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Abstract


The practice of computing has reached a stage where computers are seen as parts of a


global computing platform. The possibility of exploiting resources on a global scale


has given rise to a new paradigm – the mobile computation paradigm – for computation


in large-scale distributed networks. Languages which enable the mobility of code over


the network are becoming widely used for building distributed applications.


This thesis explores distributed computation with languages which adopt functions


as the main programming abstraction and support code mobility through the mobility


of functions between remote sites. It aims to highlight the benefits of using languages


of this family in dealing with the challenges of mobile computation. The possibility of


exploiting existing static analysis techniques suggests that having functions at the core


of a mobile code language is a particularly apt choice.


A range of problems which have impact on the safety, security and performance of


systems are discussed here. It is shown that types extended with effects and other an-


notations can capture a significant amount of information about the dynamic behaviour


of mobile functions and offer solutions to the problems under investigation.


The thesis presents a survey of the languages Concurrent ML, Facile and PLAN


which remain loyal to the principles of the functional language ML and hence inherit


its strengths in the context of concurrent and distributed computation. The languages


which are defined in the subsequent chapters have their roots in these languages.


Two chapters focus on using types to statically predict whether functions are used


locally or may become mobile at runtime. Types are exploited for distributed call-


tracking to estimate which functions are invoked at which sites in the system. Compil-


ers for mobile code languages would benefit from such estimates in dealing with the


heterogeneity of the network nodes, in providing static profiling tools and in estimating


the resource-consumption of programs. Two chapters are devoted to the use of types


in controlling the flow of values in a system where users have different trust levels.


The confinement of values within a specified mobility region is the subject of one of


these. The other focuses on systems where values are classified with respect to their


confidentiality level. The sources of undesirable flows of information are identifed and


a solution based on noninterference is proposed.
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Chapter 1


Introduction


1.1 Mobile computation with functions


The recent developments in telecommunications technology have made it possible to


envisage a global computing platform in which computers interact easily and share


a wide range of resources. Computers are no longer viewed as largely self-contained


computing devices which use local resources and occasionally communicate with each


other. The traditional assumptions about computation in distributed systems and desir-


able features for programming languages are being revised to allow for better use of


the global infrastructure. A consequence of this has been the emergence ofthe mobile


computation paradigmalong with its supporting technologies. The key characteristic


of this paradigm is to give programmers control over the mobility of code or active


computations across the network by providing appropriate language features. There-


fore, a typical mobile computation language is expected to facilitate the expression


and execution of mobile code-containing entities. The dynamism and flexibility of-


fered by this form of computation, however, brings about a set of problems, the most


challenging of which are relevant to safety and security.


Opinions are diverse as to the primary concerns of languages for mobile compu-


tation. We argue that a sound formal foundation is of the greatest significance. By a


formal foundation we mean a collective body of work which describes the computa-


tional model of the language at a suitable level of abstraction and enables rigorous or
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even formal reasoning about programs. Such a foundation would preclude ambigui-


ties about the meaning of programs while also enabling the formulation and proof of


certain properties including safety and security related ones.


Functional languages are known for their well-understood computational models


and their amenability to formal reasoning. They also have strong expressive power


due to higher-order features. Functions can flow from one program point to another


as first-class values. These facts suggest that the kind of mobile computation language


we put forward can be obtained by adopting a functional core and extending it with


features which are in keeping with the principles of functional computation. In such a


language functions can represent mobile code-containing entities and formal systems


for reasoning about functional programs can be further exploited to reason about the


behaviour of mobile code.


In general, this thesis contributes simple but inspiring ideas to the research in for-


mal models of mobile computation and program analysis. In particular, novel ap-


plications of type and effect based analysis and suggestions for future directions are


presented.


1.2 Type and effect based static analysis


Conventionally type systems for functional languages have been used to ensure that


programs cannot corrupt the runtime representation of data values so that further exe-


cution of the program is not faithful to the language semantics. This property is known


as type safetyin the literature. Effect systems were initially proposed as a solution


to the problems encountered in preserving type safety and polymorphism while inte-


grating functional and imperative features. The basic idea was to enhance the type


systems so that the expressions were associated with their observable side-effects as


well as types and to use this information in making judgements with respect to safety.


Some authors have further explored the use of type and effect systems for memory


management and safe integration of concurrent and functional features.


The exploitation of type and effect systems need not be confined to the enforce-


ment of type safety. Annotated with effects and other kinds of information, types can
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capture a significant amount of static information about a program’s potential dynamic


behaviour. The general methodology of type and effect systems then consists of devis-


ing a semantics for the language, expressing a program analysis by means of types and


effects and showing the semantic correctness of this analysis. In other words, the type


system extracts the overall behaviour of the program as a first step and as a later step


one can devise various analyses to reason about it in a sound way. These analyses may


be put to use in various areas such as compiler optimizations, cost profiling and safety


and security. The literature includes examples of such analyses devised prior to the


emergence of the mobile computation paradigm. This work introduces new analyses


motivated by the characteristics of mobile computation.


A slightly different approach to exploiting type and effect systems can be to de-


termine the properties which are desirable for all programs and design the type and


effect system so that those programs which violate these properties are rejected by the


system. This is closer in spirit to the earlier exploitations of type and effect systems


for enforcing type safety. In the context of mobile computation, enforcing type safety


alone is not sufficient to address many of the safety and security concerns. Just as the


languages are revisited to examine their position with respect to the new paradigm of


mobile computation, type and effect systems need to be revisited to adapt their method-


ology to the requirements of the context of mobile computation. The work presented


in this thesis can be considered as a step in this direction.


Enforcing safety and security properties by type systems is an active research area


where the significance of secure flow of information is emphasized. Most of the exist-


ing work is in the framework of computational models different to the one considered


here. In this respect, we contribute to the area of type-based approaches to security


by presenting type and effect systems which incorporate a machinery for tracing the


flow of values in a distributed setting where functions are the essential elements of


computation.
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1.3 Overview of the thesis


Chapter 1 introduces the characteristics of mobile computation and functional compu-


tation. It argues that integrating these two paradigms can offer solutions to the prob-


lems which have proved to be challenging in the context of mobile computation. The


useful role which can be played by type and effect systems is discussed.


Chapter 2 gives an overview of the process calculi which provide formal models


of distributed and mobile computation. This is followed by a closer look at the pro-


gramming languages Concurrent ML, Facile and PLAN (Programming Language for


Active Networks). These languages point to a consistent effort to benefit from the fun-


damental ideas behind ML in designing and implementing languages for concurrent


and distributed computation.


Chapter 3 focuses on a language similar to Facile where values of all types, in-


cluding functions and communication channels, can be transmitted between remote


sites. The problem investigated in this chapter is the static estimation of functions


and channels which may become mobile at run-time. A static analysis such as the one


considered in this chapter would be a useful asset for compilers in dealing with the het-


erogeneity of the network nodes, detecting the locality of certain values and providing


static profiling tools.


Chapter 4 focuses on the language PLAN. The form of support for code mobility


in PLAN is different from that of Facile. It is based on a remote evaluation facility for


functions. The design of PLAN has been influenced by the need to meet the strong


safety and security requirements of active networks; especially by the need to protect


against denial of service. The subject of this chapter is distributed call-tracking by


means of a type and effect system in the framework of a PLAN-like language. It is


argued that for an applicative language distributed call-tracking can provide the basis


for static estimation of resource consumption.


Chapter 5 shifts the focus back to a language which resembles Facile. Some dis-


tributed systems are characterized by their heterogeneity in terms of the nature of the


computing devices, security requirements of the information flowing in the system and


the trust level of the users. Programmers who provide code for such systems would


find it useful to have a language mechanism which enables them to confine the flow
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of certain values to a particular part of the system – a mobility region. This chapter


discusses how a static type system can be used to enforce confinement in a specified


mobility region.


Chapter 6 revisits the language of Chapter 3 and introduces a variant of it where the


values of the language are classified with respect to their confidentiality level. As in


Chapter 5, it is assumed that users which interact with the system may not be equally


trustworthy. The sources of undesirable information flows are identified and a secure


information flow property based on noninterference is introduced. Programs which are


accepted by the proposed type and effect system for the language are shown to enjoy


this property.


Chapter 7 includes a summary of the thesis which clarifies contributions made to


the research areas of functional and mobile code languages, annotated type and effect


systems and the language-based approach to security.







Chapter 2


Towards Mobile Functions


The major sources of inspiration for our subject come from the research areas of func-


tional programming and foundational models of mobile computation. The aim of this


chapter is to give an overview of the existing works in these areas which provide the


background to this thesis.


The idea of integrating the functional programming paradigm with other paradigms


is not new. It has already given rise to the design and implementation of several


languages. The language Standard ML (SML) [MTHM97] constitutes a good ex-


ample for the systematic integration of functional and imperative features. Concur-


rent ML [Rep92] and Concurrent Haskell [JGF96] are examples for concurrent func-


tional languages; they extend the languages ML and Haskell with a concurrent pro-


gramming model. Functional languages which support distributed programming in-


clude general-purpose languages such as Facile [TLP+93, Kna95], Erlang [AWWR93],


the Join-calculus language [FM97], Poly/ML [Mat97] and MobileML [HY00], and


domain-specific languages such as the Programming Language for Active Networks


(PLAN) [HKM +98]. Although the motivations and the intended application domains


for these languages vary, they all share the common goal of exploiting the strengths of


the functional paradigm within their application domains.


In this chapter, we take a closer look at the three of the descendants of Standard


ML, namely Concurrent ML, Facile and PLAN. These languages point to a consistent


effort in the functional language community to benefit from the fundamental ideas


behind ML in designing and implementing languages for concurrent and distributed
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computation. There is a large body of theoretical work on these languages. Our aim


is to contribute to this body of work by investigating how principled language design,


and static type systems can help to deal with the challenges of mobile computation.


This chapter also presents a survey of the most frequently cited process calculi in


the foundational study of mobile computation. The developments in the process calculi


framework, particularly those which involve static type systems, are of interest to our


work. This is mainly because they provide abstract and clear formulations of many


interesting problems which can be dealt with using an approach based on types.


2.1 Concurrent and distributed computation


This section introduces some basic concepts and programming language design issues


related to computation in large-scale distributed networks. We focus on the set of


programming language design issues which we consider to be most relevant to our


work. The discussion on each programming language issue is followed by a survey of


the related foundational models. This section also provides a guide to the terminology


used throughout the thesis.


2.1.1 Concurrency


Concurrent computation is the form of computation which consists of independent


threads of control. In the presence of multiple processors, decomposing computation


into independent threads of control allows different parts of a single task to be executed


in parallel. This does not, however, mean that the use of concurrency is limited to sys-


tems with multiple processors. In the case of a single processor, concurrency can serve


as a useful conceptual tool for structuring computation into independently executable


parts whose computational steps can be interleaved. Many interactive applications uti-


lize this style of concurrency. We should also note that concurrency arises naturally in


the case of distributed computation. The different nodes of a network can be used to


carry out different tasks in parallel.
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Processes and communication We refer to the threads of control which comprise a


concurrent computation asprocesses. In general, we use the term “process” in a rather


abstract sense as it is used in foundational models of concurrency and higher-level


concurrent programming languages. However, if one considers their implementation,


it would be appropriate to regard them as lightweight threads. For example, several


processes of a concurrent programming language can be implemented within a single


heavyweight operating system process.


A significant design issue for concurrent programming languages is the specifica-


tion and creation of processes. A language can require the set of processes to be fixed


statically or it can provide a feature to enable their dynamic creation.


A large class of applications which benefit from concurrency requires a means


for communicationandsynchronizationbetween processes to facilitate data exchange


and coordination. Shared-memory languages use a mutable shared state to implement


process communication and provide mechanisms such as semaphores and monitors to


prevent processes from interfering with each other. On the other hand, distributed-


memory languages use message-passing primitives and provide a unified mechanism


for communication and synchronization.


The scheme adopted for naming the end points of communication and the degree


of synchronization are among the most important issues which characterize message-


passing primitives. Throughout the thesis, we use the termsynchronousto describe


the form of communication where the sender of a message blocks until the message


is received. The form of communication where the sender can continue its execution


after sending the message is calledasynchronous.


Calculi for concurrency Seminal formalisms of concurrency such as CSP [Hoa85]


and CCS [Mil89] consider static connectivity between processes. They provide an


abstract model of computation where the basic resources are communication channels


and the basic computation is carried out by matching input/output actions on these


channels. Processes are constructed from basic actions by using combinators such as


those for sequencing, parallel composition and choice.


The π-calculus [MPW92] followed these formalisms by offering a richer model.


This rich model relies on the basic notion of naming and communication of these
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names between processes. Names can be understood as names of communication


channels. In theπ-calculus one can express the dynamic creation of a new name with


a given scope. The fact that processes can exchange names facilitates the expression


of dynamic changes in the interaction capabilities of a process with its environment.


This is one of the senses in which the term “mobility” is used in the literature; theπ-


calculus is often described as a calculus for mobility. Theπ-calculus is a candidate for


being the canonical calculus for concurrent computation with its expressive power and


relatively tractable semantic theory. Since its first presentation several variants of the


π-calculus have been proposed such as [HT91, San92, Bou97] and their behavioural


properties have been investigated.


2.1.2 Distribution and mobility


The physical distribution of processes among different nodes of a network opens the


way for network-wide sharing of processing power and other computational resources.


Well-designed systems can exploit distributed computing facilities to improve effi-


ciency. Some applications such as those for distributed information retrieval or telecon-


ferencing are distributed by nature. These types of applications can be accommodated


only if computation can be distributed across the system. Distribution is also essential


in providing reliable and fault-tolerant services.


The issues concerning concurrency are applicable to distributed systems with the


additional complexity of taking into consideration the different physical sites of com-


putation. For example, communication between remote sites is vulnerable to link and


network failures. Moreover, the nodes of a distributed system may be heterogeneous


and exchanging data between these nodes may consequently require support forinter-


operability.


The distribution of processes among different physical locations makeslocality an


important notion to be addressed by language designers. The traditional approach to


distributed computing focuses on hiding the presence of different localities and pro-


viding a uniform computational environment for programs. This implies that support


for transparencyis a design goal for distributed programming languages.
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Mobility In recent years many researchers have highlighted the need to revise the


basic assumptions about distributed computing. Location transparency is one of the


principles which is being questioned. Some researchers argue that this principle sets


an obstacle to exploiting the computational infrastructure made available by the recent


technological developments. Languages which enable programmers to have control


over themobility of code are accepted by many as better suited for computation in


modern large-scale networks than languages which do not provide this control.


In designing a language which supports mobility, a crucial issue is to determine


what should be allowed to be mobile. The design decision on this issue has a significant


influence on the expressiveness of the language and on more practical aspects such


as the feasibility of implementation. A comprehensive survey of different forms of


mobility can be found in [FPV98]. According to the classification which is presented


there, the form of code mobility which involves no migration of execution state is


calledweak mobility. The form of mobility which supports the transfer of both code


and execution state is referred to asstrong mobility.


Data space management is another issue which needs to be resolved by language


designers. When a computational unit moves to a new computational environment,


the set of bindings to resources accessible by it must be rearranged. The method of


achieving this depends on the nature of the resources involved and the type of binding


to these resources. A survey of approaches to data space management can be found in


[FPV98]. A similar survey has been conducted in [SY97].


Calculi for distributed computation In Section 2.1.1 we introduced some of the cal-


culi for concurrency. The main topic of interest for those calculi is provide a simple


and general model for studying the behaviour of concurrent systems by using algebraic


methods. A topic not addressed is the physical distribution of processes among differ-


ent sites of computation. In order to address the issue of physical distribution, many


authors have adopted the approach of basing their work on a variant of theπ-calculus.


In this way, they exploit the basic powerful notions of theπ-calculus. Another ad-


vantage of this approach is that it gives the opportunity to relate the theoretical results


obtained by different studies in the common framework of theπ-calculus. The sur-


vey paper by Hennessy includes a comparison of several location calculi [Hen98]. We







Chapter 2. Towards Mobile Functions 11


include below a brief introduction to some of these calculi to note the state-of-the-art


in this field. See also the paper by Castellani [Cas01] for a discussion on enriching


process calculi with localities and its semantic implications.


πl : A line of work on a distributed variant of theπ-calculus was initiated by the pre-


sentation of theπl -calculus by Amadio and Prasad [AP94]. This work focused on the


notions of locality and failure for the programming language Facile. Aπl program


consists of a number of processes running on one or more locations where the num-


ber of locations can dynamically change due to the generation or failure of new nodes.


Processes can move between different nodes. The calculus makes clear the dependence


of channels and processes on the nodes where they reside. The authors take the view


that the distribution of processes can be perceived by the absence of certain commu-


nication capabilities due to failures. Theπ1l -calculus [Ama00] which is derived from


theπl -calculus offers a model of asynchronously communicating distributed processes


where every channel name is associated with a unique process.


Dπ: The language Dπ presented by Hennessy and Riely [HR98b] is a distributed vari-


ant of theπ-calculus. It is different from theπl -calculus and its extensions in two


major respects. It ignores location failures and requires communication to be local.


By local we mean that two processes can communicate on a channel only if both of


the processes and the channel are co-located. According to the classification presented


in [Hen98] Dπ can express the global migration of passive code. A calculus of dis-


tributed higher-order processes which is related to Dπ has been presented in [YH99].


In this calculus parameterized processes as well as basic values can be transferred be-


tween distinct locations. However, the distributed fragment of this calculus, is not as


expressive as Dπ. This is mainly because locations do not have the first-class status as


they do in Dπ.


Join-Calculus: The original work on the join-calculus of Fournet and Gonthier [FG96,


FGMR96] was motivated by the identification of a gap between the theory and the


practice of concurrent computation in distributed systems. According to the authors,
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the existing calculi provided elegant theories but they overlooked implementation is-


sues. On the other hand, the large set of constructs found in programming languages


for building concurrent distributed applications constituted an obstacle to their the-


oretical investigation. The design of the join-calculus was an attempt to provide a


simple formal model of concurrent, distributed computation which could also be used


as the foundation for a practical programming language suitable for computation in


modern networks. The join-calculus can be regarded as an asynchronous variant of


theπ-calculus where scope restriction, reception and replication is merged in a single


construct calleddefinition.


The development of the Distributed join-calculus had several stages. The concep-


tual model [FG96] was obtained by an extension of the generic model of the chem-


ical abstract machine [BG92]. In a later work the join-calculus was extended with


explicit locations and primitives for mobility [FGMR96]. The resulting Distributed


join-calculus allows the expression of mobile agents moving between different phys-


ical sites. It supports the global migration of active code. This corresponds to strong


mobility in our terminology. A location resides on a physical site and contains a group


of processes. It can also be moved to another site taking all of its sub-locations with it.


Join locations can be organized into a tree structure. This feature of the join-calculus


offers a simple model of failure. An experimental high-level language based on the


calculus with the same name has been implemented in Objective CAML [Ler97]. The


join-calculus has also led to the implementation of the JoCaml system which extends


Objective CAML with the distributed programming model of the join-calculus.


Distributed π-calculus: Distributedπ-calculus of Sewell [Sew98] combines the lo-


cation and migration primitives from the Distributed join-calculus with asynchronous


communication in theπ-calculus style.


Nomadic π-calculi: In [PSP98] Sewell, Wojciechowski and Pierce study language


primitives for communication between mobile agents. In particular, they focus on


the need to draw a distinction between location independent and location dependent


primitives. The authors introduce the language Nomadic Pict. This language allows
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infrastructure algorithms to be expressed by means of translations from a high level


which uses location independent primitives to a lower level in which communication


with an agent requires its location to be known. The semantics of Nomadic Pict has


been formally studied by Unyapoth in [Uny01].


Ambient Calculus: The Ambient Calculus of Cardelli and Gordon [CG98, Car99] is


a process calculus which is different in spirit to theπ-calculus model of computation.


It focuses on process mobility rather than process communication.


The abstraction of ambient is what gives the calculus its distinctive character. An


ambient is a named location which may contain local processes and subambients. It can


move as a unit in to or out of other ambients. The Ambient calculus can be considered


as supporting local migration of active code [Hen98].


Ambients can model the existence of different administrative domains in large-


scale networks. The ability of processes to cross the barriers between these domains


can be expressed by the capabilities associated with the processes.


Seal (σ) Calculus: Theσ-calculus of Vitek and Castagna [CV99] shares goals with the


Ambient Calculus. It extends theπ-calculus with location mobility and resource access


control. Security issues have been emphasized in the design of theσ-calculus to allow


context-independent proofs of security. The authors describe their aim as providing a


model for secure distributed applications over large-scale open networks such as the


Internet.


Seals are named, hierarchically-structured locations. A seal can contain a hierarchy


of subseals. Communication occurs synchronously over the channels and is restricted


to be either local or neighbourly. Seals may be moved over channels, this makes the


Seal-calculus a higher-order calculus. The mobility of a seal is under the control of


its environment. There are mechanisms to control the propagation of the names of


channels in order to control external access to local resources. The notion ofportal is


proposed as the key mechanism to control inter-seal reactions.
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2.1.3 Safety and security


A major motivation for mobile computation is to make better use of the global com-


putation infrastructure by facilitating the sharing of its resources among mobile com-


putational entities. In order to bring about the desired advantages of mobile compu-


tation, safety and security must be taken into consideration with particular emphasis.


In general, safety aims at the prevention of unintended behaviour of programs and is a


precondition for security. Security is concerned with a wider range of issues such as


secrecy and integrity of the information which flow within a system and the prevention


of malicious attacks.


Programming languages may benefit from a wide range of mechanisms to improve


the safety and security of systems. Exploiting language-theoretic techniques is one


of the approaches adopted by researchers and this is also the one in which we are


interested. This approach focuses on principled language design where support for


security is included as one of the design goals. The major challenges faced by the


designers of such languages are identifying what is considered to be harmful behaviour


for programs and devising mechanisms for restricting the execution of programs which


are potentially harmful. Type systems appear to be useful in this context. Languages


may choose to use static typing, dynamic typing or a combination of the two.


It is important to note that the mobile computation paradigm poses challenges to


safety and security of systems which are hard to handle by language-based techniques


alone. Incorporating mechanisms based on cryptography can become a necessity.


Security and process calculi In the previous sections we introduced a representa-


tive set of process calculi which appear to drive much of the foundational research on


mobile computation. Security is a significant topic of interest in mobile computation.


Therefore, it is being widely studied within the framework of these process calculi.


We will focus here on the most recent works which propose type systems to enforce


certain behavioural properties concerning security.


π-calculus: A pioneering work on the use of types for enforcing secure information


flow is due to Abadi [Aba99]. In this work a notion of behavioural equivalence called
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testing equivalence is used to formulate a secrecy property for the spi-calculus [AG99]


processes. The spi-calculus is an extension of theπ-calculus with cryptographic prim-


itives. It is suitable for describing and analyzing security protocols. Secret information


can be manipulated by the encryption and decryption primitives throughout the com-


putation. The role of the type system is to check statically whether a process has the


desired secrecy property. Well-typed processes cannot leak secret information to the


environment.


Hennessy and Riely have studied a type system for an asynchronous variant of the


π-calculus [HR00] where specific security levels are assigned to input/output capabili-


ties and processes. The type system guarantees that a process cannot access resources


of a higher security level than that of itself. Additionally, in a well-typed system the


behaviour of low-level processes cannot be affected by changes to the high-level be-


haviour. To define this formally they use an appropriate notion of testing equivalence.


A recent work by Honda, Vasconcelos and Yoshida [HVY00] presents a sophisti-


cated type system for another variant of theπ-calculus. They use input/output types an-


notated with security levels. Their motivation is to provide a foundational calculus into


which typed programming languages can be embedded. This allows the behavioural


analysis of higher-level programs with respect to secure information flow.


Another work on a security type system for theπ-calculus is by Cardelli, Ghelli and


Gordon [CGG00]. A primitive is added to theπ-calculus for dynamic group creation


with a given scope. The type system guarantees that channels created within the scope


of a particular group cannot be leaked to processes outside the initial scope of the


group.


Dπ: The language Dπ has played a central role in the study of type systems for mobile


code security. In [HR98b] Hennessy and Riely propose a static type system for Dπ
where location types are used to express the capabilities which mobile code has at a


particular location. The type system guarantees that mobile code can access a resource


only if it has the required capabilities. The same authors focus on security issues for


open systems in [HR98c, HR99]. For such systems, one cannot rely on type-checking


the whole system statically. The authors investigate partially-typed semantics for Dπ
and propose a mixture of static and dynamic type-checking. Mobile code which comes
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from an unknown or an untrusted source is subjected to some dynamic checks.


Join-Calculus: A polymorphic typing discipline akin to the Damas-Milner typing


discipline of ML has been developed for the join-calculus [FLMR97]. Although the


join-calculus provides the framework for investigating distributed systems security in


a number of works [AFG98, AFG99], there do not appear to be any attempts to exploit


type systems for this purpose.


Ambient Calculus: There are a large number of type systems proposed for the Am-


bient calculus which deal with different aspects of security in the computational model


induced by mobile ambients [CG99, CGG99b, CGG99a, LS00, BC01]. The type sys-


tem of [CG99] is designed to prevent runtime errors caused by the incompatibility of


the types of exchanged messages. The type system of [CGG99b] distinguishes be-


tween mobile and immobile values. The work presented in [CGG99a] extends the


Ambient calculus with a group creation primitive. This type system can exploit groups


to identify the set of ambients that a process may cross or open.


Levi and Sangiorgi study the possible forms of interference between mobile ambi-


ents and their impact on security in [LS00]. A new calculus called Mobile Safe Am-


bients is introduced. This calculus imposes restrictions on the interactions of ambients


to prevent undesirable interferences. Bugliesi and Castagna build on this work and


introduce Secure Safe Ambients [BC01]. Their type system can express behavioural


invariants for mobile ambients. It allows the detection of security threats posed by


hostile ambients which exploit implicit acquisition of capabilities to access sensitive


resources. The authors also discuss how their work relates to the security architecture


of the Java Virtual Machine [LY97].
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2.2 ML with concurrency and distribution


2.2.1 Concurrent ML


Concurrent ML (CML) is a programming language, developed by John Reppy [Rep92].


It integrates high-level abstraction mechanisms with concurrency primitives. The suc-


cessful exploitation of procedural abstraction and data abstraction has been a break-


through in sequential programming. In his introduction to CML Reppy draws atten-


tion to this fact. At the time when CML was designed, the practice of concurrent


programming had mainly been based on low-level systems programming languages


which provided abstractions of hardware. The work of Reppy on CML was driven by


the aim of facilitating programmer-defined abstractions for concurrent programming.


His work evolved around the question“What is the right notion of abstraction for


concurrent programming”?


Higher-order concurrency The sequential fragment of CML is inherited directly


from Standard ML. Support for dynamic process creation and interprocess communi-


cation are two of the essential extensions to this sequential fragment. Reppy claims that


shared-memory communication is ill-suited for an ML-based language because it relies


on mutable state and leads to an imperative programming style. He argues in favour of


message-passing communication by stating that it provides a level of abstraction which


is in keeping with the basic design philosophy of CML. CML processes communicate


on dynamically-created channels and the communication is synchronous. Reppy jus-


tifies his choice for synchronous communication by explaining that reasoning about


protocols is easier in the case of synchronous communication.


The key underlying idea of CML is to separate the operation of synchronization


from the mechanism for describing synchronization and communication protocols.


CML introduces a new abstract type of values calledevent. Events represent potential


communication and synchronization actions. These abstracted actions are performed


only when they are synchronized upon.


By the introduction of theeventdatatype synchronous operations are elevated to


being first-class values. One can draw an analogy between synchronous operations
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Property Function Values Event Values


Type constructor → event


Introduction λ-abstraction recvEvt, sendEvt, . . .


Elimination application sync


Combinators ◦, map, . . . choose, wrap, . . .


Figure 2.1: Functions and Events


and functions; an event being analogous to a function abstraction and synchroniza-


tion being analogous to function application. CML also provides combinators for the


construction of more complex events from simpler ones (see Figure 2.1).


Reppy uses the termhigher-order concurrent programmingfor the style of con-


current programming promoted by CML. This style is characterised by the ability to


express a wide range of concurrency paradigms by using events and a small set of


primitives and combinators.


An overview of common CML operations is given in Figure 2.2. The combina-


torsguard andwrap create events from pre-synchronization and post-synchronization


actions respectively. The functionf in guard f represents a suspended function whose


evaluation is forced upon synchronization on the guard event. Its result is used in the


synchronization. The eventev in wrap(ev,f) is wrapped with the functionf. When the


wrap event is synchronized on, the functionf is applied to the synchronization result


of eventev. It should be relatively obvious what the rest of the operations do.


Generalized selective communication Reppy takes the view that support for gen-


eralized selective communication is essential for a concurrent programming language.


He points out the limitation imposed by the notion of selective communication of


CSP [Hoa85] in which only input guards are allowed. He attempts to generalize this


notion so that both input and output operations are allowed as guards.


The interplay between abstraction and generalized selective communication has


been a key issue influencing the design of CML. The examples in [Rep92] and [Rep99]


may convince the reader that the new abstraction mechanismeventis indeed indispens-


able for a realistic integration of abstraction with selective communication. It hides the
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type thread id


type ’a chan


type ’a event


val spawn: (unit→ unit)→ thread id


val channel: unit→ ’a chan


val recv: ’a chan→ ’a


val send: (’a chan ∗ ’a)→ unit


val recvEvt: ’a chan→ ’a event


val sendEvt: (’a chan ∗ ’a)→ unit event


val guard: (unit→ ’a event)→ ’a event


val wrap: (’a event ∗ (’a→ ’b))→ ’b event


val choose: ’a event list→ ’a event


val sync: ’a event→ ’a


val select: ’a event list→ ’a


Figure 2.2: Overview of CML operations


details of the communication protocols while allowing the expression and implemen-


tation of selective communication.


Mobility CML is a concurrent programming language and support for distributed


programming is not among its design goals. Naturally, we cannot talk of mobile com-


putation in the sense in which it is used throughout this thesis. However, values of


CML which include channels and functions do move between processes and the com-


munication topology evolves dynamically. We can use the term mobility in the sense


in which it is used for theπ-calculus. One can view CML channels and thesend and


recv operations as providing an implementation of a typed version of theπ-calculus.


The key difference is that in theπ-calculus one can send free channel names along
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channels whereas in CML a channel has to be created in some scope before being sent.


CML bears an even closer resemblance to the higher-order extensions of theπ-calculus


whereλ-calculus terms are allowed to be exchanged over channels.


Safety and security CML adopts static typing to enforce type safety in the style


of Standard ML. The polymorphic type system of ML has been adapted to support


polymorphism of channels. In his thesis Reppy presents a type safety property for a


subset of CML which includes the essential concurrency extensions such as channels


and events.


Formal foundations A formal mathematical model was not one of the design goals


of CML. The main motivation was to produce a realistic language to be used in


large-scale computer programming. However, the algebra of events was observed


to have some properties which makes it interesting from a mathematical point of


view. Alan Jeffrey has investigated the categorical structure of CML and its deno-


tational semantics [Jef96]. Some other authors have worked on the semantic foun-


dations of CML using the frameworks of action semantics [MM94] and process cal-


culi [FHJ96, JR00]. CML has also been extensively studied within the field of static


analysis [NN96b, NN95, NN94, GFH97, BD97].


In his thesis Reppy also presents an operational semantics for a small languageλcv


which models the concurrency features of CML. The type safety result mentioned


above has been obtained with respect to the semantics ofλcv. A revised version of this


semantics appears in [Rep99].


Comments The emphasis in the design of CML is on combining programmer-defined


abstractions for concurrency and generalized selective communication. A fully-developed


functional mobile code language would benefit from the kind of support provided by


CML for concurrent programming. However, the emphasis of our work is not on pro-


gramming convenience. The influence of CML on our work is due to the following list


of conclusions we have drawn.


• In a language where concurrently executing processes can communicate by ex-


changing values, giving first-class status to functions and channels increases the
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expressive power of the language.


• Synchronous message-passing communication over typed channels is well-suited


for a concurrent programming language based on ML.


• The principle of strong typing can be adapted to concurrent programming.


• Existing implementations of ML such as SML/NJ [AM91] can be exploited in


implementing languages which support concurrent programming.


2.2.2 Facile


Facile [TLP+93] is a language which aims to encompass functional, imperative, con-


current, and distributed programming paradigms in a single programming language.


The original work on Facile focused on the formal foundations of the functional,


concurrent language integration and on abstract implementation models [GMP89].


This work was influenced by the work on process calculi such as CCS [Mil89] and


CHOCS [Tho89]. It was investigated further by Knabe to support the mobile compu-


tation paradigm [Kna95].


Integration of paradigms A major principle in the design of Facile is the symmetric


integration of different programming paradigms so that every paradigm can use any


other paradigm as a subcomponent for its expression. For example, a function may be


implemented as a system of communicating processes and the internals of a process


may be implemented using functions.


The designers of Facile emphasize the importance of simplicity and coherence of


concepts and language constructs. The number of concepts and constructs must be


relatively few. They must be easy to understand and their meaning must not be too


sensitive to their context. Except for a few which involve behaviours most of the


language constructs can be expressed in the spirit of theλ-calculus using function


application and values.


Facile adopts the principle of uniform treatment of values from Standard ML. All


values are treated equally. For example, scripts, channels, guards, nodes and libraries


are all first class values. This principle enables Facile to inherit many of the benefits of
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proc fib server(a,b) = let fun fib(i) = if (i = 0) or (i = 1) then 1


else fib(i-1) + fib(i-2)


in b ! (fib(a?))


end ;


terminate


Figure 2.3: Processes use functions


Standard ML as well as facilitating the implementation of applications which require


dynamic connectivity.


Concurrency Facile’s model of computation depends on multiple concurrently exe-


cuting processes. Processes can be created dynamically and they execute by evaluat-


ing expressions. The behaviour of a process is syntactically described by a behaviour


expression. The simplest behaviour expression isterminate which denotes a dead pro-


cess. The other basic form of behaviour expression isactivate exp whereexp evaluates


to a process script. A script can be thought of as the code executed by a process. The


language provides constructs,script andactivate for converting a behaviour expression


into a script and vice versa. Behaviour expressions also include parallel composition


of behaviour expressions and nondeterministic choice. Processes communicate over


synchronous channels. Any value which can be defined in the language can also be


communicated over channels.


We choose to give an overview of Facile by means of an example. The basic oper-


ations are similar to those of CML except for the characteristic event synchronization


mechanism described in Section 2.2.1. Figures 2.3 and 2.4 show different imple-


mentations of the same function illustrating the fact that Facile can support different


programming approaches.


Distribution and mobility To address the locality of processes the notion ofnodehas


been introduced. A Facile system can be viewed as a collection of nodes each of which


host a number of processes. A node corresponds to a virtual processor with an address


space. Nodes can be created dynamically and may reside on different computers in a
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proc fib server(a,b) =


let fun fib(i) = if (i = 0) or (i = 1) then 1


else


let val (in1,out1) = (channel(int), channel(int));


val (in2,out2) = (channel(int), channel(int));


in


spawn(out1 ! (fib(in1 ?)); terminate);


spawn(out2 ! (fib(in2 ?)); terminate);


(in1 ! (i-1));


(in2 ! (i-2));


((out1 ?) + (out2 ?))


end


in b ! (fib(a?))


end ;


terminate


Figure 2.4: Functions use processes


network. The language also provides the constructsr spawn and r channel to create


processes and channels at specific nodes.


Since the implementation of the choice operator of CCS leads to problems in a real


distributed setting, Facile adopts a different version of the choice operator which is


discussed in detail in [GMP89]. Facile also provides some general constructs to im-


plement delay and time-out mechanisms to circumvent the problems posed by blocked


communications.


The fact that functions are first-class values means that we can create functions


at runtime, apply them to arguments, pass them to other functions as arguments and


receive them as results. We can also transmit them over communication channels. All


of these properties imply that mobile agents have a natural representation as functions


in Facile.


However, there are other requirements for Facile to be generally accepted as a mo-


bile computation language for the global computing platform. One such requirement
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is the ability to deal with heterogeneity of network nodes. Different nodes may be


of different architectures and therefore support different value representations. Knabe


has demonstrated different approaches for dealing with this issue and implemented a


language which can be classified as a weakly mobile language [Kna95]. This language


combines strong typing, remote resource access and independent compilation which


are desirable properties for a language for mobile computation.


Safety and security Facile adopts static typing in the style of ML. The original


definition of Facile presents a monomorphic type system for Facile. The authors have


also presented a polymorphic type and effect system for a subset of Facile along with


a type inference algorithm [Tho94].


Formal foundations A clean and well-understood semantics has been the main mo-


tivation from the very early days of Facile. This has led to a number of works on the


formal foundations of Facile such as [GMP89, LT95, AP94]. It continues to be of


interest to researchers of process calculi.


Comments Our study of the language Facile reinforces the ideas we formed as a


result of our study of CML. We focus on Facile more closely in our work because


it supports distributed computation. It is also the case that language support for mo-


bile computation has previously been investigated within the framework of the Facile


project. However, this work has an emphasis on practical issues, whereas our work has


a more theoretical slant. Moreover, we are not constrained by any specific language


infrastructure to build upon.


2.2.3 Packet Language for Active Networks


Packet Language for Active Networks (PLAN) [HKM+98] is a domain-specific, sim-


ple functional language for programs which form the packets of an active network. It


is based on a subset of ML with some primitives to express remote evaluation. PLAN


is being developed at the University of Pennsylvania as a part of the SwitchWare
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project [AAH+99] which is one of the prominent projects within the area of active


network research [TSS+97].


Active Networks The concept of active networking has been motivated by the de-


sire to bring programmability to networks. Active networks areactive in the sense


that switches perform customized computations on the packets flowing through them.


This can be contrasted with the approach adopted in traditional networks. In these net-


works the nodes transport data passively; computation is limited to header processing


for packet-switching networks and signalling for connection-oriented networks. The


principal advantages of active networking are to be seen in the enabling of adaptive


protocols, implementation of application-specific functions at strategic points within


the network and the deployment of new services at a faster pace [TSS+97].


The SwitchWare project explores how to make the network programmable by al-


lowing switches to be dynamically extended with new services and by allowing packets


themselves to be programs. The idea of packets as programs is being explored through


the design and implementation of the PLAN language.


The SwitchWare architecture is based on three layers. The top layer consists of ac-


tive packets which are mobile entities containing both code and data which replace the


header and payload of conventional packets. The middle layer consists of extensions


which may be dynamically loaded or which can be part of the basic functionality of a


switch. The lowest layer is static and provides a secure foundation for the layers above


itself.


The active packet layer is intended for high-level control while the complex func-


tionality resides in the services which are provided by the middle layer. Thus PLAN


was designed to support lightweight programmability for packets while also providing


a scripting language for general services which may employ heavyweight computa-


tions. The most recent implementation of PLAN has been carried out in Objective


CAML [Ler97].


Concurrency and distribution As a language designed specifically for active net-


works, PLAN supports concurrent and distributed execution of programs carried in


active packets. It is a purely functional language and its packets do not communi-







Chapter 2. Towards Mobile Functions 26


cate with each other. This ensures noninterference among concurrently executing pro-


grams. Service layer extensions may be written in other general-purpose languages.


This can introduce possibilities for communication.


A PLAN application consists of a series of PLAN packets which comprise a task.


A host application constructs a PLAN packet and injects it into the active network


through a port connected to the local PLAN interpreter.


Packets: A PLAN packet encapsulates achunk (code hunk)and the fieldsevaluation


destination, resource bound, routing function name, sourceandhandler.


Packet


chunk
evalDest RB routFun source handler


code entry point bindings


A chunk is composed of three components: PLAN code, a function name to serve


as an entry point and values to serve as bindings for the function’s arguments. Chunks


are first-class data values and their execution can be forced by the core serviceeval.


The code consists of a series of definitions which bind names to functions, values


and exceptions where the names of the services available at the node of definition form


the initial bindings in the namespace. The arguments are evaluated locally in a call-by-


value fashion and the actual evaluation of the function call is delayed until the packet


arrives at its destination. The function call takes place in an environment where all top-


level bindings are available. This is the point where PLAN departs from the discipline


of static scoping which it adopts elsewhere.


The roles of the remaining fields of a packet are as follows. The routing function


serves to define how the packet will be transported from the current node to the evalu-


ation destination. The resource bound sets the limit on the number of hops the packet


or any of its descendants can make. This restricts the global network resource usage


of a PLAN application. The source field names the packet’s oldest ancestor and the


handler field provides the name of a service routine on the source which will handle


certain communication errors.







Chapter 2. Towards Mobile Functions 27


Network Primitives: PLAN programs create new packets through calls to the network


primitivesOnRemote andOnNeighbor. The callOnRemote(C,evalDest, Rb, routFun)


creates a new packet which will evaluate chunkC on nodeevalDest. As we have noted


above, the bindings of the chunk are determined locally while the function applica-


tion is evaluated remotely. The argumentsRb androutFun correspond respectively to


the resource bound and the routing function name fields of the created packet. Until it


reaches its evaluation destination,Rb is decremented by one at each hop and the packet


is terminated if the resource bound is exhausted. The network primitiveOnNeighbor


is similar toOnRemote the difference being that the created packet must execute on a


neighbour of the current node.


Services:PLAN programs can call core services which are present on all active nodes


in the same way as they call locally-defined functions. Core services are guaranteed to


terminate. The servicesthisHost, getHostByName, getNeighbors, getRB, defaultRoute,


print are examples of core services presented in the Specification of PLAN [KHMG99]


to be provided as standard library functions. In addition to these, there are a number


of service packages which extend the functionality of PLAN programs. For example,


the service packageresident enables PLAN programs to leave data on the nodes they


visit to facilitate exploring the network topology. Note that service packages such as


these may create the possibility for unsafe operations and therefore PLAN may have


to impose certain safety and security requirements to permit their employment.


Mobility In Section 2.2.3 we have introduced the execution model for PLAN pro-


grams in an active network. Mobility of PLAN packets and the remote evaluation of


chunks encapsulated in these packets is at the heart of the execution of PLAN pro-


grams. Given its domain-specific approach, it is not straightforward to compare PLAN


with general-purpose languages to classify the kind of mobility it supports. Neverthe-


less, we consider PLAN to be strongly mobile due to the fact that PLAN programs


are able to initiate their own evaluation at a remote site as well as taking with them a


collection of resources which they may need at that remote site.
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Safety and security PLAN has a limited set of simple constructs for flow of control.


It supports statement sequencing, conditional execution, iteration over lists by fold-


ing, and exceptions in the style of ML. Recursive functions and unbounded iteration


are ruled out to ensure the termination of programs. Besides these limitations on its


expressiveness, we have also noted its resource-limited semantics. All of these restric-


tions are intended to enforce safety and security in a simple way. Indeed, pure PLAN


programs, which use core services only, can run with no need for authentication.


PLAN is strongly typed which implies that well-typed programs cannot go wrong.


It requires that programs are statically typeable but it also allows dynamic type check-


ing. A discussion about the relative merits of static and dynamic type checking for


PLAN can be found in [KHMG99].


The safety and security of pure PLAN programs can be ensured by the mechanisms


presented above. However, PLAN programs can also call service routines which are


written in general-purpose languages. This constitutes a potential threat to the safety


and security of the system. To make service calls safe the pure part of PLAN has been


complemented with a system of trust management [HK99]. According to this system,


each node administrator creates a policy which restricts the use of unsafe services to


selected users through a process of authorization. Packets are then required to authen-


ticate themselves before accessing the privileged services. The technique employed by


PLAN is callednamespace-based security. It is based on expanding or contracting a


packet’s service environment depending on its level of privilege.


Controlling access to resources is an important part of providing security within


a multi-user system. However, it is usually not sufficient to control the flow of in-


formation within the system. A line of research on the PLAN language focuses on


developing a theory of information flow for PLAN-like languages [KGA00].


Formal Foundations PLAN has recently been provided with a specification which


aims to define a mathematically precise operational semantics [KHMG99]. It is in-


tended to set a standard for implementations and to support proofs of the key properties


of PLAN which all conformant implementations must obey.


The designers of PLAN have put emphasis on the language being sufficiently well


defined so that advances in type theory, programming language semantics and formal
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methods can be exploited to address issues related to safety and security. It has the


λ-calculus at its core and adopts many features of ML for its well-defined foundations.


Hence, it is possible to benefit from the existing work in programming language theory.


Comments A close look at PLAN makes one realize that the support for mobility in


a functional language need not depend on the mobility of values over channels as is


suggested by CML and Facile. Instead, a functional mobile code language can adopt


a variant of the remote evaluation model introduced by PLAN if it suits its intended


application domain. PLAN also draws our attention to the fact that in a system with


limited resources restricting the expressiveness of the language may be a useful method


for enforcing certain safety and security requirements.


2.2.4 Conclusions


Language CML Facile PLAN


Process Creation dynamic dynamic dynamic


message-passing message-passing


Communication first-class channels fist-class channels No


synchronous synchronous


Distribution No distinct localities distinct localities distinct localities


Mobility channel mobility weak code mobility strong code mobility


Static Typing X X X


Dynamic Typing No No X


Figure 2.5: Summary


Figure 2.5 summarizes the approaches taken by different language designs with


respect to the issues which we have considered in detail throughout this section. Our


concise reading of this picture is as follows. All of the languages we have considered


support dynamic creation of concurrent computational units indicating that this is a


requirement to accommodate the dynamics of modern networks. Whether to support


communication or not remains an issue of choice depending on the targeted applica-


tion domain of the language. If communication between processes is supported at all,
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synchronous message-passing communication over channels is considered to be more


in accord with the philosophy of ML. Increasing demand for control over the mobility


of computations can be observed by inspecting the chronological order of the devel-


opments around these languages. We should also note that the difficulty of achieving


strong mobility without compromising safety or security is a commonly agreed fact.


Type systems are seen as useful tools for providing safety. The guarantees offered by


static typing seem to be attractive to all, however some languages may find flexibility


equally important and seek to reconcile the advantages of static and dynamic typing.


2.3 A Core language for mobile code


2.3.1 Aims and approach


So far in this chapter we have looked at the state-of-the art in the foundational studies


for mobile computation and the state-of-the art in ML-based language design for con-


current and distributed programming. The aim of the work presented in later chapters


is neither to propose a new process calculus nor to design a fully-fledged functional


mobile code language. We base our work on a series of small functional languages


which are derived from those of the previous section. These languages serve as meta-


languages for investigating a range of problems, such as the estimation of mobile val-


ues in a Facile-like language and call-tracking analysis for a PLAN-like language by


using a type-based approach. The existing works on CML, Facile and PLAN have


served as a valuable departure point for this stream of work. We have also introduced


new research points for functional languages. Type systems for secure information


flow have not yet been studied as extensively in the framework of functional distributed


languages as in the frameworks of process calculi and imperative languages. Those


parts of this work which investigate secure information flow for mobile functions have


been motivated by this fact.


The meta-languages presented throughout the thesis can be considered as candi-


dates for typed intermediate languages to be used in modern type-preserving compil-


ers. This idea is rooted in the fact that some of the recent compilers for functional lan-


guages use higher-order typed intermediate languages which facilitate sophisticated
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type-based analyses [TMC+96, JLM97, Sha97]. The information obtained by these


analyses has so far proved to be useful in optimizations, and promoting the efficiency


of both data representation and garbage collection. In the context of mobile compu-


tation, the intermediate language level appears also to be a suitable level to deal with


security problems.


2.3.2 The Core Language


We now present a language – the Core – which corresponds to a common subset of


the sequential fragments of CML, Facile and PLAN. It is a simple extension of the


λ-calculus and all of the languages which appear in the later chapters are derived from


it in one way or another. Figure 2.6 gives the abstract syntax of this language.


We refer to thefree variablesof an expressione asFV(e). Function abstractions


and let bindings are the only forms of expressions which bind variables. An abstraction


of the formfnx⇒ e bindsx in e and a let expression of the formlet x = e1 in e2 binds


x in e2. Formally, FV(fnx ⇒ e) = FV(e) \ {x} andFV(letx = e1 ine2) = FV(e1)∪
(FV(e2)\{x}). The definition ofFV extends to other forms of expressions in the obvi-


ous way; the set of the free variables of an expression is the union of the free variables


of its subexpressions. In this chapter and elsewhere in this thesis, we adopt the con-


vention that bound variables of an expression are different from the free ones and that


expressions which differ only in the names of their bound variables are identical. Note


that such expressions are calledα-equivalent as one can be obtained from the other by


α-conversion. That is to say by a consistent renaming of its bound variables.


In the rest of the section we first determine a set of rules which govern the evalua-


tion of an expression. We then present a type system which is used to judge whether


an expression is well-formed according to a set of typing rules.


2.3.3 Evaluation rules


We adopt the structural approach to defining operational semantics [Plo91] where the


evaluation of an expression is defined in terms of the evaluation of its subexpressions.


Each sentence of the forme→ e′ defines one step in the evaluation so thate′ is the
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Constants c ::= () unit


| n integer


| true | false boolean


Expressions e ::= c constant


| x variable


| fn x⇒ e function abstraction


| e1e2 function application


| if e1 then e2 else e3 conditional


| let x = e1 in e2 local binding


| e1 op e2 primitive operation


Figure 2.6: Abstract Syntax for the Core


result of the first step of evaluation ofe. A rule may be an axiom in the form of


a single sentence or an inference rule where the sentences above the bar represent


the hypotheses and the sentence below represents the conclusion. For simplicity, we


assume that the expressions are closed which means that they do not contain any free


variables.


Values v ::= () | n | true | false | fnx⇒ e


The expressions which cannot be further evaluated are calledcanonical expressions.


The unit value, integers, booleans and function abstractions are canonical expressions


and denote the values of the Core.


Function application


(1)
e1−→ e′1


e1e2−→ e′1e2


(2)
e2−→ e′2


v e2−→ v e′2
(3) (fnx⇒ e)v−→ e{v/x}


The first two rules above indicate that the expressions are evaluated in left-to-right or-


der. The third rule shows that in order for evaluation to proceed the value of the first


expression must be a function closure. The notatione{v/x} denotes the substitution of
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valuev for variablex in expressione, where the necessary renaming is assumed to have


taken place to avoid the capture of free variables. This rule also reveals the strict nature


of the language. The expression in the argument position is fully evaluated before it is


substituted for the formal parameter in the body of the function.


Conditional expression


(1)
e1−→ e′1


if e1then e2 else e3−→ if e′1then e2 else e3


(2) if true then e2 else e3−→ e2 (3) if false then e2 else e3−→ e3


The evaluation of a conditional starts by the evaluation of its first expression which we


refer to as the guard. The value of this expression determines which one of the two


alternative branches will be taken in the rest of the evaluation. If it is true the first


branch is taken and the value of the conditional expression is the value of expression


e2. Otherwise, it is the evaluation ofe3 which yields the value of the conditional.


Local binding


(1)
e1−→ e′1


let x = e1 in e2−→ let x = e′1 in e2


(2) let x = v in e2−→ e2{v/x}


These rules concern the evaluation of an expression with a local binding where the


scope of the variablex is the expressione2. The first expression is evaluated first and


its result is substituted forx within e2.


Primitive operation


(1)
e1−→ e′1


e1 op e2−→ e′1 op e2


(2)
e2−→ e′2


v op e2−→ v op e′2
(3) v1 op v2−→ v if v = v1opv2


The rules for primitive operators follow the same principle as those for function ap-


plication. The first expression is fully evaluated before the evaluation of the second


expression starts. When both of the expressions have evaluated to a value, the binary
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operation denoted byop is applied to them to yield the final result. Note that we as-


sume thatop ranges over primitive operator symbols and that for each such symbol


there exists a corresponding primitive operation.


We have presented a particular way of defining operational semantics for the Core


which uses small-step transitions and direct substitution. We use the term small-step


transition here for the transition of an expression by a single step from one form to


another. It is important to note that there are a variety of choices as to how to define


operational semantics. For example, in some cases it may be technically more conve-


nient to use big-step transitions or to make use of explicit evaluation environments. The


term big-step transition is used for those transitions which involve multiple computa-


tional steps. In many cases different choices in formulations do not lead to a change


in the meaning of the language and different formulations of semantics can usually be


proved to be equivalent. The work by Nielson and Nielson provides useful insights


about this topic [NN98].


2.3.4 Type system


Type systems constitute an essential part of our work and we will be presenting a va-


riety of type systems which are designed to capture a variety of phenomena related


to mobile computation. We now present a simple monomorphic type system for the


Core. The aim of this type system is to show the role of types in classifying values of


the language and that type systems adopt a compositional approach to deriving a type


for an expression.


Types τ ::= unit | int | bool | τ1→τ2


The types of the language consist of the unit type, the type of integers, booleans and


function types. The other semantic object of the type system is the type environment


Γ which is a finite map from variables to types.
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Type environment Γ ::= [x1 7→ τ1 . . .xn 7→ τn]


The notationΓ[x 7→ τ] is used to denote the environmentΓ extended with the binding


of variablex to typeτ where the current binding ofx is overwritten with the new one


if x already appears in the domain. The empty environment is written as[ ].


A sentence of the formΓ ` e : τ is referred to as a typing judgement. It means


that assuming type environmentΓ, expressione is well-formed according to the type


system and has typeτ.


Constant Γ ` () : unit Γ ` n : int


Γ ` true : bool Γ ` false : bool


The constants are the basic values of the Core and their types are the basic types.


Variable Γ ` x : Γ(x)


The type of a variable must be present in the type environment as a binding for the


variable.


Function abstraction
Γ[x 7→ τ] ` e : τ′


Γ ` fn x⇒ e : τ→τ′


The type of a function abstraction is a composition of the type of its formal parameter


and the type of its body. It also important to note that the type of the body is derived


with respect to an environment where the binding for the formal argument is present.


The types on the left and right of the arrow are referred to as the argument type and the


result type respectively.


Function application
Γ ` e1 : τ′→τ Γ ` e2 : τ′


Γ ` e1e2 : τ


This rule indicates that for an application to be well-formed according to the type sys-
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tem, the first expression must have a function type and its argument type must match


the type of the second expression.


Conditional expression
Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ


Γ ` if e1then e2 else e3 : τ


The first expression of a conditional is required to be of boolean type. The two ex-


pressions which constitute the branches can be of any type so long as the types of both


expressions are identical. The type of the conditional is the same as the type of its


branches.


Local binding
Γ ` e1 : τ Γ[x 7→ τ] ` e2 : τ′


Γ ` letx = e1 ine2 : τ′


Two conditions are necessary for the entire let expression to be well-formed. Firstly,


the expression of the local declaration must be well-formed. Secondly, it must be pos-


sible to derive a type for the body of the expression in the environment extended with


the binding obtained from the declaration. The type of the body is also the type of the


entire expression.


Primitive operation
Γ ` e1 : τ Γ ` e2 : τ op : (τ∗ τ)→τ′


Γ ` e1 op e2 : τ′


We assume that primitive operators have predefined types and that they operate on a


pair of values which have identical types. The result type, however may be different


from the types of the operands. For example, we regard the test for equality as a prim-


itive operation which tests whether a pair of integers are equal and returns a boolean


value as a result.


If we view an expression as a simple program to be executed, the evaluation and


typing rules define respectively the dynamic and static phases of its execution. In later


chapters, we will exploit extensions of this type system to make static predictions about


the dynamic behaviour of programs.
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Estimating Mobile Values


Mobile code languages facilitate the transmission of code between remote sites in a


system. A piece of code which is generated at one site can be transmitted for execution


at another site which exhibits characteristics different from its place of origin. This


poses implementation challenges for mobile code languages. For example, it becomes


necessary for compiler writers to consider the heterogeneity of network nodes when


generating code. By heterogeneity we mean that different nodes of a network may be


of different architectures and therefore support different value representations.


Another implementation challenge involves performance. Transmission of large


sizes of code and data may incur significant performance penalties for the system.


Minimizing the transmission overheads becomes an essential goal for implementors.


The ability to statically predict which values may be transmitted to a remote site


during the execution of a program can be useful in addressing these implementation


challenges. It facilitates code and space optimizations and the development of profiling


tools which can be used to tune performance.


It is the aim of this chapter to demonstrate how such predictions can be made by


using an approach which is based on type and effect systems. The implementation


of the Facile language by Knabe introduced in Chapter 2 provides the framework for


our discussion. We define a language which is a subset of the language Facile and


investigate in a formal setting the problem of estimating mobile values.


37







Chapter 3. Estimating Mobile Values 38


3.1 Application areas


3.1.1 Compiler optimizations


It is argued by Knabe [Kna95] that the first-class nature of functions could prove to


be convenient for mobile computation if one could successfully deal with the hetero-


geneity of network nodes. A common method for dealing with heterogeneity is to


adopt a standard transmissible representation. Before transmission, each value is con-


verted into a standard representation determined by its type. This operation is called


marshalling. Marshalling is a recursive process which decomposes a value until it ter-


minates with the conversion of primitive components such as integers and characters.


Upon receipt, the standard representation is converted into the representation appropri-


ate for the receiving machine in an operation calledunmarshalling. In Facile and most


higher-order languages, a function is compiled into a function closure which contains


the code of the function together with the bindings from the definition environment of


the function. The primitive component of a closure in Facile is the machine code of the


function. Converting machine code to a standard representation is a difficult problem


and the remaining possibility of translating one native machine code into another one


at runtime is mostly impractical.


The fact that functions produced at runtime are just new closures containing old


code makes it possible to circumvent this impracticality. One can perform marshalling


and generate transmissible representations of code at compile-time and an increased


runtime performance can be obtained.


Generating the transmissible representation for each function and storing them,


however would be space inefficient. Different approaches to reduce the space cost


have been discussed by Knabe [Kna95]. The approach adopted by Facile is to per-


form compile-time marshalling only for those functions which have been explicitly


annotated by the programmer to be potentially transmissible. The identification of


potentially transmissible functions automatically without resorting to user annotations


has been stated as future work in the dissertation of Knabe [Kna95]. The type system


presented in this chapter, which conservatively estimates mobile functions, proposes


a solution to this problem. Such an estimation also allows one to infer the locality
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of functions which are not detected to be mobile by the type system. Knowing that a


function is local the compiler can then generate code which is optimized for the local


machine.


3.1.2 Cost profiling


Another area where information with respect to mobile entities can be put to use is


providing a profile of a program to facilitate reasoning about its transmission overhead.


Many of the mobile computation languages adopt different mechanisms for value


transmission and data space management [FPV98, SY97]. Mechanisms of value trans-


mission are classified by Sekiguchi [SY97] as follows. Transmission bycopyindicates


that the value is copied to the data space of the receiver. Values are calledresidentif


they always stay at the current place and are never moved to another place. Resident


values are referred to by remote references from the outside. Some values arecarried


to the destination and they are referred to by remote references from their previous


place.Propervalues never go out and can never be referred to from the outside.Take-


awayvalues belong to mobile entities, they go with them and can no longer be referred


to from their originating site.Ubiquitousvalues are present in every location so they


do not incur any changes in the data space.


In Facile, the transmission of mobile functions occurs by copy whereas local func-


tions are proper values. There are also ubiquitous values. Bindings to these are created


dynamically. Data structures which implement channels reside on the node where they


were created and they do not move. According to the classification above, Facile chan-


nels are resident values; their transmission implies that the receiving node will need


to reference the node where the channel resides for any subsequent communication


on it. By channel transmission we mean transmitting the name of a channel. Syn-


chronous communication requires two processes to perform handshake by running a


request/propose/trasmit value protocol and the transmission of a value on a channel


corresponds to a value being copied from the environment of the sender to the envi-


ronment of the receiver once the handshake is established.


In this setting, one can expect the cost of computation to be dominated by the cost


of copying function closures between remote sites and running handshake protocols.
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An estimation of the functions which will be copied between remote sites and channels


which will be remotely referenced would be useful for estimating the overall cost of


computation statically. The type system presented in this chapter estimates both mobile


functions and mobile channels. It can provide the basis of a cost profiling tool for a


Facile-like language.


3.2 Potential mobility


In this section we describe informally what is meant in this chapter by thepotential


mobility of functions and channels. We follow closely the criteria determined by Kn-


abe to guide programmers in identifying potentially mobile functions when using his


implementation of Facile. In the following section we will define formally a Facile-like


language called Mobile-λ and continue our investigation based on that language. For


the purposes of this section, it is sufficient to note that the language has the operators !


and ? which correspond to send and receive actions respectively.


3.2.1 Mobile functions


Any function which is passed directly as an argument to the send operator (!) should


be classified as potentially mobile by a static analysis. It is clear that any such function


will be transmitted if the execution takes the path on which the send operator occurs.


We also know that whenever a functionf moves, it takes with it the functions con-


tained in its closure. Therefore, we can argue that a function which is referred to by a


mobile function and which is not defined within it is also mobile. The functions which


are defined within functionf are mobile only by virtue of being a part of its code.


Detecting the mobility off implies the mobility of functions nested within its body.


Example 3.1. The expression below defines two functionsf andg which are local to


an expression that sendsg over a channelchan. We assume thatchan is present in the


environment and that functionf does not refer to any value defined outside its body.


Functionf is a part of the definition environment of functiong andg refers tof.
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let fun f x = ...;


fun g x = ... f x ...


in chan ! g


Wheng is sent to a remote site,f will also be sent because it is a part of the closure


of g. Therefore, we considerf to be mobile as well asg. If this example was sufficient


to illustrate what gives rise to the mobility of functions, all the information needed for


automatic detection of mobile functions could be obtained by examining the definition


environment of a function which contains the bindings of its free identifiers. How-


ever, in the presence of higher-order functions one needs to go beyond the information


provided by the definition environment. The following examples illustrate this point.


Example 3.2. Let us consider a functionf defined as follows.


fun f h = let fun g x = ... h x ...


in


chan ! g


It is obvious that the functiong is mobile. We can also deduce thath stands for a


function referred to byg. However,h is neither defined withinf nor is its binding


available in the definition environment off; it is a bound variable. In this situation, all


the functions whichh can be bound to – that is all the functions whichf can be applied


to – are potentially mobile. Detecting these functions is not straightforward since one


needs to consider cases such as the following.


Applications of f Mobile values


fun k x = ... f a ...; a


fun k x = ... f x ...; any possible binding ofx


fun k x = ... x a ...;


... k f ...; a


fun k h y = ... h y ...;


... k f ...; any possible binding ofy
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Example 3.3. A similar difficulty arises when a higher-order function is transmitted.


Let us consider an expression which transmits a functionf defined as follows.


let fun f x = let fun g y = ... x ... y ...


in g


in chan ! f


The functionf is mobile. The functiong is defined withinf. According to our dis-


cussion above, there is no immediate reason forg to be taken as potentially mobile.


However, it should be noted that the functiong escapes the definition off because it


is returned as a result. It may be the case thatg is subsequently transmitted by some


other code which receivesf. We consider functions such asg and the functions which


may be transmitted byg also as potentially mobile.


3.2.2 Mobile channels


The arguments for mobile functions above also apply to mobile channels and our crite-


ria for identifying mobile channels is the same as for functions. This is easily justified


as channels are also first-class values and all first-class values are treated uniformly in


Facile-like languages.


3.2.3 Related work


As is demonstrated by the preceding examples, in languages with higher-order func-


tions the flow of control from one program point to another is not easily detectable.


This is because a function can be passed around and subsequently called from multiple


sites in the program. A wide range of analyses have been devised to approximate which


functions can be called from a particular point in the program. Some instances of these


static analyses are known as closure analysis, set-based analysis and constraint-based


analysis which differ in their formulations, the precision they offer and their practical-


ity [Shi91, GFH97, NN97, JW95, Ste96, Hei94b].


More recently, some authors have pointed out the intuitive connection between
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reasoning about types and control flow in higher-order languages in the sense that they


both derive invariants about the potential bindings of variables in a program. Research


has been carried out in extending control flow systems to perform type analyses [PS95]


and in extending type systems to perform control flow analyses [TJ92].


It has also been observed that type inference and control flow analysis are based on


different perspectives. Type inference systems reason locally by associating a type with


each expression and deriving a type for the program compositionally whereas control


flow analyses reason globally and are usually not compositional. Another direction


of research has focused on systematic comparisons of type systems and control flow


systems by establishing correspondences between certain type systems and control


flow analyses [Hei94a, PO95].


Variations for control flow analyzes developed for concurrent programming lan-


guages such as [GFH97, NN97, Ste96] could offer a solution to the problem of detect-


ing potentially mobile values. However, an effect-based analysis which exploits the


existing type system would be more easily applicable. The latter is also the one which


is proposed by [Kna95]. We design an annotated type and effect system which exposes


the overall communication behaviour of a program. The information captured by the


effects are then analyzed to estimate the mobile values.


The values which are not detected to be mobile by our type system are guaranteed


to be used only locally. This relates our work to the works on locality inference by


using type systems [Mor99, Sew98]. The languages considered in these works are


different to the one we consider in this chapter. The exploitation of an effect system


for locality inference is another point which distinguishes our type system from theirs.


3.3 Mobile- λ


In this section we introduce the language Mobile-λ which extends the Core language


of Chapter 2 with primitives for communication between remote sites. The compu-


tational model induced by Mobile-λ provides a sufficient level of generality to model


the transmission of functions and channels in a Facile-like language which is the main


interest of this chapter.
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3.3.1 Abstract syntax


The abstract syntax for the sequential core of Mobile-λ is similar to that of the Core


language from Chapter 2. The only difference is that function abstractions are anno-


tated with labels. The purpose of labels (l ) is to uniquely identify functions. Mobile-λ
extends the Core with constructs to express dynamic channel allocation and sending


and receiving values over channels. Channel allocation expressions are also annotated


with labels which serve a similar purpose to those of function labels; they uniquely


identify channel allocation points in a program. Note that all of the labels in a program


are required to be distinct in order to serve as unique identifications. These labels


would typically be internal to a compiler of Mobile-λ rather than being explicitly pro-


vided by authors of code.


Labels l ::= l1 | l2 | . . .
Expressions e ::= c constant


| x variable


| fnl x⇒ e function abstraction


| e1e2 function application


| if e1 then e2 else e3 conditional


| let x = e1 in e2 local binding


| e1 op e2 primitive operation


| chanl () channel allocation


| e1!e2 send


| e? receive


Figure 3.1: Abstract Syntax for Mobile-λ


3.3.2 Dynamic semantics


Our model of a system is a collection of named sites each of which hosts the execution


of a single Mobile-λ expression. The names of the sites, ranged over bys, is drawn


from a finite set with elementss1 . . .sn.
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Environments and values The definition of the dynamic semantics makes use of


environments which are defined as finite maps from variables to values. We write


Dom(E) for the domain of an environmentE. The explicit use of environments in


the definition of the dynamic semantics is motivated by our wish to distinguish in our


mobility analysis the functions which are present in the definition environment of a


function from those which are defined within it.


Evaluation environments E ::= [ ] | E[x 7→ v]


Values v ::= c constants


| k channel identifiers


| 〈l,E,x,e〉 function closures


Values consist of basic constants, channel identifiers and function closures. A channel


identifier k is represented by a tuple which includes the labell of the corresponding


channel allocation expression, the identifier of the sites it is created at and an integeri


which is freshly generated each time a new channel is allocated at that site (k = (l ,s, i)).


The closure of a function encapsulates the labell of the function, an environment


E, the formal parameterx and the function bodye. The role of the environment in the


closure is to provide the bindings for the free variables of the function body.


We define the dynamic semantics of Mobile-λ by using small-step transitions be-


tween system states. Since we use explicit environments rather than direct substitu-


tions, some transitions give rise to forms of expressions which do not conform to the


abstract syntax presented in Figure 3.1. In order to circumvent this problem we intro-


duce intermediate forms of expressions (ie) as in [NNH99a]. Intermediate expressions


extend the expressions of the abstract syntax with function closures andbind expres-


sions. Without the inclusion of function closures in the intermediate expressions we


would not be able to express the evaluation of a function abstraction. The need for


bind expressions will become more clear when we present the evaluation rules below.


At this moment it suffices to say that abind expression of the formbind E in ie repre-


sents an expression where the bindings of the free identifiers ofie are recorded inE.


The environments of nestedbind expressions are likened to frames of a runtime stack


in [NNH99a].
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Intermediate expressions ie ::= c | x | fnl x⇒ e | ie1 ie2


| ie1 op ie2 | if ie1 then e2 else e3


| let x = ie1 in e2


| chanl () | ie1!ie2 | ie?


| k | 〈l,E,x,e〉 | bind E in ie


The definition of free variables of an intermediate expressionFV(ie) is similar to the


definition of free variables of an expressionFV(e) given in Chapter 2.


Evaluation rules A system state is represented by a channel identifier setCI and a


process poolP in the style of [BMT92]. The channel identifier set contains the channel


identifiers created so far in the computation and the process pool is a set of tuples which


comprise a site name, an evaluation environment and an expression. An element of the


process pool, written as[(s,E) : ie], indicates that expressionie is to be executed at


site s with respect to environmentE. We use the notationP[(s,E) : ie] to denote the


process poolP∪ [(s,E) : ie].


Definition 3.1 (Well-formed process pools).A process poolP is well-formed if for


all [(s,E) : ie] ∈ P the following hold:


• FV(ie)⊆ Dom(E); and


• if [(s,E) : ie′] ∈ P and[(s,E) : ie] ∈ P thenie = ie′.


Definition 3.2 (Well-formed states). A system state(CI,P) is well-formed if P is


well-formed andFCI(P) ⊆ CI whereFCI(P) denotes the free channel identifiers in


process poolP.


A single step transition between system states is written asCI,P
a−→CI′,P′. The


annotationa on the arrow represents the observable actions.


Actions a ::= ε no communication


| s[newk] channel allocation


| s1
(k,v)−−→ s2 communication of a value
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The actions which we would like to observe are channel allocation at a site and the


transmission of a value between two remote parties on a shared channel.


The evaluation rules are presented in three parts in Figures 3.2, 3.3 and 3.4. The


rules for the sequential subset correspond to the standard evaluation rules for call-by-


value functional languages put into a distributed context.


Definition 3.3 (Environment narrowing). Given an evaluation environmentE and a


set of variablesV, E �V represents the evaluation environment which is obtained from


E by removing the bindings of the variables which are not present inV.


E �V = E′ whereDom(E′) = V andE′(x) = E(x) for all x∈ Dom(E′).


Rules of Figure 3.2 The rule (var) is applied in the evaluation of variables. The


value of a variable is obtained by looking it up in the environment. The rule (fn)


shows how a function abstraction evaluates to a closure. The definition environment


of the function is narrowed down according to Definition 3.3 before it is included in


the closure. Rules (app-1) and (app-2) are similar to those of the Core Language from


Chapter 2. The rule (app-3) gives rise to abind expression. The environment part


of the closure is extended with the binding of the argument. It is then enclosed in a


bind expression with the body of the function. The domain of environmentE′[x 7→ v]


contains the local variables ofe and it can be discarded when the evaluation ofe is


complete. However, the environmentE may contain the bindings of variables which


are necessary for the rest of the evaluation. If we had[(s,E′) : e] in the rule instead


of [(s,E) : bind E′[x 7→ v] ine] we would overrideE with E′[x 7→ v] and not be able to


recover it again. The rule (bind-1) shows that an expression within abind construct


is evaluated with respect to the environment which is enclosed in thebind construct.


When the expression has been fully evaluated the environment can be discarded as


shown in rule (bind-2).


Rules of Figure 3.3 We refer the reader to Chapter 2 for the explanations of these


rules. The only rule which might be unfamiliar is (let-2) which becomes applicable


when the evaluation of the first expression has been completed. The environment is
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(var) CI,P[(s,E) : x] ε−→CI,P[(s,E) : E(x)]


(fn) CI,P[(s,E) : fnl x⇒ e] ε−→CI,P[(s,E) : 〈l,E′,x,e〉]
whereE′ = E � FV(fnl x⇒ e)


(app-1)
CI,P[(s,E) : ie1] a−→CI′,P′[(s,E) : ie′1]


CI,P[(s,E) : ie1 ie2] a−→CI′,P′[(s,E) : ie′1 ie2]


(app-2)
CI,P[(s,E) : ie2] a−→CI′,P′[(s,E) : ie′2]


CI,P[(s,E) : v ie2] a−→CI′,P′[(s,E) : v ie′2]


(app-3) CI,P[(s,E) : 〈l,E′,x,e〉 v] ε−→CI,P[(s,E) : bind E′[x 7→ v] ine]


(bind-1)
CI,P[(s,E′) : ie] a−→CI′,P′[(s,E′) : ie′]


CI,P[(s,E) : bindE′ in ie] a−→CI′,P′[(s,E) : bindE′ in ie′]


(bind-2) CI,P[(s,E) : bindE′ inv] ε−→CI,P[(s,E) : v]


Figure 3.2: Evaluation Rules (Part 1)


then narrowed down according to Definition 3.3 before being enclosed in abind ex-


pression along with the body of thelet expression.


Rules of Figure 3.4 The rule (chan) for channel allocation states that a fresh channel


identifier is generated upon the execution of a channel allocation expression. Recall


that such an identifier can be represented by a tuple which includes the labell of the


corresponding channel allocation expression, the identifier of the sites it is created at


and an integeri which is freshly generated each time a new channel is allocated at


that site (k = (l ,s, i)). The rule (com) for communication illustrates that in order for a


value to be transmitted from one site to another, the communicating expressions need
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(if-1)
CI,P[(s,E) : ie1] a−→CI′,P′[(s,E) : ie′1]


CI,P[(s,E) : if ie1then e2 else e3] a−→CI′,P′[(s,E) : if ie′1then e2 else e3]


(if-2) CI,P[(s,E) : if true then e2 else e3] ε−→CI,P[(s,E) : e2]


(if-3) CI,P[(s,E) : if false then e2 else e3] ε−→CI,P[(s,E) : e3]


(let-1)
CI,P[(s,E) : ie1] a−→CI′,P′[(s,E) : ie′1]


CI,P[(s,E) : let x = ie1 in e2] a−→CI′,P′[(s,E) : let x = ie′1 in e2]


(let-2) CI,P[(s,E) : let x = v in e] ε−→CI,P[(s,E) : bind E′[x 7→ v] in e]


whereE′ = E � FV(e)


(op-1)
CI,P[(s,E) : ie1] a−→CI′,P′[(s,E) : ie′1]


CI,P[(s,E) : ie1opie2] a−→CI′,P′[(s,E) : ie′1 op ie2]


(op-2)
CI,P[(s,E) : ie2] a−→CI′,P′[(s,E) : ie′2]


CI,P[(s,E) : v op ie2] a−→CI′,P′[(s,E) : v op ie′2]


(op-3) CI,P[(s,E) : v1 op v2] ε−→CI′,P′[(s,E) : v] where v = v1 op v2


Figure 3.3: Evaluation Rules (Part 2)


to synchronize. Unless the synchronization takes place none of the parties can resume


their computation.


Our choice of style in defining the dynamic semantics of Mobile-λ has been influ-


enced by the need to provide a suitable framework for conducting the proofs of some


properties enjoyed by our type system. For example, we include labels in the represen-


tation of channels and functions in the dynamic semantics. This is because our type


system makes use of labels to trace the identities of functions and channels statically.
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(chan) CI,P[(s,E) : chanl ()] a−→CI∪k,P[(s,E) : k]


wherea = s[newk] andk /∈CI


(send-1)
CI,P[(s,E) : e1] a−→CI′,P′[(s,E) : e′1]


CI,P[(s,E) : e1 ! e2] a−→CI′,P′[(s,E) : e′1 ! e2]


(send-2)
CI,P[(s,E) : e2] a−→CI′,P′[(s,E) : e′2]


CI,P[(s,E) : k! e2] a−→CI′,P′[(s,E) : k! e′2]


(receive)
CI,P[(s,E) : e1] a−→CI′,P′[(s,E) : e′1]


CI,P[(s,E) : e1?] a−→CI′,P′[(s,E) : e′1?]


(com) CI,P[(s1,E1) : k! v][(s2,E2) : k?] a−→CI,P[(s1,E1) : ()][(s2,E2) : v]


wherea = s1
(k,v)−−→ s2


Figure 3.4: Evaluation Rules (Part 3)


Labels of the dynamic semantics prove to be useful in establishing a correspondence


between the objects of the static and the dynamic semantics.


Definition 3.4 (Mobile). The functionMobile is defined on the values of the dynamic


semantics. It collects the labels of functions and channels which are of interest in


detecting potential mobility. In the case of function closures the labels of values in the


environment part of the closure are collected as well as the label of the closure itself.


Mobile(v) =



/0 if v = c


{l} if v = k = (l ,s, i)


{l}∪
⋃
{Mobile(E(x)) | x∈ Dom(E)} if v = 〈l,E,x,e〉
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3.4 Type system


In this section we design a polymorphic type and effect system for Mobile-λ. Our


aim is to estimate the functions and channels that a Mobile-λ expression can possibly


transmit by analysing the types and effects associated with it. We make use of the


labels provided in the syntax to trace the flow of values through the computation. The


essential idea is to incorporate these labels into the types and effects so that we can


eventually extract those which are of interest to us.


3.4.1 Semantic objects


Our type system views types (τ) as a pair consisting of two components: a raw type


(τ̄) and a mobility annotation (µ). Raw types classify values in the conventional sense


whereas mobility annotations estimate the identities of values which become mobile


upon the transmission of the value of that raw type. We also have communication


effects (κ) as annotations on function types. These stand for the communication actions


which may be triggered by a function when it is applied.


We associate the empty mobility annotation/0 with base types as we are not con-


cerned with the mobility of values of base types. For example, if the raw type indicates


that the expression is of typeint, this information is sufficient. We need not estimate


which particular integers its value can be. However, as we are interested in the mo-


bility of channels and functions we associate them with annotations other than/0. The


simplest form of a mobility annotation is a label. The operator∪ is used to obtain a


union of simpler mobility annotations. The meta-variableγ stands for mobility anno-


tation variables. Mobility annotation variables prove to be useful in typing functions


which require functions or channels as arguments. One can write well-typed functions


which behave uniformly over a set of arguments which may differ in their mobility


annotations.


The communication effects which may occur during the evaluation of an expression


are estimated by its effectκ. An expression is assigned the effect/0 if its evaluation in-


curs no communication. The effectsnewµ for τ, sendτonµ andrecv τonµ are assigned


if its evaluation may incur the allocation of a channel for carrying a specified type of
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values, send and receive actions respectively. The effects can be merged by the union


operator∪ as was the case for mobility annotations. The meta-variableβ stands for


effect variables.


Mobility annotations µ ::= /0 | l | γ | µ1∪µ2


Raw types τ̄ ::= unit | int | bool | chan[τ] | τ1
κ→τ2 | α


Types τ ::= (τ̄,µ)


Effects κ ::= /0 | newµ for τ | sendτonµ | recv τonµ


| β | κ1∪κ2


Definition 3.5 (Subsumptionv). Suppose that equality (=) on effects is defined mod-


ulo associativity, commutativity and idempotence with/0 as the neutral element for∪.


Then,κv κ′ if there exists aκ′′ such thatκ′ = κ∪κ′′.


Variables and substitutions We have included variablesα,β,γ as static semantic


objects to be able to express polymorphism of functions. We writeFTV(τ) for the set


of free raw type, mobility annotation and effect variables inτ. Vector notation is used


to represent sequences of variables, for example~α,~β,~γ. Finite maps which map raw


type variables to raw types, effect variables to effects and mobility annotation variables


to mobility annotations are calledsubstitutions.


Mobility annotations: Raw types:


FTV( /0) = /0 FTV(unit) = /0 FTV(int) = /0 FTV(bool) = /0


FTV(l) = /0 FTV(chan[τ]) = FTV(τ)


FTV(γ) = {γ} FTV(τ κ→τ′) = FTV(τ)∪FTV(τ′)∪FTV(κ)


FTV(µ1∪µ2) = FTV(µ1)∪FTV(µ2) FTV(α) = {α}


Effects: Types:


FTV( /0) = /0 FTV(τ̄,µ) = FTV(τ̄)∪FTV(µ)


FTV(newµ for τ) = FTV(τ)∪FTV(µ)


FTV(sendτonµ) = FTV(τ)∪FTV(µ)


FTV(recv τonµ) = FTV(τ)∪FTV(µ)


FTV(β) = {β}
FTV(κ′∪κ′) = FTV(κ)∪FTV(κ′)







Chapter 3. Estimating Mobile Values 53


Type schemes and environments are defined as in polymorphic type systems for lan-


guages with a functional core such as Standard ML. Type schemes (σ) are obtained


by universally quantifying types over a set of raw type, effect and mobility annotation


variables.


Type schemes σ ::= ∀~α~β~γ.τ


The context in which an expression is associated with a raw type, an effect and a


mobility annotation is represented by a static environmentΓ, which maps variables to


type schemes. The notationΓ[x 7→ σ] is used for adding elementx to the environment


Γ, overriding the existing binding ifx is already in the domain ofΓ. We refer to the


domain of an environmentΓ asDom(Γ).


The definition ofFTV above extends to type schemes byFTV(∀~δ.τ) = FTV(τ)\~δ.


It also extends pointwise to type environments. Substitutions on type schemes are


defined as in [TJ94]. Letθ,θ′,θ′′ be three substitutions.θ(∀~δτ) = ∀~δ′.θ′′θ′(τ) where


θ′ = {~δ 7→ ~δ′} is a renaming of the bound variables by fresh variables~δ′ which are not


free inτ or θτ. The substitutionθ′′δ is defined asδ if δ ∈~δ′ andθδ otherwise.


Definition 3.6 (Type generalization). A type schemeσ = ∀~α~β~γ.τ generalizes a type


τ′, written asσ�τ′, if there exists a substitutionθ over the bound variables ofτ such


thatθτ = τ′. Types are generalized to type schemes by the operationGen. A variable


cannot be generalized if it is free in the environmentΓ or the effectκ.


Gen(Γ,κ,τ) = let{~α,~β,~γ}= FTV(τ)\ (FTV(Γ)∪FTV(κ))


in ∀~α~β~γ.τ.


The condition that prevents the generalization of variables which are free in the type en-


vironment is standard from the Damas-Milner polymorphic type discipline for purely


functional languages [DM82]. The additional condition which requires them not to be


observable in the effect is imposed to ensure that the presence of primitives for commu-


nication do not compromise type safety. We follow closely the work on polymorphic


types and effects for the Facile language which proposes a generalization criterion


similar to ours [Tho94]. The relevance of thenew andrecv effects to the problem of


estimating mobile values is not obvious. Nevertheless, we cannot exclude these effects
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from our type system. If we did, some of the observable effects of an expression would


be ignored opening the way for unsound generalization of types.


Definition 3.7 (TypeOf). The types of the basic constants unit, integers and booleans


do not depend on the typing context and are defined as follows:


TypeO f(()) = (unit, /0) TypeO f(n) = (int, /0)


TypeO f(true) = (bool, /0) TypeO f(false) = (bool, /0)


We now define an operation which is employed in the type system to collect the labels


of interest in the process of deriving a type for an expression.


Definition 3.8 (Extracting annotations). Given a type environmentΓ and a set of


variablesV, the operationM extracts the mobility annotations of the variables from


their types.


M(Γ,V) =





/0 if V = /0


/0 if V = {x} andx /∈ Dom(Γ)


µ if V = {x} andΓ(x) = (τ̄,µ)


M(Γ,{x})∪M(Γ,X) if V = {x}∪X


3.4.2 Typing rules


The static semantics for the language assigns a type and an effect to each expression.


This is represented by a judgement of the formΓ ` e : τ,κ. The typing rules are given


in Figures 3.5 and 3.6. We comment on some of the rules below pointing out the


characteristic features of our type system.


The typing rule (var) shows that a variable can be assigned any type which is an


instance of the type scheme which it is bound to in the type environment.


The typing rule (fn) for functions is essential for our type system. It associates a


non-trivial mobility annotation with a function. This annotation serves as an estima-


tion of the labels of those values which move with the function. The operationM of


Definition 3.8 inspects the typing environment of the function to collect the labels of
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(con) Γ ` c : TypeO f(c), /0


(var)
Γ(x) = σ σ� τ


Γ ` x : τ, /0


(fn)
Γ[x 7→ τ] ` e : τ′,κ µ = M(Γ,FV(fnl x⇒ e))


Γ ` fnl x⇒ e : (τ κ→τ′, l ∪µ), /0


(app)
Γ ` e1 : (τ κ→τ′,µ),κ′ Γ ` e2 : τ,κ′′


Γ ` e1e2 : τ′,κ∪κ′∪κ′′


(if)
Γ ` e1 : (bool, /0) Γ ` e2 : (τ̄,µ),κ Γ ` e3 : (τ̄,µ′),κ′


Γ ` if e1then e2 else e3 : (τ̄,µ∪µ′),κ∪κ′


(let)
Γ ` e1 : τ,κ Γ[x 7→ Gen(Γ,κ,τ)] ` e2 : τ′,κ′


Γ ` letx = e1 ine2 : τ′,κ∪κ′


(op)
Γ ` e1 : (τ̄, /0),κ Γ ` e2 : (τ̄, /0),κ′ op : (τ̄∗ τ̄)→τ̄′


Γ ` e1 op e2 : (τ̄′, /0),κ∪κ′


(subs)
Γ ` e : τ,κ κv κ′


Γ ` e : τ,κ′


Figure 3.5: Typing Rules for the Core


functions and channels which are referred to by the function body. These labels are


merged with the label of the function itself and recorded as its mobility annotation.


The typing of the conditional expressions by rule (if) requires the raw types of the


branches to be identical. Their mobility annotations are merged by the union operator


∪ to obtain the mobility annotation of the whole expression.


Regarding polymorphism, we adopt the standard discipline employed in languages
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(chan) Γ ` chanl () : (chan[τ], l),new l for τ


(send)
Γ ` e1 : (chan[τ],µ),κ Γ ` e2 : τ,κ′


Γ ` e1!e2 : (unit, /0),κ∪κ′∪ sendτonµ


(receive)
Γ ` e : (chan[τ],µ),κ


Γ ` e? :τ,κ∪ recv τonµ


Figure 3.6: Typing Rules for Extensions


with a functional core and allow type generalization to be performed in the (let) rule


only.


The subsumption rule (subs) allows the type system to replace an effect with a


larger one which subsumes it according to Definition 3.5. We adopt the approach


which is referred to as early subsumption in [NN94] and subeffecting in [TJ92].


The rule (chan) assigns the mobility annotationl to a channel allocation expression


labelled withl . The type of a channel should be in accordance with the values it com-


municates. In a typing derivation this information has to be derived from the context


of the allocation expression. By includingτ in the effect of the expression, we make


sure that in an attempt to generalize the type of the channel, the type of the values it


communicates will be taken into consideration.


The rule (send) always assigns the typeunit to a send expression whereas the effect


embodies the type of the transmitted value. The fact that a send effect is parameterized


over a mobility annotated type makes it possible to analyze these effects further to


expose potentially mobile values. We address this in Section 3.6.


The rule (receive) is applied in typing a receive expression. As a receive expression


evaluates to the value it receives, its type is expected to be the same as that of the


received value.
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3.4.3 Examples


Having defined Mobile-λ and its type system we now present some examples which


are inspired by the examples from Section 3.2.


Example 1: elet = let f = fnl f x⇒ ef


in let g = fnlg x⇒ eg


in ch ! g


Let us assume the following aboutf andg:


• f andg are functions from integers to integers with no observable effect;


• ef contains no free identifiers; and


• f is the only free identifier ineg.


Then the following is a possible type annotated version of the expressionelet. We


assume that the expression is typed with respect to an initial environmentΓ where


Γ = [ch 7→ (chan[τg], lc)] andτgis the type of functiong shown below.


elet = let f = fnl f x⇒ ef : ((int, /0) /0→(int, /0), l f ), /0


in let g = fnlg x⇒ eg : ((int, /0) /0→(int, /0), lg∪ l f ), /0
in ch ! g : (unit, /0),sendτg on lc


The effectsendτg on lc of the expressionelet conveys the information that when a value


of typeτg is transmitted on the channel with mobility annotationlc, the functions whose


labels are embodied in the typeτg will be mobile. The typeτg is ((int, /0) /0→(int, /0), lg∪
l f ). Therefore, we know that functions with labelslg andl f will become mobile when


the expressionelet is evaluated. In Section 3.6 we present an analysis which shows how


to extract the mobility annotations from the types systematically, such as extractinglg


andl f from the typeτg in this example.
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Example 2: let f = fnl f h ⇒ fnl f 1ch ⇒ let g = fnlgx ⇒ h x


in ch ! g


in (∗∗ scope of f ∗∗)


In this example functionf is a higher-order function which takes a function and a


channel as arguments. Its body consists of a let expression. We assume thatΓ, which


is given below, is the type environment in which the body of functionf is typed.


• Γ = [h 7→ (τ̄,γ1),ch 7→ (chan[(τ̄, lg∪ γ1)],γ2)]


whereτ̄ = (int, /0)
β→(int, /0).


The typing environment suggests that the actual argument to whichh is bound must be


a function from integers to integers but nothing specific is assumed about its observable


effect. The actual argument to whichch is bound must be a channel which carries func-


tions from integers to integers. We additionally know that the function with labellg and


the function to whichh is bound are carried on this channel. The following is a pos-


sible type-annotated version of thelet expression. Note that for readability we use the


abbreviationsτh for Γ(h), τch for Γ(ch), andκ f for send((int, /0)
β→(int, /0), lg∪ γ1)onγ2.


let f = fnl f h ⇒ fnl f 1ch ⇒
let g = fnlgx ⇒ h x : (τ̄, lg∪ γ1), /0


in ch ! g : ∀γ1γ2β.(τh
/0→(τch


κ f→(unit, /0), l f 1), l f ), /0
in (∗∗ scope of f ∗∗)


Since the type ofτh andτch do not appear free in the environment in whichf is typed,


the operationGenfrom Definition 3.6 would generalizeγ1,γ2 andβ. This means that


the functionf can be applied uniformly to any function from integers to integers.


We could now convince the reader that the type off includes all the information


we seek. Wheneverf is fully applied, its polymorphic type will be specialized ac-


cording to those of its arguments. The generalized mobility annotationsγ1 of h and


γ2 of ch will be specialized to the mobility annotation of its function argument and its


channel argument respectively. For example, if at some point in the scope off, there
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appears an expressionf k ch1 wherek is a function with the mobility annotationlk


and the observable effectκk andch1 is a channel of the correct type with the mobil-


ity annotationlch1 then the overall effect associated with this application will include


send((int, /0)
κk→(int, /0), lg∪ lk)on lch1.


3.5 Formal properties of the type system


In this section we prove the soundness of the type system defined in Section 3.4 with


respect to the dynamic semantics presented in Section 3.3. This involves proving that


types are preserved under transitions of the system, characterizing the runtime errors


for Mobile-λ programs and showing that the evaluation of well-typed programs do not


give rise to runtime errors.


Mobile-λ programs can allocate channels dynamically. This implies that the in-


termediate expressions which describe the intermediate steps of evaluation can include


channel identifiers which cannot be known statically. Therefore, the static environment


Γ alone would not be sufficient to keep track of the types of intermediate expressions.


In order to be able to show that types are preserved during evaluation, it is necessary


to have a semantic object which associates dynamically allocated channel identifiers


with appropriate types.


Definition 3.9 (Channel environment). A channel environment is a finite map from


channel identifiers to type and mobility annotation pairs.


CE ::= [k1 7→ (τ1,µ1) . . .kn 7→ (τn,µn)].


The type and the mobility annotation represent respectively the type of values commu-


nicated by the channel and the mobility annotation of the channel. We write[ ] for the


empty channel environment.


Definition 3.10 (Extension).


• Let Γ and Γ′ be two type environments.Γ′ extendsΓ, written asΓ v Γ′ if


Dom(Γ)⊆ Dom(Γ′) andΓ(x) = Γ′(x) for all x∈ Dom(Γ).
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• LetCE andCE′ be two channel environments.CE′ extendsCE, written asCEv
CE′ if Dom(CE)⊆ Dom(CE′) andCE(k) = CE′(k) for all k∈ Dom(CE).


3.5.1 Types for intermediate expressions


The proof of type preservation property requires us to be able to type the intermediate


expressions which we have introduced in Section 3.3.2. It is clear that every expression


is also an intermediate expression. Therefore, the typing rules of Figures 3.5 and 3.6


can be regarded as typing rules for intermediate expressions which conform to the ab-


stract syntax of Mobile-λ. An addditional set of typing rules is presented below for the


remaining forms of intermediate expressions. The typing judgements for intermediate


expressions includeCE as well asΓ.


The rules below also include a typing rule for environments, which define what


it means to be an evaluation environmentE to be well-typed with respect to a typing


environmentΓ. Environment typing rule is referred to by the typing rule for function


closures. This is not cause any cyclic definitions, however, since there are no recursive


functions in Mobile-λ.


CE(k) = (τ,µ) k = (l ,s, i) l appears inµ


CE,Γ ` k : (chan[τ],µ), /0


∃Γ′.Γv Γ′ CE,Γ′ ` E CE,Γ′ ` fnl x⇒ e : (τ κ→τ′,µ)


CE,Γ ` 〈l,E,x,e〉 : (τ κ→τ′,µ), /0


∃Γ′.Γv Γ′ CE,Γ′ ` E CE,Γ′ ` ie : τ,κ


CE,Γ ` bindE in ie : τ,κ


Dom(Γ) = Dom(E) ∀x∈ Dom(E).CE,Γ ` E(x) : Γ(x)


CE,Γ ` E


We writeCE,Γ ` v : ∀~α~β~γ.τ, /0 if Γ ` v : θτ for any θ defined on~α~β~γ.
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3.5.2 Type soundness


Definition 3.11 (System typing).Let T be a finite map from site identifiers to type


and effect pairs. A well-formed system state is said to have typeT under a global


channel environmentCE, written asCE `CI,P : T if the following hold:


• CI ⊆ Dom(CE);


• for all [(s,E) : e] ∈ P it is the case thats∈ Dom(T); and


• for all [(s,E) : e]∈P it is the case thatCE,Γs` e: T(s) for aΓs whereCE,Γs` E.


Theorem 3.1 (Type preservation).LetCE be a global channel environment andCI,P


be a well-formed sytem state. Assume


• CI,P
a−→CI′,P′; and


• CE `CI,P : T for someT.


Then there exists a channel environmentCE′ such that:


• CEvCE′; and


• CE′ `CI′,P′ : T.


Proof. The proof is given by induction on the depth of derivation ofCI,P
a−→CI′,P′.


For the cases which involve no communication, it is obvious that the transition involves


only one of the expressions. Therefore, it is sufficient to prove the theorem considering


one of the expressions only. Selected cases of the proof are shown below.


caseie = x. The dynamic semantics requires the evaluation to follow the rule (var),


that isCI,P[(s,E) : x] ε−→CI, [(s,E) : E(x)]. SupposeCE,Γs` x : τ, /0. The typing rule


(var) forces thatΓs(x) = σ whereσ� τ. We know by the assumptions thatCE,Γs` E.


This also implies thatCE,Γs` E(x) : Γs(x). Let Γs(x) = σ = ∀~δ.τx. By the definition


of value typing it must be the case thatCE,Γs` E(x) : θτx for anyθ defined on~δ. Then


CE,Γs` E(x) : τ, /0 sinceσ� τ.
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caseie = (fnl x ⇒ e). The dynamic semantics requires the evaluation to follow the


rule (fn), that isCI,P[(s,E) : fnl x⇒ e] ε−→CI,P[(s,E) : 〈l,E′,x,e〉] whereE′ = E �


FV(fnl x⇒ e). SupposeCE,Γs` fnl x⇒ e : (τ κ→τ′, l ∪µ), /0. The typing rule (fn) tells


us that for this judgement to hold it must be the case thatCE,Γs[x 7→ τ] ` e : τ′,κ
whereµ = M(Γs,FV(fnl x⇒ e)).


We know by the assumption thatCE,Γs` E. This impliesCE,Γs` E′ sinceE′ is


a restriction ofE. We can conclude that there exists aΓ′ such thatCE,Γ′ ` 〈l,E′,x,e〉 :
(τ κ→τ′, l ∪ µ), /0 by taking Γs as a witness forΓ′ and referring to the typing rule for


function closures.


caseie = (let x = vin e). The dynamic semantics requires the evaluation to follow


the rule (let-3), that isCI,P[(s,E) : let x = v ine] ε−→CI,P[(s,E) : bindE′[x 7→ v] ine]


whereE′ = E � FV(e). SupposeCE,Γs` let x = v ine : τ′,κ∪κ′. The typing rule (let)


requires thatCE,Γs` v : τ,κ andCE,Γs[x 7→ Gen(Γ,κ,τ)] ` e : τ′,κ′.
By Lemma 3.2 we know that there existκ1 andκ2 such that(κ1∪κ2) v (κ∪κ′)


whereCE,Γs` v : τ,κ1 andΓs[x 7→ Gen(Γ,κ,τ)] ` e : τ′,κ2. By Lemma 3.1 we have


CE,θΓs` v : θτ,θκ1 for any substitutionθ. For θ defined on those variables which


are not free inΓs or κ1 it is the case thatCE,Γ ` v : θτ,κ1. Let these variables


be~δ. The typing rules for values allows us to conclude thatCE,Γs` v : ∀~δ.τ,κ1.


This is equivalent to saying that the type ofv is Gen(Γs,κ1,τ). We take aΓ′ such


that Γ′ = Γs[x 7→ Gen(Γ,κ1,τ)]. We can conclude thatCE,Γ′ ` E′[x 7→ v]. Given


CE,Γs[x 7→ Gen(Γ,κ1,τ)] ` e : τ′,κ2, the typing rule for bind expressions allow us


to conclude thatCE,Γs` bindE′[x 7→ v] ine : τ′,κ2. By Lemma 3.2bindE′[x 7→ v] ine :


τ′,κ∪κ′.


caseie = chanl (). The dynamic semantics requires the evaluation to follow the rule


(chan), that isCI,P[(s,E) : chanl ()]
s[newk]−−−−→CI∪k,P[(s,E) : k]. SupposeCE,Γs` chanl () :


(chan[τ], l),new l for τ. By the typing rule (chan) we know thatk /∈CI. Taking a chan-


nel environment such thatCE′ = CE[k 7→ (τ, l)] for someτ satisfies all the necessary


conditions.
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caseie1 = (k!v) andie2 = (k?). The dynamic semantics requires the evaluation to fol-


low the rule (com), that isCI,P[(s1,E1) : k! v][(s2,E2) : k?] a−→CI,P[(s1,E1) : ()][(s2,E2) :


v] wherea= s1
(k,v)−−→ s2. SupposeCE,Γs1 ` k!v : unit,κ∪κ′∪sendτonµandCE,Γs2 ` k? :


τ,κ∪ recv τonµ. By the typing rules (send) and (receive) we know thatCE,Γs1 ` k :


(chan[τ],µ),κ andΓs1 ` v : τ,κ′ andCE,Γs2 ` k : (chan[τ],µ),κ. This case refers to


Lemma 3.2 as the case above. The rest of the proof is immediate by a simple inspec-


tion of the typing rules for receive and send expressions.


The following lemma which shows that typing is stable under substitution is used


in the proof of the type preservation theorem.


Lemma 3.1 (Substitution). If CE,Γ ` ie : τ,κ thenCE,θΓ ` ie : θτ,θκ for any sub-


stitutionθ.


Proof. The proof is given by induction on the depth of derivation ofΓ ` ie : τ,κ. Two


selected cases of the proof are presented in the Appendix.


Lemma 3.2 (Subsumption elimination). We can assume for the derivation of a typ-


ing judgementCE,Γ ` ie : τ,κ that the non-structural rule (subs) is used after every


structural rule.


Proof. Any derivation tree forCE,Γ ` ie : τ,κ can be transformed into a derivation tree


where we use the rule (subs) after every structural rule. By transitivity of the relation


v we can eliminate multiple applications of the (subs) rule and consider it as a single


application of the rule.


Definition 3.12 (Runtime error). The evaluation of an intermediate expressioniecauses


a runtime error, written asCI,P[(s,E) : ie]−→ ERROR if all of the following proposi-


tions are simultaneously true:


• ie is not a value;


• ie is not blocked on communication; and


• there is no evaluation rule such thatCI,P[(s,E) : ie]−→CI′,P′[(s,E) : ie′].
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Note that the above characterization of a runtime error does not capture the errors


which are caused by the absence of a communication partner. For example, an expres-


sion can attempt at runtime to send a value on a channel which is listened to by no


other process. We do not treat this as a runtime error. However, any attempt to send a


value which does not match with the type of the channel would cause a runtime error.


Theorem 3.2 (Type soundness).Let CE be a global channel environment andCI,P


be a well-formed system state. AssumeCE `CI,P : T for someT. Then for no[(s,E) :


ie] ∈ P it is the case thatCI,P[(s,E) : ie]−→ ERROR.


Proof. The proof is given by induction on the depth of the typing derivation ofie.


3.5.3 Principal typing


Given a typing context and an expression, the typing rules presented above do not


necessarily assign a unique type to an expression. It could be possible to derive zero,


one or even infinitely many types for an expression. The theorem below shows that if


an expression can be typed at all in our system it also has aprincipal type, that is a


type which is the most general type with respect to substitution on variables. Similarly,


there is an effect which is minimal with respect to the subsumption relationv.


Theorem 3.3 (Principal Typing). If a type can be derived for an expressione in the


type system then there exists an environmentθpΓ, a typeτp andκp such thatθpΓ ` e :


τp,κp and wheneverθΓ ` e: τ,κ then for some substitutionψ it is the case thatψ(θpΓ) =


θΓ andψτp = τ andκv ψκp. The typeτp is principal fore in Γ.


Proof. Selected proof cases can be found in the Appendix.


3.6 Static estimation


As we provided explanations on our particular choice of annotations in Section 3.4,


at this point it should be clear how we intend to use the static information captured


in types to estimate mobile functions and channels. Our approach is as follows. Sup-


posing that an expression is associated with an effectκ we consider eachsendτonµ
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which appears inκ in isolation, analyzeτ to collect the mobility annotations (labels)


of interest and finally merge the results.


3.6.1 Extracting labels


Definition 3.13 (�). We define the relation� as the smallest relation which satisfies


the rules of Figure 3.7. It relates types and effects to sets of labels. The relation for


types and the relation for effects are defined mutually recursively. A set of labelsL


associated with an effectκ estimates the labels of values which become mobile when


an expression with effectκ is executed.


Types Effects


(t1) � (unit,µ) : /0 (e1) � /0 : /0
(t2) � (int,µ) : /0 (e2) � new(τ̄,µ) : /0
(t3) � (α,µ) : /0 (e3) � β : /0
(t4) � (chan[τ], l) : {l} (e4) � recv τonµ′ : /0
(t5) � (chan[τ],µ) : L


� (chan[τ], l ∪µ) : {l}∪L


(e5) � τ : L


� sendτonµ′ : L


(t6) � τ′ : L � κ : L′


� (τ κ→τ′, l) : {l}∪L∪L′
(e6) � κ : L � κ′ : L′


� κ∪κ′ : L∪L′


(t7) � τ′ : L � κ : L′ � (τ κ→τ′,µ) : L′′


� (τ κ→τ′, l ∪µ) : {l}∪L∪L′∪L′′


Figure 3.7: Mobility Analysis


Rules 1, 2 and 3 for types apply when the raw type is a base type or a variable. Our


type system does not keep track of the values of base types and a variable type does


not contain any specific information that we need to note. Therefore, we takeL to be


empty. In the case of channel types, however, we collect the mobility annotation as


shown in Rules 4 and 5.


Rules 6 and 7 apply when the type is a function type. As well as extracting the


mobility annotation of the function, the result type and the effect are also examined to
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collect the annotation of those values which may escape to another site and be sent from


that site subsequently. Note that the need for this has been motivated by Example 3.3


in Section 3.2.1.


The rules for effects show that it is the send effects which we are concerned with.


The types of the sent values are examined to estimate potentially mobile values.


3.6.2 Soundness


We have shown that our type system associates values with types which are consistent


in the sense defined in Section 3.5.2. The soundness of the analysis presented above


relies on this fact. The definition of the notion of soundness for the mobility analysis


states that the analysis of a correctly typed expression would conservatively estimate


the labels of interest. Conservative estimation is expressed by the subset relation.


Theorem 3.4 (Soundness of analysis).Given a channel environmentCE consider a


single step in the evaluation of an expressionie such that


• CI,P[(s,E) : ie] a−→CI,P[(s,E) : ie′] wherea = s
(k,v)−−→ s′ for somes′; and


• CE,Γs` E andCE,Γs` ie : τ,κ where|= κ : L.


It follows thatMobile(v)⊆ L.


Proof. The proof is given by straightforward induction on the derivation of evaluation.


It refers to Lemma 3.3 given below.


Lemma 3.3 (Soundness of label estimation).


If Γ ` v : τ, /0 and� τ : L thenLabels(v)⊆ L.


Proof. The proof is given by considering all possible forms ofv. We give the proof of


two selected cases only.


casev = k = (s, l , i). By the hypothesis, we haveCE,Γ ` k : (chan[τ],µ), /0 wherel ap-


pears inµ. By Rule t5 of Figure 3.7 we also know that{l} ⊆ L where� (chan[τ],µ) : L.







Chapter 3. Estimating Mobile Values 67


By Definition 3.4Mobile(k) = {l}. It follows thatMobile(v)⊆ L.


casev = 〈l,E,x,e〉. By the hypothesis we haveCE,Γ ` 〈l,E,x,e〉 : (τ κ→τ′,µ). This


requires there to exist aΓ′ such thatCE,Γ′ ` E andCE,Γ′ ` fnl x ⇒ e : (τ κ→τ′,µ), /0.


The typing rule for functions allows us to conclude also thatCE,Γ′[x 7→ τ] ` e : τ′,κ
whereµ = l ∪M(Γ′,FV(fnl x⇒ e)). By Definition 3.4 we haveMobile(〈l,E,x,e〉) =


{l}∪S′ whereS′ =
⋃
{Mobile(E(x)) | x ∈ Dom(E)}. By Rule t7 of Figure 3.7 we


also have� (τ κ→τ′,µ) : {l}∪L∪L′∪L′′ where� τ′ : L and� κ : L′ and(τ κ→τ′,µ′) : L′′


whereµ′ = M(Γ,FV(fnl x⇒ e)). SinceCE,Γ′ ` E andΓv Γ′ we haveCE,Γ ` E(x) :


Γ′(x) for everyx∈ Dom(E). By referring to Definition 3.8 we can conclude that any


element ofS′ occurs inµ′. Hence any element of({l}∪S′) occurs inµ. It follows that


Mobile(v)⊆ ({l}∪L∪L′∪L′′).


3.7 Concluding Remarks


In this chapter we have shown that the methodology of annotated type and effect sys-


tems can be exploited to predict the mobility of values in a higher-order functional


language extended with primitives for communication. The work presented in this


Chapter is intended to be a natural continuation of the works discussed in Section 3.2.3.


To the best of our knowledge this is the first application of the type and effect discipline


to a problem which concerns mobile code languages in particular.


We have included in the language Mobile-λ only those features which are crucial


for our investigation. For example, Mobile-λ can be extended with features for dy-


namic process creation at local or remote sites. This does not, however, provide new


insights into the problem.


In Mobile-λ any communication is assumed to take place between two remote par-


ties. Therefore any communication gives rise to mobility between two remote sites.


Consequently, the definitions of the dynamic and static semantics treat any commu-


nication as observable. If we allowed dynamic creation of processes at local and re-


mote sites it would be appropriate to define an observation criterion such as the ones


in [Tho94, TJ94] to distinguish between local and remote communications. The type
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system then would have to trace the annotations of remotely communicated values


only. Such an extension can easily be incorporated into the existing type system.


Devising an algorithm to infer the principal types and minimal effects is out of the


scope of this chapter. However, the existing works in the field suggest that such an


algorithm can be devised and implemented.







Chapter 4


Distributed Call-Tracking


One of the positive qualities associated with mobile computation is that it provides a


flexible setting for sharing computational resources. A piece of code can move towards


a site which hosts the resources it aims to exploit. Input/output devices, file systems,


network, memory and processing power (CPU cycles) are typical examples of shared


resources which may be exploited by mobile code.


In a system where shared resources such as processing power and memory are


limited, it is particularly important that some programs do not exhaust the resources at


the expense of other programs. For example, if access to CPU cycles is not controlled


to enforce an appropriate fairness criterion, a program can hinder the execution of


another program which uses the same processor, by occupying the CPU most of the


time. Similarly, if a program is allowed to allocate unlimited memory, it may cause the


system to deny service to other programs.


Computation in active networks with the Programming Language for Active Net-


works (PLAN), introduced in Chapter 2, is a specific instance of mobile computation


in a system where the allocation of resources to programs must be strictly controlled.


Denial-of-service attacks are considered as one of the major threats to the safety and


security of active networks. The design of PLAN has been highly influenced by the


need to prevent denial of service.


The ideas underlying the design of PLAN could form the basis of a general purpose


mobile code language which is suitable for computation in resource-sensitive systems


if the restrictions of PLAN could be made less severe. In this chapter, we introduce a


69







Chapter 4. Distributed Call-Tracking 70


language which mitigates some of the restrictions in PLAN’s computational model and


extends it with support for mobility through remote evaluation of functions in the spirit


of the model proposed by Stamos and Gifford [SG90]. We then investigate the use of


annotated type systems in estimating which functions are called at which sites. We call


this distributed call-tracking analysis. Our approach can be regarded as extending the


work on type-basedcall-tracking analysisfor sequential functional languages [TJ92,


Hei94a]. The information obtained by distributed call-tracking analysis can serve as


the starting point for traditional compiler optimizations as well as allowing compilers


to produce code optimized for particular sites which a function may visit at runtime.


In an applicative language where function applications constitute the basis of com-


putation, attempts to estimate the resource consumption of programs would benefit


from distributed call-tracking. For example, if we take processing power as the re-


source of interest, the number of functions called is an indicator for the processing


time demanded by the evaluation of a program. In cases such as ours, where the lan-


guage facilitates remote evaluation of functions on different sites, the estimation of


processing time demanded from a particular site requires the estimation of functions


called at that site.


4.1 Security through language restrictions


In Chapter 2 we have presented the essential elements of the design of PLAN. In this


section we recapitulate those features of PLAN which are motivated by the need to


prevent denial-of-service attacks and to prevent programs from interfering with one


another’s execution.


4.1.1 Termination and resource bounds


Non-terminating programs consume the resources of a system unboundedly and there-


fore make them vulnerable to denial-of-service attacks. The designers of PLAN have


adopted a strict approach in dealing with this problem. They have ensured that pure


PLAN programs terminate by eliminating recursion and non-fixed length iteration, and


imposing resource bounds on the number of packets generated. The following exam-
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ple from [HK99] motivates the need for explicit resource bounds in PLAN. Without a


resource bound counter which is decremented each time a new packet is generated, the


functionping pong below would move between the two nodes of the network forever.


fun ping pong (pingHost:host, pongHost:host):unit =


OnRemote (|ping pong (pongHost, pingHost)|,


pongHost, getRB (), defaultroute)


It is argued in [HK99] that even these restrictions are not adequate and it would be


more appropriate to ensure that PLAN programs contained in a packet require band-


width, CPU and memory linear in the size of the packet. A detailed discussion about


the motivating factors and the alternative approaches for implementing this can be


found in [HK99, MHN01]. The execution of a function such asexponential below


is considered to be undesirable because the number of function calls is exponential in


the number of function definitions.


fun f1()= ()


fun f2()= (f1();f1())


fun f3()= (f2();f2())


fun f4()= (f3();f3())


fun exponential()=(f4();f4())


4.1.2 Isolation and strong typing


Pure PLAN programs are executed in isolation from one another. There is no notion


of shared mutable state or communication channels as in Facile or Concurrent ML.


No language mechanism for direct communication exists. This ensures that programs


have their own logical space for data and there can be no interference between them.


PLAN is a strongly typed language. Only those programs which are accepted by


the type system as well-formed are allowed to be executed. The combination of this


style of typing and automatic memory management proves useful in ruling out indirect


means of communication, for example, due to buffer overflows [LR98, HK99].







Chapter 4. Distributed Call-Tracking 72


4.1.3 Exploiting static analysis


It is stated by the authors who work on the formal specification of PLAN [KHMG99]


that PLAN programs should be type checked at each node where they are executed.


The capability for static type checking is seen as a requirement while dynamic type


checking is allowed as an option. There is no doubt that strong static typing is a crucial


security property for a PLAN-like language. We observe that if the type system could


be exploited further to infer information about the function call behaviour of programs


it would be possible to enhance the advantages brought about by strong typing. Instead


of ruling out recursion from the language and imposing resource bounds, one could


adopt a more liberal approach. Each site could enforce its own policy to protect itself


from the potential threats posed by a program. This would be particularly appealing


for computation in contexts where resources are not as scarce as in active networks.


For example, if the type system could expose that the functionping pong above


calls itself at two distinct sites, this could be taken as an indication for a possibly non-


terminating computation which affects two sites. In case the system is highly vulnera-


ble to computations of this nature, the execution of the program could be disallowed.


Likewise, if functions such asexponential are undesirable, exposing the number of


function calls initiated byexponential would be sufficient to alarm the type checking


site about the potential risks.


In the following sections we present two type systems for distributed call-tracking


analysis. The first one is a monomorphic type system which uses sets to estimate which


functions are called at which sites. The second type system incorporates a limited


form of polymorphism and captures finer-grained information about the control flow


in programs.


4.2 rEval- λ


In this section we introduce a language for remote evaluation – rEval-λ– which extends


the Core language of Chapter 2 with site names, recursive expressions and primitives


for initiating the remote evaluation of expressions.
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4.2.1 Abstract syntax


As in Mobile-λ from Chapter 3, all functions are labelled. A predefined collection of


site names is available for rEval-λ expressions to specify the sites in a system. Addi-


tionally, rEval-λ provides two constructs for sending an expression to be evaluated at a


remote site. These are distinguished by the way in which the result of the evaluation is


handled. We provide a more detailed explanation about this in the following section.


Site names s ::= s1 | s2 | . . .
Function labels l ::= l1 | l2 . . .


Expressions e ::= c constant


| s site name


| x variable


| fnl x⇒ e function abstraction


| recl f (x)⇒ e recursive function


| e1e2 function application


| if e1 then e2 else e3 conditional


| let x = e1 in e2 local binding


| e1 op e2 primitive operation


| reval(e1,e2)ate3 remote evaluation


| spawn(e1,e2)ate3 remote spawn


Figure 4.1: Abstract Syntax for rEval-λ


4.2.2 Dynamic semantics


A system is modelled as a collection of sites where a site may host the execution of


multiple threads of control. Sites are uniquely identified by site names which are drawn


from a finite set with elementss1 . . .sn as in Chapter 3. Values of the language consist


of basic constants, site names and functions.
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Values v ::= c | s | fnl x⇒ e


We assume that each site in the system can run rEval-λ programs and provides a stan-


dard set of services. These standard services are referred to asubiquitous values. We


treat ubiquitous values in rEval-λ as special function constants. LetU be the set of


these function constants andV be the set of values. We assume the existence of a


functionδ from pairs of function constants and values to values (δ : U×V→V) which


assigns meaning to the elements ofU .


The semantic definition of remote evaluation requires expressions which denote


blocked computations. We introduce the expressions of the formblockon (s, p) for this


purpose. The expressions of the dynamic semantics include blocked expressions as


well as expressions of the forms which are presented in Figure 4.1.


Evaluation rules A system stateS is represented as a set of tuples written as[(s, p) :


e]. A tuple [(s, p) : e] represents a processp at sites which is currently executing the


expressione. The notationS[(s, p) : e] is used to denote the setS∪ [(s, p) : e]. To


simplify presentation we assume that expressions do not contain free variables.


Definition 4.1 (Well-formed states). A system stateSis well-formed if for all[(s, p) :


e] ∈ S the following hold:


• FV(e) = /0; and


• if [(s, p) : e] ∈ Sand[(s, p) : e′ ∈ S] thene= e′.


A single step transition from stateS to stateS′ is represented by a judgement of the


form S
a−→S′. The annotationa on the arrow records the flow of control during the


transition. The type systems we present in the following sections estimate the func-


tions called by a program. By making function calls observable in the semantics in


the form of annotations, we prepare the ground for proving the soundness of our type


systems in the later sections.


Actions a ::= ε no function call


| l@s call functionl at sites
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Rules of Figure 4.2 These rules are similar to the evaluation rules we have presented


for the Core and the sequential subset of Mobile-λ. The only rule which appears for


the first time is the rule (rec) for recursive functions. It shows the one step unfolding


of a recursive function. Note that the label of the recursive function is carried over to


the function abstraction which is obtained by the unfolding.


The way we model ubiquitous values requires us to consider a fourth case for


application rules where the first expression is a function constant (e = cv) such that


S[(s, p) : c v] c@s−→S[(s, p) : δ(c,v)] if c is a function which represents a ubiquitous value.


We use the function constant as a label in the annotation.


Rules of Figure 4.3 The evaluation rules which involve distributed computation are


different from the evaluation rules we have considered so far. There are five rules


concerning a remote evaluation expression. The first three of these rules, (reval-1)


to (reval-3), serve the purpose of specifying the evaluation order; subexpressions are


evaluated in left-to-right order as is the case for all forms of expressions. Once all the


subexpressions are fully evaluated, the evaluation can proceed only if the first expres-


sion is a function and the third one is a site name.


Before explaining the rule (reval-4), we need to clarify what an intermediate ex-


pression of the formblockon (s, p) represents. Intermediate expressions of this form


are introduced to capture suspended computations. For example, the stateS[(s, p) :


blockon (s′, p′)] indicates that the evaluation of processp at sites is waiting for the


value which will be returned by the processp′ at sites′. The rule (reval-4) shows that


the function body is sent for evaluation at the specified site with the value of the second


expression used as the actual argument. This causes the evaluation at the sending site


to enter a blocked state. The rule (reval-5) shows that the evaluation can only resume


when the computation at the remote evaluation site returns a value. This value is taken


to be the value of the blocked expression. Note that our dynamic semantics abstracts


from how the communication between two remote sites occurs. The only observable


action is the function call at the remote site. We assume that a new process is gener-


ated each time a remote evaluation is initiated. It is implicit in our rules that dynamic


generation of processes at the local site is a special case of the remote evaluation where


s= s′.
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(rec) S[(s, p) : recl f (x) ⇒ e] ε−→S[(s, p) : fnl x⇒ e{(recl f (x) ⇒ e)/ f}]


(app-1)
S[(s, p) : e1] a−→S′[(s, p) : e′1]


S[(s, p) : e1e2] a−→S′[(s, p) : e′1 e2]


(app-2)
S[(s, p) : e2] a−→S′[(s, p) : e′2]


S[(s, p) : v e2] a−→S′[(s, p) : v e′2]


(app-3) S[(s, p) : (fnl x⇒ e)v] l@s−→S[(s, p) : e{v/x}]


(app-4) S[(s, p) : cv] c@s−→S[(s, p) : δ(c,v)]


(op-1)
S[(s, p) : e1] a−→ S′[(s, p) : e′1]


S[(s, p) : e1 op e2] a−→ S′[(s, p) : e′1 op e2]


(op-2)
S[(s, p) : e2] a−→ S′[(s, p) : e′2]


S[(s, p) : v op e2] a−→ S′[(s, p) : v op e′2]


(op-3) S[(s, p) : v1 op v2] ε−→ S[(s, p) : v] where v = v1opv2


(if-1)
S[(s, p) : e1] a−→ S′[(s, p) : e′1]


S[(s, p) : if e1then e2 else e3] a−→ S′[(s, p) : if e′1then e2 else e3]


(if-2) S[(s, p) : if true then e2 else e3] ε−→ S[(s, p) : e2]


(if-3) S[(s, p) : if false then e2 else e3] ε−→ S[(s, p) : e3]


(let-1)
S[(s, p) : e1] a−→S′[(s, p) : e′1]


S[(s, p) : let x = e1in e2] a−→S′[(s, p) : let x = e′1 in e2]


(let-2) S[(s, p) : let x = v in e2] ε−→S[(s, p) : e2{v/x}]


Figure 4.2: Sequential Evaluation Rules
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The evaluation of remote spawn expressions is similar except that the expression


which initiates the evaluation at a remote site does not wait for the result to be sent


back to it; it returns a unit value immediately. This implies that spawn expressions


would typically be used for their side effects.


4.2.3 Examples


In this section we present three examples of small rEval-λ programs. The first one


illustrates the use of the remote evaluation facility for a simple but useful purpose.


The second example illustrates that an improper use of the remote evaluation facility


can lead to undesirable exploitation of processing power. The third example illustrates


that the application of some functions can cause a quick growth in the number of


subsequent function calls.


Example 4.1. We assume thatgetTime is a ubiquitous function which takes a unit


argument. An expression which returns the local time at a remote sites1 can be coded


in rEval-λ as follows.


e= let remoteTime = fnl x⇒ reval(getTime,()) at x


in remoteTime s1


Example 4.2. If thisHost is a ubiquitous function which returns the name of the site


where the program is currently running, the evaluation of the following expression at


site s0 would trigger repeated invocations off on sitess0 ands1. Note that the effect


of this expression can be likened to that of the PLAN functionping pong presented in


Section 4.1.


e= let f = recl f(x)⇒ spawn(f, thisHost()) at x


in f s1


Example 4.3. The functiontwice is a higher-order function which takes two argu-


ments, the first of which is a function. The full evaluation oftwice results in its first


argument being applied twice, once to its second argument and once to the result of its
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(reval-1)
S[(s, p) : e1] a−→S′[(s, p) : e′1]


S[(s, p) : reval(e1,e2)at e3] a−→S′[(s, p) : reval(e′1,e2)at e3]


(reval-2)
S[(s, p) : e2] a−→S′[(s, p) : e′2]


S[(s, p) : reval(v,e2)at e3] a−→S′[(s, p) : reval(v,e′2)at e3]


(reval-3)
S[(s, p) : e3] a−→S′[(s, p) : e′3]


S[(s, p) : reval(v1,v2)at e3] a−→S′[(s, p) : reval(v1,v2)at e′3]


(reval-4)
S[(s, p) : reval((fnl x⇒ e),v)ats′] l@s′−→


S[(s, p) : blockon (s′, p′)][(s′, p′) : e{v/x}] wherep′ new ats′


(reval-5) S[(s, p) : blockon (s′, p′)][(s′, p′) : v] ε−→S[(s, p) : v]


(spawn-1)
S[(s, p) : e1] a−→S′[(s, p) : e′1]


S[(s, p) : spawn(e1,e2)at e3] a−→S′[(s, p) : spawn(e′1,e2)at e3]


(spawn-2)
S[(s, p) : e2] a−→S′[(s, p) : e′2]


S[(s, p) : spawn(v,e2)at e3] a−→S′[(s, p) : spawn(v,e′2)at e3]


(spawn-3)
S[(s, p) : e3] a−→S′[(s, p) : e′3]


S[(s, p) : spawn(v1,v2)at e3] a−→S′[(s, p) : spawn(v1,v2)at e′3]


(spawn-4)
S[(s, p) : spawn((fnl x⇒ e),v)ats′)] l@s′−→


S′[(s, p) : ()][(s′, p′) : e{v/x}] wherep′ new ats′


Figure 4.3: Distributed Evaluation Rules
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application to the second argument. The code presented below shows that the appli-


cation oftwice to the functionf3 and() gives rise to several nested applications of the


functionsf3, f2 andf1.


e= let twice = fnl1 f⇒ fnl2 x⇒ f(f(x))


in let f1 = fnl3 x⇒ ()


in let f2 = fnl4 x⇒ twice f1 x


in let f3 = fnl5 x⇒ twice f2 x


in twice f3 ()


4.3 A Monomorphic type system


It would be possible to obtain a monomorphic type system for rEval-λ simply by ex-


tending the basic types of the Core language with a type for site names. However, we


do not only want to design a type system which enjoys a soundness property but also


to be able to exploit types for distributed call-tracking.


4.3.1 Semantic objects


The idea of enriching types with annotations for static estimation purposes has already


appeared in Chapter 3. The type systems of this chapter build on similar intuitions.


The values which are of interest to the problem in hand are determined and expres-


sions which yield these kinds of values are labelled. The type system then examines a


program collecting information about its possible behaviours. This is achieved through


incorporating labels into types as annotations.


The values of interest for distributed call-tracking analysis are functions and sites.


Therefore, we annotate function and site types only. If an expression has a site type in


our system, the annotation of its type estimates the site names which can result from


evaluating this expression. If an expression has a function type, the annotation of its


type estimates the functions which may be called during its evaluation.


Site annotations are sets of site names. Flow annotations are sets whose elements


can be function labels or located labels of the forml@s. A function label stands for a


function which is called at the current site and an annotation of the form{l@s} is used
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to represent the invocation of the function with labell at the sites. Flow annotations


can be merged by set union.


Site annotations S ::= /0 | {s} | S1∪S2


Flow annotations F ::= /0 | {l} | {l@s} | F 1∪F 2


Types τ ::= unit | int | bool | siteS | τ1
F→τ2


The only other objects used by our type system are type environments which are de-


fined as finite maps from variables to types. (Γ ::= [x1 7→ τ1, . . .xn 7→ τn]). The notation


Γ[x 7→ τ] is used for adding elementx to the environmentΓ, overriding the existing


binding if x is already in the domain ofΓ. We assume that the types of the ubiquitous


values are present in the initial type environment.


4.3.2 Typing rules


Our type system for rEval-λ assigns a type(τ) and a flow annotation(F ) to each


expression. A judgement of the formΓ ` e : τ,F states that an expression has type


τ and induces a flow represented byF whereΓ contains the assumptions about the


types of free variables ofe. The judgements of this type system can be compared to


the judgements of the formΓ ` e : τ,κ from Chapter 3. In that system we estimated the


possible communication effectsκ which may be incurred by an expression in much


the same way as we are estimating the possible function callsF in the current type


system.


The typing rules presented in Figure 4.4 are mostly self-explanatory. The rule (site)


for typing site names ensures that the annotation of the type of a site name includes the


site name itself. This provides the means for tracing site names in the static semantics.


The typing rule (fn) requires that the label of a function is included in its type as


an element of its flow annotation along with the flow annotation derived for the body


of the function. By inspecting the rule (app) for function applications we can see how


these annotations are exploited. When a function is applied as a part of the evaluation


of an expression, it is guaranteed that the flow annotation derived for the expression


will include the label of the applied function.
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While presenting the dynamic semantics we stated that a remote evaluation can


take place only if the first expression evaluates to a function. The typing rule (reval)


ensures that this condition is met. Since the value of the second expression is used as


an argument to the function during its remote evaluation, the typing rule also requires


that its type is identical to the argument type of the function. The value of the third


expression is used to specify the destination for evaluation. Therefore, the typing rule


forces its type to be a site type. We capture the fact that the function is to be evaluated


at the specified site through associating the elements ofF with elements of the site


annotationS according to Definition 4.2. The typing ofspawn expressions follows


the same principle. Finally, the typing rule (subs) allows a flow annotationF to be


replaced by another oneF ′ if F ′ is at least as large asF .


Definition 4.2 (Flat).


Flat(F ,S) =





/0 if F = /0 or S = /0


{l@s} if F = {l} andS = {s}


{l@s}∪Flat({l},S ′) if F = {l} andS = {s}∪S ′


{l@s} if F = {l@s}


Flat(F ′,S)∪Flat(F ′′,S) if F = F ′∪F ′′


The fifth clause of Definition 4.2 expresses the fact that if a function body embodies


nested remote evaluations, it is the innermost layer which determines the site of the


function call. Consider, for example, a functionf with flow annotationF = {l0, l1@s}
meaning that the functionf has labell0 and embodies a call to a function with labell1 at


s. If the type system estimatess′ to be the call site off, the application of Definition 4.2


to the pair(F ,s′) would yield{l0@s′, l1@s} wheres is retained as the call site ofl1.


4.3.3 Examples


We now discuss which types can be assigned by our type system to the examples of


Section 4.2.3.


Revisiting Example 4.1 Let us assume that the functiongetTime is a ubiquitous


function and the typing takes place with respect to the initial type environmentΓ
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(con) Γ ` () : unit, /0 Γ ` n : int, /0


Γ ` true : bool, /0 Γ ` false : bool, /0


(site) Γ ` s : siteS , /0 wheres∈ S


(var) Γ ` x : Γ(x), /0


(fn)
Γ[x 7→ τ] ` e : τ′,F


Γ ` fnl x⇒ e : τ
{l}∪F−−−−→ τ′, /0


(rec)
Γ[x 7→ τ][ f 7→ τ F−→ τ′] ` e : τ′,F


Γ ` recl f (x)⇒ e : τ F−→ τ′, /0


(app)
Γ ` e1 : τF→τ′,F ′ Γ ` e2 : τ,F ′′


Γ ` e1e2 : τ′,F ∪F ′∪F ′′


(op)
Γ ` e1 : τ,F Γ ` e2 : τ,F ′ op : (τ∗ τ) /0→τ′


Γ ` e1ope2 : τ′,F ∪F ′


(if)
Γ ` e1 : bool,F Γ ` e2 : τ,F ′ Γ ` e3 : τ,F ′′


Γ ` if e1then e2 else e3 : τ,F ∪F ′∪F ′′


(let)
Γ ` e1 : τ,F Γ[x 7→ τ] ` e2 : τ′,F ′


Γ ` letx = e1 ine2 : τ′,F ∪F ′


(reval)
Γ ` e1 : τF→τ′,F ′ Γ ` e2 : τ,F ′′ Γ ` e3 : siteS ,F ′′′


Γ ` reval(e1,e2)ate3 : τ′,F ′∪F ′′∪F ′′′∪Flat(F ,S)


(spawn)
Γ ` e1 : τF→τ′,F ′ Γ ` e2 : τ,F ′′ Γ ` e3 : siteS ,F ′′′


Γ ` spawn(e1,e2)ate3 : unit,F ′∪F ′′∪F ′′′∪Flat(F ,S)


(subs)
Γ ` e : τ,F F ⊆ F ′


Γ ` e : τ,F ′


Figure 4.4: Monomorphic Typing Rules for rEval-λ
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whereΓ(getTime) = unit
{lg}→ int. The following types can be derived for the function


remoteTime and the expressione.


• Γ ` remoteTime : site{s1}
{l ,lg@s1}
−−−−−→ int, /0


• Γ ` e : int,{l , lg@s1}


The flow annotation derived foreexposes that the evaluation ofecan cause the function


with labell to be called at the current site and the function with labellg, that is function


getTime, to be called at sites1.


Revisiting Example 4.2 Let us assume thatthisHost is a ubiquitous function and


Γ(thisHost) = unit
{lt}→site{s0,s1}. The following types can be derived for the recursive


functionf and the expressione.


• Γ ` f : site{s0,s1}
{lt ,l@s0,l@s1,lt@s0,lt@s1}−−−−−−−−−−−−−−−→ unit, /0


• Γ ` e : unit,{lt , l@s0, l@s1, lt@s0, lt@s1}


The argument type of functionf reveals that the actual arguments to functionf at


runtime may be eithers0 or s1. The flow annotation derived fore indicates that the


function with labellt can be called at the site where the type checking has taken place


and the functions with labell and lt can also be called at a site estimated by the set


{s0,s1}. The fact that the evaluation of a recursive function may span two sites could


be considered as potentially dangerous for certain systems.


Revisiting Example 4.3 The following types can be derived for the expressioneand


the functions embodied by it whereF = {l1, l2, l3, l4, l5}. The initial type environment


has no bearing upon the typing in this case.


• Γ ` twice : (unit
F→unit)


{l1}→unit
F→unit, /0


• Γ′ ` f1 : (unit
F→unit), /0


whereΓ′ = Γ[twice 7→ (unit
F→unit)


{l1}→unit
F→unit]


• Γ′′ ` f2 : (unit
F→unit),F


whereΓ′′ = Γ′[f1 7→ (unit
F→unit)]
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• Γ′′′ ` f3 : (unit
F→unit),F


whereΓ′′′ = Γ′′[f2 7→ (unit
F→unit)]


• Γ ` e : unit,F


The flow annotation derived fore rightly expresses that the evaluation ofe would


cause all the functions in the code to be invoked. The types of the functionsf1, f2, f3


are identical because they are all passed as an argument to the functiontwice. If a


higher-degree of precision is required then a modification of the type system becomes


necessary. In Section 4.4 we propose a more complex type system which improves


upon the monomorphic type system in terms of expressiveness and precision.


4.3.4 Formal properties


One of the properties we prove about our type system is its consistency with the dy-


namic semantics. This involves showing that types are preserved under transitions of


the system and that flow annotations are consistent with the annotations of the dynamic


semantics.


Types for blocked expressions Showing a type preservation property requires us


to be able to derive types for all forms of intermediate expressions. We introduce


the following typing rule for blocked expressions in addition to the typing rules of


Figure 4.4.


∃e.Γ ` e : τ,F Flat(F ,{s})⊆ F ′


Γ ` blockon (s, p) : τ,F ′


The witness for expressione in this rule, will typically be the expression which is


triggered by a remote evaluation or spawning of a function at sites. In order to accom-


modate this, we allowF ′ to be larger thanFlat(F ,{s}).


Consistency The annotations on the dynamic evaluation rules represent function


calls. The flow annotations used in the type system are meant to be static estimates of


these actions.
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If a well-typed expression is reduced to another expression in a single step, the


resulting expression must also be an expression of the same type. The first part of


the consistency theorem below proves that this is indeed the case. This property is a


precondition for ensuring that the evaluation of an expression in multiple steps yields


a value of the expected type.


We also need to show that the function call behaviour incurred by the evaluation


at run-time is estimated by the flow annotation assigned to the expression in the sense


defined above. If a well-typed expressionereduces to another expressione′ by possibly


calling a function represented bya, the flow annotation ofe must estimatea. This is


proved by the second part of the consistency theorem.


Theorem 4.1 (Consistency).Let e be a closed expression which is evaluated at sites


in the system. AssumeS[(s, p) : e] a−→S′[(s, p) : e′] andΓ ` e : τ,F . ThenΓ ` e′ : τ,F
and eithera = ε or a ∈ Flat(F ,{s}).


Proof. The proof is given by induction on the depth of the derivation ofS[(s, p) :


e] a−→S′[(s, p) : e′]. It refers to Lemma 4.1. Two selected cases are given in the Ap-


pendix. Note that we can assume that the non-structural (subs) rule is used after every


structural rule and nowhere else. Any derivation tree forΓ ` e : τ,F can be trans-


formed into a derivation tree where we use the rule (subs) after every structural rule.


By transitivity of the subset relation⊆ on sets we can eliminate multiple applications


of the (subs) rule and consider it as a single application of the rule. We appeal to the


lemma presented below in our proof.


Lemma 4.1 (Expression substitution).If Γ[x 7→ τ] ` e : τ′,F andΓ ` e′ : τ, /0. Then


Γ ` e{e′/x} : τ′,F .


Proof. The proof is by induction on the depth of the typing derivation.


Minimum types Given an expressioneand an initial type environmentΓ, there may


be zero, one or multiple typing derivations which conform to the typing rules of our


system. This is mainly due to the possibility of deriving annotations which are larger


than strictly necessary. Since flow annotations are sets the we use set size as the mea-


sure of size for a flow annotation. The precision of estimation increases as the size of
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annotations decreases. Therefore, the notion ofbest typecoincides with the notion of


minimum type, which is the type with the smallest annotation.


Definition 4.3 (Ordering v on types).


basic types τv τ if τ is int,unit or bool


sites siteS v siteS ′ if S ⊆ S ′


functions τ1
F→τ2v τ′1


F ′


→τ′2 if τ1v τ′1 andτ2v τ′2 andF ⊆ F ′


We note that the orderingv can be extended to type environments in a pointwise


manner with[ ]v Γ.


Definition 4.4 (Annotation erasure (b.c)). The operationb.c is defined on annotated


types. It erases all the annotations on the types and yields a simple (non-annotated)


type. The definition ofb.c extends to type environments such thatbΓc(x) = bΓ(x)c for


everyx in the domain ofΓ.


Proposition 4.1 (Minimum types). Let I be a non-empty set of indices andJ be the


set of possible typing judgements for an expressionedefined as follows:


J = {Γi ` e : τi ,F i | i ∈ I ,bΓ jc= bΓkc,bτ jc= bτkc for all pairs j,k∈ I}


Then there exists a minimum element ofJ, written asuΓ ` e : uτ,uF , such that for


all i ∈ I it is the case thatuΓv Γi anduτv τi anduF ⊆ F i .


Proof. The proof is given by induction on the depth of the typing derivation fore.


We present the proof for the selected cases in the Appendix. The proof method is an


adaptation of that presented in [NNH99b].


4.4 A Polymorphic type system


In this section we present a type system which can be distinguished from the type


system of the previous chapter in two main respects. Firstly, it allows types to be para-


metric in their flow annotations. Secondly, the form of flow annotations are modified


to be able to expose the multiplicity of function calls.
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We assume familiarity with the basic concepts and definitions regarding polymor-


phic type systems as we have already presented one such type system in Chapter 3.


The definitions of type substitution and type generalization can be adapted to the type


system of this section by replacing communication effects with flow annotations.


4.4.1 Semantic objects


In our polymorphic type system we continue to use sets as site annotations. The crucial


extension is that it is now possible to have site types with variable annotations. The


meta-variableρ ranges over site name variables.


Flow annotations are multisets. The annotation/0 is used to denote the absence


of a function call. Function labels and annotations of the form{l@s} are used in a


similar fashion to their counterparts in the monomorphic type system. Parametricity


of flow annotations is supported though the incorporation of flow annotation variables


into types. The meta-variableφ ranges over flow annotation variables.


An annotation of the formrecl φ.F represents a call to a recursive function with


label l that exhibits the function call behaviourF . The recursive nature of the call is


captured by the fact that the variableφ may appear free inF . The operator∪ is used


to denote multiset union.


Site annotations S ::= /0 | {s} | S1∪S2


Flow annotations F ::= /0 | {l} | {l@s} | {recl φ.F } | {recl φ.F @s}
| F 1∪F 2


Types τ ::= unit | int | bool | siteS | τ1
F→τ2


Type schemes σ ::= ∀~ρ~φ.τ


Type environments are finite maps from variables to type schemes as in Chapter 3.


4.4.2 Typing rules


The typing rules for the polymorphic type system are presented in Figure 4.5. They


are similar to those of the monomorphic type system. We replace sets with multisets
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and set union with multiset union. Replacing sets with multisets improves upon the


monomorphic type system in that it allows us to trace how many times a function is


called. For example, the set{l} which can only express the possibility of a call to the


function with labell can be contrasted with the multiset{l , l} which expresses that it


may be called twice.


The typing rules for constants and variables are straightforward. The typing rule


(fn) for functions adds to the label of the function the flow annotation derived from the


function body. Recursive expressions are assigned types with recursive flow annota-


tions by the rule (rec).


Conditional expressions are typed with respect to the rule (if). The type of a condi-


tional expression is the same as the type of its branches. However, its flow annotation


is the union of those of its subexpressions. This gives a rather crude approximation


of the actual function call behaviour. A more sophisticated type system such as that


of [NN94] could be designed by allowing flow annotations to represent choice via the


combinator+. In that case we would assign the flow annotationF ∪ (F ′+ F ′′) to


the conditional expression. We have, however, chosen to keep the types as simple as


possible at the expense of precision. Our main concern in this section is to introduce


an approach of incorporating polymorphism to the monomorphic type system of the


previous section.


The (let) rule is where the type generalization occurs in a typing derivation. The


annotation variables which appear in a type are generalized only if they do not appear


free in the typing environment and the flow annotation derived for the expression.


In the typing rules (reval) and (spawn) we use a flattening operation which is de-


fined in a similar fashion to that of the monomorphic type system. The typing rule


(subs) is an analogue of the typing rule with the same name of the monomorphic type


system. It allows replacing a flow annotation with an annotation related to itself by the


relationv defined below.


Definition 4.5 (v).


F v F ′ if F ⊆ F ′


F [recl φ.F /φ]v recl φ.F
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Definition 4.6 (Flat). Let ( .̂) be an operation defined on flow annotations such that


given a singleton it yields the element of the singleton and given a variable acts as an


identity operation.


Flat(F ,S) =





/0 if F = /0 or S = /0


{F̂ @Ŝ} if (F = {l} or F = {recl φ.F ′} or F = φ)


and (S = {s} or S = ρ)


{F̂ @Ŝ ′}∪Flat(F ,S ′′) if (F = {l} or F = {recl φ.F ′} or F = φ)


andS = S ′∪S ′′ where (S ′ = {s} or S ′ = ρ)


F if F = {l@s} or F = {recl φ.F ′@s}


Flat(F ′,S)∪Flat(F ′′,S) if F = F ′∪F ′′


4.4.3 Examples


In Section 4.3.3, after presenting the rules of our monomorphic type system, we dis-


cussed which types can be assigned to the examples of Section 4.2.3. We now proceed


in a similar fashion and present possible typings for the same examples.


Revisiting Example 4.1 Our assumption about the ubiquitous functiongetTime re-


mains the same;Γ(getTime) = unit
{lg}→ int. In the polymorphic type system it is pos-


sible to derive the following types for the functionremoteTime and the expression


e.


• Γ ` remoteTime : ∀ρ.siteρ {l ,lg@ρ}
−−−−−→ int, /0


• Γ ` e : int,{l , lg@s1}


The type of the functionremoteTime is parametric in site names. It reveals that the


function remoteSite expects a site name as an argument and invokes the function


getTime at the site which is passed as an argument to it. In our expressione this


site happens to bes1 and the variableρ gets instantiated tos1 in the flow annotation


of e. However, we note that the functionremoteTime could be used polymorphically.


Another expression in the scope ofremoteTime could call it with a different site name.
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(con) Γ ` () : unit, /0 Γ ` n : int, /0


Γ ` true : bool, /0 Γ ` false : bool, /0


(site) Γ ` s : siteS , /0 wheres∈ S


(var)
Γ(x) = σ σ� τ


Γ ` x : τ, /0


(fn)
Γ[x 7→ τ] ` e : τ′,F


Γ ` fnl x⇒ e : τ
{l}∪F−−−−→ τ′, /0


(rec)
Γ[x 7→ τ][ f 7→ τ recl φ.F−−−−→ τ′] ` e : τ′, recl φ.F


Γ ` recl f (x)⇒ e : τ recl φ.F−−−−→ τ′, /0


(app)
Γ ` e1 : τF→τ′,F ′ Γ ` e2 : τ,F ′′


Γ ` e1e2 : τ′,F ′∪F ′′∪F


(op)
Γ ` e1 : τ,F Γ ` e2 : τ,F ′ op : (τ∗ τ) ∗→τ′


Γ ` e1 op e2 : τ′,F ∪F ′


(if)
Γ ` e1 : bool,F Γ ` e2 : τ,F ′ Γ ` e3 : τ,F ′′


Γ ` if e1then e2 else e3 : τ,F ∪F ′∪F ′′


(let)
Γ ` e1 : τ,F Γ[x 7→Gen(Γ,F ,τ)] ` e2 : τ′,F ′


Γ ` letx = e1 ine2 : τ′,F ∪F ′


(reval)
Γ ` e1 : τF→τ′,F ′ Γ ` e2 : τ,F ′′ Γ ` e3 : siteS ,F ′′′


Γ ` reval(e1,e2)ate3 : τ′,F ′∪F ′′∪F ′′′∪Flat(F ,S)


(spawn)
Γ ` e1 : τF→τ′,F ′ Γ ` e2 : τ,F ′′ Γ ` e3 : siteS ,F ′′′


Γ ` spawn(e1,e2)ate3 : unit,F ′∪F ′′∪F ′′′∪Flat(F ,S)


(equiv)
Γ ` e : τ,F F v F ′


Γ ` e : τ,F ′


Figure 4.5: Polymorphic Typing Rules for rEval-λ
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Revisiting Example 4.2 Let us assume thatΓ is the initial type environment ats0


andthisHost is a ubiquitous function such thatΓ(thisHost) = ∀ρ.unit
lt→site{s0,ρ}. It is


possible to derive the following types for the recursive functionf and the expressione.


• Γ ` f : ∀ρ.site{s0}∪ρ recl φ.{lt ,φ@s0,φ@ρ}−−−−−−−−−−−→ unit


• Γ ` e : unit, recl φ.{lt ,φ@s0,φ@ρ}


The type of the recursive functionf reveals thatf expects a site name as an argument.


The annotation of the site type is requested to be{s0}∪ρ in the typing derivation. The


flow annotation shows the recursive nature of the functionf. After calling the function


with label lt at the current site, it calls itself at a site estimated by the set{s0}∪ρ. The


presence of the variableρ in both the argument type and the type of the destination for


the recursive call may hint at a potentially non-terminating computation.


At first sight it may not be clear why we assign the typesite{s0}∪ρ to the parameter


of f rather than justρ. The reason is to do with the fact that we do not allow functions


to be used polymorphically within their own definition. The type of the argument is


required to be identical to the type of the result of the call tothisHost and we know that


any instantiation of the result type ofthisHost will haves0 as a part of its annotation.


Revisiting Example 4.3 In Section 4.3.3, we observed that the types of all of the


functions which were passed as an argument to the functiontwice had to be identical.


In the current type system this is no longer necessary due to the possibility of giv-


ing a polymorphic type to the functiontwice. The following are possible typings for


functionstwice, f1, f2 andf3.


• Γ ` twice : ∀φ.(unit
φ→unit)


{l1→}unit
{l2}∪φ∪φ−−−−−→ unit, /0


• Γ′ ` f1 : (unit
F ′


−→ unit), /0
whereF ′ = {l3} andΓ′ = Γ[twice 7→ ∀φ.(unit


φ→unit)
{l1}→unit


{l2}∪φ∪φ−−−−−→ unit]


• Γ′′ ` f2 : (unit
F ′′


−−→ unit), /0


whereF ′′ = {l4}∪{l1}∪{l2}∪F ′∪F ′ andΓ′′ = Γ′[f1 7→ (unit
F ′


−→ unit)]
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• Γ′′′ ` f3 : (unit
F ′′′


→ unit), /0


whereF ′′′ = {l5}∪{l1}∪{l2}∪F ′′∪F ′′ andΓ′′′ = Γ′′[f2 7→ (unit
F ′′


→unit)]


• Γ ` e : unit,{l1}∪{l2}∪F ′′′∪F ′′′


This example also illustrates that using multisets as flow annotations enables us to


observe the multiplicity of functions calls. The flow annotation does not only reveal


which functions are called but also the number of times that each function is called.


4.4.4 Formal properties


In this section we prove the consistency of the dynamic semantics of rEval-λ and the


static semantics which is based on a polymorphic type system. The technical develop-


ment is similar to that of Section 4.3.4.


Types for blocked expressions


∃e.Γ ` e : τ,F Flat(F ,{s})v F ′


Γ ` blockon (s, p) : τ,F ′


This typing rule is based on a similar intuition to the typing rule for blocked expres-


sions in the monomorphic type system. Since expressions of this form arise as a conse-


quence of a function being sent to a remote site for evaluation, the remotely evaluated


function’s label must appear inF ′.


Consistency The consistency theorem is similar to Theorem 4.1. It states that types


are preserved under transitions. It is sufficient to show that the flow annotation of the


expression produced as a result of one step is related with respect to Definition 4.5 to


the flow annotation of the expression which is being reduced. Whatever function call


might occur must be estimated by the flow annotation of the expression which goes


under reduction.


Theorem 4.2 (Consistency).Let ebe a closed expression which is evaluated at sites.


AssumeS[(s, p) : e] a−→S′[(s, p) : e′] andΓ ` e: τ,F . ThenΓ ` e′ : τ,F ′ whereF ′ vF


and eithera = ε or a∈ Flat(F ,{s}).
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Proof. Two selected cases of the proof are given in the Appendix. The proof refers to


Lemmas 4.2 and 4.3.


Lemma 4.2 (Type substitution). If Γ ` e : τ,F thenθΓ ` e : θτ,θF for any substitu-


tion θ.


Lemma 4.3 (Expression substitution).If Γ[x 7→ Gen(Γ, /0,τ)] ` e : τ′,F andΓ ` e′ :


τ, /0 thenΓ ` e{e′/x}τ′,F .


4.5 Concluding remarks


When we introduced the term distributed call-tracking analysis, we mentioned that


the idea of using type systems for estimating which functions are called during the


execution of a program is not novel. Type systems for call-tracking analysis have


already been investigated within the context of higher-order sequential functional lan-


guages [Hei95, TJ92]. The novelty of our work lies in the fact that our type systems


account for the presence of different localities in a system. The invocation of a function


at one site is distinguished from its invocation at another site.


Types as interface descriptions Our work also draws attention to the important role


played by types as concise descriptions of programs. In a functional language such as


rEval-λ the type of a function serves as its interface description which tells how it


should be used, which other functions it may call and which sites its evaluation may


span. In a security-sensitive system such descriptions generated by credible sources


would be useful not only for automated tools that rely on this information but for users


who wish to use services developed by other parties.


Types and termination analysis We have pointed out the connection between ter-


mination of programs and security threats caused by denial of service. This suggests


that static termination analyses could be exploited for strengthening the security prop-


erties of a language. An approach based on types for termination analysis has been


studied in [NN96a]. This work focuses on a higher-order functional language with
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algebraic datatypes. The main idea is to check by means of types whether the size of


arguments to recursive calls decreases as the computation evolves. It requires defin-


ing a well-founded partial order for the data types which may be passed as arguments


to functions. The applicability of this work in the framework of a language such as


rEval-λ would be an interesting subject for future research. However, the work pre-


sented in this chapter is not aimed at termination analysis in particular.


Types and resource bounds We have suggested that one of the application areas of


distributed-call tracking could be execution time analysis. This relates our work to the


line of related research on using type systems for estimating the time-complexity of


programs [DJG92, RG94]. A polymorphic type system which estimates the execution


time of expressions in a functional language has been presented in [DJG92]. In this


type system function types carry as annotation the estimated number of clock ticks


for the execution of a function. The time required for the execution of an expression


is derived in a compositional manner, by algebraic manipulations of the estimated


time for the execution of its subexpressions. Types of recursive functions have an


annotation of a special form which states that the execution may take an arbitrarily


long time. The time estimates are suggested to be useful for determining where the


code optimization effort should be concentrated and when it is worthwhile to exploit


parallelizing the execution of a program on multiprocessors. More recently, some


authors have pointed out the potential benefits of using type systems for specifying


and certifying resource bounds such as bounds on running time [CW00]. A decidable


type system for a functional language has been presented in [CW00]. Our work shares


its motivation with these works. However, distributed-call tracking can be of interest


for reasons other than execution time estimation because it provides information about


the identities of functions and their call sites.


Using type systems to guarantee resource bounds on space consumption of func-


tional languages has also been of interest to several authors [Hof00, HP99]. A possible


direction of future work could be to extend the language rEval-λ with inductively de-


fined datatypes such as lists and language constructs for manipulating these. It would


then be possible to investigate variants of the type systems of this chapter to estimate


the space consumption of programs at different sites within a system.
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Alternative forms of remote evaluation The support for remote evaluation is a char-


acteristic feature of the language rEval-λ. Expressions can be sent for evaluation at a


remote site in the distributed system and the sender blocks until the result is returned


back to it by the site which has computed the result. It can be possible to adopt a


more flexible remote evaluation model for rEval-λ which is inspired by the mecha-


nism of futures [Hal85]. After initiating a remote evaluation the sender can resume


its computation until an attempt is made to use the result of the remotely evaluated


expression. We believe that the ideas and techniques presented in this chapter would


also be applicable to tackle the problem of distributed-call tracking analysis for such a


language.







Chapter 5


Confined Mobile Functions


It is becoming increasingly common for distributed systems to bring together com-


puting devices of different processing power, software provided by different sources


and information with different secrecy and integrity requirements. Moreover, the users


which interact with the system may be of different trust levels.


The ability to distribute computation among different sites is desirable because it


enables effective exploitation of the resources in a system. However, in the absence


of appropriate protection mechanisms it may also lead to uncontrolled use of these


resources and undesirable information flows. It is important that applications be de-


signed with concern for meeting the security requirements of the system.


The aim of this chapter is to introduce a language mechanism which gives program-


mers a means to control the distribution of computation and the flow of information


throughout the system. We consider a simple programming language – Confined-λ
– which allows programmers to declare amobility regionfor the services and the in-


formation they provide. The mobility region of an entity determines the subsystem


in which it can flow freely. We propose a static type system for our language which


enforces the property calledconfinement in a mobility region. This property guaran-


tees that the entities created and manipulated by well-typed Confined-λ programs will


remain within their specified mobility regions at run-time.


96
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5.1 Why restrict mobility?


Before introducing the language Confined-λ in detail we discuss why a property such


as confinement in a mobility region could be of interest to programmers. For the


purposes of this section it is sufficient to note that the language Confined-λ resembles


Mobile-λ from Chapter 3. It supports channel-based communication where values of


all types can be communicated on channels. In an application based on the design


paradigm of code on demand [FPV98], services would be implemented as functions


and the requesters would access these functions by retrieving them over a channel.


The motivation for controlling the mobility of a basic value would typically be


security related. For example, if an integer represents a personal identification number


(PIN) for accessing a particular account, its mobility should be restricted to a part of


the system which harbours as observers only the authorized users of that account. In


a language such as Confined-λ a natural way to realize this would be to associate a


group of users with the integer upon its creation.


Functions are different from basic values because they are not passive values which


are simply passed around. They abstract a behaviour which becomes activated when


the function is applied. The authors may want to constrain the mobility of functions


due to performance and security reasons. For example, a function may be using the


resources of the system intensively to perform its task. To ensure that the performance


of the system is not adversely affected, it would be reasonable to restrict the use of this


function to those sites which have sufficient computational resources. Note that such


a restriction would also be useful in preventing denial of service within the system.


Likewise, it would be desirable to restrict the use of a function which returns private


information about a particular user to a part of the system in which all the observers


are eligible to obtain this information.


Channels provide the only means of establishing connections between remote sites


when computing with Confined-λ. The desired level of connectivity within the system


influences the policy on the mobility of channels. On the other hand, channels are


instrumental in communicating information within the system. Acquiring a channel


implies acquiring the right to input or output on that channel. The policy about the


mobility of channels needs to be in accordance with the policy about the mobility of
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the values it can communicate.


5.2 Computing with mobility regions


5.2.1 System model


Throughout this chapter we consider computation in a multi-site system in which


each site has a unique name drawn from a finite set of site namesS= {si | 1≤ i ≤
size of the system}. Each site is controlled by a particular user who both provides the


code and observes the results of the computation at that site. This implies that a site


name also identifies a user; the observation of a value at a particular site or the ob-


servation of a value by a particular user are essentially the same concepts. The same


holds for the origination of code at a particular site and the origination of code by a


particular user.


A program consists of multiple expressions, one for each site participating in the


computation. Each expression is type checked by a trusted Confined-λ compiler and


the program is allowed to execute only if all of the expressions are well-typed.


ObservablesWe say that a valuev is observable at a given sites, if the computation


returnsv at sites, or v appears at sites as an intermediate step in the computation.


According to this definition, a valuev could be observable at sites through being


received over a channel at any point in the computation or through being contained in


the code of a function which is received ats.


5.2.2 Mobility regions


As we discussed above, our approach is to give users full control over the flow of


values which are created by the code written by them. Let us now consider a system


which consists of just four sites with the names given in the setS= {s1,s2,s3,s4} and


suppose that the user at sites1 provides the code for a serviceF which requires exten-


sive processing power ands4 is known to be equipped with a less powerful processor.


It is reasonable fors1 to restrict the use ofF only to s2 ands3 besides itself. On the
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other hand, a serviceG may be carrying out a simple operation which does not demand


much processing power but may return a value which the user ats1 wants to keep secret


from s3. In this case,G should not be allowed to run ats3.


We define a mobility region as a non-empty subset of the sites in the system. If


we consider the above system with site names drawn fromS, any non-empty subset of


S is a valid mobility region. From the security perspective, mobility regions are used


to declare a web of trust among a group of sites. Information which is required to be


confined to a particular mobility regionr = {s1,s2,s3} may be observed at any site


within r but it should not be observed at any site outsider.


Continuing this example,M1 = {s1,s2,s3} andM2 = {s1,s2,s4} are the mobility


regions which would be assigned to servicesF andG respectively.F can visits1,s2,s3


but nots4. G can visits1,s2,s4 but nots3.


s1 s2


s4s3


mobility region forF


mobility region forG


Ordering on mobility regions Mobility regions can be interpreted as secrecy levels


where the subset relation on mobility regions gives rise to an ordering on secrecy levels.


Suppose thatv is an ordering on secrecy levels where we writeAv B if B indicates


a higher secrecy level thanA. Then the statementsr1v r2 andr2⊆ r1 are equivalent.


Note that by using mobility regions it would be possible to express as many secrecy


levels as there are non-empty subsets of the site names in a system.


5.3 Confined- λ


The language Confined-λ is similar to Mobile-λ in that it extends the Core language


with primitives for communication between remote sites. We omit the conditional


expressions because they do not have any significance with regard to the problem con-
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sidered in this chapter. Their operational meaning and typing would have been similar


to those found in the languages of the previous chapters.


5.3.1 Abstract syntax


In Confined-λ canonical expressions and channel allocation expressions are annotated


with mobility regions. It is by means of these annotations that programmers specify


the constraints on the mobility of values created by their programs.


Site names s ::= s1 | s2 | . . .
Mobility regions r ::= {s} | r1∪ r2


Expressions e ::= cr constant


| x variable


| fnr x⇒ e function abstraction


| e1e2 function application


| if e1 then e2 else e3 conditional


| let x = e1 in e2 local binding


| e1 op e2 primitive operation


| chanr () channel allocation


| e1!e2 send


| e? receive


Figure 5.1: Abstract Syntax for Confined-λ


5.3.2 Dynamic semantics


Canonical expressions, that is the expressions which cannot be further evaluated, de-


note values of the language Confined-λ.


Values v ::= ()r | nr | kr | fnr x⇒ e


We assume that a channel identifier is represented by a tuple which includes the iden-


tifier of the site it is created at and an integer which is freshly generated each time a


new channel is allocated at a site.
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Definition 5.1 (Ld). FunctionLd is defined on values of the language. It yields the


label of a given value which denotes its mobility region.


Ld(()r ) = r Ld(nr ) = r Ld(kr ) = r Ld(fnr x⇒ e) = r


Evaluation rules The evaluation rules of Figure 5.2 are defined in a similar style to


those of the previous chapters. In the rule (op-3) for basic operationsv is a basic value


obtained by applying operationop to v1 andv2. We implicitly assume that ifLd(v1) = r


andLd(v2) = r ′ andv = v1opv2 thenLd(v) = r ∩ r ′.


5.3.3 Examples


In Section 5.2 we introduced mobility regions as a useful device for programmers to


specify how they wish to constrain the flow of values. In the next section we will


present a set of typing rules, which forces the values to be confined to their specified


mobility regions. These typing rules prevent region violations where we use the phrase


region violationto refer to the observability of a value outside its specified mobility


region. Our aim here is to give the intuition behind our typing rules by illustrating


major sources of region violations through simple examples.


Example 1: Region violation due to uncontrolled use of channels In the follow-


ing example,A is the creation site for two values: channelchAC intended for commu-


nication between sitesA andC and functionf which is allowed to roam freely. The


function f forwards the input value back to siteA by using the channelchAC in its


closure. When executed, the expression atA will sendf to C on a previously allocated


channelchTop which is known to bothA andC. It will then start listening onchAC.


We use ; here as a shorthand for sequencing. It can easily be encoded in the syntax of


Confined-λ.


On the other hand, the execution of the expression atB will cause an integer to be


computed and sent toC over chBC. Note that we assumechBC to be a channel with


mobility region{B,C}. The annotation of the created value shows us that the author


of the code atB wishes to restrict the observability of this value toB andC. This wish,
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(app-1)
CI,P[s : e1]−→CI′,P′[s : e′1]


CI,P[s : e1e2]−→CI′,P′[s : e′1e2]


(app-2)
CI,P[s : e2]−→CI′,P′[s : e′2]


CI,P[s : ve2]−→CI′,P′[s : ve′2]


(app-3) CI,P[s : (fnr x⇒ e)v]−→CI,P[s : e{v/x}]


(let-1)
CI,P[s : e1]−→CI′,P′[s : e′1]


CI,P[s : let x = e1 ine2]−→CI′,P′[s : let x = e′1 ine2]


(let-2) CI,P[s : let x = vine2]−→CI,P[s : e2{v/x}]


(op-1)
CI,P[s : e1]−→CI′,P′[s : e′1]


CI,P[e1 op e2]−→CI′,P′[s : e′1 op e2]


(op-2)
CI,P[s : e2]−→CI′,P′[s : e′2]


CI,P[s : v op e2]−→CI′,P′[s : v op e′2]


(op-3) CI,P[s : v1 op v2]−→CI,P[s : v] wherev = v1 op v2


(chan) CI,P[s : chanr ()]−→CI∪kr ,P[s : kr ] wherekr /∈CI


(send-1)
CI,P[s : e1]−→CI′,P′[s : e′1]


CI,P[s : e1 ! e2]−→CI′,P′[s : e′1 ! e2]


(send-2)
CI,P[s : e2]−→CI′,P′[s : e′2]


CI,P[s : kr ! e2]−→CI′,P′[s : kr ! e′2]


(receive)
CI,P[s : e1]−→CI′,P′[s : e′1]


CI,P[s : e1?]−→CI′,P′[s : e′1?]


(com) CI,P[s1 : kr ! v][s2 : kr?]−→CI,P[s1 : ()][s2 : v]


Figure 5.2: Evaluation Rules
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however, will not come true as the execution of the expression atC will causesecretBC


to be received atC and be subsequently sent toA as the result of application off to


secretBC.


A : let chAC = chan{A,C}()


in let f = fn{A,B,C}x⇒ chAC ! x


in chTop ! f; (chAC?)


B : let secretBC = . . .{B,C}


in chBC ! secretBC


C : let f ′ = (chTop?)


in let a = (chBC?)


in f ′ a


Our approach in preventing violations such as this is to require the mobility region of


a channel and that of the value it communicates to be identical. In our example, this


would preventsecretBC from being sent overchAC.


Example 2: Region violation due to escaping values In this example,A is the


origination site for functionf which will be sent toB when the expression is executed.


However, when applied atB, f will return a value which was originally intended to


remain atA.


A : let f = fn{A,B}()⇒ . . .{A}


in chAB ! f


B : (chAB?)()


Violations such as this can be prevented by requiring the mobility region of the result


of a function to be at least as large as that of the function itself.


Example 3: Region violation due to remotely created values The functionf be-


low, which is allowed to be mobile betweenA andB, contains a channel allocation
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expression. The annotation shows us that this channel is intended to be used between


A andC. However, when the function is applied atB, the channel will be created atB.


According to our definition in Section 5.2.1, this will cause the values transmitted on


this channel to be observable atB.


A : let f = fn{A,B}()⇒ let chAC = chan{A,C}()


in . . .


in chAB ! f


B : (chAB?)()


The problem here arises from the fact that functions are abstractions; the code enclosed


by the function may be executed at a site which is different from the one where the


function was created. Region violations due to this fact may be prevented by requiring


the mobility region of the values created by the function to be a superset of all the sites


where the function may be applied.


Example 4: Region violation due to transmission within a closure The functionf


below refers to the integersecretInt which is present in its definition environment. The


annotation shows us that this integer is intended to remain atA. However, according


to the dynamic semantics presented in Section 5.3.2, when the expression is executed


secretInt will be substituted in the code off and transmitted toB.


A : let secretInt = . . .{A}


in let f = fn{A,B}()⇒ . . .


(∗∗ do something withsecretInt ∗∗)
in chAB ! f


B : (chAB?) ()


To prevent region violations of this sort we need to address the dependency between the


mobility region of a function and the values which occur in its definition environment.
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5.4 Type system


The property called confinement in a mobility region was motivated in the preceding


sections. The purpose of the type system presented in this section is to enforce that


property. According to our system model, each site participating in the distributed


computation provides an expression which is well-formed according to the syntax pre-


sented in Section 5.3. This expression is then analyzed to check whether it is well-


formed with respect to the rules of the type system given in Figure 5.4. We discuss


these typing rules in detail in Section 5.4.2.


5.4.1 Semantic objects


The types of our system are pairs. The first component of the pair is a type in the con-


ventional sense whereas the second component is used to record the mobility region.


A type environment is a finite map from variables to types.


Mobility regions r ::= {s} | r1∪ r2


Raw types τ̄ ::= unit | int | chan[τ̄] | τ1→τ2


Types τ ::= (τ̄, r)


Definition 5.2 (Ls). Ls is a function used in typing rules to extract a mobility region


from a type so thatLs(τ̄, r) = r.


As in previous chapters, a type environmentΓ is defined as a finite map from variables


to types and a channel environmentCE is defined as a finite map from channel identi-


fiers to types. Channel environments are used to record the types of channels created


in the course of the evaluation. We use two forms of judgements in our type system. A


judgement of the form̀ τ indicates that typeτ is well-formed according to the rules


given in Figure 5.3. We say that a type environment and a channel environment are


well-formed if all of the types in their range are well-formed. A judgement of the


form r,Γ ` e : τ indicates that the expressionecan be assigned a well-formed typeτ at


any site within the mobility regionr, by using the typing rules of Figure 5.4 and the


well-formed type environmentΓ. A distinctive point about our type system is the use


of mobility regions in typing judgements along with typing and channel environments.
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` (unit, r) ` (int, r)


` (τ̄, r)


` (chan[τ̄], r)


` τ ` τ′ r ⊆ Ls(τ′)


` (τ→τ′, r)


Figure 5.3: Well-formed Types


This allows us to keep track of the static estimation of the origin and the execution site


of an expression.


Definition 5.3 (TypeCE). TypeCE is a family of functions indexed by channel environ-


ments. It is defined on constants of the language.


TypeCE(()r ) = (unit, r) TypeCE(nr ) = (int, r) TypeCE(kr ) = CE(kr )


5.4.2 Typing rules


The typing rules are presented in Figure 5.4. Before looking at the rules in isolation,


it would be helpful to note the following. The mobility regionr used in the context


of the judgement at the root of a typing derivation would be a singleton containing the


name of the site at which the top-level expression is type-checked.


The role of the typing rule (con) for constants is to record in the type of a constant


its specified mobility region. The side condition is used to ensure that no spurious


declarations are made. For examples1 cannot create a value and declare its mobility


region to bes2. The mobility region of a value is guaranteed to include its origination


site.


The typing rule (var) is used for typing variables. The mobility region in the type of


a variable is required to include the mobility region where the value of the variable may


be found. This rule is crucial in preventing the kind of violation shown in Example 4;


thanks to this rule we do not allow a value to appear in the closure of a function which


may visit some sites where the value should not be observed. This rule also implies


that a function cannot refer to a channel which was created outside its body unless this


channel’s mobility region is a superset of the mobility region of the function. This gives
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(con)
TypeCE(cr ) = τ whereτ = (τ̄, r) r ′ ⊆ r


r ′,CE,Γ ` cr : τ


(var)
Γ(x) = τ whereτ = (τ̄, r) r ′ ⊆ r


r ′,CE,Γ ` x : τ


(fn)
r,CE,Γ[x 7→ τ] ` e : τ′ r ′ ⊆ r


r ′,CE,Γ ` fnr x⇒ e : (τ→τ′, r)


(app)
r ′,CE,Γ ` e1 : (τ→τ′, r) r ′,CE,Γ ` e2 : τ


r ′,Γ ` e1e2 : τ′


(let)
r ′,CE,Γ ` e1 : τ r ′,CE,Γ[x 7→ τ] ` e2 : τ′


r ′,Γ ` letx = e1 ine2 : τ′


(op)
r ′,CE,Γ ` e1 : (int, r1) r ′,CE,Γ ` e2 : (int, r2)


r ′,CE,Γ ` e1ope2 : (int, r1∩ r2)


(chan)
r ′ ⊆ r


r ′,CE,Γ ` chanr () : (chan[τ̄], r)


(send)
r ′,CE,Γ ` e1 : (chan[τ̄], r) r ′,CE,Γ ` e2 : (τ̄, r)


r ′,CE,Γ ` e1!e2 : (unit, r)


(receive)
r ′,CE,Γ ` e : (chan[τ̄], r)


r ′,CE,Γ ` e? :(τ̄, r)


Figure 5.4: Typing Rules
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us a useful technical device for controlling the propagation of input/output capabilities


caused by the mobility of functions.


There are three important aspects of the typing rule (fn) for functions. Firstly,


functions are canonical expressions just as special constants. Their typing follows the


same reasoning; we record the specified mobility region of a function in its type. The


second aspect is to do with the fact that a mobility region of a function represents


the sites which the function is allowed to visit. The well-formedness condition for


function types ensures that a value returned by the function is allowed to be observed


in the mobility region of the function itself. Region violations such as the one presented


in Example 2 would be prevented by the presence of this condition. Finally, we need


to take into consideration that the body of the function may be evaluated in a context


different from that of the function abstraction. All we know about it is that it will be one


of the sites that the function is allowed to visit. We type the body of an expression with


respect to the mobility region of the function. Example 3 illustrates the significance of


this final aspect.


The rules for applications and let expressions are quite straightforward. The typing


rule (op) for primitive operations indicates that an operationop is allowed on integers


only. The mobility region of an integer constructed from two integers using this op-


eration is required to be the intersection of the regions of the components. Otherwise,


a value could appear at a site which is outside its region through being a part of the


composed value.


The concept of mobility region for a channel is not different from that of other


data types. It represents the sites at which a channel is allowed to appear. The typing


rule (chan) for channel allocation expressions ensures that a channel with a particular


mobility region is allowed to be created at one of the sites in its mobility region.


The single most important point about the typing rules (send) and (receive) is that


they force channels to carry values of the same type as themselves. We have motivated


this rule by Example 1.
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5.5 Formal properties


5.5.1 Confinement in a mobility region


We now state some properties of our system which will eventually lead us to formalize


and prove the confinement in a mobility region property. Our type system guarantees


that if an expression is well-typed at a particular site, it enjoys this property and there-


fore can be safely run at that site. We refer the interested readers to the Appendix for


the details of the proofs.


Definition 5.4 (System typing). Let T be a finite map from site identifiers to types. A


system state is said to have typeT under a global channel environmentCE, written as


CE `CI,P : T if the following hold:


• CI ⊆ Dom(CE);


• if [s : e] ∈ P thens∈ Dom(T); and


• if [s : e] ∈ P then{s},CE, [ ] ` e : T(s) .


Theorem 5.1 below shows that the type of an expression is preserved under transitions


of the system.


Theorem 5.1 (Type preservation).Let CE be a well-formed channel environment.


Assume that


• CI,P−→CI′,P′; and


• CE `CI,P : T for someT.


Then there exists aCE′ which extendsCE such thatCE′, `CI′,P′ : T.


Proof. The proof is given by induction on the depth of inference ofCI,P[s: e]−→CI′,P′[s:


e′] by considering the possible forms ofe. The cases referring to the third evalu-


ation rule for applications and the second evaluation rule for let bindings appeal to


Lemma 5.1. The case for communication makes use of Lemma 5.2.


Lemma 5.1 (Substitution). If r,Γ[x 7→ τ] ` e: τ′ andr,Γ ` v : τ thenr,Γ ` e{v/x} : τ′.
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Lemma 5.2 (Preservation of typability within a region). If r,Γ ` v : (τ̄, r ′) then for


anyr ′′ such thatr ′′ ⊆ r ′ it is the case thatr ′′,Γ ` v : (τ̄, r ′).


If expressione is well-typed as sites and it is evaluated at sites returning the valuev


as its result, thens is guaranteed to be within the mobility region specified for valuev.


Theorem 5.2 is the main result which we present in this chapter. We use the symbol


→∗ below to represent a sequence of transitions.


Theorem 5.2 (Confinement in a mobility region). Assume for a closede that


• {s}, [ ] ` e : τ


• CI,P[s : e]→∗CI′,P′[s : v].


Then{s} ⊆ Ld(v).


Proof. The proof of the above theorem follows from Theorem 5.1 and Lemmas 5.3


and 5.4. Lemma 5.3 below shows that the type of an expression conservatively esti-


mates the sites where the expression would be accepted as a result of the type-checking


phase. If an expressione evaluates to a valuev as is assumed in our theorem, by The-


orem 5.1 and Lemma 5.3 we know that the label in the type ofv will contain {s}. We


also know by Lemma 5.4 that the mobility region annotations in the type of a value


are consistent with the annotations provided as a part of the syntax, i.e.Ld(v) = Ls(τ).


This allows us to conclude that{s} ⊆ Ld(v).


Lemma 5.3 (Conservative estimation).If r,CE,Γ ` e : τ thenr ⊆ Ls(τ).


Lemma 5.4 (Consistency of labels).If r,CE,Γ ` v : τ thenLd(v) = Ls(τ).


5.5.2 Strong confinement


We want the property of confinement in a mobility region to hold for all the values


which are observable in the sense defined in Section 5.2.1. For example, a value which


is embodied in the code of a function is observable at a given sites if the function may


appear at that site at any step during evaluation. The proof of Theorem 5.2 above is
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based on the consistency between the labels which annotate the values and their types.


The definition of functionLd, however, does not look into the labels which may be


enclosed in the body of a function.


We now define a functionLrec which examines an expression recursively to find the


intersection of the mobility regions of its subexpressions. By using this we can show


that the confinement property enforced by the type system is in fact stronger than the


one formalized by Theorem 5.2.


Definition 5.5 (Lrec).
Lrec(cr ) = r Lrec(fnr x⇒ e) = r ∩Lrec(e)


Lrec(e1e2) = Lrec(e1)∩Lrec(e2) Lrec(e1ope2) = Lrec(e1)∩Lrec(e2)


Lrec(let x = e1 ine2) = Lrec(e1)∩Lrec(e2) Lrec(chanr ()) = r


Lrec(e1!e2) = Lrec(e1)∩Lrec(e2) Lrec(e1?) = Lrec(e1)


The proposition below states that the expressions which may be enclosed in the code


of a function are bound to have a mobility region which is at least as large as that of


the function itself.


Proposition 5.1 (Confined closure).If r ′,Γ ` fnr x⇒ e : (τ→τ′, r) thenr ⊆ Lrec(e).


Proof. It can be seen by inspecting the typing rules thatr on the left hand side of


the turnstile in a judgement either grows or remains the same as we go deeper in the


typing derivation. By Lemma 5.3 we also know that each subexpression ofe has a


mobility region which is larger than or equal tor. By Definition 5.5 we can conclude


thatr ⊆ Lrec(e).


We have defined the values of the language as expressions in canonical form. Hence,


it follows from the proposition above that the values enclosed in a well-typed function


have a mobility region at least as large as that of the function.


We conjecture that a stronger confinement property holds for our type system than


that stated by Theorem 5.2. That is, ifCI,P[s : e]→ CI′,P′[s : e′] and {s}, [ ] ` e :


τ then{s} ⊆ Lrec(e′). The proof case for application expressions appears not to be


straightforward.
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5.6 Related work


In this chapter, we have proposed a programming model where programmers can spec-


ify a policy about the flow of values and rely on the type system to enforce this policy.


Adopting such a model can be motivated by several factors such as increasing locality,


achieving better performance and controlling the flow of information in the system. In


this section we will focus on the latter and view confinement in a mobility region as a


secure information flow property.


Formulating and proving secure information flow properties for programs in the


presence of code mobility is a challenging issue. There is a large body of work on ex-


ploiting type systems in this context. It is our view that a property such as confinement


in a mobility region is a natural secure information property which arises in distributed


computing with functions.


A wide range of languages have been subjected to study in the context of type-


based approaches to security. These include imperative languages such as the ones


considered in [SV97, SV98, SS00, ML99] and functional languages such as the Secure


Lambda Calculus (SLam) [HR98a], an extension of theλ-calculus suitable for trust


analysis [PØ97] and the Dependency Core Calculus [ABHR99]. Type systems for


enforcing security properties in concurrent and mobile systems have also been studied


in the framework of process calculi of theπ-calculus family [HR00, CGG00, SV00],


the ambient calculus [CGG99b] and the spi-calculus which is an extension of theπ-


calculus with cryptographic primitives [AG99]. We present here an in-depth discussion


about the works which we consider as closely related to ours.


The SLam calculus The purely functional subset of the SLam calculus and Confined-λ
are closely related. In both languages values are annotated to indicate their secrecy lev-


els. In Confined-λ we call them mobility regions to make explicit that these annotations


are used to restrict the mobility of values. However, there would be no essential differ-


ence if we interpreted them as sets of users who are allowed to observe these values as


suggested by the SLam calculus.


The annotations of the SLam calculus, called security properties, are more expres-


sive than the annotations of Confined-λ. This is mainly due to the differences in our
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motivations. The SLam calculus aims at capturing refined notions of security by ex-


ploiting rich type structures. Taking a complementary approach, the aim of this work is


to establish a simple notion of secrecy for distributed computation by remaining close


in spirit to conventional type systems for functional languages.


The work on the SLam calculus distinguishes between direct readers and indirect


readers of values in order to be able to address indirect information flows such as those


caused by branching on high security values in conditional expressions. The annota-


tions of the SLam calculus values are tuples, where the first and the second components


specify respectively its authorized direct readers and indirect readers. The authors also


introduce dual notions to readers and indirect readers; creators and indirect creators


represent users who might have created the objects directly or indirectly. Mobility


region annotations of Confined-λ can be likened to reader annotations of the SLam


calculus with no distinction between direct readers and indirect readers.


A formal study of the correspondence between the functional subsets of the SLam


calculus restricted to reader annotations and Confined-λ with mobility region annota-


tions could be a future work in its own right. We now discuss the typing of a function


abstraction and application in both systems to illustrate the similarities and differences


of the adopted approaches.


The following is the typing rule for functions in the SLam calculus. The annotation


κ is a tuple of the form(r, ir ) wherer is the direct reader annotation andir is the indirect


reader annotation. A global condition on the type system requiresr to indicate a higher


secrecy level thanir .


Γ,x : τ1 ` e : τ2


Γ ` (λx : τ1.e : τ2)κ : (τ1→τ2,κ)


A function which is typed with respect to the rule above can only be applied by


those readers whose secrecy level is at least as high as the one indicated by the reader


annotationr of the function. In order to enforce this, application expressions are anno-


tated with the security levels of programmers and a side condition is used in the typing


rule to check that the programmer is authorized to apply the function.


Γ ` e1 : (τ1→τ2,(r, ir )) Γ ` e2 : τ1 r v r ′


Γ ` (e1e2)r ′ : τ2• ir
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It is the responsibility of the trusted compiler to ensure that programmers provide


annotations which are consistent with their actual security levels. The rule above also


shows that the result of the application is to be protected at the security levelτ2 • κ.


However, this is not relevant to our present discussion.


We now look at the typing rules for functions and applications in Confined-λ. Note


that we have omitted the channel environmentCE in the typing judgements as we are


comparing the sequential subsets only. In order to facilitate the comparison of the two


systems we could read a judgement of the formr,Γ ` e : τ as follows: an expressione


provided by an author who is a member ofr can be assigned the typeτ.


r,Γ[x 7→ τ1] ` e : τ2 r ′ ⊆ r


r ′,Γ ` fnr x⇒ e : (τ1→τ2, r)


Informally speaking, the role played by the typing rule for applications in the SLam


calculus is assigned to the typing rule for functions in our type system. The only


essential difference is that we force the annotation of the function to include its author.


This reflects our view that it would be natural to allow the use of a function by its own


author. The body of the function above can be executed by the users inr, hence its


typing takes place in a context which includesr. This is how we enforce authorized


access to the code of the function. Our approach eliminates the need for annotating


application expressions as in the SLam calculus. The typing rule for applications in


Confined-λ is as follows:


r ′,Γ ` e1 : (τ→τ1, r) r ′,Γ ` e2 : τ


r ′,Γ ` e1e2 : τ1


The SLam calculus and Confined-λ adopt different communication models. The


SLam calculus assumes a shared memory where the communication is based on muta-


ble data structures. Confined-λ, however, supports communication by message passing


as this is a more natural method of communication in distributed systems. We also note


that communication based on shared memory is inherently asynchronous whereas the


sender of a message and its receiver must synchronize in Confined-λ. These differ-


ences preclude a direct comparison of the two type systems as we were able to do for


the functional core. It would be interesting to formalize an extension of the SLam
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calculus with distributed shared memory and devise a type system for that language


which enjoys the secrecy property of this paper. We would regard any similarity be-


tween this type system and that of Confined-λ as an encouraging sign that secrecy can


be dealt with using similar techniques in functional languages which adopt different


communication models.


Process calculi The channel-based communication model and the presence of ex-


plicit localities relate Confined-λ to process calculi for concurrent and distributed com-


putation, particularly to higher-order extensions of theπ-calculus such as the ones pre-


sented in [YH99, Tho89]. We are not aware of any other work on these calculi which


focuses on a notion of secure information flow such as ours. On the other hand, en-


forcement of secure information flow by typing has been investigated in the framework


of process calculi whose relation to Confined-λ is relatively indirect. For example, a


type system which is aimed at detecting information leaks to the environment has been


developed for the spi-calculus [AG99]. This work provides insights into the questions


of formulating and proving secrecy properties for concurrent systems where interac-


tion capabilities evolve dynamically. However, the languages Confined-λ and the spi-


calculus differ in several respects. The spi-calculus is a calculus which is particularly


suited for the description and analysis of cryptographic protocols. It extends the core


of the π-calculus with cryptographic primitives. There is no direct way of express-


ing the communication of functions between processes. The characteristic feature of


Confined-λ, however, is that it offers a simple model for distributed computation which


is based on the mobility of functions between concurrently executing expressions at re-


mote sites.


A language which is unlike all of the other languages cited above but which can be


regarded as related to Confined-λ is uPLAN [KGA00]. This language has been defined


to provide a formal model of computation in active networks. It assumes a fixed set


of sites and the computation is based on the mobility of functions. In these respects it


is similar to Confined-λ. However, the mobility in uPLAN is based on a facility for


remote evaluation of functions at explicitly specified locations. The authors propose a


notion of secrecy inspired by the spi-calculus. The proof of their secrecy property does


not depend on a type-based approach such as ours.
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5.7 Concluding remarks


The issues related to information flow due to covert storage channels or covered timing


channels are not within the scope of this chapter. It would be interesting to investigate


these issues for an extension of Confined-λ with conditional expressions. The anal-


ogy between secrecy levels and mobility regions should allow us to benefit from the


works which focus primarily on noninterference properties such as the ones studied


in [HR98a, VS98, PC00] and which focus on timing leaks [Aga00].


In the process calculi framework, some researchers have exploited type systems to


enforce locality conditions on the use of capabilities [YH99, Sew98]. It is possible to


regard confinement in a mobility region as a locality condition; we restrict the distribu-


tion of communication of capabilities to a part of the system as a means of controlling


the flow of information within the system. Distinguishing between input and output


capabilities, as in [YH99, Sew98], could allow us to explore more refined notions of


secure information flow. This remains as an interesting direction for future work.







Chapter 6


Noninterference and Mobile Functions


In this chapter we continue our exploration of secure information flow in multi-user


distributed systems. Of particular interest to us are systems in which data and users are


classified such that the security class of a datum reflects its confidentiality level and


the security class of a user determines which data he is authorized to observe.


A natural security requirement for systems of this kind is to prevent users from


accessing data which they are not authorized to observe. Access control, however,


addresses only a single aspect of secure information flow. It should not be overlooked


that some users may exploit indirect means to obtain confidential information rather


than attempting to access it directly. One can think of a scenario in which a user


writes a program whose behaviour depends on the values of particular variables in


the environment. Even if the user himself is not allowed to access these variables


directly, he can get another user with the required permissions to execute the program.


By observing its behaviour he can then infer the values of the variables. Note that


such leakage of information can be caused by a malicious cooperation among users or


inadvertently.


A programming language whose legal programs are guaranteed not to cause a cer-


tain class of information flows would contribute to preventing security violations of


this kind. In this chapter, we investigate the design of a language based on Mobile-λ
which is targeted at computation in systems with classified data and users. We first de-


termine a confidentiality property based onnoninterference. We then propose a variant


of the type and effect system presented in Chapter 3 to statically enforce this property.


117
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6.1 Noninterference


Formulating confidentiality properties which account for the absence of undesirable


information flows is a challenging task, let alone developing methods to enforce them.


There is a vast literature onsecurity modelsfor describing confidentiality require-


ments of systems. A comprehensive survey can be found in [McL94]. Noninterfer-


ence emerges as a useful concept in interface models for confidentiality which specify


restrictions on the input/output relation of systems.


6.1.1 A general characterization


The first appearance of the concept of noninterference in the security literature is at-


tributed to Goguen and Meseguer [GM82].


One group of users, using a certain set of commands, is noninterfering with
another group of users if what the first group does with those commands
has no effect on what the second group of users can see.


In their seminal work the authors presented an approach to designing secure sys-


tems which is based on modelling a system by an automaton and defining security


policies as sets of noninterference assertions which can then be verified by appropriate


proof techniques. Gougen and Meseguer’s work has had a significant impact on the


subsequent characterizations of secure information flow. This is not due to the par-


ticular formalism the authors used but to the fact that noninterference is a simple and


intuitive notion. Proving that a system is noninterfering is not dependent on the avail-


ability of an automaton model of a system. Different formulations of noninterference


and proof techniques exist for different formalisms [Den76, FG95, RS01].


For deterministic systems, noninterference is considered as a satisfactory notion of


secure information flow on which enforceable security policies can be based. Its gen-


eralization to nondeterministic systems, however, is not straightforward. Illuminating


discussions on the topic and examples can be found in [McL94, VS98].
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6.1.2 A restriction on the input/output relation


In this chapter we assume that there are only two security classes in a system:H (high)


andL (low). Secret values belong to the classH and public values belong to the class


L. Users who belong to the security classH can observe any value whereas users who


belong to the security classL can observe public values only. In this setting, the flow


of information from the classH to the classL is considered as undesirable.


A noninterference property typically states that high-level inputs to the system can-


not interfere with low-level outputs. In other words, the values of public outputs should


not depend on the values of secret inputs. The characteristics of the system in ques-


tion and what is assumed to be observable by whom influences the formulation of a


noninterference property.


6.1.3 Closer look at Mobile- λ


Noninterference is concerned with high-level inputs and low-level outputs of a system.


In order to talk about noninterference for computation with languages of the Mobile-λ
family it is necessary to make precise the sense in which the terms input and output are


used.


If the computation in a system consisted of a single thread of control with no ref-


erence to the environment – this corresponds to the application of a closed function in


our case – what is meant by input and output would be straightforward. We would be


using the term input for function arguments and the term output for function results.


However, we have multiple concurrently executing functions which can communicate


with each other and access the resources in their environment. The inputs to the system


are not merely the arguments to the top-level functions but also other values which may


flow into the function. The values which are received on channels and the values which


are bound to the free variables of the function should also be taken into consideration.


Similarly, the outputs of the system include values which are sent on communication


channels as well as those returned by functions.


A noninterference property for mobile functions should at the very least express


that the public results returned by functions and the public values which flow out of
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functions on communication channels do not depend on the secret values which flow


into functions. The noninteference property that we enforce by means of a type system


in Section 6.3 formalizes this idea.


It is possible to propose noninterference properties of differing strength. For ex-


ample, if we assume thatL users can inferH information to a high degree of certainty


by observing the timing behaviour or nontermination of programs, or blocked com-


munications, the formulation of the noninterference property would be different to the


setting where these assumptions do not hold. In this chapter, we concern ourselves only


with computations which terminate by producing a result. We also assume that users


cannot infer confidential information by observing the time taken for computation.


6.1.4 Conditional expressions


A challenging point in the enforcement of a noninterference property arises from the


presence of conditional expressions in programs. There is always an implicit flow from


the guard of a conditional expression to its branches. Let us suppose thatsecretBool


is an identifier which refers to a boolean value of the security classH in the following


conditional expression.


if secretBool then true else false


If a user of security classH were to evaluate this expression and a user of the secu-


rity classL who knows the code were allowed to observe the result, the value of the


secretBool would be leaked.


6.1.5 Example


In the following sections we will define a meta-language which will provide a formal


framework for stating and proving a noninterference property for mobile functions.


Prior to that we present an example to give a more clear idea of undesirable information


flows in the computational model we are considering. We focus on a simple client-


server application coded in a language of the Mobile-λ family.
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Client: let secretInt = 500


in (sq?) secretInt


Server: let gt100 = chan ()


in let square = fn x => if x > 100


then ( gt100 ! true; x*x )


else ( gt100 ! false; x*x )


in ( sq ! square ; gt100? )


The intention of the client is to take the square of an integer which is confidential to


the client. The code necessary for this operation is made available by the server. All


that is needed by the client is to make a request for the code of the functionsquare on


the channelsq and apply the received code to the integer.


The functionsquare provided by the server has, however, been coded in a rather


malicious way. It not only performs the requested operation but also leaks information


about the argument it is applied to at the client’s side. The closure of the function


square contains the channelgt100 allocated at the server’s side which is used to


maintain a connection back to the server. After sendingsquare to the client, the


server listens on this channel. The code of the functionsquare includes a test on the


argument which returns true if the argument is greater than 100, false otherwise. The


users who know the code of the server and can observe what is returned on the channel


gt100 can infer whether the client applied the functionsquare to an integer greater


than 100.


The language introduced in Section 6.2 has two major aims. Firstly, it facilitates


the static declaration of security classes of the values which will be generated during


evaluation. Secondly, a typing discipline is imposed to guarantee that certain kinds


of information flows cannot occur during evaluation. For example, if the value of


secretInt is to be known only to high-level users, this would be declared by the client


by annotating it with the appropriate label. If the server wants the value received on


the channelgt100 to be observable by low-level users, the expression which allocates


the channelgt100 should be annotated accordingly. The type system of Section 6.3 is
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based on the idea of using these annotations to detect undesirable flows of information


from the security classH to the classL.


6.2 Secure Mobile- λ


In this section we introduce the language Secure Mobile-λ which is derived from


Mobile-λ. In contrast to the uniform nature of values in Mobile-λ with respect to


confidentiality, computation with Secure Mobile-λ involves values which may belong


to different security classes.


6.2.1 Abstract syntax


The main characteristic of the abstract syntax of Secure Mobile-λ is that all expres-


sions which are in canonical form and channel allocation expressions are labelled with


security classes. This is intended to assist with tracing the security classes of values


throughout the computation.


Labels l ::= H | L


Expressions e ::= cl constant


| x variable


| fnl x⇒ e function abstraction


| e1e2 function application


| if e1 then e2 else e3 conditional


| let x = e1 in e2 local binding


| e1 op e2 primitive operation


| chanl () channel allocation


| e1!e2 send


| e? receive


Figure 6.1: Abstract Syntax for Secure Mobile-λ
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Definition 6.1 (Ordering on secrecy labels).Secrecy labels can be partially ordered


with respect to the relationv such thatL v H. The set of secrecy labelsSL= {H,L}
and the orderingv form a two-point lattice withL andH as the least and the greatest


elements respectively.


6.2.2 Dynamic semantics


We consider a simple system which consists of two remote sites each of which has a


trusted Secure Mobile-λ compiler. The most important assumption about the system


is that it is deterministic. Each site in the system provides a standard set of values


as a part of its computational environment. These include services coded as func-


tions. Throughout our discussion, we assume that such functions do not introduce


nondeterminism to the system or have side-effects which violate the confidentiality


requirements which we impose on the user-defined functions.


Values of Secure Mobile-λ consist of primitive values, channel identifiers and func-


tion closures, represented by the semantic objectscl , k and〈l,E,x,e〉 respectively. The


dynamic representation of an object encodes the secrecy label of the expression which


leads to its construction. A channel identifierk is represented by a tuple(l ,s, i) where


l is a security label,s is the site where the channel is allocated andi is a freshly gener-


ated number at each invocation of a channel allocation expression. We writeLabel(v)


for the secrecy label of a value.


Evaluation environments E ::= [ ] | E[x 7→ v]


Values v ::= cl constants


| k channel identifiers


| 〈l,E,x,e〉 function closures


We also use semantic objects which describe the communication behaviour of an ex-


pression;a stands for a communication action drawn from the set{new k,k! v,k?v}
representing the allocation of a channel and sending and receiving values over a chan-


nel respectively. The namew stands for a sequence of communication actions. Note


that a purely sequential computation which does not involve any communication is


represented byε.
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Actions a ::= new k channel allocation


| k! v send


| k?v receive


Action sequences w ::= ε the empty sequence


| a.w sequence of actions


Top-level rule and matching Secure Mobile-λ does not include a construct for par-


allel composition of expressions. The concurrent activity is revealed in the composi-


tion of evaluations at each site. Figure 6.2 shows the evaluation of a system in which


expressione1 is evaluated at sites1 and expressione2 is evaluated at sites2. We rep-


resent the top-level environment as a pair of environments and the result produced by


the system as a pair of values. The top-level evaluation decomposes into individual


evaluations at each site. A judgement of the formE ` e
w=⇒ v states that the expres-


sione evaluates to valuev against an environmentE incurring the sequence of actions


represented byw. The dynamic semantics rules for the evaluation of an expression are


further explained below.


E1 `s1e1
w1=⇒ v1 E2 `s2e2


w2=⇒ v2 w1 || w2 ↪→ w


(E1,E2),(s1[e1] || s2[e2]) w=⇒ (v1,v2)


Figure 6.2: Concurrent Evaluation


The communication in Secure Mobile-λ is synchronous. The synchronization between


the expressions is specified by a collection of matching rules between communication


action sequences given in Figure 6.3. Informally speaking, at the end of the evaluation,


we can observe that new channels have been allocated. Particular values transmitted


on these channels will have been used in producing the resulting value, however, we


treat their transmissions as internal actions of the system and abstract away from them.


The predicateIOmatchbelow is defined on pairs of action sequences. We will refer to


this predicate later to express that the system consisting of two sites is closed. That is,
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(1) ε || ε ↪→ ε


(2)
w1 || w2 ↪→ w


w1.a || w2 ↪→ w.a


(3)
w1 || w2 ↪→ w


w1 || w2.a ↪→ w.a


(4)
w1 || w2 ↪→ w


w1.k!val || w2.k?val ↪→ w


(5)
w1 || w2 ↪→ w


w1.k?val || w2.k!val ↪→ w


Figure 6.3: Action Matching


all the communication actions are internal to the system.


Definition 6.2 (IOmatch). IOmatch(w1,w2) if and only if w1 ||w2 ↪→w and all anno-


tations inw are of the formnew k for somek.


Evaluation rules The intuition behind the evaluation rules are similar to those of


Mobile-λ. However, our style of defining the semantics of Secure Mobile-λ is dif-


ferent. We do not specify the intermediate steps of the evaluation but rather define a


relation between expressions and their values in the style of [Ler92].


Functions The rule (fn) for the evaluation of function abstractions is similar to the


evaluation rule with the same name for Mobile-λ. Before being enclosed in the func-


tion closure the current environment is narrowed down such that its domain consists


of the free variables of the function. For an application expression to evaluate success-


fully, the first expression must be a function closure. The body of the function enclosed


in the closure is evaluated against an environment which is obtained by extending the


environment part of the closure with the binding of the argument.


Primitive operations Binary operators which are ranged over byop can be either


arithmetic or relational. The application of a binary operator on two values results in
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(con) E ` cl ε=⇒ cl


(var) E ` x
ε=⇒ E(x)


(fn) E ` fnl x⇒ e
ε=⇒ 〈l,E′,x,e〉 whereE′ = E � FV(fnl x⇒ e)


(app)


E ` e1
w1=⇒ 〈l′,E′,x,e〉


E ` e2
w2=⇒ v E′[x 7→ v] ` e


w3=⇒ v′


E ` e1e2
w1.w2.w3=⇒ v′


(op)
E ` e1


w1=⇒ v1 E ` e2
w2=⇒ v2 v = v1opv2


E ` e1ope2
w1.w2=⇒ v


(if-t)
E ` e1


w1=⇒ truel E ` e2
w2=⇒ v


E ` if e1 thene2 elsee3
w1.w2=⇒ v


(if-f)
E ` e1


w1=⇒ falsel E ` e3
w2=⇒ v


E ` if e1 thene2 elsee3
w1.w2=⇒ v


(let)
E ` e1


w1=⇒ v1 E[x 7→ v1] ` e2
w2=⇒ v2


E ` let x = e1 ine2
w1.w2=⇒ v2


(chan) E ` chanl () new k=⇒ k where k new


(send)
E ` e1


w1=⇒ k E` e2
w2=⇒ v k= (l ,s, i)


E ` e1!e2
w1.w2.k!v=⇒ ()l


(receive)
E ` e


w=⇒ k


E ` e?
w.k?v=⇒ v


Figure 6.4: Sequential Evaluation Rules
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a value whose secrecy level is the highest of those of its operands. That is to say if


v = (v1 op v2) for someop whereLabel(v1) = l1 andLabel(v2) = l2 thenLabel(v) =


l1t l2. For example, an integer which is obtained by adding a public and a secret


integer would be treated as a secret integer.


Expressions involving communication The evaluation rule (chan) states that a chan-


nel identifier which is allocated dynamically must be globally unique. We have already


discussed that a channel identifier is represented by a tuple(l ,s, i). Sincei is freshly


generated each time a new channel is allocated at sites, sandi together can guarantee


the uniqueness of an identifier. The evaluation rules (send) and (receive) are straight-


forward.


6.3 Type system


The aim of the type system presented in this section is to guarantee that the values of


security classL which flow out of the system during the evaluation of a well-typed


Secure Mobile-λ do not depend on the values of security classH which flow into the


system.


6.3.1 Semantic objects


The type system builds on similar ideas to the type system presented for Mobile-λ in


Chapter 3. The structure of the types and effects are almost identical. The crucial


difference lies in the purpose served by the labels. In that type system the labels stood


for the identities of values, in this one they stand for their security classes. Another


difference is with regard to polymorphism. The polymorphism in the type system


of this section is more restricted; we allow function types to be parametric in secrecy


labels only. This is motivated by our wish to keep the type system as simple as possible


while showing how ML-style polymorphism can be adapted to increase its flexibility.
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Secrecy labels l ::= H | L | γ | l1t l2


Raw types τ̄ ::= unit | int | bool | chan[τ̄] | τ1
κ→τ2


Types τ ::= (τ̄, l)
Effect κ ::= /0 | {new l for τ̄}


| {send τ̄on l} | {recv τ̄on l} | κ1∪κ2


Type schemes σ ::= ∀~γ.τ


Type environments are defined as finite maps from variables to type schemes.


Definition 6.3 (Well-formed function types). We write Label(τ) for the label of a


type; if τ = (τ̄, l) then Label(τ) = l . A function type(τ κ→τ′, l) is well-formed if


l v Label(τ′).


Definition 6.4 (TypeOf). The types of the basic constants unit, integers and booleans


do not depend on the typing context and are defined as follows:


TypeOf(()l ) = (unit, l) TypeOf(nl ) = (int, l)


TypeOf(truel ) = (bool, l) TypeOf(falsel ) = (bool, l)


6.3.2 Typing rules


The typing rules are given in Figure 6.5. An important design decision which has an


impact on the whole of the type system regards communication. It can be seen in the


typing rules (send) and (receive) that we allow channels to carry values of the same


secrecy class as themselves.


Keeping this in mind we can now go on to explain the more interesting rules. Those


are the rules for function abstractions and conditional expressions. We choose to start


with the (if) rule since this will make it easier to understand why we need a side con-


dition in the typing rule (fn) for functions.


Let us consider a simple conditional expression such as the one which appeared in


Section 6.1. ThesecretBool below is an identifier of a secret boolean and the branches


return public values.


if secretBool then trueLelse falseL
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(con) Γ `s cl : TypeOf(cl ), /0


(var)
Γ(x) = σ σ� τ


Γ `s x : τ, /0


(fn)
Γ[x 7→ τ] `s e : τ′,κ Safe(κ, l)


Γ `s fnl x⇒ e : (τ κ→τ′, l), /0


(app)
Γ `s e1 : (τ κ→τ′, l ′),κ′ Γ `s e2 : τ,κ′′


Γ `s e1e2 : τ′,κ∪κ′∪κ′′


(op)
Γ `s e1 : (τ̄, l),κ Γ `s e2 : (τ̄, l ′),κ′ op : (τ̄∗ τ̄)→τ̄′


Γ `s e1ope2 : (τ̄′, l t l ′),κ∪κ′


(if)


Γ `s e1 : (bool, l),κ
Γ `s e2 : (τ̄, l ′),κ′ Γ `s e3 : (τ̄, l ′),κ′′


l v l ′ Safe(κ′, l) Safe(κ′′, l)


Γ ` if e1 thene2 elsee3 : (τ̄, l ′),κ∪κ′∪κ′′


(let)
Γ `s e1 : τ,κ Γ[x 7→ Gen(Γ,κ,τ)] ` e2 : τ′,κ′


Γ `s letx = e1 ine2 : τ′,κ∪κ′


(chan) Γ `s chanl () : (chan[τ̄], l),{new l for τ̄}


(send)
Γ `s e1 : (chan[τ̄], l),κ Γ `s e2 : (τ̄, l),κ′


Γ `s e1!e2 : (unit, l),κ∪κ′∪{send τ̄on l}


(receive)
Γ `s e : (chan[τ̄], l),κ


Γ ` e? :(τ̄, l),κ∪{recv τ̄on l}


(subs)
Γ `s e : τ,κ κ⊆ κ′


Γ `s e : τ,κ′


Figure 6.5: Typing Rules
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Expressions such as this one should obviously be ruled out because the value of


this expression which is observable by low-level users depends on a high-level value.


The side conditionl v l ′ is present in the rule (if) for this reason. This side condition


is, however, not sufficient to detect all kinds of information flows that we wish to


eliminate. The communication capabilities of the branches need also to be taken into


account. Let us suppose thatch is the identifier of a public channel in the example


presented below.


if secretBool then let y = ch ! trueL


in trueH


else let y = ch ! falseL


in falseH


Even though the result of this expression is a high-level value which is observable only


by high-level users, the information would be leaked due to the communication on


public channels. A low-level user who listens on channelch would be able to infer


the value ofsecretBool. The predicateSafein the typing rule (if) is used to detect the


presence of communication capabilities such as this. Branches of an expression can


only send on channels which are at least as secret as the guard of that expression.


Definition 6.5 (Safe flow). Safe(κ, l) if for all {send τ̄on l ′} ⊆ κ it is the case that


l v l ′.


Functions are allowed to send on channels which are at least as secret as themselves;


this is also imposed by the presence of the predicateSafein the typing rule (fn). The


following example justifies the need for this side condition.


if secretBool then (fnH x⇒ let y = ch ! trueL in trueH)


else (fnH x⇒ let y = ch ! falseL in falseH)


The potentially harmful communication capabilities on public channels are now hid-


den within a function abstraction. If the value ofsecretBool is, for example,true the


expression will return a function which sendstrue on the public channelch. By apply-


ing this function to an appropriate argument a similar effect to the preceding example


can be incurred. What is leaked in a single step in the preceding example is leaked in


two steps in this one.
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It is important to remember also that the secrecy class of the result of a function


is required to be at least as secret as that of the function itself. It is through the well-


formedness condition in Definition 6.3 on function types that we enforce this. Without


this condition a public value could be obtained by the application of a secret function


present in the environment. This would conflict with our requirement that public values


should not depend on secret values.


The type generalization takes place in the typing rule (let). We omit the definition


of the operationGenas it is a straightforward adaptation of the operation with the same


name which appears in Chapter 3.


Example If we did not allow functions to be parametric in security labels, the type


system would be rather too restrictive. The following example illustrates the use of


polymorphism. Suppose thatsecretInt andpublicInt are identifiers of a secret integer


and a public integer respectively and that we would like to type-check the following


expression in the environmentΓ = [secretInt 7→ (int,H),publicInt 7→ (int,L)].


let square = fnL x⇒ x∗ x


in (square publicInt)∗ (square secretInt)


If we did not allow types to be parametric in security labels, we would not be able


to derive a type for this expression. It would be necessary to write two versions of


the functionsquare; one to be applied to secret integers, one to be applied to public


ones. We can, however, derive the type∀γ.((int,γ) /0→(int,γ),L) for the functionsquare.


The type of the entire expression is then(int,H) where the type of the subexpression


(square publicInt) is (int,L) and that of(square secretInt) is (int,H).


6.4 Formal properties


In this section we first prove the consistency of the dynamic and the static seman-


tics. We then state a noninterference property for mobile functions in a deterministic


computational model and prove that it is enjoyed by the well-typed Secure Mobile-λ
programs.
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6.4.1 Consistency


In defining the dynamic semantics of Secure Mobile-λ we adopted an approach which


is different from those of the preceding chapters. The proof method we use, which


follows the approach of [Ler92] is hence unlike those of the preceding chapters.


Our noninterference property relies on a property of entire execution traces and


big-step semantics makes it possible to formulate such a property in terms of the traces


of subexpressions. Although sufficient for the purposes of this chapter, the general-


ization of our proof method to nondeterministic systems is not obvious as big-step


semantics turns out to be a less natural choice for such systems. It would have been


beneficial to adopt the approach of [PC00] in proving the soundness of the type sys-


tem and noninterference if small-step semantics had been used and generalization to


nondeterministic systems had been pursued.


Definition 6.6 (Channel environment). A channel environment is a finite map from


channel identifiers to types.


CE ::= [k1 7→ τ1 . . .kn 7→ τn].


The empty channel environment is written as[ ].


Definition 6.7 (Extension). Let CE andCE′ be two channel environments.CE′ ex-


tendsCE, written asCEvCE′ if Dom(CE)⊆ Dom(CE′) andCE(k) = CE′(k) for all


k∈ Dom(CE).


We now define two interdependent relations; one between the values of the dynamic


semantics and types and another one between dynamic evaluation environments and


static type environments. We writeCE |= v : τ to mean that a valuev has typeτ where


the types of the dynamically allocated channels are recorded in the channel environ-


mentCE.
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Definition 6.8 (CE |= v : (τ̄, l)).
CE |= cl : TypeO f(cl )


CE |= k : (chan[τ̄], l) if k∈ Dom(CE) andCE(k) = (τ̄, l)


CE |= 〈l,E,x,e〉 : (τ κ→τ′, l) if there exists aΓ such that


Γ ` fnl x⇒ e : (τ κ→τ′, l), /0 andCE |= E : Γ
CE |= v : ∀~γ.τ if CE |= v : θτ


for any substitutionθ defined on~γ.


Definition 6.9 (CE |= E : Γ). CE |= E : Γ
if Dom(E) = Dom(Γ),


andCE |= E(x) : Γ(x) for anyx∈ Dom(E)


The definition below follows in the same vein and relates action sequences which anno-


tate the evaluation rules of the dynamic semantics to the effects derived for expressions


by the type system.


Definition 6.10 (CE |= w : κ).


CE |= ε : κ for anyκ such that ifk appears inκ thenk∈ Dom(CE)


CE |= new k : κ if k∈ Dom(CE) andCE(k) = (τ̄, l)
and{new l for τ̄} ⊆ κ


CE |= k!v : κ if k∈ Dom(CE) andCE(k) = (τ̄, l)
andCE |= v : (τ̄, l) and{send τ̄on l} ⊆ κ


CE |= k?v : κ if k∈ Dom(CE) andCE(k) = (τ̄, l)
andCE |= v : (τ̄, l) and{recv τ̄on l} ⊆ κ


CE |= w1.w2 : κ∪κ′ if CE |= w1 : κ andCE |= w2 : κ′


The consistency theorem stated below assumes a closed system composed of two ex-


pressionse1 ande2 which are evaluated at sitess1 ands2 respectively. Expressions are


assumed to be well-typed and the initial evaluation environment at each site is assumed


to be consistent with the initial static environment in the sense defined above. The the-


orem says that under these assumptions, if the evaluation at a site terminates yielding


a value then this value must be related to the type derived for the expression.
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Theorem 6.1 (Consistency).Assume the following


• E1`s1e1
w1=⇒ v1 andE2`s2e2


w2=⇒ v2 andIOmatch(w1,w2)


• Γ1`s1e1 : τ1,κ1 andΓ2`s2e2 : τ2,κ2


• CE |= E1 : Γ1 andCE |= E2 : Γ2


then there exists aCE′ such that


• CEvCE′


• CE′ |= v1 : τ1 andCE′ |= w1 : κ1


• CE′ |= v2 : τ2 andCE′ |= w2 : κ2


Proof. The proof is given by induction on the depth of the evaluation tree. For those


cases which involve no communication we give the proof by consideringe1 only. It


should be noted that the proof would be similar for expressione2.


cases(con), (var), (fn). The required result follows from the assumptions and from


Definitions 6.8, 6.9 and 6.10.


casee1 = chanl (). The evaluation at sites1 must have followed the rule (chan) such


thatE1 ` chan() new k=⇒ k. Suppose thatΓ1 ` chanl () : (chan[τ̄], l). We take aCE′ such


thatCE′ = CE[k 7→ (τ̄, l)]. The required result is immediate by Definition 6.8.


casee1 = (letx= e1 ine2). The evaluation must have followed the rule (let) and must be


of the formΓ ` letx= e1 ine2
w1.w2=⇒ v2 whereE ` e1


w1=⇒ v1 andE[x 7→ v1] ` e2
w2=⇒ v2.


Suppose thatletx= e1 ine2 : τ2,κ∪κ′ whereΓ ` e1 : τ,κ andΓ[x 7→ Gen(Γ,κ,τ)] ` e2 :


τ2,κ′.
By the induction hypothesis there exists aCE′ such thatCEvCE′ andCE′ |= v1 : τ1


andCE′ |= w1 : κ. If we could show thatCE′ |= v1 : Gen(Γ,κ,τ1) then we could apply


the induction hypothesis one2. Let Gen(Γ,κ,τ1) = ∀~γ.τ1. By Definition 6.8 this boils


down to showing thatCE′ |= v1 : θτ1 for θ defined on~γ. If v1 is a constant then there


is only a unique type forv1, hence the result is immediate. Ifv1 is a channel identifier,
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new k must be a part ofw1 . SinceCE′ |= k : (chan[τ̄], l), according to Definition 6.8


CE′(k) = (τ̄, l). SinceCE′ |= w1 : κ, according to Definition 6.10, it must be the case


that {new l for τ̄} ⊆ κ. We know by the definition ofGen that~γ do not occur free in


Γ or κ. Therefore,CE′ |= v1 : θτ1 becauseθ has no effect onτ1. If v1 is a closure


the proof follows a similar idea. Additionally, it refers to the fact that ifΓ ` e : τ,κ
thenθΓ ` e : θτ,θκ. This lemma can be proved by following a similar reasoning to the


various type substitution lemmas presented in the preceding chapters. Having proved


thatCE′ |= v1 : Gen(Γ,κ,τ1) we can deduce thatCE′ |= E[x 7→ v1] : Γ[x 7→ τ1]. We can


now apply the induction hypothesis one1 to establish the required result.


cases(send) (receive). The proofs of the cases which involve communication make


use of the hypothesisIOmatch(w1,w2). This predicate states that for each send there


is a corresponding receive and for each receive there is a send at the remote site. A


channel environment which binds the channel identifier used in the communication to


the type of the sent value should be taken as the channel environment which conforms


to the requirements. The rest of the proof is rather straightforward.


6.4.2 Noninterference


At various points in our discussions we stated that the dependency of public outputs of


a system on secret inputs is undesirable and should be prevented. This is the same as


requiring that the changes in the secret inputs to the system do not lead to changes on


the public outputs. The noninterference theorem is a formalization of this statement.


As a first step, we make precise when two public values are considered to be equivalent


by means of the following definition.


Definition 6.11 (Equivalence of public values and environments).The notion of equiv-


alence for public constants and channels is obvious. However, in principle it is impos-


sible to decide the equality of two functions. We adopt a notion of equivalence which


is based on the syntactic equality of function bodies. Two function closures are equiv-


alent if the codes they enclose are identical and the environments they enclose are


equivalent.
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cl ≡L cl if l = L


k≡L k if k = (L,s, i)


〈l,E,x,e〉 ≡L 〈l,E′,x,e〉 if l = L andE ≡L E′


E ≡L E′ if E(x) = E′(x) for all x such that


x∈ Dom(E) andx∈ Dom(E′)


andLabel(E(x)) = Label(E′(x)) = L.


Values can flow into and out of concurrently executing expressions by means of com-


munication on channels. In a deterministic system consisting of two threads of control


such as ours, the source of an incoming value is always known. The received value


can only have been sent by the expression evaluated at the remote site. We enforce


noninterference by ensuring that the values sent on public channels by an expression


do not depend on the changes in the secret values which flow into it. Note that this also


ensures that values which flow into the expression at the other site on communication


channels remain the same.


The noninterference theorem makes use of the action sequences which instrument


the evaluation rules to formalize the constraint on the public values which are sent by


expressions.


Definition 6.12 (Purging secret send actions).The operationPurgeis defined on ac-


tion sequences. It purges all but send actions on public channels from a sequence.


Purge(ε) = ε
Purge(new k.w) = Purge(w)


Purge(k! v.w) =


Purge(w) if Label(k) = H


Purge(k! v.w) otherwise


Purge(k?v.w) = Purge(w)


Definition 6.13 (Equivalence of purged sequences).Two purged sequences are equiv-


alent if there is a one-to-one correspondence between the send actions in each sequence


up to the equivalence of the values transmitted.







Chapter 6. Noninterference and Mobile Functions 137


ε≡L ε
k!v1.w1≡L k!v2.w2 if v1≡L v2 andw1≡L w2.


The theorem below states that if we evaluate a well-typed expression at a given site


against two different initial environments which are the same except at bindings for


secret values and both evaluations terminate yielding a public value, these values are


guaranteed to be equal. Moreover, the two evaluations agree on the values transmitted


on public channels.


Theorem 6.2 (Noninterference).Suppose that the following hold for a typing envi-


ronmentΓ, evaluation environmentsE1,E2, E′1 andE′2, and a channel environmentCE.


• CE |= E1 : Γ andCE |= E2 : Γ


• Γ ` e1 : (τ̄1, l1),κ1 andΓ ` e2 : (τ̄2, l2),κ2


• E1≡L E′1 andE2≡L E′2


• E1 ` e1
w1=⇒ v1 andE2 ` e2


w2=⇒ v2 andIOmatch(w1,w2)


• E′1 ` e1
w′1=⇒ v′1 andE′2 ` e2


w′2=⇒ v′2 andIOmatch(w′1,w
′
2)


then


• if l i = L thenvi ≡ vi
′


• Purge(wi)≡L Purge(w′i)


Proof. The proof is given by induction on the depth of the evaluation evaluation tree.


We give the proof case involving conditional expressions below. We consider the eval-


uation of expressione1 only, the proof fore2 would be similar.


casee = (if e1 thene2 elsee3). Suppose thatΓ ` if e1 thene2 elsee3 : (τ̄, l ′),κ∪ κ′ ∪ κ′′


whereΓ ` e1 : (bool, l),κ and Γ ` e2 : (τ̄, l ′),κ′ Γ ` e3 : (τ̄, l ′),κ′′ and l v l ′ and


Safe(κ′, l) andSafe(κ′′, l).
For the first part of the proof we need to show that ifl ′ = L thenv1≡L v′1. If l ′ = L


then l = L. Otherwise, the side conditionl v l ′ would not be true. By applying the


induction hypothesis one1 we know that ifE1 ` e1
w3=⇒ trueL thenE′1 ` e1


w′3=⇒ trueL.
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Similarly if E1 ` e1
w4=⇒ falseL then E′1 ` e1


w′4=⇒ falseL. This shows that the evalua-


tion takes the same branch regardless of the value of the guard. That is to say if the


resulting valuev1 has been obtained by following the evaluation rule (if-t) such that


E1 ` e2
w5=⇒ v1 then the valuev′1 will also be obtained by following the same rule such


thatE1
′ ` e2


w′5=⇒ v′1. By applying the induction hypothesis one2 we establish the re-


quired result; that isv1≡L v′1. Note that the same line of reasoning would be applicable


if e1 evaluated tofalseL instead.


For the second part of the proof we need to show thatPurge(w1) = Purge(w′1). If


l ′ = L and the rule (if-t) has been applied the proof follows by applying the induction


hypothesis one1 ande2. We have assumed thatw1 = w3.w5. By the induction hypoth-


esis we know thatPurge(w3)≡L Purge(w′3) andPurge(w5)≡L Purge(w′5). It is easy


to check thatPurge(w3.w5)≡L Purge(w′3,w
′
5). The same line of reasoning would be


applicable if the evaluation was assumed to have followed the rule (if-f).


If l ′= H we can no longer know that the evaluation takes the same branch in the two


independent runs, against the environmentsE1 andE′1 respectively. This is because the


application of the induction hypothesis does not say anything about the value of the


guard which determines the branch taken. Letw1 = w.w′ whereE1 ` e1
w=⇒ v and


w1
′ = w′′.w′′′ whereE1


′ ` e1
w′′=⇒ v′. All we can know by the induction hypothesis on


e1 is thatPurge(w)≡L Purge(w′′). If we can show thatPurge(w′)≡L Purge(w′′′) we


can establish the required resultPurge(w.w′)≡L Purge(w′′.w′′′).


By the typing rule (if) and Theorem 6.1 we know that for someCE′, CE′ |= w′ : κ′


andCE′ |= w′′ : κ′′ for someCE′. SinceSafe(κ′, l) andSafe(κ′′, l) we know that neither


κ′ nor κ′′ contains an element of the formsend τ̄onL. By referring to Definition 6.10


we can deduce that neitherw′ nor w′′ can have as a subsequence an action of the form


k!v whereLabel(k) = L. This implies that the application of the operationPurgeon


w′ andw′′′ yields empty sequences. SincePurge(w)≡L Purge(w′′) we can state that


Purge(w.w′)≡L Purge(w′′.w′′′).
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6.5 Concluding remarks


In this chapter we have introduced the concept of noninterference and pointed out its


significance in formulating secure information flow properties for systems and pro-


grams. We have then focused on a functional language which supports the mobility


of functions between remote sites. In line with the general theme of this thesis, we


investigated the applicability of type and effect systems in enforcing a noninterference


property. The related work section of the previous chapter contains several pointers


to works by other authors on type systems for security. Many of these works address


noninterference in a given framework. The SLam [HR98a] calculus which is already


discussed in detail in the previous chapter is closely related to Secure Mobile-λ as well


as Confined-λ. The authors of SLam investigate static certification of programs which


satisfy a lattice-based information flow property as presented in [Den76]. To simplify


the discussion they restrict to a two-point lattice and note that the results can be gen-


eralized to any lattice of security classes. This is also the approach we have adopted.


The results of this chapter can be generalized to any security lattice.


Nondeterminism This chapter considers a simple system which consists of two re-


mote sites each of which has a trusted Secure Mobile-λ compiler. The noninterference


property which holds for all well-typed programs of the language Secure Mobile-λ
relies on the computation being deterministic. We have restricted the system to be


composed of two sites where each site hosts a single thread. Since there is no shared


mutable state and the communication can only take place between two parties, the


concurrency does not give rise to nondeterminism.


This setting is sufficiently general to model the execution of single threaded mobile


code by a host program which is also single threaded. The approach to security adopted


in this chapter is in line with the work on a Web browser with applets written in CAML,


a strongly typed functional language of the ML family [LR98].


The generalization of noninterference to nondeterministic systems gives rise to dif-


ferent characterizations of noninterference which are out of the scope of our work.


In a nondeterministic concurrent setting, it would be acceptable for a system to out-


put different public values in two different runs. Noninterference should then require
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that the valuespossiblepublic outputs do not depend on the inputs. This notion of


noninterference is referred to aspossibilistic noninterference. However, possibilistic


noninterference becomes inadequate when one considers the implementation of con-


current programs. Programs which satisfy possibilistic noninterference can still leak


information by probabilistic inference. If one knows, for example, the probability of a


thread being scheduled, the observation of the outputs can reveal information about the


high-level inputs to the programs.Probabilistic noninterferencerectifies this problem


by requiring the probability distribution of the public outputs to be independent of the


high-level inputs.


The work presented in this chapter constitutes a first step in the direction of estab-


lishing a robust and general notion for noninterference for mobile computation with


functions where computation need not be deterministic. We have explored the appli-


cability of the type and effect discipline in tracing information flow in a higher-order


functional language with channel-based communication in a simple setting. This work


could be taken further by considering possibilistic and probabilistic noninterference


for a more general setting.


Blocked communications In languages which adopt synchronous communication


such as Secure Mobile-λ the ability to send on a channel implies the existence of a


receiver who has received the sent value. Otherwise, the send operation would have


blocked. This makes languages such as Secure Mobile-λ vulnerable to information


leaks which would not arise if the communication were asynchronous. The example


below shows two expressions,e1 ande2 which are executed in parallel.


e1 = if secretBool then (publicChannel?;trueH)


else falseH


e2 = publicChannel!()L


The expressione2 attempts to leak the value ofsecretBool by attempting to send a


value on the public channelpublicChannel. If the communication succeeds this would


imply thatsecretBool is true.


The type system of this chapter does not aim at eliminating these kinds of informa-


tion leaks. We have included this example here only to emphasize that in computational
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models such as that of Secure Mobile-λ blocked communications constitute a source


of undesirable information flow.







Chapter 7


Conclusions


Each technical chapter in this thesis focuses on a practically-motivated problem con-


cerning mobile computation in modern distributed systems. These problems arise from


the heterogeneity of distributed systems in terms of the nature of computing devices,


security requirements of the information flowing in the system and the trust level of


users. The idea which is emphasized throughout is that principled language design and


the exploitation of static program analysis techniques can offer satisfactory solutions


to the problems considered in this thesis.


7.1 Natural support for code mobility


We regard simplicity and the existence of a formal definition as highly desirable prop-


erties for a mobile code language. It is through these properties that one can make


reliable predictions about the dynamic behaviour of mobile code by using informal or


formal techniques.


Our survey of the languages Concurrent ML, Facile and PLAN has convinced us


that endowing functions with first-class status and incorporating a language construct


for their communication between remote sites constitutes a simple approach to deriving


a mobile code language. Consequently, we have used this approach in defining a series


of higher-order functional languages which support code mobility.


An appealing aspect of these languages is that programmers can maintain a view
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of programs as a collection of function definitions and computation as a series of lo-


cal or remote applications of these functions. Moreover, with appropriate adaptations,


the existing program analysis techniques for functional programs continue to be use-


ful. We demonstrated this by designing type and effect systems for the languages we


defined and exploiting them to make predictions about several issues.


7.2 Type systems and security


Preventing the corruption of resources in a distributed system is a particularly chal-


lenging problem in the presence of code mobility. Memory is an essential resource for


computation and type safety provides a basic protection mechanism against the corrup-


tion of memory. One of our goals has been to ensure that extensions for code mobility


do not compromise type safety. The large body of work on type systems for concurrent


functional languages assisted us in meeting this goal.


It is apparent that preventing the execution of those programs which may breach


type safety does not suffice to protect systems against all security violations. This


thesis presents several example programs which would be well-typed with respect to a


conventional type system yet pose a threat to the availability of the resources or leak


confidential information.


A significant part of the work presented in this thesis aims at extending the range


of security properties which can be enforced by using type systems. The definition


of security properties such as confinement in a mobility region and noninterference


for mobile functions are our major contributions to the research area of foundations


of security. It is widely acknowledged in this area that programming languages which


support the development of code with provable security properties are essential for


improving the security of systems in general. The simple languages presented in this


work should be seen as prototypes of “secure” programming languages which can be


of practical use in some application domains.
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7.3 Further work


We concluded each chapter with a discussion of possible directions that could be fol-


lowed to extend the work presented in that chapter. We now look at the thesis from a


broader perspective and enumerate some ideas which apply to it on the whole.


The thesis presents a collection of statically typed languages and emphasizes the


advantages of static typing. We formulate and prove properties regarding the sound-


ness of these type systems. The automatic inference of types has not been investigated


here. There is a large body of work on this topic which could provide a starting point.


It would be useful to devise algorithms to automate type inference and study their com-


plexity and efficiency in practice. If the results are found to be promising, they will


strengthen the arguments of this thesis.


It is possible to recognize a common characteristic in all of the type systems that


we have presented. Expressions which are of interest to the investigated problem are


labeled and these labels are incorporated into their types as annotations. The annotation


of a type is used to estimate an attribute of the expression relevant to the problem. For


example, in Chapters 3 and 4 this attribute is the identity of the values the expression


can evaluate to, in Chapter 5 it is the mobility region, and in Chapter 6 the attribute of


concern is the security class. More importantly, the algebra of annotations appear also


to be similar accross the type systems.


This suggests the possibility of designing a generic type system of which the type


systems of this thesis are particular instances. Further work in this direction would


involve defining a language which subsumes all of the languages we have considered


and might require slight modifications to the ways we have dealt with the problems.


However, casting the problems in such a unified framework would eliminate the need


to prove similar properties for each type system as the properties proved for the generic


type system would carry over to chosen instances. It would also provide an appropriate


framework for the study of other problems of similar nature.


Our approach has been to lay out a problem faced by mobile code languages and


to discuss how types can gather useful information about programs with respect to the


problem under investigation. In some cases, our attempts were limited to proposing


a way to gather this information rather than showing how to use it in building tools







Chapter 7. Conclusions 145


or transforming programs. It would be interesting, for example, to present some op-


timizations based on the estimation of mobile values or to build tools for estimating


resource consumption.


Throughout we have assumed closed systems and relied on trusted parties to type


check all the code in the system. Although this is reasonable for many distributed


computing environments, for a more general applicability of our work it is desirable


to consider computing environments where global type checking is impossible. This


prompts us to study type systems which may resort to dynamic checks where the static


checks turn out to be inadequate.


We have focused on simple system models with a statically fixed set of computation


sites and assumed that new sites cannot be created and site names cannot be computed


as other values. Another issue which has not been addressed here, which is yet crucial


for distributed computation, is the effect of failures on the system behaviour. It would


be interesting to extend the languages with first-class site names and also study the


phenomena related to failures.


The constant developments in the area of mobile computation, both in theory and


practice, are likely to give rise to many more directions for further research on the topic


of this thesis.







Appendix A


Selected Proof Cases


A.1 Selected proof cases from Chapter 3


Lemma 3.1If Γ ` ie : τ,κ thenθΓ ` ie : θτ,θκ for any substitutionθ.


Proof. The proof is given by induction on the derivation ofΓ ` ie : τ,κ.


caseie = x. The rule (id) of the the static semantics requires the typing to be of the


form Γ ` x : τ, /0 whereΓ(x) = σ andσ� τ.


We perform the necessary renaming on bound variables ofσ such thatσ = ∀~δ.τx


and~δ is out of reach ofθ. Let θ′ be a substitution over~δ such thatθ′τx = τ. Now define


a substitutionθ′′ with domain~δi by θ′′(δi) = θ(θ′(δi)). We then have


θ′′(θ(δi)) = θ′′(δi) = θ(θ′(δi)) for all i, since~δ are out of reach ofθ
θ′′(θ(ρ)) = θ(ρ) = θ(θ′(ρ)) for all ρ not in~δi , sinceθ′′ is defined onδi


Hence,θ′′(θ(τx)) = θ(θ′(τx)) = θ(τ) which shows thatθτ is an instance of(θΓ)(x).


Therefore,θΓ ` x : θτ, /0.


caseie = (letx = ie1 ine2). The rule (let) of the static semantics requires thatΓ ` ie1 :


τ,κ andΓ[x 7→ Gen(Γ,κ,τ)] ` e2 : τ′,κ′. Let ∀~δ.τ beGen(Γ,κ,τ). For any substitu-


tion θ, let us consider fresh~δ′ and defineθ′ as the extension ofθ~δ with θ{~δ 7→ ~δ′}
whereθ~δ represents the restriction ofθ obtained by removing~δ from the domain of


θ. By the definition ofGenwe know thatδi ∈~δ are not free inΓ or κ, otherwise they
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would not have been generalized. Therefore,θΓ = θ′Γ andθκ = θ′κ′. By the defini-


tion of θ′,~δ being out of reach,θ′(∀~δ.τ) = ∀~δ′.θ′τ. Thus,θ′(Γ[x 7→ Gen(Γ,κ,τ)]) =


θ′(Γ[x 7→ ∀~δ′.θ′τ]) = (θΓ)[x 7→Gen(θΓ,θκ,θ′τ)].


By using the induction hypothesis onie1 with θ′ we getθ′Γ ` ie1 : θ′τ,θ′κ. By


the definition ofθ′, θΓ ` ie1 : θ′τ,θκ. By using the induction hypothesis one2 we get


θ(Γ[x 7→ Gen(Γ,κ,τ)]) ` e2 : θτ′,θκ′ which is equivalent to the judgement


(θΓ)[x 7→ Gen(θΓ,θκ,θ′τ)] ` e2 : θτ′,θκ′. Finally by the typing rule (let) we can con-


clude thatθΓ ` letx = ie1 ine2 : θτ′,θκ′.


Theorem 3.3If a type can be derived for an expressione in the type system then there


exist an environmentθpΓ, a typeτp andκp such thatθpΓ ` e : τp,κp and whenever


θΓ ` e : τ,κ then for some substitutionψ it is the case thatψ(θpΓ) = θΓ andψτp = τ
andκv ψκp. The typeτp is principal fore in Γ.


Proof. The proof is given by induction on depth of the typing derivation fore.


casee = c. The typing rule (con) for constants requires thatθΓ ` c : TypeO f(c), /0.


By Definition 3.7, the type assigned toc is unique and is independent of the typ-


ing environment. We can take the substitutionId which maps all variables to them-


selves as the principal substitution required by the proof. Obviously,θ(IdΓ) = θΓ and


θ(TypeO f(c)) = TypeOf(c) and /0 v θ/0. In this caseTypeO f(c) is the principal type


and /0 is the minimal effect.


casee= x. The typing rule (var) for identifiers requires that(θΓ)(x)� τ for any type


τ which can be assigned tox. We takeΓ ` x : τp, /0 as the principal typing for the


variablex and show that wheneverθΓ ` x : τ,κ then for someψ it is the case that


ψΓ = θΓ and ψτp = τ and /0 ⊆ ψκ. The part of the proof involving the effects is


trivial since /0 is a subset of any set. For the part of the proof involving the type, let


Γ(x) = ∀δ1 . . .δn.τx and θ′′ = [δ1 7→ ι1, . . . ,δn 7→ ιn] for fresh ιi and τp = θ′′τx and


τ = θ′τx. A substitutionψ which is a composition ofθ′ and [ι1 7→ δ1, . . . , ιn 7→ δn],


that is to sayψ = θ′ ◦ ([ι1 7→ δ1, . . . , ιn 7→ δn]) satisfies our condition thatψτp = τ and


ψΓ = θΓ.
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casee = (fnl x ⇒ e). The typing of a function expression such as this one follows


the typing rule (fn) so that ifθΓ ` fnl x ⇒ e : (τ κ→τ′, l ∪µ), /0 it must be the case that


(θΓ)[x 7→ τ] ` e : τ′,κ andµ = M(θΓ,FV(fnl x⇒ e)). We can write(θ◦ [α 7→ τ̄,γ 7→
µ′])(Γ[x 7→ (α,γ)]) for (θΓ)[x 7→ τ] whereα andγ are fresh andτ = (τ̄,µ′).


By applying the induction hypothesis onewe conclude that there exists a principal


typing for e such that(θpΓ[x 7→ (α,γ)]) ` e : τ′p,κp and a substitutionψ such that


ψ(θp(Γ[x 7→ (α,γ)])) = (θ ◦ [α 7→ τ̄,γ 7→ µ′])(Γ[x 7→ (α,γ)]) andψτ′p = τ′ andκp v
ψκ. Let µp = {M(θpΓ,FV(fnl x⇒ e)).


The equalityψ(θp(Γ[x 7→ (α,γ)])) = (θ ◦ [α 7→ τ̄,γ 7→ µ])(Γ[x 7→ (α,γ)]) implies


that ψ(θpΓ) = θΓ andψ(α,γ) = τ. Let τp = (α,γ) and take the principal typing as


θpΓ ` fnl x⇒ e : (τp
β∪κp−−−→ τp


′,µp) whereβ is fresh. We know thatψτp = τ andκp⊆
ψκ. Sinceψ(θpΓ) = θΓ, by Definition 3.8 we can deduceψµp = µ. Let κ′′ = κ\ψκp.


The substitutionψ′ = ψ◦ [β 7→ κ′′] satisfies the necessary conditions.


casee = (letx = e1 ine2) The typing of a let expression such as this one follows the


typing rule (let) so that ifθΓ ` letx = e1 ine2 : τ′,κ′, we can assume thatθΓ ` e1 : τ,κ
andθΓ[x 7→Gen(θΓ,κ,τ)] ` e2 : τ′,κ′.


By applying the induction hypothesis one1 there exists a principal typingθpΓ ` e1 :


τp,κp and aψ such thatψ(θΓ) = θpΓ andψτp = τ andψκpv κ. By referring to Defi-


nition 3.6, one can show thatψ(Gen(θpΓ,κp,τp))�Gen(θΓ,κ,τ). Sinceψ(θΓ) = θΓ,


whenever(θΓ)[x 7→Gen(θΓ,κ,τ)] ` e2 : τ′,κ′ we also have the judgement(ψ(θΓ))[x 7→
ψ(Gen((θΓ,κ,τ))] ` e2 : τ′,κ′. By applying the induction hypothesis one2 we have


ψ(θpΓ) andψτp′ = τ′ andψκp′ v κ′. By applying the typing rule (let) we can con-


clude thatθpΓ ` letx = e1 ine2 : τp′,κp′ is the principal typing.


A.2 Selected proof cases from Chapter 4


Theorem 4.1Let e be a closed expression which is evaluated at sites in the system.


AssumeS[(s, p) : e] a−→S′[(s, p) : e′] and Γ ` e : τ,F . ThenΓ ` e′ : τ,F and either


a = epsor a∈ Flat(F ,{s}).
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Proof. casee= (recl f (x)⇒ e). The dynamic semantics requires the evaluation to fol-


low the rule (rec) such thatS[(s, p) : (recl f (x)⇒e)] ε−→S[(s, p) : fnl x⇒e{(recl f (x)⇒


e)/ f}]. SupposeΓ ` recl f (x) ⇒ e : τ F−→ τ′,F ′. By subsumption elimination we


know thatΓ ` recl f (x)⇒ e : τ F−→ τ′, /0 and by the typing rule (rec) we know that


Γ[x 7→ τ][ f 7→ (τ F−→ τ′)] ` e : τ′,F . SinceΓ ` recl f (x)⇒ e : τ F−→ τ′, /0 andx is not


free in the recursive expression we can state thatΓ[x 7→ τ] ` recl f (x)⇒ e : τ F−→ τ′, /0.


This allows us to apply Lemma 4.1 to deduceΓ[x 7→ τ] ` e{(recl f (x)⇒ e)/ f}] : τ′,F .


By using the typing rule (fn) for functions we know thatΓ ` fnl x⇒ e{(recl f (x) ⇒


e)/ f}] : τ F−→ τ′, /0. It follows by the rule (subs) thatΓ ` fnl x⇒ e{(recl f (x)⇒ e)/ f}] :


τ F−→ τ′,F ′. This concludes the proof of the first part. The proof of the second part is


trivial sincea = ε.


casee = (reval((fnl x⇒ e),v)ats′). The dynamic semantics requires the evaluation


to follow the rule (reval-4) such thatS[(s, p) : reval((fnl x⇒ e),v) ats′] l@s′−→S[(s, p) :


blockon(s′, p′)][(s′, p′) : e{v/x}] wherep′ is new ats′. Suppose that we haveΓ ` reval((fnl x⇒
e),v)ats′ : τ′,F . By subsumption elimination we know that there existF ′ andS such


thatFlat(F ′,S)⊆ F andΓ ` fnl x⇒ e : τ F ′


−→ τ′, /0 andΓ ` v : τ, /0 andΓ ` s′ : siteS , /0.
We are required to show thatΓ ` blockon(s′, p′) : τ′,F .


By the typing rule (fn) for functions we know thatΓ[x 7→ τ] ` e : τ′,F ′′ where


{l} ∪F ′′ = F ′ for someF ′′ and by appealing to Lemma 4.1 it can be shown that


Γ ` e{v/x} : τ′,F ′′. We know thatF ′ = {l}∪F ′′ for someF ′′. By the typing rule


(site) it must be the case thats′ ∈ S . By referring to Definition 4.2 we can dedude


thatFlat(F ′′,s′)⊆ Flat(F ,S)⊆ F . The proof follows by the typing rule for blocked


expressions.


Proposition 4.1Let I be a non-empty set of indices andJ be the set of possible typing


judgements for an expressionedefined as follows:


J = {Γi ` e : τi ,F i | i ∈ I ,bΓ jc= bΓkc,bτ jc= bτkc for all pairs j,k∈ I}.


Then there exists a minimum element ofJ, written asuΓ ` e : uτ,uF , such that for


all i ∈ I it is the case thatuΓv Γi anduτv τi anduF ⊆ F i .
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Proof. casee= x. It is possible to find a greatest lower bound for any two types which


have the same underlying type structure. Since all the annotations are in the form of


sets, this can be achieved by taking the intersection of the annotations. The proof case


for typing identifiers makes use of this fact. Suppose thatJ = {Γi ` x : τi ,F i}. Obvi-


ously, for allΓi ` x : τi ,F i , it is the case that(uΓi)v Γi ,τi v (uΓi)(x) and /0⊆ F i .


casee = (fnl x⇒ e′). Suppose thatJ = {Γi ` fnl x⇒ e′ : τ1
i {l}∪F i


−−−−→ τ2
i ,F i | i ∈ I}.


The typing rule (fn) for functions requires that for each element ofJ we have a cor-


responding judgementΓi [x 7→ τ1
i ] ` e′ : τ2


i ,F i . Let J′ be the set of these judgements


such thatJ′ = {Γi [x 7→ τ1
i ] ` e′ : τ2


i ,F i | i ∈ I ,bΓ j [x 7→ τ1
j ]c= bΓk[x 7→ τ1


k]c,bτ2
jc=


bτ2
kc for all pairs j,k∈ I}. We apply the induction hypothesis to the setJ′ and this al-


lows us to conclude that there exists a minimal element ofJ′. Let (uΓ)[x 7→ uτ1] ` e′ :


uτ2,uF be this minimal element. By the typing rule (fn) we can deduce thatuΓ ` e′ :


uτ1
{l}∪uF−−−−−→uτ2, /0 is a possible typing for the function. SinceuF ⊆ F i for all i ∈ I ,


it must be the case thatFlat(F ) ⊆ Flat(F i) for all i ∈ I . It follows that{l}∪uF ⊆


{l}∪F i anduτ1
{l}∪uF−−−−−→uτ2v τ1


i {l}∪F i


−−−−→ τ2
i for all i ∈ I . Hence we have shown that


a minimal element forJ, the set of possible typing judgements for the function exists.


casee = (reval(e1,e2)at e3). This proof case follows a similar line of reasoning as


the case above. Suppose thatuF is the minimal annotation derived for the type ofe1


and thatuS is the minimal annotation derived fore3. The only part of the proof which


may appear not to be obvious is the part which involves showing thatFlat(uF ,uS)⊆
Flat(F i ,S i) for all i which index the possible annotations derivable fore1 ande3. The


required result can be established by referring to Definition 4.2.


Theorem A.2 Let e be a closed expression which is evaluated at sites. Assume


S[(s, p) : e] a−→S′[(s, p) : e′] andΓ ` e : τ,F . ThenΓ ` e′ : τ,F ′ whereF ′ v F and


eithera = ε or a∈ Flat(F ,{s}).


Proof. casee = (let x = e1 in e2). The dynamic semantics requires the evaluation to


follow the rule (let-1) such thatS[(s, p) : let x = e1 in e2] a−→S′[(s, p) : letx = e′1 ine2]


whereS′[(s, p) : e′1]. Suppose thatΓ ` let x= e1 ine2 : τ′,F ∪F ′ whereΓ ` e1 : τ,F and
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Γ[x 7→Gen(Γ,F ,τ)] ` e2 : τ′,F ′. By applying the induction hypothesis one1 we have


Γ ` e′1 : τ,F ′′ such thatF ′′ v F anda∈ Flat(F ,{s}). Let σ = ∀~δ.τ = Gen(Γ,F ,τ)


for ~δ which are not free inΓ and F . SinceF ′′ v F , variables inF ′′ must be a


subset of the variables inF . Therefore,Gen(Γ,F ′′,τ) � Gen(Γ,F ,τ) and Γ[x 7→
Gen(Γ,F ,τ)] ` e2 : τ′,F ′ implies thatΓ[x 7→Gen(Γ,F ′′,τ)] ` e2 : τ′,F ′. By the typing


rule (let),Γ ` let x = e1 in e2 : τ′,F ′′∪F ′. It remains to show that(F ′′∪F ′)vF ∪F ′


and thata∈ Flat(F ,{s}). The proof of the latter part is immediate from the induction


hypothesis. The proof of the former part can be established by referring to Defini-


tion 4.6.


casee = (reval((fnl x⇒ e),v) at s′). The dynamic semantics requires the evaluation


to follow the rule (reval-4) such thatS[(s, p) : reval((fnl x⇒ e),v) at s′] l@s′−→S[(s, p) :


blockon(s′, p′)][(s′, p′) : e{v/x}] wherep′ new ats′. Suppose thatΓ ` reval((fnl x⇒


e),v) at s′ : unit,Flat(F ,{s′}) whereΓ ` fnl x⇒ e : τ
{l}∪F ′


−−−−→ τ′, /0 such thatF = {l}∪
F ′ andΓ ` v : τ, /0. By the typing rule for functions we know thatΓ[x 7→ τ] ` e : τ′,F ′


and by Lemma 4.3 we know thatΓ ` e{v/x} : τ′,F ′. SinceF = F ′∪{l}, by Defini-


tion 4.6Flat(F ′,{s′})⊆Flat(F ,{s′}). The typing rule for blocked expressions allows


us to conclude thatΓ ` blockon(s′, p′) : Flat(F ,{s′}).


A.3 Selected proof cases from Chapter 5


Lemma 5.1If r,CE,Γ[x 7→ τ1] ` e : τ2 andr,CE,Γ ` v : τ1 thenr,CE,Γ ` e{v/x} : τ2.


Proof. The proof is given by induction on the typing derivation ofr,CE,Γ[x 7→ τ1] ` e:


τ2. Some representative cases are as follows:


casee= x. Suppose thatr,CE,Γ[x 7→ τ1] ` x′ : τ2.


i. x 6= x′. This implies thatx′ is in the domain ofΓ such thatΓ(x′) = τ2 satisfying


the necessary conditions of the typing rule (id). We know thatx′{v/x}= x′. We


can conclude by the typing rule (var) thatr,CE,Γ ` x′ : τ2.
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ii . x = x′. This implies thatτ2 = τ1. Sincex{v/x} = v we need to establish


r,CE,Γ ` v : τ2. This is immediate from the assumptions.


casee = (fnr y ⇒ e). Suppose thatr ′,CE,Γ[x 7→ τ1] ` fnr y ⇒ e : (τ2→τ3, r) where


r,CE,Γ[x 7→ τ1][y 7→ τ2] ` e : τ3 andr ′ ⊆ r andx 6= y. By induction hypothesis one


we haver,CE,Γ[y 7→ τ2] ` e{v/x} : τ3. We get the required result by applying the


typing rule (fn).


Lemma 5.2 If r,CE,Γ ` v : (τ̄, r ′) then for anyr ′′ such thatr ′′ ⊆ r ′ it is the case that


r ′′,CE,Γ ` v : (τ̄, r ′).


Proof. The proof is given by induction on the typing derivation ofr,CE,Γ ` v : (τ̄, r ′).
casee= cr ′. Supposer,CE,Γ ` cr ′ : (τ̄, r ′) whereTypeCE(cr ′) = (τ̄, r ′) andr ⊆ r ′. For


anyr ′′ ⊆ r ′ the side conditions would still hold for establishingr ′′,CE,Γ ` c : (τ̄, r ′).


case(fn) Similar to the above case.


case(op) r,CE,Γ ` v1 op v2 : (int, r ′) wherer,CE,Γ ` v1 : (int, r1) andr,CE,Γ ` v2 :


(int, r2) andr ′= r1∩r2. By induction hypothesis onv1 andv2 we have thatr ′′,CE,Γ ` :


v1 : (int, r1) andr ′′,CE,Γ ` v2 : (int, r2). The required result follows from the typing


rule (op).


Theorem 5.1AssumeCI,P[s: e]−→CI′,P′[s: e′] andCI = Dom(CE) andr,CE, [ ] ` e:


τ. Then there exists aCE′ such thatr,CE′, [ ] ` e′ : τ andCI′ = Dom(CE′).


Proof. We have outlined the proof in Section 5.5.1. We include here the proofs for


some of the representative cases only.


case(let-2)CI,P[s: letx= vine2]−→CI,P[s: e2{v/x}] andr,CE, [ ] ` letx= vine2 : τ2


wherer,CE, [ ] ` v : τ andr,CE, [x 7→ τ] ` e2 : τ2. By Lemma 5.1 we establish the re-


quired result.
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case(com)CI,P[s1 : kr !v][s2 : v]−→CI′,P′[s1 : ()r ][s2 : v] andCI = Dom(CE) and


{s1},CE,Γ ` kr !v : (unit, r) and {s2},CE,Γ ` kr? : (τ̄, r). The typing rules for ex-


pressions ats1 ands2 require that{s1},CE,Γ ` kr : (chan[τ̄], r) where{s1} ⊆ r and


{s1},CE,Γ ` v : (τ̄, r) and{s2},CE,Γ ` kr : (chan[τ̄], r) where{s2} ⊆ r . It is obvi-


ous that{s1},CE,Γ ` ()r : (unit, r). By Lemma 2, using{s1},CE,Γ ` v : (τ̄, r) and


{s2} ⊆ r as assumptions, we can establish{s1},CE,Γ ` v : (τ̄, r) which is the required


result.


Lemma 5.3If r,CE,Γ ` e : τ thenr ⊆ Ls(τ).


Proof. The proof is given by induction on the typing derivation ofr,CE,Γ ` e : τ.


Some representative cases are as follows:cases(con),(var) and (fn) follow immedi-


ately from the side conditions imposed by the typing rules.casee = e1e2. Suppose


r,CE,Γ ` e1e2 : τ. The typing rule (app) requires thatr,CE,Γ ` e1 : (τ→τ1, r ′) and


r,CE,Γ ` e2 : τ. By the induction hypothesis one1 we have thatr ⊆ r ′. It follows from


the well-formedness condition for function types thatr ′ ⊆ Ls(τ1). By transitivity of the


subset relation⊆ we conclude thatr ⊆ Ls(τ1).


Lemma 5.4If r,CE,Γ ` v : τ thenLd(v) = Ls(τ).


Proof. A simple inspection of the typing rules is sufficient to prove this lemma.
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