revealing the available recursive calls as we »spiitto
cases—it may not be the last argument, as shown here, but its position is immaterial.

Note also that the computational behaviour of terms generated by unification gives
gX = gy X (FAaMAUXGen ¢ g,,,,q.q B; X)

Now we replay the interactive case-splitting process which justified the cov&ring
Splitting an argument means eliminating it by the case analysis rule for its datatype,
then applying the unification tactic to the subgoals. Because the unification tactic im-
plements the same unification algorithm as that which justifies the elementary covering
induced by the split, we know we will achieve exactly the same effect.

We are left with subgoals corresponding to the covering

Co

79,V Y;
Vrecs: FamAux @ p; S;r
Gs;

What is more, we know that case analysis with unification has the right intensional
effect, so that

g §7, = g, y (FamAUXGen P gguarded 51, Sir)

It is time to fill in the right-hand side. Let us introduce the premises and refine by
return:

o
Arecs: FamAux @ p; S,
i [S/X]T
returns; r;

t; is the expression we want to supply forbut it may contain some recursi¥é;, so

we cannot just refine by it. We must replace those applicatiorcsdilg to fresh holes

of type G Z; first. Since there is no nesting, we may write them in any order, although
if nesting was permitted, we would still be able to choose an order. | shall only write
one of them in.

164

Co

9~ A 1Y
Arecs: FamAux<I>p Sir
’9;;: G
return sj- t...callg,;...]

Where are we to find these elements®%;? Fromrecs, of course! Since;, is, by
assumption, structurally smaller thef, and must have some tyfam f)’ij, the type

FamAux @ ; s, expands to a product contalnn@gp Zj, i€

Let us project this out and callit Because Z; is well typed, we can find a matching
substitution which solves the constraints. Hence we may form

rz; (reflp.;z;) : GZ;

i)

and thus instantiatg, ;.

In point of fact, blunderbuss with recs is enough to solve,;, because it solves re-
flexive equations and searches throtggtypes. Sincés Z; is uniquely the type of the
recursive call on those arguments, there is no way the search can come back with the
wrong value.

Let us check that this type-directed folding really finds the recursive call. The point is
that

FamAuxGen ® g,,,,4eq ;3 Sir =
<. . <FamF|x @ 9yuarded pij, Zip;. .. > e >

Projecting this out and applying it as shown above gives

FamFIX o gguarded p (reﬂ pl]’)

zy’

Compare this with the definition @j above: it folds (by the matching substitution) to
a7

Hence we know that for aif

165

—

gs; & returnt;[...call (gZ))...]

All that remains is to solve and c@, call andreturn as suggested earlier. We find
thatf X is exactlyg X. Hence (trivially unfolding and folding), thealls andreturns
disappear and thg’s turn intof’s. As required, for eachand ally : Y,

fs;

I
ot
-

6.2.3 constructing programs

A man bought a full size replica of Michelangelo’s ‘David’. He put it in
his back garden and invited his friends round to see.

‘It's just a big block of white marble. said they.

His reply: ‘I haven’'t unwrapped it yet.

The above theorem makes use of the guarded recursion, case analysis and unification
technology from the previous two chapters to ‘replay’ the justification of a pattern
matching function known to lie within Coquand’s class of admissible definitions. We
had the advantage of knowing the equations in advance, and indeed the derivation of
the covering—we merely had to check that we could build a term with the right type
and computational behaviour. As we shall shortly see, this is only a slight advantage—
we can use essentially the same technique and construct the pattern equations as we

go.

| propose to supply a collection of tactics for programming. As well as performing
theorem-proving actions on theLOG state, these tactics will create and manipulate
associated pattern-matching programs in such a way that they are always justifiable by
Coquand’s criteria and, once the holes are filled, intensionally correct.

By way of a running example, | propose to constmetst, the function which extracts
the last element of a nonempty vector. Let us fix and suppress the elemeat.type

vliast : ¥n:N. Vx:vectsn. A

| shall not tell you what the pattern matching program is, for the point is to unwrap it.

We begin with a goal
166

o

7goal: Vn: N Vx:vectsn. A

Here is a tactic which indicates that a given goal should be regarded as a programming
problem.

TACTIC: program

£
7F . VX:S. Type
7call : VX:S. (FX) — T[X]
return: VX:S. T[X] — FX
d =)\Z:Fam
vX: S
® VE:Z ~p; X,
= F X
7goal: VX, : S; 7, v - §
: Vrecs: FamAux & p; X,
VX, : Fam p FX
: If — \X:S. FamFix @ f, X (refl p; x,.)
V%,: Sy Igoal = X:S. call (fX)
T[X]

PROOF

The tactic
program n X,

turnsgoal, which must have at leastpremises, into a programming problegoal is
solved by appeal to a functidrof arity n, recursive on itgth argument.

As before, the more informative type famiyis introduced, together witkkall and
return, thenx,. is eliminated with the relevant guarded recursion theorem. This leaves
us filling in the body of the functiofy. Associated witH, is a pattern matching equa-
tion labelled[f,], with its pattern variables listed in parentheses, which describes the
aspects of’'s behaviour for whicH, accounts. The left-hand side of this equatiofxis
indicating thatf, describes the effect dffor any arguments matching the free pattern
X—that is, any arguments at all. The right-hand side is a placehd]dedicating that

we have not yet decided whiateturns for arguments matchisg

167

As we split the goaf, to yield subgoals for specific constructor cases, so we shall
split the equatioiffy] into the corresponding equations with more instantiated patterns.
These equations constitute the pattern matching program we are building, and we
shall maintain the invariant that their patterns constitutesgeringin accordance with
Coquand’s definition. This is trivially the case fd]. O

By the way, if the program is not recursive, let us allow the omission ok thieom the
tactic call. Correspondingly, we do not need to apply the guarded recursion theorem.
The type off, is then the same as thatfThe rest of the techique is unaffected.

Now, vlast is structurally recursive on either of its arguments, so it is immaterial which
we choose. | shall pick the vector. Let us see the effect of the tactic:

Co

?Vlast : Vn:N.Vx:vectsn. Type
?call : Vn:N.Vx:vectsn. (Vlast, x) — A
?return : Vn:N. Vx:vectsn. A — Vlast, x
1® = m: N

Ay :vectm

vn: N

VX :vectsn

Ve;: m~sn

Vey:y ~ X

Vlast, x

7fo :vVn :N

VX :vectsn

Vrecs: vectAux & n x

Vlast, x
lvlast = An:N. \x:vect sn. vectFix @ f; sn x (refl sn) (refl x)
goal = An:N. \x:vectsn. call (vlast, x)

[fo] viast,x =7 (n: N;x:vectsn)

Now that we know how to start the process, we must figure out how to build coverings.

TACTIC: split

168

O
E::b ?fjl VZ . Zj

MWy Y, vrecs: FamAux @ o;(P;; Sir)
vrecs: FamAux ® p;si, | - Fojsi
Fs; :
f]fs =7 (¥:Y,) f]fo,8 =2 (Z:Z))

wherey, : Fam'r

andCon, : vX:X. Fam' t

ando; is a most general unifier (fron; X to terms over) of r;y, and
f: (Con, X), both inFam'

PROOF

The tactic

splity,

performs a case split o), in subgoal;, yielding a bunch of subgoafs. The equation
for f; is split correspondingly into equations for the

As above, we eliminatg, in subgoalf; via the case analysis principle fBam’ and

then apply unification. The tactic succeeds provided unification in each case either
shows that there is no unifier or finds a mgu The resulting collection of mgus
justifies the new covering, and it also justifies the unfoldings which showftisat
reduces in each caseftor;S;.

The invariant that the patterns of the equations associated with the subgoals form a
covering is maintained. OJ

In our example, we shall certainly need to split on the vegtomhere is no way to
make a honempty vector witimil, so only thevcons case survives:

169

Co

f.:Vn N
Yh A
Yt :vectn
Vrecs: Xt,..: Vm: N
VX :vectsm
Ve n~sm
Veg: t ~ X
Vlast;, X

vectAuxdnt
Vlastn (vcons ht)

[f.] vlast, (vconsht) =? (n:N;h:A;t:vectn)

Note that the wallet of recursions has unfolded by one step, showing us the recursive
call we could make fot, but for the fact that it is not known to be nonempty. The effect

of our informative retyping has been to make the conclusidp @l us the patterns in

the corresponding equation.

We must make one more split before we can finish the job. If this were simply typed
programming, we would splitto see whetheh is the last element or not. However,
we do not need to destructure-splitting n will tell us all we need.

Co

f..:Vh A
Yt :vectO
Vrecs: Xt,..: VM: N
VX : vect sm
Ve;: 0~ sm
Ve, t~x
Vlast;, x

vectAux ® 0t
Vlast 0 (vcons ht)
.:Vn N
Yh A
Yt :vectsn
Vrecs: Xt,..: VM: N
VX : vect sm
Ve :sn ~sm
Ve, t~x
Vlast;, x
vectAux dsnt
Vlastsn (vconsht)

[f..] vlasty (vconsht) =7 (h:A;t:vectO)
[f.s] vlasts, (vconsht) =7 (n:N;h:A;t: vectsn)

170

Observe that in the former case, there is no way the matching problem can ever be
solved to allow access to a recursive call, whilst in the latter, the way is clear.

Having split as far as is necessary, we should like to fill in the right-hand sides.

TACTIC: return

Vrecs: FamAux ® p;s;; | = Arecs: FamAux @ p; s;,
Fs; return t;
f]fs =7 (¥:Y,) [f;] fS; = returnt, (¥:Y))
PROOF
Given
return t;

we may, as before, forrj by replacing the recursive calig by calls to holes of type
F Z. If these calls are structurally smaller at argumente will once again be able to
solve these holes by appeal to appropriate projections feosn

The structural condition ensures that the new equation is acceptable, and the same
argument as that in the above theorem shows that it holds intensionally. O

Our example has two cases. For the singleton, the value should just be thectand.
h gives us

Co

'f.,Ah A
At :vectO
Arecs: Xt...: Vm: N
VX : vectsm
Ve,: 0 ~sm
Ve, t ~ X
Vlast,, x
vectAux ® 0t
returnh

[f..] vlasty (vconsht) = returnh (h: A;t: vectO)

In the case with the nonempty tail, we make the recursive call
171

return vlast, t

This becomes

o

f.e:An N
Ah A
At :vectsn
Arecs: Xt ... Vm: N
VX : vect sm
Vey:sn ~sm
Ves: t~ X
Vlast, x
vectAux ¢ snt
?v, :Vlast,t
return (call v;)

A quick search reveals the appropriate recursion

o

lv,=recs.1 nt (refl sn) (refl t)

justifying the equation

[f.s] viasts, (vconsht) = return (call (vlast, t))
(n:N;h:A;t:vectsn)

We can tell when a program is finished—once all the placeholdsngave gone. We

may now solveF, call andreturn as in the previous case. This leaves us with a real
termf whose intensional behaviour corresponds to the associated equational program,
which satisfies Coquand’s conditions by construction.

Our example becomes

vlasty (vconsht) = h
vlasts, (vconsht) = vlast, t

This is a rather subtle way to writdast which makes crucial use of the extra indexing

information. Navely erasing the indices in the hope of recovering a function over
ordinarylists yields

172

last (consht) = h
last (consht) = lastt (x)

This is clearly not the right function, or indeed a function at all.

Of course, we could have sptiand built the usual

vlasty (vcons hvnil) = h
vlasts, (vcons h (vconsh't)) = vlast, (vconsh't)

| do not wish to embark on a discussion of the relative merits of these two programs—I
will merely point out that computation on the indices of a type behaves differently from
computation on the type directly, and sometimes interestingly so.

The combined effect of these tactics is to allow a similar style of interactive program
development to that available in ALF—not only can we build the same programs, but
we can do so in the same way.

However, this is not enough. Having built these programs, how do we store them?
For OLEG, the representation of the program is still a ghastly term involving guarded
recursion, case analysis and unification, all painstakingly recorded. Why can’'t we
just write the pattern matching equations down? The construction of programs in this
section has relied on knowing more than just the equations—we have also exploited the
justification that the equations satisfy Coquand’s conditions, and we have recovered a
process for building those justifications interactively.

In the next section, | consider how much we can do with just the equations.

6.3 recognising programs

The question asked in this section is ‘for which pattern matching programs can we
recover the justification?’. Sadly, as we shall see, the answer is not ‘all of them’.
Nonetheless, it is worth analysing at what point the problem becomes undecidable,
with a view to building a system where we can store enough information to allow
the recovery. The aim is to describe a classeafognisableprograms. | have made
some progress in this direction, although there is work still to be done. | feel some
discussion of the problem is worthwhile, not least because the techniques described
here are sufficient to recognise all the examples in this thesis, which will save me the
trouble of describing the construction.

173

Our existing tactical presentation of program construction will be of assistance to us.
We have built ourselves a structural editor for acceptable programs. Let us now imagine
this editor being used not by humans but by a mechangcaigniserwhose task is to

take a set of pattern matching equations and build the program. This echoes the view
| have taken of the constructions with which we may equip our datatypes—they make
use of the tools we have developed for theorem-proving, ie the structural editing of
OLEG terms. | know relatively little about writing compilers, but it seems to me that a
promising first move is to build a structural editor for the target language.

The three tactics from the previous section divide recognition into three phases:
¢ identify an argument position on which the recursion in the program is guarded
(and applyprogram)
e show that the patterns form a covering (by applyspdjt)
e fill in the right-hand sides (witheturn)
The first and third of these are easy. We may simply check each argument position
in turn for one which satisfies the guardedness condition before apglyogyam.

Meanwhile,return codes up exactly the operation we need. It is the second phase,
checking the covering, where undecidability creeps in.

6.3.1 recursion spotting

Given a goal

Co

7goal: VX:S. T
and a pattern matching program of arity
5=t (y:Y))

Itis easy to check for recursive callsftm thet;. Itis also easy to find for each equation

the seRR; of argument positions which satisfy the guardedness condition. We may say
that non-recursive equations are guarded in all their argument positions. Coquand’s
criterion requires that the intersection of tRebe nonempty. If so, we may apply the
program tactic for any of the indicated positions.

174

Itis possible that this procedure will yield a choice of positions. While any of them will
do, we may still have a preference. For example, structurally recursive programs over
vects orfins are necessarily also guarded on their natural number indices. It does not
really matter which we choose, but | would prefer the recursion to be on the datatypes
themselves, rather than the indices, as this produces a justification which seems to me
more intuitive.

Now we have found, we may apply
program n X,

This leaves us with subgofland its associated equation
[fo] X =7 (X:9S)

Now, let us relate th@rogram equations we are trying to construct with the asso-
ciated equations in the current state of the construction. | call the latterothes-

ing equationsbecause their patterns are guaranteed to form a covering. In particular,
we are certain that each program equatiooageredby exactly one of the covering
equations—only one of the covering patterns may be instantiated to give each program
pattern.

For each covering equation, we may collect the program equations it covers—this is

just a first-order matching problem. There are three possibilities:

e there is one equation, and it is coveeedactly, meaning that the covered equa-
tion also covers its coverer—the patterns are the same, up to renaming of vari-
ables andeturn is now applicable

e there is at least one covered equation, but none covered exactly, so splitting will
be necessary

e there are no equations covered—this means either that the program is incom-
plete, or that there is nothing to cover—an undecidable type inhabitation prob-
lem

Let us look at each case in turn.

6.3.2 exact problems

If we have reached the stage where a covering equation
175

£ =2 (V:Y)

exactly covers a program equation
f§, =t (V:V))

then we may apply tactic
return t;

We know that the guarded recursive calls will be available to us, so we complete this
branch of the justification.

6.3.3 splitting problems
We have a covering equation
118 =2 (¥:V)
which covers several program equations

foisi =t (V,:Y))

whereo; is a (matching) substitution from thyeto terms over thg'.

Each time we split a covering equation, we introduce at least one more constructor
symbol into its patterns (since patterns may be nonlinear, replacing a pattern variable
by a constructor form may add more than one constructor symbol to the pattern). We
may exploit this property to measure how far away the program equations are from be-
ing covered exactly. In order for a matching to exist, a program equation must contain
at least as many constructor symbols as the covering equation, so we may simply count
the excess.

Supposd; covers equation and is then split into several cases, one of whigisay,
coversi also. We know the constructor excess of equatioverf;, is strictly less than

that overf;, because thg, patterns contain more constructor symbols. Hence, we may
keep splitting problems until they become exact or empty and be sure that the process
will terminate.

Which split should we make? In order to see this, we must expand each of the program
equations in terms df. We know

176

fO'igj = fj O’iy <>

where the tuple is just the collection of accessible recursive call values

If there is ay, such that each;y, is constructor-headed, then is a candidate for
splitting. If that split is successful, constructor symbols will appeay, atyielding
simpler subproblems.

Ideally, everything will be in constructor form, splits will always yield solvable unifi-
cation problems, so we may split any of the candidates and carry on. Which candidate
should we choose? | would suggest we prefer candidates higher up the type depen-
dency hierarchy, as these may induce splits in other arguments by unification. For
example, if we are building a covering of thects, splitting a vector will automati-

cally split its length intd) ands cases, while merely splitting the length will leave us
with work still to do on the vector.

Even if there are awkward non-constructor expressions involved, there will only be
a finite number of candidates at any stage, so we may keep trying to split until one
works. It is conceivable that, in an impure world, splitting something too early may
yield unsolvable unfication problems later. For the sake of argument, we may con-
sider the recogniser to be nondeterministic—any justification will do. This is far from
satisfactory, but it is safe.

6.3.4 empty problems

We have a subgoal

Co

but no program equations to give us a clue what should go on the right-hand side,
or how to do any further case splitting. This either means that the programmer has
forgotten a case, or else one of thg is empty, and there is morally no need to explain
what should happen, as the case cannot arise.

Types can be empty for arbitrarily subtle reasons—the type inhabitation problem is
undecidable. Even if we restrict everything in sight to constructor forms, we will still

be able to code up the halting problem as a datatype inhabitation question (see table
6.1). Some empty types, such as the simple type with one step constructor and no
base constructors, require an inductive argument to prove them empty. Others may

177

eventually disappear after enough case splitting, but there is no way of telling how
much is required.

If we cannot be totally clever, can we be totally stupid? That is, can we reject these
problems out of hand? Unfortunately not. The elimination rule for@hgpe has no
-reductions and thus corresponds to an empty program—if we are to recognise the
recursion operators provided for datatypes as bona fide programs, we shall have to be
able to solve some empty problems.

Having rejected trying zero and infinity steps of case splitting, the only other intuitively
plausible option is one. Let us try one case split on each argument in turn, and if any
proves the goal, we have success. Otherwise, the problem is too hard and we fail to
recognise the program. This is enough to allow us to ignore cases with arguments in
types likeQ, fin 0 and so on. The idea is that a typeotsviously emptyif there is no
constructor-headed expression which inhabits it.

Effectively, the programmer must deal with non-obviously empty types explicitly, by
calling subprograms which eliminate them. If we construct a program interactively
which takes several steps of splitting to dispose of a type, we may represent the last
step by an obviously empty subprogram which gets called from the last case where
a pattern existed. This effectively records the splitting process used to dismiss the
type. If we find ourselves repeating ourselves, perhaps we should be able to register
commonly used emptiness proofs in such a way that they are tried along with splitting
whenever an empty problem is encountered.

It is conceivable that one search path through checking a covering may lead to only
obvious empty problems, while another may lead to a non-obvious empty problem.

Once again, we may save ourselves by crude nondeterminism. Whether we can do
better remains to be seen.

6.4 extensions

| feel | should make brief mention of a number of obvious extensions to the class of
programs we should be willing to consider, none of which is particularly controversial.

6.4.1 functions with varying arity

In simply typed languages, we are not used to seeing functions with varying arity.
Certainly, the use of curried functions is commonplace, but there is nothing serious

178

e basic datatypes

start : state hali - state otherstates

blank : symbol ~* Othersymbols

left : move right : move

¢ describing the machine

transition = state xsymbolx state xsymbolx move
transitions = list transition
tape = (tsil symbol) xsymbolx (list symbol)
configuration = state xtape

(tsil is the type of lists built by adding elements at the right-hand end with the
constructosnoc. | overloadnil.)
¢ list membership (for any element typg

h:A t:listA h: A T:memberxt
find ht: memberh (consht) seekh T : memberx (consht)

e updating the tapeuppdate : tape — move — tape — Type)

s:symbol r: listsymbol
Iblank s : update (nil;s;r) left (nil; blank;conssr)

| : tsilsymbol t s:symbol r: listsymbol
Imove ltsr: update (snoc lt:s;r) left (I;t;conssr)

| : tsilsymbol s:symbol
rblankI's : update (I;s; nil) right (snoc I s; blank; nil)

| : tsilsymbol s, t:symbol r:listsymbol
rmove Istr: update (l;s;constr) right (snocls;t;r)

e one stepgtep : transitions — configuration — configuration — Type)

tr: member (g;s;q;s’;d) trs u:update (I;s’;r) dtape
dotru:steptrs (q; (I;s;r)) (q’;tape)

¢ halting problemfalts : transitions — configuration — tape — Type)

trs : transitions tape : tape
stop trs tape : haltstrs (halt; tape) tape

step : steptrs XY halts: haltstrs Y tape
go step halts : halts trs X tape

Table 6.1: coding the halting problem

179

happening thatn-equivalence cannot explain. There seems to be little motivation for
allowing functions to belefinedwith arity varying between pattern equations.

By contrast, there are some dependently typed functions for which such a relaxation in
the syntax would be of genuine benefit. These tend to arise when we write one function
to compute types involved in another. For example

Sum : N — Type
SumO = N
Sumsn = N — Sumn

sum : Vn:N. Sumn

sum0 =0

sumsOx = X

sumssnxy = sumsn (plusxy)

The first argument ofum is the number of subsequent arguments, and the function
computes their sum. You might well point out that | could make the arities uniform
by A-abstraction, but that is because | am not doing any pattern matching on the newly
exposed arguments. Of course, in any case | can always introduce subprograms, but
why should | have to?

You might also suspect that such functions are uncommon in practice, and thus not
worth the trouble. There are three things to say to that:

e Dependently typed programming is still in its infancy—we do not know which
techniques will turn out to be common in practice.

e This is the kind of technique which is used somewhat less frivolously in strong
normalisation proofs—we compute a meta-level function type from an object-
level function type, then we compute the appropriate metal-level function to in-
habit it.

e This sort of behaviour is already supported in as industrial a programming lan-
guage as C. The remarkably commprntf command takes a formatting
string, followed by arguments appropriate to the fields to be printed—you hope.
Of course, there is no check to see that it makes sense. C compilers do not blink
twice at

printf(“%s%s%s”);

180

but the effect is seldom benign. Dependent types sanitise these rather frightening
functions.

We may accommodate this behaviour by adjusting the definition of covering to allow
lengthening of pattern sequences by fresh pattern variables, provided the result type
beforehand is functional. These extended patterns may then be split as before. Each
lengthening can, of course, be replaced by a call to a subprogram in order to recover
the uniform arity of the original. The treatment of recursion is as before. Recursive
calls can be recognised provided they have at least the arity of the pattern to which the
guarded recursion principle was applied. Longer sequences of arguments can be cut in
two, leaving a recursiveall of the right length which is then applied further.

6.4.2 more exotic recursion

While it is sufficient to facilitate functions which are only recursive on one argument
position, it is nonetheless convenient to allow more complex structures to be built into
a single function, rather than forcing the programmer to break them up. The traditional
example is Ackermann’s function:

ack:-N—- N — N

ackOn = sn

acksm0 = ackms0
acksmsn = ackm (acksmn)

The recursion in this function Iexicographicin the sense that either the first argument
decreases structurally, or else it stays the same, but the second argument decreases. It
can be split into a pair of Coquand-accepted primitive recursive functionals as follows:

acky, : (N —N) - N— N

ack,,, ack,, 0 = ack,, sO

ack,,, ack,, sn = ack,, (acks,, ack,, n)
ack:N—N— N

ack0 = s

acksm = ack,, (ackm)

What has happened here? For a start, the raah function has beem’d into a
functional. This enables trsen case to be delegated to the auxiliary functaak,,,.

181

This receives as an argument the functaock m, available by structural recursion—it
is thus free to apply this function, as well as making its own guardedalls.

Would not all but the most die-hard of origami programmgnfer to write the lex-
icographic version? In fact, we already have the tools to construct it interactively—
suppose we have reached the following stage:

Co

?Ack :VYm,n:N. Type
tcall : Vm,n:N.(Ackmn) - N
7return: Vm,n:NL. N — Ackmn
lack, = Arecs: 1
An N
sn
7ack, :vVm :N
Vrecs: (Vn:N. Ackmn)x(NAux ... m)
vn :N
Acksmn
lfack = NFix...

Therecs argument gives us access to guarded recursion on the first argument. We may
now add guarded recursion on the second (for the same first argument) by eliminating
n with NIFix, fixing m andrecs:

Co

7ack,:vm : N
Vrecs: (Vn:N. Ackmn)x (NAux ... m)
vn :N
Vrecs: NAux (Ack sm) n
Acksmn

Case splitting om now gives us

8We would not need to passk,, explicitly through the recursion if we could defiaek,,, locally
to the successor case a€k.
9An origami programmer only uses pattern matching to define fold operators.

182

Co

7acks,:Vm N
Vrecs: (Yn:N. Ack mn)x(NAux ... m)
Vrecs': 1
AcksmO
7ack,,:Vm : N
Vrecs: (Yn:N. Ack mn)x(NAux ... m)
vn :N
Vrecs': (Ack sm n) x (NJAux (Ack sm) n)
Acksmsn

For theack,, case, we may project the appropriate componentwt Looking at
ack,, in more detail, the nested right-hand side translatesdiandreturn to

Co

7ack,;:: Am N
Arecs : (Vn:N. Ack mn)x (NIAux ... m)
An N
Arecs: (Ack sm n)x (NAux (Ack sm) n)
?rec; : Acksmn
?rec, : Ack m (call recy)
return (call rec,)

rec, is solved fromrecs’ andrec, is solved fromrecs. The definition is complete.

We can build quite complex structures with multiple eliminations by guarded
recursion—more even than lexicographic recursion on a number of argument posi-
tions. For example, we may define a function on lists of trees which at each recursion
replaces the head tree by its subtrees—some steps may make the list longer, but the
decomposition of the head tree guarantees termination.

The question of how to extend the class of recognisable pattern matching programs
into this more exatic territory is an important and interesting one. Much attention has
already been paid to the simply typed case, for example, in Manoury and Simonot’s
‘ProPre’ [MS94] system. Further, Cristina Cornes has equippeg With a substantial
package translating equational programs with relatively interesting recursive structure
into constructor guarded fixpoint expressions [Cor97].

Further investigation is beyond the scope of this thesis. However, | shall nonetheless
write such equational programs in the following chapter, since they are shorter and
clearer than their expanded versions where each recursion has its own subfunction.
When | do so, | shall always be careful to point out the justification, imagining that we
are deriving the function interactively.

183

Chapter 7

Some Programs and Proofs

We have now developed substantial technology for constructing dependently typed
functional programs, and also for reasoning about them. Let us now put that technology
to work.

In the course of this chapter, | offer some examples which | believe illustrate the ad-
vantages afforded by working with more informative types. We shall see new versions
of old programs which are tidier and easier to prove correct. We shall see applications
of our elimination rule technology which aid program discovery as well as verification.
Hopefully, we shall see sense.

Later, | shall focus on the manipulation of syntax as a programming domain which
shows off to great effect the expressive power of dependent pattern matching. In par-
ticular, | shall construct and prove correct a first-order unification algorithm which has
the novel merit of being structurally recursive.

7.1 concrete categories, functors and monads

In the examples which follow, we shall examine methods of working with syntax via
dependently typed functional programming. The behaviour of the functions we shall
develop fits neatly into a categorical treatment, so it is worthwhile building some tools
for packaging these functions and their properties categorically.

We shall not need any particularly heavy category theory, which is just as well, as far

as | am concerned. For a substantial formalisation of category theory, see [SH95]. In
fact, we may restrict our attention ttoncrete categories—those whose objects can

be interpreted as a family of types and whose arrows can be interpreted as functions
between types in the family.

184

7.1.1 records for categories

So, what shall we say is a category?

The idea is not that objects are types and arrows functions, but that both are data which
can beinterpretedas such. Imagine we are modelling a programming language cate-
gorically: we might have OeG datatypes representing the types and functions of that
language, together with translations which model those types and functionsas O
types and functions. Those datatypes give us the objects and arrows of a concrete
category, and the translations their interpretations.

Let us fix the types of objects and arrows.

O : Type
—:0 — O — Type

Now, let us define a record tygéoncrete to contain the things we must supply to
have a meaningful category:

1:¥S:0.S — S
oVR,S5,T:0.(S—T) - (R—S) — (R—T)
[[]:O — Type
[]:¥S, T:0.(S—T) — [S] — [T]
Respl:vS: 0. Vs:[S]. [is] s~
RespC:VR,S, T:0.Vf:S — T.Vg:R — S.Vr:[R]. [fog] r~ [f] ([g] 1)

| think it is safe to overload-]. Confusion between the interpretations of objects and
arrows will not arise in these examples.

Saunders MacLane [Mac71] defines@ncrete categoryto be a category equipped
with a faithful functor intoSet That is, the interpretations must not only preserve
identity and composition, but must alembedthe objects and arrows iBet | have
given no such condition. It begs the question ‘what is the appropriate equality on
objects and arrows?’.

In type theory, as in marriage, fidelity comes down to the way you see thingss'®
intensional equality is too discriminating to be useful here. | propose to consider two
arrows the same if their interpretations are extensionally equal: interpretations are thus
trivially faithful. Consequently, it makes little sense to consider the category sepa-
rately from the functor which interprets it—the functor properties are how we know
the category has the traditional absorption and associativity laws with respect to this
extensional notion of equality.

185

Correspondingly, if, g : S — T, let us make the abbreviation
frag = Vs:[S]. [f] s~ [g] s
The usual absorption and associtivity properties

foraf

Log=(g
(fog)ohafo(goh)

all follow by reflexivity.

Discharging the parameters, we have our notion of category. | shall typically write
Concrete —

to mean a category for a given notion of arrow, leaving the object type implicit.

For any type familyFam : O — Type, we may define

—_

Fam = AS, T:O.FamS — FamT : O — O — Type

We may easily define an operatiphon such families such that

>

[Fam| : Concrete Fam

with objects interpreted vieam and arrows, identity and composition as themselves.
This is the usual notion of functions between types in a family, represented within our
defined class of category.

In particular, if we lefType be the identity function ofype, then[Type] is the category
of OLEG types.

As a special case, we may pretend any typeal-indexed type family and manufac-
ture the one-object catego[¥] of its endofunctions.

We will encounter categories whose arrows are not represented directlyeasfihc-

>

tions. A rather glib example is thEoncrete N whose arrows live irfN (actually,

1 — 1 — N, but never mind), witm interpreted agplus n. The identity isO, the
composition iglus, and hence the property that interpretation respects compaosition is
just associativity.

186

7.1.2 records for functors

A functor takes objects and arrows from one category to objects and arrows of another,
preserving identity and composition. We can certainly write these requirements down
as a parameterised record.

Let us fix source and target categories, then open them:

O? : Type

—*: 0% = O° — Type
C’: Concrete —°*
O : Type

—t: O = O — Type
C': Concrete —!

C*[e%; 0% [1°; []"; Respl';RespC’] C'i; of; [-]'; [-]'; Respl’; RespC']

Relative to these, let us define a record tfpactor with fields

Fo:0° — O'
Fa:...(S—*T) —» (FOS) —! (FOT)
PreskEq:...f~g — Faf =~ Fag
Presl....Fa 1§ ~ (s
PresC:...Fa (fo°g) ~ (Faf)o! (Fag)

Note that | have left out some human-inferrable universal quantifiers for the sake of
readability.

The extra condition—preservation of extensional equality of arrows—is necessary. Itis
possible for two extensionally equal source arrows to be distinguished computationally,
and hence mapped to different arrows in the target category, unless we expressly forbid
it.

Of course, when writing functor types, | shall suppress all the details and just leave
Functor C* C'.

By way of example, every polymorpHitype family has an associated functor. It
would be nice if these were manufactured automatically. | shall outline the functor for
maybe.

lin the ML sense

187

maybeF : Functor [Type| [Type]

maybeF = (Fo =maybe
Fa=\S, T:Type. \f:S — T. Ax:maybe S.
X
yess | yes (fs)
noS | noT
Preskq= ...
Presl= ...
PresC= ...)

This functor just lifts functions to their exception-propagating images. | use a ‘table’
notation for case expressions: the column heagimglicates what is being analysed,
underneath it are the patterns, and to the right are the corresponding return values—
this notation is easily interpreted by pattern matching. The three remaining fields may
easily be proven by invertinga, ie case analysis on thmaybe-typed argument
implicit in the extensional equations.

Finally, one irritating aspect of intensional type theory is that we may have to work
with several implementations of, extensionally speaking, the same function. Suppose
we have another candidafa’ for the arrow parfa of a given functor, with the same

type and extensional behaviour. It would be really annoying if we had to redo the
proofs of the properties for the functor wila replaced byrFa’, but fortunately, we

may make this argument once and for all.

The point is that the functor properties concern only the extensional behavibay of

so we may construct a functimameFunctor which takes our source functdfa’

and a proof thaEa andFa’ have the same extension, returning the functor #éthon
arrows and all the same properties. | shall not give the details here—they amount only
to unremarkable rewriting.

7.1.3 records for ‘concrete’ monads

The formalisation of monads | shall give is a ‘concrete’ version of the Kleisli triple
presentation due to Manes [Man76], which he showed equivalent to the convention
definition [Mac71] by an endofunct@f with natural transformationgand ..

DEFINITION: Kleisli triple

A Kleisli triple (T',n, () on a category’ is given by

2(is pronounced ‘bind’.

188

e afunctionT from C-objects toC'-objects

e an object-indexed family of morphismse C(X,TX), interpreting
the elements ok in its T-image

e a family of functions(, indexed by a pair of objecty, Y, from
C(X,TY)to C(TX,TY)

satisfying the equations

o ((f)o)4 = () o (90)

The Kleisli category arising from such a structure has the same objects
asC, andX toY arrows given by th&'(X,TY"). n gives each object its
identity, and the compositionis

fog = flog

Consequentlyyo - gives a functor front' to the Kleisli category, and| gives a functor
from the Kleisli category to the image 6f underT. The composition of the two is
thus a functor which do€s to objects.

The presentation of monads given below is based on the idea of a functor which is split
inton o - (below)-) and-(.

Given two concrete categories and a functor, we may describe what it means to be a
concrete monadwhich splits that functor. Let us keep the same target and source
categories opened as above and fix further

F : Functor C* C!

Let us opert with the names given by the fields.

A concrete monad splitting captures a class of ‘diagonal arronS"\, T (S, T : O%),
which are interpreted ifiS]° — [Fo T]". These will be the arrows of the Klgisli
category, and they must be equipped with a notion of compositimhich behaves
under interpretation like the composition in the Kleisli category.

Think of themaybeF functor, viewingyes as packaging data amb as representing
an error condition. Arrows in the source category are ‘reliable’ functions acting on

189

actual data; arrows in the target category are ‘error-aware’ functions—they may han-
dle errors or create them. The functor takes reliable functions to ‘error-propagating’
functions—they will give actual output for actual input and transmit error conditions.
A ‘diagonal arrow’ is an unreliable function—it accepts actual data, but may result in
an error. A monad splittinghaybeF characterises a class of these unreliable functions
such that

e every reliable functio has an unreliable image (which just packages the output
with yes) given by|)f

if f:S— Tthen)f:S — maybe T

e every unreliable functiog in the class has an error-aware image (which propa-
gates input errors, but may make new output errors) givegyby

if g: S — maybe T theng(: maybe S — maybe T

e the combinatior)f(does the same thing to source arrowsresybeF

if f: S — Tthen)f(: maybe S — maybe T
More formally, let us fix the carrier type for diagonal arrows
N O — O° — Type

and collect the relevant details in a record tyyyjenad with fields

(e (S\,T) — (FOS) —! (FOT)

o (SNT) = (RN\,S) — (R\,T)

[(SN\T) = [SI' = [T]
Monadl:...[f{]" ([):2] s)~ [f] s
MonadC:...[fog] [f01° ([a] 1)

r~
Split:. ..)f| ~ Faf
FrontEq:...f~g —)f ~)g
FrontC:...)(fo*g) ~
Backeq:...f~g — f(~ g
BackC:... (fog)(~ (f{) o' (g()

This may look like a lot of stuff, but remember that the diagonal arrows might not
be represented functionally—they might be something really concrete like association
lists. The operationf, -(ando should be viewed as syntactic. We have to ensure that
they have the right semantics. Of course, if they are just functions and their interpreta-
tion is application, then this is very easy to do.

190

ThemaybeF functor has trivial functional representations of arrows source and target.
For the correspondinghaybeM : Monad maybeF, we take the diagonal arrow
type to beS — maybe T and the interpretation as applicatidn.just composeges

on the back of its argument whilst is defined by case analysis:

{
{

(yess) =fs

f{
fl (noS)=noT

Composition is defined in accordance with the requirement on its interpretation:
(fog)r = f{ (g1
As for the properties

e Monadl, MonadC andFrontC hold by reflexivity.
e Split andBackC hold by case analysis then reflexivity.
e FrontEq holds, rewriting by the premise.

e BackEq holds by case analysis, then reflexivity in the case and rewriting by
the premise in thges case.

There is a function which constructs the (concrétie)sli category for a given concrete
monad.

Kleisli : Monad ,— Concrete \,

The Concrete so constructed has operations:

= g
[[S]]’“_Z [Fos]'
" = I41°
Observe

191

] s~ [Degl® s (definition of .¥)
~ [hes(]" s (definition of[-]")
~ [Fa] s (Split)
~ [[LEFO S)H s (Presl)
~ S (Respl)

[Fokg]]* re [fogl®r (definition ofo*)
~ [(fog)(]' r (definition of [-]*)
~ [(fQ) o' (gQ)]' r (BackC)
~ [{{]" ([g(I') (RespC)
~ [f]* ([g]* 1) (definition of[-]")

7.2 substitution for the untyped A-calculus

In this section, | shall develop the technology to give a monadic [Man76, Mog91] pre-
sentation of substitution for terms with binding—in particular, the untyp®alculus

with de Bruijn indices [deB72]. Bellegarde and Hook [BH94] suggest the following
datatype, which Altenkirch and Reus [AR99] describe as ‘heterogeneous’, and Bird
and Paterson [BP99] describe as ‘nested’.

X : Type
Lam X : Type
X: X s, t:Lam X t: Lam (maybe X)
varx:LamX appst:LamX lamt: Lam X

This datatype relativises terms to an arbitrary type of variablksan be defined in
SML, but recursion over it is necessarily polymorphic and hence unavailable. However,
Haskell now allows functions over such datatypes, so long as their types are supplied
explicitly.

In such languages, terms may not appear in types—this apartheid policy is advisable
because the terms often engage in such criminal activities as nontermination. Hence, if
we want to make some kind of indexed family, the indices must themselves be types.

This presentation works by usinpaybe as a kind of type-leve$, corresponding

to the idea that there is some number of variables and that abstraction introduces one
more. Also,Lam Q@ is a type of closed terms. However, this hacked-up type-level

3In fact, our scheme of definitions restricts the variable type to inhabit a smaller universe than the
terms over it.

192

N has only introduction rules: no computation on indices is available. Fortunately,
substitution is structural on terms.

We need no such Group Areas Act. In our system, terms are as trustworthy as types.

We can use thiNl God invented, and thein to make sets of variables.

n: N
Lamn : Type

x: finn s;t:Lamn t: Lamsn
varx:Lamn appst:Lamn lamt:Lamn

Lam n is the type of\-terms withn free variables. Later, we shall see operations on
syntax which are made structural by the availability of recursion on this index.

Placing these types in our categorical setting, we have

—

[fin] : Concrete fin

—_

[Lam] : Concrete Lam

The objects in these categories are elemenld,ohterpreted vidin andLam respec-
tively. The arrows are function spaces interpreted by application. Hence we effectively
abbreviate:

m—/n — finm — finn
m—Lin — Lamm — Lamn

In this section, we shall be looking to build a functor
Rename : Functor [fin] [Lam]

which, for every arrow on a variable spacefin], gives us the operation on terms from
[Lam] over those variables renaming them as indicated. The object part of the functor
is just the identity orNl. We may then view functions in the type

m\,n = finm — Lamn

as simultaneous substitutions framvariables to terms ovar variables and seek a
monadic implementation

193

SubstM : Monad Rename *\

Note thatRename is not an endofunctor, as in the conventinal notion of monad, but
we can still think of splitting it in a monadic way. The consequent Kleisli category will
thus interpret substitutions as functions from terms over one set of variables to terms
over another.

Before we can work with terms, we need some basic tools for working with variables
in the de Bruijn style.

7.2.1 lift, thin and thick

de Bruijn’s insight was to see a variable not just as an indentifier, but as a reference to a
binding. Variable indices count outwards through Akindings, 0 for the most local,
1 for the next and so on. For example,

M. Ax. f x becomes\\1 0

Every time we go under a binder, the new variable is 0 and the old ones get incre-
mented. We may represent this distinction by the constructors dirtHamily.

Now, suppose we haveranaming—an arrowf : m ~—/ n. In order to apply such a
renaming across a term, we must explain what to do with the expanded variable space
under dam—it must affect only the free variables embedded$yeaving the newly
boundfz variable alone.

f :sm—/sn
f (fzm) = fzn
f (fsx) = fs(fx)

This is a recognisable program.

Discharging over arbitrarp, m andf, we obtain the functiondift which takes any
suchf to the appropriaté. | suppress the boring arguments when | apply it.

lift : Vm,n:NL. Vf:finm — finn.finsm — finsn

liftf (fzm) = fzn
liftf (fsx) = fs(fx)

lift gives us the arrow part of the functor
194

Lift : Functor [fin] [fin]
Lift = (Fo=s
Fa = lift
Preseq = ...

Presl= ...
PresC=...)

There is a recursion induction principle fbft which we may regard as generated
automatically from its equational definitiorift is not a recursive function, so it is
perhaps more informative to call it @amversion principleliftinv:

m,n: N
f:m—/n
® : finsm — finsn — Type

® (fzm) (fzn) @ (fsx) (fs (fx))

Vx:finsm. ® x |lift f x

The three functor properties left elliptic above follow easily by inversion. | shall show
PresC and leave the other two to your imagination.

Co

?PresC: vr,s,t: N

Vi is—lt
Vg r—'s
:finsr

lift (f o g) x ~ lift flift g x

Inverting the boxedift application, we acquire two subgoals

o

?PresC,: Vr,s,t: N

v sl t
Vg r—/'s
vx :finsr

lift (foqg) (fzr) ~Iliftf (fzs)
?PresC :Vr,s,t: N

v sl t
Vg r—/ls
vx o finr

lift (f o g) (fs x) ~ lift f (fs (g X))

195

The two conclusions then reduce respectively to

fzt~fzt
fs (f(gx)) ~fs (f(gx))
As you can see, these are both reflexive.

We can usdift to define an important class of renamings—tthienings. These add
a new variable to the set, but not necessarily at the tifghere aren old variables,
there aresn choices for the new variabbe thin x is the renaming which shuffles the
old variables in around the new one, without changing their order.

The idea is, morally:

thinxy = vy, ify<x
y+1,ify >x

In particular,thinxy # x.

Now, if the new variable i$z n, then thinning is just thés embedding. Otherwise, itis
alifted thinning!

thin: Vn:N.finsn — (n —/ sn)

ie

thin : Vn:N. finsn — finn — finsn
thin (fzn) = fs,

thin (fsx) = lift (thinx)

Thinning provides us with an alternative viewfofsn. Every variable is either the new
one,x, or an embedded old onthin x y for somey : fin n. We may imagine a partial
inverse tathin which makes the distinction, with the following extensional behaviour:

thick : Yn:N. finsn — finsn — maybe (fin n)

thick x (thinxy) yesy
thick x X no (fin n)

~
~

thick is a refinement of the decidable equality for the finite sets—it not only tells us
whether two elements differ, but also in what way.

We can get some help writirtgpick if we try to prove the above pair of equational laws
(for a common abstracted by recursion induction othin, as defined in the obvious
way. We thus seek:

4Thinning’ is a liquid metaphor.

196

o

?thick:vn : N
VX, y: finsn
maybe (finn)
?thick;: V[n] :N

:finsn
Ythick,: Vy:finn
thick x ((thin x|y) ~ yesy

thick x x ~ no (fin n)

The abstraction ok outside both equations allows them to be transformed simultane-
ously. The induction yields subgoals:

Co

?thick :vn :N
VX, y: finsn
maybe (fin n)
7thick,,: vn o\
Ythick,: Vy:finn
thick (fzn) (fsy) ~yesy
thick (fzn) (fzn) ~ no (fin n)

7thick;,: Vn N
VX : finsn
Wi :finn — finsn

Vhyp :Xthick,: vy: finn
thick x (fy) ~ yesy
thick x x ~ no (fin n)
thick,: Yy finsn
thick (fsx) |liftf y|~yesy
thick (fs x) (fs x) ~ no (fin sn)

We now know how tadhick atfz n. We can gain further information about tfecase

by inverting thdift. Allowing that we can do this inside the-binding by appropriate
algebraic manipulation, we obtain

197

o

?thick;,: Vn N
VX :finsn
Wi :finn — finsn

Vhyp :Xthick,: Vy: finn
thickx (fy) ~ yesy
thick x x ~ no (fin n)
Ythick,: Xthick,,: thick (fs x) (fz sn) ~ yes (fz n)
vy finn
thick (fsx) (fs (fy)) ~ yes (fsy)
thick (fs x) (fs x) ~ no (fin sn)

Stripping away the excess notation, we have certainly found the base cases to our
function:

thick (fzn) (fzn) = no(finn)
thick (fzn) (fsy) = yesy

thick (fsx) (fzsn) = yes(fzn)

We have also found out some useful information about the step case. It must satisfy:

Vy:finn. thick x (fy) ~yesy
A thick x x ~ no (fin n)
vy:fin n. thick (fs x) (fs (fy)) ~ yes (fsy)
A thick (fs x) (fs x) ~ no (fin sn)

Effectively, each branch of the conclusion propagates the result of the corresponding
recursive calllyes staysyes andno staysno®. That is, the recursive value is passed
on by the appropriate monadic liftirjds, (. Hence the whole program is

thick (fzn) (fzn) = no(finn)

thick (fzn) (fsy) = yesy

thick (fsx) (fzsn) = yes(fzn)

thick (fsx) (fsy) = |fsy{ (thickxy)

By construction, this satisfies the three base case equations and reduces the step case
to

Vy:finn. thick x (fy) ~yesy
/\thickx x~no (finn)
vy:finn. fsy{ (thickx (fy)) ~yes (fsy)
A Msn((thick x x) ~ no (fin sn)

SMatthew 5:37
198

This holds by rewriting the conclusions with the hypotheses. The desired extensional
introduction rules have thus been satisfied. The corresponding non-computational in-
version rulethickinv, is the real prize:

n: N
X :finsn
® : finsn — maybe (finn) — Type

® x (no (finn)) & (thinxy) (yesy)
Vy:finsn. @ y|thickxy

thickinv tells us that there are two possible outcomes fibmck and under what
circumstances they arise. Fixing ‘new variablethen anyy is eitherx (in which case

thick returnsno) or an ‘old variable’ thinned (in which cagblick identifies it). It is

a very useful rule, because it effectively performs a constructor case analysis on the
outputof the function. We will see just why this is so helpful later on.

Can you guess how we prove this rule? That'’s right:tlck’s recursion induction
principle, making sure to keep in the scheme, so that any inductive hypotheses are
themselves elimination rules. We start with

£
?thickinv: V{n]: N
V[x]: finsn
Vo :finsn — maybe (finn) — Type
Von: @ x (no (finn))
Voy: Vy: finn
® (thinxy) (yesy)
vy :finsn
® y|thick xy

| have indicated by boxing how the recursion induction scheme is abstracted. We
acquire three base subgoals, corresponding to the base cases of the function, and their
conclusions all follow directly fromp, (off the diagonal) orp,, (for x =y = (fz n)).

It is on the step subgoal where you should concentrate any remaining interest you can

muster.

199

o

?thickinv,:vn : N

VX, y: finsn
vy :maybe (finn)
Vhyp: V® : finsn — maybe (finn) — Type

Von: @ x (no (finn))

Voy: Vy:finsn

® (thinxy) (yesy)
oyy

V® :finssn — maybe (finsn) — Type
Vo, @ (fsx) (no (finsn))

Vo, :Vy:finsn
o (thin (fsx) y) (yesy)
Vy :finsn

® (fs[y]) (Msa{ [y']

We are not yet in a position to use eithgror ¢,, because we do not yet know which
applies. In the conclusion, the computation is blocked at the point wfesé is
applied toy’, the result of the recursive call, not yet in constructor form. However,
case analysis on the result of the recursive call is exactly the effect of the inductive
hypothesis. Eliminating with the indicated scheme, we obtain:

£
7thickinv,g,: C:)

Von: @ (fsx) (no (finsn))

Co

® (fsx) (fsn((no (finn)))

7thickinvg,,:
Voy: Vy:finsn
® (thin (fsx) y) (yesy)

Co

vz :finn
O (fs (thinx z)) ()fsn((yesz))

The liftedfs now reduces, propagating the two cases correctly. Both conclusions now
follow from the indicated hypotheses. The elimination rule holds.

In fact, the way the inductive step was proven shows us how this rule is useful in the
wider setting. Applying this rule unblocks computations which are waiting to do case
analysis on the result of a call thick, and these are very common. For example, we
may define the following function:

200

[-+— -] : Vn:N.Vx:finsn. Vt:Lam n. (sn N\ n)

thick xy
X—=ty = no (finn) | t
yesy | vary

[- —] (pronounced ‘knockout’) generates a substitution (function from variables to
terms) which removes, replacing it by a ternt over the ‘remaining variables’. A
source variablg other tharx, ie a(thin xy'), is mapped to thg’ given by removing

x from the variable set without reordering the others.

When proving properties of — -], we will see it reduce to the case analysigbick.

At this point, elimination bythickinv has exactly the effect required to unblock the
computation. We are interested in what cornasof thick, so the more conventional
elimination of what goes is a clumsy way to proceed.

Now that we have the tools to work with variables, let us turn our attention to terms.

7.2.2 the substitution monad splits the renaming functor

We have already decided that the object part of the furiRdorame is just the identity
onN. Itis also fairly clear that a renaming becomes a substitution just by composing
var on the back, ie

M x = var (fx)

Hencevar is the identity for substitution.

The remaining programming consists of the arrow paR@hame and the-{ opera-
tion of SubstM—the effect on terms.

It is fairly clear that we shall have

f((varx) = fx (a monad law)
f{ (appst) = app (f{ s) (f{ t)

It is not so clear how to pushunder a binder. We need something like

;‘<| (lamt) = lam (f(t)

201

wheref is the lifting of f which takes the source bound variable to (a reference to) the
target bound variable, and whose behaviour on the free variables respectsfthat of

Now, we have already defindiét to lift renamings. How do we lift substitutions? The
bound/free case analysis on the source variable is easy enough. We know what to do
with the bound variable, otherwise the case analysis also tells us which ‘old’ variable

f should be applied to. The latter yields a term over the old variables, which must
then be renamed to the free variables in the target set. Now, we know that the variable
renaming is jusfs,,, but we need this lifted to terms. That is, we need something like

sliftf (fzm) = var (fzn)
sliftf (fsx) = Dfsn{ (fx)

However, it is-(which we are trying to define, and applying it recursively to the result
of fis not structural.

One solution is to define the renamilFg operation in advance—we already know how
to lift renamings:

Faf (varx) = var (fx)
Faf(appst) = app (Fafs) (Faft)
Faf(lamt) = lam (Fa (liftf) t)

Once we have this, we can defisiét with Fa fs, for)fs,(, leaving us free to defing
in terms of it.

As Altenkirch and Reus point out, this involves writing two very similar functions
over terms, where one nonstructural function would do. Of course, the nonstructural
function saves three lines of code at the expense of a well-founded induction on an
ordering which they must exhibit and prove satisfactory. They suggest that, turning a
blind eye to the proof obligations, the nonstructural function is preferable, expressing
the vague hope that the carpet under which they are sweeping the actual work will one
day become magic.

As it happens, no carpets are necessary, magic or othergisadFa can be imple-
mented with a single structurally recursive function, provided it is made sufficiently
parametric. Suppose that for some type fariilywe have a function

f:finm — Tn

We can map this function across terms, provided we know
202

e how to converf output fromT n to termsLam n
e how to represent variables ihn

e how to lift functions betweefin sets andl sets

We already know how to do these things whers fin, so we have renaming—we can
then build the three operations for use wfieis \: . .

In fact, we will have an easier time proving the monadic behaviour of substitution if we
take this opportunity to generalise lifting from inserting new variablds @t inserting
them anywhere-thick andthin make this just as easy to implement. We only ever
usethick on variables, so the *how to lift’ requirement becomes ‘how to thin’.

The goal is

Co

AT : Nl — Type
AT :Vn:N.finn — Tn
ATLam:Vn:N. Tn — Lamn
AthinT: Vn:N.Vx:finsn. Tn — Tsn
map:vVm n: N

vf :finm — Tn

VYt :Lamm

Lamn

Subject to these parameters, we may first build liftingffdrom the thinning parame-
ter:

[iftT : Vm, n:N. ¥Yx:fin sm. ¥X':finsn. Vf:finm — Tn.finsm — Tsn
thickxy
iftTxx'Fy = | no(finm) | vT X

yesy' thinT X' (fy')

x is the ‘new’ source variable and is the corresponding target variable. The lifted
function useghick to distinguish new from old, and either embedwia vt or thins

the result off with thinT.

Themap function may now be written

map f (varx) = TLam (fx)

map f (appst) = app (mapfs) (mapft)

mapf (lamt) = lam (map (liftT (fzm) (fz n)) t)
203

Once the parameters are discharged, we may take:

Fa = map fin ./ var thin
thinL, x = Fa (thin x)
- = map Lam var .l thinL

Note that the notion of lifting used in renaming
liftT fin ./ var thin (fzm) (fz n)

is extensionally the same as thfé function we defined earlier. This follows easily by
inverting thethick contained ififtT. It therefore inherits all the same functor properties
viasameFunctor.

Our task is now to plug these into the relevant functor and monad. | am afraid to say
that a little forward planning at this point will pay dividends later. | will motivate it
as best | can. BotRunctor andMonad require the extensional equality of arrows

to be respected: conditions which will apply to b&th and-(. Since these are both
implemented bynap, it is worth proving this property fomap while the parameters

are still abstracted. The goal is

Co

’mapEq: vm,n: N
vi,g :finm — Tn

Vhyp : Vx: finm
fx~gx
:Lamm

map fx~[Map g ¥

You will, I hope, be unsurprised to learn that the technique | recommend is recursion
induction onmap. Eithermap will do—I have chosen the second. Three subgoals,

one at a time:

Co

mapEq,: vm.n: N
vi,g :finm — Tn

Vhyp : Vx: finm
fx~gx
¥x :finm

TLam (f x) ~ TLam (g Xx)
204

Rewrite byhyp. Next. ..

Co

’mapEq,: Vvm,n: N
vi,g :finm — Tn
Vhyp : ¥x: finm
fx~gx
Vs,t :Lamm
vs',t':Lamn
Vshyp: vf :finm — Tn
Vhyp: Vx: finm
fx~gx
map fs~¢

Vthyp: C::)

app (mapfs) (mapft)~apps't

If we plug hyp into shyp, we can turnimap fs) intos’. The same thing happens with
(map ft). In fact, all the inductive proofs (implicitly) oham we shall encounter

in this thesis have aapp case whose proof is ‘rewrite by the inductive hypotheses’.
From now on, | shall omit them.

Of course, the real interest is in tk@m case:

o

mapEq;: Ym,n: N
vi,g :finm — Tn
Vhyp : Vx: finm
fx~gx
vVt :Lamsm
vt :Lamsn
Vthyp: Vi :finsm — Tsn
Vhyp: ¥x: fin sm
fx ~ liftT (fzm) (fzn) g x
map ft~t
lam (map (liftT (fzm) (fzn) f) t) ~lam t

Now, equation respects function application, so we may strip off thes&he conclu-
sion is now

map (liftT (fzn) (fzm) f) t =t

and this is ripe for the inductive hypothesis, leaving us with

205

o

?hyp'’: ¥x: fin sm
liftT (fz m) (fz n) fx ~ liftT (fzm) (fzn) g x

ExpandindiftT, we find this is really

o

?hyp’: ¥x: fin sm

thick (fzm) x thick (fzm) x
no (finm) | vT (fzn) = | no (finm) | vT (fzn)
yesy thinT (fzn) (fy) yesy thinT (fzn) (gy)

The computation is blocked by the tvwibick applications, but we know how to invert
them. Indeed, since they have the same arguments, we may invert them simultaneously.
Of course, in this instance, a case analysix @ould have the same effect, but that is

only because we are thickening(&n), and we know howthick is implemented—we

want the effect of inversion, so we do inversion. We are left with two cases:

Co

7case,: VT (fzn) ~ vT (fzn)
7case,: Vy: finn
thinT (fz n) (fy) ~ thinT (fzn) (g y)

The first is reflexive; the second becomes so after rewriting hyith We have proven
mapEq and may now discharge the parameters.

Let us prove that renaming is functorial—we have already suppi@and Fa. It
remains to prove the propertiddesEq is just a special case ahapEq.

ThePresl property gives us the goal

o

7Presl: Ym: N
YVt :Lamm
Fa Lé t~t

Here, at last, my devotion to recursion induction comes unstuck. The trouble is
twofold:

e The scheme fomap recursion induction is abstracted over different source and
target objects and here they are unified. The elimination tactic will supply a
constraint to resolve this, but it is a little clumsy.

206

e The scheme is abstracted over an arbitrary renaming, but we are concerned with
a very particular one. Again the tactic will give us a constraint—that the function
is intensionally equal to/. We will only have extensional equality, so the proof
will not go through.

There is still much work to do to come to an understanding of the correct manipulation
of constraints for this kind of inductive proof. In the meantime, let us do structural
induction ont! The var andapp cases are eaSyHere islam:

o

?Presl;: Vm N
vt :Lamsm
Vthyp: Fa i, t ~t
lam (Fa (liftT... (fzm) (fzm) i) t) ~lamt

We may introduce the hypotheses and strip offldm®s. This leaves us with. . ~ t.
The inductive hypothesis looks a bit like that, so let us try transitivity (or rewriting
backwards).

Co

?Presly: Fa (liftT... (fzm) (fzm) i) t~Fa . {, t

Now we get a bonus for provinghapEq in advance. The goal asks us to show that
two renamings do the same thing to a terrif we applymapEq, itis enough to show
that they agree at every variable:

Co

?same: Vx: fin sm
liftT... (Fzm) (fzm) iy x ~ oJ, x

ButliftT. .. (fz m) (fz m) has the same functor propertiedifts including preservation
of identity—exactly the goal here.
Next, PresC:

Co

7?PresC: vt,r,s: N

Vi s/t
vg :r—'s
:Lamr

Fa (fo/ g) x~Faf|Fagx

5Trust me, I'm doing the proof as | write this.

207

Recursion induction is once more our friend. Eliminating the boxed application, we
again find easyar andapp cases. The&am case is very similar to that in the previous
proof:

Co

7PresC;: vt,r,s: N
vf sl t
Vg r—'s
vx :Lamsr
vx' :lLamss
Vhyp : vt: N
v ss —/ t
Fa (fo/ (liftT...g)) x~Fafx
lam (Fa (liftT... (fo/ g)) x) ~ lam (Fa (liftT...f) X)

Once again, strip theams, apply transitivity with the inductive hypothesis on the right,
and thermapkEq, leaving:

Co

?PresC;: VX: fin sr
liftT... (fof g) x ~IiftT...f(liftT...gx)

Quelle surprise! The property that the lifting functor preserves composition! Renaming
is a functor!

Now let us turn to showing that substitution is monadic. We have already sugplied
(composition withvar) and-(. Since the representation of is functional, we inter-
pret these arrows by application. We may also supply directly the Ktegdimanded
by MonadC:

fogx = f((g mx)

Monadl reduces to reflexivity anMonadC is true by constructionFrontEq fol-
lows becauswear respects equality whilackEq is an instance anapEq. FrontC
is reflexive. OnlySplit andBackC require any real work.

Split says
7Split: Vm, n: NI
vf :m—'n
vt| :Lamm

)(t~[Faft]

208

We can prove this with exactly the same plan as before. Recursion induction leaves
easyvar andapp cases. Théam case reduces by the same strategy as before to

Co

7Split;: Vx: fin sm
liftT. .. thinL (fz m) (fz n) ()f) x >~ var (liftT. .. thin (fzm) (fz n) fx)

That is, composingrar and lifting must commute. BothftTs, on expansion, are
blocked at(thick (fz m) x). Invertingthick leaves two trivial subgoals.

BackC starts the same way:

Co

7?BackC: Vr,s,t: N

Vi s\t
Vg rs
:Lamr

(feg) x=~1(|g(x

But after the usual story, tHam case is reduced to

Co

?BackC;: Vx: fin sr
liftT... (fog) x> IiftT...f(liftT...gX)

This says that lifting for substitutions must respect composition—we only know this
result for renamings. We can boil the goal down a little further by expanding the outer
liftTs and inverting their blockethicks. This give us two cases: one for the newly
bound variable, just a reflexive equation, indicating that it is correctly propagated by
lifting; the other, for the free variables, is still awkward.

Co

7BackC;: Vx: finr
thinL (fz t)(f{ (g x)) ~ (liftT... f){ (thinL (fzs) (g x))

This is a special case of the last lemma we need to prove—a crucial fact about the
relationship between thinning and substitution:

209

o

?thinSubst: Ym, n: N

vx :finsm
vx' :finsn
Vi mNyn
vt|] :Lamm

thinL x' | f(t|~ (liftT... xx'f){ (thinLxt)

That is, substituting then thinning has the same effect as thining first, then applying the
lifted substitution.

There is no point inventing a new proof plan when an old one willva: andapp
are easy as before. Modulo the need to switch betwditied thin and alifted thin
(ie anotherthin), we can again reduce th@m case to an equation involving blocked
liftTs which we simplify by inversion, leaving us with the free variable case:

o

?thinSubst;: Vy: finm
thinL (fs x’) (thinL (fz n) (fy)) ~ thinL (fzsn) (thinL X' (fy))

Now thinL is just renaming viahin, so what we really have is

o

7thinSubst;: Vy: finm
Fa (lift (thin X)) (Fa (fsp) (fy)) ~Fa (fssh) (Fa (thin X') (fy))

We may rewrite both sides by the property that renaming preserves composition (back-
wards):

o

?thinSubst;: Vy: finm
Fa ((lift (thin x')) o/ fs,)) (fy) ~ Fa (fss, of (thin X)) (fy)

But all thelift does is shufflds through(thin x’). The two sides of the equation are
intensionally the same. We have proven that substitution is monadic.

7.3 acorrect first-order unification algorithm

This is the main example of dependently typed functional programming in this thesis.

210

| propose to study unification for ‘trees with holes’. The algorithm is a variation on the
theme which goes back to Alan Robinson [Rob65]. Itis the program implementing the
algorithm which is new, and which benefits from the dependent type system in a way
which is just not available in the simply typed world, even with the remarkable higher-
order polymorphic extensions which are becoming available in the more upmarket sorts
of programming language. Here we shall make critical use of the fact that our types
depend on data—real data with elimination as well as introduction rules.

Just as witham, let us represent variables \fia, but since trees have no binding, we
may fix the number of variables as a parameter of the type.

e formation rule
n: N
treen : Type
e constructors

X:finn s,t:treen
varx : treen leaf, :treen forkst:treen

e elimination rule

n: N
®:treen — Type

® (varx) oleaf, ¢ (forkst)

t:treen|. &t

We may construct the renaming functor and substitution monadrée following
much the same path as foam, but without the work required to cope with binding.
For this section, let us have

m—'n = treem — treen
mN\,n = finm — treen
Rename : Functor [fin] [tree]
SubstM : Monad Rename *\
SubstK = Kleisli SubstM

Within this framework, we may equip substitutions with the preorder induced by prior
composition:

211

fog < g

The task of unifying some, t : tree m is to find (ann and) an arrow : m , n such
that

fs=ft

if any exists, and in particular, to find one which is maximal with respect to the above
ordering.

Unification is thus an optimisation problem, and it is worth spending a little time think-
ing about such problems in general, before proceeding with this particular example.

7.3.1 optimistic optimisation

Unification is just one example of a problem involving optimisation with respect to a
conjunction of constraints. | should like to draw your attention to a particular class of
constraint which makes such problems vulnerable to a reassuringly teghnique—
optimism.

That is, we begin by guessing that the optimum is the best thing we can think of. Then,
as we encounter each constraint in turn, we continue to think the best that it allows,
reducing our current guess by only so much as is necessary. Once we have worked our
way through all the constraints, it is to be hoped that our final guess, however battered
by bitter experience, is genuinely optimal.

This hope holds true if each constraint has the property that once a solution has been
found, anything smaller remains a solution. Let us call such constidémaward-

closed or closedfor short. This property of constraints gives the underlying rationale

to the transformation of recursive optimisation algorithms which relativises them to
an accumulating solution—a technique which has already found its way into the auto-
mated synthesis of (parts of) a unification algorithm in [ASG99].

We can give a record type characterising such properties for arrows ordered by compo-
sition. Fixing a category and a source obj8ctve may represent a closed constraint
on S out-arrows as inhabitants of the record typ®sed S with fields:

Why:VT. (S — T) — Type
ClosedEq:VT.Vf,g:S— T.f~ g - Whyf — Whyg
Closure:vVT.Vg:S— T.Whyg — VU.Vf:T — U.Whyfog

212

Note the extra condition that the constraint must not distinguish extensionally equal
arrows. This is the price of allowing functional representations of arrows in intensional
type theory.

We may further define what it means to be maximal with respect to such a constraint.
Fixing and opening &€losed S record, and also fixing a targ€tand an arrow : S —
T, we may collect the relevant conditions in a recteximal f with fields:

Holds:Why f
Factors:VU.vVg:S — U.Whyg — Yh: T —U.gxhof

That is,f must be a solution, and every other solut@must be smaller thah with a
witnessh such thag ~ hof. We may easily prove that maximality respects extensional
equality of arrows.

Next, let us define an operator which conjoins closed constraints.

AND : VS.VP,Q:Closed S. Closed S

AND (Why = P; ClosedEq = PEg; Closure = PCI)
(Why = Q; ClosedEq = QEq; Closure = QCI)
= (Why = AT. M. (Pf)x(Qf);...)

The proofs of the properties are unremarkable.

The optimistic strategy at each constraréxtends an accumulated guesBy enough

of anf thatP.Why f o g holds. We may regard this as effectively constraining the
witnessed to the existence of solutions #® bounded byg. The constraint orf is
closed providedP is. Let us therefore construct an operator

Bound : VS, T.Vg:S— T.Closed S — Closed T

Bound g (Why = P; ClosedEq = PEg; Closure = PClI)
= (Why = AU. A\f: T— U.Pfog;...)

Again, the properties are easily proven.
We are now ready to prove the optimist’s lemma:

Co

?Optimist: VR, S, T : O
vclP, clQ: Closed R

Vg :R—S
YgMax :MaximalP g
Vi :S—T

ViMax : Maximal (Bound g P) f
Maximal (AND P Q) (fo Q)

213

This is the key step in the correctness proof for the optimistic strategy. It tells us that a
conjunction(AND P Q) may be optimised by extending the optimgnfior P with just
enoughf to satisfyQ. The proof is not very difficult, which is one of the reasons why

I like it.

First, let us unpack the definitions by the elimination rules for the argument records
and introduce the hypotheses:

Co

AR, S, T :0O

AP :

APEq

APCI

AQ

AQEq

AQCI

AQ :R—S

AgHolds :Pg

AgFactors : VU : O
Vk :R— U
VPk: P k
Yh:S— U

k~ho g
o\ :S— T

MgHolds : Qfog
MgFactors: YU : O
vk :S—U
VQkg: Qkog
h :T—U
ka~hof
?max : Maximal (AND P Q) (fo Q)

We may also attack the goal with the introduction rules for records and implications:

Co

?Pfg: Pfog

7Qfg: Qfog

AU 0

A :R—U
APk : Pk
AQK : Qk

h :T—U
?KEq: k ~ ho (fo Q)

214

Now, Q f o g is already known to hold, ané f o g follows by PCI from gHolds, so
we have certainly found a solution to the composite problem. It remains to show the
optimality by expressing the hypothetical solutioas somér o f o g.

The proof successively exploits the optimality of the solution to each subproblem.
Firstly, we usegFactors to acquire for somé&’ : S — U

k ~hog

By QEq, we now know thaQ h' o g, hencefgFactors gives us am : T — U with
h ~ hof

We supply thish as the witness, for we have
k ~hog ~ (hoffog ~ ho(foQ)

as required.

Note that the proof does not make useQgl. In effect, we can optimise with respect
to a collection of constraints all but one of which are downward-closed, as long as we
address the non-closed constraint last—it is not a freedom we shall need.

The Optimist lemma allows us to solve a complex closed constraint by recursively

decomposing it into an equivalent conjuction of simpler closed constraints, each of
which we address in turn, accumulating the solution. Accordingly, we shall need a
book equivalence on closed constraints

Equiv : VS. Closed S — Closed S — Type

Equiv(Why =P;...) (Why =Q;...)
=VT.Vi:S—T.(Pf - Qf)x(Qf — Pf)

together with a prooEquivMax that for equivalent constraints an arrow maximising
one also maximises the other—this is easy.

Lots of algorithms follow the optimistic strategy, from finding the largest element of a
nonempty list of numbers to principal type inference for ML. Let us see how it works
for unification.

215

7.3.2 optimistic unification

A unifier fors, t : treemis a substitutiori : m \, n subject to the constraifif s~ f(t.

We may thus consider the computation of most general unifiers to be an optimisation
problem over the Kleisli categoryubstK induced by the substitution monad. Fortu-
nately for us, the constraint is downward-closed. We may construct

Unifiesst : Closed m

Unifiesst = (Why = An. Af. f(s~ f(t;...)

The two properties are easily proven. Extensional equality of arro@slistKk means
exactly that they have the same effect on terms. Downwards closure follows from the
fact that the interpretation of arrows in the Kleisli category—substitution—respects
composition.

It is easy to provide the justification for the structural decomposition of rigid-rigid
problems:

Equiv (Unifies (forks; t;) (fork s ts))
(AND (Unifies sy s5) (Unifiest; ty))

We may represent out-arrows framby a dependent pair
fromm = Xn:N.m\/n

We might well guess that the type of the unification algorithm should be
mgu : Vm. Vs, t: tree m. maybe (from m)

The adoption of the optimist strategy means defimmgu in terms of a subfunction
bmgu computing unifiers which are most general relative to an accumulated bound.

bmgu : Vm. Vs, t:tree m. fromm — maybe (from m)

The identity substitution is the biggest substitution in the composition ordering, so we
take

mgu,, st = bmgust (m;.)

216

Note that for any givers andt this function is an arrow in the Kleisli category of
themaybe monad—we already know how to propagate unification failures correctly.
This suggests a functional definitionlofngu, with the rigid-rigid cases given by:

bmgu leaf, leaf, = M.yesf
bmgu leaf, (forkst) = Af.no (from m)
bmgu (forkst leaf, = Af.no (from m)

bmgu (forks;t;) (forksyty) = (bmgut; ty) o (bmgus; ss)

So far, this is structural on terms. The trouble comes once we encounter a variable.
How do we unify a variable with a tree, relative to a nontrivial bounding gugas

The traditional approach is to unload the accumulgtoand we may easily prove the
lemmaUnload

Equiv (Bound g (Unifiesst)) (Unifies g(s g({t)

Unfortunately, applying the substitution blows up the terms, so the corresponding re-
cursive program is not structural. This is where you might think we need to impose
an external termination ordering or accessibility argument which exploits the fact that,
although the substitutions blow up the terms, they do get rid of variables. In fact, this
IS not the case.

7.3.3 dependent types to the rescue

Incidentally, 1 have just noticed that Augustsson and Carlsson’s paper [AC99] also
contains a section with this title—I expect it to become traditional.

Now, we certainly need to exploit the property that the accumulated substitution gets
rid of variables as it blows up terms. Every development of unification in the litefature
does this externally to the program, by means of a more or less ad hoc termination
ordering. This invariably requires an auxiliary function to count the distinct variables
in a term and an auxiliary lemma which relates the value of this function before and
after a substitution subject to the occur check.

That is to say, a vital component of the sense made by the unification algorithm has
been absent from every one of its implementations until now—understandably, because
the data structures which manifest that sense have not been available until now. The

or at least those which care about termination

217

point is that by explaining terms as built over a finite context of variables, we have
equipped them with exactly the natural recursive behaviour which we need. To count
the number of variables in a term is to make a posterior phenomenon of what is, at
least to structural linguists [Saul6], a prior requirement for the terms to be considered
meaningful. The number of variables has finally arrived where it belongs—ityplee

of terms.

Look again at the type ddmgu:
bmgu : Vm. Vs, t:tree m. fromm — maybe (from m)

This entitles us to proceed not only by structural recursion on trees, but also by struc-
tural recursion omm. | cannot stress too strongly that it is the indexing of types with
termswhich allows this. Parametric polymorphism is not enough, because we cannot
compute on types. There are structural forms of computation available in our depen-
dently typed setting which just cannot be found in simply typed languages.

The recursive structure | therefore suggest is lexicographic, first and then ors. If
we are unifying trees ovem variables, we are entitled to make recursive calls for any
trees ovem variables, however large.

Of course, the number of variables must not merely be decreasing—it must do so
in a structural way, one at a time if we are to avoid further appeals to well-founded
recursion. We have already seen how to define a substitution which gets rid of a single
variable via the- — -] function. Here it is again:

[+] : Vn:N. Vx:finsn. Vt:tree n. (sn \,n)

thick xy
X—=ty = no (finn) | t
yesy | vary

[- — -] can easily be shown to have extensional behaviour (or, thinking relationally,
introduction rules):

X—=tx~t [x—tj(thinxy)~vary

These follow directly from the established extensional behaviothick. The corre-
sponding inversion rul&knockoutinv, follows fromthickinv:

218

knockoutlnv

m: N

X : finsm

t:treem

¢ : finsm — treem — Type

dxt O (thinxy) (vary)
Dy X tly

If our accumulator is a composition ¢f — -|s, we may apply it one step at a time
whenever we reach a variable. In fact, this is not merely a structural way to do unifica-
tion, but also quite an efficient one. Of course, we must constrain the accumulator to
take this form, and the easiest way to do this means abandoning our functional repre-
sentation of substitution in favour of a more concrete ‘association list’ treatment.

Let us then define the following datatype

m,n: N
alistmn : Type

e formation rule

x:finsm t:treem g:alistmn
anil, : alistnn aconsxtg: alistsmn

e constructors

This datatype is a combination of a conventional association list and tredation.
It is definable in ALF, ®Q and Q.EG, but not in Agda or Cayenne because of its
nonlinear base constructor type.

We may equip it with

e a composition which behaves like append for association lists and transitivity for

>
f 1 anil = f
fi(aconsxtg) = aconsxt(fig)

e an interpretation vig — - into SubstK

anl€4 =
(aconsxtf) 4« = (f4)o[x—1

Correspondingly, we may manufacture a concrete categaist : Concrete alist
with

219

¢ = anil

o=1}
[m] =treem
[a] =9 «

There is trivially a functor frormAList to SubstK which does« to arrows, because the
interpretations of arrows in source and target are the same.

It is amongst the arrows dAList that | propose we search for unifiers, although we
should still show that any most genefabmputed yields a most genefad in SubstK.
Correspondingly, let us take

fromm = ¥n: N.alistmn
and define

bmgu : Vm. Vs, t:tree m. fromm — maybe (from m)

mgu : Vm. Vs, t: tree m. maybe (from m)

mgust = bmgustanil

We now have all we need to outline a structurally recursive defininitiobroigu,
deferring the treatment of the base cases:

220

bmgu,, leaf, leaf,, f = yesf
bmgu, leafy, (forkst) f = no (fromm)
bmgu,, (forkst) leafy f = no(fromm)
bmgu,, (forks;t;) (forksyty) f =

(M. bmgu,, t; t, f)((bmgu,, s; s, f)
bmgu,, (varx) (vary) f =

f
anil yes (FlexFlex x y)

aconszrg |)(Extend zr)(
(bmguy, [z r]{ (varx) [z~ r]{(vary) g)

bmgu,, (varx) leafs, f =
f
anil FlexRigid x leafyy
aconszrg |)(Extend zr)(
(bmgu,, [z r]{ (varx) [z~ r]{leafs, 9)

bmgu,, (varx) (forkst) f =
f
anil FlexRigid x (fork s t)
aconszrg |)(Extend zr)(
(bmgu,, [z+ r]{(varx) [z r]{(forkst) Q)

and the symmetric cases.
where

Extendzr (n;g) = (n;aconszrg)

and)Extend z r(is its failure-propagating image.

7.3.4 correctness omgu

In the spirit of refinement, let us now reduce correctness of the unification algorithm to
correctness dflexFlex andFlexRigid. We have not yet defined the latter, but we can
motivate the definition by seeing where we get stuck.

Here is the specification eshgu in the form of an inversion principlenguinv:

221

mguinv

m: N
s,t:treem @ : maybe (fromm) — Type

f:alistmn
NoUnifierst Maximal (Unifiesst) (f «)
® (no (fromm)) ® (yes (n;f))
¢ (mgust)

where
NoUnifierst = Vn.Vf:m N\, n. f{s £ f(t

We can provengulnv from an inversion principlémgulnv for bmgu:

bmgulnv

m: N
s,t:treem
® : fromm — maybe (fromm) — Type

f:alistmn
g : alistmn g:alistnn’
NouUnifier g «(s g «(t Maximal (Bound (f «) (Unifiesst)) (g «)
® (n;f) (no (fromm)) ® (n;f) (yes (n';gif))
vi:fromm. @ f (bmgustf)

The proof simply expandshagu in terms of a call tdomgu which is then inverted.
This leavedsomguinv subgoals withg instantiated taanil. Recall thatanil « is just
1. The properties ofList andSubstK then reduce these subgoals to thosengfulnv.

The interesting work is provingpmguinv. Of course, like all our other proofs of
non-computational rules by recursion induction, the proof is by recursion induction on
bmgu keeping® universally quantified. In the subgoals involving variables, let us
also follow the program and do case analysis on the accumulated substitution. We may
classify the subgoals as follows

e rigid-rigid off-diagonal (also known as ‘conflict’)
222

Here we are trying to unifjeaf with fork s t. bmgu returnsno, so we must
apply theno case. This leaves us proving

o

?leafFork: ¥vn : NI
Vg :alistmn
Vhad: g «(|leaf ~ g «((forkst)
1

Fortunately, reducing(pushes the substitution under the constructors, leaving
us with a hypothesis

bad : leaf ~ fork g «(s g «(t
The goal can thus be proven by the unification tactic from chapter 5.

rigid-rigid on-diagonal (also known as ‘injectivity’)
Correctness foleaf with leaf is very easy.

As for (fork s, t;) and(fork s, ty), the computation reduces the goal conclusion
to

o f (M. bmgu, t; t; f){ (bmgu,, s; s, 1))

If my propaganda has worked, you should now expect me to use the inductive
hypotheses to invert the recursive calls. | shall not disappoint you. This leaves
us with four subgoals.

In three of them, the unification has failed somewhere and the ultimate value is
no—the inversion will give us a proof dloUnifier s; t; for some:. We may
use this to show that the originfdrks have no unifier.

Otherwise, we have substitutiohsandg, together with proofs of

o

AgMax: Maximal (Bound (f «) (Unifiess; s;)) (g <)
AhMax: Maximal (Bound ((gif) <) (Unifiest; t;)) (h <)

Unification has returnethig)if and applying theyes case leaves us trying to
prove.

£
7goal: Maximal (Bound (f «) (Unifies (fork s, t;) (fork s, t3))) ((hig) <)

By EquivMax with Unload, followed by structural decomposition and
AList.RespC this becomes

223

o

7goal: Maximal (AND (Unifies f «(s; f «(s)
(Unifies f «4(t; f 4(ty)) ((h €) o (g <))

Applying Optimist, we acquire two subgoals

o

?goal : Maximal (Unifies f «(s, f «(s;) (g <)
7goal, : Maximal (Bound (g «) (Unifies f «(t; f «4(ty)) (h «)

In the formerUnload backwards lets us mofeut as a bound, giving us a goal
which follows immediately frongMax. In the latter, we may shuffle the bound
inside, then apply composition laws to get

£
7goal, : Maximal (Unifies (gif) «(t; (gif) «(ty)) (h <)

Now, pulling out the composition as a bound, we reduce the gddViax.

¢ flexible cases wittaconszr g

All of these work the same way. We have some
bmgust (n;aconszrg)

where eithes or t is a variable. This reduces to
VExtend zr((bmgu [z —r]|s[z+— r]tQ)

Inverting the recursive call with the inductive hypothesis, we find one of two
things

— NoUnifier g «{ ([z+—r](s) g «(([z — r]{1)
and we must prove
NouUnifier (aconszrg) «(s (aconszrg) «(t

But (aconszrg) «isjust(g «) ¢ [z — 1|, soitis just a question of
pushing-(through the composition.

— h such thaMaximal (Bound (g «) (Unifies [z — r]s [z +— r]t)) (h <)

and we must prove
Maximal (Bound ((aconszr g) «) (Unifiesst)) (h «)

The proof is easy bound shuffling and composition hacking.

224

o flex-flex base case

The computation of

bmgu (var x) (vary) anil
has reduced to

yes (FlexFlex x y)

We may safely presume yes answer, because we are in either the ‘identity’
or the ‘coalescence’ situation, accordingxasqualsy or not. Hence, we must
choose thgres case in the proof, leaving us with the obligation

7goal: Maximal (Bound ¢ (Unifies (var x) (vary))) ((FlexFlexxy) «)
We may easily remove the trivial bound, yielding
7goal: Maximal (Unifies (var x) (vary)) ((FlexFlexxy) «)

Since we have not yet implementékbxFlex, we can go no further with the
proof. Let us export this goal as the specificatiorrleixFlex.

¢ flex-rigid base cases

For these five subgoals, we are trying to unrggr x with somet which is not a
variable. We may collect them all together in the following rule, expressing the
latter as a side condition:

m: N

X : finsm

t:tree sm

notVar : Vy:finsm.t £ vary

® : fromsm — maybe (fromsm) — Type

f:alistmn

g:alistnn

Maximal
g:alistmn (Bound (f «) (Unifies (var x) t))
NoUnifierg €« x g «(t (9«9
® (n;g) (no (fromm)) ® (n;f) (yes (n';gif))

¢ anil (FlexRigid x t)

225

We could regard this as an inversion rule specificatiofiri@xRigid, but it is still

a little too general. For example, the hypotheses of the rule each have arbitrary
accumulators, but we know the accumulatoaisil. Once we have made the
accumulatoanil everywhere, we no longer need to let it vary in the scheme. Let
us tidy up a little.

m: N

X : finsm

t: treesm

notVar : vy:finsm. t o vary

¢ : maybe (fromsm) — Type

g:alistnn
NouUnifier (var x) t Maximal (Unifies (var x) t) (g «)

. q) (no (fromm)) q) (yes <n,g>)
¢ (FlexRigid x t)

The tidy version proves the untidy version because the tidy hypotheses are spe-
cial cases of the untidy ones, modulo some equational reasoning. Let us take this
as the specification ¢lexRigid.

We have proven correctness of unification, contingent on correct implementation of
FlexFlex andFlexRigid. You may have noticed that we did not have to unwrap any of
the Maximals in the above proof—we merely showed that the most general unifiers
computed in the base cases were correctly propagated. ElsxAlex andFlexRigid

that we create the substitutions and where we shall have to do real work proving max-
imality. In order to achieve this, we must come to an understanding of variable occur-
rence.

But even now, we have seen enough to know that our unification algorithm is terminat-
ing of its own accord.

7.3.5 what substitution tells us about the occurs check

In conventional presentations of unification, the occurs check is a boolean decision,
and its role in ensuring termination is external to the program. For us, though, the
situation is somewhat different—what is to happen if there is no occurrer(e@oxk)
in some rigidt with which it is to be unified? We do not just substittitéself for x.

226

We must make manifest in the program the eliminatiox by computing the image
of tin the syntax with one fewer variablet-such that

hthinx(t' ~t
If we can find such &, then
X = 1]

is a most general unifier fgvar x) andt. Let us prove this lemma, as we shall need it
several times.

o

?Knockout: Ym: N
VX : finsm
vt :treem
Maximal (Unifies (var x) (jthin x(t')) [x — t']

Now, at last, we must do some real work. Introducinghaximal record:

Co

7holds : [x — t']{| (var x) =~ [x — t']{ ()thin x{ t")
?factors: Vn N

VE ismNyn
Vhyp: f((var x) ~ f(()thin x(t)
g :m»>—n

frgo[x—t]

Takingholds first, notice that the left-hand side is just— t'|x, which we can rewrite
by the ‘introduction rules’ td’. Observe that the right-hand side is a composition of
substitutions. After a little monadic tinkering, we obtain

o

7holds’: o ' ~ ([x + t] o Jthin x){ ¢

This says that two substitutions have the same behaviour at an arbitrary. tigg
BackEq, it is enough to prove that they behave the same at variables.

Co

?holds’: Vy: fin m
bey~([x — t]o)thinx)y

227

Reducing, we obtain

Co

?holds’: Vy: fin m
vary ~[x — t'] (thinxy)

Again, this follows by the established extensional behavio(ief -|.

We have found a unifier—let us now show that any other unifier factors through it.
Introducing the assumptions and the pair:

o

An N

A smNn

Ahyp: f((var x) ~ f(()thin x(t')
79 tmNn

fac :frgox—t]

Let us try to provdac first, hoping to shed some light @n This goal also comes down
to checking that the two substitutions agree at all variables:

o

?fac’: : fin sm
fy~ g{|[x—t]y

Predictably, the next step is to invert the blocked computation kvithckoutinv:

Co

ac,: fx~g(t
fac,: Vy: finm
f(thinxy)~qgy
The latter subgoal gives us a big clue. We can prove it by taking

g = JAy:finm. f(thinxy)

We must now provéac_. A little monadic massage showgsis extensionally the same
as the composition

fo thinx

228

Making the replacement,
?fac: fx ~ (fo)thinx)(t
Unwinding the composition reduces this goaht.

This is progress indeed, for all the nontrivial substitutions generateddexylex or
FlexRigid will be most general unifiers by this lemma. Indeed, we are now in a posi-
tion to write FlexFlex:

FlexFlex : Vm. ¥x, y:fin sm. from sm

thick xy
FlexFlexxy = | no (finm) | (sm; anil)
yesy’ (m;aconsx (vary’) anil)

Recall that to establish correctness, we must prove

Co

7FlexFleX,oz: YMm : N
VX, y: fin sm
Maximal (Unifies (var x) (vary)) ((FlexFlexxy) «)

SinceFlexFlex is defined withthick, it is verified bythickinv, leaving two cases

Co

?FlexFlex,: Vm: N
VX : finsm
Maximal (Unifies (var x) (var x)) (anil <)
’FlexFlex,: Ym: N
VX : finsm
vy :finm
Maximal (Unifies (var x) (var (thinxy))) ((acons x (vary) anil) <)

For the former, recall thaanil « is the identity substitution—this clearly unifies two
equal variables, and equally clearly, every other unifier factors through it. For the latter,
interpreting the association list and tidying, we get

Co

?FlexFlex;: Ym: N
VX : finsm
vy :finm
Maximal (Unifies (var x) ()thinx{ (vary))) [x — vary]

229

This follows fromKnockout.

The rolethick plays inFlexFlex is to attempt to compute the imageyah the variable
set withx removed. If this succeeds, we manufacture the corresponding knockout. If
it fails, that is becausg is x and the identity substitution will do.

The analogous role iRlexRigid is played by the occurs check, seen as an attempt to
compute the appropriate ‘thickened’ tree for use in a knockout—this will fail exactly
in the case of an offending occurrence. Correspondingly, the occurs check is no longer
a boolean decision—it provides us with the witness which explains why it is safe to
substitute. More sense has appeared in the program! The type of the occur check is

check : ¥Ym. ¥x:fin sm. Vt:tree sm. maybe (tree m)

Its inversion rule should be something like:

m: N
X : finsm
® : tree sm — maybe (treem) — Type

Occursx t

® (pthinx(t) (yest) &t (no (tree m))
Vt:tree sm. ¢ t (check xt)

whereOccurs is some useful means of characterising wkertcurs int.

In other wordscheck x is the partial inverse ofthin x(. Hence we will implement
check x by pushingthick x through trees, with anypo at a variable causing @o
overall. However, before we can really work with the occurs check, we must formalise
the notion of occurrence.

7.3.6 positions

The idea of pattern matching is to explain decomposition by inverting construction,
and | was exposed to it at such an early age that it simply refuses to wear off. We
have already seeNIEq in terms of duplication andhick in terms ofthin. Since
searching for an occurrence is a kind of decomposition, | cannot help asking what the
corresponding construction might be.

230

Let us therefore identify the operation whichakesan occurrence—the operation
which puts something at a given position. In order to do this, we shall need to rep-
resent positions within a tree.

Every datatypd has an allied datatype of positions or ‘one-hole contexts’ within el-
ements ofT, together with an operation which putsTain the hole. Huet gives a
beautiful construction of ‘zipper’ types which code up one-hole contexts as paths from
the hole back to the root of the term, recording the contents of other side-branches on
the way. We may equivalently, and slightly more conveniently for our purposes, re-
verse the direction and code up paths from the root to the hole. Let us therefore define
the parameterised datatypes n of positions withinn :

: n:N
e formation rule posn : N
there : posn t:treen

here, : posn left theret : posn

e constructors

s:treen there: posn
right s there : posn

The constructors may be interpreted as directions for finding the position from the root,
respectively ‘stophere’, ‘go left’ and ‘goright’. Consequently, the function which
puts a term at a position is

.- goes : Vn. Ythere:pos n. Vit:tree n. treen

Allow me to break with convention and wriggoes postfix—its definition is:

here it goes = it
(lefttheret) it goes = fork (thereitgoes)t
(rightsthere) it goes = forks (thereitgoes)

In particular, we may now describe a term containnag x as
where (var x) goes

In order to reason about positions, it will be useful to have some other apparatus.
Indeed, we may consideyoes to interpretpos n as the arrows of a category with
one object interpreted asee n. here is the identity. Let us therefore define the
composition, which, in the spirit of the piece, | shall write as an infix operator called
then:

231

then : Vn. Vthere, where: pos n. pos n

here then where = where
(lefttheret) then where = left (there then where) t
(rightsthere) then where = rights (there then where)

The definition ofgoes ensures the correct interpretationtare. An easy recursion
induction proves the correct interpretationtben:

(where then there) it goes ~ where (there it goes) goes

By the way, datatypes (dgt, NI) with a single and constant base constructorr{ig
0) and linear step constructors (egns, s) are isomorphic to their own position types.
Thegoes andthen operations are the same (agppend, plus). This may account
for their peculiarly regular behaviour.

Returning to ourtree syntax, we shall also need to push substitutions through posi-
tions. Overloading slightly:

| :Vmon.Vf:m N\, n.posm — posn
here, = here,

(lefttheret) left (f(there) (f(t)

f
f
f((rightsthere) right (f(s) (f(there)

Recursion induction on this operation gives us a prod€oherence:
f((there it goes) ~ (f(there) (f{ it) goes

Now, in order to prove that occurs check failure causes unification failure, we shall
need to show that the only position at which we may find a term inside itde#iis:

Co

’NoCycle:vn :N
Vit :treen
Vthere: posn
Vhyp : it ~ there it goes
there ~ here

We have seen a similar theorem before. The proof goes by inductidrn thhen case
analysis onthere. A lot of impossible cases are removed by unification—there are
obviously noleft or right positions withinvar x or leaf. The only real work to be
done is wherthere is nothere andit is afork. There are two such cases, one much
like the other, so | shall just give the proof flork andleft:

232

Co

’NoCycles:vn :N
Vs, t,r:treen
VsHyp: Vthere: posn
Vhyp : s~ theres goes
there ~ here

VtHyp: C:b

Vthere: pos n
Vhyp :forkst~ (lefttherer) (fork st) goes
there ~ here

The trick is to rotate the cycle. Reducigges, hyp becomes
fork s t ~ fork (there (fork s t) goes) r

Unification identifies andr and tells us that
s ~ there (fork s t) goes

Now, if we are careful, we can turn this into a cyclesiand apply the relevant inductive
hypothesis. Our categorical tools allow us to rewrite the above equation to

s ~ (there then (left here t)) s goes
The inductive hypothesgHyp now tells us that
(there then (left here t)) ~ here

This is manifest nonsense, but we need to make a constructor appear at the head on
the left-hand side to reveal the conflict. That is to say, a further case analythign
accompanied by the unification tactic, completes the proof.

We are now in a position to fill in the last component of the unification algorithm.

7.3.7 check and FlexRigid

As suggested earlier, tleheck function pusheshick through atree.

check x (vary) =)var((thickxy)
check x leaf,, = Ileaf,
checkxs | checkxt
check x (forkst) = yes s: yest yes (fork s’ t')
yess no (treen) | no (treen)
no (tree n) t no (tree n)

233

Now that we know how to talk about positions, we can give this function a better
inversion principlecheckinv:

checkinv

m: N
X : finsm

® : treesm — maybe (treem) — Type

® (pthinx{t) (yest) @ (where (var x) goes) (no (tree m))

Vt:tree sm. & t (check x t)

The proof, which | omit, is by recursion induction and inversion of the blocked com-

putations.

Now let us definé-lexRigid:

FlexRigid xt = yes t' yes (m;acons x t' anil)

checkxt

no (tree m) | no (from sm)

We must show that this function satisfies its specification:

Co

?FlexRigid,:

Ym :N
VX :finsm
vt :tree sm
VnotVar: Vy: fin sm
t Avary
Vo : maybe (fromsm) — Type
V¢, :Vocc: NoUnifier (var x) t

® (no (fromsm))
Vo :v¥n N
vf alistmn
vfMax: Maximal (Unifies (var x) t) (f <)
® yes (n;f)
® (FlexRigid x t)

This we prove by expandingexRigid and invertingcheck x t, leaving two cases.

The first is

234

£
’FlexRigid,: ®

vVt :treem
Vo : maybe (fromsm) — Type
Voy: VN N
vf :alistmn
ViMax: Maximal (Unifies (var x) |thin x{t) (f <)
® yes (n;f)

® (yes (m;acons x t anil)

Introducing the hypotheses, refining by and unpacking the association list, we are
left proving

Co

?FlexRigid;: Maximal (Unifies (var x) Jthin x(t) [x — t]

This follows by theKnockout lemma.

Meanwhile, the other case of the inversion is

o
?FlexRigid,,: C:)

Ywhere : pos sm

VnotVar: Vy: fin sm
where (var x) goes = vary

VP : maybe (fromsm) — Type

V¢, :Vocc: NoUnifier (var x) (where (var x) goes)
® (no (from sm))

® (no (from sm))

This time, introducing the hypotheses, refiningdyand expandingNoUnifier leaves

Co

?FlexRigid,: Vn : N

VE ssmNyn
Vbad: f((var x) ~ f((where (var x) goes)
4

By Coherence, we may pusl throughgoes, telling us
235

fx ~ (f(where) (f x) goes
NoCycle now tells us that

where ~ here
reducingnotVar to

Vy.varx £ vary

from which we may easily prove the goal.

7.3.8 comment

This verification of a unification is another in a long line of such developments. From
Zohar Manna and Richard Waldinger’s pioneering hand-synthesis [MW81], through
Lawrence Paulson’s machine verification in LCF [Pau85] to the more recent work in
diverse proof systems [Coen92, Rou92, Jau97, Bove99], all have faced the same inher-
ent problem of explaining a program which simply does not make the sense its maker
intended.

Critical to the correctness of the unification algorithm is the relativisation of terms to
their context of variables. Such relativised data structures occur naturally in dependent
type systems. Unification has always been structurally recursive—it is just that the
structure could not be made data until the right types came along. Now they have, and
that is something to be pleased about, and to be vocal about.

There are three delicate aspects of unification which must be handled somehow in
every treatment, and they are not entirely independent:

¢ the termination of the algorithm

e the propagation of a unifier computed for one part of a problem through the rest
of the problem

e the failure of unification due to failure of the occur check

The termination issue has, over the years, been separated from partial correctness with
increasing panache and aplomb, but the technique standard in the literature is well-
founded recursion over an ad hoc ordering. Manna and Waldinger [MW81] are sensible

236

enough to leave the choice of this ordering until they have extracted the conditions it
must satisfy:

‘We have deferred the choice of an orderiRg, to satisfy the ordering
conditions we have accumulated during the proof. The choice of this or-
dering is not so well-motivated formally as the other steps of this deriva-
tion.’

The necessary ordering combines lexicographically the size of the variable set and the
structure of the problem—the different treatments manifest this in slightly different
ways. Paulson [Pau85] points out that he works rather harder than he would like to,
motivating the desire for ‘an LCF package for well-founded induction’ in order to
emulate Manna and Waldinger’s paper development more closely.

Implementations of what would otherwise be generally recursive programs in type
theory necessarily involve computation over the proof of termination. Different strate-
gies exist to minimise the impact of this unwelcome intrusion of proof into program.
Joseph Rouyer [Rou92] manages to confine the logical component to the outermost
well-founded recursion on the number of variables, the inner recursion on terms being
purely structural.

Ana Bove moves the goalposts in a pleasingly systematic way [Bove99]. Her ALF
program does its recursion over the proof of an accessibility relation constructed almost
directly from the Haskell program she wishes to import—the arguments to the program
become the indices of the relation. A single induction over this relation thus splits into
cases corresponding to the left-hand sides of the original program, while the exposed
sub-proofs give exactly the recursive calls. Of course, she still has to prove that all the
elements are accessible by well-founded lexicographic induction, but by packaging this
complicated induction into a single relation, she has not only supported the program
but also effectively acquired ipso facto its recursion induction principle—useful for
proving its properties.

Of course, my program does a similar lexicographic recursion, but it is internalised in

the data structures. | avoid an appeal to well-founded recursion fam the number

of variables by unloading the accumulated substitutions incrementally, which is not

unreasonable as they are built incrementally, and which incidentally enables me to
delay them until they become critical.

It might perhaps be interesting to consider how much more trouble it would be to use
a normalised representation of substitution, applied all at once. However, normalising

237

substitutions is, in any case, computationally quite expensive.

Manna and Waldinger work rather hard to synthesise the accumulation of a unifier
across a list of subproblems. The idempotence of the unifier plays a pivotal role. Paul-
son’s proof is apparently simpler, but he is unforthcoming about the ‘occasional ugly
steps’. Coen [Coen92] describes this problem as the only awkward aspect of partial
correctness.

The ‘optimistic’ treatment of accumulators makes this problem rather easier to deal
with—introducing the accumulator as an extra parameter effectively strengthens the
inductive hypotheses for the subproblems in exactly the necessary manner. Armando,
Smaill and Green’s automated synthesis manages to profit from this without excessive
prompting [ASG99]. Bove also exploits an accumulating parameter with the same
benefit. As | have shown, it is a natural technique to employ when the order with
respect to which we seek an optimum is induced by some notion of composition.

As for showing there is no unifier when the occur check fails, my treatment is morally
the same as Manna and Waldinger’s, packaged slightly more categorically. It is also
slightly more concrete. The use of the datatype of positions and its attendant opera-
tions, together wittthin, means that the inversion of the occur check instantiates the
investigated term with patterns capturing the relevant information, rather than present-
ing it propositionally. However, the position datatype comes into play only in the proof,
not in the program, so in this case, there is not much to choose between the two.

Nonetheless, we may one day want a unification algorithm which augments the failure
response with diagnostic information, so that a PhD student desperate for cash can have
an easier time finding the type errors in an undergraduate’s ML program. At this point,

a concrete representation of positions becomes a must. The tgheeak could just

as easily have been

check : vn.finsn — treesn — treen+ possn

returning a witness in the case of failure. A treatment of positions is hardly wasted.
Furthermore, as Huet points out [Hue97], there is no reason why the construction of
position apparatus should not be automated for arbitrary datatypes.

Finally, 1 would like to comment on two ‘packaging’ aspects of the development of
unification in this thesis. Firstly, the monadic treatment both of failure-propagation
and of substitution itself seems to present the necessary equipment in a useful and
orderly way.

Secondly, the use of inversion and recursion induction principles to capture the be-
238

haviour of components lent such a regularity and tangibility to the components of the
correctness proof that | believe | have given substantial credence to the methodology
of capturing ‘leverage’ in this way. Recall, for example, how the inversion of the occur
check not only exposed the information pertinent to the two possibilities but performed
the consequent rewriting, allowing still further progress by computation. Further, the
whole effect was triggered by asking a single high-level question about a program
component

‘what can have happened in that occur check?’
rather than a low-level question about data
‘what values can thahaybe (tree n) have?’

We have been able to stare at unification without going blind.

239

Chapter 8

Conclusion

What are the contributions of this thesis?

Firstly, and somewhat tangentially, it introducede®, a type theory with holes which
has two advantages:

e separation of partial constructions from the core computational terms in such a
way that the partial constructions—where the holes live—behave well enough to
have theeplacementproperty

¢ internalisation of the account of the holes within the judgments of the theory,
allowing the state of a theorem prover to be represented exactly by a valid context

Of course, relative to systems which explain holes with the aid of explicit substitution,

it has the disadvantage of forbidding certain interactions between holes and computa-
tion. For the work presented here, this has not troubled us at all. Admittedly, this has
not involved the kind of higher-order problem for which the banned interactions might
help.

On the other hand, the resemblance to Miller's ‘mixed prefix’ [Mil92] treatment is
strong enough to suggest that his brand of higher-order unification might be feasible.
He too handles the interaction between holes and computation by ‘raising’ the holes to
the functionality required to ensure that the computation happens entirely within their
scope. Nonetheless, deeper exploration is needed before we can say elzais@
suitable basis for sophisticated theorem proving. It is, however, an effective basis for
the tactics and mechanised constructions on which the main work of the thesis depends.

That work was to build object-level support for pattern matching on dependent
types in a conventional type theory extended with uniqueness of identity proofs. It

240

closes the problem opened by Thierry Coquand as to the status of pattern matching
[Coq92, CS93] as implemented in ALF [Mag94]: it demonstrates that uniqueness of
identity proofs is sufficient to support pattern matching where the unification underpin-
ning case analysis is for first-order constructor forms—this is the unification suggested
by Coquand and implemented in ALF. The necessity was shown by Hofmann and Stre-
icher [HoS94, Hof95].

In the course of that demonstration, | used a new ‘John Major’ formulation of proposi-
tional equality. This allows elements of different typeagpireto equality, but ensures
that they are onlyreatedequally if they come from the same type. John Major equal-
ity is equivalent to Martin-bf equality, but considerably more convenient in practice.

It facilitates the expression of unification problems over sequences of terms involving
type dependency, without requiring any dependency in the equations.

Consequently, 1 was able to extend the object-level first-order unification algorithm
presented for simply typed constructor forms in my MSc work [McB96] to the de-
pendently typed case. The necessary ‘no confusion’ and ‘no cycle’ theorems for each
family of types can be constructed automatically in a uniform way. This is the object-
level unification required to support pattern matching, and it shows that the need for
uniqueness of identity proofs is no idle coincidence.

However, following the famous dictum of Marx and Engels, it is not enough merely
to show that dependently typed pattern matching can be given meaning in an almost
conventional type theory—the point is to show that it is good for something. | hope |
have successively argued for the principle of representing relativised data in relativised
types. | believe the developments of substitution and unification in chapter seven lend
tangible credence to this argument. The unification example, in particular, demon-
strates the importance of allowing datatypes to depertémns

The latter may require general recursion to be abandoned for the sake of typechecking,
but it makes more programs structurally recursive because it gives us more structures—
types indexed by terms allow computation on the indices; types indexed by types do
not.

MANTRA:
If my recursion is not structural, | am using the wrong structure.

Dependent types make sense where general recursion is made sense of, if we are lucky.

ILennart Augustsson disagrees, as do a number of others. In my opinion they are trying to have their
cake and eat it, but they are nonetheless convinced of the advantages of cake.

241

There are many examples where the ‘right structure’ is hard to represent internally to
the program, and where an external termination argument seems the prudent course,
but the expressiveness of a dependent type system nonetheless offers the improved
prospect of principled structural alternatives. The functional programming community
ignores dependent types at its peril.

Turning from programs to their proofs, | suspect the idea of using elimination rules
to capture the behaviour of program components abstractly from their implementa-
tions to be an important one. Specifications should not only tell us what programs to
write—they should tell us what we need to know about the function when it is used.
The latter behaviour is clearly like elimination in character. The kind of second-order
rule supported by CeG’s eliminate tactic exploits such information in a compact and
powerful way, relativised to the goal which motivates its use.

We are quite happy to specify and write programs (derived introduction rules) in an
abstract and modular fashion—we should derive the corresponding elimination rules
so that we can reason about programs in an abstract and modular fashion. We have
been trying far too long to prove properties of programs by fiddling about with the
primitive rules for data—we would never dreamvarfiting programs that way. Henrik
Persson has also identified this style of reasoning as of considerable assistance in his
formalisation of the polynomial ring [Per99]. First-order equational specifications only
do half the job—they are inappropriate for reasoning aboutuageof programs.

That is, they are good for characterising introduction behaviour, but they need to be
complemented by a more effective treatment of elimination.

| believe the technology and methodology developed in this thesis contributes not only
to the writing of programs which make sense, but to the effective exploitation of that
sense in reasoning about them.

8.1 further work

‘The world will be far better when we turn things upside down!
(J. Bruce Glasier)

There is a great deal to be done.

Firstly, as far as the technology supporting dependently typed programming is con-
cerned, it is an important task to identifyr@cognisabledependently typed program-
ming language. As things stand, the equational programs we might like to write corre-

242

spond only to the deducible computational behaviour of complex proof terms—if we
want to be able to check a reloaded program, we need to reload its justification.

As | pointed out in chapter six, the problem lies in ensuring that stored programs give
a satisfactory account of their empty cases. | believe that a reasonable way to go about
this is to make the machine capable of detecting those argument types which can be
shown to be empty by one step of case analysis. If more than one step is required,
then the empty type can nonetheless be split into nontrivial constructor cases, and this
is something the program can and should record. In effect, the program must contain
enough hints to allow the reconstruction of the emptiness proof.

We might consider insisting that types be ‘filled up’ with markers indicating ‘badness’
in regions which would otherwise be empty. What implications for the expressiveness
of the type system the enforcement of this discipline would entall, it is too early to say.
However, the propagation of ‘badness’ surely involves the same work as the propaga-
tion of emptiness. It is a question of which gives the clearest treatment, and a more
explicit approach is certainly worthy of attention.

With the development of improved technology for programming with dependent types,
there is an imperative tarite programs Despite the clear argument from principle
that more precise data structures lead to tighter programs—aotherwise, why have types
at all?—it is not rhetoric which changesacticebut competition.

One example, close to home, which springs to mind is the development of a polymor-
phically typed strongly terminating functional programming language: parser, type
inference algorithm, interpreter. Delphine Terrasse has encoded Natural Semantics in
Coq [Ter95a, Ter95b] using a simply typed presentation of terms and types, with in-
ductively defined relations describing valid formation and typing. It seems reasonable
to hope that these latter properties can be built directly into data structures via depen-
dent types. The work of Altenkirch and Reus [AR99] and of Augustsson and Carlsson
[AC99] is already moving positively in this direction. Further, having developed first-
order unification, an ML-style type inference algorithm [DM82] seems an obvious next
step, especially as finding principal types is another optimisation problem addressable
by the optimistic strategy. Also, there are existing developments in simple types avail-
able for comparison [NN96, DM99].

However, in tandem with the continuing development of programming technology, the
development of a strong specification methodology which includes elimination as well
as introduction rules seems a task of genuine importance. The focus of that develop-
ment should be on prograderivationat least as much agerification Even at the

243

early stage reached in this thesis, we have seen a small example of elimination rules
used to transform a specification towards a program—the developm#mtéffrom
thin.

More than this, an area of interest not touched on in this thesis, but prominent in my
thinking is the use of derived elimination rules for programming itself. As a starting
point, it seems very likely that Phil Wadler’s suggestion to equip datatypes with dif-
ferent ‘views’ [Wad87] supporting different notions of pattern matching for the same
underlying type can be put on a sound footing.

The motivation for such a development is very straightforward. As a matter of course,
we write ‘derived constructors’—functions which build elements of datatypes in more
abstract patterns, reflecting the macroscopic structure of the problem at hand. We write
plus to add numbers togethenoc to add an element to the end of a list, and so forth.

It would surely be helpful to equip programmers with the means to analyse data at the
same macroscopic level.

Although a great deal of attention has been paid to developing what goes on the right-
hand side of pattern equations in a principled way, the left-hand side has long been
neglected. It is time the left came into its own. We have nothing to lose but our chains.
We have a world to gain.

244

Appendix A

Implementation

A few points about the prototype implementation:

e OLEG was implemented primarily as technology for the machine construction of
the standard theorems with which | equip datatypes, and to support the writing
of tactics at a relatively high level. The separation of partial constructions from
terms is not rigidly enforced. Further, as it usesdo's unification algorithm,
the scoping conditions for solving holes are not enforced either. However, the
complete terms generated are independently checkedElwk reliable type-
checker before they are trusted.

The restrictions on the positioning and behaviour of holes were not rationalised
until after the implementation was complete. Nonetheless, in all the develop-
ments | implemented, | found that | obeyed them. This gives at least anecdotal
support to the suggestion that they are, in some way, natural restrictions to make.

e The implementation of theliminate tactic does not have the abstraction facility
described in chapter three. This still makes it entirely adequate for all the pro-
gramming in this thesis, as such abstractions are not necessary when working
with datatype elimination rules.

The tactic does not, however, support derived elimination rules for functions in
the way that it should. Although the examples using such rules have all been
implemented and machine checked, the elimination rules for functions were ap-
plied by hand.

e The invention of ‘John Major’ equality came some time after | stopped work
on the prototype. Consequently, the traditional equality (plus uniqueness) is
used. Telescopic equations are thus represented in a somewhat awkward way,

245

with each equation in the telescope coercing by all the previous ones in order
to be well typed. This significantly complicated the elimination tactic and the
unification technology, but nonetheless they work.

246

Bibliography

[AR99]

[ASG99]

[Aug85]

[Aug9s8]

[AC99]

[Bar92]

[Bar99]

[BHO4]

[BP99]

[Bove99]

[Bro96]

Thorsten Altenkirch, Bernhard Reus. Monadic presentations of lambda-
terms using generalized inductive types. In Computer Science Logic,
1999.

Alessandro Armando, Alan Smaill, lan Green. Automatic Synthesis of
Recursive Programs: The Proof-Planning Paradigm. Automated Soft-
ware Engineering, 6(4):329-356. October 1999.

Lennart Augustsson. Compiling Pattern Matching. In Conference Funci-
tonal Programming and Computer Architecture, 1985.

Lennart Augustsson. Cayenne—a language with dependent types. In
Proceedings of the International Conference on Functional Programming
(ICFP’98). ACM Press, September 1998.

Lennart Augustsson, Magnus Carlsson. An exercise in dependent types:
A well-typed interpreter. 1999.

Henk Barendregt. Lambda calculi with types. In D.M. Gabbay, S.
Abramsky and T.S.E. Maibaum, editors, Handbook of Logic in computer
Science, volume 1. OUP. 1992.

Bruno Barras. Auto validation d’'un sgshe de preuves avec familles
inductives. PhD Thesis, UniversiParis VII. November 1999.

Franmise Bellegarde, James Hook. Substitution: A formal methods case
study using monads and transformations. Science of Computer Program-
ming, 23(2-3). 1994.

Richard Bird, Ross Paterson. de Bruijn notation as a nested datatype.
Journal of Functional Programming. Vol. 9, No. 1, pp77-92. 1999.

Ana Bove. Programming in Martinelf Type Theory. Unification: A
non-trivial Example. Licentiate Thesis. Chalmers University of Technol-
ogy, Goteborg. In preparation.

Jason Brown. Presentations of Unification in a Logical Framework.
1996. D. Phil Thesis. Keble College, Oxford.

247

[BD77]

[Bur69]

[BMS80]

[Bur87]

[Cla78]

[Coen92]

[CG99]

[Coq97]

[CPMOO0]

[Coq92]

[CS93]

[CT95]

[Cor97]

[CF58]

[DM82]

[deB72]

Rod Burstall, John Darlington. A Transformation System for Developing
Recursive Programs. JACM, Vol. 24, No. 1, January 1997, pp44-67.

Rod Burstall. Proving Properties of Programs by Structural Induction.
Computer Journal, 12(1). pp41-48. 1969.

Rod Burstall, Dave MacQueen, Don Sannella. Hope: An Experimen-
tal Applicative Language. In Proceedings of the 1980 LISP Conference.
Stanford, California.

Rod Burstall. Inductively Defined Functions in Functional Programming
Languages. Journal of Computer and System Sciences. Vol. 34, Nos. 2/3,
April/June 1987, pp409-421.

K. Clark. Negation as Failure. Logic and Databases, editors H. Gallaire,
J. Minker, pp293-322. Plenum Press. 1978.

Martin Coen. Interactive Program Derivation. PhD Thesis. University of
Cambridge. 1992.

Adriana Compagnoni, Healfdene Goguen. Typed Operational Semantics
for Higher Order Subtyping. To appear in Information and Computation.

Projet Cog. The Cog Proof Assistant Reference Manual, Version 6.1.
Rapport de recherche 203, INRIA. 1997.

Thierry Coquand, Christine Paulin-Mohring. Inductively Defined Types.
In P. Martin-Lof and G. Mints editors, Proceedings of Colog '88.
Springer-Verlag LNCS 417. 1990.

Thierry Coquand. Pattern Matching with Dependent Types. In Proceed-
ings Types for Proofs and Programs, June 1992.

Thierry Coquand, Jan Smith. What is the status of pattern matching in
type theory? In El Wintermte, pp112-114. June 1993.

Cristina Cornes, Delphine Terrasse. Inverting Inductive Predicates in
Coq. In Types for Proofs and Programs: International Workshop TYPES
'95. Springer-Verlag LNCS 1158. June 1995.

Cristina Cornes. Conception d'un langage de haut niveau de
rep@sentation de preuves. Doctoral Thesis, UniveBifis VII. 1997.

H.B. Curry, R. Feys. Combinatory Logic. Amsterdam: North Holland.
1958.

Luis Damas, Robin Milner. Principal type schemes for functional pro-
grams. In Proceedings, 9th ACM Symposium, Principles of Program-
ming Languages, pp207-212. 1982.

N.G. de Bruijn Lambda calculus notation with nameless dummies. Inda-
gationes mathematicae 34, pp381-392.

248

[deB91]

[DM99]

[Dyb91]

[Gen35]

[Gim94]

[Gim96]

[GimO8g]

[Gog94]

[GS91]

[Hal9g]

[HP91]

[VHLS98]

[HoS94]

[Hof95]

N.G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Infor-
mation and Computation 91, pp189-204. 1991.

C. Dubois, V. Menissier-Morain. Certification of a type inference tool for
ML: Damas-Milner within Coq. Journal of Automated Reasoning, Vol.
23, No. 3, pp319-346. November, 1999.

Peter Dybijer. Inductive Sets and Families in MartioFk Type Theory.
Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.

Gerhard Dentzen. Untersuchungder'das logische Schliessen. Math-
ematische Zeitschrift 39, ppl176-210, 405-431. 1935. (In translation,
pp68-131 of The Collected Papers of Gerhard Gentzen, edited by M.E.
Szabo, North-Holland, 1969.)

E. Giménez. Codifying guarded definitions with recursive schemes. Pro-
ceedings of Types 94, pp39—59.

E. Giménez. Un Calcul de Constructions Infinies et son Applicaside
Verification de Sysimes Communicants. Doctoral Thesis. ENS Lyon.
1996.

E. Giménez. Structural Recursive Definitions in Type Theory. In Pro-
ceedings of ICALP '98. Springer-Verlag LNCS 1443. July 1998.

H. Goguen. A Typed Operational semantics for Type Theory. PhD The-
sis. University of Edinburgh. CST-110-94.

P.A. Gardner, J.C. Shepherdson. Unfold/Fold Transformations of Logic
Programs. pp565—582 of Computational Logic: Essays in Honor of
Alan Robinson, edited by Jean-Louis Lassez and Gordon Plotkin, MIT
Press, 1991.

Thomas Hallgren. Alfa User’s Guide.
http://www.cs.chalmers.se/"hallgren/Alfa

Robert Harper, Robert Pollack. Type checking, universe polymorphism
and typical ambiguity in the calculus of constructions. Theoretical Com-
puter Science, 89(1). 1991.

F. von Henke, M. Luther, M. Strecker. Interactive and automated proof
construction in type theory. In Bibel and Schmitt (1998), chapter 3: In-
teractive Theorem Proving.

Martin Hofmann, Thomas Streicher. The groupoid model refutes unique-
ness of identity proofs. Proceedings, Ninth Annual IEEE Symposium on
Logic in Computer Science. pp208-212. Paris, France. July 1994. IEEE
Computer Society Press.

Martin Hofmann. Extensional concepts in intensional type theory. PhD
Thesis. University of Edinburgh. CST-117-95.

249

[Hue75]

[Hue97]

[Jau97]

[KST94]

[LP92]

[Luo94]

[Mac71]

[Mag94]

[Man76]
[MW81]

[MS94]

[M-L71a]
[M-L71b]

[M-L75]

[M-L84]

Grard Huet. A Unification Algorithm for Typea-Calculus. Theoretical
Computer Science 1, pp27—57. 1975.

Gérard Huet. The Zipper. Journal of Functional Programming Vol. 7, No.
5, pp549-554. 1997

M. Jaume. Unification : a Case Study in Transposition of Formal Prop-
erties. In Supplementary Proceedings of the 10th International Con-
ference on Theorem Proving in Higher Order Logics: Poster session
TPHOLs'97. E.L. Gunter and A. Felty, editors. pp79-93. 1997.

Stefan Kahrs, Donald Sannella, Andrzej Tarlecki. The Definition of Ex-
tended ML. LFCS Technical Report 94-300, University of Edinburgh.
1994.

Zhaohui Luo, Robert Pollack. Theelco proof development system: a
user’s manual. LFCS Technical Report 92-211, University of Edinburgh.
1992.

Zhaohui Luo. Computation and Reasoning: A Type Theory for Com-
puter Science. 1994. Oxford University Press.

Saunders MacLane. Categories for the Working Mathematician.
Springer Verlag GTM 5. 1971.

Lena Magnusson. The implementation of ALF—A Proof Editor based
on Martin-L6f's Monomorphic Type Theory with Explicit Substitutiton.
PhD thesis, Chalmers University of Technologpt&iorg. 1994.

E. Manes. Algebraic Theories. Springer-Verlag GTM 26. 1976.

Zohar Manna, Richard Waldinger. Deductive Synthesis of the Unifi-
cation Algorithm. Science of Computer Programming, 1:5-48. North-
Holland. 1981.

P. Manoury, M. Simonot. Automatizing Termination Proofs of Recur-
sively Defined Functions. Theoretical Computer Science, 135, pp319—-
343. 1994.

Per Martin-Lof. An Intuitionistic Theory Of Types. Manuscript, 1971.

Per Martin-Lof. Hauptsatz for the Intuitionistic Theory of Iterated Induc-
tive Definitions. Proceedings of the Second Scandinavian Logic Sympo-
sium. North Holland. 1971.

Per Martin-L6f. An Intutionistic Theory Of Types: Predicative Part. In
H. Rose and J.C. Shepherdson, editors, Logic Colloquium ’74. North-
Holland. 1975.

Per Martin-L6f. Intuitionistic Type Theory. Bibliopolis, 1984.

250

[McB70]

[McB92]

[McB96]

[MP67]

[McC67]

[Mil91]

[Mil92]

[MTHO90]

[Mog91]

[MUf96]

[NN96]

[Nor88]

[P-M92]

[P-M96]

[Pau85]

Fred McBride. Computer Aided Manipulation of Symbols. PhD thesis,
the Queen’s University of Belfast, 1970.

Conor McBride, Chris McBride. POLYSEMY: LISP with ambigous pat-
tern matching and first class local definitions. Experimental implemen-
tation. 1992.

Conor McBride. Inverting Inductively Defined Relations in LEGO.
Types for Proofs and Programs, International Worskshop TYPES '96.
Springer-Verlag LNCS 1512. pp236-253.

J. McCarthy, J.A. Painter. Correctness of a compiler for arithmetic ex-
pressions. Mathematical Aspects of Computer Science, pp33-41. AMS,
1967.

John McCarthy. A Basis for a Mathematical Theory of Computa-
tion. Computer Programming anf Formal Systems, P. Braffort and D.
Hirschberg editors. North Holland Publishing Company. 1967.

Dale Miller. A Logic Programming Language with Lambda-Abstraction,
Function Variables and Simple Unification. Journal of Logic and Com-
putation 2/4, pp497-536. 1991.

Dale Miller. Unification Under a Mixed Prefix. Journal of Symbolic
Computation 14, pp321-358. 1992.

Robin Milner, Mads Tofte, Robert Harper. The Definition of Standard
ML. The MIT Press, 1990.

E. Moggi. Notions of computation and monads. Information and Com-
putation, 93(1). 1991.

Gésar Muioz. Dependent Types with Explicit Substitutions: A Meta-
theoretical development. Types for Proofs and Programs, International
Worskshop TYPES '96. Springer-Verlag LNCS 1512. pp294-316.

Wolfgang Naraschewski, Tobias Nipkow. Type Inference Verified: Algo-
rithm W in Isabelle/HOL. Types for Proofs and Programs, International
Worskshop TYPES '96. Springer-Verlag LNCS 1512. pp317-332.

Bengt Nordstrom. Terminating General Recursion. BIT, Vol. 28, pp605—
619. 1988.

Christine Paulin-Mohring. Inductive Definitions in the System Coq:
Rules and Properties. In Proceedings TLCA, 1992.

Christine Paulin-Mohring. Bfinitions Inductives tn Tédrie des Types
d’Ordre Sugrieur. Habilitation Thesis. UniversiClaude Bernard (Lyon
). 1996.

Verifying the Unification Algorithm in LCF. Science of Computer Pro-
gramming, 5:143-169. North-Holland. 1985.

251

[Pause]

[Pau87]

[Per9g]

[Poll94]

[Pol90]

[Pol94]

[Pra65]

[Pym90]

[Pym92]

[Rob65]

[Rou92]

[SHI5]

[SSB9Y]

[Saul6]
[SP94]

[S1i97]

Lawrence Paulson. Constructing recursion operators in intutionistic type
theory. Journal of Symbolic Computation (2), pp325-355. 1986.

Lawrence Paulson. Logic and computation: interactive proof with Cam-
bridge LCF. Cambridge Tracts in Theoretical Computer Science, \Vol. 2.
CUP. 1987.

Henrik Persson. An Abstract Development of the Polynomial Ring in
Agda. In Type Theory and the Integrated Logic of Programs, Doctoral
Thesis. Chalmers University of Technologyp@borg. 1999.

Erik Poll. A Programming Logic Based on Type Theory. Doctoral The-
sis. Technische Universiteit Eindhoven, 1994.

Robert Pollack. Implicit Syntax. In preliminary Proceedings, 1st work-
shop on Logical Frameworks, 1990.

Robert Pollack. Incremental Changes in LEGO: 1994. LFCS Report.
University of Edinburgh.

Dag Prawitz. Natural Deduction—A proof theoretical study. Almquist
and Wiksell, Stockholm. 1965.

David Pym. Proofs, Search and Computation in General Logic. PhD
Thesis. University of Edinburgh. 1990.

David Pym. A Unification Algorithm for thalI-Calculus. International
Journal of Foundations of Computer Science Vol. 3 No. 3, pp333-378.
1992.

Alan Robinson. A Machine-oriented Logic Based on the Resolution
Principle. ACM, 12:23-41. 1965.

Joseph Rouyer.d¥eloppement de’algorithme d’unification dans le Cal-
cul des Constructions avecs types inductifs. Technical Report 1795,
INRIA-Lorraine. November 1992.

Amokrane Sidi and Gerard Huet. Constructive Category Theory. In Pro-
ceedings of the joint CLICS-TYPES Workshop on Categories and Type
Theory, Goteborg, Sweden. 1995.

Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit Environ-
ments (Extended abstract). 1999.

Ferdinand de Saussure. Cours de Linguisticeré@le. 1916.

Paula Severi, Erik Poll. Pure Type Systems with Definitions. In LFCS
'94. Springer-Verlag LNCS 813, pp316-328. 1994.

Konrad Slind. Function Definition in Higher-Order Logic. In Theorem
Proving in Higher-Order Logics. 9th International Conference, TPHOLSs
'96. Springer-Verlag LNCS 1125. August 1996.

252

[Stro3]

[Tak95]

[TS83]

[Ter95a]

[Ter95b]

[Tur9s]

[Wad87]

Thomas Streicher. Investigations into intensional type theory. Habilitia-
tion Thesis, Ludwig Maximilian Universat: 1993.

M. Takahashi. Parallel reductionsircalculus (Revised version). Infor-
mation and Computation. 118(1), pp120-127. 1995.

Hisao Tamaki, Taisuke Sato. A transformation system for logic programs
which preserves equivalence. ICOT TR-018. 1983.

D. Terrasse. Encoding Natural Semantics in Coq. Fourth Interna-
tional Conference on Algebraic Methodology and Software Technology,
(AMAST '95). Springer-Verlag LNCS. July 1995

D. Terrasse. Vers un environnement de developpement de preuves en Se-
mantique Naturelle. PhD thesicole Nationale des Ponts et Chaees”
(ENPC). October 1995.

David Turner. Elementary strong functional programming. Proceedings
of the first international symposium on Functional Programming Lan-
guages in Education. Springer-Verlag LNCS 1022. 1995.

Philip Wadler. Views: A way for pattern matching to cohabit with data
abstraction. 14th ACM Symposium on Principles of Programming Lan-
guages, Munich, January 1987.

253

Index

property indicators
: ‘type’, 18
= ‘value’, 18
~ ‘guess’, 28
binding operators
Vx : S ‘universal quantification’, 18
AX : S ‘functional abstraction’, 18,
27
X = s:S ‘local definition’, 18, 27
?X : S *hole component’, 27
?X =~ p:S ‘hole with guess’, 27
contexts
() ‘empty context’, 19, 28
['; B ‘context extension’, 19, 28
C ‘information order’, 32
judgments
[' - J ‘core judgment’, 19
A I+ J ‘development judgment’,
28
computation
= ‘syntactic identity’, 18
~>" ‘contraction’, 21, 30
~~+. ‘one-step reduction’, 21, 30
> ‘many-step reduction’, 20
= ‘conversion’, 20
< ‘cumulativity’, 21, 24
positions
o ‘trivial position’, 31
P; P’ ‘position composition’, 31
P ‘context from position’, 31
P[p] ‘put at position’, 31
C ‘information order’, 34
[t/x] ‘substitution’, 18
telescopes
t ‘sequence’, 47
T ‘telescope’, 47
Fam ‘free telescope’, 50
{-} ‘iteration’, 49
T t ‘application’, 48

254

A"Type ‘triangle telescope’, 50
= ‘is sugar for’, 101
datatypes

0 ‘empty type’, 104

1 ‘unit type’, 104

2 ‘boolean type’, 104

+ ‘sum type’, 104
records

<field = 'f> ‘record as tuple’, 101

R field; ‘projection’, 102
R.t ‘open with official names’, 102
R[X].t ‘open with local names’, 102
sigma types
Yx : S ‘fake X-binding’, 105
x ‘non-dependent product’, 105
(s; t) ‘pair’, 105
»S ‘tuple type’, 105
(S) ‘tuple’, 105
equalities
~, seeequality
=, seeequality
concrete categories
— ‘categorical arrow’, 185
o ‘arrow composition’, 185
~ ‘arrow equality’, 185
. ‘identity arrow’, 185
[[] ‘object/arrow interpretation’,
185
concrete monads
N\, ‘monad arrow’, 190
(‘monad bind’, 188
¢ ‘monad composition’, 190
) ‘monad embed’, 190
[-] ‘arrow interpretation’, 190
[- — -] ‘knockout’, 200, 218
alist operations
1 *alist composition’, 219
« ‘alist interpretation’, 219

abandon, 38
abstraction for rewriting, 60, 76
Ackermann’s function, 67, 181
alist, 219
Alist category, 219
AND, 213
aperture, 55
assume 38
attack, 39

(B-reduction, 20
bindings, 17
fatuous, 18
blue plastic hammer, 43
blunderbuss 106, 142, 165
bmgu, 217, 220
bmgulnv, 222
boolean typesee2
Bound, 213

call, 163

case analysis, 57, 108

categoryseeconcrete category

cell, 125

check, 230, 233
checkinv, 234

Church-Rosser, 23

claim, 34, 38

Clark completion, 57

Closed, 212

closed constraint, 212

C:), 36

coalescence, 75
coalescencel?29, 130, 136
compatible closure

core, 20, 21

development, 30
components, 27
Concrete, 185
concrete category, 184, 185

from a family, 186

of types, 186
concrete monad, 189
conflict, 129, 130, 136
constraints, 65

friendly, 70

unfriendly, 70

255

constructor form, 129
unification problem, 129
constructors, 89
contexts, 19
contraction schemes
core, 20, 21
development, 30
conversion, 24
covering, 155, 156
elementary, 156
empty, 177
equations, 175
exact, 175
cumulativity, 21, 24
cut, 38
cut property, 23
cycle 129, 130, 145

d-reduction, 20
discharge, 43, 44

downward-closed constraint, 212

eliminate, 71-78
elimination rule, 53
aperture, 55
case data, 56
case patterns, 56
cases, 56
datatype, 89
indices, 55
inductive hypotheses, 56
patterns, 55
recursive calls, 56
scheme, 55, 63-71, 75
target, 55, 61-63, 73
empty type see0
equality
John Major, 119
Martin-Lof, 118
propositional, 54
~, 54,119
construction froms, 124
egElim, 119
egindElim, 120
eqSubst,, 121
equnique,,, 122
=, 118

construction fronr~, 124 strong, 99

idElim, 118 weak, 70, 100
idSubst, 118 inductive datatypes, 87
idUnique, 119 dependent families, 96
Equiv, 215 parameterised, 92
records, 101

faithful functor, 185
Fam, 97, 163
FamAux, 115, 163

simple, 89
with higher-order constructors, 94
inductively defined relations, 98

FamAuxGen, 115, 163 injectivity , 129, 130, 136
FamCase, 108 intro-v, 39
FamEIim, 97 intro -1, 39
FamFix, 115, 163 inversion, 57
family i-reductions, 89
indexed, 50 iterated sequence, 49
~ type, 50 iterated telescope, 49
Fibonacci function, 110
fields, 101 Jrule, 118
fin, 96 judgments
finElim, 96 core, 19
fixpoint, guarded, 110, 113 development, 28
folding, 71, 159 justify , 38
Ford, Henry, 63
free pattern, 156 Krule, 119
from, 216, 220 Kleisli
Functor, 187 category, 189
functor, 187 triple, 188
Kleisli, 191
goes, 231 knockout, 200, 218
guarded, 111 knockoutinv, 218
guarded fixpoint, 110, 113
guess, 28 Lam, 193
lengthening, 159, 181
halting problem, 177, 179 <, 71,99
hole, 25 <Elim, 99
?-binding, 28 <,57
life of, 34 Clark completion, 57
hubris, 108, 113 Clark-style inversion, 57
.] <lInv, 58, 64
identity, 129, 130, 136 weak induction principle, 70
Ind, 89 l-reduction, 20
IndAux, 113 lexicographic recursion, 181
|ndAUXGen, 113 Llft, 194
IndEIim, 91 |ift, 194
~ IndFix, 113 liftinv, 195
indentifiers, 17 list, 93
indexed family, 50 listElim, 57, 93

induction principle

256

Major, John, 119

majority, 154

mantra
about blocking computations, 61
about contexts, 20
about decomposition, 56
about recursion, 241
about the means, 53

Maximal, 213

maybe, 104

maybeF, 187

maybeM, 191

mgu, 133

mgu, 216, 220
mgulnv, 221

Monad, 190

monad, 188

most general unifier, 133

naive-refing 40

N, 90
NAux, 112
NAuxGen, 113
NCase, 108
NElim, 91
NFix, 113

NEq, 59, 78-86
introduction rules, 85
NEqlInv, 60, 83
NEqgRecl, 59, 81

NoCycle, 232

NoUnifier, 222

obviously empty, 178
optimism, 212
Optimist, 213
ord, 94

ordElim, 95

partial constructions, 27
patterns, 55
Peano
concerto, 137
postulates, 58
plus, 159
pos, 231
position information order, 34
positions, 30, 31

257

postpone 38

program, 167

property, 18
propositional equality, 54
pure, 28

raise-V, 39
raise-!, 39
records, 101
opening, 102
projection, 102
regret, 34, 38
Rename, 193, 201-210
renaming, 194
replacement
fails in general, 25
for partial constructions, 31
retreat, 39
return, 163
return, 171
rhubarb, 63, 66

sameFunctor, 188
scheme, 55, 63-71, 75
sequence, 47
iterated, 49
Y-types, 103
solve 34, 38
split, 168
spot, 102
state information order, 32
states, 27
strengthening, 23
strong induction principle, 99
strong normalisation, 23
strongly normalising, 24
subject reduction, 23
SubstM, 201-210
substitution, 129, 130, 136
SubstM, 193
sum typesee+
syntactic identity, 18
syntax
core, 18
development, 27

tactic
abandon 38

assume 38
attack, 39
blunderbuss 106
claim, 38
cut, 38
deletion, 44
discharges, 44
eliminate, 71-78
intro -V, 39
intro-!, 39
justify, 38
naive-refing 40
permutation, 44
postpone 38
program, 167
raise-V, 39
raise-!, 39
regret, 38
retreat, 39
return, 171
solve 38
split, 168
try, 38
unify, 41
unify-refine, 42

target, 55, 61-63, 73

telescope, 47
application, 48
free, 50
iterated, 49

telescopic
equation, 65
substitution, 121
uniqueness, 122

terms, 17

then, 231

thick, 196-199
thickinv, 199

thin, 196

tree, 211

triangle, 50

try, 34, 38

type family, 50

type former, 89

type inference rules
core, 22, 24

258

development, 29

unfolding, 71, 159
unification problem, 129
unifier, 133

Unifies, 216

unify, 41

unify-refine, 42

unit type,seel
universes, 17

Unload, 217

vect, 104
vlast

viast, 172
vtail, 128

weak induction principle, 70, 100

