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Synopsis

The use of safety-critical software relies crucially on the certified verification re-
lative to an unambiguous specification that the software will perform correctly,
even on the first occasion it is put to use. One way of achieving unambiguity and
assurance is to use mathematical or formal methods in the development process of
such software, so that the result is software that is mathematically proven correct
relative to a formal specification.

The concept of algebraic specification refinement embodies a framework in
which to develop software formally. In this thesis, this concept is expressed in a
different, and in many respects, richer mathematical framework, namely that of
type theory, polymorphic lambda-calculus, and an intuitionistic logic extended to
assert relational parametricity, as well as key features of specification refinement.
This translation into a different framework enables important extensions to the
concept of algebraic specification refinement that enhance the proving power, the
applicability, and hence the usefulness of the concept.
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Abstract

This thesis examines specification refinement in the setting of polymorphic type
theory and a complementary logic for relational parametricity.

The starting point is the specification of abstract data types as done in the
discipline of algebraic specification. Here, algebras are seen to match the stand-
ard notion of data type, i.e., a data representation together with operations on
that data representation. An abstract data type is then a collection of data types
sharing some well-defined abstract properties. In algebraic specification, these
properties are specified algebraically by axioms in some suitable logic. Specifica-
tion refinement then encompasses the idea that high-level specifications may be
stepwise refined to executable programs that satisfy the initial specification; all
in the framework of formal language and logic. This makes certain aspects of
program development amenable to formal, computer-aided proofs of correctness.

On the other hand, the discipline of type theory, lambda calculus, and its
semantics is the prime field for research on programming languages. This frame-
work is capable of characterising essentially any existing sequential programming-
language feature, also advanced features such as recursive types, polymorphism
and class-based object orientation. Furthermore, type theory provides a powerful
framework for mechanised reasoning.

This thesis is a contribution to lifting the idea of algebraic specification refine-
ment into the more powerful domain of type theory and lambda calculus, thus
giving the opportunity to expand in a sensible way a traditionally first order and
functional framework to a wider range of programming aspects.

We take a particular account of specification refinement and express it in a
type-theoretic setting consisting of the polymorphic lambda calculus and a logic
for relational parametricity. Key elements of algebraic specification are intern-
alised in the syntax, e.g., data types viz. algebras are inhabitants of existential
type, the latter providing essential data abstraction. For data types with only
first-order operations, this setting automatically resolves certain issues of specific-
ation refinement, such as observational equivalence, stability and input sorts.

After establishing a correspondence at first order, thus implanting the idea
of algebraic specification refinement into the type-theoretic setting, the scene is
set for lifting the idea of algebraic specification refinement to any number of
programming features. In this thesis we focus on the generalisations to higher-
order functions and to polymorphism.

A simulation relation between two data types is a relation between their data
representations that is preserved by their respective sets of operations. Using sim-
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ulation relations is a classical way of explaining data refinement and observational
equivalence. This combines with specification refinement to form specification re-
finement up to observational equivalence. With higher-order operations, however,
we encounter in the logic a phenomenon related to what happens on the semantic
level, i.e., the standard notion of refinement relation in the form of logical rela-
tions does not compose and the correspondence with observational equivalence
is lost. In the logic it turns out that the standard notion of simulation relation
fails to take into account a certain aspect of the abstraction barrier provided by
existential types. We remedy this by proposing an alternative notion of simu-
lation relation that observes this abstraction barrier more closely. We do this
in two related ways; one relates to syntactic models while the other relates to a
non-syntactic PER-model more apt for interpretive investigations.

In algebraic specification, there is a universal proof method for specification
refinement up to observational equivalence. This method can be imported soundly
into the type-theoretic setting by asserting certain axioms. At first order, showing
soundness for these axioms is straight-forward w.r.t. the standard parametric PER
model for the logic. At higher order there are two problems. First, these axioms
seemingly do not hold in the standard model. Secondly, the axioms speak in
terms of simulation relations. At higher order, it is pertinent to have versions of
the axioms featuring the abstraction barrier-observing simulation relations above,
and to prove soundness for these poses an additional challenge. We show that the
pure higher-order aspect of this problem can be solved by giving a setoid-based
semantics. For the remaining task, we continue working from the observation that
standard definitions do not observe abstraction barriers closely enough. Hence,
we propose an alternative interpretation into the PER-model for data types that
captures the abstraction barrier provided by existential types.

The main contribution of this thesis is thus in generalising a prominent account
of specification refinement to higher order and polymorphism via type theory
incorporating relational parametricity. We also shed light on short-comings in
the logic, as well as in the standard semantics, regarding the abstraction barrier
provided by existential types. Two central contributions, namely abstraction
barrier-observing simulation relations and abstraction barrier-observing semantics
for data types, are the result of observing these short-comings. Finally, the work
in this thesis also lays a foundation on which to adapt specification refinement
to an object-oriented setting, because the theoretical concepts underlying object
orientation can be seen as extensions of those for abstract data types.
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Chapter 1

Introduction

1.1 Critical Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A Development Framework . . . . . . . . . . . . . . . . . . . . 2

1.3 Abstract Data Types, Object Orientation, and Components . 3

1.4 The Theoretical Foundations . . . . . . . . . . . . . . . . . . . . 5

1.5 The Main Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A computer lets you make more mistakes faster than any invention in
human history - with the possible exceptions of handguns and tequila.

Mitch Ratcliffe, Technology Review (1992)

1.1 Critical Software

The majority of software that one utilises daily is likely to work quite satisfactorily
and within bounds of most people’s tolerance and patience. Certainly, software of
any substantial format is guaranteed to have bugs and ill-designed features that
make a system somewhat unreliable and occasionally crash. Mostly though, such
“hidden features” are merely annoying and are simply taken as a fact of life.

There is on the other hand a class of software that may under no circumstance
malfunction, because failure may result in death, injury or material loss, see e.g.,
(Leveson and Turner, 1993; SIAM, 1996; Risks Digest, 2000). Let us call such
software critical , in contrast to the non-critical utility software described above.
We are of course relying increasingly on critical software, because many critical
tasks cannot viably be done without computers, and because the trend is to let
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2 Introduction 1

software take over ever more tasks traditionally handled by mechanical devices,
on the grounds that this gives better economy and flexibility.

Software development practices that generally underlie the production of util-
ity software, do not suffice for developing critical software. This is understand-
able, because both the end-product and the development goals for the two types
of software have completely different priorities attached to them.

On a more general level, software development has for a long time demon-
strated serious short-comings in a different respect as well. Although the con-
sequences are not directly life-threatening, large software development projects
famously over-run budgets and time limits massively, and may ultimately turn out
to be not what the contractor really wanted, see e.g., (Gibbs, 1994). Moreover,
the structure of both development process and product are often such that evolu-
tionary changes are next to impossible, resulting in the system quickly becoming
obsolete, perhaps even before a working version is up and running.

1.2 A Development Framework

Much work has gone into resolving the issue of producing safe critical software.
Some years ago it could seem that formal methods would eventually be able to
prove all programs correct. This of course has not happened yet, and there has
been a certain disappointment over formal methods not delivering according to
the conceived promises. This was probably for a large part due to over-selling the
potential of formal methods and miscommunication between various communities,
a destiny shared by countless other ideas and paradigms in computer science and
computer technology. But as is also common, once the dust clears, a more realistic
picture emerges of how to use an idea or paradigm.

Formal methods now enjoy renewed interest and applicability in industry.
This is due to the continued development of better formal methods and tools,
but also to the realisation that the development of correct software will not be
solved by one hot all-encompassing programming paradigm, powerful program-
ming language, magical CASE-tool, or theoretically brilliant formal method alone.
Instead a prevailing view is that the main task at hand is to build a framework of
acknowledged methods with sound theoretical foundations. Project development
and management is not resolved by the underlying mathematical theory alone,
nor by methodologies and practices alone, but by an interaction of the two, and
by the existence of a variety of methods and ways of recognising which methods
make sense in which situations together with tools for applying those methods.

A particular view on this that is shared by many, but disputed in part by
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others, is that the art of software development should be an engineering discip-
line, i.e., software development should have a sound formal mathematical basis,
and rigorously proven or tested methodologies, modelled on other established en-
gineering disciplines. While the direct analogy is compelling, it is perhaps more
than anything else suited to highlight the deficiencies in early and still prevailing
software development practices that lack any significant scientific basis.

That software development should and can be supported by formal techno-
logy pertains not only to critical software, but also to software development in
general. The range of formal techniques is large, and different technologies can be
applied for different development purposes as suited. The formal-methods web
site http://www.comlab.ox.ac.uk/archive/formal-methods.html gives com-
prehensive references. The Common Framework Initiative (CoFI) seeks to unify
trends in algebraic specification techniques, thus working towards presenting a
coherent framework to industry, see http://www.brics.dk/Projects/CoFI.

—

The difference between theory and practice is bigger in practice than
it is in theory. Unknown

1.3 Abstract Data Types, Object Orientation,

and Components

Object orientation and abstract data type-oriented programming were two of the
programming paradigms that were supposed to resolve the software crisis. Again
this did not happen, but it is now widely accepted that object-orientation and
abstract data types implement crucial prerequisites for successful development.

Classes, objects and modules were originally programming language concepts
that have lately not only been adopted as design concepts in the large, but also
integrated as software development standards, by e.g., the Object Management
Group (OMG), and integrated in modelling languages such as the Unified Mod-
elling Language (UML), now part of OMGs standard. Links to OMG and UML
web-pages are http://www.omg.org and http://www.omg.org/uml. See also
e.g., (Pooley and Stevens, 1999) for an introduction to using UML, and also e.g.,
(Precise UML, 2000) for further developments on UML itself.

A significant feature of UML is that it provides hooks to formal methods.
For example, one can specify method behaviour with pre-, and post-conditions.
On lower levels of development, this thereby employs the triples of Hoare-logic
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(Hoare, 1969, 1972). This is facilitated using the special-purpose Object Con-
straint language (OCL) designed to interface with UML. Another example is the
feature to specify class invariants. This employs formal methods developed years
ago and described comprehensively in (Dahl, 1992). It is here also worth men-
tioning the formal description language Oslo University Notation (OUN) (Owe
and Ryl, 1999; Traore et al., 1999).

Both object orientation and abstract data types promote a module concept
that provides a notion of interface for users of a module, giving the crucial notion
of information hiding . This is a somewhat diffuse notion, but the concept is
summarised nicely in (Pooley and Stevens, 1999):

Information hiding consists of ‘abstraction’ and ‘encapsulation’.

Abstraction is when a client of a module doesn’t need to know more
than what is in the interface.

Encapsulation is when a client of a module isn’t able to know more
than what is in the interface.

An interface provides information hiding by raising an appropriate abstraction
barrier , the nature of which varies according to the level of development one is
considering. Abstraction barriers constitute the key notion in this thesis.

Abstraction gives high cohesion, i.e., unnecessary details of implementation
are hidden from the user, leaving an uncluttered view of what a module does
rather than how it does it. Encapsulation gives low coupling , i.e., low interde-
pendence of modules so that changes to one module are less likely to propagate
the necessity for changes elsewhere in the system. High cohesion and low coup-
ling are generally regarded as prerequisites for a good system. High cohesion
and low coupling enables component-based development (CBD) or component-
oriented programming (COP), which advocates development and programming
with pluggable components, a component being a unit of reuse and replacement.

What exactly constitutes a component, not to mention a standard component,
is under intense discussion at the moment. This highly relevant issue of stand-
ardisation is one of the problems haunting the re-use of software in general, and
component-based critical software development in particular.

The problem we are concerned with however, pertains to developing guaran-
teed components, whatever the notion of ‘component’ might be. Component-
based development is greatly facilitated by having components carrying a precise
specification of what they do, and some sort of guarantee that they actually fulfil
this specification. For critical software this is absolutely crucial, and the sought-
after scenario is to build critical systems with off-the-shelf components that are
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certified to appropriate safety standards. Re-use of guaranteed components is
essential for critical software, because this minimises risk and enhances main-
tainability. Ironically, at the moment there is very little re-use in this particular
application domain that would seem to need it the most. This is due to the diffi-
culty of substantiating the guarantees one would like to attach to critical software
components, as well as the standardisation issues above.

Guaranteed component-based design also makes sense economically. A com-
pany selling a safety-critical component several times over, will be able to justify
the added overhead of developing the component to a required safety standard.
Note that a much pushed argument for using formal methods is that formal meth-
ods allow semi-mechanised proof, thereby facilitating the added work of certifying
components and as a result cutting the cost. Although this argument has again
been over-sold, it remains true on a reasonable level. Indeed, newly developed
technology is making computer-aided reasoning increasingly more feasible.

—

If knowledge can create problems, it is not through ignorance that we
can solve them. Isaac Asimov

1.4 The Theoretical Foundations

This thesis works on theoretical foundations relevant to developing guaranteed
components according to a specification. Specifically, we work towards mak-
ing relevant parts of abstract data type development applicable to more powerful
proof methods and tools. In this thesis, we do not address object-oriented techno-
logy directly. Nonetheless, object orientation can be seen as based on formalisms
for abstract data types (Reddy, 1999).

1.4.1 Specification Refinement

A data type essentially consists of a data representation together with operations
on that data representation. An abstract data type is a collection of data types.
An interface provides information hiding, and two data types are instances of
the same abstract data type if they provide the same interface, i.e., they are
considered equivalent up to their abstract properties. Data types, are hence just
like algebras from universal algebra, and then abstract data types are classes of
algebras determined by given abstract properties. This is the basic observation
for the field of algebraic specification. The primary interface is provided by a
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signature guaranteeing the existence of, and giving certain syntactic information
about the operations which all algebras of that signature must have. Additionally,
one has specifications providing an additional secondary interface giving more
information about what the operations do. Specifications use various logics to give
axioms describing the operations. There can be many essentially different algebras
satisfying the axioms, and so the information provided by the specification is
abstract, or the axioms may fully specify the behaviour of the operations, in which
case there is in essence only one model for the specification. On top of this, one
usually declares behavioural equivalence as a further abstraction mechanism. This
is the idea that if the behaviours of two data types are indistinguishable for users
of the data types, then they indeed share the same abstract properties, regardless
of differences in internal implementation that may imply that they do not fulfil
the same axioms. This sensibly extends the concept of abstract property. An
important instance of behavioural equivalence is observational equivalence, where
equal behaviour is defined on the basis of observable computations on the algebra.

A framework in algebraic specification and other specification paradigms that
has had a certain amount of success and enjoys particular applicability is that of
stepwise specification refinement , e.g., (Sannella and Tarlecki, 1997, 1988b, 1987),
(Back and Wright, 1998), (Morgan, 1994), (Hoffmann and Krieg-Brückner, 1993).
The idea is that a program is the end-product of a stepwise refinement process
starting from an abstract high-level specification. At each refinement step, some
design decisions and implementation issues are resolved, and if each refinement
step is proven correct, the resulting program is guaranteed to satisfy the initial
specification. A stepwise approach is more manageable than one massive devel-
opment step, and also facilitates iterative development. This formal methodology
for software development is supported e.g., by the specification language Exten-
ded ML (EML) for Standard ML (SML) (Paulson, 1996) result programs.

Specifications and specification refinement belong on the implementation level
of software development. With specification refinement one can develop specifica-
tion-correct abstract data types where properties that are expressible in the rel-
evant logic are guaranteed. This method can at present only help certify certain
highly specific parts of the guarantee one would like to associate with a compon-
ent, but it still provides substantial benefits to the overall verification process.

Formidable research has been done in the field of algebraic specification, see
(Cerioli et al., 1997). In addition, the spirit of specification refinement has been
adopted or kindled by disciplines other than algebraic specification, see (Engel-
hardt and de Roever, 1998). In many instances this lifts the initial ideas to a
more powerful and hence more usable technology. This thesis follows this trend.
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1.4.2 Computer-aided System Development

Software engineering has a characteristic that makes it unique amongst engineer-
ing disciplines: Since programming languages are formal languages, the product
delivered, namely a piece of software, belongs technically in the same realm as the
discipline’s theoretical foundations, namely formal mathematics of one sort or an-
other. This means that in theory, the formal description and model of the planned
system, can be more or less seamlessly transformed into the planned system it-
self. Wide-spectrum specification languages such as Extended ML (Kahrs et al.,
1997, 1994; Sannella, 1991), the language of the Refinement Calculus, (Morgan,
1994; Back and Wright, 1998), ABEL (Dahl and Owe, 1991, 1995; Dahl and Kris-
toffersen, 1995), the languages in the PROSPECTRA project (Hoffmann and
Krieg-Brückner, 1993; Krieg-Brückner et al., 1991; Krieg-Brückner, 1990), and
CIP-L (Bauer et al., 1981; CIP-L, 1985), have the target programming language
embedded in them. Then through stepwise refinement, the abstract specification
gets transformed into a concrete executable program.

The relatedness of theoretical foundation and end-product facilitates mech-
anical reasoning, i.e., computer-aided development on the certification aspect.
Mechanical aid is an absolute necessity, in order to certify critical software com-
ponents of any substantial size. What can be mechanically proven is bounded
by what can be formalised, so there is no promise yet of automatic systems de-
velopment. However, critical properties of specialised components may benefit
substantially from mechanised reasoning. It is also the case that state-of-the-art
reasoning tools are getting ever more powerful and user-friendly, now incorporat-
ing an arsenal of heuristics as well.

1.4.3 Lambda Calculus and Type Theory

For the above scenario of specification refinement to work, certain criteria must
be fulfilled, at least to some degree. Ideally,

1. the programming languages used should have a formal semantics

2. the specification formalism should be expressive enough

3. there should be a well-defined refinement relation

4. there should be a well-defined notion of abstraction

5. there should exist computer-aided tools for formal reasoning



8 Introduction 1

As of yet, (1) is fulfilled by almost no commercial programming languages. Im-
portant exceptions are Standard ML (Milner et al., 1997), and ongoing efforts on
Java (Nipkow et al., 2000; Oheimb and Nipkow, 1999; Coglio et al., 2000; Qian,
1999; Drossopoulou et al., 1999; Attali et al., 1998, 2000; Java Semantics, 2000).
The other points are fulfilled for various frameworks. However, (1) is fulfilled for
a wide range of lambda-calculi, thus almost all features found in commercial se-
quential programming languages are given a precise semantics via (typed) lambda
calculus (Landin, 1965, 1966). Lambda calculus and type theory thus play the rôle
of the most important research object on which to investigate features of “real”
programming languages, imperative, functional or object oriented. Moreover,
through type theory one gets access to a range of highly-developed proof assist-
ants, e.g., Coq (Coq, 2000), Isabelle (Isabelle, 2000) and LEGO (LEGO, 2000),
see also (Proof General, 2000), for formal semi-automated reasoning.

1.4.4 Specification Refinement Generalised

The notions and the main body of research in algebraic specification refinement
have been intrinsically first-order. There is a desire to transfer the successful
concept of specification refinement and its theoretical rigour to a wider class of
language principles, and to go beyond the first-order boundaries inherent in the
universal algebra approach. There have been several good attempts at amend-
ing the formalisms of algebraic specification to deal with higher-order functions
(Meinke, 1992; Kirchner and Mosses, 1998), and many other features, see (Cerioli
et al., 1997). But the resulting formalisms are often difficult. In comparison, type-
theoretic formalisms express higher-order functions and more advanced features
of programming languages with ease and uniformity.

Our main motivation for the work in this thesis lies in the obvious opportunity
to lift the idea of specification refinement to a wide range of programming features
through the power of type theory and lambda calculus.

1.4.5 Polymorphism and Relational Parametricity

More specifically, we will express the particular account of algebraic specification
refinement due to (Sannella and Tarlecki, 1997, 1988b,a, 1987; Sannella et al.,
1992; Sannella and Wirsing, 1983) in a type-theoretic setting consisting of the
polymorphic lambda calculus (Girard, 1971; Reynolds, 1974) and a logic for rela-
tional parametricity (Plotkin and Abadi, 1993). In this setting we will specifically
deal with higher-order functions, and also polymorphic functions, i.e., functions
that capture a uniform behaviour across all types.
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Polymorphism turns out to be extremely powerful. One can encode various
semantic notions in syntax by using polymorphism (Mitchell and Plotkin, 1988),
(Böhm and Berarducci, 1985), (Pierce et al., 1989). One gets syntactic represent-
ations for abstract data types, algebras and specification refinement. With the
assumption of relational parametricity, (Reynolds, 1983; Ma and Reynolds, 1991),
these constructs become universal constructs in the sense of category theory, i.e.,
the encodings mirror exactly their intended meanings. Internalising semantic con-
cepts into type theory is highly beneficial, because as mentioned above, one then
has a multitude of semi-automated reasoning tools available.

1.5 The Main Goals

The overall goal of the research herein is to contribute to the formal underpinnings
of component-based software development, by lifting the concept of algebraic
specification refinement to higher-order and polymorphism via type theory. We
now provide a more specific overview. It will be helpful to consult fig. 1.1.

1.5.1 A Simplification at First Order

There are several ways of expressing specifications and specification refinement in
type theory. First of all, we choose the formulation of data types as inhabitants of
existential types (Mitchell and Plotkin, 1988). Existential types provide informa-
tion hiding in an elegant way. Then we straightforwardly form specifications and
express specification refinement in terms of existential types. The way of writ-
ing specifications has a slight resemblance to a form suggested in (Luo, 1993),
although the type theory in question is a different one. An important feature
in our setting is that for data types with only first-order operations, the addi-
tional assumption of relational parametricity lifts the straightforward forms for
specification and specification refinement to observational equivalence. Thus vir-
tually without doing anything, we automatically get observational specifications
and specification refinement up to observational equivalence. This is because the
assumption of relational parametricity entails that data types are equal exactly
when they are observationally equivalent. This also means that constructors, or
parameterised programs in the sense of (Goguen, 1984; Schoett, 1986; Sannella
and Tarlecki, 1997) are inherently stable, i.e., preserve observational equival-
ence. Thus, toilsome issues in algebraic specification become trivialities in this
type-theoretic setting. An additional example is that the information-hiding ab-
straction barrier provided by existential types also automatically singles out a
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sensible choice of input types corresponding to input sorts in algebraic specifica-
tion. Input sorts determine parameters to observable computations, which again
define observational equivalence.

1.5.2 A Correspondence at First Order

It seems then, that the type-theoretic setting incorporating relational parametri-
city has something to offer algebraic specification. Prior to further development,
however, the two notions of specification refinement, i.e., the type-theoretic no-
tion and the originating one from algebraic specification, are shown to coincide
in basic terms, for data types with only first-order operations. Thus the type-
theoretic account of specification refinement has algebraic specification refinement
embedded. This lays the foundation for lifting specification refinement to new
concepts and features.

1.5.3 Simulation Relations

Above we said that one must have a well-defined notion of abstraction. That is,
one must make precise when one module can replace another in a program con-
text. This directly relates to component-based development (CBD) mentioned
earlier. Currently the favoured view is that two modules are interchangeable if
they are behaviourally equivalent. As mentioned previously, one way to define
this technically is by observational equivalence, i.e., by defining a set of des-
ignated observable computations (returning printable values, say), and defining
two modules to be behaviourally equivalent, if all observable computations return
equal results regardless of which module one plugs into the computation.

In general it is hard to show observational equivalence. For development pur-
poses, it is often better to use some notion of refinement relation. In particular,
a simulation relation is a relation between the data representations of two data
types, such that their corresponding operations preserve the relation. At first
order, one can define simulation relations that correspond to observational equi-
valence, but for data types with higher-order functions this becomes difficult and
not in general possible. We will develop an alternative notion of simulation rela-
tion in the logic that works at arbitrary order. The main ingredient is a weakened
arrow-type relation, that is motivated by the abstraction barrier inherent in ex-
istential types. On the semantic level, alternative notions of refinement relation
have recently been studied in (Honsell et al., 2000; Honsell and Sannella, 1999;
Kinoshita and Power, 1999; Kinoshita et al., 1997; Plotkin et al., 2000), and our
work provides in spirit, a syntactic counterpart to these and on-going studies.
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However, there is a conceptual difference in our approach. The semantic altern-
ative notions of refinement relation incorporate lambda definability in some way
or another. We do that as well, but instead of absolute definability, we assert a
looser definability w.r.t. virtual operations in abstract data types. A more thor-
ough comparison between semantic notions and our syntactic notion of alternative
simulation relation is left as future research.

1.5.4 A Proof Method for Observational Refinement

There is a universal proof method for showing specification refinement up to
observational equivalence that has been formalised in (Bidoit et al., 1997; Bidoit
and Hennicker, 1996; Bidoit et al., 1995) in the context of algebraic specification.
This proof method cannot be expressed in the type-theoretic setting and logic
of (Plotkin and Abadi, 1993). The method can however be imported by soundly
asserting certain axioms postulating the existence of quotients and subobjects.
This proof method is also instrumental in showing the above correspondence of
refinement in type theory to the notion in algebraic specification.

At first order, soundness for these axioms for quotients and subobjects can
be verified w.r.t. the parametric PER-model (Bainbridge et al., 1990), one of the
more interesting models for Plotkin and Abadi’s logic. At higher order, we are
here able to show soundness for the axioms w.r.t. a parametric setoid semantics.

It is also necessary to consider versions of these axioms incorporating the al-
ternative notion of simulation relation. By observing that the abstraction barrier
present in the type theory and lambda calculus through existential types, is again
not adequately reflected, this time in the semantics, one can define an interpret-
ation specifically for data types that does incorporate the abstraction barrier.
This semantics then shows soundness for the axioms incorporating the alternat-
ive notion of simulation relation. In this, the parametric PER-model is kept as
structure, but the interpretation map is modified.

1.5.5 Related Work

The work in this thesis relates to other work in several ways. First of all, we
build on the work of others, e.g., we use the account of algebraic specification
mainly due to Sannella and Tarlecki, and map it into the type-theoretic setting
consisting of Girard and Reynold’s System F and Plotkin and Abadi’s logic for
parametric polymorphism. We also import a generic proof strategy formalised by
Bidoit, Hennicker and Wirsing into the type-theoretic setting.
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Secondly, the idea of expressing principles of algebraic specification in type
theory is not new; we give references to other work later on. The novelty in
this thesis is to formally map specification refinement from algebraic specifica-
tion into the indicated specific type-theoretic setting, and then to generalise to
higher-order and polymorphism. The work closest related to ours is probably
that of (Poll and Zwanenburg, 1999; Zwanenburg, 1999) which demonstrates a
principle of data refinement for first-order signatures in the same type-theoretical
setting that we consider. It is from here we have the idea of extending the logic
with axioms postulating the existence of quotients and subobjects, in order to
mirror Bidoit et al ’s proof strategy in the type theory. Our work differs in that
our discussion is based on well-established concepts and strategies from the field
of algebraic specification, that we do a formal translation into the type-theoretic
setting, and that we use this setting to generalise to higher order and polymorphic
signatures. The axiom schema for subobjects appeared in (Hannay, 1999a), and
then independently in (Zwanenburg, 1999) in a similar version. The setoid se-
mantics in this thesis settles the question posed in (Zwanenburg, 1999) regarding
the soundness of asserting higher-order functions over subobjects and quotients.

Thirdly, our discussion concerning the alternative notion of simulation relation
in the logic relates to ongoing work on the semantic level, in particular perhaps, to
the pre-logical relations of Honsell and Sannella. Finally, all related work known
to us is indicated at relevant places in the main discussion.

—

Foolproof systems do not take into account the ingenuity of fools.
Gene Brown

1.6 Structure

We have aimed for this thesis to be somewhat self-contained, but compromises
have been made. We hope the result is reasonably understandable.

Chapter 2 reviews the basics of algebraic specification, highlighting the con-
cepts of constructor implementation, observational equivalence and stability. The
originating notions in this chapter serve as a stepping stone and motivation for
the development in type theory in chapters to come.

Chapter 3 gives a fuller account of typed lambda calculi. Starting from the
simply-typed lambda calculus, we go via inductive type definition and on to the
polymorphic lambda calculus. We review how abstract types are expressed as ex-
istential types, and highlight a crucial aspect of the information-hiding abstraction
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barrier provided by existential types. This crucial aspect is the cornerstone of the
later discussion and development.

Chapter 4 presents notions of specification and specification refinement in
the type theory and logic. We demonstrate how certain issues in algebraic spe-
cification are trivially resolved in the type-theoretic setting at first order. We
then define a translation mapping algebraic specification refinement to the type-
theoretic notion, and we show an exact correspondence between the two notions
for basic specifications. The universal method formalised by Bidoit, Hennicker
and Wirsing for proving observational refinements is imported soundly into the
type-theoretic setting, by including axioms asserting the existence of quotients
and subobjects. Soundness for the axioms is easily shown w.r.t. the parametric
PER-model. It is indicated how to do this in Ch. 6 in the validation of more
general versions of these axioms.

Chapter 5 takes on the problems arising when introducing higher-order oper-
ations in data types. The standard notion of simulation relation is seen to ignore
the crucial aspect of the existential-type abstraction barrier. Thus at higher order,
the composability of simulation relations is lost, and the coincidence of observa-
tional equivalence with the existence of a simulation relation is no longer robust.
Both problems are solved by developing an alternative notion of simulation rela-
tion that respect the crucial aspect of the existential-type abstraction barrier. We
also show the stability of System F constructors independently of any connection
between observational equivalence and equality at existential type.

Chapter 6 generalises the universal method for proving observational refine-
ment, to higher order. New versions of the axioms asserting the existence of quo-
tients and subobjects are used that utilise the alternative notion of simulation
relation developed earlier. However, the higher-order versions of these axioms do
seemingly not hold in the parametric PER-model, so we must look for alternatives
for showing the soundness of the logic augmented by the higher-order versions of
these axioms. An interesting solution is to modify the standard interpretation
into the parametric PER-model. The basis for this modification is again that
the standard formalism does not adequately reflect all aspects of the existential-
type abstraction barrier. In order to know when to apply the resulting special
data type semantics, we introduce a method of annotating types for specific use
for data type operations. We also consider a setoid-semantics based on work in
(Hofmann, 1995a). The resulting model proves the soundness at higher order of
the original axioms in Ch. 4. Although this model cannot validate the above-
mentioned versions of the axioms featuring the alternative notion of simulation
relation, the result is still useful, and also resolves an interesting open problem.



14 Introduction 1

Chapter 7 takes up the issue of polymorphism inside data types to a fuller
extent. It is in fact necessary to use a polymorphic lambda calculus of higher order
than System F, in order to express that the data representation of data types
depends on element types. However, the notions of observational equivalence and
simulation relation can still be expressed in System F terms. This means that
the results developed in earlier chapters lift easily to this scenario.

Chapter 8 summarises the thesis and presents further directions of research.
Finally, there is an appendix containing material and proofs omitted from the
main text. There is also an author index and a subject index giving the primary
occurrences of central notions.

—

There are three protagonists in our setting. First there is the user . The user
is either a programmer or a client program using a program module. The user is
interested in program module interfaces, and will want to be spared from knowing
the finicky details of a module in use, and from violating an employed module’s
internal functioning. Both these aspects are taken care of by the information
hiding principle mentioned earlier.

Then there is the specifier . The specifier is involved in developing a system
and is probably a person. The specifier will be interested in good utilities and
formalisms to aid in the specification of abstract modules which will ultimately
yield program modules with well-defined interfaces and information hiding.

Finally there is we. We are the writer, or the writer and reader of this thesis,
and sometimes other people developing formalisms and theory in computer sci-
ence. In this thesis, we are attempting to aid the specifier, by supplying underlying
theory that the specifier may use through some sort of interface. The interface
between the theory and specifier is a syntax or a set of formalisms for specifying
abstract modules that the specifier may use without knowing all the underlying
theoretical details.

Finally, we, the writer, wish the reader a fruitful read.

—

Producing 25 kg of computer generates about 22 kg of toxins and
63 kg of other rubbish. Einar Flydal — Telenor





—

Fig. 1.1 gives a conceptual overview of the thesis: Concepts of algebraic specification
refinement are expressed in a type-theoretical setting. At first order, the existence of
simulation relations coincides with observational equivalence, and simulation relations
compose. The proof strategy for observational refinement is expressed by adding axioms
for quotients and subobjects to the logic. Soundness of the logic extended with these
axioms is shown w.r.t. the parametric PER model. The axioms use simulation relations.
At higher order, the coincidence between simulation relations and observational equival-
ence breaks down, as does the composability of simulation relations. One solution is to
devise an alternative notion of simulation relation that observes the abstraction barrier
inherent in existential types. These abstraction barrier-observing simulation relation
give rise to new axioms for the proof strategy. Soundness for these axioms is proved by
giving an abstraction barrier-observing semantics for data types. The axioms for the
proof method without the alternative notion of simulation relation are justified w.r.t. a
parametric setoid model. The main body of work emphasises the development for data
types with higher-order operators. Data types with polymorphic operators are treated
by pointwise extensions of the achieved results for higher-order operations. The work
in this thesis lays a foundation for data types utilising further programming constructs.

—
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Fig. 1.2 gives an overview of the most central technical results of the thesis. The
lines indicate relatedness of issues. The result concerning data types with polymorphic
operations are not included, since they are derived directly from the core results.

—
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In this chapter we give a brief background of algebraic specification refinement.
We begin with some basics of universal algebra and algebraic specification. Then
specification refinement is introduced, and then we focus on three essential in-
gredients of refinement, namely constructor implementations, observational equi-
valence and stability. There are several styles of algebraic specification and of
algebraic specification refinement. The concept of algebraic specification origin-
ated in the pioneering work of e.g., (Guttag, 1975; Goguen et al., 1978; Liskov
and Zilles, 1974). The particular accounts adhered to here are due mainly to
(Sannella and Tarlecki, 1997, 1988b,a, 1987; Sannella et al., 1992; Sannella and
Wirsing, 1983), where (Sannella and Tarlecki, 1997) gives a descriptive overview
that is particularly readable.

—
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2.1 Basics

Let Σ = 〈S, Ω〉 be a signature, consisting of a set S of sorts , and an S∗×S-sorted
set Ω of operation names. We write function profiles f : s1×· · ·×sn → s ∈ Ω,
meaning f ∈ Ωs1,...,sn,s. If n = 0, we write f : s, in which case f is a constant .
Semantically, we consider total algebras with non-empty carriers. A Σ-algebra
A = 〈(A)s∈S, F 〉 therefore consists of an S-sorted set (A)s∈S of non-empty carriers
together with a set F containing a total function fA ∈ (As1×· · ·×Asn → As) for
every f : s1×· · ·×sn→ s ∈ Ω. The class of Σ-algebras is denoted by ΣAlg, and
the class of Σ-homomorphisms from A to B is denoted by ΣAlg(A, B). We also
write φ : A→B to indicate that φ is a homomorphism from A to B.

Given a countable S-sorted set X of variables, the free Σ-algebra over X is
denoted TΣ(X), and for s ∈ S the carrier TΣ(X)s contains the terms of sort s.
Usually, TΣ(∅), the Σ-ground-term algebra, is written GΣ.

Let Σ′ = 〈S ′, Ω′〉 be a signature contained within Σ, and let A′ be a Σ′-algebra.
The class of Σ-algebras containing A′, i.e., whose S ′-sorted carriers are A′

s for
s ∈ S ′, and whose interpretation of every f ∈ Ω′ is fA′, is denoted ΣAlg(A′).

Reflecting the situation in most programming languages, we will in general
assume certain built-in data types. These are represented by designated built-in
sorts and operations that have fixed interpretations. For example, we assume nat-
ural numbers and booleans and their usual operations to be available anywhere.
We therefore assume a designated signature ΣLib which may be assumed to be
contained in signatures if necessary. The contents of ΣLib will in each situation
contain the sorts and operations of the utilised built-in data types. The predeter-
mined interpretation of ΣLib is the ΣLib-algebra Lib representing the built-in data
types. For a signature Σ containing ΣLib , we will thus be interested in algebras
in ΣAlg(Lib). A typical example is of course

ΣLib
def
= 〈{Nat, Bool}, 0 :Nat, succ :Nat→Nat, true :Bool, false :Bool〉

where
Lib

def
= 〈{N, B}, {0, succ, true , false}〉

where N denotes the set of natural numbers, B is the set of booleans, succ is
the successor function, and true and false are the boolean truth values, but in
future we may assume other built-in data types and also various extensions to
the natural numbers and booleans with the usual operations.

We consider sorted logics. For now we consider first-order logic where equality
is the only predicate. A formula ϕ is a Σ-formula if all terms in ϕ are of sorts
in S. The satisfaction of formulae by a Σ-algebra A is defined as usual. Let
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ν = (νs : Xs → As)s∈S be an S-sorted family of functions. Then ν extends
uniquely to a homomorphism φν :TΣ(X)→A. In this context ν is usually called a
valuation, and φν is called an interpretation since the latter can be seen as giving
a meaning in A to the terms in TΣ(X). A Σ-equation u = v is satisfied by A if for
all ν : X→A, φν(u) = φν(v). The semantics of other formulae are then defined
as usual on the basis of the semantics of equations. In the world of algebraic
specification, this is done classically, rather than constructively.

Now let Ax be a set of closed Σ-formulae. Then SP = 〈Σ,Ax 〉 is a basic
algebraic specification, and its semantics [[SP ]] is the class of algebras in ΣAlg(Lib)

that are models of Ax , i.e., those algebras in ΣAlg(Lib) that satisfy every formula
in Ax . Given any basic specification SP , we indicate its components by ΣSP and
Ax SP . We will in Sect. 2.6 introduce specification-building operators for building
complex specifications from basic specification. Everything introduced in the
following applies also to complex specifications, unless indicated otherwise.

It is customary to display specifications in a programming/specification-langu-
age style syntax as illustrated in the following example. From now on, we leave
built-in sorts and operations implicit.

Example 2.1 The following specification specifies stacks of natural numbers.

spec STACK is

sorts Stack

operations empty : Stack, push : Nat× Stack→Stack,

pop : Stack→Stack, top : Stack→Nat

axioms Ax STACK : ∀x :Nat, s :Stack . pop(push(x, s)) = s

∀x :Nat, s :Stack . top(push(x, s)) = x
�

In programming, an entity consisting of a data representation together with
operations on that data representation, is sometimes called a data type. Hence
data types can be seen as algebras in the above sense of universal algebra; indeed
Mitchell and Plotkin call data types data algebras in (Mitchell and Plotkin, 1988).
This is the basic observation for the field of algebraic specification.

An abstract data type (ADT) essentially consists of a family of data types shar-
ing some abstract properties, usually given by an interface of some sort. This is
a loose definition and there are many ways of making this more precise. Algebras
in universal algebra have already a primary interface provided by the signature.
This guarantees the existence of operations which all algebras of that signature
must have, as well as giving certain syntactic information about those opera-
tions. In algebraic specification one furthermore has specifications that provide
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more information about what the operations do. A specification can be more
or less abstract . For basic specifications, the more abstract they are, the more
non-isomorphic algebras they have as models. If the axioms fully specify the
behaviour of the operations, there is only one model up to isomorphism for the
specification, in which case the specification is concrete. Later, observational ab-
straction will add a new level of abstraction. In any case, it is clear that the type
of specification we are dealing with here is

the specification of abstract data types

and this is the topic with which this thesis is primarily concerned.

2.2 Specification Refinement

For any one abstract data type there can exist many specifications characterising
that abstract data type. Stepwise specification refinement is the constructive
version of this statement. Given an abstract specification of an abstract data
type, one seeks to construct a replacement specification for the same abstract
data type. In addition one adds direction to this process in that the replacement
specification is less abstract. This constitutes a refinement step, and this process
is repeated if possible until a concrete specification emerges. This then constitutes
a refinement process, where the goal is to develop in a sound methodical way a
concrete specification from an abstract specification.

Wide-spectrum specification languages allow specifications and programs to be
written in one uniform language, so that specifications are abstract descriptions of
abstract data types, while program modules are concrete executable descriptions
of the same. The resulting concrete specification of a refinement process is in this
case an actual executable program.

Algebras satisfying a specification are often referred to as realisations of a
specification. The final concrete specification in a refinement process is called a
full refinement of the abstract specification. In the case where the concrete spe-
cification happens to be a program, this then also refers to the unique realisation
up to isomorphism of the final specification.

There are various notions of specification refinement, e.g., (Sannella and Tar-
lecki, 1997, 1988b, 1987), (Back and Wright, 1998), (Morgan, 1994), (Hoffmann
and Krieg-Brückner, 1993). Important wide-spectrum specification languages are
Extended ML (Kahrs et al., 1997, 1994; Sannella, 1991), ABEL (Dahl and Owe,
1991, 1995; Dahl and Kristoffersen, 1995), CIP-L (Bauer et al., 1981; CIP-L,
1985), languages in the PROSPECTRA project (Hoffmann and Krieg-Brückner,
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1993; Krieg-Brückner et al., 1991; Krieg-Brückner, 1990), and the language of the
Refinement Calculus, see (Morgan, 1994) and (Back and Wright, 1998).

The basic definition of refinement we adopt here is given by the following
refinement relation � on specifications of the same signature (Sannella and
Tarlecki, 1988b; Sannella and Wirsing, 1983):

SP �SP ′ def⇔ [[SP ]] ⊇ [[SP ′]]

In this case we say that the specification SP refines to the specification SP ′, and
that SP ′ is a refinement of SP .

There are two indispensable refinements as it were, of the refinement relation.
One introduces constructors, the other involves behavioural abstraction.

2.3 Constructor Implementation

A refinement process involves making decisions about design and implementation
detail. At some point, a particular function or module may become completely
determined and remain unchanged throughout the remainder of the refinement
process. It is convenient to lay aside the fully refined parts and continue devel-
opment on the remaining unresolved parts only. Let κ be a parameterised pro-
gram (Goguen, 1984) with input interface SP ′ and output interface SP . Given
a program P that is a full refinement of SP ′, the instantiation κ(P ) is then a
full refinement of SP . The semantics of a parameterised program is a function
[[κ]] ∈ (ΣSP ′Alg → ΣSPAlg) called a constructor . Constructor implementation is
then defined (Sannella and Tarlecki, 1988b) as

SP �
κ SP ′ def⇔ [[SP ]] ⊇ [[κ]]([[SP ′]])

where [[κ]]([[SP ′]]) denotes the image of [[SP ′]] under [[κ]]. The parameterised pro-
gram κ is the fully refined part of the system which is set aside, and SP ′ specifies
the remaining unresolved part that needs further refinement. One then gets the
refinement scenario

SP0 �κ1
SP1 �κ2

· · · �κn SPn

where, as i increases, the SP i specify the ever smaller unresolved part of the
system, whereby SPn is the empty specification. The result program of the re-
finement process is then obtained by composing the sedimentary κi precipitated
out during the process:

κ0(κ1(· · · (κn(∅) · · ·)))
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Here ∅ is the unique empty model of the empty specification. Parameterised
programs correspond in spirit to SML functors (Paulson, 1996), to SIMULA class-
parameterised functions and class-parameterised classes (Kirkerud, 1989; Pooley,
1987; Dahl and Nygaard, 1981; Dahl et al., 1970; Dahl and Nygaard, 1966),
to Modula-3 generic modules (Nelson, 1991), and to Java object-parameterised
objects (Borror, 1999; Flanagan and Ferguson, 1999).

2.4 Observational Equivalence

A major point in algebraic specification is that an abstract specification really is
abstract enough to give freedom of implementation. The notion of behavioural
abstraction captures the concept that two programs are considered equivalent if
their observable behaviours are equivalent. Algebraically, one assumes a desig-
nated set Obs ⊆ S of observable sorts, and a designated set In ⊆ S of input sorts.
Observable computations are represented by terms in TΣ(XIn)s, for s ∈ Obs and
where XIn

s = Xs for s ∈ In and ∅ otherwise. The signature Σ = 〈S, Ω〉 is assumed
sensible w.r.t. In ⊆ S, that is, we assume that TΣ(XIn), the free Σ-algebra gen-
erated by XIn , is non-empty in every sort, meaning there exists a term of every
sort built from function symbols in Ω possibly using variables from XIn .

Two Σ-algebras A and B are observationally equivalent w.r.t. Obs, In, written
A ≡Obs,In B, if they satisfy the same equations at observable sorts, i.e., if there
exist surjective valuations νA : XIn → A and νB : XIn → B such that for all
u, v ∈ TΣ(XIn)s, s ∈ Obs, we have φνA(u) = φνA(v) ⇔ φνB(u) = φνB(v). This
encompasses notions due to e.g., (Reichel, 1987; Nivela and Orejas, 1988; Sannella
and Tarlecki, 1987, 1988b; Schoett, 1986), see (Hennicker, 1997).

Suppose now that all observable and input sorts are built in, i.e., have prede-
termined semantics in the built-in data type algebra Lib. In this case, the above
definition of observational equivalence reduces to A and B being observationally
equivalent if every observable computation computes to the same value in A and
B, i.e., if for all νA : XIn → A and νB : XIn → B that agree on XIn , we have
φνA(u) = φνB(u) for all u ∈ TΣ(XIn)s, s ∈ Obs . We shall return to this later
in Ch. 4 when we look at specification up to observational equivalence in type
theory. The type theory will have built-in observable data types.

Now, the semantics [[SP ]] is not always closed under observational equivalence.
For example, the stack-with-pointer implementation of stacks of natural numbers
does not satisfy pop(push(x, s)) = s, because there might be junk values above
the top-pointer, and is therefore not in [[Stack]], but is nevertheless observationally
equivalent w.r.t. Obs = In = {Nat} to an algebra that is. To capture this idea of
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abstraction, one defines the closure under observational equivalence of a class C
of algebras as Abstract(C) def

= {B | ∃A ∈ C . B ≡Obs,In A}. One then introduces
observational specifications by writing

abstract SP wrt ≡Obs,In

whose semantics is given by

[[ abstract SP wrt ≡Obs,In ]]
def
= Abstract([[SP ]])

The previous notions of refinement, then give refinement up to observational equi-
valence (Sannella and Tarlecki, 1988b), if the specifications involved are observa-
tional specifications.

Why do we want designated input sorts? One extremal view is to say that
observable computations should be ground terms, proclaiming In = ∅. But that
would be too strict in a refinement situation where a data type depends on another
as yet undeveloped data type. On the other hand, letting all sorts be input sorts
would disallow intuitively feasible observational refinements as illustrated in the
following example from (Hennicker, 1997).

Example 2.2 Consider the following specification of sets of natural numbers.

spec SET is

sorts Set

operations empty : Set, add : Nat× Set→Set

in : Nat× Set→Bool, remove : Nat× Set→Set

axioms Ax SET : ∀x :Nat, s :Set . add(x, add(x, s)) = add(x, s)

∀x, y :Nat, s :Set . add(x, add(y, s)) = add(y, add(x, s))

∀x :Nat . in(x, empty) = false

∀x, y :Nat, s :Set . in(x, add(y, s)) = if x =Nat y then true

else in(x, s)

∀x :Nat, s :Set . in(x, remove(x, s)) = false

∀x, y :Nat, s :Set . x �=Nat y ⇒ in(x, remove(y, s)) = in(x, s)

Consider the ΣSET-algebra ListImpl (LI ) whose carrier LI Set is the set of finite
lists over the natural numbers; emptyLI gives the empty list, addLI appends a
given element to the end of a list only if the element does not occur already,
inLI is the occurrence function, and removeLI removes the first occurrence of a
given element. Being a ΣSET-algebra, LI allows users only to build lists using
emptyLI and addLI , and on such lists the efficient removeLI gives the intended
result. However, LI �∈ [[ abstract SET wrt ≡Obs,In ]], for Obs = {Bool, Nat}
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and In = {Set, Bool, Nat}, because the observable computation in(x, remove(x, s))

might give true, since s ranges over all lists, not only the canonical ones generated
by emptyLI and addLI . On the other hand, LI ∈ [[ abstract SET wrt ≡Obs,In ]]

for In = Obs = {Bool, Nat}, since now the use of Set-variables in observable
computations is prohibited. �

Restricting input sorts means restricting the range of observations one may
make, because observations may only observe certain parts of the data represent-
ation. For the user observing from outside the data type, this effectively restricts
the data representation. For example, although LI in the above example uses
the set of all lists as data representation, users may only use the parts of this
data representation that can be expressed in terms of emptyLI and addLI . It
would make no difference to the user if LI instead used a more complicated data
representation consisting of lists in which elements occur only once.

There has been debate about how to choose the set of input sorts. In Ex-
ample 2.2, the correct choice was In = Obs. Many hold that In = Obs is
practically always a sensible choice. It turns out that when we later enter the
realm of type theory, this choice is in a sense inherent. Choosing In = Obs is in
any case a simplifying assumption.

2.5 Stability

Observational refinement steps are in general hard to verify. A helpful concept is
that of stability (Schoett, 1986). A constructor [[κ]] is stable if

A ≡Obs ′,In′
B ⇒ [[κ]](A) ≡Obs,In [[κ]](B)

Under stability, it suffices for proving

(abstract SP wrt ≡Obs,In) �
κ (abstract SP ′ wrt ≡Obs′,In′

)

to show [[ abstract SP wrt ≡Obs,In ]] ⊇ [[κ]]([[SP ′]]), i.e., it suffices to show

(abstract SP wrt ≡Obs,In) �
κ SP ′

This simplification is hugely beneficial, since one can now consider algebras only
in [[SP ′]]. For SP ′ a basic specifications, this in particular means that we can
assume literal satisfaction of the axioms of SP ′.

To justify this, assume [[ abstract SP wrt ≡Obs,In ]] ⊇ [[κ]]([[SP ′]]). We want
to show [[ abstract SP wrt ≡Obs,In ]] ⊇ [[κ]]([[(abstract SP ′ wrt ≡Obs ′,In ′

)]]).
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Let A′ ∈ [[(abstract SP ′ wrt ≡Obs ′,In ′
)]], i.e., there exists a B′ ∈ [[SP ′]], such

that A′ ≡Obs ′,In ′
B′. We must show the existence of an A ∈ [[SP ]] such that

[[κ]](A′) ≡Obs,In A. By assumption we have the existence of a B ∈ [[SP ]], such that
[[κ]](B′) ≡Obs,In B. Stability then gives [[κ]](A′) ≡Obs,In [[κ]](B′) ≡Obs,In B.

The other direction is trivial, since [[SP ′]] ⊆ [[(abstract SP ′ wrt ≡Obs ′,In ′
)]],

hence the simplified proof criterion is also the necessary condition.
The following contrived but short example from (Sannella and Tarlecki, 1997)

illustrates the point. See e.g., (Schoett, 1986) for a more realistic example.

Example 2.3 (Sannella and Tarlecki, 1997) Consider the specification

spec TRIV is

operations id : Nat× Nat× Nat→Nat

axioms AxTRIV : ∀x, n, z :Nat . id(x, n, z) = x

Now we define the constructor Tr ∈ (ΣSTACKAlg → ΣTRIVAlg) as follows. For
any algebra A ∈ ΣSTACKAlg, define multipushA ∈ (N × N × AStack→AStack) and
multipopA ∈ (N×AStack→AStack) by

multipushA(n, z, a) =

{
a, n = 0

pushA(z,multipushA(n′, z, a)), n = succ(n′)

multipopA(n, a) =

{
a, n = 0

multipopA(n′, popA(a)), n = succ(n′)

Then Tr(A) is the TRIV-algebra whose single operation is given by

id(x, n, z) = topA(multipopA(n,multipushA(n, z, pushA(x, emptyA)))).

We have [[abstract TRIV wrt {Nat}, In]] ⊇ Tr([[abstract STACK wrt {Nat}, In]]),
but to prove this only assuming membership in [[abstract STACK wrt {Nat}, In]]

is not straight-forward. However, Tr is in fact stable, so it suffices to show
[[abstract TRIV wrt {Nat}, In]] ⊇ Tr([[STACK]]), and the proof of this goes by
easy induction (Sannella and Tarlecki, 1997). In particular, one may now hold
∀x : Nat, s : Stack . pop(push(x, s)) = s among ones assumptions, although this
formula does not hold in [[abstract STACK wrt {Nat}, In]]. �

One still has to prove the stability of constructors. However, since constructors
are given by concrete parameterised programs, this can be done in advance for the
language as a whole. A key observation is that stability is intimately related to
the effectiveness of encapsulation mechanisms in the language. There is much to
say about this, but here we only indicate the issue with another slightly contrived
but short example.
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Example 2.4 (Sannella and Tarlecki, 1997) Let Tr ′ ∈ (ΣSTACKAlg→ΣTRIVAlg)

be the constructor such that Tr ′(A) is the TRIV-algebra whose operation is

id(x, n, z) =

{
x, popA(pushA(z, emptyA)) = emptyA

z, otherwise

Now [[abstract TRIV wrt {Nat}, In]] �⊇ Tr ′([[abstract STACK wrt {Nat}, In]]),
because if we now consider A the array-with-pointer algebra, we shall get Tr ′(A) �∈
[[abstract TRIV wrt {Nat}, In]]. Here Tr ′ is not stable; in fact Tr ′ breaches the
abstraction barrier by checking equality on the underlying implementation. �

2.6 Specification-Building Operators

Algebraic specifications may be complex, built from basic specifications using
specification-building operators. Various specification languages provide various
specification-building operators, but there are certain canonical ones, in terms
of which most others may be expressed, see e.g., (Wirsing, 1993; Sannella and
Wirsing, 1983, 1999).

A central specification-building operator is the derive operator. It is defined
in terms of reducts as follows. For signatures Σ = 〈S, Ω〉 and Σ′ = 〈S ′, Ω′〉, a
signature morphism σ : Σ′ → Σ maps the sorts and operator symbols of Σ′ to
those of Σ such that sorts are preserved, i.e., if t :s where s ∈ S ′, then σ(t) :σ(s)

where σ(s) ∈ S. For a Σ-algebra A, the σ-reduct A|σ of A is the Σ′-algebra with
carriers (A|σ)s = Aσ(s) for each sort s ∈ S ′ and fA|σ = σ(f)A for each f ∈ Ω′. If
σ is not surjective, the effect is that of hiding , i.e., removing, those carriers and
operators of A which are not interpretations of symbols in σ(Σ′). Now we have

[[derive SP by σ ]]
def
= {A|σ | A ∈ [[SP ]]}

for ΣSP = Σ. We have Σderive SP by σ
def
= Σ′. If the signature morphism is an

inclusion ι :Σ′→Σ, one usually writes reducts simply as A|Σ′, and uses the hide

keyword instead, i.e., for S ′′ = S \ S ′ and Ω′′ = Ω \ Ω′,

[[hide sorts S ′′ operations Ω′′ in SP ]]
def
= {A|Σ′ | A ∈ [[SP ]]}

The sum operator is defined by ΣSP sum SP ′
def
= ΣSP ∪ ΣSP ′, and

[[ SP sum SP ′ ]]
def
= {A ∈ ΣAlgΣSP sum SP′ | A|ΣSP

∈ [[SP ]] ∧ A|ΣSP′ ∈ [[SP ′]]}

We omit the definition of translate.
Any first-order specification built from a basic specification by applying the

canonical specification building operators sum, derive, and translate (Sannella
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and Wirsing, 1999) can be algorithmically normalised to a basic specification,
possibly with a hide operator outermost (Wirsing, 1993; Farrés-Casals, 1992;
Cengarle, 1995).

A common specification-building operator which is expressible by sum is
enrich, with semantics

[[ enrich SP by sorts S ′ ops Ω′ axioms Ax ′ ]]
def
=

{A ∈ Σ′Alg | A|Σ ∈ [[SP ]] ∧ A |= Ax ′}

where ΣSP = Σ = 〈S, Ω〉 and Σenrich SP by sorts S′ ops Ω′
def
= Σ′ = 〈S ∪ S ′, Ω ∪ Ω′〉.

The other relevant operators are abstract and behaviour, and also quotient

and restrict. The semantics of the first two operators are related. First we have

[[ abstract SP wrt ≡ ]]
def
= {B | ∃A ∈ [[SP ]] . B ≡ A}

for any equivalence relation ≡ on ΣSPAlg. The equivalence ≡ usually goes under
the name behavioural equivalence. The special case ≡Obs,In that we have seen
before in Sect. 2.4, is called an observational equivalence.

For a signature Σ = 〈S, Ω〉, a partial Σ-congruence ≈A= (≈As)s∈S on a Σ-
algebra A is a family of partial equivalence relations on A that are compatible
with Σ, i.e.,

ai ≈Asi
bi ⇒ f(a1, . . . , an) ≈As f(b1, . . . , bn)

for every f : s1×· · ·×sn → s ∈ Ω. The domain Dom(≈A) of ≈A is given by
Dom(≈A)s

def
= {a ∈ As | a ≈As a} for all s ∈ S. A total Σ-congruence ≈A is

such that Dom(≈A) = A. For any Σ-algebra A and total Σ-congruence ≈A, the
quotient algebra A/≈A is formed by (A/≈A)s

def
= As/≈As, for every s ∈ S, and

fA/≈A([a1]As1/≈As1
, . . . , [an]Asn/≈Asn

)
def
= [fA(a1, . . . an)]As/≈As

for every f :s1×· · ·×sn→s ∈ Ω. For any Σ-algebra A and a set of Σ-equations E,
the congruence ∼A

E induced by E is defined as the least Σ-congruence containing
{〈φ(l), φ(r)〉 | 〈l, r〉 ∈ E}, for all Σ-homomorphisms φ : TΣ(X)→A. One usually
writes A/E for the quotient w.r.t. this total congruence.

A subalgebra of a Σ-algebra A, is a Σ-algebra B such that Bs ⊆ As for all
s ∈ S, and fB is the restriction of fA to B, for all f ∈ Ω.

The restriction of ≈A to the subalgebra Dom(≈A) is total. We now get

[[behaviour SP wrt ≈ ]]
def
= {A ∈ ΣSPAlg | Dom(≈A)/≈A ∈ [[SP ]]}

where ≈ = (≈A)A∈ΣSPAlg is a family of partial ΣSP -congruences. This family is
usually called a behavioural congruence.
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Semantically, abstract and behaviour fulfil the same task in practice. Here
is an outline why, see (Bidoit et al., 1995) for details. The reason for considering
the behaviour approach is that it is the basis for a refinement calculus.

Let ≡ be any equivalence on ΣAlg, and let ≈ be any family of Σ-congruences.
Then ≡ is factorisable by ≈, if for all A, B ∈ ΣAlg,

A ≡ B ⇔ Dom(≈A)/≈A
∼= Dom(≈B)/≈B

Factorisability means that we can express the equivalence between algebras by
a congruence on each algebra. For observational equivalences this is always the
case, and this is instrumental for proving observational refinements. The reason
we need partial congruences is in case the input sorts do not include all sorts of
the signature. For example, if we were to refine the specification SET from Ex-
ample 2.2 using a specification of lists, the appropriate observational congruence
on lists would be defined only on lists generated by empty and add. The domain
of this congruence would then include only those values representing such lists.

Now, given such a family of congruences ≈, which might be an observational
congruence ≈Obs,In factorising an observational equivalence, a Σ-specification SP

is said to be behaviourally closed (or behaviourally consistent) w.r.t. ≈, if

{Dom(≈A)/≈A | A ∈ [[SP ]]} ⊆ [[SP ]]

This is methodologically an obvious requirement for observational specification
(Bidoit et al., 1997, 1995). Another notion is that of ≈ being weakly regular ,
(Bidoit et al., 1995). We omit the definition; every observational congruence is
weakly regular. It is then shown in (Bidoit et al., 1995) that under factorisability,
behavioural closedness and weak regularity,

[[ abstract SP wrt ≡ ]] = [[behaviour SP wrt ≈ ]]

We return to these facts in the next section.
The semantics of quotient, where ≈ is family of total ΣSP -congruences, goes

as follows.
[[quotient SP by ≈ ]]

def
= {A/≈A | A ∈ [[SP ]]}

The semantics of restrict are more complicated. Let Σ = 〈S, Ω〉 and let
S ′ ⊆ S. We now write In = S \S ′. This is no coincidence, because we will look at
restrict in connection with observational specification in a moment. A Σ-algebra
A is reachable on S ′ if there is no proper Σ-subalgebra whose In-sorted carriers
are the same as those of A. Equivalently, let XIn ⊆ X denote the In-sorted
variables of X. Then A is reachable on S ′ if and only if for every a ∈ A there is a



2.7 Specification-Building Operators 33

term t ∈ TΣ(XIn) such that φ(t) = a for some homomorphism φ : TΣ(XIn)→A.
Any Σ-algebra A has a unique Σ-subalgebra which is reachable on S ′, denoted
RS′(A). We then get

[[ restrict SP on S ′ ]]
def
= {RS′(A) | A ∈ [[SP ]]}

There is an obvious connection between observational specification and the
quotient and restrict operators, because we can factorise an observational equi-
valence through a congruence. We can thus look at a certain quotient specific-
ation. If the congruence is partial, one has to use restrict prior to quotienting.
We will come back to this later, but suffice it to say that this relates observa-
tional specification to the forget-restrict-identify (FRI) implementation strategy
of algebraic specification (Wirsing, 1990). The FRI structure goes as follows.

quotient (restrict (derive SP by σ : Σexport → ΣSP ) on S ′) by ≈

for Σexport =
〈
Sexport , Ωexport

〉
, S ′ ⊆ Sexport , and ≈ a family of total Σexport -

congruences. Its semantics is {RS′(A|σ)/≈ | A ∈ [[SP ]]}. Note that the input
sorts In are now Sexport \ S ′. The idea behind the forget step is to hide internal
implementation. There is a range of model classes according to the choice of S ′.
The case S ′ = ∅ gives R∅(A|σ)/≈ = A|σ/≈, and corresponds to the special case
forget-identify (FI). The case S ′ = Sexport is of course ground term denotability.

Let us return to the issue of the normalisability of specifications. The normal-
isability result mentioned earlier applies only to specifications built from basic spe-
cifications using sum, derive, and translate, and not to the other non-derivable
specification building operators we have mentioned. However, in a refinement
context it can be argued that abstract and behaviour should be seen as meta-
operators and should only be applied outermost (Bidoit et al., 1996). A similar
argument can be made for quotient and restrict, although specifications with
the restrict operator are normalisable, albeit with infinitary axioms.

This all means that theoretically, it is fine to only consider observational spe-
cifications of the form abstract SP wrt ≡Obs,In where SP is in normal form.
When we later translate specifications into type theory and show an exact corres-
pondence between type-theoretic refinement and the algebraic specification notion
of refinement, we thereby do this for complex specifications as well.

This does by no means render specification-building operators superfluous.
The specifier will of course still want to use specification-building operators in
order to modularise and structure his specification.
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2.7 Proving Observational Refinement

Specifications using abstract are based on the intuitive semantic notion of obser-
vational equivalence. On the other hand, the approach represented by behaviour

provides a better basis for devising proof methods, because behavioural congru-
ences may be axiomatised and thereby expressed in the logic.

There exists a sound and complete calculus �Π�
for behaviour specification

refinement, based on a calculus �ΠS
for structured specifications. By the equival-

ence of abstract and behaviour under factorisability and behavioural closed-
ness, this calculus deals with abstract specifications as well, see (Bidoit et al.,
1997). The caveat is of course that completeness is here modulo the underlying
predicate logic. Also, the calculus �Π�

imposes certain reasonable restrictions on
specifications, e.g., in the context of hide. We will come back to this in Sect. 4.6.

The refinement proof strategy for behaviour specifications, and thus for
abstract specifications, is based on a Galois correspondence between so-called
behaviour classes and behavioural quotients, entailing that in order to prove that

(behaviour SP wrt ≈ ) � SP ′

it suffices to prove
SP � SP ′/≈

where [[ SP ′/≈ ]]
def
= {Dom(≈A)/≈A | A ∈ [[SP ′]]}. If the partiality of ≈ is express-

ible by restrict, we get the sufficient condition of

SP � quotient (restrict SP ′ on S ′) wrt ≈

for some appropriate S ′. The strategy now seeks to axiomatise the partial con-
gruence, giving Ax (∼), where ∼ is a new symbol representing ≈. Then Ax (∼)

is added for proving relativised versions of the SP -axioms, i.e., versions where,
roughly, equality is replaced by ∼ (Bidoit and Hennicker, 1996). The strategy is
illustrated in Example 2.5 below. A comprehensive up-to-date account of work
on observational specification and on proving observational refinement is (Hen-
nicker, 1997), which also includes the results of (Bidoit et al., 1997; Bidoit and
Hennicker, 1996; Bidoit et al., 1995).

2.8 Simplified Equational Proofs

There is an opening for simplification in the case of basic equational specifications
in observational refinement. Suppose now the behavioural congruence can be
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expressed by equations. It would then be proof-technically convenient if these
latter equations could be used in an equational calculus directly in conjunction
with other equations specifying the data type, without having to introduce a new
symbol ∼ etc. This would also preserve the equational character of the refinement,
meaning that efficient equational reasoning tools can still be employed.

In (Hannay, 1998) it is shown that this is indeed possible, provided one in-
corporates the appropriate abstraction barrier in the equational calculus. The
resulting calculi �FI and �FRI appear in Sect. A.1 in Appendix A. It suffices to
restrict the congruence (monotonicity) axiom of the equational calculus to con-
texts without designated hidden symbols, i.e., imposing referential opacity , see
(Qian and Goldberg, 1993; Søndergaard and Sestoft, 1990) for other uses of refer-
ential opacity. Without such an abstraction barrier, the resulting set of equations
may be inconsistent since (the axioms for) hidden operators might not respect
the intended equality predicate.

Example 2.5 In this adaptation of a classic illustrative example e.g., (Sannella
and Tarlecki, 1988b), the specification SET is refined by using BAG and specific-
ation building operators. We have the following simple specification of sets.

spec SET is

sorts Set

operations empty : Set, add : Nat× Set→Set

in : Nat× Set→Bool

axioms Ax SET : ∀x :Nat, s :Set . add(x, add(x, s)) = add(x, s)

∀x, y :Nat, s :Set . add(x, add(y, s)) = add(y, add(x, s))

∀x :Nat . in(x, empty) = false

∀x, y :Nat, s :Set . in(x, add(y, s)) = if x =Nat y then true

else in(x, s)

We then specify bags, i.e., multisets as follows.

spec BAG is

sorts Bag

operations empty : Bag, add : Nat× Bag→Bag

count : Nat× Bag→Nat

axioms AxBAG : ∀x, y :Nat, b :Bag . add(x, add(y, b)) = add(y, add(x, b))

∀x :Nat . count(x, empty) = 0

∀x, y :Nat, s :Set . count(x, add(y, b)) = if x =Nat y then

succ(count(x, b)) else count(x, b)
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The idea is to put an appropriate interface on bags as specified by BAG, so that
they look like sets as specified by SET. This may be done by adding in as an
interface operator, then hiding its implementation in terms of count. This results
in the following specification.

spec BlackBAG is

derive

enrich BAG by

operations in : Nat× Bag→Bool

axioms ∀x :Nat, b :Bag . in(x, b) = count(x, b) > 0

by σ = ι[Set �→ Bag]

where σ is the signature morphism from ΣSET to ΣBlackBAG which is the identity
on everything except the sort Set which is renamed to Bag. The morphism is not
surjective thus hiding count. We want, for Obs = In = {Bool, Nat},

(abstract SET wrt ≡Obs,In) � (abstract BlackBAG wrt ≡Obs,In)

The implicit identity constructor is stable, so it suffices to show

(abstract SET wrt ≡Obs,In) � BlackBAG

or by the equivalence to behaviour,

(behaviour SET wrt ≈Obs,In) � BlackBAG

where ≈Obs,In identifies bags that represent the same set. Then by the Galois
connection, it suffices to prove

SET � BlackBAG/≈Obs,In

Here, ≈Obs,In is easily axiomatisable by a new symbol ∼ using in, e.g.,

Ax (∼)
def
= ∀b, b′ :Bag . b ∼ b′ ⇔ ∀x :Nat . in(x, b) = in(x, b′)

and then we can prove the refinement by proving relativised SET-axioms, i.e.,
the axioms where equality at sort Set is replaced by ∼.

However it is also possible to simply add the missing characteristic set axiom.
For this we first look at

SET � SETbyBAG

where SETbyBAG is the FI-structure

spec SETbyBAG is

quotient BlackBAG by E ′ : {add(x, add(x, s)) = add(x, s)}
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There is an essential abstraction barrier in the FI-structure. Crucially, the hiding
derive step is done before quotienting, since quotienting in the presence of hidden
operators might give inconsistency. Thus in SETbyBAG, count is hidden before
quotienting. The specification would otherwise be inconsistent w.r.t. the intended
semantics on Nat, since any model B = A/E ′ would then have to satisfy e.g.,

2 = countB(x, addB(x, addB(x, emptyB))) = countB(x, addB(x, emptyB)) = 1

To sum up, the desired congruence is a congruence on ΣBlackBAG-algebras, but
not on ΣBAG-algebras, and the FI-structure ensures the appropriate abstraction
barrier in syntax and semantics.

Now, in the refinement proof, if we are to simply add the quotienting

add(x, add(x, s)) = add(x, s)

to the equations, the abstraction barrier in the specificational structure has to be
mirrored somehow in the logic. Note that although count is ultimately hidden
both in the specification and in the semantics, this hidden symbol and its axioms
are needed for reasoning, since in is implemented in terms of it.

In (Hannay, 1998), the calculus �FI, which is sound and complete w.r.t. FI-
specification structures, can be used in verifying this refinement. The calcu-
lus ensures the safe interaction between the set E of equations associated with
BlackBAG and the set E ′ of equations introduced in the quotienting step forming
SetbyBag. For instance, although we would have

�FI add(x, add(x, empty)) = add(x, empty)

referential opacity would prevent the inference

�FI count(x, add(x, add(x, empty))) = count(x, add(x, empty))

which would have given �FI 2 = 1. The inference is illegal because count is a
hidden operator symbol. Referential opacity thereby ensures soundness and is
an appropriate abstraction barrier in the calculus. There is also a calculus �FRI

which is sound and complete for FRI-specification structures.
In closing this example, we mention that in an executable implementation of

SetbyBag, the derive operator might be implemented by an encapsulation mech-
anism hindering outside access to count, and the quotient operator might be
implemented by an equality predicate. �

We used this simple example to illustrate proof strategies, but it should be
pointed out that the example is too simple to really warrant the use of any of
these proof methods. More realistic examples abound in the literature.
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2.9 Specification of Constructors

We close this chapter by very briefly showing how one can specify constructors.
We have seen how to specify programs or algebras via abstract data types. It
is natural to try to specify parameterised programs or constructors as well. The
simplest form of constructor specification is

SP ′→SP

where [[SP ′ → SP ]]
def
= {F : ΣSP ′Alg→ ΣSPAlg | A ∈ [[SP ′]] ⇒ F (A) ∈ [[SP ]]}.

Constructors satisfying specifications of the form above have no obligation to
produce algebras that depend in any way on the input algebras. If such a de-
pendency is desired, one can use a dependent constructor specification of the form

ΠS :SP ′.SP [S]

where SP [S] is a data-type parameterised specification.

Example 2.6 A specification of Example 2.3’s Tr can be given by the dependent
constructor specification

ΠS :abstract STACK wrt {Nat}, In . abstract TRIVe[S] wrt {Nat}, In

where TRIVe[S] is

hide operations multipush, multipop in

operations multipush :Nat× Nat× S.Stack→S.Stack,

multipop :Nat× S.Stack→S.Stack, id :Nat× Nat× Nat→Nat

axioms AxTr : ∀n, z :Nat.∀s :S.Stack . multipop(n, multipush(n, z, s)) = s

∀x, n, z :Nat .

id(x, n, z) = S.top(multipop(n, multipush(n, z, S.push(x, S.empty))))

�

We refrain from defining and giving the semantics of data-type parameterised spe-
cifications SP [S] formally. This would be defined by induction on the structure
of SP [S], and would for each instance algebra S involve Σ′Alg(S), i.e., models
containing an algebra S, cf. Sect. 2.1. Here Σ′ is the signature of some subspe-
cification of SP [S].

Given the semantics of data-type parameterised specifications, and provided
ΣSP [S] does not depend on S, we can easily give the semantics of ΠS :SP ′.SP [S]

as [[ΠS :SP ′.SP [S]]]
def
= {F :ΣSP ′Alg→ΣSPAlg | A ∈ [[SP ′]] ⇒ F (A) ∈ [[SP [A]]]}.
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In this chapter we present the type-theoretic setting consisting of the second-order
polymorphic lambda calculus System F and the logic for relational parametric
polymorphism due to Plotkin and Abadi. Although our technical discussion will
mainly be done w.r.t. System F, it will be useful to view System F in a wider
context. We start by reviewing the simply-typed lambda calculus. Then inductive
types are explained. After that, the general polymorphic lambda calculus Fω is
introduced, which we then restrict to F3 and F2, the latter being what is known
as System F. We will use F3 in Ch. 7. We then look at the building blocks of
abstract data types in System F. The logic for relational parametric polymorphism
is presented, and at the end we briefly present the PER semantics for the logic
due to Bainbridge et al, and also syntactic models due to Hasegawa.

3.1 Introduction

Ch. 2 outlined an account of algebraic specification perfected by Sannella and
Tarlecki. Our goal is now twofold. First we would like to extend the established
concepts of specification refinement to deal with higher-order signatures and poly-
morphism. Secondly, we want to internalise the semantic notions of refinement

39
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into syntactic formalisms in the hope that the process of refinement will become
more amenable to mechanical proof aids. The polymorphic lambda calculus is a
good choice in which to do this, and indeed this is not a new idea. In (Mitchell
and Plotkin, 1988) the notion of algebra is internalised into a version (SOL) of the
second-order polymorphic lambda-calculus. In (Luo, 1993) a notion of specifica-
tion refinement is expressed in the Extended Calculus of Constructions. There is
lots of other work linking algebraic specification and type theory, some of which
we will get back to later. There are also non-type theoretic approaches to higher-
order operations using higher-order universal algebra (Meinke, 1992), and various
other set-theoretic models (Kirchner and Mosses, 1998).

3.2 The Lambda Calculus

The main motivation behind lambda calculus and combinatory logic is the view
that functions are foundational, rather than derived notions of Zermelo-Fraenkel
set theory. The pioneers of lambda-calculus (Church) and combinatory logic
(Schönfinkel and Curry) had grand visions of developing a functional foundation
for logic and parts of mathematics. This vision has yet to be fulfilled, but the main
motivation remains and has of course found extensive theoretic and pragmatic
justification in the present-day proliferation of computer technology.

In conjunction with type theory, there now exist numerous lambda calculi in
various classifications, see e.g., (Barendregt, 1992) for the famous λ-cube, and
(Jacobs, 1996) for an alternative to the cube. Present-day lambda calculi are
all in spirit based on the ideas in Church’s original formulation (Church, 1940,
1941). It is now common to take the simply-typed lambda calculus as a basis and
define other lambda calculi as extensions to this basis. The extensions are roughly
speaking defined according to what manner of dependencies are allowed for types,
i.e., to what degree and combination one allows types to depend on types and
types to depend on terms. Our discussion uses the polymorphic lambda calculus
without dependent types, i.e., types may depend on types, but not on terms.

We will now survey the notions necessary for our discourse. For fuller accounts,
see e.g., (Barendregt, 1992; Mitchell, 1996; Girard et al., 1990; Pierce et al., 1989).
Our account is a pragmatic one. It would be theoretically and aesthetically more
pleasing to describe the various lambda calculi in the framework of e.g., Pure
Type Systems, but the overhead is not quite justifiable for our purposes.

—
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3.2.1 The Simply-Typed Lambda Calculus

The simply-typed lambda calculus is in principle close to (Church, 1940). For
TyC a collection of type constants, TeC a collection of term constants, and TeV

a collection of term variables , the abstract syntax for types and terms of the
calculus is given by the following grammars.

(types) T ::= C | (T→T )

(terms) t ::= c | x | (λx :T.t) | (tt)

for all C ∈ TyC , c ∈ TeC , and x ∈ TeV . Parentheses are omitted from the syntax
whenever no ambiguity arises, with the usual conventions that → associates to
the right and application associates to the left, i.e., T1→ T2→· · ·→ Tn−1→ Tn

stands for (T1 → (T2 → · · · → (Tn−1 → Tn) · · ·)) and t1t2 · · · tn−1tn stands for
((· · · (t1t2) · · · tn−1)tn). We also sometimes write λx1 : T1, x2 : T2, · · · , xn : Tn.t for
(λx1 :T1.(λx2 :T2.(· · · (λxn :Tn.t) · · ·))). We might in later chapters also use other
obvious abbreviations. The collection FTeV (t) of free term variables of a term t

is defined inductively as follows.

FTeV (x) = x

FTeV (tt′) = FTeV (t) ∪ FTeV (t′)

FTeV (λx :T.t) = FTeV (t) \ {x}

A term variable that is not free is said to be bound . A term with no free term
variables is closed .

Two terms which differ only in the names of bound variables are said to be
α-equivalent . Terms that are α-equivalent are regarded as identical. However,
one still talks about α-conversion, i.e., renaming bound variables in a term. One
is thus actually talking about equivalence classes of terms. For our purposes we
adopt the usual custom of ignoring such details.

The substitution t[u/x] of u for the free occurrences of term variable x in t is
defined as follows for x �= y.

x[u/x] = u

y[u/x] = y

(tt′)[u/x] = (t[u/x])(t′[u/x])

(λy :T.t)[u/x] = λy :T.(t[u/x])

(λx :T.t)[u/x] = λx :T.t

This definition of substitution only works if we obey Barendregt’s variable conven-
tion, namely that bound variables are always chosen to differ from free variables
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in a term. This is justified by α-equivalence and greatly simplifies the presenta-
tion. Adopting this convention also means sweeping certain issues under a thick
carpet (as does adopting α-equivalence itself), but see (Vestergaard and Brother-
ston, 2001b,a). Again we follow custom and claim that the simplified view works
and is correct for our purposes. We may write t[u] instead of t[u/x] if it is clear
what is meant. We also write t[x] to indicate a possible occurrence of variable x

in term t.
The well-formed expressions of the language are now given by term formation

rules. A term context Γ = {x1 :T1, . . . xk :Tk} is a set where any term variable xi

occurs at most once. We write Γ, x :T meaning Γ ∪ x :T where x does not occur
in Γ. A typing judgement has the form Γ � t :T , for a context Γ, term t and type
T . Term formation is then given by the following inference rules.

te-var : x :T � x :T

te-weak : Γ � t :T ′

Γ, x :T � t :T ′

te-abstr :
Γ, x :T ′ � t :T

Γ � λx :T ′.t : T ′→T

te-app :
Γ � t :T ′→T, Γ � t′ :T ′

Γ � tt′ :T

We use typing judgements also for meta-level statements. Hence we might write
Γ� t :T or perhaps just t :T meaning ‘t has type T (in context Γ)’; more precisely
this really means ‘Γ � t :T is derivable by the term formation inference rules’.

Finally for operationality in the calculus, there is the β-conversion schema:

β : (λx :T ′.t[x])t′ �β t[t′]

One also internalises a meta statement concerning β-conversion by including the
η-conversion schema:

η : (λx :T ′.tx) �η t

for x �∈ FTeV (t). The relation �βη relates t and t′ if t can be converted to t′ by
either the β rule or the η rule. The reflexive-transitive closure of �βη is written as
�∗

βη. We have that �∗
βη is strongly normalising. The reflexive-transitive closure

�∗ of a non-reflexive relation � is strongly normalising if

∀t.∃!u.(t�∗u ∧ ¬∃v.u�v)

This comprises a schematic simply-typed lambda calculus. Viewing �∗
βη as

computation, this schema is only capable of terminating computations. Depend-
ing on the collections TyC and TeC and additional contraction rules, we get
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different instances and extensions of this schema giving particular, possibly non-
terminating simply-typed lambda calculi. For example, with TyC = {Nat, Bool}
and TeC = {0 : Nat, succ : Nat→ Nat, true : Bool, false : Bool} ∪ Comb, where
Comb contains RT : (T→ (T→Nat→T )→Nat→T ) and DT : (T→T→Bool→T )

for every type T , and additional conversion rules

RT tu0 � t

RT tu(succx) � u(RT tux)x

DT tt′true � t

DT tt′false � t′

we get Gödel’s System T. This simply-typed lambda calculus is still strongly
normalising. The schema for primitive recursion is given by RNat, so this system
can express every primitive recursive function. However, since we have ‘primitive
recursion’ at every type, we can represent much more than the primitive recursive
functions on N, but all represented functions must be terminating, i.e., total .
The functions on N that are representable in System T are exactly those that are
provably total in first-order Peano arithmetic.

A variant is obtained by replacing RT and its conversion rules with the iterator
ItT : (T→(T→T )→Nat→T ) for every type T , with conversion rules

ItT tu0 � t

ItT tu(succx) � u(ItT tux)

In this calculus one can define Ackermann’s function which grows quicker than any
primitive recursive function. The iterators ItT can be defined from the primitive
recursors RT . If one has pairing, then the primitive recursors can conversely be
defined from the iterators.

Finally, if one instead adds the fixed-point operator YT : ((T → T )→ T ) for
every type T with conversion rule

YT f � f(YT f)

one gets the full power of general partial recursion, which is of course not in
general terminating. This simply-typed lambda calculus corresponds loosely to
PCF (Plotkin, 1977).

A lambda calculus can provide the non-logical syntax for a logic. Thus one
may reason formally about programs. We are indeed interested in devising such
a logic, but we will defer this until Sect. 3.3.
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3.2.2 The Simply-Typed Lambda Calculus

with Inductive Types

To cater for user-defined types one can enhance the simply-typed lambda calculus
with a means for defining types inductively.

The syntax schema for an inductive type definition is

IndType α generated by

g1 :T11→· · ·→T1n1
→α

and g2 :T21→· · ·→T2n2
→α

...
and gm :Tm1→· · ·→Tmnm

→α

This comes with an iteration schema

ItαT : α →(T11→· · ·→T1n1
→α)[T/α]

→(T21→· · ·→T2n2
→α)[T/α]

...
→(Tm1→· · ·→Tmnm

→α)[T/α]

→T

where T ′[T/α] denotes T ′ with all occurrences of α replaced by T . There are m

conversion rules for ItαT . They have the form

ItαT (giti1 · · · tini
)f1 · · · fm � fi(ti1 · · · tini

)[(ItαT tf1 · · · fm)/t]

where t′[(ItαT tf1 · · · fm)/t] denotes a multiple term replacement, resulting in t′

with every subterm t :α replaced by ItαT tf1 · · · fm.
It is assumed that α, when viewed as a type variable, only occurs positively

in any Tij above. A type variable occurs positively in a type T if it is in the set
TPos(T ) defined by

TPos(X) = {X} for X a type variable
TPos(T ′→T ) = TNeg(T ′) ∪ TPos(T )

where the set of negatively occurring variables TNeg(T ) is defined by

TNeg(X) = ∅ for X a type variable
TNeg(T ′→T ) = TPos(T ′) ∪ TNeg(T )

We have not yet introduced type variables, but the idea should be clear. The
insistence of positivity here is related to the situation for complete lattices, where
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the condition of covariance for any function on the lattice ensures the existence
of least and greatest fixed points, by Tarski’s fixed point theorem.

Any first-order algebraic signature Σ as described in Ch. 2 can be translated
into an inductive type (Böhm and Berarducci, 1985).

Here is an example of all this.

IndType listNat generated by

nil : listNat

and cons : Nat→ listNat→ listNat

The iteration schema is

ItlistNatT : listNat →T

→Nat→T→T

and the conversion rules are

ItlistNatT nilfnilfcons � fnil

ItlistNatT (consnl)fnilfcons � fconsn(ItlistNatT lfnilfcons)

We have delayed presenting the abstract syntax. It goes as follows. Let TyN be
a collection of type names and TeG be a collection of constructor names . The
abstract syntax of the simply-typed lambda calculus with inductive types is given
by the following grammars.

(programs) P ::= t | I P

(inductive type def) I ::= IndType α | IndType α generated by G

(constructors) G ::= g :T | g :T and G

(types) T ::= α | C | (T→T )

(terms) t ::= g | c | x | (λx :T.t) | (tt)

for all α ∈ TyN , g ∈ TeG , C ∈ TyC , c ∈ TeC , and x ∈ TeV .
Theoretically one can justify rendering TyC = TeC = ∅, since one can define

the usual built-in types inductively. For example

IndType nat generated by

0 : nat

and succ : nat→nat

and
IndType bool generated by

true : bool

and false : bool
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with corresponding iterators and conversion rules given by the above schemata.
One can furthermore define products and sums or coproducts inductively with
constructors pair, and inl, inr respectively. The unit type with one inhabitant
and the empty type with no inhabitants can also be defined inductively, although
degenerately. Destructors such as pred for nat , car and cdr for list , fst and snd

for products and case for sums, are defined using the iteration schemes, although
some of these need pairs.

3.2.3 The Polymorphic Lambda Calculus

Through the Curry-Howard-Feys correspondence, the lambda calculus gets both a
logical and a computational motivation. In this respect, the polymorphic lambda
calculus originated in logic with (Girard, 1971), and originated computationally
with (Reynolds, 1974). We will continue to focus on the computational aspect.

The polymorphic lambda calculus is an extension of the simply-typed lambda
calculus. This is clearer in the framework of PTSs, but in essence the extension
consists in the ability to abstract over type variables and in being able to define
types of higher kinds. One may think of this being done by including a lambda
calculus over types. For TyV a collection of type variables, the polymorphic
lambda calculus has the following abstract syntax.

(kinds) K ::= ∗ | (K→K)

(types) T ::= X | (T→T ) | (∀X :K.T ) | (λX :K.T ) | (TT )

(terms) t ::= x | (λx :T.t) | (tt) | (ΛX :K.t) | (tT )

for all X ∈ TyV and x ∈ TeV .
Conventions about parentheses and association are analogous to the ones for

the simply typed calculus, with obvious additions. For example, we may write
ΛX1 : K1, X2 : K2, . . . , Xn : Kn.t : ∀X1 : K1, X2 : K2, . . . , Xn : Kn.T instead of
(ΛX1 :K1.(ΛX2 :K2.(...ΛXn :Kn.t)...)) : (∀X1 :K1.(∀X2 :K2.(...∀Xn :Kn.T )...)).

The only variable binder for the simply-typed lambda calculus is λ, and this
binder determines the definition of free term variables, α-equivalence, and ulti-
mately substitution. Variable binders now include Λ, ∀, and λ for types. The
definition of the collection FTeV (t) of free term variables of a term t is exten-
ded in the obvious manner, and the collections FTyV (t) and FTyV (T ) of free
type variables in term t and type T are defined analogously to FTeV . Again, a
variable that is not free is said to be bound . A closed term has no free term or
type variables. A closed type has no free type variables. Types have no free term
variables because we do not have (term-)dependent types.
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The definition of α-equivalence extends to the new variable binders in the
obvious way, as does the definition of substitution, again under the assumption
of Barendregt’s variable convention; the latter now for term and type variables.

To define the well-formed expressions, we must now employ kinding judge-
ments and type formation rules as well as typing judgements and term formation
rules. A type context ∆ = {X1 :K1, . . .Xk :Kk} is a set where any type variable
Xi occurs at most once. We write ∆, X :K meaning Γ ∪X :K where X does not
occur in ∆. Type formation is given by the following inference rules.

ty-var : X :K � X :K

ty-weak : ∆ � T :K ′

∆, X :K � T :K ′

ty-abstr :
∆, X :K ′ � T :K

∆ � λX :K ′.T : K ′→K

ty-app :
∆ � T :K ′→K, ∆ � T ′ :K ′

∆ � TT ′ :K

ty-→ :
∆ � T :∗, ∆ � T ′ :∗

∆ � T→T ′ :∗

ty-∀ :
∆, X :K � T :∗
∆ � ∀X :K.T :∗

Again we will use kinding and typing judgements also for meta-level statements.
There is βη-conversion for types:

βT : (λX :K ′.T [X])T ′ �βT
T [T ′]

ηT : (λX :K.TX) �ηT
T

for X �∈ FTyV (T ) for the latter.

Typing judgements for term formation must now include kinding judgements
for the types involved in the typing judgement. For example, the typing judge-
ment f :X→X � f :X→X is only valid when X :∗� X→X :∗. Thus a typing
judgement will have the form ∆ � Γ � t :T , where each type U occurring in Γ is
such that ∆�U :K for some kind K, and ∆�T :∗. Terms can only be of types of
kind ∗. As before, a context Γ = {x1 :T1, . . . xk :Tk} is a set where any xi occurs
at most once, but now with the above proviso on the Tis. The term formation
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rules go like this:

te-var : ∆ � x :T � x :T

te-weak : ∆ � Γ � t :T ′

∆ ∪∆′ � Γ, x :T � t :T ′ if ∆ ∪∆′ � T :∗

te-abstr :
∆ � Γ, x :T ′ � t :T

∆ � Γ � λx :T ′.t : T ′→T

te-app :
∆ � Γ � t :T ′→T, ∆ � Γ � t′ :T ′

∆ � Γ � tt′ :T

te-poly-abstr :
∆, X :K � Γ � t :T

∆ � Γ � ΛX :K.t : ∀X :K.T
X not free in Γ

te-poly-app :
∆ � Γ � t : ∀X :K ′.T, ∆ � T ′ :K ′

∆ � Γ � tT ′ :T [T ′/X]

te-type-eq :
∆ � Γ � t :T, T �βT ηT

T ′, ∆ � T ′ :∗
∆ � Γ � t :T ′

We have now the following extended βη-conversion schemata:

β : (λx :T ′.t[x])t′ �β t[t′]

(ΛX :K.t[X])T �β t[T ]

η : (λx :T ′.tx) �η t

(ΛX :K.tX) �η t

where x �∈ FTeV (t) and X �∈ FTyV (t) for the latter. We still have that �∗
βη is

strongly normalising. And, �βT ηT
is strongly normalising too.

The calculus Fω and its language are extremely expressive, and contains every
subcalculus and sublanguage Fi, 1 ≤ i ≤ ω, where Fi is defined as follows. First,
define the order KOrd(K) of kind K as

KOrd(∗) = 1

KOrd(K ′→K) = max(KOrd(K ′) + 1,KOrd(K))

Then the nth-order polymorphic lambda calculus Fn is built from those terms from
Fω whose types can be derived without mentioning kinds of order n or greater.
The calculus F1 is the simply-typed lambda calculus with TyC = TeC = ∅.

We will mainly be interested in F2, and later on F3. The calculus F2 has the
abstract syntax given by

(kinds) K ::= ∗
(types) T ::= X | (T→T ) | (∀X :∗.T )

(terms) t ::= x | (λx :T.t) | (tt) | (ΛX :∗.t) | (tT )
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for all X ∈ TyV and x ∈ TeV . For F2 it is customary to omit the kind ∗. The
calculus F2 is commonly known as System F. Calculus F3 has abstract syntax

(kinds) K ::= ∗ | ∗→K

(types) T ::= X | (T→T ) | (∀X :K.T ) | (λX :K.T ) | (TT )

(terms) t ::= x | (λx :T.t) | (tt) | (ΛX :K.t) | (tT )

for all X ∈ TyV and x ∈ TeV .

3.2.4 Inductive Types

We now delve a bit deeper into the second-order polymorphic lambda calculus.
The abstract syntax and well-formed expressions are given in the previous section.

A main motivation for type abstraction is of course the economical desire
to define polymorphic functionals that capture a behaviour that happens to be
uniform across all types. Then, such a functional can be instantiated at any type
to give the particular version of the functional at that type. For example, with
polymorphism one can define a general function-composition operator by

comp
def
= ΛX, Y, Z.λf :X→Y.λg :Y →Z.λx :X.g(fx)

For types A, B and C, the instance compABC is the functional that receives two
functions of types A→B and B→C as arguments and returns their composite.

There is however another interesting aspect to polymorphism, and that is that
one can express inductive types as given in 3.2.2 directly. The general translation
is found in (Böhm and Berarducci, 1985). Here we give some examples.

Recall that natural numbers were represented by the inductive type

IndType nat generated by

0 : nat

and succ : nat→nat

The encoding in System F is now

Nat
def
= ∀X.X→(X→X)→X

Here the universally quantified X stands for the name nat in the inductive defin-
ition. This name is abstract; any other name will of course do, since it is the
inductive structure that determines the type. This abstractness is here reflected
by polymorphism. The generated inhabitants are now closed terms of the form

n̄
def
= ΛX.λz :X.λs :X→X.snz
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where snz stands for n applications of s to z. These polymorphic Church-numerals
are the only closed terms of type Nat. The constructors are now

0
def
= ΛX.λz :X.λs :X→X.z

succ
def
= λn :Nat.ΛX.λz :X.λs :X→X.(s(nXzs))

The iterators ItnatT for every type T can now be replaced by a single polymorphic
iterator ItNat :∀Y.Nat→Y →(Y →Y )→Y defined in System F by

ItNat
def
= ΛY.λx :Nat.λz :Y.λs :Y →Y.xY zs

The iterator conversion rules are just given by β-conversion. In actual fact, iterat-
ors are not necessary, because we have ItNatTxzs �β xTzs, which means we can
replace any occurrence of ItNatTx by xT . In other words, any x :Nat has iteration
already built in. This principle holds for every inductive type. For example, using
the iterator, we can define

ifzero
def
= λn :Nat . ItNat(Bool)(n)(true)(λb :Bool.false)

But we can also go straight ahead and define

ifzero
def
= λn :Nat . n(Bool)(true)(λb :Bool.false)

Booleans are now represented by

Bool
def
= ∀X.X→X→X

with constructors
true

def
= ΛX.λt :X.λf :X.t

false
def
= ΛX.λt :X.λf :X.f

The boolean iterator is the conditional, or if-then-else construct. Since iteration
is built in, we can simply define

cond
def
= ΛY.λb :Bool.bY : ∀Y.Bool→Y →Y →Y

We can also give a lifted boolean type

Bool⊥
def
= ∀X.(X→X→X→X)

with constructors

true
def
= ΛX.λt :X.λf :X.λb :X . t false

def
= ΛX.λt :X.λf :X.λb :X . f
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bot
def
= ΛX.λt :X.λf :X.λb :X . b

Lists of items of type U are given by

ListU
def
= ∀X.X→(U→X→X)→X

where X �∈ FTyV (U), with constructors

nilU
def
= ΛX.λn :X.λc :U→X→X.n

consU
def
= λu :U.λl :ListU .ΛX.λn :X.λc :U→X→X.(cu(lXnc))

Binary products are encoded in System F as inductive types by

U × V
def
= ∀X.((U→V →X)→X)

where X �∈ FTyV (U) ∪ FTyV (V ), with constructor pairU,V : U → V → U × V

defined by
pairU,V uv

def
= ΛX.λf :U→V →X.fuv

We also have destructors fstU,V :U × V →U and sndU,V :U × V →V , defined by

fstU,V (x) = xU(λx :U.λy :V.x)

sndU,V (x) = xV (λx :U.λy :V.y)

The empty product 1, or Unit in other programming languages, is defined as

1
def
= ∀X.X→X

with single constructor
�

def
= ΛX.λx :X.x

Binary sums or coproducts are encoded as

U + V
def
= ∀X.((U→X)→(V →X)→X)

where X �∈ FTyV (U) ∪ FTyV (V ), with constructors inlU,V : U → U + V and
inrU,V :V →U + V , defined by

inlU,V (u) = ΛX.λf :U→X.λg :V →X.f(u)

inrU,V (v) = ΛX.λf :U→X.λg :V →X.g(v)

and destructor caseU,V :∀X.(U→X)→(V →X)→(U + V )→X defined by

caseU,V Wfgx = xWfg
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The empty sum 0, or Void in other programming languages, is defined by

0
def
= ∀X.X

There are no closed inhabitants of this type.
Binary products generalise to n-ary products with constructor tupleU and

destructors projU i. Binary sums generalise to n-ary coproducts with constructors
injU i and destructor caseU .

We can define destructors pred for Nat, and carU and cdrU for ListU . However,
pred and cdrU do not in fact lend themselves to simple definitions in terms of it-
eration. These destructors actually need primitive recursion. Primitive recursion
schemata can be defined in terms of iteration and pairing (Church, 1941), see
e.g., (Pierce et al., 1989).

We can be precise about the class of functions on N that are representable
in System F. Because System F is strongly normalising, all functions represented
must be total. The functions on N representable in System F are exactly those
provably total in second-order Peano arithmetic.

3.2.5 Abstract Data Types in System F

As stated earlier, we use the term ‘algebra’ in a broad sense meaning an entity
consisting of a data representation together with operations on that data repres-
entation. An abstract data type (ADT) is then a collection of algebras sharing
some given common characteristics, with each individual algebra being an in-
stance of the ADT. The idea is that a program may rely only on the abstract
characteristics associated with the ADT, rather than the characteristics of any
individual implementation.

In the context of algebraic specification, we said that an ADT is a class of
Σ-algebras satisfying an algebraic specification SP .

In our present type-theoretical context, we will eventually mimic this. In Sys-
tem F it is possible to internalise the semantic notions of algebra and specification
refinement into syntax. Algebras will be internalised as terms of existential type.
This is due to (Mitchell and Plotkin, 1988), where internalised algebras are called
data algebras. It is then tempting to call existential types abstract data types, and
we could indeed do that. Abstract data types should provide information hiding
in the sense outlined in Ch. 1. We will see that existential types provide some
very useful information hiding. However, we will later look again at specifications
which will add a further level of information to interfaces, and we reserve the term
‘abstract data type’ for the analogous notion from algebraic specification, namely
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the collection of realisations for a specification. Existential types will instead be
called abstract types (Mitchell and Plotkin, 1988).

Existential types and pack and unpack combinators are encoded as follows.

∃X.T [X]
def
= ∀Y.(∀X.(T [X]→Y )→Y )

where Y does not occur in T [X]

packT [X] :∀X.(T [X]→∃X.T [X])

packT [X](A)(opns)
def
= ΛY.λf :∀X.(T [X]→Y ).f(A)(opns)

unpackT [X] : (∃X.T [X])→∀Y.(∀X.(T [X]→Y )→Y )

unpackT [X](package)(B)(client)
def
= package(B)(client)

We omit subscripts to pack and unpack as much as possible. Operationally, pack

packages a data representation and an implementation of operations on that data
representation to give a data algebra of the existential type. The resulting package
is a polymorphic functional that given a client computation and its result domain,
instantiates the client with the particular elements of the package. The unpack

combinator is the application operator for pack.

Example 3.1 An abstract type for stacks could be

∃X.(X × (Z→X→X)× (X→X)× (X→Z→Z))

A data type of this type is for example (pack ListZ l), where

empty : (proj1 l) = nil

push : (proj2 l) = cons

pop : (proj3 l) = λy :ListZ .(cond ListZ (isnil y) nil (cdr y))

top : (proj4 l) = λy :ListZ .λz :Z.(cond Z (isnil y) z (car y))

where the parameter z for top is a default value in case of an empty stack, and

isnil
def
= λy :ListZ . yBool true (λb :Bool.false)

returns true when y is nil, and false otherwise. �

3.2.6 Abstraction Barriers

We now arrive at an essential observation concerning central points in this thesis.
Existential types together with the pack and unpack combinators embody a cru-
cial abstraction barrier. First, any client computation f : ∀X.(T [X] → Y ) is
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η-equivalent to a term of the form ΛX.λx :T [X].t[X, x]. Borrowing terminology
from SIMULA (Dahl and Nygaard, 1966), we here refer to X as a virtual data
representation, x as a collection of virtual operations , and the whole computation
as a virtual computation. Any instance (fA a) of the computation with an actual
data representation A, and actual operations a then gives an actual computation.

A crucial observation is now embodied in the following obvious statement.

Abs-Bar1 : A virtual client computation of the form ΛX.λx :T [X].t[X, x] cannot
have free variables of types involving the virtual data representation X.

The direct reason for Abs-Bar1 is that the type variable X is bound and hence
cannot occur in the context in order to justify any free variables. For example, if
X, x :T [X] � (proji x) :X→Nat, then by Barendregt’s variable convention,

y :X � ΛX.λx :T [X].(proji x)(y) : ∀X.(T [X]→Nat)

is ill-formed. The only way a client computation may compute over types con-
taining the virtual data representation X is by accessing virtual operations in the
supplied collection x of operations. For example, if X, x :T [X]� (projj x) :X then

� ΛX.λx :T [X].(proji x)(projj x) : ∀X.(T [X]→Nat)

is indeed a virtual client computation. Furthermore, due to Abs-Bar3 below, the
only way a package can be used is via client computations adhering to the above.

This in turn determines how packages may be used in actual computations.
Users of a package (packAa) : ∃X.T [X, Z] may only apply operations from a to
arguments according to the structure of virtual computations f :∀X.T [X, Z]→U .

First, this means that up to βη-normal form, variables of types involving the
actual data representation, cannot be arguments.

Example 3.1 (continued) The operation pop, i.e., (proj3 l), can in βη-normal
form never be applied to, say, (push z y) for variable y :ListZ , because there is no
way we can form a normalised virtual computation giving rise to this application.
Note that for g

def
= λz :Z.λy :X.(proj2x z y)), we can write

f
def
= ΛX.λx : (X × (Z→X→X)× (X→X)× (X→Z→Z)).(proj3x (g z proj1x))

which, in the actual computation (fListZ l) yields the application of a package
operator to a variable of the actual data representation ListZ in (proj2l z y) =

(push z y). However, this computation is not in normal form.
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In fact, up to βη-normal form, any argument of type ListZ to operations in l

must be formed by empty , push, pop, top, and variables of type Z. For example,
pop can be applied to (push z empty) via the virtual computation

ΛX.λx : (X × (Z→X→X)× (X→X)× (X→Z→Z)).(proj3x (proj2x z proj1x))

�

Packages can only be used by applying them via virtual computations. There-
fore, up to βη-normal form, users may only apply package operations from a
package (packAa) to arguments that are definable from package operations, i.e.,
to terms t[A, a] such that t[X, x] has no free variables of types involving X. Thus
any actual computation (fA a) cannot directly invoke arbitrary operations on
types over A, but only those operations that are in a sense expressible using the
supplied operations in a and term formation. This is the definability aspect of
Abs-Bar1 . This aspect is essential in restricting the data representation to valid
values, for example, when implementing sets by a package whose data repres-
entation is ListZ , but where the supplied operations assume set constructors that
build sorted lists. The definability aspect ensures that users of the package cannot
directly supply unsorted lists to any operation.

Note however, that a supplied package operation might itself make calls in-
volving arguments of types over the actual data representation, which are not
expressed in terms of package operations. In this case, it is not true that package
operations will only be applied to definable arguments, but crucially, this is at
the discretion of the package implementor, and not due to direct user application.
We will see an example of this later on in Example 5.7 (p. 117) in Ch. 5.

There are two other aspects of the abstraction barrier inherent in the encoding
of existential types. The next one is the already stated condition in the definition
of the encoding of existential types.

Abs-Bar2 : The type Y does not occur in T in the encoding
∃X.T [X]

def
= ∀Y.(∀X.(T [X]→Y )→Y ).

This ensures that data types do not depend on their environment of actual usage,
other than via explicitly given parameters if ∃X.T [X] has free types. Abs-Bar2
is a prerequisite for plugability.

The third aspect arises from the fact that when using a data type, i.e., a
package of existential type, the user must provide the result type of the client
computation. This entails the following.

Abs-Bar3 : Client computations f : ∀X.(T [X] → Y ) cannot have a result type
containing the virtual data representation, i.e., the bound type variable X.
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For example, if X, x :T [X] � (projj x) :X then

f
def
= ΛX.λx :T [X].(projj x) : ∀X.(T [X]→X)

is in fact not a possible client computation, since in order to use a package
(packAa) in f , we must do (packAa)(C)(f), where C is the result type of f ,
which in this case is the inaccessible virtual data representation type X.

This also means that one cannot use data-type operations anywhere else than
within client computations of the form discussed in conjunction with Abs-Bar1 .
For example, if X, x : T [X] � (projk x) : X → Nat, one might think that given
(packAa), one could use (projk a) on an arbitrary inhabitant v of A, by doing
e.g., ((unpack(packAa)(A → Nat)(ΛX.λx : T [X].(projk x))) v), but this term is
ill-formed, because the result type of the client computation is X → Nat, not
A→Nat, and X→Nat cannot be the result type of a client computation.

Abs-Bar3 entails that the data representation of a data type is completely hid-
den from the outside. It is not even accessible via data-type supplied operations
and is only observable indirectly via operations of types not involving the data
representation. This restriction is arguably too strong in some circumstances. If
this restriction were dropped, the data representation itself would not be fully
hidden, but merely protected. One would have access to the data representation
through data type operations, which would still ensure the safe manipulation of
the data representation according to Abs-Bar1 . See (MacQueen, 1985, 1986) for
discussions about this in relation to Standard ML.

Variants of these three aspects of the existential type abstraction barrier are
to be found in (Mitchell and Plotkin, 1988) for SOL. In this thesis, it is Abs-Bar1 ,
backed by Abs-Bar3, that will be most instrumental, and that we emphasise here.
We will later on refer to Abs-Bar1 , Abs-Bar2, and Abs-Bar3 jointly as Abs-Bar .

Finally, notice how uniformity is enforced across all actual computations
arising from a virtual computation, i.e., all actual computations inherit the form
of the virtual computation from which they stem. The only information we have
for package operations at computation formation time, is the information provided
by the abstract type. This is the important uniformity aspect of Abs-Bar which
we will use later on in Ch. 5.

—
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3.2.7 Existential Types with Several Bound Variables

Our main discussion will use existential types with a single existentially bound
type variable. It is nonetheless straight-forward to deal with multiple existentially
bound type variables. The question is however, what we mean by existential types
with several existentially bound variables. For example, does ∃X1, X2.T [X1, X2]

mean the System F encoding of ∃X1.∃X2.T [X1, X2], i.e.,

∀Y.(∀X1 . (∃X2.T [X1, X2]) →Y )→Y

or does it mean

(∀Y.(∀X1, X2.(T [X1, X2]→Y )→Y )

In fact, these forms are equivalent. Consider the two packages

(packA1(packA2a)) and (packA1A2a)

Let f :∀X1, X2.(T [X1, X2]→Y ) be an arbitrary computation. Then for

f ′ def
= ΛX1.λu :∃X2.T [X1, X2] . (unpack(u)C(fX1))

we get
(packA1(packA2a))Cf ′ = f ′A1(packA2a)

= unpack(packA2a)C(fA1)

= fA1A2a

= (packA1A2a)Cf

Conversely, let g :∀X1 . (∃X2.T [X1, X2]) →Y be arbitrary. Then for

g′ def
= ΛX1, X2.λx :T [X1, X2] . (gX1(packX2x))

we get
(packA1A2a)Cg′ = (g′A1A2a)

= gA1(packA2a)

= (packA1(packA2a))Cg

Thus, (packA1(packA2a)) and (packA1A2a) simulate each other. This extends to
variables of the respective forms, through Theorem 3.6.

3.2.8 Algebras and Coalgebras

In System F one can also encode initial algebras and final coalgebras. If T [X] is
a type where the variable X occurs only positively, the initial T [X]-algebra and
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combinators fold and in are encoded by

µX.T [X]
def
= ∀X.((T [X]→X)→X)

foldT [X] :∀X.((T [X]→X)→((µX.T [X])→X))

foldT [X](X)(f)
def
= λx :µX.T [X] . x(X)(f)

inT [X] :T [µX.T [X]]→µX.T [X]

inT [X](x)
def
= ΛX.λf :T [X]→X . f(T [foldT [X]Xf ]x)

Initial T [X]-algebras are an alternative to inductive types. We will return to this
issue later, after introducing the logic.

Although we will not use final coalgebras, the encodings in System F go as
follows. For T [X] where the variable X occurs only positively,

νX.T [X]
def
= ∃X.((X→T [X])×X)

unfoldT [X] :∀X.((X→T [X])→(X→(νX.T [X])))

unfoldT [X](X)(f)(x)
def
= pack(X)(pair(f)(z))

outT [X] :νX.T [X]→T [νX.T [X]]

outT [X](u)
def
= unpack(u)(T [νX.T [X]])

(ΛX.λw : ((X→T [X])×X) . T [unfoldT [X]X(fstw)]((fstw)(sndw)))

3.3 The Logic for Parametric Polymorphism

We now have a language for defining programs and data algebras with abstrac-
tion barriers. But ultimately we want to be able to define specifications and
specification refinement, and to reason formally about properties pertaining to
specification refinement. For this we need a logic. Our language is already very
powerful since we can internalise traditionally semantic notions in it. The ex-
pressiveness now becomes even greater with the introduction of logic. The logic
we shall use is the logic for parametric polymorphism due to (Plotkin and Abadi,
1993). This logic is essentially a second-order logic augmented with relation sym-
bols and a syntax for relation definition. The main point of the logic is the
assertion of relational parametricity as an axiom schema. This internalises in a
formal logic the semantic notion of relational parametricity. Preliminary studies
in this direction were done in (Mairson, 1991). Plotkin and Abadi’s logic is a
logic based on and around System F terms. It is also possible to extend System F
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itself in order to internalise relational parametricity. This is done in System R
due to (Abadi et al., 1993).

The logic for parametric polymorphism has formulae built using the standard
connectives, but now basic predicates are not only equations, but also relation
membership statements. The abstract syntax is given by the grammar for Sys-
tem F and the following grammar for formulae:

(formulae) φ ::= (t =A u) | R(t, u) |
(φ ⇒ φ) | (∀x :T.φ) | (∀X.φ) | (∀R⊂A×B.φ)

(∃x :T.φ) | (∃X.φ) | (∃R⊂A×B.φ)

⊥ |(φ ∧ φ) | (φ ∨ φ)

where R ranges over relation variables. The last two lines in the abstract syntax
for formulae are not strictly necessary, because the connectives introduced there
can be defined in terms of the connectives on the second line, but showing these
definitions is of less importance for us.

Parentheses will be omitted whenever we can get away with it. New variable
binders are now the logical quantifiers ∀ and ∃. The definitions of the collections
of free term and type variables are extended in the obvious manner to formulae,
i.e., FTeV (φ) and FTyV (φ). The collection FRelV (φ) of free relation variables
is also defined analogously. Variables that are not free are said to be bound . A
closed formula has no free term-, type- or relation variables.

The definition of substitution extends to formulae in the obvious way. We
write α[R, X, x] to indicate possible occurrences of R, X and x in type, term or
formula α, and may write α[ρ, A, t] for the result of substitution α[ρ/R, A/X, t/x],
following the appropriate rules concerning capture, or following Barendregt’s vari-
able convention. We also write t R u in place of R(t, u).

Judgements for formula formation now involve relation symbols, so judge-
ments will have the form ∆ � Υ � Γ � φ, where ∆ is a type context, Γ is a
term context depending on ∆ as usual, and Υ is a relation context, viz. a set
{R1⊂A1×B1, . . . , Rk⊂Ak×Bk} where each Ri occurs at most once, and where
∆�Ai, Bi. To avoid clutter, and because the level of discussion permits it, we will
from now on write contexts as amalgamated into one set Γ, e.g., X, x :X � x :X

and X, Y, R ⊂ X×Y, x : X, y : Y � x R y. The actual judgements for formula
formation involve contexts justifying the terms in the formulae and are as one
would expect, and we omit them here. What we do explicitly need is relation
definition, accommodated by the following syntax.

Γ, x :A, y :B � φ

Γ � (x :A, y :B) . φ ⊂ A×B
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where φ is a formula. For example eqA
def
= (x :A, y :A).(x =A y).

We now build complex relations using type formers. We get the arrow-type
relation ρ→ρ′ ⊂ (A→A′)×(B→B′) from ρ⊂A×B and ρ′⊂A′×B′ by

(ρ→ρ′)
def
= (f :A→A′, g :B→B′) . (∀x :A.∀y :B . (xρy ⇒ (fx)ρ′(gy)))

i.e., two f and g are related if they map ρ-related arguments to ρ′-related results.
The universal-type relation ∀(Y, Z, R⊂ Y ×Z)ρ[R] ⊂ (∀Y.A[Y ])×(∀Z.B[Z]) is
defined from ρ[R]⊂A[Y ]×B[Z], where Y , Z and R⊂Y ×Z are free, by

∀(Y, Z, R⊂Y ×Z)ρ[R]
def
=

(y :∀Y.A[Y ], z :∀Z.B[Z]) . (∀Y.∀Z.∀R⊂Y ×Z . ((yY )ρ[R](zZ)))

i.e., two y and z are related at universal type if all instances yY and zZ are
related in ρ[R], whenever R relates Y and Z.

Using this, one can define the action of types on relations, by substituting
relations for type variables in types. For X = X1, . . . , Xn, B = B1, . . . , Bn,
C = C1, . . . , Cn and ρ = ρ1, . . . , ρn, where ρi⊂Bi×Ci, we get T [ρ]⊂T [B]×T [C],
the action of T [X] on ρ, defined by cases on T [X] as follows:

T [X] = Xi : T [ρ] = ρi

T [X] = T ′[X]→T ′′[X] : T [ρ] = T ′[ρ]→T ′′[ρ]

T [X] = ∀X ′.T ′[X, X ′] : T [ρ] = ∀(Y, Z, R⊂Y ×Z)T ′[ρ, R]

The proof system is natural deduction, intuitionistic style, over formulae now
involving relation symbols, and is augmented with inference rules for relation
symbols, for example we have for Φ a finite set of formulae:

Φ �Γ,R⊂A×B φ[R]

Φ �Γ ∀R⊂A×B . φ[R]
, R not free in Φ

Φ �Γ ∀R⊂A×B.φ[R] Γ � ρ⊂A×B

Φ �Γ φ[ρ]

One has the usual axioms for equational reasoning and βη equalities. Of these,
we just give the axiom schemata for substitution and congruence here:

∀X.∀Y.∀R⊂X×Y.∀x :X.∀x′ :X.∀y :Y.∀y′ :Y .

R(x, y) ∧ x =X x′ ∧ y =Y y′ ⇒ R(x′, y′)

(∀x :X . t[x] =Y u[x]) ⇒ (λx :X.t) =X→Y (λx :X.u)

(∀X . t[X] =Y u[X]) ⇒ (ΛX.t) =∀X.Y (ΛX.u)

Note that the schemata for congruence imply extensional equality for arrow types
and universal types. Sect. A.2 in Appendix A contains the full inference system.
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3.3.1 Relational Parametricity

The notion of parametric polymorphism is originally a semantic notion pertain-
ing to functionals interpreting polymorphic terms. The idea is that although
polymorphic functionals can be instantiated at any domain to give the particular
version of the functional at that domain, all the instances should still somehow ex-
hibit a uniform behaviour, where what constitutes the uniform behaviour should
be definable. Thus a polymorphic functional that, when given two integers returns
their product, when given two reals terminates the program, and when given two
matrices parks your hard-drive, etc. would presumably not be parametric.

There are various notions of parametric polymorphism. The informal one
due to Strachey (Strachey, 1967) can be explained in PER models by saying
that a polymorphic functional is parametric if all its instances share the same
realiser. There is a categorical notion of parametricity in terms of dinatural
transformations (Bainbridge et al., 1990). The notion of parametricity we adopt
for our discussion is that of relational parametricity originally due to Reynolds
(Reynolds, 1983; Ma and Reynolds, 1991). Uniformity is then defined by saying
that if a polymorphic functional is instantiated at two related domains, then the
resulting instances should be related as well. In Plotkin and Abadi’s logic, this is
asserted in the following axiom schema:

Param : ∀Y1, . . . , ∀Yn∀u : (∀X.T [X, Y1, . . . , Yn]) . u(∀X.T [X, eqY1
, . . . , eqYn

])u

To understand, it helps to ignore the parameters Yi and expand the definition to
get ∀u : (∀X.T [X]) .∀Y.∀Z.∀R⊂Y ×Z . u(Y ) T [R] u(Z), i.e., if one instantiates
a polymorphic inhabitant at two related types then the results are also related.

This logic is sound w.r.t. the parametric PER-model of (Bainbridge et al.,
1990) and also w.r.t. the syntactic parametric models of (Hasegawa, 1991).

Under the assumption that the above axiom schema does capture parametri-
city in Reynolds’ sense, (Plotkin and Abadi, 1993) argues that parametricity in
Reynolds’ sense does not imply parametricity in Strachey’s sense. However the
converse is conjectured. Also, parametricity in Reynolds’ sense is shown to imply
parametricity in the dinatural sense of (Bainbridge et al., 1990).

The assumption of relational parametricity gives us a number of very inter-
esting results. To start with, the following link to equality is fundamental.

Theorem 3.2 (Identity Extension Lemma (Plotkin and Abadi, 1993)) For
any T [Z], the following sequent is derivable using Param.

∀Z.∀u, v :T [Z] . (u T [eqZ] v ⇔ (u =T [Z] v))
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3.3.2 Simulation Relations

The notion of data refinement has many roots. A significant contribution is the
work of Hoare (Hoare, 1972) where concrete programs are verified w.r.t. more
abstract programs by using a representation invariant together with an abstrac-
tion function mapping concrete values satisfying the representation invariant, to
abstract values, see (Dahl, 1992) for examples and a full account of this. The
more general method of using relations to describe data refinement is proposed
already in (Milner, 1971). This idea is taken up in (Schoett, 1986, 1990) where
the relation used is called a correspondence. In the context of lambda calculus,
(Reynolds, 1974, 1983) discusses representation independence in a polymorphic
setting using relations, see also (Reynolds, 1981, 1998). Mitchell promotes the use
of logical relations in proving data refinement and representation independence
in purer forms of lambda calculus (Mitchell, 1991, 1990, 1996), and Tennent and
O’Hearn use logical relations in Algol-like extensions of lambda calculus to the
same ends (Tennent, 1997; O’Hearn and Tennent, 1993).

The above notions describing data refinement are all on the semantic level. In
the relational logic of (Plotkin and Abadi, 1993) one can use the action of types
on relations to define a syntactic mirror of the above ideas, namely a notion of
simulation relation:

Definition 3.3 (Simulation Relation (SimRel) (Plotkin and Abadi, 1993)) Re-
latedness by simulation relation w.r.t. T [X, Z] is expressed in the logic by

SimRelT [X,ρ]
def
= (u :∃X.T [X, U ], v :∃X.T [X, V ]) .

(∃A, B.∃a :T [A, U ], b :T [B, V ] . u = (packAa) ∧ v = (packBb)

∧ ∃R⊂A×B . a(T [R, ρ])b

where Z are the free type variables in T [X, Z] other than X, and ρ⊂U×V is a
vector of relations of the same length.

The subscript T [X, ρ] to SimRelT [X,ρ] might occasionally be omitted.
Intuitively, two data types are related by a simulation relation according to

Def. 3.3, if there exists a relation R on their respective data representations that
is preserved by their corresponding operations. The precise mode of simulation
here corresponds to the semantic notion in (Reynolds, 1974, 1981). We will think
of both the base-type relation R on the data representations, and also the relation
T [R, ρ] generated by the action of types on R, as the simulation relation.

With relational parametricity we get the following central result.
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Theorem 3.4 ((Plotkin and Abadi, 1993)) The following sequent schema is de-
rivable using Param.

∀u :∃X.T [X, U ], v :∃X.T [X, V ] . u (∃X.T [X, ρ]) v ⇔ u SimRelT [X,ρ] v

where Z are the free type variables in T [X, Z] other than X, and ρ⊂U×V is a
vector of relations of the same length.

Proof: See Appendix B. We give a proof because it is seemingly not written
down anywhere else. �

Via the Identity Extension Lemma (Theorem 3.2), Theorem 3.4 gives:

Theorem 3.5 ((Plotkin and Abadi, 1993)) The following sequent schema is de-
rivable using Param.

∀Z.∀u, v :∃X.T [X, Z] . u =∃X.T [X,Z] v ⇔ u SimRelT [X,eqZ ] v

Theorem 3.5 states the equivalence of equality at existential type with the exist-
ence of a simulation relation. Thus relational parametricity coarsens the granu-
larity of equality to a greater level of abstraction, which furthermore is arguably
exactly the level of abstraction one is interested in. From this we also get

Theorem 3.6 ∀Z.∀u :∃X.T [X, Z].∃A.∃a :T [A] . u = (packAa)

In other words, every inhabitant of existential type is equal to a package.

—

We said above that intuitively, two data types are related by simulation rela-
tion according to Def. 3.3 if there exists a relation between their two data repres-
entations such that their respective operations preserve that relation. However,
the converse is not immediate by definition. Suppose we have two data types
(packAa) :∃X.T [X, U ] and (packBb) :∃X.T [X, V ], and that

(packAa) SimRelT [X,ρ] (packBb)

This does not say there exists R ⊂ A×B such that a T [R, ρ] b. It merely says that
there are packages (packA′a′) and (packB′b′), such that (packAa) = (packA′a′)

and (packBb) = (packB′b′), and then some S⊂A′×B′ such that a′ T [S, ρ] b′, i.e.,
we do not immediately have

(packAa) SimRelT [X,ρ] (packBb) ⇒ ∃R⊂A×B . a T [R, ρ] b
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although we do of course have

(packAa) SimRelT [X,ρ] (packBb) ⇐ ∃R⊂A×B . a T [R, ρ] b

In fact we have the following negative result, even for ρ = eqZ.

Theorem 3.7 The following schema is not in general derivable in the logic.

∀A, B.∀a :T [A, Z], b :T [B, Z]) .

(packAa) SimRelT [X,eqZ ] (packBb) ⇔ ∃R⊂A×B . a T [R, eqZ] b

where Z are the free type variables in T [X, Z] other than X.

Proof: This follows from Theorem 5.5 (p. 114). �

We now point out that the sequent in Theorem 3.5 has a slight circular feature.
Since equality at existential type appears in SimRel, equality at existential type
occurs on both sides of the equivalence. There is nothing wrong with this; the
sequent is derivable. However, this circularity would in the outset render the
result less useful as an instrument in proof strategies.

In practice, one would use the sequent as a derivation rule from right to left to
establish equality. In particular, if one has two packages and a simulation relation
between their data representations, then the packages are equal. In this direction,
for given packages (not variables of existential type) the equality clauses in the
SimRel expression are trivial. This just uses

(packAa) SimRelT [X,ρ] (packBb) ⇐ ∃R⊂A×B . a T [R, ρ] b

from the discussion above. But it would be nice to know in addition that two
packages are equal only if there is a simulation relation between their data rep-
resentations, without involving equality to two proxy packages. This of course
hinges on the sequent in Theorem 3.7.

If the sequent in Theorem 3.7 were derivable, this would additionally support
the intuition one gets when looking at SimRel, namely that the equalities herein
are for converting the variables of existential type to packages so that one may
speak in terms of a relation on a data representation, but that when one actually
presents two packages, the equalities should not be relevant, i.e., the sequent in
Theorem 3.7 should be applicable.

Luckily, although Theorem 3.7 is true, we shall be able to derive the sequent
for T [X] containing only first-order types. We will be able to derive a version
of the sequent for T [X] containing also higher-order types, when we discuss the
alternative notion of simulation relation in Ch. 5.
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3.3.3 Packages as Data Types

A data type consists of a data representation A and a collection a of operations
on that data representation. In the present setting, we refer to packages as data
types, i.e., we would say that (packAa) is a data type. Note that by Theorem 3.5,
calling (packAa) a data type is different from calling the pair 〈A, a〉 a data type,
since packages are equated if there exists a simulation relation between their data
representations. Thus, packages are really slightly abstract data types, namely
a collection of data types, seen as pairs, related by simulation relations, roughly
speaking, see the ensuing discussion. We will continue to refer to packages as data
types. This is partly because we cannot form pairs of a type and a term in the
type theory we are using, but also because we find the initial abstraction inherent
in packages of existential type suitable. We will later see that this abstraction cor-
responds to observational equivalence, and in a specification refinement context,
it is in fact convenient and conceptually pleasing to have observational abstrac-
tion already built in to the notion of data type. We do nevertheless recognise that
this may be a matter of taste. If one wishes to view data types as pairs, this is
still conceptually possible; the main results are immediately transferable to this
view, although pairs of the relevant sort are not expressible in the language.

3.3.4 Universal Constructions

We saw in Sect. 3.2.4 how to encode products, sums, inductive types, (initial)
T -algebras, and (final) T -coalgebras for any covariant endofunctor T .

All these constructions are in the outset weak notions, in the sense that one
can show in the logic the existence of mediating morphisms, e.g., the existence of a
homomorphism from any initial T -algebra to any other T -algebra. However, with
the assumption of relational parametricity, these construct all become universal
constructions, i.e., one can show in the logic that the mediating morphisms are
unique. For example, for products we have weakly without parametricity that

∀u :U.∀v :V . (fst(pair u v)) =U u

∀u :U.∀v :V . (snd(pair u v)) =V v

But with relational parametricity we additionally get

∀x :U × V . (pair(fst x), (snd x)) =U×V x

and this gives the universal characterisation

∀X.∀f :X→U.∀g :X→V.∃!h :X→U×V . f = (comp fst h) ∧ g = (comp snd h)
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where comp is the function composition functional defined earlier (with type
parameters omitted). This yields the useful characterisation of the action of
products on relations. For ρ⊂U×V and ρ′⊂U ′×V ′, one defines (ρ× ρ′) as the
action (X ×X ′)[ρ, ρ′]. Then,

∀u :A×A′, v :B×B′ . u(ρ×ρ′)v ⇔ (fst(u) ρ fst(v) ∧ snd(u) ρ′ snd(v))

3.3.5 Induction

One should have induction schemata for inductive types. In particular we would
like to have an induction schema for Nat. The standard induction schema for
Nat is not as such originally in the logic of (Plotkin and Abadi, 1993), but the
schema is sound w.r.t. the most popular parametric models used to validate the
logic. On the other hand, with relational parametricity one gets strong initiality
for initial T -algebras, and furthermore, one gets a binary induction principle
for initial algebras. A unary induction schema can then be encoded using this
binary schema. Thus, alternatively one could encode Nat as the initial algebra
∀X.(((1+X)→X)→X), and get the induction schema for free. In the parametric
models we will be using, the interpretations of Nat as an inductive type and as an
initial algebra coincide up to isomorphism. We therefore assume induction for Nat

in one way or another; either asserted implicitly as an augmenting axiom schema
for Nat as an inductive type, or derived in the logic for Nat as an initial algebra.
We need not go into more detail for our purposes, but see (Wadler, 1989). It
should also be mentioned that induction for Nat = ∀X.X→ (X→X)→X is in
fact derivable in System R (Abadi et al., 1993).

3.4 Semantics

We give a brief overview of a few of the models for Plotkin and Abadi’s logic
for relational parametricity described in this chapter. We first summarise the
parametric PER-model of (Bainbridge et al., 1990), and then we briefly describe
syntactic models according to (Hasegawa, 1991).

3.4.1 The Parametric PER-model

Let PER denote the universe of all partial equivalence relations (PERs) over the
natural numbers N. Types are interpreted as PERs, but intuitively it helps to
think of the associated quotient instead, whose elements are equivalence classes.
Terms are thus interpreted as functions mapping equivalence classes from one
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PER to another, where the first PER corresponds to the product of the types
of the term’s free variables, and the second PER corresponds to the type of the
term. Relations between PERs relate equivalence classes of the PERs.

Formally this is expressed in elementary terms as follows. A PER A is a sym-
metric and transitive binary relation on N. The domain Dom(A) of A contains
those a ∈ N for which a A a. For any a ∈ Dom(A) we can form the equivalence
class [a]A. A morphism from A to B is given by n ∈ N if for any a, a′ ∈ N,
a ∈ Dom(A) ⇒ n(a) ↓ and a A a′ ⇒ n(a) B n(a′). Here, n(a) denotes the
result of evaluating the nth partial recursive function on a, and n(a) ↓ denotes
that this function is defined for a. We can form a PER (A→B) by defining

e (A→B) e′
def⇔ ∀a, a′ ∈ N . (a ∈ Dom(A) ⇒ e(a)↓ ∧ e′(a)↓)

∧ (a A a′ ⇒ e(a) B e′(a′))

That is, the equivalence classes in (A→B) contain functions that are extensionally
equal w.r.t. A and B. Each such equivalence class is then a morphism from A to
B, with application defined as [e]A → B[a]A

def
= [e(a)]B. Products are given by

n (A× B) n′ def⇔ n.1 A n′.1 ∧ n.2 B n′.2

where m encodes a pair of natural numbers using some standard encoding, and
m.i decodes the ith projection of m.

Relations between A and B are given by saturated relations. A relation R
between Dom(A) and Dom(B) is saturated on A and B, if

(m A n ∧ n R n′ ∧ n′ B m′) ⇒ m R m′

Thus saturated relations preserve, and can be seen to relate equivalence classes.
Any member n of an equivalence class q is called a realiser for q.

We get complex relations as follows. Let A and B be any PER, and consider
any saturated relations R ⊂ Dom(A)× Dom(B) and S ⊂ Dom(A′)× Dom(B′).
For any n ∈ Dom(A), m ∈ Dom(B), n′ ∈ Dom(A′), m′ ∈ Dom(B′), we define
the saturated relation R× S ⊂ Dom(A×B)×Dom(A′×B′) by

〈n, n′〉 (R× S) 〈m, m′〉 def⇔ n R m ∧ n′ S m′

For any e ∈ Dom(A → A′) and e′ ∈ Dom(B → B′), we define the saturated
relation R→S ⊂ Dom(A→B)× Dom(A′→B′) by

e (R→S) e′
def⇔ ∀a ∈ Dom(A), ∀b ∈ Dom(B) . a R b ⇒ e(a) S e′(b)

If R is saturated on A and B, we will often write [n]A R [m]B in place of n R m

to aid intuition. We will use this equivalence-class notation elsewhere too.
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Type and Relation Semantics

Given the universe of PERs above, type semantics are now defined denotationally
w.r.t. an environment δ mapping type variables to PERs.

[[∆, X � X]]δ
def
= δ(X)

[[∆ � U→V ]]δ
def
= ([[∆ � U ]]δ→ [[∆ � V ]]δ)

[[∆ � ∀X.U [X]]]δ
def
= (∩A∈PER[[∆, X � U [X]]]δ[X �→A])

�

where (∩A∈PER[[∆, X � U [X]]]δ[X �→A])
� is the indicated intersection but trimmed

down to only those elements invariant over all saturated relations. This trimming
is what makes the model relational parametric. We explain in a moment.

The semantics of formulae are as one would expect, given semantics on types
and terms. We write

|=Γ,γ φ

to indicate that formula φ holds in the model under environment γ on Γ. We
omit the full definition of formula semantics, but give the resulting semantics of
the action of types on relations. Recall that the action of types on relations are
defined in the logic in terms of complex relations defined in terms of formulae, cf.
Sect. 3.3. Thus w.r.t. environments δ and υ mapping respectively, type variables
to PERs, and relation variables to appropriate saturated relations, we have

[[∆ � Υ, R � R]]δυ = υ(R)

[[∆ � Υ � U→V ]]δυ = ([[∆ � Υ � U ]]δυ→ [[∆ � Υ � V ]]δυ)

[[∆ � Υ � ∀X.U [X]]]δυ = (∩R[[∆, A, B � Υ, R⊂A×B � U [R]]]δ[A �→A,B �→B]υ[R�→R])

where the intersection ranges over all saturated R ⊂ Dom(A)× Dom(B), for all
PERs A and B. We might omit the type information of relation variables.

We can now explain the relational parametric type semantics of universal
types. First, the non-relational parametric PER semantics is given by the un-
trimmed intersection, i.e.,

n (∩A∈PER[[∆, X � U [X]]]δ[X �→A]) m
def⇔ ∀A ∈ PER . n [[∆, X � U [X]]]δ[X �→A] m

This gives rise to an interpretation where an instance of a polymorphic element at
a particular PER is represented by the same realiser as the polymorphic element
itself. This is parametricity according to Strachey. But for relational parametri-
city, we additionally want

[n]
(A)
∩A∈PER[[∆,X�U [X,Z]]]δ[X �→A]

([[∆ � Υ, R � U [R, eqZ]]]δυ[R�→R])

[n]
(B)
∩A∈PER[[∆,X�U [X,Z]]]δ[X �→A]
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for every saturated R ⊂ Dom(A)× Dom(B). Here the super-scripts suggest for
intuition the instances at PERs A and B respectively, but there is of course really
no difference between the two equivalence classes, since a polymorphic element at
a particular PER is represented by the same realiser as the polymorphic element
itself. Consequently, this boils down to

n (∩A∈PER[[∆, X � U [X, Z]]]δ[X �→A])
� m

def⇔ ∀A,B ∈ PER, saturated R ⊂ Dom(A)× Dom(B) .

n [[∆, X � U [X, Z]]]δ[X �→A] m ∧ n [[∆, X � U [X, Z]]]δ[X �→B] m ∧
n [[∆ � Υ, R � U [R, eqZ]]]δυ[R�→R] n ∧
m [[∆ � Υ, R � U [R, eqZ]]]δυ[R�→R] m

We now have that

(∩A∈PER[[∆, X � U [X, Z]]]δ[X �→A])
� = (∩R[[∆ � R � U [R, eqZ]]]δυ [R�→R])

where R ranges over all saturated relations on Dom(A)×Dom(B), for all PERs
A and B. In general we have

[[U [Z]]]δ = [[U [eqZ]]]δυ

This is a manifestation of the Identity Extension Lemma, Theorem 3.2. Note
that [[eqU [Z]]]δυ = [[U [Z ]]]δ, i.e., the equality predicate on a type has the same
interpretation, i.e., a PER, as the type itself.

Finally, in the parametric PER-model initial constructs interpret to objects
isomorphic to interpretations of inductive types, e.g., let T [X] = 1 + X. Then

[[∅� ∀X.((T [X]→X)→X)]] ∼= [[∅� ∀X.(X→(X→X)→X)]] ∼= N

This justifies the remarks made in Sect. 3.3.5.

Term Semantics

Term semantics follow regular denotational structure, given a type environment,
and a term environment mapping term variables to elements of the appropriate
PER. We amalgamate contexts into a single context Γ, and environments into a
single environment γ.

[[Γ, x :U � x :U ]]γ
def
= γ(x) where γ(x) ∈ Dom(A), for A = [[Γ � U ]]γ

[[Γ � fu :V ]]γ
def
= [[Γ � f :U→V ]]γ [[Γ � u :U ]]γ

[[Γ � λx :U.t[x] :U→V ]]γ
def
= n ∈ Dom([[Γ � U→V ]]γ), for n the code of a

partial recursive function λa.[[Γ, x :U � t[x] :V ]]γ[x �→a]

[[Γ � tA :U [A]]]γ
def
= [[Γ � t :∀X.U [X]]]γ

[[Γ � ΛX.t[X] :∀X.U [X]]]γ
def
= n, such that

[[Γ, X � t[X] :U [X]]]γ[X �→A] = n for any A ∈ PER
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There is an obligation to check that the term semantics preserves the appropriate
equivalence classes. It is not necessary to take precautions for relational paramet-
ricity, other than the proviso implicit in the variable rule, ensuring that variables
of polymorphic type are interpreted into a trimmed intersection PER interpreting
the universal types. The term semantics follow term formation rules and will not
yield elements in, as it were, untrimmed intersection PERs.

A crucial observation we will be using in Ch. 6 is the following. The un-
derlying mechanism of the term semantics is the construction of (encodings of)
partial recursive functions according to term structure, and in fact without using
type information (Bainbridge et al., 1990; Mitchell, 1996). One is thus justified
in viewing a realiser as being generated over a set of realisers representing free
variables, using term-formation rules. If t[x1, . . . , xk] is a term with free term
variables x1, . . . , xk, then for n1, . . . , nk ∈ N, we will write the partial recursive
function constructed over n1, . . . , nk according to t as t[n1, . . . , nk].

3.4.2 Syntactic Models

We will also be considering other model candidates for Plotkin and Abadi’s logic,
namely models constructed over types and terms, and over theories. We will refer
to these as syntactic models.

First there is the closed type and term model of (Hasegawa, 1991). One
considers a structure constructed over the closed types and terms of System F,
quotiented by the equational theory. This structure is not a model, because it is
not extensional in functional and polymorphic application. However, in (Breazu-
Tannen and Coquand, 1988), this structure, dubbed a polymorphic lambda in-
terpretation, undergoes an extensional collapse via quotienting by logical rela-
tions. Thus a model is formed. In fact, (Breazu-Tannen and Coquand, 1988)
describes this extensional collapse as a general method for obtaining extensional
structures from arbitrary polymorphic lambda interpretations, of which the above
is an example. This model has the property that all elements are denotable by
closed terms, and moreover, all closed type expressions of the form ∀X1. · · · ∀Xn.T ,
where T has no universal quantifiers, have canonical interpretations, i.e., there is
a bijection between the closed normal forms of the the type and the elements of
the interpretation of the type. Then, in (Hasegawa, 1991) this model is adjoined
with binary relations, and it is shown that the resulting structure is partially rela-
tional parametric, in the sense that all syntactically definable universal types are
relational parametric. It is an open question whether or not universal types that
are not syntactically definable are parametric, and thus it is not known if this
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structure is a model for the logic for relational parametricity we are considering.
We will nevertheless still refer to this structure in our speculations.

A structure that on the other hand is a model of the logic, is the parametric
minimal model due to (Hasegawa, 1991). The starting point is the maximum con-
sistent theory and the ensuing construction of the second-order minimal model
due to (Moggi and Statman, 1986). This construction is an instance of the ex-
tensional collapse schema mentioned above. This model satisfies the ω-rule, see
Sect. A.6 in Appendix A for the ω-rule, and moreover, all closed type expressions
of the form ∀X1. · · · ∀Xn.T , where T has no universal quantifiers, have canonical
interpretations, but only if T has rank no greater than two; the rank rank(T ) of
a type being defined as

rank(X) = 0, for any variable X,

rank(U→V ) = max (rank(U) + 1, rank(V )).

Then in (Hasegawa, 1991) this model is adjoined with binary relations, and it is
shown that the resulting structure is fully relational parametric.
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In this chapter, essential concepts of algebraic specification refinement outlined
in Ch. 2, are translated into the type-theoretic setting involving System F and
Reynolds’ relational parametricity assertion as expressed in Plotkin and Abadi’s
logic for parametric polymorphism. At first order, the type-theoretic setting
provides a canonical picture of algebraic specification refinement. At higher order,
the type-theoretic setting allows future generalisation of the principles of algebraic
specification refinement to higher order and polymorphism; this is the topic of
Ch. 5, Ch. 6, and Ch. 7. In this chapter, we will show the equivalence of the
acquired type-theoretic notion of specification refinement with that from algebraic
specification. We will also import the generic algebraic-specification strategy
for behavioural refinement proofs into the type-theoretic setting. Beside being
a valuable asset in its own right, this imported proof strategy is necessary for
showing the above correspondence between the two notions of refinement.

73
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4.1 Introduction

One of the most appealing and successful endeavours in algebraic specification is
that of stepwise specification refinement , in which abstract descriptions of pro-
cesses and data types are methodically refined to concrete executable descriptions,
viz. programs and program modules. The account of this due to Sannella and
Tarlecki was described in Ch. 2. We are now going to express this refinement
framework in a type-theoretic environment comprised of System F and the rela-
tional logic assuming relational parametricity described in Ch. 3.

The benefit of this to algebraic specification is that inherently first-order con-
cepts are translated into a setting in which they may be generalised through the
full force of the chosen type theory. Furthermore, in algebraic specification many
concepts have numerous theoretical variants. Here, the setting of type theory
may provide a somewhat sobering framework, in that type-theoretic formalisms
insist on certain sensibly canonical choices.

Conversely, the benefit to type theory lies in drawing from the rich source of
formalisms, development methodology and reasoning techniques developed in the
field of algebraic specification. See (Cerioli et al., 1997) for a survey.

Chapter 2 highlighted three essential concepts that make the chosen account
of specification refinement apt for real-life development. These are so-called con-
structor implementations, observational equivalence, and stability. At first order,
these concepts fall out naturally in the type-theoretic setting. Relational para-
metricity plays an essential role in this. It gives the coincidence at first order of
observational equivalence with equality at existential type.

In algebraic specification there is a generic proof strategy for proving specific-
ation refinement up to observational equivalence. This strategy is formalised in
(Bidoit et al., 1997; Bidoit and Hennicker, 1996; Hennicker, 1997), and was out-
lined in Sect. 2.7. The strategy considers axiomatisations of so-called behavioural
partial congruences. As observed in (Poll and Zwanenburg, 1999) and (Hannay,
1999a), although the former does not refer to this particular proof strategy, the
type-theoretic setting of System F and Plotkin and Abadi’s logic is not sufficient
to accommodate this proof strategy. The reason is the lack of mechanisms for
handling subobjects and quotients. Handling subobjects is necessary in case the
behavioural congruence is partial. One solution would be to add something akin
to subset types, and quotient types, e.g., (Hofmann, 1995b), but this requires a
dependent type theory, which we avoid in this thesis.

In (Poll and Zwanenburg, 1999) one finds the idea for an alternative solution.
This solution is purely logical; one simply adds axioms stating the existence of
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quotients and subobjects. This is justified by the soundness of the axioms w.r.t.
the parametric PER-model (Bainbridge et al., 1990) that already is a justification
for Plotkin and Abadi’s logic. We do not know if the extended logic is complete
for the parametric PER-model.

The imported proof strategy is a valuable tool for proving observational re-
finements in the type-theoretic setting. Moreover, it lets us show a formal cor-
respondence between the type-theoretical notion of refinement and the notion of
refinement from algebraic specification.

Related work to parts of this chapter is primarily (Poll and Zwanenburg, 1999;
Zwanenburg, 1999) which also study refinement in the type-theoretic context. We
do this with references to existing practices in algebraic specification by establish-
ing a formal link to algebraic specification refinement. In (Poll and Zwanenburg,
1999) quotients are dealt with. Using the same idea of axiomatisation, (Han-
nay, 1999a) then complements this work by also dealing with subobjects. The
axiomatisation of the existence of subobjects also appeared independently in the
comprehensive (Zwanenburg, 1999).

Other relevant work linking algebraic specification and type theory includes
(Luo, 1993) encoding constructor implementations in the Extended Calculus of
Constructions (ECC), (Reus and Streicher, 1993) expressing module-algebra ax-
ioms in ECC, (Mylonakis, 1995) encoding behavioural equalities in the Uniform
Theory of Dependent Types (UTT), (Aspinall, 1997) treating the specification
language ASL+, (Underwood, 1994) using Nuprl as a specification language, and
(Streicher and Wirsing, 1990) arguing the necessity for dependent types in spe-
cification. Only (Poll and Zwanenburg, 1999; Zwanenburg, 1999) utilise the spe-
cific context of System F and relational parametricity.

The next section introduces specification refinement in a type-theoretic set-
ting. Then, the obvious translation of algebraic specification refinement into this
environment is presented. The main result of this chapter is a correspondence at
first-order between algebraic specification refinement and the type-theoretic no-
tion of specification refinement. This sets the scene for generalising the refinement
concepts now implanted in type theory to higher order and polymorphism.

4.2 Type Theoretic Specification Refinement

We now define a notion of type theoretic specification refinement that mirrors
algebraic specification refinement. It is important to realise that things, which
in the algebraic specification approach were semantic notions or meta-level con-
cepts, such as data types, observational equivalence and refinement, now become
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internalised in syntax. This is possible because of the expressivity of System F
and the logic for relational parametricity. We will use the same terminology for
the internalised features as for the features themselves.

4.2.1 Data Types

Data types are now terms of existential type. As mentioned earlier, it is tempting
to call existential types abstract data types. This would be appropriate if the
abstract properties shared by all instances of an abstract data type were simply
those inherent in the existential type. However, we are concerned with the ad-
ditional interface given by specifications. Consequently, we follow (Mitchell and
Plotkin, 1988) and call the types of data types merely abstract types. In fact,
existential types act more like signatures.

Example 4.1 The type of natural-number stack data types is the abstract type

SigSTACKNat

def
= ∃X.TSTACKNat

[X]

for TSTACKNat
[X]

def
= (empty :X, push :Nat→X→X, pop :X→X, top :X→Nat) �

As a notational convention, we will in discourse reserve T[X] for the body of a given
arbitrary abstract type ∃X.T[X]. We will later be interested in parameterised
data types, so T[X] may have free variables Z other than X, but we only write
these when necessary. As in the above example, we henceforth use a labelled
product notation as a purely notational convenience for product types and tuples
when discussing data types, i.e., we will write T[X] in the form

(f1 :T1[X], . . . , fk :Tk[X])

and if u :T[X], we write u.fi for the ith projection of u. We call each fi :Ti[X] a
profile of the abstract type.

4.2.2 Polymorphic Data Types

We conveniently get polymorphic data types by Λ-abstracting regular data types.
The type of a polymorphic data type is a polymorphic abstract type.

Example 4.2 The type of polymorphic stack data types is given by the poly-
morphic abstract type

SigSTACK = ∀Z.∃X.TSTACK[X, Z]
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for TSTACK[X, Z] = (empty :X, push :Z→X→X, pop :X→X, top :X→Z→Z). If
u :SigSTACK is a polymorphic stack data type, then one gets natural-number and
boolean stack data types by, respectively

uNat :∃X.TSTACK[X, Nat] uBool :∃X.TSTACK[X, Bool]
�

Writing polymorphic data types is of course good programming economy and
enhances maintainability by limiting code duplication.

4.2.3 Constructors

In algebraic specification, constructors are essentially parameterised programs,
i.e., programs are likened to semantic structures, namely algebras, so constructors
are functions from algebras to algebras. In type theory, programs are directly
terms. Therefore, constructors are internalised in the type theory as function
terms between abstract types, e.g., F :∃X.T′[X]→∃X.T[X].

Example 4.3 The constructor Tr of Example 2.3 is expressed in this setting as

λu :SigSTACKNat
.unpack(u)(SigTRIV)(ΛX.λx :TSTACKNat

. (packX (id =

λx, n, z :Nat . x.top(multipop n (multipush n z (x.pushx x.empty))))))

HereSigTRIV
def
= ∃X.(id :Nat→Nat→Nat→Nat), and multipop and multipush are

defined in terms of iterators. This constructor has type SigSTACKNat
→SigTRIV. �

Constructors mapping polymorphic data types are terms between polymorphic
abstract types, e.g., F :∀Z.∃X.T′[X, Z]→∀Z′.∃X.T[X, Z′].

4.2.4 Observational Equivalence

In algebraic specification, two Σ-algebras A and B are observationally equivalent
w.r.t. observable sorts Obs and input sorts In if for any observable computation
t ∈ TΣ(XIn)s, s ∈ Obs the interpretations tA and tB are equal; if we assume
built-in observable and input sorts, cf. Sect. 2.4.

Defining observational equivalence w.r.t. observable computations matches
how observational equivalence is commonly defined for lambda calculi. As in
algebraic specification, we define observational equivalence w.r.t. a finite set Obs

of observable types. The content of Obs will be determined in a moment. We
discuss input sorts/types in Sect. 4.2.9. A (virtual) observable computation is a
(virtual) client computation whose result type is in Obs . We thus define obser-
vational equivalence in terms of observable computations in the logic as follows.
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Definition 4.4 (Observational Equivalence (ObsEq)) Define observational
equivalence ObsEq w.r.t. T[X] and observable types Obs in the logic by

ObsEqObs
T[X]

def
= (u :∃X.T[X], v :∃X.T[X]) .

(∃A, B.∃a :T[A], b :T[B] . u = (packAa) ∧ v = (packBb) ∧∧
D∈Obs ∀f :∀X.(T[X]→D) . (fA a) = (fB b))

For example, an observable computation on natural-number stacks is, for n :Nat:

ΛX.λx :TSTACKNat
[X] . x.top(x.pushn x.empty)

We omit the T[X]-subscript to ObsEq whenever it is obvious from context what
abstract type body is meant. Observational equivalence of polymorphic data
types is defined point-wise, viewing the quantified type variables as parameters.
We return to this later.

Notice that the definition of observational equivalence is ultimately in terms
of package components. This means that the definition in principle also supports
the view of data types as pairs, rather than packages, cf. Sect. 3.3.3.

—

Recall for the existence of simulation relations that Def. 3.3 does not yield

(packAa) SimRelT [X,ρ] (packBb) ⇒ ∃R⊂A×B . a T [R, ρ] b

What (packAa) SimRelT [X,ρ] (packBb) gives is packages (packA′a′) and (packB′b′),
such that (packAa) = (packA′a′) and (packBb) = (packB′b′), and then some
S⊂A′×B′ such that a′ T [S, ρ] b′.

Since observational equivalence is defined via proxy packages as well, one
might expect a similar weakness for specific packages also here. This is not the
case. We have:

Theorem 4.5 The following sequent schema is derivable.

∀A, B.∀a :T[A], b :T[B] .

(packAa) ObsEqObs
T[X] (packBb) ⇔

∧
D∈Obs ∀f :∀X.(T[X]→D) . (fA a) = (fB b)

Proof: ⇒: Suppose

∃A′, B′.∃a′ :T[A′], b′ :T[B′] .

(packAa) = (packA′a′) ∧ (packBb) = (packB′b′) ∧∧
D∈Obs ∀f :∀X.(T[X]→D) . (fA′ a′) = (fB′ b′)

But (fA′ a′) = unpack(packA′a′)Df = unpack(packAa)Df = (fA a), and simil-
arly for (fB′ b′).
⇐: By definition. �
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4.2.5 Stability

Stability of a constructor F (cf. Sect. 2.5) now translates to

u ObsEqObsSP′ v ⇒ Fu ObsEqObsSP Fv

In the case of polymorphic data types, stability amounts to

( ∀Z . uZ ObsEqObsSP′∪Z vZ ) ⇒ ( ∀Z . (Fu)Z ObsEqObsSP∪Z (Fv)Z )

We will discuss stability more in Sect. 4.3.1 and Sect. 5.4.3 where we take up the
question of whether or not System F provides only stable constructors.

4.2.6 Specifying Abstract Data Types

Now we define specification up to observational equivalence. The idea from al-
gebraic specification is mirrored straightforwardly as follows.

Definition 4.6 (ADT Specification) An abstract data type specification SP

is a tuple 〈〈SigSP , ΘSP〉,ObsSP 〉 where

SigSP
def
= ∃X.TSP [X],

ΘSP(u)
def
= ∃X.∃x :TSP [X] . u ObsEqObsSP (packXx) ∧ Ax SP [X, x],

where Ax SP [X, x] is a finite conjunction of formulae. If ΘSP(u) for u : SigSP is
derivable, then u is said to be a realisation of SP . The finite set Obs of observable
types is given by the specifier, but is assumed to have the following content:

• any number of closed inductive types, such as Bool or Nat,

• all parameters Z, in case TSP [X] has free Z other than X.

Example 4.7 The analogue to the specification of stacks in Example 2.1 is

STACKNat
def
=

〈〈
SigSTACKNat

, ΘSTACKNat

〉
, {Nat}

〉
, where

SigSTACKNat
= ∃X.TSTACKNat

[X],

TSTACKNat
[X] = (empty :X, push :Nat→X→X, pop :X→X, top :X→Nat),

ΘSTACKNat
(u) = ∃X.∃x :TSTACKNat

[X] . u ObsEq{Nat} (packXx) ∧
∀x :Nat, s :X . x.pop(x.push x s) = s ∧
∀x :Nat, s :X . x.top(x.push x s) = x

�
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The realisation predicate ΘSP(u) of Def. 4.6 expresses u is observationally equi-
valent to a package (packXx) that satisfies the axioms Ax SP . Hence specification
is up to observational equivalence.

It is the specifier’s task to supply SigSP [X, x] and Ax SP [X, x]. We can imagine
a specification language built on top of this type-theoretic setting, with a pre-
processor compiling specifications written in this language into type-theoretic
formalisms for use with a proof tool. Thus the specifier could write specifications
in the style of Ch. 2. We, in the rôle of formalism devisers, will here continue to
work in terms of the underlying type-theoretic setting.

4.2.7 Specifying Polymorphic Abstract Data Types

We can also specify polymorphic abstract data types.

Example 4.8 The following specifies stacks as a polymorphic abstract data type.

STACK
def
= 〈〈SigSTACK, ΘSTACK〉, {}〉, where

SigSTACK = ∀Z.∃X.TSTACK[X, Z],

TSTACK[X, Z] = (empty :X, push :Z→X→X, pop :X→X, top :X→Z→Z),

ΘSTACK(u) = ∀Z.∃X.∃x :TSTACK[X, Z] . uZ ObsEq{Z} (packXx) ∧
∀z :Z, s :X . x.pop(x.push z s) = s ∧
∀z :Z, s :X . x.top(x.push z s) = z

Realisations u :SigSTACK are polymorphic implementations of stacks up to point-
wise observational equivalence for every instance uZ. �

Example 4.8 is a specification of a polymorphic ADT. However, the ADT itself
contains no polymorphic operations. We deal with polymorphism within data
types properly in Ch. 7. The general form of the specification of PADTs is:

Definition 4.9 (PADT Specification) A polymorphic abstract data type spe-
cification PSP is a tuple 〈〈SigPSP , ΘPSP 〉,ObsPSP〉 where

SigPSP
def
= ∀Z.∃X.TPSP [X, Z],

ΘPSP(u)
def
= ∀Z.∃X.∃x :TPSP [X, Z] .

uZ ObsEqObsPSP∪Z (packXx) ∧ AxPSP [X, Z, x]

If ΘPSP(u) for u : SigPSP is derivable, then u is said to be a realisation of PSP .
A realisation u : SigPSP is in other words a polymorphic implementation up to
point-wise observational equivalence for every instance uZ.
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Realisations are polymorphic, i.e., one realisation yields instances at every type.
One cannot have, say, a particularly efficient stack of Booleans as an instance.

In closing, we give an example of a parameterised specification, i.e., simply
an ADT specification according to Def. 4.6 with a type parameter.

Example 4.10 Parameterised stacks could be specified by

STACK[Z]
def
= 〈〈SigSTACK, ΘSTACK〉, {Z}〉, where

SigSTACK = ∃X.TSTACK[X, Z],

TSTACK[X, Z] = (empty :X, push :Z→X→X, pop :X→X, top :X→Z→Z),

ΘSTACK(u) = ∃X.∃x :TSTACK[X, Z] . u ObsEq{Z} (packXx) ∧
∀z :Z, s :X . x.pop(x.push z s) = s ∧
∀z :Z, s :X . x.top(x.push z s) = z

�

Note that a parameterised specification is not necessarily a specification of a
parameterised ADT, a realisation of the latter being again something that may
be instantiated at any type, that is, in effect, a polymorphic data type. Paramet-
erised specifications are in the outset economisers for the specifier. When used
for developing a component in a refinement process, the parameters will at some
point get instantiated. The point at which this happens determines to what de-
gree the final realisation can be optimised w.r.t. the parameter instances. If this
happens at the end, then what has been developed is in effect a polymorphic data
type, i.e., if one at this stage refrains from instantiating the remaining parameters
and instead lambda-abstracts these, one gets a proper polymorphic data type.

Specifications as defined in Def. 4.6 resembles a form suggested in (Luo, 1993).
Our specifications are meta-level tuples, whereas the Extended Calculus of Con-
structions in Luo’s work admits specifications as first-order citizens. This means
one can quantify over parameters of specifications, and this would allow further
internalisation into type theory of meta-level statements regarding specification
refinement and instantiation. System F is nevertheless sufficient for our purposes.

The ensuing discussion is in terms of ADTs. It should be clear that by defin-
ition, we can lift the results obtained also to PADTs.

4.2.8 Observable Types

Notice that according to Def. 4.6, any parameters to the abstract type are included
in Obs . The motivation for this is, in the context of compound data types, to
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allow observable computations whose result types are directly element types. For
example, for stacks of T , the type T should be observable.

The parameters of an abstract type may be instantiated by any type and thus
Obs is ultimately capable of containing any type. We as formalists are showing
the derivability in the logic of certain sequents, and therefore the contents of Obs

will in this context be as specified in Def. 4.6. Note that allowing any type in Obs

via parameters is different from allowing any type in Obs per se. In the former
case, Obs will never contain the instantiated abstract type, e.g., if ∃X.T[X, Z] is
instantiated with any type T , then T goes in Obs, but T can of course never be
the resulting ∃X.T[X, T ]. On the other hand, if any type were allowed a priori in
Obs , then the instantiated abstract type ∃X.T[X, T ] could itself be an observable
type. It is conceptually unpleasant to define observational equivalence at an
abstract type w.r.t. the abstract type itself. We revisit this issue in Sect. 5.1.1.

We did not consider parameterised data types in detail when presenting algeb-
raic specification refinement in Ch. 2. Although we do not deal with this topic in
length here either, not considering type parameters to data types, abstract types
and specifications at all in the present polymorphic type theory, would be rather
conspicuous. Therefore, the parameters Z will be at least implicitly present in
most of the ensuing discussion. The results in Ch. 7 relating to polymorphic
operations in data types also rely on our treatment of type parameters here.

The virtual data representation X associated with an observable computation
ΛX.λx :T[X].t cannot be an observable type. On the package level, this is because
of Abs-Bar3 (p. 55), i.e., the virtual data representation cannot be the result type
of a client computation. Recalling the discussion in Sect. 3.3.3, suppose we view
data types as pairs. Then the virtual data representation cannot be an observable
type because Obs is determined externally to any observable computation.

One may wonder whether there is any point in restricting observable types
further than to excluding the data representation, since one in the lambda cal-
culus conceivably might convert any computation to give a result type in Obs .
However, an observable computation will only have a distinguishing effect insofar
as it uses operations over the data representation, cf. the uniformity aspect of
Abs-Bar (p. 54). This means that it is not in general possible to do such a con-
version. This also means that the determining factor for observations is the set of
operations with result types other than the data representation. A natural norm
is to set Obs to contain all types in the abstract type (read signature), and as
mentioned above, this excludes the virtual data representation. This is what we
will do later on, cf. FADTObs (p. 87). Notice that declaring Obs also allows us to
give a finite conjunction in the definition of observational equivalence in Def 4.4.
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4.2.9 Input Types

We now deal with input types corresponding to the notion of input sorts, cf.
Sect. 2.4. An observable computation f :∀X.(T[X]→D) may have free variables.
Importantly, by Abs-Bar , these free variables cannot be of types containing the
virtual data representation X. In the world of algebraic specification, there is
no formal restriction on the set In of input-sorts. Thus one has to explicitly
restrict input sorts to not include what we can call the behavioural sort , e.g.,
Set in Example 2.2 (p. 27), when defining observational equivalence. Here the
type-theoretic formalism deals with this automatically.

Example 4.11 In Example 2.2, the point was that the sort Set was not in In.
The corresponding type-theoretic specification is

SETNat
def
=

〈〈
SigSETNat

, ΘSETNat

〉
, {Bool}

〉
, where

SigSETNat
= ∃X.TSETNat

[X]

for TSETNat
[X] = (empty : X,

add : Nat→X→X,

remove : Nat→X→X,

in : Nat→X→Bool)

ΘSETNat
(u) = ∃X.∃x :TSETNat

[X] . u ObsEq{Bool} (packXx) ∧ Ax SETNat

for Ax SETNat

def
=

∀x :Nat, s :X . (x.addx (x.addx s)) = (x.addx s) ∧
∀x, y :Nat, s :X . (x.addx (x.add y s)) = (x.add y (x.addx s)) ∧
∀x :Nat . (x.inx x.empty) = false ∧
∀x, y :Nat, s :X . (x.inx (x.add y s)) = if x =Nat y then true else (x.in x s) ∧
∀x :Nat, s :X . (x.inx (x.remove x s)) = false

∀x, y :Nat, s :X . x �=Nat y ⇒ (x.in x (x.remove y s)) = (x.inx s)

Consider now the package LI
def
= (pack ListNat l) :SigSETNat

, where

l
def
= (empty = nil,

add = λx :Nat.λl :ListNat . return l′ that is x inserted uniquely in l,

remove = λx :Nat.λl :ListNat . return l′ that is l with
first occurrence of x removed ,

in = λx :Nat.λl :ListNat . return true if x occurs in l, false otherwise)

By Abs-Bar , users of LI may only build lists using operations of l, such as l.empty

and l.add, and on such lists the efficient l.remove gives the intended result. By the
same token, any observable computation f :∀X.(TSETNat

[X]→D), for D ∈ {Bool}
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can only refer to such lists, and not to arbitrary lists. This is the crucial point
that admits LI as a realisation of SETNat according to Def. 4.6. For example, in
the observable computation ΛX.λx : TSETNat

. x.in(x, x.remove(x, g)), g must be a
term of the bound type X, and the typing rules, i.e., Abs-Bar , ensure that g

cannot be a variable, nor contain any variable of a type containing X. �

Unlike for observable types, there is no way in the current type-theoretic form-
alism of restricting or specifying input types further, without separate measures.
This is nevertheless adequate; the relevant issue is that the data representation
is not an input type. And in fact, types that do not occur in the abstract type
will have no influence as input types, because variables and terms involving these
types will be the same in actual observable computations arising from a single
virtual observable computation, cf. the uniformity aspect of Abs-Bar (p. 54).

4.2.10 Specification-Building Operators

It is possible to define type-theoretic formalisms mirroring the canonical specifi-
cation-building operators sum, derive, and translate from Sect. 2.6. Again, a
pre-processor could compile a syntax akin to that of an algebraic specification
language into type-theoretic formalisms for use in a proof tool.

Alternatively, for specifications using only first-order logic, we can use the
already existing algorithm for normalising algebraic specifications. Then it suffices
to have a type-theoretic counterpart for the hide operator. In fact, it suffices to
extend the type-theoretic specification formalism so it can deal with hidden parts.
We obtain this simply by extending specifications as defined in Def 4.6, with an
extended body containing the original profiles as well as the intended hidden ones.

Definition 4.12 (ADT Specification with Hidden Parts) An abstract data
type specification SP with hidden parts is a tuple 〈〈SigSP , ΘSP〉, Te

SP ,ObsSP〉 with

SigSP
def
= ∃X.TSP [X],

ΘSP(u)
def
= ∃X.∃x :Te

SP [X] . u ObsEqObsSP (packX x|TSP
) ∧ Ax SP [X, x],

where all profiles of TSP [X] occur in Te
SP [X], and x|TSP

denotes (x.g1, . . . , x.gn) for
all profiles gi :Ti[X] in TSP [X]. If ΘSP(u) for u :SigSP is derivable, then u is said
to be a realisation of SP . Assumptions on Ax SP and ObsSP are as in Def. 4.6.

If Te
SP [X] = TSP [X] in Def. 4.12, then we get the notion of specification as

described in Def. 4.6. In this case we drop Te
SP [X] from SP .

Note that the set ObsSP of observable types is defined as usual w.r.t. the
signature SigSP of the specification. Thus, no types occurring in Te

SP [X] that are
not in TSP [X] appear in ObsSP .
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Example 4.13 Consider the data-type parameterised specification TRIVe[S] from
Example 2.6. We can give a corresponding type-theoretic specification as fol-
lows. To get the effect of data-type parameterisation, we can simply let Y and
y :TSTACKNat

[Y ] be free in the specification.

TRIVe
def
= 〈〈SigTRIVe, ΘTRIVe〉, Te

TRIVe, {Nat}〉, where

SigTRIVe
def
= ∃X.TTRIVe[X],

TTRIVe[X]
def
= (id :Nat→Nat→Nat→Nat),

Te
TRIVe[X]

def
= (id :Nat→Nat→Nat→Nat,

multipush :Nat→Nat→Y →Y, multipop :Nat→Y →Y )

ΘTRIVe(u)
def
= ∃X.∃x :Te

TRIVe[X] . u ObsEq{Nat} (packX x|TTRIVe
) ∧

AxTRIVe : ∀n, z :Nat, s :Y . (x.multipopn (x.multipush n z s)) = s ∧
∀x, n, z :Nat . (x.idx n z) =

y.top(x.multipopn (x.multipush n z (y.push x y.empty)))

According to Def. 4.12, all type parameters in TSP get included in ObsSP . Note
that although Y occurs as a parameter in Te

TRIVe, this type variable does not get
included in ObsTRIVe, since Y does not occur in TTRIVe. �

4.2.11 Specification Refinement

Specification refinement up to observational equivalence can now be expressed in
the logic as follows.

Definition 4.14 (Specification Refinement) Let SP and SP ′ be ADT spe-
cifications. Then SP ′ is a refinement of SP , via constructor F : SigSP ′ → SigSP

if
∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP(Fu)

is derivable. We write SP �
F

SP ′ for this fact.

Again, given a program P that is a realisation of SP ′, the instantiation F (P )

is then a realisation of SP . Constructors here correspond to refinement maps
in (Luo, 1993) and derived signature morphisms in (Honsell et al., 2000). It is
evident that the refinement relation of Def. 4.14 is transitive, i.e., we have vertical
composability (Goguen and Burstall, 1980):

SP �
F

SP ′ and SP ′ �
F ′ SP ′′ ⇒ SP �

F◦F ′SP ′′

where F ◦ F ′ def
= λu : SigSP ′′ .F (F ′u). This is the essential fact that allows us to

perform stepwise refinement where the result program is given by the composition
of the constructors developed through the refinement process, cf. Sect. 2.3.
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4.2.12 Specifying Constructors

In the algebraic specification of constructors in Sect. 2.9, we can capture that
output data types depend on input data types. Here, since we have no term-
dependent types, we can only have dependencies that involve non-dependent
result signatures. For refinement purposes this is adequate, because the more
abstract result signature usually pre-exists before the less abstract input signa-
ture. Recall that constructors map in the opposite direction of refinement.

Definition 4.15 (Constructor Specification) For specifications SP and SP ′,
a constructor specification ΠS :SP ′.SP is a tuple 〈SigΠS:SP ′.SP , ΘΠS:SP ′.SP〉 where

SigΠS:SP ′.SP
def
= SigSP ′→SigSP ,

ΘΠS:SP ′.SP(v, u)
def
= ∃Y.∃y :Te

SP ′[Y ].∃X.∃x :Te
SP [X] .

v ObsEqObsSP′ (packY y|TSP′ ) ∧
u ObsEqObsSP (packXx|TSP

) ∧
AxΠS:SP ′.SP [Y, y, X, x]

where AxΠS:SP ′.SP [Y, y, X, x] is a finite conjunction of formulae. If one can derive

∀v :SigSP ′ . ΘSP ′(v) ⇒ ΘΠS:SP ′.SP(v, Fv)

for a given F :SigΠS:SP ′.SP , then F is said to be a realisation of ΠS :SP ′.SP .

Definition 4.15 incorporates hidden parts. Again, letting Te
SP [X] = TSP [X] and

Te
SP ′[Y ] = TSP ′[Y ] takes us to a situation with no hidden symbols.

Often AxΠS:SP ′.SP [Y, y, X, x] is Ax SP [Y, y, X, x], where Y, y are substituted in
for free variables representing a data type parameter. See however Example 4.27.

Note also that the dependent-product notation ΠS : SP ′.SP in Def. 4.15 is
merely suggestive. We do not have dependent products in our type theory. How-
ever, we are still able to express dependent constructor specifications.

Example 4.16 A type-theoretic analogue to the specification in Example 2.6
(p. 38) is obtained as follows. Recalling specifications STACKNat from Example 4.7,
and TRIVe from Example 4.13, we produce:

ΠS :STACKNat.TRIVe
def
=

〈
SigΠS:STACKNat.TRIVe, ΘΠS:STACKNat.TRIVe

〉
, where

SigΠS:STACKNat.TRIV
def
= SigSTACKNat

→SigTRIVe,

ΘΠS:STACKNat.TRIVe(v, u)
def
= ∃Y.∃y :TSTACKNat

[Y ].∃X.∃x :Te
TRIVe[X] .

v ObsEq{Nat} (packY y) ∧ u ObsEq{Nat} (packXx|TTRIVe
) ∧

∀n, z :Nat, s :Y . (x.multipopn (x.multipush n z s)) = s ∧
∀x, n, z :Nat . (x.idx n z) =

y.top(x.multipop n (x.multipush n z (y.pushx y.empty)))

Here, AxΠS:STACKNat.TRIVe is AxTRIVe. �
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4.3 Results and Simplifications at First Order

If T[X] is first-order, we get a string of interesting results in the logic. The
main result here is that parametricity gives the coincidence of equality at exist-
ential type with observational equivalence. Thus, parametricity implies the true
indistinguishability of observationally equivalent data types. This reduces our
type-theoretic notions of specification and specification refinement in the previ-
ous section to simple ones in terms of equality. Additionally, since observational
equivalence coincides with equality, all constructors are automatically stable.

Note first that any profile of ∃X.T[X] (or indeed any type) Ti[X] has the
form Ti1[X]→· · ·→Tni

[X]→Tci
[X] where Tci

[X] is not an arrow type, with the
understanding that if ni = 0, then Ti[X] is Tci

[X]. We presume a specification
scenario, and hence a current set of observable types Obs according to Def. 4.6
or Def. 4.12. We will mainly be working with the following assumption:

FADTObs : Every profile Ti[X] = Ti1[X]→· · ·→Tni
[X]→Tci

[X] of ∃X.T[X] is first
order, and such that Tci

[X] is either X or some D ∈ Obs .

Thus, we wish only to hide the data representation in a data type. Notice the
dependency between T[X] and Obs.

We first establish that the existence of a simulation relation is equivalent to
observational equivalence.

Theorem 4.17 Suppose T[X] adheres to FADTObs . With Param we derive

∀Z.∀u, v :∃X.T[X, Z] . u SimRelT[X,eqZ ] v ⇔ u ObsEqObs
T[X,Z] v

Proof: This follows from Theorem 4.18 below. �

Theorem 4.18 (Tight Correspondence) Suppose T[X] adheres to FADTObs .
With Param we derive

∀A, B.∀a :T[A, Z], b :T[B, Z] .

∃R⊂A×B . a(T[R, eqZ])b

⇔
∧

D∈Obs ∀f :∀X.(T[X, Z]→D) . (fA a) = (fB b)

Proof: ⇒: This follows from the parametricity axiom schema. Consider the
Param instance ∀Y.∀f :∀X.(T[X, Z]→Y ) . f(∀X.T[X, eqZ]→ eqY )f . Unravel-
ling the definitions, this becomes more than sufficient:

∀Y ∀f :∀X.(T[X, Z]→Y ).∀A, B, R⊂A×B . ∀a :T[A, Z], b :T[B, Z] .

a(T[R, eqZ])b ⇒ (fA a) = (fB b)
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⇐: We must exhibit an R such that a(T[R, eqZ])b. On the semantic level,
(Mitchell, 1991, 1996) and (Schoett, 1990, 1986) relate elements if they are de-
notable by some common term. We mimic this: For R give

Dfnbl
def
= (a :A, b :B) . (∃f :∀X.(T[X, Z]→X) . (fA a) = a ∧ (fB b) = b)

We must now derive a(T[R, eqZ])b. Due to the assumption FADTObs , it suffices
to show for every component (g :T1→· · ·→Tn→Tc) in T[X, Z] that

∀u1 :T1[A, Z], . . . , ∀un :Tn[A, Z], ∀v1 :T1[B, Z], . . . , ∀vn :Tn[B, Z] .

u1 T1[R, eqZ] v1 ∧ · · · ∧ un Tn[R, eqZ] vn

⇒ (a.g u1 · · ·un) Tc[R, eqZ] (b.g v1 · · · vn)

Under our present assumptions, Tc and any Tj in the antecedent is either X, some
Zi, or else some other closed type D ∈ Obs . If Tj is X then the antecedent says
uj R vj and we may assume ∃fj :∀X.(T[X, Z]→X).(fjA a) = uj ∧ (fjB b) = vj .
If Tj is some Zi, we may immediately assume uj =Zi

vj . If Tj is a closed observable
type D ∈ Obs we may by the Identity Extension Lemma (Theorem 3.2) also
assume uj =D vj . Consider f

def
= ΛX.λx : T[X, Z] . (x.g x1 · · ·xn), where xj is

(fjXx) if Tj is X, and xj = uj otherwise.
Suppose now Tc is an observable type D ∈ Obs , including any parameter Zi.

By assumption we have (fA a) = (fB b) and by β-equality we are done.
Suppose Tc is X. Then we must derive (a.g u1 · · ·un) R (b.g v1 · · · vn), i.e.,

that ∃f : ∀X.(T[X, Z]→X).(fA a) = (a.g u1 · · ·un) ∧ (fB b) = (b.g v1 · · · vn).
But then we exhibit our f above, and we are done. �

Theorems 4.17 and 4.18 are methodologically important, because in general it is
hard to show observational equivalence directly, whereas showing the existence of
a simulation relation is more tractable given two specific packages.

We also get the correspondence between equality at existential type and ob-
servational equivalence.

Theorem 4.19 Suppose T[X] adheres to FADTObs . With Param we derive

∀u, v :∃X.T[X, Z] . u =∃X.T[X,Z] v ⇔ u ObsEqObs
T[X,Z] v

Proof: Together with Theorem 3.5, Theorem 4.17 gives the result. �

Theorem 4.19 means that, under relational parametricity, observational abstrac-
tion is inherent to inhabitants of existential type and hence to our notion of data
type, but recall Sect. 3.3.3. By Theorem 4.19 we can substitute equality for
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ObsEqObsSP in Def. 4.6, the definition of specification. This reduces our expres-
sions of specification and specification refinement to ones in terms of equality.

In the first-order case, we get the tight correspondence between equality at
existential type and the existence of a simulation relation. This is due to the fol-
lowing theorem, which ameliorates the situation depicted by Theorem 3.7 (p. 64).

Theorem 4.20 Suppose T[X] adheres to FADTObs . With Param we derive

∀A, B.∀a :T[A, Z], b :T [B, Z]) .

(packAa) SimRelT[X,eqZ ] (packBb) ⇔ ∃R⊂A×B . a T[R, eqZ] b

Proof: Recall from the discussion at the end of Sect. 3.3.2, that it is the direction
from left to right that is the issue. Suppose (packAa) SimRelT[X,eqZ ] (packBb).
Theorem 4.17 gives (packAa) ObsEqObs

T[X,Z] (packBb). Then Theorem 4.5 and The-
orem 4.18 give the result. �

Then for packages, we get a version of Theorem 3.5 (p. 63) at first order without
any circular features, i.e., without indirection and reference to equality on the
simulation relation side.

Theorem 4.21 Suppose T[X] adheres to FADTObs . With Param we derive

∀A, B.∀a :T[A, Z], b :T [B, Z]) .

(packAa) =∃X.T[X,eqZ ] (packBb) ⇔ ∃R⊂A×B . a T[R, eqZ] b

Proof: Directly from Theorem 4.20 and Theorem 3.5. �

Recall the discussion in Sect. 3.3.3 concerning the view of data types as pairs,
rather than as packages of existential type. The results above relate to this view
as well. The central theorem is Theorem 4.5, which speaks in terms of package
components. Moreover, even when we speak in terms of packages in Theorem 4.17
and then in Theorem 4.19, and also Theorem 3.5, we may immediately move to
the component level by using theorems 4.5, 4.20, and 4.21, for T[X] satisfying
FADTObs , i.e., for (abstract) (data) types with first-order operations.

4.3.1 Inherent Stability

Under parametricity, any constructor F is inherently stable, i.e.,

u ObsEqObsSP′ v ⇒ F (u) ObsEqObsSP F (v)
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simply by congruence for equality. Congruence gives

∀u, v :SigSP ′ . u =SigSP′ v ⇒ F (u) =SigSP
F (v)

and equality at existential type is of course observational equivalence. Later on,
in Sect. 5.4.3 we will see that the stability of System F constructors is in fact
inherent in the type-theoretic setting, independently of this link to equality.

Stability simplifies observational proofs significantly, because one can then as-
sume literal satisfaction of the implementing specification’s axioms when proving
refinement, see (Sannella and Tarlecki, 1997; Schoett, 1990) and Sect. 2.5.

Note that we automatically get this proof simplification due to stability. Since
observational equivalence is simply equality in the type theory, it is sound to
substitute any package with an observationally equivalent package that satisfies
the axioms of the specification literally.

Observe that the non-stable constructor Tr ′ from Example 2.4 is not express-
ible here, because the proposition x =X y is not allowed in System F terms.

4.3.2 Simulation Relations Compose at First Order

Relating data types by simulation relations goes under the heading of data refine-
ment . There are thus two refinement dimensions; one concerning specifications,
and within each stage of this refinement process, a second dimension concerning
observational equivalence, i.e., simulation relations, i.e., data refinement.

Theorem 4.17 means that we can explain observational equivalence, and thus
also specification refinement up to observational equivalence, in terms of the ex-
istence of simulation relations. At first order, Theorem 3.5 and Theorem 4.21
give the essential property that the existence of simulation relations is transitive,
but we can actually give a more constructive result:

Theorem 4.22 (Composability of Simulation Relations) Suppose T[X] ad-
heres to FADTObs . Then we can derive

∀A, B, C, R⊂A×B, S⊂B×C, a :T[A, Z], b :T[B, Z], c :T[C, Z].

a(T[R, eqZ])b ∧ b(T[S, eqZ])c ⇒ a(T[S ◦R, eqZ])c

Proof: Assuming a(T[R, eqZ])b ∧ b(T[S, eqZ])c, the goal is to derive for every
component (g :T1→· · ·Tn→Tc) in T[X, Z]

∀u1 :T1[A, Z], . . . , ∀un :Tn[A, Z], ∀w1 :T1[C, Z], . . . , ∀wn :Tn[C, Z] .

u1 T1[S ◦R, eqZ] w1 ∧ · · · ∧ un Tn[S ◦R, eqZ] wn

⇒ (a.g u1 · · ·un) Tc[S ◦R, eqZ] (c.g w1 · · ·wn)
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If Ti[X] = X, the antecedent says ∃vi :B . ui R vi ∧ vi S wi. In this case, and also
in the remaining case according to FADTObs , that Ti is in Obs , the assumption gives
(a.g u1 · · ·un) Tc[R, eqZ] (b.g v1 · · · vn) ∧ (b.g v1 · · · vn) Tc[S, eqZ] (c.g w1 · · ·wn),
in other words, (a.g u1 · · ·un) Tc[S ◦R, eqZ] (c.g w1 · · ·wn). �

Again, this result is applicable both to the view of data types as packages and to
the view of data types as pairs.

Thus simulation relations explain stepwise refinement, but methodologically
this is not enough. Given instances u and v and constructor F one can check that
there is a simulation relation relating (Fu) and v. But for proving a specification
refinement SP �

F
SP ′, one requires that this be done for all u : SigSP ′. A point-

wise method of verifying a refinement step is thus impractical. One would prefer
a general method for proving refinement. Such a method would work on the
specifications SP and SP ′, rather than on individual models. We reviewed such
a general method for algebraic specification in Sect. 2.7. In the next section we
express this strategy in the type-theoretic setting, using the results on simulation
relations, observational equivalence and equality obtained in this section.

4.4 Importing a Universal Proof Strategy

A general method for proving specification refinement up to observational equi-
valence has been developed in the realm of algebraic specification, cf. Sect. 2.7.
The method uses only abstract information supplied by the specifications. One
proves observational refinements by considering quotients w.r.t. a partial congru-
ence (Bidoit et al., 1995), and then one uses an axiomatisation of this congruence
to prove relativised versions of the axioms of the specification to be refined. In
general, clauses restricting to the domain of the congruence must also be incor-
porated (Bidoit et al., 1997; Bidoit and Hennicker, 1996).

As observed in (Poll and Zwanenburg, 1999) and (Hannay, 1999a), this method
is evidently not expressible in the type theory or the logic of (Plotkin and Abadi,
1993). One remedy would be to augment the type theory with quotient types,
e.g., (Hofmann, 1995b), and something to the effect of subset types. The quotient
types of (Hofmann, 1995b) are in fact macro-like definitions in terms of the under-
lying type theory, but as with subset-types this demands dependent types with
accompanying difficulties. The alternative simple solution inspired by (Poll and
Zwanenburg, 1999) is to soundly add axioms enabling the axiomatisation of par-
tial congruences. We give the axiom schemata below. The first schema postulates
the existence of subobjects, the second schema postulates the existence of quo-
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tients. The axiom schema Sub extends the discussion in (Poll and Zwanenburg,
1999) to deal also with partial congruences. The schema appeared independently
in (Zwanenburg, 1999) and (Hannay, 1999a), but the one in (Poll and Zwanen-
burg, 1999) is far more general, in that it treats restrictions via predicates in
general, albeit satisfying certain criteria.

Rather than being fundamental, the schemata below are tailored to suit
refinement-proof purposes. One could in principle give proper fundamental ax-
ioms and then derive the schemata below from these. However, in (Zwanenburg,
1999) it is suggested that this is difficult to do in a proper manner, unless one
assumes the following schema for axiom of choice:

AC : ∀X, Y . (∀x :X.∃y :Y . φ[x, y]) ⇒ (∃f :X→Y.∀x :X . φ[x, (fx)])

for all formula φ. However, AC does not hold in the parametric PER-model.

Definition 4.23 (Existence of Subobjects (Sub) (Hannay, 1999a))

Sub : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ] x) ⇒
∃S . ∃s :T[S, Z] . ∃R′⊂S×S . ∃mono :S→X .

∀s :S . s R′ s ∧
∀s, s′ :S . s R′ s′ ⇔ (mono s) R (mono s′) ∧
x (T[(x :X, s :S).(x =X (mono s)), eqZ]) s

Intuitively, this essentially states that for any data type or algebra (packXx), if R

is a relation that is compatible with the “signature” ∃X.T[X], i.e., if R is a partial
congruence on (packXx), then there exists a data type (packSs), a relation R′,
and a map mono, which one can think of as a monomorphism (injection) from the
algebra (packSs) to (packXx), such that R′ is total on the algebra (packSs) and
a restriction of R via mono, and such that (packSs) is a subalgebra of (packXx).

Definition 4.24 (Existence of Quotients (Quot) (Zwanenburg, 1999))

Quot : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ] x ∧ equiv(R)) ⇒
∃Q . ∃q :T[Q, Z] . ∃epi :X→Q .

∀x, y :X . xRy ⇔ (epix) =Q (epi y) ∧
∀q :Q.∃x :X . q =Q (epi x) ∧
x (T[(x :X, q :Q).((epi x) =Q q), eqZ]) q

where equiv(R) specifies R to be an equivalence relation.

Intuitively, this states that for any data type or algebra (packXx), if R is an
equivalence relation on (packXx), then there exists a data type (packQq) and
a map epi, which can be seen as an epimorphism (surjection) from the algebra
(packXx) to (packQq), such that (packQq) is a quotient algebra of (packXx).
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Theorem 4.25 Suppose T[X] adheres to FADTObs . Then Sub and Quot hold in
the parametric PER-model of (Bainbridge et al., 1990).

Proof: Easy. See Sections 6.5.1 and 6.5.2 for the definitions of subobject and
quotient PERs and a validation of generalisations of Sub and Quot. �

It is evident that Sub and Quot are not derivable from the logic for parametric
polymorphism, so the logic is by Theorem 4.25 not complete w.r.t. the parametric
PER-model. Completeness issues of the extended logic is left as future work.

—

Below we give two basic examples to illustrate the use of the axioms and hence the
proof method now imported into type theory. We refer to (Poll and Zwanenburg,
1999; Zwanenburg, 1999) for further examples using variants of Quot and Sub,
and to refinement examples in the literature for sources to other examples using
this framework. In Sect. 6.6, we give a general schema for the use of variants
of Quot and Sub that also work for data types with higher-order operations.
In Sect. 4.6 the axioms are instrumental in showing the correspondence between
refinement in type theory and refinement in algebraic specification.

Example 4.26 Recall the specification of sets from Example 4.11:

SETNat
def
=

〈〈
SigSETNat

, ΘSETNat

〉
, {Bool}

〉
, where

SigSETNat
= ∃X.TSETNat

[X]

for TSETNat
[X] = (empty :X,

add :Nat→X→X,

remove :Nat→X→X,

in :Nat→X→Bool)

ΘSETNat
(u) = ∃X.∃x :TSETNat

[X] . u ObsEq{Bool} (packXx) ∧ Ax SETNat

for Ax SETNat

def
=

∀x :Nat, s :X . (x.addx (x.addx s)) = (x.addx s) ∧
∀x, y :Nat, s :X . (x.addx (x.add y s)) = (x.add y (x.addx s)) ∧
∀x :Nat . (x.inx x.empty) = false ∧
∀x, y :Nat, s :X . (x.inx (x.add y s)) = if x =Nat y then true else (x.in x s) ∧
∀x :Nat, s :X . (x.inx (x.remove x s)) = false

∀x, y :Nat, s :X . x �=Nat y ⇒ (x.in x (x.remove y s)) = (x.inx s)

A nice feature in refinement settings is the provision for using an implementation
of one abstract data type to implement another. In the example below, the
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specification SETNat is refined by using the specification BAGNat specifying bags
or multisets. This reuses any refinement path BAGNat

∗�
F

SP ′′ previously done for
BAGNat. In particular if BAGNat has been refined to an executable module, then
this code is reused when implementing SETNat. The specification BAGNat goes
like this:

BAGNat
def
=

〈〈
SigBAGNat

, ΘBAGNat

〉
, {Nat}

〉
, where

SigBAGNat
= ∃X.TBAGNat

[X]

for TBAGNat
[X] = (empty :X,

add :Nat→X→X,

remove :Nat→X→X,

count :Nat→Nat→X→Bool)

ΘBAGNat
(u) = ∃X.∃x :TBAGNat

[X] . u ObsEq{Nat} (packXx) ∧ AxBAGNat

for AxBAGNat

def
=

∀x, y :Nat, s :X . (x.addx (x.add y s)) = (x.add y (x.addx s)) ∧
∀x :Nat . (x.count x x.empty) = 0 ∧
∀x, y :Nat, s :X . (x.count x (x.add y s)) = if x =Nat y then (succ (x.count x s))

else (x.count x s) ∧
∀x :Nat, s :X . (x.count x (x.remove n x s)) = (x.count x s)− n

∀x, y :Nat, s :X . x �=Nat y ⇒ (x.count x (x.removen y s)) = (x.count x s)

We now show that
SETNat �F BAGNat

for

F
def
= λu :SigBAGNat

.unpack(u)(SigSETNat
)(ΛX.λx :TBAGNat

[X] . (packXx′))

where

x′
def
= (empty = x.empty,

add = x.add

in = λx :Nat.λs :X . (ifzero (x.countx s))(false)(true),

remove = λx :Nat.λs :X . (x.remove (x.count s) x s) )

We need to show the derivability of

∀u :SigBAGNat
. ΘBAGNat

(u) ⇒ ΘSETNat
(Fu)

That is, we must for arbitrary u :SigBAGNat
derive

∃B.∃b :TSETNat
[B] . (packBb) ObsEq

{Bool}
TSETNat

(Fu) ∧ Ax SETNat
[B, b]
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assuming ∃A.∃a :TBAGNat
[A] . (packAa) ObsEq

{Nat}
TBAGNat

u ∧ AxBAGNat
[A, a]. By The-

orem 4.19, observational equivalence is equality, so we can replace u by (packAa),
where A and a are projected out from the assumption. Then let (packAa′) denote
F (packAa).

In order to follow the universal proof strategy, the first thing we must do is
axiomatise a suitable partial congruence. The congruence must relate bags that
represent the same set. Thus, we define

∼ def
= (a :A, a′ :A) . (∀x :Nat . (a.count x a) ≥ 0 ∧ (a.count x a′) ≥ 0

∧ (a.count x a) > 0 ⇔ (a.count x a′) > 0)

Here ∼ is total, so we will only need Quot. To use Quot, we must first check
that a′ TSETNat

[∼] a′ and equiv(∼). Since ∼ is total, we easily get equiv(∼).
It is also straightforward to verify a′ TSETNat

[∼] a′, for example to check that
a′.remove (eqNat→∼ → ∼) a′.remove, we assume x =Nat y and a ∼ a′, and show
(a.remove (a.count x a) x a) ∼ (a.remove (a.count y a′) y a′). This follows from
the lemma (a.count x (a.remove (a.count x a) x a)) = 0 derivable from AxBAGNat

.
Note that we are assuming induction for Nat, cf. Sect. 3.3.5.

Thus we can use Quot to get Q and q :TSETNat
[Q] and epi :A→Q such that

(q1) ∀a, a′ :A . a ∼ a′ ⇔ (epi a) =Q (epi a′)

(q2) ∀q :Q.∃a :A . q =Q (epi a)

(q3) a′ (TSETNat
[(a :A, q :Q).((epi a) =Q q)]) q

We exhibit Q for B, and q for b. It remains to derive

1. (packQq) ObsEq
{Bool}
TSETNat

(packAa′) and

2. Ax SETNat
[Q, q].

The derivability of (1) follows from (q3) using Theorem 4.17. For (2) we must
show the derivability of φ[Q, q] for every conjunct φ in Ax SETNat

. We give the
derivations for the first three formulae.

φ = ∀x :Nat, s :Q . (q.addx (q.add x s)) = (q.addx s): Let x :Nat and s :Q be
arbitrary. By (q2) we get as such that (epi as) = s. We have by definition of ∼,

(a′.addx (a′.addx as)) ∼ (a′.addx as)

By (q1) we get (epi (a′.addx (a′.add x as))) =Q (epi (a′.add x as)), and (q3) gives

x =Nat y ∧ (epi a) =Q q ⇒ (epi (a′.add x a)) =Q (q.add y q)

This therefore gives (q.addx (q.addx s)) =Q (q.addx s) as desired.
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φ = ∀x, y :Nat, s :Q . (q.addx (q.add y s)) = (q.add y (q.addx s)): Let x :Nat

and s : Q be arbitrary. By (q2) we get as such that (epi as) = s. We have from
AxBAGNat

, the definition of F , and the reflexivity of ∼,

(a′.add x (a′.add y as)) ∼ (a′.add y (a′.add x as))

The desired result follows analogously to the case above.
φ = ∀x :Nat . (q.inx q.empty) = false: We have

(a′.in x a′.empty) = ifzero(a.count x a.empty)(false)(true) = false

By (q3) we get first (epi a′.empty) =Q q.empty, and thereafter (a′.in x a′.empty) =

(q.in x q.empty), which gives the result.
The derivation of the other formulae follow similar lines. �

—

The next example uses both Sub and Quot.

Example 4.27 Again we seek to implement sets as specified by SETNat from
Example 4.11. However, this time we want to implement sets using lists. Lists
exists as inductive types in System F, but there is of course room for other
implementations of lists. We would probably want these implementations to
satisfy the following specification.

LISTNat
def
=

〈〈
SigLISTNat

, ΘLISTNat

〉
, {Bool, Nat}

〉
, where

SigLISTNat
= ∃X.TLISTNat

[X]

for TLISTNat
[X] = (nil :X,

cons :Nat→X→X,

car :X→Nat,

cdr :X→X,

in :Nat→X→Bool)

ΘLISTNat
(u) = ∃X.∃x :TLISTNat

[X] . u ObsEq{Bool,Nat} (packXx) ∧ Ax LISTNat

for Ax LISTNat

def
= ∀l :X . l �= x.nil ⇒ x.cons(x.car l)(x.cdr l) = l ∧

∀x :Nat . (x.in x x.nil) = false ∧
∀x, y :Nat.∀l :X .

(x.inx (x.cons y l)) = true ⇔ (x = y ∨ (x.inx l) = true)

∀R⊂X×X.∀x, y :X . x.nil R x.nil ∧
(∀x :Nat, l :X . l R l ⇒ (x.consx l) R (x.cons x l))

⇒ ∀l :X . l R l
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We now implement sets using lists via an appropriate constructor. However, this
time, rather than giving a specific constructor, we consider a range of constructors
satisfying a constructor specification. The constructor specification below admits
constructors that implement sets by lists where equal elements occur consecut-
ively. (One might at lower levels of implementation wish to keep a record of
insertions.) Notice that remove is optimised by using this fact. The constructor
specification leaves room to choose in what order the resulting constructor should
arrange the blocks of consecutive elements.

ΠS :LISTNat.SETNat
def
=

〈
SigΠS:LISTNat.SETNat

, ΘΠS:LISTNat.SETNat

〉
, where

SigΠS:LISTNat.SETNat

def
= SigLISTNat

→SigSETNat
,

ΘΠS:LISTNat.SETNat
(v, u)

def
= ∃X.∃x :TLISTNat

[X].∃x′ :TSETNat
[X]×lumped :X→Bool .

v ObsEqObsLISTNat (packXx) ∧ u ObsEqObsSETNat (packXx′|TSETNat
)

∧ AxΠS:LISTNat.SETNat
[X, x, x′]

AxΠS:LISTNat.SETNat
[X, x, x′]

def
=

x′.empty = x.nil ∧
x′.in = x.in ∧
(x′.lumped x.nil) = true ∧
∀x :Nat . (x′.lumped(x.cons x x.nil)) = true ∧
∀x, y :Nat.∀l :X . (x′.lumped(x.cons x (x.cons y l))) =

if x =Nat y then (x′.lumped (x.cons y l))

else not(x.inx l) ∧
∀x :Nat.∀l :X . (x′.lumped l) = true ⇒ (x′.lumped(x′.addx l)) = true ∧
∀x :Nat.∀l :X . (x′.inx (x′.add x l)) = true ∧
∀x :Nat . (x′.remove x x.nil) = x.nil ∧
∀x, y :Nat . (x′.remove x (x.cons y x.nil)) =

if x =Nat y then x.nil else (x.cons y x.nil) ∧
∀x, y, z :Nat.∀l :X . (x′.remove x (x.cons y (x.cons z l))) =

if x =Nat y then

if x =Nat z then (x′.remove x l) else (x.cons z l)

else (x.cons y (x′.remove x (x.cons z l)))

We must now show the derivability of

∀u :SigLISTNat
. ΘLISTNat

(u) ⇒ ΘSETNat
(Fu)

for any realisation F of ΠS :LISTNat.SETNat, i.e., we must for u :SigLISTNat
derive

∃B.∃b :TSETNat
[B] . (packBb) ObsEq

{Bool}
TSETNat

(Fu) ∧ Ax SETNat
[B, b]
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assuming ∃A.∃a :TLISTNat
[A] . (packAa) ObsEq

{Nat}
TLISTNat

u ∧ Ax LISTNat
[A, a]. By The-

orem 4.19, we replace u by (packAa) where A and a are projected out from the
assumption. Let (packAa′) denote F (packAa).

Again, in order to follow the universal proof strategy, we must axiomatise a
suitable partial congruence. The congruence must relate lists that represent the
same set. However, certain lists do not represent sets; indeed lists that do not
store equal elements consecutively must not represent sets, because the remove

operation will be erroneous on such lists, i.e., the axioms for remove will not hold,
and the proposed refinement will not go through. The domain of the congruence
must therefore be restricted to the particular kind of lists we want. These lists
are the ones built up using the abstract generators empty and add provided by
the constructor F . These lists are exactly the ones users will be able to generate
according to Abs-Bar . Thus, we define

∼ def
= (a :A, a′ :A) . (lumped(a) = true ∧ lumped(a′) = true)

∧ ∀x :Nat . (a.inx a) = true ⇔ (a.inx a′) = true)

Here ∼ is partial. We must therefore use Sub prior to using Quot. In order
to use Sub, we must check that a′ TSETNat

[∼] a′. For example, to check that
a′.remove (eqNat→ ∼ → ∼) a′.remove, we assume x =Nat y and a ∼ a′, and show
(a′.remove x a) ∼ (a′.remove y a′). The assumption a ∼ a′, implies that remove

will work as intended on a and a′. We omit further details.
With a′ TSETNat

[∼] a′ we use Sub to get SA, sa′, ∼′⊂ SA×SA, and mono :SA→A

such that we can derive

(s1) ∀s :SA . s ∼′ s

(s2) ∀s.s′ :SA . s ∼′ s′ ⇔ (mono s) ∼ (mono s′)

(s3) a′ (TSETNat
[(a :A, s :SA).(a =A (mono s))]) sa′

By (s2) we get sa′ TSETNat
[∼′] sa′. We also get equiv(∼′) by (s1). We now use

Quot to get Q and q :TSETNat
[Q] and epi :SA→Q such that

(q1) ∀s, s′ :SA . s ∼′ s′ ⇔ (epi s) =Q (epi s′)

(q2) ∀q :Q.∃s :SA . q =Q (epi s)

(q3) sa′ (TSETNat
[(s :SA, q :Q).((epi s) =Q q)]) q

We thus exhibit Q for B, and q for b. It remains to derive

1. (packQq) ObsEq
{Bool}
TSETNat

(packAa′) and

2. Ax SETNat
[Q, q].

The derivability of (1) follows from (s3) and (q3) using Theorem 4.17. One verifies
(2) using Ax LISTNat

, AxΠS:LISTNat.SETNat
, and the definition of ∼. �
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4.5 The Translation

We now define an obvious translation T mapping algebraic specification refine-
ment to type theoretic specification refinement. Formally, this would be a func-
tor from the category of algebraic specifications and refinement maps �

κ to the
category of type-theoretic specifications and refinement maps �

F
, but for our

purposes the details of this are not worth elaborating.
The starting point is the concept of algebraic specification refinement up to

observational equivalence with constructors from Ch. 2:

(abstract SP wrt ≡Obs,In) �
κ (abstract SP ′ wrt ≡Obs′,In′

)

We will here assume normal-form specifications SP and SP ′, cf. Sect. 2.6. To keep
things simple, we will at any one refinement stage assume a single behavioural sort
b in the signature, see also Sect. 4.2.9; methodologically this means focusing on
one data type at a time, and on one thread in a development. Thus we can stick
to existential types with one existentially quantified variable. It is straightforward
to generalise to multiple existentially quantified variables (Mitchell, 1991). We
assume that all other sorts in the signature are observable. This means that we
can assume FADTObs (p. 87) for the corresponding type-theoretic specification.

We assume built-in observable and input sorts in algebraic specification. We
assume that observable types share names with observable sorts, hence we use
Obs to denote both observable sorts and observable types. We assume that the
corresponding observable types are inductive, e.g., Bool and Nat.

We need not specify input types, since the type-theoretic setting automatically
deals with the corresponding problem of excluding the behavioural sort from input
sorts, recall Sect. 4.2.9. This is sufficient for the correspondence we will be showing
in this section. We now note that together with FADTObs , this essentially entails
Obs = In on the algebraic specification side, which arguably is the sensible choice
(Sannella and Tarlecki, 1987). In the following we therefore set Obs = In.

Finally, note that we show a correspondence between specification refinements,
not between data types.

4.5.1 Translating ADT Specifications

We will map both ADT specifications and constructor specifications to type-
theoretic formalisms. The latter is necessary in order to be precise about how to
translate the refinement relation. We begin with ADT specifications.

—
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Definition 4.28 (Translation) Let Σ = 〈S, Ω〉 and Σe = 〈Se, Ωe〉 be signatures
such that there is an inclusion signature morphism ι :Σ ↪→ Σe, and let Sh = Se\S
and Ωh = Ωe \Ω. Let SP = hide sorts Sh operations Ωh in 〈Σe,Ax 〉. Assume
one behavioural sort b in Σ. Define the translation T by

T (abstract SP wrt ≡Obs,Obs)
def
= 〈〈SigSP , ΘSP〉, Te

SP ,Obs〉

where SigSP = ∃X.TSP [X],
where TSP [X] = (f1 :s11→· · ·→s1n1

→s1, . . . , fk :sk1→· · ·→sknk
→sk)[X/b],

for fi :si1 × · · · × sini
→si ∈ Ω,

and Te
SP [X] = (f1 :s11→· · ·→s1n1

→s1, . . . , fm :sm1→· · ·→smnm
→sm)[X/b],

for fi :si1 × · · · × sini
→si ∈ Ωe,

and where ΘSP(u) = ∃X.∃x :Te
SP [X] . u = (packX x|TSP

) ∧ Ax SP [X, x].
Here, Ax SP [X, x] indicates Ax , where X substitutes b, and every operator

symbol in Ax belonging to Ωe is prefixed with x.

Thus, the existentially quantified variable corresponds to the behavioural sort.
The translation specialises to specifications without hidden symbols in the obvious
way according to the convention mentioned after Def. 4.12 (p. 84).

Example 4.29 A translation not involving hidden symbols, is

T (abstract STACK wrt {Nat}, {Nat}) =
〈〈

SigSTACKNat
, ΘSTACKNat

〉
, {Nat}

〉
which is STACKNat from Example 4.7. Here, Σe = Σ and Te

SP [X] = TSP [X], so
according to convention, Te

SP [X] is dropped. �

The translation T can be seen in two ways. First it maps observational specific-
ations abstract SP wrt ≡Obs,Obs where SP is in normal form, to type-theoretic
specifications. But via the normalisation result for structured specifications, T
can also be seen to map any structured specification to a type-theoretic formalism,
hence translating something the specifier wrote, to a type-theoretic formalism for
use in a theorem prover.

4.5.2 Translating Constructor Specifications

We can extend the translation T to constructor specifications as follows. First, on
the algebraic specification side it makes sense to consider normal-form constructor
specifications ΠS :SP ′.SP [S], where SP ′ and SP are observational specifications
based on normal-form specifications. This is justified by the normalisation result
for ADT specifications, cf. Sect. 2.6; any constructor specification built from ba-
sic ADT specifications using the canonical specification-building operators sum,
derive, and translate, within abstract, can be normalised to the form above.
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Definition 4.30 (Translation of Constructor Specification) Let

SP = hide sorts Sh operations Ωh in 〈Σe,Ax 〉,

SP ′ = hide sorts S ′h operations Ω′h in
〈
Σ′e,Ax ′〉,

where SP may be data-type parameterised by S : SP ′, but nevertheless such that
ΣSP does not rely on S. Let furthermore

〈〈SigSP , ΘSP〉, Te
SP ,Obs〉 = T (abstract SP wrt ≡Obs,Obs),

〈〈SigSP ′, ΘSP ′〉, Te
SP ′,Obs ′〉 = T (abstract SP ′ wrt ≡Obs′,Obs′).

Then

T (ΠS : (abstract SP ′ wrt ≡Obs′,Obs′) . (abstract SP wrt ≡Obs,Obs))
def
= 〈SigΠS:SP ′.SP , ΘΠS:SP ′.SP〉

where

SigΠS:SP ′.SP
def
= SigSP ′→SigSP ,

ΘΠS:SP ′.SP(v, u)
def
= ∃Y.∃y :Te

SP ′ [Y ].∃X.∃x :Te
SP [X] .

v ObsEqObsSP′ (packY y|TSP′ ) ∧
u ObsEqObsSP (packX x|TSP

) ∧
AxΠS:SP ′.SP [Y, y, X, x]

where AxΠS:SP ′.SP [Y, y, X, x] = Ax SP [Y, y, X, x], such that Y and y replace the
free data type variables in Ax SP .

Recall from Def. 4.15, that the realisation predicate ΘΠS:SP ′.SP(v, u) is used by
saying that F is a realisation of ΠS :SP ′.SP if one can derive

∀v :SigSP ′ . ΘSP ′(v) ⇒ ΘΠS:SP ′.SP(v, Fv)

The translation specialises to cases with no hidden symbols in the obvious ways.

4.6 A Correspondence at First Order

We now seek to establish a formal connection between the concept of algebraic
specification refinement and its type-theoretic counterpart as defined in Def. 4.14,
that is, we wish to show the following meta-result:

(abstract SP wrt ≡Obs,Obs) �
κ (abstract SP ′ wrt ≡Obs′,Obs′)

⇔ T (abstract SP wrt ≡Obs,Obs) �
Fκ
T (abstract SP ′ wrt ≡Obs′,Obs′)

where κ and Fκ are constructors that correspond in a sense given below.
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That u is a realisation of a type theory specification 〈〈SigSP , ΘSP〉, Te
SPObs〉

can in general only be derived by exhibiting an observationally equivalent pack-
age u′ that satisfies Ax SP . For any particular closed term g : SigSP , one can
attempt to construct such a g′ perhaps ingeniously, using details of g. But to
show that a specification is a refinement of another specification we are asked
to consider a term (packAa) where we do not know details of A or a. To show
the desired correspondence, we therefore need a universal method for exhibiting
suitable observationally equivalent packages. Of course, it also defies the point of
behavioural abstraction having to construct a specific literal implementation to
justify a behavioural one.

To show the desired correspondence, we shall therefore utilise the existence
of the universal proof strategy sketched in Sect. 2.7 that was imported into type
theory in Sect. 4.4. In algebraic specification one proves observational refinements
by first considering quotients w.r.t. a possibly partial congruence ≈Obs,In induced
by Obs and In (Bidoit et al., 1995), and then using an axiomatisation of this
quotienting congruence to prove relativised versions of the axioms of the specific-
ation to be refined. In the case that this congruence is partial, clauses restricting
to the domain of the congruence must also be incorporated (Bidoit et al., 1997;
Bidoit and Hennicker, 1996). The quotients are of the form Dom(≈Obs,In

A )/≈Obs,In
A ,

where Dom(≈Obs,In
A )s

def
= {a ∈ As | a ≈Obs,In

A a}, cf. Sect. 2.7. As mentioned
in Sect. 4.4, this proof method is not available in the type theory and logic of
(Plotkin and Abadi, 1993). It can be made available by augmenting the logic with
axiom schemata postulating the existence of subobjects Def. 4.23, and quotients
Def. 4.24, for dealing with partial congruences.

Algebraic specification uses classical logic, while the logic in (Plotkin and
Abadi, 1993) is constructive. However, formulae may be interpreted classically in
the parametric PER-model, and it is sound w.r.t. this model to assume the axiom
of excluded middle (Plotkin and Abadi, 1993), see Sect. A.3 in Appendix A. For
our comparison with algebraic specification, we shall do this.

We can now show our desired correspondence. We must assume that specific-
ations are behaviourally closed , but this is an obvious requirement, cf. Sect. 2.6.
We will show the correspondence in three stages. First we show the case for ob-
servational refinement on basic specifications, and with the identity constructor.
Then we replace the basic specifications with normal-form specifications, and
finally we extend with general stable constructors.

—
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Theorem 4.31 (Correspondence (Basic)) Consider basic algebraic specifica-
tions SP = 〈Σ,Ax 〉 and SP ′ = 〈Σ′,Ax ′〉, for Σ = 〈S, Ω〉. Assume one behavioural
sort b in Σ, and assume Obs = In =S \ b. Assume that ≡Obs,Obs on ΣAlg is be-
haviourally closed w.r.t. the factorising observational congruence ≈Obs,Obs. Then

(abstract SP wrt ≡Obs,Obs) � (abstract SP ′ wrt ≡Obs ′,Obs′)

⇔ T (abstract SP wrt ≡Obs,Obs) � T (abstract SP ′ wrt ≡Obs′,Obs′)

Proof: Note that our assumptions entail that we can assume FADTObs for the res-
ulting type-theoretic specifications 〈〈SigSP , ΘSP〉,Obs〉 and 〈〈SigSP ′, ΘSP ′〉,Obs ′〉.
We are dealing with the identity constructor. This means Σ = Σ′ and hence
Obs = Obs ′, and also SigSP = SigSP ′.
⇒: We must show the derivability of

∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP(u)

From (abstract SP wrt ≡Obs,Obs) � (abstract SP ′ wrt ≡Obs,Obs), we ob-
tain the proof-theoretical information outlined in the following. By behavioural
closedness, we can use the sound and complete calculus �Π�

for specification
refinement, based on a calculus �ΠS

for structured specifications (Bidoit et al.,
1997). Since the identity constructor is stable, the above is equivalent to prov-
ing (abstract SP wrt ≡Obs,Obs) � SP ′, cf. Sect 2.5. By syntax directedness,
we must have had SP ′/≈Obs,In �ΠS

Ax , where the semantics of SP ′/≈Obs,In is
{Dom(≈Obs,In

A )/≈Obs,In
A | A ∈ [[SP ′]]}. Since specifications here are basic, this

boils down to the predicate logic statement of

Ax ′,Ax (∼) � L(Ax ) (†)

Here ∼ stands for a new symbol representing ≈Obs,In at the behavioural sort b,
and L(Φ)

def
= {L(φ) | φ ∈ Ax }, for L(φ) = ( ∧ y∈FVb(φ) y ∼ y) ⇒ φ∗ where

FV b(φ) is the set of free variables of sort b in φ, and where inductively

(a) (u =b v)∗
def
= u ∼ v,

(b) (¬φ)∗
def
= ¬(φ∗) and (φ ∧ ψ)∗

def
= φ∗ ∧ ψ∗,

(c) (∀x :b.φ)∗
def
= ∀x :b.(x ∼ x ⇒ φ∗),

(d) φ∗ def
= φ, otherwise.

and Ax (∼)
def
= ∀x, y :b.(x ∼ y ⇔ Behb(x, y)), where Behb(x, y) is an axiomatisa-

tion of ≈Obs,In at b (Bidoit and Hennicker, 1996). At s ∈ Obs = In, ≈Obs,In is
just equality.
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Using this we derive our goal as follows. Let u :SigSP ′ be arbitrary. Let T[X]

denote TSP ′ [X](= TSP [X]). We must derive

∃B.∃b :T[B] . u = (packBb) ∧ Ax [B, b]

assuming ∃A.∃a : T[A] . u = (packAa) ∧ Ax ′[A, a]. Let a and A denote the
witnesses projected out from that assumption. It suffices to exhibit a B and b

such that (packBb) = (packAa) and Ax [B, b].
Now, Beh is in general infinitary. There are heuristics for producing finite

axiomatisations from Beh in some cases (Bidoit et al., 1997; Bidoit and Hennicker,
1996), and with our higher-order relational logic one gets finitary axiomatisations
in general (Hofmann and Sannella, 1996). In any case one gets a finitary Beh∗

equivalent to Beh. Thus we form ∼ type-theoretically by

∼ def
= (a :A, a′ :A).(Beh∗

A(a, a′))

Since ∼ is an axiomatisation of a partial congruence, we have a T[∼] a. We use
Sub to get SA, sa and ∼′⊂ SA×SA and mono :SA→A such that we can derive

(s1) ∀s :SA . s ∼′ s

(s2) ∀s.s′ :SA . s ∼′ s′ ⇔ (mono s) ∼ (mono s′)

(s3) a (T[(a :A, s :SA).(a =A (mono s))]) sa

By (s2) we get sa T[∼′] sa. We also get equiv(∼′) by (s1). We now use Quot

to get Q and q :T[Q] and epi :SA→Q s.t.

(q1) ∀s, s′ :SA . s ∼′ s′ ⇔ (epi s) =Q (epi s′)

(q2) ∀q :Q.∃s :SA . q =Q (epi s)

(q3) sa (T[(s :SA, q :Q).((epi s) =Q q)]) q

We thus exhibit Q for B, and q for b; it remains to derive

1. (packQq) = (packAa) and

2. Ax [Q, q].

To show the derivability of (1), it suffices to observe that, through Theorem 3.5,
(s3) and (q3) give (packAa) = (packSAsa) = (packQq). For (2) we must show
the derivability of φ[Q, q] for every φ ∈ Ax . We proceed by induction on the
structure of φ.

(i) φ is u =b v. We must derive u[q] =Q v[q]. For any variable qi :Q in u[q] or
v[q], we may by (q2) assume an sqi

:SA s.t. (epi sqi
) = qi. From (†) we can derive

∧ i((mono sqi
) ∼ (mono sqi

)) ⇒ u[a][· · · (mono sqi
) · · ·] ∼ v[a][· · · (mono sqi

) · · ·],
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but by (s2) and (s3) this is equivalent to ∧ i(sqi
∼′ sqi

) ⇒ u[sa][· · · sqi
· · ·] ∼′

v[sa][· · · sqi
· · ·], which by (s1) is equivalent to u[sa][· · · sqi

· · ·] ∼′ v[sa][· · · sqi
· · ·].

Then from (q1) we can derive (epi u[sa][· · · sqi
· · ·]) =Q (epi v[sa][· · · sqi

· · ·]). By
(q3) we then get (epiu[sa][· · · sqi

· · ·]) = u[q] and (epi v[sa][· · · sqi
· · ·]) = v[q].

(ii) φ is u =s v, for s different from the behavioural sort b. This is an easy
version of (i).

(iii) Suppose φ = ¬φ′. By negation n.f. convertibility it suffices to consider
φ′ an atomic formula. Thus, the cases for φ′ as (i) and (ii) warrants proofs for
¬φ′ similar to those of (i) and (ii).

(iv) Suppose φ = φ′ ∧ φ′′. This is dealt with by i.h. on φ′ and φ′′.
(v) φ = ∀x :b.φ′. This is dealt with by i.h. on φ′.
⇐: Observe that to show Ax [Q, q] we must either use Ax ′[Q, q] and the defin-

ition of ∼, or else Ax [Q, q] was a tautology; in both cases we get (†). �

—

We now show the correspondence for observational refinement on normal-form
specifications. As hinted in Sect. 2.7, there is something to say about proving re-
finements involving hide. The issue concerns refinements where the implemented
specification has hidden parts. Consider the refinement SP �SP ′, for

SP
def
= (hide sorts S ′′ operations Ω′′ in SP e)

In the calculus �Π�
for behavioural refinement, based on the calculus �ΠS

for
structured specifications (Bidoit et al., 1997), cf. Sect. 2.7, one shows this by
showing

SP e � SP ′+

where SP ′+ is a so-called persistent extension of SP ′, where a specification SP2

is a persistent extension of SP1 if ΣSP1
⊆ ΣSP2

, and for every A ∈ [[SP 1]], there
exists an A′ ∈ [[SP 2]] such that A = A′|ΣSP1

.
It is shown in (Farrés-Casals, 1990, 1992) that SP ′+ may be constructed by

the specification SP ′ sum HidSP , where HidSP is a basic specification constructed
from the parts of SP involving the hidden symbols of SP . We omit the specifics of
HidSP ; for us it is enough that HidSP exists, but see (Farrés-Casals, 1990, 1992).

This so-called inheriting strategy is sound, provided HidSP is consistent, i.e.,
provided HidSP has a model. The proviso for completeness (modulo the underly-
ing predicate logic) is that SP fulfils an independence property, namely that for
all B ∈ [[SP ]] and A ∈ [[HidSP ]], such that B|Σ0 = A|Σ0, where Σ0 is the greatest
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subsignature common to both ΣSP and ΣHidSP
, there exists a C ∈ [[SP e]] such

that C|ΣSP
= B and C|ΣHidSP

= A.
Intuitively, one generally needs HidSP to show the visible axioms in Ax . The

inheriting strategy is used in EML. In the theorem below, we shall assume inde-
pendence. Moreover, we postulate the following.

Pers : If SP is independent, we can derive the following persistency clause in the
type-theoretic logic.

∀X.∀x :SigSP ′ [X] . ΘSP ′(packXx) ⇒ (∃xe :Sige
SP . x = xe|SigSP′ ∧ AxHidSP

[X, xe])

It seems plausible that Pers is true, but we have not verified this, so Pers is
included as an assumption. To see if Pers is true one would look at methods for
proving persistency. In some cases persistency can even be checked syntactically.

Hiding on the right-hand side of refinements poses no problem, because the
hidden parts are incorporated straightforwardly in the proof assumptions.

Theorem 4.32 (Correspondence (Normal Form)) Let SP and SP ′ be al-
gebraic specifications in normal form. Let ΣSP = 〈S, Ω〉. Assume one behavioural
sort b in ΣSP , and assume Obs = In = S \ b. Assume that ≡Obs,Obs on ΣSPAlg

is behaviourally closed w.r.t. the factorising observational congruence ≈Obs,Obs.
Assume furthermore that SP is independent, and assume Pers. Then

(abstract SP wrt ≡Obs,Obs) � (abstract SP ′ wrt ≡Obs ′,Obs′)

⇔ T (abstract SP wrt ≡Obs,Obs) � T (abstract SP ′ wrt ≡Obs′,Obs′)

Proof: This proof is an extension of the proof for Theorem 4.31. Let

SP = hide sorts Sh operations Ωh in 〈Σe,Ax 〉,

SP ′ = hide sorts S ′h operations Ω′h in
〈
Σ′e,Ax

〉′.
Let 〈〈SigSP , ΘSP〉, Te

SP ,Obs〉 and 〈〈SigSP ′, ΘSP ′〉, Te
SP ′,Obs ′〉 be the resulting type-

theoretic specifications. We are still dealing with the identity constructor. This
means ΣSP = ΣSP ′ and hence Obs = Obs ′, and also SigSP = SigSP ′ .
⇒: We have to show the derivability of

∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP (u)

assuming (abstract SP wrt ≡Obs,Obs) � (abstract SP ′ wrt ≡Obs,Obs). From
this we obtain the proof-theoretical information using �Π�

along the same lines
as before. Since the identity constructor is stable, the above is equivalent to
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proving (abstract SP wrt ≡Obs,Obs) � SP ′. By syntax directedness, we must
now have had SP � SP ′/≈Obs,In . By the rules for hide this was derived from
〈Σe,Ax 〉 � (SP ′/≈Obs,In)+, where (SP ′/≈Obs,In)+ = (SP ′/≈Obs,In sum HidSP),
for a basic specification HidSP composed of parts of SP involving its hidden
symbols. The above in turn is derived from (SP ′/≈Obs,In sum HidSP) �ΠS

Ax ,
where the semantics of SP ′/≈Obs,In is {Dom(≈Obs,In

A )/≈Obs,In
A | A ∈ [[SP ′]]}. By

the rules for hide and sum in �ΠS
we must have had the predicate logic statement

Ax ′,AxHidSP
,Ax (∼) � L(Ax ) (‡)

where Ax (∼) and L(Ax ) are as before.
Using this we derive our goal as follows. Let u :SigSP ′ be arbitrary. Let T[X]

denote TSP ′ [X](= TSP [X]). We must derive

∃B.∃b :Te
SP [B] . u = (packB b|T) ∧ Ax [B, b]

assuming ∃A.∃a : Te
SP ′ [A] . u = (packA a|T) ∧ Ax ′[A, a]. Let a and A denote

the witnesses projected out from that assumption. It suffices to exhibit a B and
b :Te

SP such that (packB b|T) = (packA a|T) and Ax [B, b].
We form ∼ type-theoretically as before by

∼ def
= (a :A, a′ :A).(Beh∗

A(a, a′))

and we have a|T T[∼] a|T, since ∼ is an axiomatisation of a partial congruence.
As before, we use Sub to get SA, sa, ∼′⊂ SA×SA, and mono :SA→A such that
we can derive

(s1) ∀s :SA . s ∼′ s

(s2) ∀s.s′ :SA . s ∼′ s′ ⇔ (mono s) ∼ (mono s′)

(s3) a|T (T[(a :A, s :SA).(a =A (mono s))]) sa

By (s2) we get sa T[∼′] sa. We also get equiv(∼′) by (s1). We now use Quot

to get Q and q :T[Q] and epi :SA→Q s.t.

(q1) ∀s, s′ :SA . s ∼′ s′ ⇔ (epi s) =Q (epi s′)

(q2) ∀q :Q.∃s :SA . q =Q (epi s)

(q3) sa (T[(s :SA, q :Q).((epi s) =Q q)]) q

We now have Q and q :T[Q] as candidates for B and b. We give Q for B, but we
must extend q to some qe :Te

SP in such a way that

1. (packQ qe|T) = (packA a|T) and

2. Ax [Q, qe].
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By Pers, we get

∀X.∀x :T[X] . ΘSP ′(packXx) ⇒ (∃xe :Te
SP . x = xe|T ∧ AxHidSP

[X, xe])

By (s3) and (q3) we have by Theorem 3.5, (packA a|T) = (packSAsa) = (packQq).
Since of course ΘSP ′(packA a|T), we therefore have ΘSP ′(packQq). Then by Pers
we get qe, which we exhibit for b.

We already showed (1). For (2) we must derive φ[Q, qe] for every φ ∈ Ax .
This goes as before by induction on the structure of φ. We show the first case.

(i) φ is u =b v. We must derive u[qe] =Q v[qe]. For any variable qi :Q in u[qe] or
v[qe], we may by (q2) assume an sqi

:SA s.t. (epi sqi
) = qi. From (‡) we can derive

∧ i((mono sqi
) ∼ (mono sqi

)) ⇒ u[a][· · · (mono sqi
) · · ·] ∼ v[a][· · · (mono sqi

) · · ·],
but by (s2) and (s3) this is equivalent to ∧ i(sqi

∼′ sqi
) ⇒ u[sa

e][· · · sqi
· · ·] ∼′

v[sa
e][· · · sqi

· · ·], which by (s1) is equivalent to u[sa
e][· · · sqi

· · ·] ∼′ v[sa
e][· · · sqi

· · ·].
Here sa

e is obtained from Pers like qe.
Then from (q1) we can derive (epi u[sa

e][· · · sqi
· · ·]) =Q (epi v[sa

e][· · · sqi
· · ·]).

By (q3) we get (epi u[sa
e][· · · sqi

· · ·]) = u[qe] and (epi v[sa
e][· · · sqi

· · ·]) = v[qe].
⇐: Consider (‡) in place of (†). �

—

The extension of the correspondence to include constructors is simpler. We
must generalise the assumption Pers, to the following.

FPers : If SP is independent, then we can derive the following persistency clause
in the type-theoretic logic.

∀X, Y.∀x :SigSP ′[X], y :SigSP [Y ] . (ΘSP ′(packXx) ∧ (packY y) = F (packXx))

⇒ (∃ye :Sige
SP . y = ye|TSP

∧ AxHidSP
[Y, ye])

Again, it seems plausible that FPers is true, but we have not verified this, so
FPers is included as an assumption. Effectively, Pers is a special case of FPers.

Theorem 4.33 (Correspondence (Constructors)) Let SP and SP ′ be algeb-
raic specifications in normal form. Let ΣSP = 〈S, Ω〉. Assume one behavioural
sort b in ΣSP , and assume Obs = In = S \ b. Assume that ≡Obs,Obs on ΣSPAlg

is behaviourally closed w.r.t. the factorising observational congruence ≈Obs,Obs.
Assume furthermore that SP is independent, and assume FPers. Then

(abstract SP wrt ≡Obs,Obs) �
κ (abstract SP ′ wrt ≡Obs ′,Obs′)

⇔ T (abstract SP wrt ≡Obs,Obs) �
F
T (abstract SP ′ wrt ≡Obs′,Obs′)

where κ and F are such that κ is a stable realisation of a constructor specification
CSP for which T is applicable, and F is a realisation of T (CSP).
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Proof: This proof is an extension of the proof for Theorem 4.32. Through the
translation T on CSP , κ and F are both characterised by AxCSP . Note first that
if CSP = ΠS : (abstract SP ′ wrt ≡Obs′,Obs′) . (abstract SP wrt ≡Obs,Obs),
then by definition we are already done. However, CSP might of course not be
this particular specification.
⇒: We have to show the derivability of

∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP(Fu)

supposing (abstract SP wrt ≡Obs,Obs) �
κ (abstract SP ′ wrt ≡Obs ′,Obs′). By

similar reasoning to that above, we get

Ax ′,AxHidSP
,Ax (∼),AxCSP � L(Ax ) (§)

Assume ∃A.∃a :Te
SP ′ [A] . u = (packA a|TSP′ ) ∧ Ax ′[A, a]. Let a and A denote the

witnesses thus projected out. We should exhibit a B and b :Te
SP such that

1. (packB b|TSP
) = F (packA a|TSP′ ) and

2. Ax [B, b].

Let (packA′a′) = F (packA a|TSP′ ). As before, we use Sub and Quot to obtain
SA′ , sa′ :TSP [SA′ ], and Q, q :TSP [q]. We give Q for B. We have by construction
through Sub and Quot, that F (packA a|TSP′ ) = (packSA′sa′) = (packQq) by
Theorem 3.5. Thus, by FPers, we get the desired a′e :Te

SP [A′], sa′
e :Te

SP [SA′ ], and
qe :Te

SP [X] for b, and the verification of (2) using (§).
⇐: Consider (§) in place of (‡). �

An alternative to requiring that κ and F are related through specifications CSP

and T (CSP), would be to try to extract axioms directly from the definitions of
given κ and F . We implicitly extracted axioms for the type-theoretic constructors
in Example 4.26 and Example 4.27.

4.7 Summary

In this chapter we have expressed an account of algebraic specification refinement
in System F with the logic for relational parametricity of (Plotkin and Abadi,
1993). We have seen how the concepts of observational refinement and stable
constructors are inherent in this type-theoretic setting, because at first order,
equality at existential type is exactly observational equivalence (Theorem 4.19).
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We have shown a correspondence (Theorems 4.31, 4.32 and 4.33) between refine-
ment in the algebraic specification sense, and a notion of type theory specification
refinement (Def. 4.14). This correspondence encompasses normal-form specifica-
tions and constructors, and is thus general in light of the normalisation results
and the view that abstract, which in our discussion gives specification up to ob-
servational equivalence, should only be applied outermost. We have seen how a
proof technique from algebraic specification for proving refinement up to observa-
tional equivalence can be mirrored in type theory by extending the logic soundly
with axioms Quot and Sub.

The stage is now set for type-theoretic development in several directions. First,
algebraic specification has much more to it than presented here. An obvious ex-
tension would be to express specification building operators in System F and the
logic. However, since we have shown a correspondence for observational specifica-
tions over normal form specifications, we can in fact use any already existing nor-
malisable specification language, utilise the normal form results of (Wirsing, 1993;
Farrés-Casals, 1992; Cengarle, 1995), and make the transition to type-theoretic
formalism at normal form. This rationale is based on the view that specification
building operators are primarily meant as aids in the specification language for
the benefit of the specifier. Nevertheless, it might be beneficial to reflect specific-
ational structure in the proof process, and then specification building operators
should indeed be expressed in System F and the logic.

Another direction would be to provide a fuller account of specifications of
parameterised programs and also parameterised specifications (Sannella et al.,
1992). It is for example possible to have refinements of constructor specifications.
Also, we have only dealt with constructors with one argument. It should be
simple to extend the discussion to constructors with multiple arguments. This
allows various development strategies, see also (Sannella and Tarlecki, 1997). We
do not pursue these issues further in this thesis.

We can also use our notion of type theory specification refinement as a base
to start looking at specification refinement for data types with higher-order poly-
morphic operations. This is the path we shall take. In the next chapter, we invest-
igate an alternative notion of simulation relation that will among other things,
establish a higher-order version of Theorem 4.17. We then use these results in
Ch. 6 where we look at specification refinement for data types with higher-order
operations. In Ch. 7, we deal with data types with polymorphic operations.
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This chapter continues to investigate specification refinement in a setting con-
sisting of System F and relational parametricity in Reynolds’ sense, as expressed
in Plotkin and Abadi’s logic for parametric polymorphism. This setting allows
an elegant formalisation of abstract data types as existential types (Mitchell and
Plotkin, 1988), and furthermore, the relational parametricity axiom enables one
to derive in the logic that two data types, i.e., inhabitants of existential type, are
equal if and only if there exists a simulation relation between their implementa-
tion parts. Together with the fact that at first order, equality at existential type
is derivably equivalent to a notion of observational equivalence, this formalises
the semantic proof principle of (Mitchell, 1991). This also lifts the type-theoretic
formalism of refinement to a notion of specification refinement up to observational
equivalence; a key issue in program development.

After having established a correspondence at first order between algebraic
specification refinement and type-theoretic refinement in Ch. 4, we now cast off
and discuss type-theoretic specification refinement in more generality, i.e., we
treat data types whose operations may be higher order and polymorphic.

At higher order, we are not able to establish the formal link between the
existence of a simulation relation and observational equivalence. Nor are we

111
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able to show in the logic that simulation relations compose. This is the topic
of this chapter. The solution presented is to use a weak arrow-type relation
giving an alternative notion of simulation relation in the logic that observes the
abstraction barrier inherent in the existential type. The resulting abstraction
barrier-observing simulation relations agree with observational equivalence and
also compose at higher-order. In spirit, this relates the syntactic level to recent
and on-going work on the semantic level remedying the fact that logical relations
traditionally used to describe refinement do not compose at higher order (Honsell
et al., 2000; Honsell and Sannella, 1999; Kinoshita and Power, 1999; Kinoshita
et al., 1997; Plotkin et al., 2000).

When data types have higher-order operations, it is not generally the case that
the existence of simulation relations between the data representations of two pack-
ages (packAa) and (packBb) implies the existence of simulation relations between
data representations of packages (packCc) = (packAa) and (packDd) = (packBb).
This is however the case for the alternative notion of simulation relation. Thus,
abstraction barrier-observing simulation relations resolve the dilemma of viewing
data types as pairs or packages, and therefore also resolve the circularity problem
of Theorem 3.5 (p. 63) for packages. Recall that for data types with first-order
operations we do have this tight connection between packages and components
for standard simulation relations, cf. Theorem 4.20 and Theorem 4.21.

Other relevant work concerning System F and parametricity includes the in-
teresting (Pitts, 1997, 1998) showing that the introduction of non-terminating
recursion also breaks down the correspondence between the existence of a simu-
lation relation and observational equivalence.

This chapter deals specifically with the issue of simulation relations. Specific-
ation refinement in more generality is tackled in Ch. 6, where the proof method
from algebraic specification for proving observational refinements formalised by
Bidoit et al., cf. Sect. 2.7 and Sect. 4.4, is imported into the higher-order setting.

5.1 The Break-Down at Higher Order

We will now look into what causes the loss at higher order of the correspondence
between observational equivalence and simulation relations. We find that the
culprit is a disregard for Abs-Bar . But first we introduce higher-order profiles.

We no longer assume first-order operations as we did in Ch. 4. We allow
higher-order and in principle, polymorphic operations in data types. However,
it is hard to find reasonable examples utilising polymorphic operations, without
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wanting to move to calculus F3. We do this in Ch. 7. Based on these considera-
tions, we will for clarity defer polymorphism in data types until Ch. 7.

We thus assume a higher-order version of FADTObs (p. 87). Again we presume
a specification scenario, and hence a current set of observable types Obs according
to Def. 4.6 (p. 79) or Def. 4.12 (p. 84).

HADTObs : Every profile Ti[X] = Ti1[X]→ · · · → Tni
[X]→ Tci

[X] of an abstract
type ∃X.T[X] is such that Tij[X] has no occurrences of universal types
other than those in Obs , and Tci

[X] is either X or some D ∈ Obs.

We can relax HADTObs in various ways to admit degrees of polymorphism. Mainly,
the forthcoming results still hold true, albeit by different arguments. For example,
we can permit polymorphic domain types Tij[X]. Refer to this relaxation of
HADTObs as ADTObs . Moreover, we can relax the restriction on the codomain type
Tci

[X]. Here, universal types that are not in Obs are not admitted in Tci
[X].

This restriction can be relaxed to allow Tci
[X] to be a universal type ∀Y.T [Y, X],

where T [Y, X] is again a profile for which ADTObs holds.
We do not know how severe the restriction posed by HADTObs is in practice,

nor how useful it is to have polymorphic codomain types that are not closed
inductive types. Although it is possible to relax HADTObs , we do not do this here
in order to avoid unmotivated clutter. The discussion at present thus focuses on
the higher-order aspect.

5.1.1 The Break-Down

If T[X] has higher-order function profiles, we are not able to prove Theorem 4.18
(p. 87), i.e., we lose the correspondence between the existence of simulation rela-
tions and observational equivalence.

Theorem 5.1 (Failure of Correspondence with Obs. Equiv.) If T[X] has
higher-order profiles, the following sequent is not in general derivable in the logic.

∀A, B.∀a :T[A, Z], b :T[B, Z] .

∃R⊂A×B . a(T[R, eqZ])b

⇔
∧

D∈Obs ∀f :∀X.(T[X, Z]→D) . (fA a) = (fB b)

Proof: See Example 5.7 below. �

Furthermore, Theorem 4.22 (p. 90) fails, i.e., the composability of simulation
relations breaks down.
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Theorem 5.2 (Failure of Composability) If T[X] has higher-order profiles,
the following sequent is not in general derivable in the logic.

∀A, B, C, R⊂A×B, S⊂B×C, a :T[A, Z], b :T[B, Z], c :T[C, Z].

a(T[R, eqZ])b ∧ b(T[S, eqZ])c ⇒ a(T[S ◦R, eqZ])c

Proof: See Example 5.7 below. �

In fact, even the transitivity of existence of simulation relations fails.

Theorem 5.3 (Failure of Transitivity of Existence) If T[X] has higher-order
profiles, the following sequent is not in general derivable in the logic.

∀A, B, C, a :T[A, Z], b :T[B, Z], c :T[C, Z].

∃R⊂A×B . a(T[R, eqZ])b ∧ ∃S⊂B×C . b(T[S, eqZ])c

⇒ ∃Q⊂A×C . a(T[Q, eqZ])c

Proof: See Example 5.7 below. �

Note that we still have the transitivity of SimRel according to Def. 3.3 (p. 62),
due to Theorem 3.5 (p. 63) and the transitivity of equality, i.e.,

Theorem 5.4 (Transitivity of SimRel) The following is derivable in the logic.

∀u, v, w :∃X.T[X, Z] . u SimRel v ∧ v SimRel w ⇒ u SimRel w

Proof: This follows from Theorem 3.5. �

Theorem 5.4 does not contradict Theorem 5.3. That two packages are related by
SimRel does not infer a simulation relation between the data representations of
the packages; recall the remarks at the end of Sect. 3.3.2. In fact, now we can
establish the following theorem which in turn implies Theorem 3.7 (p. 64).

Theorem 5.5 (Failure of Tight Connection with Components) If T[X]

has higher-order profiles, the schema below is not in general derivable in the logic.

∀A, B.∀a :T[A, Z], b :T [B, Z]) .

(packAa) SimRelT[X,eqZ ] (packBb) ⇔ ∃R⊂A×B . a T[R, eqZ] b

Proof: Suppose the sequent were derivable. Then using Theorem 5.4, we could
derive the sequent in Theorem 5.3, thus contradicting Theorem 5.3. �
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It is natural to compare the properties of syntactical simulation relations with
the situation regarding logical relations on the semantic level (Mitchell, 1996;
Tennent, 1997; O’Hearn and Tennent, 1993). Logical relations e.g., between ap-
plicative structures or combinatory algebras, have traditionally been used to de-
scribe data refinement. For this to be useful, one uses logical relations that are
the identity at observable types. As for our simulation relations, the existence of
such logical relations does coincide with observational equivalence for data types
with only first-order operations, but this correspondence is lost at higher order.

When it comes to composability, note first that for simulation relations, rela-
tion composition in the context of higher types is defined by lifting the compos-
ition at base type, e.g., if R⊂A×B and S⊂B×C, then the composite relation
between A→A and C→C would be S◦R→S◦R. This is generally laxer than the
composition at higher types, i.e., f (S→S) ◦ (R→R) h ⇒ f (S ◦R→S ◦R) h,
but not conversely. Lax composition fails in general in the presence of higher-
order operations both for logical relations, and for simulation relations, as demon-
strated in Theorem 5.2. Finally, at higher-order, the transitivity of existence fails
for logical relations as it does for simulation relations.

We defer a fuller comparison between logical relations and the syntactic sim-
ulation relations in this thesis to a different occasion.

—

Before we start, it might be informative to point out the following fact in our
setting of System F and relational parametricity.

If we choose all types to be observable types, then observational equi-
valence coincides with equality, and thus also coincides with the ex-
istence of a simulation relation.

Suppose namely that we define observational equivalence as follows.

ObsEqomni
T[X]

def
= (u :∃X.T[X], v :∃X.T[X]) .

(∃A, B.∃a :T[A], b :T[B] . u = (packAa) ∧ v = (packBb) ∧
∀Y.∀f :∀X.(T[X]→Y ) . (fA a) = (fB b))

Then we have

∀Z.∀u, v :∃X.T[X, Z] . u =∃X.T[X,Z] v ⇔ u ObsEqomni
T[X,Z] v

Left to right is obvious. For right to left, let A, B, and a :T[A], b :T[B] be such
that u = (packAa) ∧ v = (packBb) and ∀Y.∀f :∀X.(T[X]→Y ) . (fA a) = (fB b).
Then consider the computation

f
def
= ΛX.λx :T[X] . (packXx) : ∀X.(T[X]→∃X.T[X])
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whereby we get

u = (packAa) = (fA a) = (fB b) = (packBb) = v

Note that to make this work, it suffices that the “self” type ∃X.T[X] is an observ-
able type. In contrast, one usually insists that observable types be the traditional
printable types, or at most inductive types. This is what we do in the defin-
ition of observational equivalence in Def. 4.4 (p. 78). This sensible restriction
on what observable types are then introduces the variance between observational
equivalence and the existence of simulation relations, and hence also the variance
between observational equivalence and equality at existential type.

Note however that the existence of a simulation relation implies observational
equivalence, regardless, through Param, i.e.,

Theorem 5.6 The following is derivable in the logic using Param.

∀A, B.∀a :T[A, Z], b :T[B, Z] .

∃R⊂A×B . a(T[R, eqZ])b

⇒
∧

D∈Obs ∀f :∀X.(T[X, Z]→D) . (fA a) = (fB b)

Proof: This follows from the parametricity axiom schema. Consider the Param

instance ∀Y.∀f :∀X.(T[X, Z]→Y ) . f(∀X.T[X, eqZ]→eqY )f . �

This suffices of course for showing observational equivalence. However, to settle
the use of simulations relations as a complete method for proving observational
equivalence, we must establish the full correspondence.

—

Below is an example demonstrating that observational equivalence does not
imply the existence of a simulation relation for abstract types with higher-order
profiles, thus providing a proof for Theorem 5.1. In (Mitchell, 1996) there is an
example for the simply-typed lambda calculus and applicative structures showing
that at higher order, observational equivalence does not coincide with the exist-
ence of a logical relation between the two relevant applicative structures. The
example uses the full set-theoretic hierarchy, and uses the existence of a function
that is able to discern non-computable functions from computable functions. In
our case this is perhaps not a natural strategy to follow, firstly because if we want
to relate to the PER-model, then all functions are partial recursive. More im-
portant however, is the fact that the notion of definability that is relevant for us
is not absolute definability, but definability w.r.t. the abstract type. The example
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also demonstrates that the existence of simulation relations is not transitive at
higher order, in particular simulation relations do not compose in general. This
provides proofs for theorems 5.2 and 5.3.

Example 5.7 Consider SigSetCE
def
= ∃X.TSetCE[X], where

TSetCE[X]
def
= (empty :X, add :Nat→X→X, remove :Nat→X→X,

in :Nat→X→Bool, crossover : (Nat→X→X)→Nat→Bool)

and consider (pack ListNat a) :SigSetCE and (pack ListNat b) :SigSetCE, where

a
def
= (empty = nil,

add = cons-uniquesorted def
= λx :Nat.λl :ListNat .

return l′ that is l with x uniquely inserted before first y > x,

remove = del-first def
= λx :Nat.λl :ListNat .

return l′ that is l with first occurrence of x removed ,

in = in def
= λx :Nat.λl :ListNat . return true if x occurs in l, false otherwise,

crossover
def
= λf : (Nat→ListNat→ListNat).λn :Nat .

in(n)(f(n)(1 :: 0 :: nil))) )

Here we use the infix symbol :: to denote cons (p. 51). Furthermore,

b
def
= (empty = nil,

add = cons-uniquesorted,
remove = del-all def

= λx :Nat.λl :ListNat .

return l′ that is l with all occurrences of x removed ,

in = in,

crossover
def
= λf : (Nat→ListNat→ListNat).λn :Nat .

in(n)(f(n)(1 :: 1 :: 0 :: nil))) )

We will now relate to the parametric minimal model of (Hasegawa, 1991), cf.
Sect. 3.4.2. In this model, all elements of the interpretation of ListNat and Bool

are in a one-to-one correspondence with the closed normal forms of the types,
and moreover, the ω-rule holds. See Sect. A.6 in Appendix A for the ω-rule.

First, there cannot exist a relation � interpreting R⊂ListNat×ListNat satisfying
a TSetCE[R] b. If there were such an �, then in order for � to simultaneously satisfy

a.empty R b.empty

a.add (eqNat→R→R) b.add

a.remove (eqNat→R→R) b.remove

a.in (eqNat→R→eqBool) b.in

� would have to be as follows. First, � must be non-empty and relate at least
(the interpretations) of (a.empty, b.empty). Then a.add (eqNat → R→ R) b.add
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demands that � relates any pair of lists generated by corresponding applications
of empty and add on equal elements of Nat. Thus � relates at least all pairs of
equal sorted ascending lists where each element occurs at most once. It is then
easy to see that � cannot relate any other lists, because this will eventually violate
a.in (eqNat→R→eqBool) b.in. The crux is now that this � does not satisfy

a.crossover (eqNat→R→R)→eqNat→eqBool b.crossover

because although � satisfies del-all (eqNat→R→R) del-first, and 1 = 1, we have

a.crossover(del-all)(1) �=Bool b.crossover(del-first)(1)

since
a.crossover(del-all)(1) = a.in(1)(0 :: nil) = false

b.crossover(del-first)(1) = b.in(1)(1 :: 0 :: nil) = true

On the other hand, the interpretations of a and b satisfy

∀f :∀X.(T[X, Z]→Nat) . (fListNat a) = (fListNat b)

This follows from the ω-rule and Lemma 5.12 below. Thus we have observational
equivalence. We get back to this later. In the mean time, we rely on some intu-
ition. It is reasonable that (pack ListNat a) and (pack ListNat b) are observationally
equivalent w.r.t. Obs = {Nat}, since actual computations using either of the data
types must adhere to Abs-Bar . In particular, the terms

a.crossover(del-all)(1) b.crossover(del-first)(1)

do not arise from any one virtual observable computation. On the other hand,
the terms a.crossover(del-first)(1) and b.crossover(del-all)(1) do arise from a single
virtual computation, namely ΛX.λx :TSetCE[X] . x.crossover(x.remove)(1).

Note that this intuitive argument for observational equivalence is in terms of
computations that are somehow closed. It does not follow that we can induce this
argument to all f :∀X.(TSetCE[X]→Nat) in the logic. We therefore need to relate
to models with closedness properties as above. We say more about this later.

To show non-composability and non-transitivity of existence, in addition to
(pack ListNat a) and (pack ListNat b) above, consider (pack ListNat d) :SigSetCE, where

d
def
= (empty = nil,

add = cons,
remove = del-all
in = in,

crossover
def
= λf : (Nat→ListNat→ListNat).λn :Nat .

in(n)(f(n)(1 :: 1 :: 0 :: nil))) )
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Now, continuing to relate to the parametric minimal model, let �1 relate lists
a and b if and only if a is sorted ascending and b has the the same content as
a, i.e., all and only those items that occur in a, occur, possibly several times,
in b. Then, interpreting R as �1, we have that a TSetCE[R] d holds in the
model. Notice that del-first (eqNat → R → R) del-all holds, but that in con-
trast to the situation above, del-all (eqNat → R → R) del-first does not hold.
Of course, f (eqNat → R → R) g holds only for interpretations of f, g : Nat →
ListNat→ListNat that maintain the contents invariant on sorted ascending list on
the one hand and general lists on the other, as expressed in �1. For all such f

and g, we have a.crossover(f)(n) =Bool d.crossover(g)(n), and therefore this time,
a.crossover ((R→ R)→Nat→Bool) d.crossover holds.

Analogously, let �2
def
= �−1

1 . Then, by interpreting R as �2, we also have that
d TSetCE[R] b holds in the model.

In the parametric minimal model, we thus have simulation relations between
(the interpretations of) (pack ListNata) and (pack ListNatd), namely �1, and also
between (pack ListNatd) and (pack ListNatb), namely �2, but as we demonstrated
above, there is no simulation relation between (pack ListNata) and (pack ListNatb)

(in particular not the composition of �1 and �2).
We could also have given the above argument for non-transitivity in purely

syntactic terms, but it is saves effort to give it semantically. �

5.1.2 To Observe Abs-Bar

We here take the view that the current notion of simulation relation is unduly
demanding, and fails to observe closely enough the abstraction barrier provided
by existential types. Consider the higher-order signature

∃X.(f : (X→X)→Nat, g :X→X)

A requirement for an R⊂A×B to act as a simulation relation and be respected
in the standard sense by two implementations a and b, is that

∀δ :A→A, ∀γ :B→B . δ(R→R)γ ⇒ a.f(δ) =Nat b.f(γ)

But according to Abs-Bar (p. 54), a.f and b.f can only be applied to arguments
expressible by the supplied operations in a and b, unless the supplied operations
themselves apply operations to non-expressible arguments. The proof obligation
should take this into account. Essentially, one should not have to consider the
behaviour of a.f and b.f on arbitrary operators δ :A→A and γ :B→B as long
as they fulfil the requirements for operators defined in terms of a.g and b.g.
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5.2 Abstraction Barrier-Observing

Simulation Relations I

In this section we present the first of two related solutions to the problems outlined
in the previous section. The first solution is sound w.r.t. syntactic models, while
the solution in Sect. 5.3 is sound in the non-syntactic parametric PER-model.
The idea is to devise an alternative notion of simulation relation.

5.2.1 Abstraction Barrier-Observing Relations I

As before T[X] denotes the body of an abstract data type ∃X.T[X], now possibly
with higher-order profiles according to HADTObs .

Definition 5.8 (abo-Relation) Relative to T[X], for k-ary Y , A, B, R⊂A×B,
a :T[A], b :T[B]. Define the abo-relation U [eqY , R]abo ⊂ U [Y , A]× U [Y , B], for
the list abo = A, B, a, b, inductively on U [Y , X] by

U = X : U [eqY , R]abo def
= R

U = Yi : U [eqY , R]abo def
= ρi

U = ∀Yk+1.U
′[Y , Yk+1, X] : U [eqY , R]abo def

=

(g :∀Yk+1.U
′[Y , Yk+1, A], h :∀Yk+1.U

′[Y , Yk+1, B]) .

(∀Yk+1 . gYk+1 (U ′[eqY , eqYk+1
, R]abo) hYk+1)

U = U ′→U ′′ : U [eqY , R]abo def
=

(g :U ′[Y , A]→U ′′[Y , A], h :U ′[Y , B]→U ′′[Y , B]) .

(∀x :U ′[Y , A], ∀y :U ′[Y , B] .

(x U ′[eqY , R]abo y ∧ Dfnblabo
U ′[Y ,X](x, y)) ⇒ (gx) U ′′[eqY , R]abo (hy))

where,

Dfnblabo
U ′[Y ,X](x, y)

def
= ∃fU ′ :∀X.(T[X]→U ′[Y , X]) . (fU ′A a) = x ∧ (fU ′B b) = y

To avoid clutter, parameters Z of T[X, Z] were omitted. Of course, eqZ
abo def

= eqZ.
Parameters Z are subsumed by Y . However, the latter are intended as type in-
stances introduced at universal type. It is helpful to keep the distinction.

We usually omit the type subscript on the Dfnblabo clause. The essence of Def. 5.8
is the weakened arrow-type relation via the Dfnblabo clause; an extension of the
relation exhibited for proving Theorem 4.17. This clause asserts definability for
arguments as stated by Abs-Bar . The abo-relation will be used relative to a single
virtual computation, and therefore the Dfnbl clause incorporates the uniformity
aspect of Abs-Bar as an essential ingredient.
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Example 5.7 (continued) Above, we demonstrated that the relation � relating
exactly all sorted ascending lists with non-repeated items does not satisfy

a.crossover (eqNat→R→R)→eqNat→eqBool b.crossover

in the parametric minimal model of (Hasegawa, 1991). However, � does satisfy

a.crossover ((eqNat→R→R)→eqNat→eqBool)
abo b.crossover

via the ω-rule. Intuitively, this is because only γ, δ : Nat→ ListNat → ListNat for
which we have Dfnblabo

Nat→X→X(γ, δ), i.e.,

∃f :∀X.TSetCE[X]→(Nat→X→X) . (f ListNat a) = γ ∧ (f ListNat b) = δ

need be considered. In particular, this should exclude the pair (del-all, del-first),
reflecting exactly the uniformity in actual computations captured by Abs-Bar ,
a uniformity which is inevitable, since the only way of accessing data types is
through virtual computations. �

Seemingly, Def. 5.8 ignores the fact that data type operations themselves may
cause non-definable arguments to be applied; a prime example of the application
of non-definable arguments in this way is in fact Example 5.7, where b.crossover

causes b.remove to be applied to the non-definable 1 :: 1 :: 0 :: nil. However, in
the context of data types, the operations that cause non-definable arguments to
be applied are themselves subjected to the abo arrow-type relation according to
Def. 5.8. This means that the application to non-definable arguments are taken
care of at that level. For example, the application of b.remove to 1 :: 1 :: 0 :: nil

is treated while considering b.crossover with a.crossover, and it is adequate to
consider the abo-relation for the remove operations rather than exceptionally re-
verting to the standard arrow type relation.

The treatment of universal types in Def. 5.8 demands a comment. According
to Abs-Bar , actual computations arising from a virtual computation can only
have applications of polymorphic terms of the following two kinds. First, if the
instantiating type in the virtual computation does not contain the virtual data
representation, then the instantiating type will appear identically in actual com-
putations. Secondly, if the instantiating type in the virtual computation does
contain the virtual data representation, then the instantiating type in each ac-
tual computation will differ, but then only in harmony with the actual data
representations. The first case is what is expressed for universal types in Def. 5.8.
To capture type application of the second kind, we must somehow quantify over
all types involving the virtual data representation. In the current type theory,
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we can only do this by infinite conjunction, something the logic does not have.
What we can do, though, is to consider a given virtual computation and make
a finite conjunction over all types involving the virtual data representation that
actually occur in the given virtual computation. This is what we do in Def. B.3 in
Sect. B.2 in Appendix B. This however only makes sense in the context of a given
virtual computation, and gives no meaning in the general definition in Def. 5.8.
At the top-level discussion, we do not really need to go into universal types, since
abstract types here adhere to HADTObs . The exception to this is of course types
in Obs that are universal types, e.g., Bool and Nat. These are nevertheless in-
ductive, and for such universal types, the treatment in Def. 5.8 suffices; e.g., for
Lemma 5.10 below. For further remarks, we refer to Sect. B.2 in Appendix B.

We now define with a slight abuse of notation:

Definition 5.9 For A, B and R ⊂ A× B,

T[R, eqZ]abo def
= (a :T[A, Z], b :T[B, Z]) . (∧1≤i≤k a.gi (Ti[R, eqZ]abo) b.gi)

We want the abo-relation of Def. 5.8 to retain the property of being the equality
over types in Obs . This is easily derivable in the logic, since Obs contains only
closed inductive types apart from the parameters Z.

Lemma 5.10 We can derive the following in the logic.

∀g, h :D . g =D h ⇔ g(Dabo)h, for D ∈ Obs

Proof: We illustrate with the inductive type Nat. So consider g(Natabo)h, i.e.,

(∀Y.∀y, y′ :Y.∀s, s′ :Y →Y .

y =Y y′ ∧ Dfnblabo′(y, y′) ∧ s(eqY →eqY )abo′s′ ∧ Dfnblabo′(s, s′)

⇒ (gY ys) =Y (hY y′s′))

The clause Dfnblabo′(y, y′) says

∃f :∀X.(T[X]→Y ) . (fA a) = y ∧ (fB b) = y′

Since we have y =Y y′, this is derivable by exhibiting ΛX.λx :T[X].y. Similarly,
we derive Dfnblabo′(s, s′) by exhibiting ΛX.λx : T[X].s : ∀X.(T[X]→ (Y → Y )).
This suffices because s(eqY →eqY )abo′s′ is equivalent to s(eqY →eqY )s′, which by
the Identity Extension Lemma gives s =Y →Y s′. Thus, these Dfnblabo′ clauses are
vacuous. This means that the definition of g(Natabo)h is equivalent to

∀Y.∀y, y′ :Y.∀s, s′ :Y →Y . y =Y y′ ∧ s(eqY →eqY )s′ ⇒ (gY ys) =Y (hY y′s′)

or ∀Y . gY (eqY →(eqY →eqY )→eqY )hY , i.e., ∀Y . gY = hY . By the congruence
axiom schema, we get ΛY.gY = ΛY.hY , which by η-equality yields g =Nat h. �
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Definition 5.11 (abo-Simulation Relation SimRelA) Relatedness by abstrac-
tion barrier-observing (abo) simulation relation w.r.t. T[X, Z] is expressed by

SimRelAT[X,ρ]
def
= (u :∃X.T[X, U ], v :∃X.T[X, V ]) .

(∃A, B.∃a :T[A, U ], b :T[B, V ] . u = (packAa) ∧ v = (packBb)

∧ ∃R⊂A×B . a(T[R, ρ]abo)b

where abo = A, B, a, b, and where Z are the free type variables in T[X, Z] other
than X, and ρ⊂U×V is a vector of relations of the same length.

The subscript T[X, ρ] to SimRelAT[X,ρ] might occasionally be omitted.
As before, two data types are intuitively related by a simulation relation ac-

cording to Def. 5.11, if there exists a relation on their respective data representa-
tions that is preserved by their respective operations. However, now the action on
types within a data type is defined by the abo-relations of Def. 5.8 incorporating
the weakened arrow-type relation which deploys abstract-type definability.

With abo-simulation relations in place one would think that we should be able
to re-establish versions of Theorem 4.18 and Theorem 4.22 derivable for T[X] of
any order. But there is a catch. Since we do not alter the parametricity axiom
schema, we can no longer rely directly on parametricity as in Theorem 4.18, when
deriving observational equivalence from the existence of a simulation relation.
This is because we lose the power of relational parametricity when considering
data-type relations in relations over universal types.

One might envision an extended parametricity axiom schema dealing with
data-type relations as well, but such a schema would not be sound. One way to
see this is to observe that with such a schema, normal simulation relations would
coincide with abo-simulation relations, and then Example 5.7 would demonstrate
inconsistency. Our approach to this problem is to assert only the necessary in-
stances of special parametricity incorporating abo-simulation relations. This is
the next topic.

5.2.2 Special Parametricity

We will now extend the logic with a special bounded parametricity schema in-
corporating abo-simulation relations. The boundedness consists of restricting the
types of client computations, and also involves considering only client compu-
tations that are closed in a suitable sense. This mirrors the fact that Abs-Bar
captures computational aspects, i.e., how data type operations are applied in
computational expressions. Notice that Abs-Bar does not say much about vari-
ables representing computations in logical expressions.
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In this section, soundness is w.r.t. models with inherent term denotability.
Later, we will use logic to restrict to term-denotable elements in other models.

Closedness must be relative to the given set of input types In so as to allow
for variables of input types in observable computations. This is automatically
taken care of in the notion of observable computations of Def 4.4, but in shifting
attention explicitly to closed computations, we are compelled to specify the col-
lection In of input types in observations. We set In = Obs as a sensible choice
(Sannella and Tarlecki, 1987), cf. the discussion around Examples 2.2 (p. 27) and
4.11 (p. 83). Recall that Obs, and hence In, includes parameters Z of the relevant
abstract type, cf. Definitions 4.6 and 4.12.

—

We write f (∀X.T[X, eqZ]ε→U [X, eqZ]ε) f , meaning

∀A, B, R⊂A×B.∀a :T[A, Z], b :T[B, Z] .

a(T[R, eqZ]abo)b ⇒ (fA a)(U [R, eqZ]abo)(fB b)

where abo = A, B, a, b.

Lemma 5.12 For T[X, Z] adhering to HADTObs , for U [X, Z] having no occur-
rences of universal types other than those in Obs, and whose only free variables
are among X and Z, for f :∀X.(T[X]→U [X]) whose only free variables are term
variables of types in In, we derive

f (∀X.T[X, eqZ]ε→U [X, eqZ]ε) f

Proof: See Sect. B.2 in Appendix B. �

By Lemma 5.12, the following axiom schema is sound w.r.t. any model in which
the ω-rule holds, or in which interpretations of any f : ∀X.(T[X] → U [X]) are
denotable by terms whose only free variables are term variables of types in In.
See Sect. A.6 in Appendix A for the ω-rule.

Definition 5.13 (Special Parametricity (spParam)) For T[X, Z] adhering
to HADTObs , for U [X, Z] having no occurrences of universal types other than those
in Obs, and whose only free variables are among X and Z,

spParam: ∀f :∀X.(T[X, Z]→U [X, Z]) . f (∀X.T[X, eqZ]ε→U [X, eqZ]ε) f

This axiom schema holds in the closed type and term model and the parametric
minimal model due to (Hasegawa, 1991), cf. Sect. 3.4.2.
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5.2.3 The Results

Using spParam we now get a general version of Theorem 4.17:

Theorem 5.14 Let T[X] adhere to HADTObs . With spParam we derive,

∀Z.∀u, v :∃X.T[X, Z] . u SimRelAT[X,eqZ ] v ⇔ u ObsEqObs
T[X,Z] v

Proof: This follows from Theorem 5.15 below. �

If T[X] satisfies FADTObs , (p. 87), i.e., has only first-order profiles, then The-
orem 5.14 and Theorem 4.17, imply

∀Z.∀u, v :∃X.T[X, Z] . u SimRelAT[X,eqZ ] v ⇔ u SimRelT[X,eqZ ] v

This is of course not surprising. At first order, the data-type relation of Def. 5.8 is
exactly the simulation relation Dfnbl we displayed in the proof of Theorem 4.18.

Theorem 5.15 (Tight Correspondence) Let T[X] adhere to HADTObs . We
can derive in the logic with spParam,

∀A, B.∀a :T[A, Z], b :T[B, Z] .

∃R⊂A×B . a(T[R, eqZ]abo)b

⇔
∧

D∈Obs ∀f :∀X.(T[X, Z]→D) . (fA a) = (fB b)

Proof: ⇒: This follows from spParam and Lemma 5.10.
⇐: We have to show that ∃R⊂A×B . a(T[R, Z]abo)b is derivable. We exhibit

R
def
= (a : A, b : B).(Dfnblabo(a, b)). Due to the assumption HADTObs , it suffices by

Def 5.9 to show for every component g :U1→· · ·→Un→Uc in T[X], that

∀x1 :U1[A], . . . , xn :Un[A] . ∀y1 :U1[B], . . . , yn :Un[B] .∧
1≤i≤n(xi Ui[R, eqZ]abo yi ∧ Dfnblabo

Ui
(xi, yi))

⇒ (a.g x1 · · ·xn) Uc[R, eqZ]abo (b.g y1 · · ·yn)

where Uc[X, Z] is X, some Zi, or some closed D ∈ Obs. Now Dfnblabo
Ui

(xi, yi)

gives ∃fUi
: ∀X.(T[X, Z] → Ui[X, Z]) . (fUi

A a) = xi ∧ (fUi
B b) = yi. Let

f
def
= ΛX.λx :T[X, Z] . (x.g(fU1Xx) · · · (fUnXx)).
Suppose Uc[X, Z] = D ∈ Obs , including some Zi: It suffices, by Lemma 5.10

in the case D is closed, to show that a.g x1 · · ·xn =D b.g y1 · · · yn is derivable.
The assumption gives (fA a) =D (fB b) which gives the desired result.

Suppose Uc[X, Z] = X: We must then derive

∃f :∀X.(T[X, Z]→Uc[X, Z]) . (fA a) = (a.g x1 · · ·xn) ∧ (fB b) = (b.g y1 · · · yn)

For this we display f above. �
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Example 5.7 (continued) Theorem 5.15, or more generally Theorem 5.14,
gives with spParam,

∀u, v :∃X.TSetCE[X] . u SimRelATSetCE[X] v ⇔ u ObsEq
{Nat}
TSetCE[X] v

Thus, (pack ListNat a) and (pack ListNat b) are related by abo-simulation relation
exactly when they are observationally equivalent w.r.t. Obs = {Nat}.

In the parametric minimal model of (Hasegawa, 1991), we have that the �
relating exactly all sorted ascending lists with non-repeated items, satisfies

a (TSetCE[R])abo b

for abo = ListNat, ListNat, a, b, and R representing �. Thus in this model, the de-
notations of (pack ListNat a) and (pack ListNat b) satisfy observational equivalence,
i.e., (pack ListNat a) ObsEq

{Nat}
TSetCE[X] (pack ListNat b) holds. �

Example 5.16 The reasoning of Example 5.7 can also be recast in terms of the
polymorphic closed type and term model of (Hasegawa, 1991). Let

R
def
= Dfnbl

def
= (a :ListNat, b :ListNat) .

(∃f :∀X.(TSetCE[X]→X) . (f(ListNat)(a)) = a ∧ (f(ListNat)(b)) = b)

The denotation of R in the polymorphic closed type and term model is exactly
the � of Example 5.7. We get the analogous results, namely that

a (TSetCE[R]) b

does not hold, but
a (TSetCE[R])abo b

does hold for abo = ListNat, ListNat, a, b. Since the structure satisfies spParam,
and is otherwise sufficiently parametric (cf. Sect. 3.4.2), we may use Theorem 5.15
and Theorem 5.14 to derive that the denotations of (packListNata) and (packListNatb)

satisfy observational equivalence. �

Using the abstraction-barrier observing notion of simulation relation together
with spParam, we also regain composability and the transitivity of existence of
simulation relations. This relates the syntactic level to on-going work on refine-
ment relations on the semantic level, namely the pre-logical relations of (Honsell
et al., 2000; Honsell and Sannella, 1999), the lax logical relations of (Plotkin et al.,
2000; Kinoshita and Power, 1999), and the L-relations of (Kinoshita et al., 1997).
A seemingly interesting difference to these approaches is that we require a looser
definability notion, namely definability relative to the virtual ADT-operations,
rather than absolute definability.
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Theorem 5.17 (Composability of Simulation Relations) Given spParam,
for T[X] adhering to HADTObs , we can derive

∀A, B, C, R⊂A×B, S⊂B×C, a :T[A, Z], b :T[B, Z], c :T[C, Z].

a(T[R, eqZ]abo)b ∧ b(T[S, eqZ]abo)c ⇒ a(T[S ◦R, eqZ]abo)c

Proof: Assuming a(T[R, eqZ]abo)b ∧ b(T[S, eqZ]abo)c, the goal is to derive for
every component g :U1→· · ·→Un→Uc in T,

∀x1 :U1[A], . . . , xn :Un[A] . ∀z1 :U1[C], . . . , zn :Un[C] .∧
1≤i≤n(xi Ui[S ◦R, eqZ]abo zi ∧ Dfnblabo

Ui
(xi, zi))

⇒ (a.g x1 · · ·xn) Uc[S ◦R, eqZ]abo (c.g z1 · · · zn)

From Dfnblabo
Ui

(xi, zi), we construct f
def
= ΛX.λx :T[X] . (x.g(fU1Xx) · · · (fUnXx)).

Uc[X, Z] = D ∈ Obs , including some Zi: By assumption and Theorem 5.14,
(fA a) = (fB b) = (fCc), and a.g x1 · · ·xn = (fA a) and (fCc) = c.g z1 · · · zn.

Uc[X, Z] = X: We must show ∃b :B . (a.g x1 · · ·xn) R b ∧ b S (c.g z1 · · · zn).
Simply exhibit fB b = (b.g(fU1Bb) · · · (fUnBb)) for b. Then in order to show
e.g., (a.g x1 · · ·xn) R (b.g(fU1Bb) · · · (fUnBb)) it suffices by assumption to show
xi Ui[R, eqZ]abo (fUi

Bb) ∧ Dfnblabo(xi, (fUi
Bb)). But xi = (fUi

Aa), render-
ing Dfnblabo(xi, (fUi

Bb)) trivial, and (fUi
Aa) Ui[R, eqZ]abo (fUi

Bb) follows by
assumption a(T[R, eqZ]abo)b and spParam. �

For SimRelA, we have the close connection with components i.e., we get a
version of Theorem 4.20 (p. 89) for data types with operations of any order.
Thus, the notion of abo-simulation relation solves the problem of Theorem 5.5.

Theorem 5.18 Suppose T[X] adheres to HADTObs . With spParam we derive

∀A, B.∀a :T[A, Z], b :T [B, Z]) .

(packAa) SimRelAT[X,eqZ ] (packBb) ⇔ ∃R⊂A×B . a T[R, eqZ]abo b

Proof: For the non-obvious direction, (packAa) SimRelAT[X,eqZ ] (packBb) gives
by Theorem 5.14, (packAa) ObsEqObs

T[X,Z] (packBb). Then Theorem 4.5 and The-
orem 5.15 give the result. �

At present, it is not known whether or not, the parametric PER-model of
(Bainbridge et al., 1990) satisfies spParam, even for U = Bool. But since we can
show spParam in syntactic models, we have at least re-established the corres-
pondence between simulation relations and observational equivalence, as well as
the composability of simulation relations, w.r.t. these.
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In this thesis we use semantic structures primarily to show the soundness of
new axioms, and for this in isolation it does not matter what kind of model one
relates to. In future elaborations, however, we want to investigate the semantic
meaning of our type-theoretical notions. This is most interestingly done in non-
syntactic models. We therefore wish to relate our discussion also to such models.

5.3 Abstraction Barrier-Observing

Simulation Relations II

In this section we seek validation w.r.t. the parametric PER-model. Recall that
we are relying on appropriately closed computations. Now, instead of restricting
the model class accordingly, we use linguistic means to focus on appropriately
closed computations.

5.3.1 Closedness in the Logic

We want closedness to be qualified by the set of input types In so as to allow for
variables of input types in observable computations. Recall that this is automat-
ically taken care of in the notion of general observable computations of Def 4.4,
but as mentioned in Sect. 5.2.2 we must now explicitly specify In. According to
our previous discussion in Sect. 4.5, we set In = Obs .

We thus want a predicate ClosedIn . Unfortunately, the possibility of defining
ClosedIn to the desired effect in the existing logic is very unlikely. Nevertheless, we
can circumvent this problem by way of a language extension, i.e., by introducing
ClosedIn as a family of new predicates together with a predefined semantics. We
are primarily interested in expressing the closedness of terms, rather than types.
We thus extend the language as follows.

Definition 5.19 (Closed) The logical language is extended with families of basic
predicates ClosedU

�(u) ranging over terms u :U , relative to a given set of types �.
This syntax is given the following predefined semantics. For any type Γ�U , term
Γ � u :U , and environment γ on Γ,

|=Γ,γ ClosedU
�(u)

def⇔ exists Γ̂, such that Γ̂ � U , Γ̂ � û :U , and γ̂ on Γ̂, such that
Γ̂ contains types only from �,
and [[Γ̂ � û :U ]]γ̂ = [[Γ � u :U ]]γ

We say that û and U here are closed qualified by �. We use the same notational
conventions for � as we do for type contexts.
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Suppose � = In. For Γ�u :U and any environment γ on Γ, we have according to
Def. 5.19, that ClosedU

�(u) is true under γ in a given model, exactly when there
exists û :U , where any free type variables in U are parameters Z in In (remember
we set In = Obs , and Obs includes parameters Z of abstract types, but if there
are no parameters in In, then U is closed), and where free term variables in û are
of types in In, such that the denotation of u :U under γ is the denotation of û :U

for some valuation of the free variables. In other words, the denotation of u : U

under γ is denotable by a closed term qualified by In.
Introducing new names with predefined semantics requires that we check

soundness i.e., we must reaffirm the logical axioms expressed in the derivation
rules (Sect. A.2 in Appendix A) of the calculus.

Lemma 5.20 The logic extended with the Closed predicates remains sound.

Proof: The only potential problems arise with universal instantiation (∀-elim),
and existential generalisation (∃-intro). For terms, these are the rules

te-∀-elim :
Φ �Γ ∀x :T.φ[x] Γ � v :T

Φ �Γ φ[v]
te-∃-intro :

Φ �Γ φ[v] Γ � v :T

Φ �Γ ∃x :T.φ[x]

where φ (and formulae in Φ) may have occurrences of Closed. To justify these
rules, it suffices to establish the substitution property. For all formulae φ,

|=Γ,x:T,γ[x �→[[Γ�v:T ]]γ] φ[x] ⇔ |=Γ,γ φ[v]

and thus it remains for us to show

|=Γ,x:T,γ[x �→[[Γ�v:T ]]γ] ClosedU
�(u[x]) ⇔ |=Γ,γ ClosedU

�(u[v])

This is reasonably easy. The left-hand side gives Γ̂, û, and γ̂, such that

[[Γ̂ � û :U ]]γ̂ = [[Γ, x :T � u[x] :U ]]γ[x �→[[Γ�v:T ]]γ ]

Since [[Γ, x : T � u[x] : U ]]γ[x �→[[Γ�v:V ]]γ ] = [[Γ � u[v] : U ]]γ , and � remains the same
over the implication, we may use Γ̂, û, and γ̂ to establish |=Γ,γ ClosedU

�(u[v]).
Likewise, we may use Γ̂′, û[v], and γ̂′ given by the right-hand side to establish
|=Γ,x:T,γ[x �→[[Γ�v:T ]]γ] ClosedU

�(u[v]). �

Thus we are now in a position to express closedness in the logic by basic predicate
symbols Closed. Note that the predefined semantics of Closed is not specific to a
particular model, but relates, roughly spoken, to any denotational semantics of
the form considered in this thesis.
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Now, just as we have non-logical axioms for the other basic predicate in the
logic, namely equality, we should appreciate some axioms for Closed as well. In
particular, we will need to be able to derive the closedness of terms in the logic,
and in order to do this, we will need to derive the closedness of types too. For
example, we would like to be able to assert something like

�Γ Closed�(U) ∧ ClosedV
�(v) ⇒ ClosedU→V

� (λx :U.v)

where we have extended Closed somehow to talk explicitly about types as well.
But with our present semantics for Closed, we are not able to validate the indicated
axiom. The problem is that we cannot control the form of the witness v̂ that would
give ClosedV

�(v); more specifically, we cannot guarantee that v̂ has a free variable
x to be bound by lambda abstraction. This makes it hard to get the desired
results, since we cannot in general construct λ̂x :U.v from v̂.

We mentioned above that to be able to derive the closedness of terms in the
logic, we have to extend Closed to deal with types. Then we encounter similar
problems as above. If we define Closed for types in the style of Def. 5.19, i.e.,

|=Γ,γ Closed�(U)
def⇔ exists Γ̂, Γ̂ � Û , and γ̂ on Γ̂, such that

Γ̂ contains type variables only from �,
and [[Γ̂ � Û ]]γ̂ = [[Γ � U ]]γ

we will for example, have problems verifying the desired axiom

�Γ Closed�,X(U) ⇒ Closed�(∀X.U)

Again, the problem is that we cannot control the form of the witness Û giving
Closed�,X(U). For example, for Γ = {X, Y } and γ such that γ(X) = A and
γ(Y ) = B, we have |=Γ,γ Closed{X}(X → Y ), simply by exhibiting X̂→Y = X

and γ̂ such that γ̂(X) = A→B. However, unless B is denotable by a closed type,
we do not have |=Γ,γ Closed{}(∀X.X→Y ). On the other hand, by insisting on Û

being on the same form as U , and in particular that the free occurrences of X in
U are preserved for binding in Û , one can easily validate the axiom by displaying
a ∀̂X.U constructed from Û . Similar considerations apply for the desired axiom

�Γ Closed�(U) ∧ Closed�(V ) ⇒ Closed�(U→V )

Here we would like to construct Û→V from Û and V̂ . This is hard unless we
insist that the environments γ̂U and γ̂V do not clash on common variables.

The upshot of all this is that we need a predicate or something predicate-
like, that expresses closedness, and which guarantees that the terms and types
witnessing closedness preserve form.
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We now present a second family of predicate-like symbols ClosedS with a
semantics extending that of Closed according to what we have just said. With
ClosedS we can establish the desired axioms for deriving closedness in the logic.

Definition 5.21 (ClosedS) The logical language is extended with families of basic
predicate-like symbols ClosedS�(U) ranging over types, and ClosedSU

�(u) ranging
over terms u :U , both qualified by a given set of types �. The following predefined
semantics is given. For any type Γ� U , term Γ �u :U , and environment γ on Γ,

|=Γ,γ ClosedS�(U)
def⇔ exists Γ̂, type Γ̂ � Û , and a γ̂ on Γ̂, such that

Γ̂ contains type variables only from �,
Û = U [T/X ], where X = FTyV (U),

and Ti is Xi, if Xi is in �, or else some closed type,
and [[Γ̂ � Ti]]γ̂ = γ(Xi).

|=Γ,γ ClosedSU
�(u)

def⇔ exists Γ̂, Γ̂ � Û , Γ̂ � û : Û , and γ̂ on Γ̂, such that
Γ̂ contains types only from �,

Û = U [T/X ], and û = u[T/X, t/x],
where X = FTyV (U), and x :U = FTeV (u),

and Ti is Xi, if Xi is in �, or else some closed type,
and ti is xi, if Ui is in �, and FTeV (ti) ∩ FTeV (tj) = ∅, if i �= j,

and [[Γ̂ � Ti]]γ̂ = γ(Xi), and [[Γ̂ � ti]]γ̂ = γ(xi).

We use the same notational conventions for � as we do for type contexts.

The additional clauses in Def. 5.19 concerning the form of Û and û are neces-
sary for the semantic justification of the non-logical axioms in Def. 5.23 below,
which enable us to derive closedness in the logic. The additional clauses insist that
we choose the most open type and term Û and û as possible, given �, as well as
insisting on Û and û being as much of the same form as U and u as possible. This
is necessary for validating the axioms of Def. 5.23 concerning abstraction, e.g.,
axiom (3). For example, for � = {Nat, X}, let Γ = X, Y , let U = X→ Y , and
let γ be such that [X �→ [[Nat]], Y �→ [[Nat]]]. Let us establish ClosedS{Nat,X}(U) by
finding a Û . Since � includes the type variable X, we have in the outset many
choices for Γ̂ and thence Û . But, the additional clauses prevent us from choosing
Û to be Nat→Nat, or X with γ̂(X) = [[Nat→Nat]], or X→X or Nat→X with
γ̂(X) = [[Nat]]. The clauses insist on the choice Û = X→Nat, with γ̂(X) = γ(X).
This then implies that of ClosedS{Nat}(∀X.U) holds; simply give ∀̂X.U = ∀X.Û .
In contrast, the other choices for Û leave no suitable free X in Û for binding.
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However, with this semantics, ClosedS is not a predicate, in the sense that if
we were to use ClosedS as a predicate symbol with the above semantics, the logic
would no longer be sound; hence we refer to ClosedS as a predicate-like symbol. In
particular, instantiating from universal quantification (∀-elim) no longer holds.
For example, we cannot give a semantic justification for

�Γ ∀x :T.ClosedSU
�(u[x])

�Γ ClosedSU
�(u[v])

To see this, suppose we have |=Γ,γ ∀x :T.ClosedST
�(x). This is the case for example

in the parametric PER-model for T = Nat. We then want to establish |=Γ,γ

ClosedST
�(v). However, we are now insisting that v̂ = v[t/x], where ti is a closed

term w.r.t. �, if the type of xi is not in �. But v might introduce a variable whose
type is not in �, and which γ maps to an element which is not denotable by an
appropriately closed term.

The lack of substitutivity is a result of an intentional semantics; the semantics
of ClosedS refers to syntax. Nonetheless, with this intentional semantics, we can
validate axioms that allow us to derive closedness.

This dilemma is resolved as follows. First of all, we separate out the rules for
deriving closedness in a special calculus, �CTF in Def. 5.23 below, where logical
instantiation has no part. This calculus is then sound. Secondly, we maintain the
predicate symbols Closed of Def. 5.19. These have no part in deriving closedness.
The idea is that it suffices for the specifier to know about and use the Closed

predicates when doing refinement proofs using the strategy embodied by Sub

and Quot. We as formalists on the other hand, will need the ability to derive
closedness in order to prove our results, but we will not need the rules relying
on substitutivity. The specifier need know only about the main results, and
then perhaps only indirectly through the actions of a proof checker, but need not
know the details of the derivations, in particular not those using the predicate-like
symbols ClosedS and the calculus �CTF. For us, the crucial link between the two
notions of closedness is established by the next result.

Lemma 5.22 If U is a type closed qualified by �, then it is the case that

1. |=Γ,γ ClosedSU
�(t) ⇒ |=Γ,γ ClosedU

�(t), for any t :U ,

2. |=Γ,γ ClosedSU
�(x) ⇔ |=Γ,γ ClosedU

�(x), for any variable x :U .

Proof: The first claim, and the implication from left to right of the second claim
follow easily. The only thing to check is that the Û provided by the left-hand side
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is in fact U . But this is necessarily so, since Û = U [T /X] is required to preserve
all variables from �. Since U is closed qualified by �, this entails that Û = U .

For the converse implication of the second claim, suppose |=Γ,γ ClosedU(x).
Then there simply exists Γ̂ containing types only from �, and x̂ : Û such that
[[Γ̂� x̂ :U ]]γ̂ = [[Γ�x :U ]]γ . We construct the witnesses Γ̂′, Γ̂′ � Û ′, Γ̂′ � û′ : Û ′, and
γ̂′ to get |=Γ,γ ClosedSU(x) as follows. Since U is closed qualified by �, we may
set Û ′ = U . For x̂′, if U ∈ �, we set x̂′ = x and choose γ̂′(x) = [[Γ̂ � x̂]]γ̂ , and if
U �∈ �, we set x̂′ = x̂ and γ̂′ = γ̂. �

Lemma 5.22 allows us to import results from the sound calculus for deriving
closedness following in Def. 5.23 below, as lemmas into the regular calculus, and
at the same time keeping the two calculi separated from each other.

Definition 5.23 (Calculus for Closed Type and Term Formation �CTF)
We admit all logical axioms (Sect. A.2 in Appendix A), except universal quantific-
ation instantiation (∀-elim) and existential quantification generalisation (∃-intro)
into the calculus �CTF. In addition we admit the following axioms CTF.

1. �CTF

Γ ClosedS�,X(X)

2. �CTF

Γ ClosedS�(U) ∧ ClosedS�(V ) ⇒ ClosedS�(U→V )

3. �CTF

Γ ClosedS�,X(U) ⇒ ClosedS�(∀X.U)

4. �CTF

Γ ClosedSU
�,X,U(x), for variable x, and X = FTyV (U)

5. �CTF

Γ ClosedS�,X(U) ∧ ClosedSV
�,X,U(v) ⇒ ClosedSU→V

�,X (λx :U.v),
for X = FTyV (U)

6. �CTF

Γ ClosedSU→V
� (g) ∧ ClosedSU

�(u) ⇒ ClosedSV
�(gu)

7. �CTF

Γ ClosedSU
�,X(t) ⇒ ClosedS∀X.U

� (ΛX.t)

8. �CTF

Γ ClosedS∀X.U [X]
�

(f) ∧ ClosedS�(A) ⇒ ClosedSU [A]
�

(fA)

9. �CTF

Γ ClosedS�(U) ⇒ ClosedS�′(U), � ⊆ �′,

X ∈ FTyV (U) ∩ �′ ⇒ X ∈ �

10. �CTF

Γ ClosedSU
�(u) ⇒ ClosedSU

�′(u), � ⊆ �′,

X ∈ FTyV (U) ∩ �′ ⇒ X ∈ �

Additionally, we have the inference rules:

import :
Φ �Γ ClosedU

�(x)

Φ �CTF

Γ ClosedSU
�(x)

export :
Φ �CTF

Γ ClosedSU
�(t)

Φ �Γ ClosedU
�(t)

for U a type closed qualified by �, x a variable, any term t, and appropriate Φ.
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Lemma 5.24 The calculus �CTF is sound.

Proof: The axiom schemata CTF are sound, see Appendix B. It is easy to
see that the admitted logical axioms are sound. The additional rules import and
export are justified by Lemma 5.22. �

Henceforth, we usually omit the type in the term families of Closed and ClosedS.
Ideally, we would like to avoid having the separate external calculus �CTF. In-

stead, it would be better to have a definition of Closed that satisfies substitutivity
and at the same time allows derivation of closedness. This might not be possible
in the current semantic framework, due to the inherent intentional properties that
seem to emerge as necessities for deriving closedness. A solution might be to use a
Kripke-style semantics, and it does seem possible to achieve parametricity in such
a model. We choose not to investigate this here, because a change of semantics
would require too much over-head.

5.3.2 Closed Computations

Since we are now able to talk about closedness in the logic, it is possible to relate
to other models than those in which we somehow rely on term denotability. In
any model, we can now simply focus the attention on term-denotable elements
by using the Closed clauses. For example, the interpretation in any model of
∀f : ∀X.(T[X, Z]→ D) . ClosedIn(f) ⇒ φ(f) restricts attention in φ to those
interpretations of all f :∀X.(T[X]→D) that are denotable by terms whose only
free variables are of types in In.

The usual semantic notion of observational equivalence for lambda calculus is
defined w.r.t. contexts that when filled, are closed terms (Mitchell, 1991). Since we
can express observational equivalence via closed observable computations, quali-
fied by the set of input types In, we can now give a reasonable alternative defin-
ition in the logic of observational equivalence.

Definition 5.25 (Closed Observational Equivalence (ObsEqC)) Define clos-
ed observational equivalence ObsEqC w.r.t. T[X, Z] and Obs by

ObsEqCObs
T[X,Z]

def
= (u :∃X.T[X, Z], v :∃X.T[X, Z]).

(∃A, B.∃a :T[A, Z], b :T[B, Z] . u = (packAa) ∧ v = (packBb) ∧∧
D∈Obs ∀f :∀X.(T[X, Z]→D) . ClosedIn(f) ⇒ (fA a) = (fB b))

Of course we have a tight connection to package components also for this notion
of observational equivalence.
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Theorem 5.26 The following sequent schema is derivable.

∀A, B.∀a :T[A], b :T[B] . (packAa) ObsEqObs (packBb)

⇔
∧

D∈Obs ∀f :∀X.(T[X]→D) . ClosedIn(f) ⇒ (fA a) = (fB b)

Proof: The same argument as for Theorem 4.5. �

—

We can now use something like Lemma 5.12 to show the necessary bounded
parametricity instance also for the parametric PER-model. We incorporate Closed

into spParam, and then to make the induction spiral work, we have to strengthen
Lemma 5.12 by incorporating Closed into the Dfnblabo clause.

5.3.3 Abstraction Barrier-Observing Relations II

We first extend the notion of abo-relation to incorporate closed computations.
The definition is the same as for the data type relation of Def. 5.8, except that
we use a different definability clause for arrow-type relations.

Definition 5.27 (abo-Relation by Closed Computations) Relative to T[X],
for k-ary Y , A, B, R⊂A×B, a :T[A], b :T[B]. Define the abo-relation by closed
computations U [eqY , R]abo

C ⊂ U [Y , A] × U [Y , B], for the list abo = A, B, a, b,
inductively on U [Y , X] by

U = X : U [eqY , R]abo
C

def
= R

U = Yi : U [eqY , R]abo
C

def
= ρi

U = ∀Yk+1.U
′[Y , Yk+1, X] : U [eqY , R]abo

C
def
=

(g :∀Yk+1.U
′[Y , Yk+1, A], h :∀Yk+1.U

′[Y , Yk+1, B]) .

(∀Yk+1 . gYk+1 (U ′[eqY , eqYk+1
, R]abo

C ) hYk+1)

U = U ′→U ′′ : U [eqY , R]abo
C

def
=

(g :U ′[Y , A]→U ′′[Y , A], h :U ′[Y , B]→U ′′[Y , B]) .

(∀x :U ′[Y , A], ∀y :U ′[Y , B] .

(x U ′[eqY , R]abo
C y ∧ DfnblCabo

U ′[Y ,X](x, y)) ⇒ (gx) U ′′[eqY , R]abo
C (hy))

where,

DfnblCabo
U ′[Y ,X](x, y)

def
= ∃fU ′ :∀X.(T[X]→U ′[Y , X]) .

ClosedIn ,Y (fU ′) ∧ (fU ′A a) = x ∧ (fU ′B b) = y

Again, eqZ
abo
C

def
= eqZ for parameters Z of T[X, Z].
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We might omit the subscript to the DfnblCabo clause. As for Def. 5.8, the essence
of Def. 5.27 is the weakened arrow-type relation, now via the DfnblCabo clause.
Notice that the predicate Closed for the case when DfnblCabo is dealing within
universal quantification, gets qualified by type variables Y in addition to In. This
is because according to Abs-Bar , we can have arbitrary term variables over types
instantiating polymorphic functionals. The proviso is that these types cannot
involve the actual data representation, unless the instantiating type coincides
with the actual data representation. This is of course taken care of by the type
of fU ′ , since the virtual data representation is a bound variable.

We define with a slight abuse of notation:

Definition 5.28 For A, B and R ⊂ A× B,

T[R, eqZ]abo
C

def
= (a :T[A, Z], b :T[B, Z]) . (∧1≤i≤k a.gi (Ti[R, eqZ]abo

C ) b.gi)

We get analogous results to those in Sect. 5.2.2.

Lemma 5.29 We have using �CTF, the derivability of

∀g, h :D . g =D h ⇔ g(Dabo
C )h, for D ∈ Obs

Proof: This follows the lines of the proof for Lemma 5.10. We illustrate with
the inductive type Nat. So consider g(Natabo)h, i.e.,

(∀Y.∀y, y′ :Y.∀s, s′ :Y →Y .

y =Y y′ ∧ DfnblCabo′(y, y′) ∧ s(eqY →eqY )abo′s′ ∧ DfnblCabo′(s, s′)

⇒ (gY ys) =Y (hY y′s′))

The clause DfnblCabo′(y, y′) says

∃f :∀X.(T[X]→Y ) . ClosedIn ,Y (f) ∧ (fA a) = y ∧ (fB b) = y′

By y =Y y′, this is derivable by exhibiting ΛX.λx :T[X].y. The clause ClosedIn ,Y (f)

is derivable using the calculus �CTF and applying Lemma 5.22. Similarly, we get
DfnblCabo′(s, s′) by exhibiting ΛX.λx :T[X].s : ∀X.(T[X]→(Y →Y )). This means
that the definition of g(Natabo

C )h is equivalent to

∀Y.∀y, y′ :Y.∀s, s′ :Y →Y . y =Y y′ ∧ s(eqY →eqY )s′ ∧ ⇒ (gY ys) =Y (hY y′s′)

or ∀Y . gY (eqY →(eqY →eqY )→eqY )hY , i.e., ∀Y . gY = hY . By the congruence
axiom schema, we get ΛY.gY = ΛY.hY , which by η-equality yields g =Nat h. �
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Definition 5.30 (abo-Simulation Relation SimRelC) Relatedness by abstrac-
tion barrier-observing closed computation (abo) simulation relation w.r.t. T[X, Z]

is expressed in the logic by

SimRelCT[X,ρ]
def
= (u :∃X.T[X, U ], v :∃X.T[X, V ]) .

(∃A, B.∃a :T[A, U ], b :T[B, V ] . u = (packAa) ∧ v = (packBb)

∧ ∃R⊂A×B . a(T[R, ρ]abo
C )b)

where abo = A, B, a, b, and where Z are the free type variables in T[X, Z] other
than X, and ρ⊂U×V is a vector of relations of the same length.

The subscript T[X, ρ] to SimRelCT[X,ρ] might occasionally be omitted.

5.3.4 Special Parametricity for Closed Computations

We can now establish a special version of parametricity w.r.t. the non-syntactic
parametric PER-model. We write f (∀X.T[X, eqZ]εC→U [X, eqZ]εC) f , meaning

∀A, B, R⊂A×B.∀a :T[A, Z], b :T[B, Z].

a(T[R, eqZ]abo
C )b ⇒ (fA a)(U [R, eqZ]abo

C )(fB b))

where abo = A, B, a, b.

Lemma 5.31 For T[X, Z] adhering to HADTObs , for U [X, Z] having no occur-
rences of universal types other than those in Obs, and whose only free variables
are among X and Z, for f :∀X.(T[X]→U [X]) whose only free variables are term
variables of types in In, we derive

f (∀X.T[X, eqZ]εC→U [X, eqZ]εC) f

Proof: Along the lines of the proof of Lemma 5.12. �

By Lemma 5.31, the following axiom schema is sound w.r.t. the parametric PER-
model of (Bainbridge et al., 1990).

Definition 5.32 (Special Parametricity (spParamC)) For T[X, Z] adhering
to HADTObs , for U [X, Z] having no occurrences of universal types other than those
in Obs, and whose only free variables are among X and Z,

spParamC: ∀f :∀X.(T[X, Z]→U [X, Z]) .

ClosedIn(f) ⇒ f (∀X.T[X, eqZ]εC→U [X, eqZ]εC) f
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5.3.5 The Results

We can now show the higher-order generalisation of Theorem 4.17, now with
reference to the parametric PER-model. Note that we decided at the beginning
of this section that In = Obs .

Theorem 5.33 Let T[X] adhere to HADTObs . Extending the language with the
predicates Closed of Def. 5.19, with spParamC and �CTF, we derive

∀Z.∀u, v :∃X.T[X, Z] . u SimRelCT[X,eqZ ] v ⇔ u ObsEqCObs
T[X,Z] v

Proof: This follows from Theorem 5.34 below. �

Theorem 5.34 (Tight Correspondence) Let T[X] adhere to HADTObs . With
spParamC and �CTF we derive

∀A, B.∀a :T[A, Z], b :T[B, Z] .

∃R⊂A×B . a(T[R, eqZ]abo
C )b ⇔∧

D∈Obs ∀f :∀X.(T[X, Z]→D) . ClosedIn(f) ⇒ (fA a) = (fB b)

Proof: ⇒: This follows from spParamC and Lemma 5.29.
⇐: Along the lines of the proof of Theorem 5.15, using �CTF (Lemma 5.24)

to obtain ClosedIn(f) from ClosedIn(fU), via Lemma 5.22, and using Lemma 5.29
in place of Lemma 5.10. �

Example 5.35 Recall the definitions of a and b from Example 5.7 and Ex-
ample 5.16. In Example 5.16, we said that for

R = Dfnbl
def
= (a :ListNat, b :ListNat) .

(∃f :∀X.(TSetCE[X]→X) . (f(ListNat)(a)) = a ∧ (f(ListNat)(b)) = b)

we have that the polymorphic closed type and term model of (Hasegawa, 1991)
does not satisfy a (TSetCE[R]) b, but does satisfy a (TSetCE[R])abo b, and that
through Theorem 5.15 we get observational equivalence.

We can now relate this to the parametric PER-model of (Bainbridge et al.,
1990). In our extended language, let

RC = DfnblCabo def
= (a :ListNat, b :ListNat) . (∃f :∀X.(TSetCE[X]→X) .

ClosedIn(f) ∧ (f(ListNat)(a)) = a ∧ (f(ListNat)(b)) = b)
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We now have that the parametric PER-model does not satisfy a (TSetCE[RC]) b,
but does satisfy a (TSetCE[RC])abo

C b. Theorem 5.34, or more generally The-
orem 5.33, gives with spParamC,

∀u, v :∃X.TSetCE[X] . u SimRelCTSetCE[X] v ⇔ u ObsEqC
{Nat}
TSetCE[X] v

Thus, the interpretations of (pack ListNat a) and (pack ListNat b) also satisfy obser-
vationally equivalence, in the sense of Def. 5.25. �

We also now get composability with reference to the parametric PER-model.

Theorem 5.36 (Composability of Simulation Relations) With spParamC

and �CTF, for T[X] adhering to HADTObs , we can derive

∀A, B, C, R⊂A×B, S⊂B×C, a :T[A, Z], b :T[B, Z], c :T[C, Z].

a(T[R, eqZ]abo
C )b ∧ b(T[S, eqZ]abo

C )c ⇒ a(T[S ◦R, eqZ]abo
C )c

Proof: As for Theorem 5.17, but using spParamC instead of spParam. �

For SimRelC, we again have the close connection with components, i.e., we get a
version of Theorem 4.20 (p. 89) for data types with operations of any order.

Theorem 5.37 Suppose T[X] adheres to HADTObs . With spParamC and �CTF

we derive

∀A, B.∀a :T[A, Z], b :T [B, Z]) .

(packAa) SimRelCT[X,eqZ ] (packBb) ⇔ ∃R⊂A×B . a T[R, eqZ]abo
C b

Proof: For the non-obvious direction, suppose (packAa) SimRelCT[X,eqZ ] (packBb).
Theorem 5.33 gives (packAa) ObsEqCObs

T[X,Z] (packBb). Then Theorem 5.26 and
Theorem 5.34 give the result. �

5.4 Equality, Transitivity and Stability

We have defined alternative simulation relations that observe the abstraction bar-
rier provided by existential types. Hence, we have established the correspondence
between simulation relations and observational equivalence also at higher order.
But we have not related the new simulation relations to equality; indeed if we
could do this, then that would mean by Theorem 3.5 that the new notions of
simulation relation were not necessary.
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5.4.1 Equality

In fact, it is not unreasonable to ask whether spParam and spParamC are
strong enough to obtain a correspondence between equality at existential type
and SimRelA and SimRelC. In the case of SimRelA, let (∃X.T[X, eqZ]ε) be the
relation defined by

(∃X.T[X, eqZ]ε)
def
= (u :∃X.T[X, Z], v :∃X.T[X, Z]) .

( ∀Y.∀Z.∀S⊂Y ×Z . ∀f :∀X.T[X, Z]→Y. ∀g :∀X.T[X, Z]→Z .

f (∀X.T[X, eqZ]ε→S) g ⇒ (uY f) S (vZg) )

This is just the unravelling of (∃X.T[X, eqZ]) but using the abo-relations from
Sect. 5.2. We have, using standard parametricity

∀u, v :∃X.T[X, Z] . u (∃X.T[X, eqZ]ε) v ⇔ u SimRelA v

If it were possible to derive

∀u, v :∃X.T[X, Z] . u =∃X.T[X,Z] v ⇔ u (∃X.T[X, eqZ]ε) v

we would have a correspondence between equality and SimRelA. However, the
derivation of the latter sequent seems to depend on the lemma

f (∀X.(T[X, eqZ]ε→eqY )) f

for free Y . This is not an instance of spParam, and of course, due to the remarks
in Example 5.7, this lemma cannot hold in the syntactic models of (Hasegawa,
1991) that we have considered so far. See also the comment preceding Lemma B.5
(p. 222) in Sect. B.2 in Appendix B.

Similar remarks hold for SimRelC and spParamC.

5.4.2 Transitivity

When observational equivalence and the existence of simulation relations coincide
with equality, we of course get transitivity for those notions. But it is worth men-
tioning that transitivity holds for these notions independently of any coincidence
with equality.

Theorem 5.38 We have

u ObsEq v ∧ v ObsEq w ⇒ u ObsEq w

u ObsEqC v ∧ v ObsEqC w ⇒ u ObsEqC w
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Proof: From the antecedent u ObsEq v ∧ v ObsEq w, we get A, B, C, D and
a : T[A], b : T[B], c : T[C], d : T[D] such that u = (packAa) ∧ v = (packBb) and
v = (packCc) ∧ w = (packDd) such that (fA a) = (fB b) and (f C c) = (fD d)

for any observable computation f . The result follows if (fB b) = (fC c). But
(fB b) = unpack(packBb) = unpack(v) = unpack(packCc) = (f C c). The case
for ObsEqC is similar. �

We get the corresponding statement in terms of packages and their components.

Theorem 5.39 We have

∀A, B, C, a :T[A], b :T[B], c :T[C] .

(
∧

D∈Obs ∀f :∀X.(T[X]→D) . (fA a) = (fB b) ∧∧
D∈Obs ∀f :∀X.(T[X]→D) . (fB b) = (f C c))

⇒
∧

D∈Obs ∀f :∀X.(T[X]→D) . (fA a) = (f C c)

∀A, B, C, a :T[A], b :T[B], c :T[C] .

(
∧

D∈Obs ∀f :∀X.(T[X]→D) . ClosedIn(f) ⇒ (fA a) = (fB b) ∧∧
D∈Obs ∀f :∀X.(T[X]→D) . ClosedIn(f) ⇒ (fB b) = (f C c))

⇒
∧

D∈Obs ∀f :∀X.(T[X]→D) . ClosedIn(f) ⇒ (fA a) = (f C c)

Proof: This follows from Theorem 5.38 using Theorem 4.5 and Theorem 5.26,
but of course the theorem also follows trivially by definition. �

Theorem 5.40 With spParam spParamC and �CTF, for T[X] adhering to
HADTObs , for u, v, w :∃X.T[X], we can derive

u SimRelA v ∧ v SimRelA w ⇒ u SimRelA w

u SimRelC v ∧ v SimRelC w ⇒ u SimRelC w

Proof: This follows from Theorem 5.38, by Theorem 5.14 and Theorem 5.33 �

Because of Theorem 5.18 and Theorem 5.37, Theorem 5.40 also follows from
composability, i.e., Theorem 5.17 and Theorem 5.36. For the standard notion
of simulation relation, this is not the case for data types with higher-order op-
erations, i.e., Theorem 5.4 neither infers nor follows from the composability or
transitivity of existence of simulation relations in terms of data type components,
cf. the discussion around Theorem 5.4 (p. 114).
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5.4.3 Stability

For first-order signatures, we have by parametricity that constructors are inher-
ently stable, if we are content with the notion of observational equivalence ObsEq

of Def. 4.4 (p. 78). This is a corollary of the fact that equality at existential type
then coincides with observational equivalence (Theorem 4.19).

However, for higher-order signatures the two-way link to equality is lost. In
this case, we have to show the stability of constructors explicitly. As mentioned
in (Sannella and Tarlecki, 1997) stability is a trait of the programming language
as a whole and can be verified once and for all.

Here this is simple. In fact, stability follows independently of the link between
observational equivalence and equality. The only assumption we make is that the
observable types of the implemented specification are a subset of the observable
types of the implementing specification. This is a sensible assumption for refine-
ment scenarios, see also e.g., (Honsell et al., 2000). For closed observations, we
also assume the schemata CTF and calculus �CTF in Def. 5.23.

Theorem 5.41 (Stability) We have with �CTF, assuming Obs ⊆ Obs ′,

∀F :∃X.T′[X, Z]→∃X.T[X, Z].

∀u, v :∃X.T[X, Z] . u ObsEqCObs′ v ⇒ Fu ObsEqCObs Fv

Proof: We must derive

∃A, B.∃a :T[A, Z], b :T[B, Z] . Fu = (packAa) ∧ Fv = (packBb) ∧∧
D∈Obs ∀f :∀X.(T[X, Z]→D) . ClosedIn(f) ⇒ (fA a) = (fB b)

From Theorem 3.6 we get

∃A, B.∃a :T[A, Z], b :T[B, Z] . Fu = (packAa) ∧ Fv = (packBb)

From u ObsEqCObs′ v we get

∃A′, B′.∃a′ :T′[A′, Z], b′ :T′[B′, Z] . u = (packA′a′) ∧ v = (packB′b′) ∧∧
D∈Obs′ ∀f ′ :∀X ′.(T′[X ′, Z]→D) . ClosedIn ′(f ′) ⇒ (f ′A′ a′) = (f ′B′ b′)

For any f :∀X.(T[X, Z]→D), where D ∈ Obs ⊆ Obs ′, let

f ′ def
= ΛX ′.λx′ :T′[X ′, Z] . unpack(F (packX ′x′))(D)(f)

Then from the above, we get in particular that

(fA a) = (f ′A′
a
′) = (f ′B′

b
′) = (fB b)
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as required. We must also check that the closedness requirement is upheld, i.e.,
we must have ClosedIn ′(f ′). But this follows from ClosedIn(f) using �CTF, since
In ⊆ In ′ by our assumption that input types are the same as output types. �

The proof of Theorem 5.41 shows that System F constructors are indeed stable
under any of our notions of observational equivalence, i.e., we can adapt the
theorem to use ObsEq rather than ObsEqC and then omit the reference to �CTF.
When the correspondence between observational equivalence and equality exists,
then stability can be seen to be inherent because of this, but here we see that
stability is fundamental and independent of this correspondence.

5.5 Summary and Further Work

In this chapter we dealt primarily with higher-order signatures and the subsequent
loss of both the composability of simulation relations, and the correspondence
between observational equivalence and the existence of a simulation relation. We
developed two variants of the notion of abstraction barrier-observing simulation
relation that reflect the aspect Abs-Bar of the abstraction barrier supplied by
existential types. The first variant relates to syntactic models, while the second
can be used when relating to non-syntactic models. The second variant thus
allows future investigations into the semantic meaning of the type-theoretical
notions we develop in this thesis.

Then at any order, observational equivalence corresponds to the existence of
abstraction barrier-observing simulation relations. This means that the notion
of abstraction barrier-observing simulation relations bears exactly the desired
strength for explaining observational refinement. This connection is methodolo-
gically relevant, because observational equivalence is generally not easily shown
directly, whereas the construction of simulation relations (abstraction-barrier ob-
serving, or not) is based on the given data type operations.

The methodological remark that finding a simulation relation, or alternat-
ively, finding an abstraction barrier-observing simulation relation, is easier than
proving observational equivalence directly, needs commenting. The remark cer-
tainly bears much truth on the semantic level. However, these considerations do
not necessarily apply to the logic since this involves issues of completeness. For
instance, the present logic is not strong enough to derive, relating to Example 5.7,

(pack ListNat a) SimRelATSetCE[X] (pack ListNat b)

Thus, although we have made proving observational equivalence more tractable
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in principle by providing the option of exhibiting abo-simulation relations when
there is no standard simulation relation, we have in methodological terms not
come far enough. What we lack are (semantic) proof heuristics manifested in the
logic, for establishing relations as simulation relations. One might also include
the ω-rule (Sect. A.6 in Appendix A) in conjunction with such heuristics. All
this requires semantic validation, and would, if the ω-rule is included, restrict
attention to syntactic models. We will not go deeper into heuristics in this thesis.
The focus is instead on developing the connection between notions of simulation
relations and observational equivalence.

Due to a seemingly orthogonal demands, the solution we presented for the
Closed predicates is two-tiered; we have a proper predicate expressing closedness,
and when needed, we may derive closedness using a predicate-like symbol and
an external calculus. In this manner, we can have the cake and eat parts of it
too. But preferably one would want a predicate expressing closedness that can
be used for deriving closedness while remaining a proper predicate. This seems
difficult to achieve due to the intentional aspects involved in describing closedness.
Nevertheless, a possible alternative that might lead to success is to use a Kripke-
style semantics. This would however require a reworking of the subsequent results
in order to relate to this semantics.
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In Sect. 2.7 we outlined the universal proof method for proving observational re-
finements formalised in (Bidoit et al., 1995; Bidoit and Hennicker, 1996; Bidoit
et al., 1997), and in Sect. 4.4 we imported this method into the type-theoretic
context of System F and relational parametricity. The results in Sect. 4.4 are
for data types with first-order operations. We now generalise the universal proof
method to handle higher-order operations in data types. There are two issues:
At higher order, constructing data types over quotients and subobjects is not
as straightforward as it is at first order. Secondly, as we have seen in Ch. 5, it
is in general not the case that standard simulation relations can describe data
refinement at higher order. We should therefore provide a version of the im-
ported proof strategy adapted to speak in terms of abstraction barrier-observing
simulation relations.

—
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6.1 Introduction

We are in the process of generalising the concepts of specification refinement es-
tablished in the type theory at first order, to data types with operations that
may be higher-order and polymorphic. The higher-order aspect presents chal-
lenges. Firstly, as we have seen in Ch. 5, the formal link between the existence
of simulation relations and observational equivalence breaks down, and we lose
composability of simulation relations. By analysing the existential-type abstrac-
tion barrier, one can devise an abstraction barrier-observing notion of simulation
relation in the logic. This notion composes at higher-order, and re-establishes the
correspondence with observational equivalence. All this was done in Ch. 5. The
second challenge, and the topic of this chapter, arises when attempting to import
the proof method of Bidoit et al. at higher order. The basis of the problem is the
difficulty of constructing data types over quotients and subobjects at higher or-
der, but additionally, we must adapt the proof method to take into consideration
abstraction barrier-observing simulation relations.

We need to put things into perspective for a moment. When using the proof
method formalised by Bidoit et al. to show refinements, we only use one direction
of the correspondence between simulation relations and observational equivalence,
cf. Examples 4.26 (p. 93) and 4.27 (p. 96), and also Theorems 4.31, 4.32 and 4.33.
That is, using Sub and Quot (p. 92) we get the existence of simulation relations,
and then we use that this implies observational equivalence. Ostensibly, we do
not need the converse direction, and since the existence of simulation relations
implies observational equivalence at any order through relational parametricity,
the results in Ch. 5 would seem superfluous for proving refinements.

This is not the whole story, of course. First of all, it is desirable to have
the composability of simulation relations, and this is in general lost at higher
order, but is firmly reestablished in Ch. 5 using the abstraction barrier-observing
notion of simulation relation relation. Secondly, at higher order it may not be
possible to show the existence of standard simulation relations. In particular it
may not be possible to obtain the required simulation relations postulated by
Sub and Quot. Example 6.24 below illustrates this. This means that we shall
need versions of Sub and Quot that make use of abstraction barrier-observing
simulation relations. These are presented as SubG and QuotG below. The two-
way correspondence between abstraction barrier-observing simulation relations
and observational equivalence shown in Ch. 5 then guarantees that abstraction
barrier-observing simulation relations are indeed exactly what one wants.

We thus have two possible scenarios for showing an observational refinement
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for data types with higher-order operations. If we can exhibit standard simu-
lation relations using Sub and Quot, this is fine and and we get observational
equivalence as before, depicted as follows.

Sub

SimRel ⇒ ObsEq

Quot

If this is not possible, we can instead try exhibiting abstraction barrier-observing
simulation relations using SubG and QuotG, and then use the results of Ch. 5 to
get observational equivalence. This gives the scenario for observational refinement
at any order depicted as follows.

SubG

SimRelC ⇒ ObsEqC

QuotG

To import the proof method of Bidoit et al. is in our scheme to show soundness
of the logic augmented by axioms postulating the existence of subobjects and
quotients. We have already done this for Sub and Quot for first-order profiles
by showing that the axioms hold in the parametric PER-model.

We do not know whether or not Sub and Quot for data types with higher-
order operations hold in the parametric PER-model. The difficulty in the PER
model is to construct higher-order operations over quotients and subobjects. It
is conjectured in (Zwanenburg, 1999) but not proven, that Quot and a more
general version of Sub are at least sound w.r.t. some model. We are here able
to give proof that the logic augmented by Sub and Quot is sound for data-
type operations of any order. This we do by showing that Sub and Quot hold
in a parametric setoid model. Instead of interpreting types as PERs, one now
interprets them as a pair consisting of a PER together with a relation on that
PER giving the equality of the interpreted type. This then more or less directly
gives us the ability to construct quotient and subobject data types at any order.

The axioms Sub and Quot speak in terms of standard simulation relations,
which are of limited use at higher order. To import the proof method fully
for higher-order profiles, we formulate axioms SubG and QuotG, versions of
Sub and Quot that make use of the abstraction barrier observing simulation
relation developed in Ch. 5. Showing soundness of the logic augmented with
these axioms involves the above difficulty of constructing higher-order operations
over quotients and subobjects, but with the added challenge of the context of
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abstraction barrier-observing simulation relations. The setoid semantics above
only solves the problem in the context of standard simulation relations.

Our solution to this again follows the core idea in this thesis. One can ob-
serve the same phenomenon that we saw for simulation relations: The standard
formalisms do not accommodate the abstraction barrier in existential types, as
described in particular by Abs-Bar . Starting from this, we extend the paramet-
ric PER-model interpretation in such a way as to observe data type abstraction
barriers more closely. The result is a special data type semantics for use inside
data types. This gives an interpretation for encapsulated operations that mirrors
their applicability according to Abs-Bar . This in turn allows us to construct
quotient and subobject data types at any order, in the context of abstraction
barrier observing simulation relations. The idea behind this approach is a nat-
ural continuation of the development so far, in that we directly use Abs-Bar as
a guidance in developing more suitable notions. Using the data type semantics,
we can show the soundness of the logic augmented by SubG and QuotG. We
develop data type semantics w.r.t. the PER model. It is also possible to formulate
a data type semantics w.r.t. the setoid model.

—

We will present the solutions in the order indicated above; we first present
the setoid semantics in Sect. 6.2 and then in Sect. 6.4 we develop data type
semantics. The data type semantics do not depend on the setoid semantics. The
setoid semantics will be presented as an instance of a more general scheme, i.e., we
will give certain axiomatic criteria for when a model has subobject and quotient
maps, and then show that the setoid model satisfies these.

As an initial motivation, suppose we attempt to show that Quot with higher-
order operations holds in the parametric PER-model. For any PER X and ele-
ment � of [[X �T[X]]][X �→X ], we should display a quotienting PER Q and element
� of [[X � T[X]]][X �→Q] with the desired characteristics. Quotients over an algebra
A are usually constructed directly from A with the new operations derived from
the original operations. The natural approach to constructing the operations of
� in a PER model is to use the same realisers that give the operations of �.

At first order this is straight-forward; but at higher order it is not. Sup-
pose � = 〈[e0]X , [e1]X →X , [e2](X →X )→X , . . .〉. We would like to simply define �

as 〈[e0]Q, [e1]Q→Q, [e2](Q→Q)→Q, . . .〉. For this we must check that the indicated
equivalence classes actually exist. To show e2 ((Q→Q)→Q) e2, we must show
n (Q→Q) n ⇒ e2(n)↓. Now, this does not follow from the running assumption
n (X →X ) n ⇒ e2(n)↓; even if n (Q→Q) n we may not have n (X →X ) n.



6.2 Criteria giving Subobject and Quotient Maps 149

Example 6.1 We consider sequences over N. We will write the encoding of a
sequence as the sequence itself. Consider now a function rfi on N that takes an
encoding of a sequence and returns the encoding of the sequence with the first
item repeated, e.g., rfi(123) = 1123. Define the PER List by

n List m ⇔ n and m encode the same list

Now consider the PERs Bag and Set defined as follows

n Bag m ⇔ n and m encode the same list, modulo permutation

n Set m ⇔ n and m encode the same list, modulo permutation and repetition

Now, rfi is a realiser for a map frfi :Set→Set, but is not a realiser for any map
in Bag→Bag, i.e., we have rfi (Set→Set) rfi but not rfi (Bag→Bag) rfi . Thus,
even if we assume that rfi (Bag→Bag) rfi ⇒ e(rfi) ↓ for some e, and also that
rfi (Set→Set) rfi , this information on its own is useless for showing e(rfi)↓. �

When establishing Quot, one has the additional assumption of � [[T[R]]][R�→�] �,
where � is the quotienting relation. From this we get, for e a component of
�, [e](X →X )→X ((� → �) → �) [e](X →X )→X , or written in elementary terms,
n (�→�) m ⇒ e(n) � e(m). Seemingly, this gives e ((Q → Q) → Q) e, but
this is not the case because we again do not know if [n]X →X and [m]X →X exist.

Similar difficulties arise for subobjects.

6.2 Criteria giving Subobject and Quotient Maps

We here give axiomatic criteria sufficient to ensure higher-order subobject and
quotient maps based on ideas in (Hofmann, 1995a). At the end we present the
setoid model as an instance. This will show soundness of the logic augmented by
Sub and Quot for higher-order signatures according to HADTObs (p. 113).

6.2.1 Higher-Order Quotient Maps

The trouble with higher-order quotients is illustrated by the following: For a given
map f :X/R→X/R, there need not exist a map g :X→X such that for all x :X,
[g(x)] = f([x]), i.e., epi(g(x)) = f(epi(x)), where epi :X→X/R maps an element
to its equivalence class. In particular this is the case for the parametric PER
model. This is illustrated in Example 6.1 and is the basic difficulty motivating this
chapter. The axiom of choice AC (p. 92) gives such a map g, because we can then
define an inverse for epi , and the desired g is then given by λx :X.epi−1(fepi(x)).
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The axiom of choice does not hold in the parametric PER-model, nor in the model
we will look at in this section. However, we shall look at a weaker condition
derived from (Hofmann, 1995a) that suffices to give higher-order quotients.

We omit polymorphism in data types from the discussion, that is, we shall
assume HADTObs (p. 113). Accordingly, we consider arbitrary order arrow types,
composed over types U0, U1, . . ., where any Ui is either X or some D ∈ Obs . From
this, define the families U i by

U0 = U0

U i+1 = (U i)→Ui+1

For example, U2 = ((U0→U1)→U2). Now for a given U = Un, define Q(U)i for
some R as follows,

Q(U)0 = U0

Q(U)1 = U0/R→U1

Q(U)i+1 = (Q(U)i−1→Ui/R)→Ui+1, 1 ≤ i ≤ n− 1

where, if Ui is X then Ui/R = X/R, and if Ui is D ∈ Obs then Ui/R = D. For
example Q(U2)2 = ((U0 → U1/R)→ U2). In any Q(U)i, we have that quotients
Uj/R occur only negatively. Finally, for a given U = Un, define R(U)i as follows
for some R. We denote identities by their domains,

R(U)0 = R0

R(U)1 = U0/R→R1

R(U)i+1 = (R(U)i−1→Ui/R)→Ri+1, 1 ≤ i ≤ n− 1

where, if Ui is X then Ri = R, and if Ui is D ∈ Obs then Ri = D, i.e., the identity
on D. In any R(U)i, we have that R occurs positively, and identities Uj/R occur
only negatively. The point of all this is that, if R is an equivalence relation on X,
then R(U)i is an equivalence relation on Q(U)i. This means that we may form
the quotient Q(U)i/R(U)i. For example, consider a particular U = U1 = X→X.
Then Q(U)1 = X/R→X and R(U)1 = X/R→R, and X/R→R is an equivalence
relation on X/R→X. Note on the other hand that R→X/R is not necessarily
an equivalence relation on X→X/R. However, (R→X/R)→R is an equivalence
relation on (X→X/R)→X, that is, R(U2)2 is an equivalence relation on Q(U2)2,
for U2 = (X→X)→X. Now consider the relation

graph(epi)
def
= (x :X, q :X/R) . ((epix) =X/R q)

where the map epi : X →X/R maps elements to their R-equivalence class. We
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define the relation graph(epi)(U)n by

graph(epi)(U)0 = graph(epi)

graph(epi)(U)1 = U0/R→graph(epi)

graph(epi)(U)i+1 = (graph(epi)(U)i−1→Ui/R)→graph(epi)(U)i+1,

1 ≤ i ≤ n− 1

where, if Ui is X then graph(epi)(U)i = graph(epi)(U), and if Ui is D ∈ Obs then
Ri = D, i.e., the identity on D.

A sufficient condition for obtaining quotients at higher types is now

Quot-Arr : For R an equivalence relation on X, and any given U = Un,

Q(U)n/R(U)n ∼= U [(Ui/R)/Ui]

where the isomorphism iso :U [(Ui/R)/Ui]→Q(U)n/R(U)n is such that any
f in the equivalence class iso(β) is such that

f (graph(epi)(U)n) β

where U [(Ui/R)/Ui] denotes U with every Ui, 0 ≤ i ≤ n replaced by Ui/R.

Note that Quot-Arr is not an axiom in our logic; we do not have quotient types.
Rather, Quot-Arr is here a condition that we can check in the models we are
considering, and in which the terminology concerning quotients has a well-defined
meaning. In the setting of (Hofmann, 1995a), Quot-Arr is expressible in the logic,
and it follows from results herein that Quot-Arr is strictly weaker than the axiom
of choice. This is shown by establishing Quot-Arr in a syntactic setoid model for
which AC fails. The model we will present is a semantic analogue to this model.

Let us exemplify why Quot-Arr suffices. The challenge that motivates this
entire chapter is higher-order operations in data types, and then the soundness
of Quot and Sub where T[X] has higher-order operation profiles. To illustrate
the use of Quot-Arr in obtaining Quot, let X be any type and suppose T[X]

has a profile g : (X → X) → X. Suppose that R ⊂ X × X is an equivalence
relation. Consider now any x : T[X]. Under the assumption that x (T[R]) x, we
must produce a q :T[X/R], such that x (T[graph(epi)]) q. For x.g : (X→X)→X,
this involves finding a q.g : (X/R→X/R)→X/R, such that

x.g ((graph(epi)→graph(epi))→graph(epi)) q.g

Consider now the following instance of Quot-Arr.
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Quot-Arr1: For R an equivalence relation on X,

(X/R→X)/(X/R→R) ∼= (X/R→X/R)

With Quot-Arr1 we can construct the following commuting diagram.

(X/R→X)
epi→X� (X→X)

x.g � X
epi � X/R

(X/R→X)/(X/R→R)

epiX/R→X

� lift(e
pi ◦ x.g ◦ (epi→X))

�

X/R→X/R

iso

�

where epi → X maps any f : X/R → X to λa : X.f(epi a). Then, the sought-
after q.g : (X/R→X/R)→X/R is given by lift(epi ◦ x.g ◦ (epi→X)) ◦ iso. Here
lift is the operation that lifts any α : X → Y to lift(α) : X/∼ → Y , given an
equivalence relation ∼ on X, provided that α satisfies x ∼ y ⇒ αx = αy for all
x, y : X. Then, lift(α) is the map satisfying lift(α) ◦ epi = α. To be able to lift
epi ◦ x.g ◦ (epi→X) in this way, we must check that epi ◦ x.g ◦ (epi→X) satisfies
f (eqX/R→R) f ′ ⇒ (epi ◦ x.g ◦ (epi→X))(f) =X/R (epi ◦ x.g ◦ (epi→X))(f ′),
for all f, f ′ : (X/R→X). Assuming f (eqX/R→R) f ′, we immediately get that
(epi→X)(f) (R→R) (epi→X)(f ′). Since we are assuming x T[R] x, which in
particular gives x.g ((R→R)→R) x.g, the result follows.

The general form of this diagram for any given U = Un and Uc, is

Q(U)n epi(U)n
� Un

x.g � Uc

epi � Uc/R

Q(U)n/R(U)n

epiQ(U)n

� lift(e
pi ◦ x.g ◦ (epi(

U)n ))

�

U [(Ui/R)/Ui]

iso

�

where for a given U = Un, we define epi(U)i as follows. First, for any f :B→A

and g :C→D, the map f→g : (A→C)→(B→D) is given by

λh : (A→C).λb :B . g(h(fb))
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Then we define, where identities are denoted by their domains,

epi(U)0 = U0

epi(U)1 = (epi→U1)

epi(U)i+1 = (epi(U)i−1→epi)→Ui+1, 1 ≤ i ≤ n− 1

When relating to a particular model, we have to check that Quot-Arr holds, and
also as mentioned earlier, that the terminology used concerning quotients makes
sense. If this goes through, we have succeeded in constructing data types over
quotients at higher order, according to Quot.

6.2.2 Higher-Order Subobject Maps

A similar story applies to subobjects. For any predicate P on X, we write RP (X)

for the subobject of X containing only those x :X such that P (x) is satisfied. We
construct a binary relation from P , also denoted P , by

P
def
= (x :X, y :X) . (x =X y ∧ P (x))

The binary version is for use in arrow-type relations.
Now for a given U = Un, define S(U)i for some P as follows

S(U)0 = RP (U0)

S(U)1 = U0→RP (U1)

S(U)i+1 = (S(U)i−1→Ui)→RP (Ui+1), 1 ≤ i ≤ n− 1

where, if Ui is X then RP (Ui) = RP (X), and if Ui is D ∈ Obs then RP (Ui) = D.
For example S(U2)2 = ((RP (U0)→U1)→RP (U2)). In any S(U)i, we have that
subobjects RP (Uj) occur only positively. For a given U = Un define P (U)i as
follows for some P . We denote identities by their domains.

P (U)0 = RP (U0)

P (U)1 = P0→RP (U1)

P (U)i+1 = (P (U)i−1→Pi)→RP (Ui+1), 1 ≤ i ≤ n− 1

where, if Ui is X then Pi = P , and if Ui is D ∈ Obs then Pi = D, i.e., the
identity on D. In any P (U)i, we have that P occurs negatively, and identities
RP (Ui) occur only positively.

Intuitively, one would think that for any given U = Un, we should now postu-
late an isomorphism between RP (U)n(S(U)n) and U [(RR(Ui))/Ui]. This would be
in dual analogy to Quot-Arr. However, this isomorphism does not exist even in
the setoid model we will be looking at. For example, we will not be able to find an
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isomorphism between RP→RP (X)((X→RP (X)) and RP (X)→RP (X). However,
it turns out that we can in fact use an outermost quotient instead of subobjects
for the isomorphism, in the same way as we did for Quot-Arr. The quotient itself
holds the duality, as it were.

Thus, if P is a predicate on X, then P (U)i is an equivalence relation on
S(U)i. This means that we may form the quotient S(U)i/P (U)i. For example,
consider a particular U = U1 = X → X. Then S(U)1 = X → RR(X) and
P (U)1 = P→RP (X), and P→RP (X) is an equivalence relation on X→RR(X).
Again, note on the other hand that RP (X)→P is not necessarily an equivalence
relation on RP (X) → X. However, (RP (X) → P ) → RP (X) is an equivalence
relation on (RP (X)→X)→RP (X), that is, P (U2)2 is an equivalence relation on
S(U2)2, for U2 = (X→X)→X.

Now consider the relation

graph(mono)
def
= (x :X, s :RP (X)) . (x =X (mono s))

for mono :RP (X)→X mapping elements to their correspondents in X. We define
the relation graph(mono)(U)n by

graph(mono)(U)0 = graph(mono)

graph(mono)(U)1 = graph(mono)→RP (U1)

graph(mono)(U)i+1 = (RP (Ui−1)→graph(mono)(U)i)→RP (Ui+1),

1 ≤ i ≤ n− 1

where, if Ui is X then graph(mono)(U)i = graph(mono)(U), and if Ui is D ∈ Obs

then Ri = D, i.e., the identity on D.
A sufficient condition for obtaining subobjects at higher types is now

Sub-Arr : For P a predicate on X, and any given U = Un,

S(U)n/P (U)n ∼= U [(RP (Ui))/Ui]

where the isomorphism iso : U [(RP (Ui))/Ui] → S(U)n/P (U)n is such that
any f in the equivalence class iso(β) is such that

f (graph(mono)(U)n) β

where U [(RP (Ui))/Ui] denotes U with every Ui, 0 ≤ i ≤ n replaced by RP (Ui).

Again, Sub-Arr is not an axiom in our logic, but is a condition that we can check
for models in which the terminology in Sub-Arr has a well-defined meaning.

Let us illustrate how Sub-Arr gives subobjects at higher order. Again let X

be any type and suppose T[X] has a profile g : (X → X)→ X. Consider now
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any x : T[X]. Now assume that x T[P ] x. We must exhibit a sa : T[RP (X)], such
that x T[graph(mono)] sa. For our x.g : (X→X)→X, this involves finding a map
sa.g : (RP (X)→RP (X))→RP (X), such that

x.g ((graph(mono)→graph(mono))→graph(mono)) sa.g

Consider now the following instance of Sub-Arr.

Sub-Arr1: For a predicate P on X,

(X→RP (X))/(P→RP (X)) ∼= RP (X)→RP (X)

Using Sub-Arr1, we can construct the following commuting diagram.

(X→RP (X))
X→mono� (X→X)

x.g � X � mono
RP (X)

(X→RP (X))/(P→RP (X))

epiX→RP (X)

� lift(x.
g ◦ (X→mono))

�

RP (X)→RP (X)

iso

�

Then, sa.g : (RR(X)→RR(X))→RR(X) is given by lift(x.g ◦ (X→mono)) ◦ iso.
To justify the lifting of x.g ◦ (X→mono), we must show for all f, f ′ :X→RP (X)

satisfying f (P→RP (X)) f ′, that x.g ◦ (X→mono)(f) =X x.g ◦ (X→mono)(f ′).
Note that lift(x.g ◦ (X→mono)) then maps to X, so in addition we must show
that lift(x.g ◦ (X→mono)) in fact maps to RP (X). Now, if f (P→RP (X)) f ′, we
get (X→mono)(f) (P →P ) (X→mono)(f ′). By assumption we have x T[P ] x,
which in particular gives x.g ((P→P )→P ) x.g, and the result follows.

Here is the general form of this diagram for any given U = Un and Uc, is

S(U)n mono(U)n
� Un

x.g � Uc
� mono

RP (Uc)

S(U)n/P (U)n

epiS(U)n

� lift(x
.g ◦ (mono(

U)n ))

�

U [(RP (Ui))/Ui]

iso

�
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where for a given U = Un, we define mono(U)i as follows.

mono(U)0 = monoU0

mono(U)1 = (U1→monoU1)

mono(U)i+1 = (mono(U)i−1→Ui)→monoUi+1
, 1 ≤ i ≤ n− 1

This schema is more general than what is called for in the refinement-specific
Sub. In Sub, the starting point is a relation R, and the predicate with which one
restricts the domain X, is PR(x)

def
= x R x. The corresponding binary relation is

then PR
def
= (x :X, y :X) . (x =X y ∧ x R x)).

In the example above, we relied on the assumption x T[P ] x. Notice that Sub

only assumes x T[R] x. At first order, this implies x T[PR] x, but this is not the case
at higher order. We must therefore explicitly include x T[PR] x in the antecedent
of Sub, and we get the following general formulation.

Definition 6.2 (Existence of Subobjects (Sub))

Sub : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ] x) ∧ (x T[PR, eqZ] x) ⇒
∃S . ∃s :T[S, Z] . ∃R′⊂S×S . ∃mono :S→X .

∀s :S . s R′ s ∧
∀s, s′ :S . s R′ s′ ⇔ (mono s) R (mono s′) ∧
x (T[(x :X, s :S) . (x =X (mono s)), eqZ]) s

When relating to a particular model, we check that Sub-Arr holds, presuming
that the terminology concerning subobjects makes sense. If this goes through, we
have succeeded in constructing data types over subobjects at higher order.

6.2.3 A Setoid Model

We now give a model for the logic augmented by Sub and Quot for data types
with higher-order profiles. The model is PER-based semantic analogue to a syn-
tactic setoid model in (Hofmann, 1995a).

Types are now interpreted as setoids, i.e., pairs 〈A,∼A〉, consisting of a PER
A together with a partial equivalence relation ∼A on A, i.e., a saturated PER on
Dom(A)×Dom(A), intuitively giving the desired equality on the interpreted type.
Given two setoids 〈A,∼A〉 and 〈B,∼B〉, we form a new setoid 〈A,∼A〉 → 〈B,∼B〉
giving function spaces in the universe of setoids, by

〈A,∼A〉 → 〈B,∼B〉
def
= 〈A → B,∼A→B〉

where ∼A→B is the saturated relation ∼A→∼B⊂ Dom(A → B)×Dom(A → B),
cf. Sect.3.4. Products are given by

〈A,∼A〉 × 〈B,∼B〉
def
= 〈A × B,∼A×B〉
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where ∼A×B is the saturated relation ∼A × ∼B.
Whereas elements of a PER A in the PER model intuitively are A equivalence

classes, elements of a setoid 〈A,∼A〉 are now intuitively ∼A equivalence classes of
A equivalence classes. Of course, elements in elementary terms are simply natural
numbers giving realisers respecting these equivalence classes.

Thus, a relationR between two setoids 〈A,∼A〉 and 〈B,∼B〉 intuitively relates
∼A equivalence classes (of A equivalence classes) to ∼B equivalence classes (of
B equivalence classes). Thus, R must be, and is therefore, saturated w.r.t. ∼A

and ∼B, i.e., R is a saturated relation on Dom(∼A) × Dom(∼B). We then get
complex relations by exactly the same mechanics as for the universe of PERs in
Sect.3.4, except that now saturation is of course w.r.t. the setoid equalities. So
if R ⊂ Dom(∼A)×Dom(∼B) and S ⊂ Dom(∼A′)×Dom(∼B′) are saturated, we
obtain a relation between 〈A,∼A〉 → 〈A′,∼A′〉 and 〈B,∼B〉 → 〈B′,∼B′〉 by the
saturated relation R→ S ⊂ Dom(∼A→∼A′)×Dom(∼B→∼B′).

Type and Relation Semantics

Given the universe of setoids above, type semantics are now defined denotationally
w.r.t. to an environment δ mapping type variables to setoids. Here δ consists of
a component δ1 mapping to PERs, and a component δ2 mapping to relations on
PERs, such that δ2(X) is a saturated PER on Dom(δ1(X))×Dom(δ1(X)).

[[∆, X � X]]δ
def
= δ(X)

[[∆ � U→V ]]δ
def
= ([[∆ � U ]]δ→ [[∆ � V ]]δ)

[[∆ � ∀X.U [X]]]δ
def
=

〈
(∩A[[∆, X � U [X]]]δ1[X �→A]), (∩∼A [[∆, X � U [X]]]δ2[X �→∼A])

�
〉

where ∩∼A ranges over all saturated PERs ∼A⊂ Dom(A)× Dom(A).
Relational semantics are defined in form exactly as for PER semantics. Thus

w.r.t. environments δ and υ mapping respectively, type variables to setoids, and
relation variables to saturated relations on the the appropriate domains, we have

[[∆ � Υ, R � R]]δυ = υ(R)

[[∆ � Υ � U→V ]]δυ = ([[∆ � Υ � U ]]δυ→ [[∆ � Υ � V ]]δυ)

[[∆ � Υ � ∀X.U [X]]]δυ = (∩R[[∆ � Υ, R � U [R]]]δυ[R�→R])

The intersection ranges over all saturated R ⊂ Dom(∼A) × Dom(∼B), for all
setoids 〈A,∼A〉 and 〈B,∼B〉.

Recall that for the PER model, equality on a type has the same interpreta-
tion as the type itself. Thus relational parametricity is effectively expressed in
terms of the equality predicate. In the setoid semantics, relational parametricity
is analogously expressed in terms of the setoid equality component, giving the
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trimmed intersection over equalities in the above semantics for universal types.
The definition is in the same form as before, i.e.,

n (∩∼A [[∆, X � U [X, Z]]]δ2[X �→∼A])
� m

def⇔ ∀ ∼A,∼B, saturated R ⊂ Dom(∼A)× Dom(∼B) .

n [[∆, X � U [X, Z]]]δ2[X �→∼A] m ∧ n [[∆, X � U [X, Z]]]δ2[X �→∼B] m ∧
n [[∆ � R � U [R, eqZ]]]δ [R�→R] n ∧
m [[∆ � R � U [R, eqZ]]]δ [R�→R] m

We now have that

(∩∼A[[∆, X � U [X, Z]]]δ2[X �→∼A])
� = (∩R[[∆ � R � U [R, eqZ]]]δ [R�→R])

where R ranges over all saturated relations on Dom(∼A) × Dom(∼B), for all
setoids 〈A,∼A〉 and 〈B,∼B〉. In general we get the following manifestation of the
Identity Extension Lemma.

[[U [Z]]]δ2 = [[U [eqZ]]]δυ

As expected, [[eqU [Z]]]δυ = [[U [Z]]]δ2 , i.e., the equality predicate on a type has the
same interpretation as the equality component of the interpretation of the type.

Term semantics

Term semantics follow regular denotational structure as before. We amalgamate
contexts into a single context Γ, and environments into a single environment γ.

[[Γ, x :U � x :U ]]γ
def
= γ(x) where γ(x) ∈ Dom(∼A), for 〈A,∼A〉 = [[Γ � U ]]γ

[[Γ � fu :V ]]γ
def
= [[Γ � f :U→V ]]γ [[Γ � u :U ]]γ

[[Γ � λx :U.t[x] :U→V ]]γ
def
= n ∈ Dom([[Γ � U→V ]]γ), for n the code of a

partial recursive function λa.[[Γ, x :V � t[x]]]γ[x �→a]

[[Γ � tA :U [A]]]γ
def
= [[Γ � t :∀X.U [X]]]γ

[[Γ � ΛX.t[X] :∀X.U [X]]]γ
def
= n, such that

[[Γ, X � t[X] :U [X]]]γ[X �→〈A,∼A〉] = n for any 〈A,∼A〉

As usual, there is an obligation to check that the term semantics preserves the
appropriate equivalence classes. We omit the details.

—
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6.3 Soundness for Quot and Sub at Higher Order

We are now in a position to show the soundness of the logic with Sub and Quot

for data types with higher-order operations according to HADTObs . This thereby
resolves some questions posed in (Zwanenburg, 1999). It suffices to show that
Sub-Arr and Quot-Arr are satisfied by the setoid semantics just presented. First
we define quotients and subobjects.

Definition 6.3 (Quotient Setoid) Let 〈X ,∼X 〉 be a setoid, and let R be any
equivalence relation on 〈X ,∼X 〉, i.e., R ⊂ Dom(∼X )× Dom(∼X ) is a saturated
equivalence relation. Define the quotient 〈X ,∼X 〉/R of 〈X ,∼X 〉 w.r.t. R by

〈X ,R〉

Since R is an equivalence, R ⊂ Dom(X )× Dom(X ) is a saturated PER, and is
thereby eligible as a setoid equality.

Definition 6.4 (Subobject Setoid) Let 〈X ,∼X 〉 be a setoid, and let P be any
predicate on 〈X ,∼X 〉, meaning that P fulfils the unary saturation condition P(x) ∧
x ∼X y ⇒ P(y). Consider the relation, also denoted P, on 〈X ,∼X 〉 derived
from P, defined by x P y

def⇔ x ∼X y ∧ P(x). Then the subobject RP(〈X ,∼X 〉)
of 〈X ,∼X 〉 restricted on P, is defined by

〈X ,P〉

It is easy to check that the relation P ⊂ Dom(X )×Dom(X ) is a saturated PER,
and is thereby eligible as a setoid equality. Note that it is the fact that setoid
equalities are PERs and not total equivalence relations, that allows the definition
of subobjects. The setoid equality at once defines equality and the intended
domain of usage.

Theorem 6.5 The setoid semantics satisfies Quot-Arr, by the isomorphism be-
ing denotational equality.

Proof: We proceed by induction on the length i of U = Un.
i = 0: We must essentially verify U0/R ∼= U0/R. This is immediate by defini-

tion and universally true.
i = 1: We must verify (U0/R→U1)/(U0/R→R1) ∼= U0/R→ U1/R. In setoid

terms, U0/R is 〈U0, R0〉, and the equality, denoted also by U0/R, is of course R.
Thus, (U0/R→U1)/(U0/R0→R1) is (〈U0, R0〉→〈U1,∼U1〉)/(R0→R1). But this is
(〈U0→U1, R0 →∼U1〉)/(R0→R1), which is simply 〈U0→U1, R0→R1〉, and which
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is U0/R→U1/R in setoid terms. The indices i on Ri are put on to match Ui being
either X, in which case Ri is R, or some D ∈ Obs, in which case Ri is the identity.

i = i + 1, 1 ≤ i ≤ n− 1: We must verify

((Q(U)i−1→Ui/R)→Ui+1)/((R(U)i−1→Ui/R)→Ri+1) ∼=
(U i−1[(Uj/R)/Uj]→U i[(Uj/R)/Uj])→U i+1[(Uj/R)/Uj ]

In setoid terms, ((Q(U)i−1→Ui/R)→Ui+1) is〈
(Q(U)i−1→Ui)→Ui+1, (∼Q(U)i−1→ Ri) →∼Ui+1

〉
Therefore ((Q(U)i−1→Ui/R)→Ui+1)/((R(U)i−1→Ui/R)→Ri+1) is〈

(Q(U)i−1→Ui)→Ui+1, (R(U)i−1→Ui/R)→Ri+1

〉
But this is (Q(U)i−1/R(U)i−1 → Ui/R) → Ui+1/Ri+1. By induction hypothesis,
Q(U)i−1/R(U)i−1 ∼= U i−1[(Uj/R)/Uj ], and we are done. �

Theorem 6.6 The setoid semantics satisfies Sub-Arr, by the isomorphism being
denotational equality.

Proof: This follows essentially the same course as the proof of Theorem 6.5. �

In closing, we mention that the PER model, parametric or not, does not satisfy
Quot-Arr nor Sub-Arr.

There are more things one can envision doing with the setoid semantics.
Firstly, one could try to extend Quot-Arr and Sub-Arr to universal types. How-
ever, this is problematic, because the action of a universal type on relations is not
necessarily an equivalence relation, even if all the free relation variables are sub-
stituted by equivalence relations. It is therefore not immediately possible to form
the desired quotients necessary in Quot-Arr and Sub-Arr. Also, the motivation
for attempting this is perhaps not great, because as we have argued before, poly-
morphic operations are probably best dealt with in F3, i.e., there is perhaps not
much in favour of insisting on the generality in ADTObs over HADTObs , cf. p. 113.

6.4 Abstraction Barrier-Observing Semantics

In the previous section we showed soundness of the logic augmented by Sub and
Quot, for data types with operations of any order, thus expressing the proof
method for observational refinement also at higher order. However, we did this
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in the context of standard simulation relations. Now we will express the proof
method in the context of abstraction barrier-observing simulation relations, by
soundly adding appropriate versions of Sub and Quot to the logic.

The model we use to show soundness in this case is constructed by the same
basic consideration as for abstraction barrier-observing simulation relations. At
the beginning of this chapter we argued that the natural approach to constructing
the operations of � in a PER model is to use the same realisers that give the
operations of �. Thus, if � = 〈[e0]X , [e1]X →X , [e2](X →X )→X , . . .〉, we would like to
define � as 〈[e0]Q, [e1]Q→Q, [e2](Q→Q)→Q, . . .〉. The problem is then to verify that
the indicated equivalence classes exist, e.g., to show e2 ((Q→Q)→Q) e2, we
must show n (Q→Q) n ⇒ e2(n) ↓, and this does not follow from the running
assumption n (X →X ) n ⇒ e2(n) ↓; because even if n (Q→Q) n we may not
have n (X →X ) n; recall Example 6.1.

Suppose on the other hand that the arguments given to a data type operation
ei of � were not arbitrary, but definable in terms of the ej ’s of � using function
definition. This is the principle of Abs-Bar . This would ensure that arguments
to any operation ei in � = 〈[e0]X , [e1]X →X , [e2](X →X )→X , . . .〉 would be given only
by certain realisers, namely those freely generated on {e0, e1, e2, . . .} according to
term formation, cf. Sect. 3.4; notice how this eliminates rfi from consideration
in Example 6.1. Since Abs-Bar essentially says that in actual use, these are the
arguments that ei will ever be applied to, we can try redefining data type opera-
tions to accommodate this fact. This in turn would allow the desired definition of
�. The proposed solution here acts on the observation that the standard notions
do not observe Abs-Bar . The angle of approach is thus simply a natural con-
tinuation of tactics so far. We refine the interpretation of data type operations
to reflect their actual applicability as captured by Abs-Bar .

To illustrate the basic idea, suppose gi : (X→X)→X is a data type operation
in some x :T[X]. Then, for some environment γ, if γ(X) = A, and x is a realiser
of γ(x), the interpretation of gi will lie in

(A∩ DX→A) ∩ DX→X→A

where

n DU [X] n′ def⇔ there exist terms t :U [X] and t′ :U [X],
without free variables of types involving X,
such that the interpretation under γ of t is n and that of t′ is n′

This is analogous to the way abo-simulation relations are defined in Ch. 5. Note
that the uniformity aspect of Abs-Bar is not expressed in DU [X]. The uniformity
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aspect states how data type operations are applied in a uniform manner in all
actual computations arising from a virtual computation. Here on the other hand,
we are talking about the interpretation of single operations within a data type.

The scene here is that we want to give a special semantics to data type op-
erations, but otherwise leave the semantics as it is. This ‘special’ semantics is
really not that special; it simply conforms to the use of data type operations in
computations. Thus, in computations, the result will be the same whether we
use regular semantics or we use the special data type semantics. However, in
logical deductions, one cannot rely on Abs-Bar , and we then have to determ-
ine when to apply which semantics. For example, for X and x : T[X], suppose
x.g : (X→X)→X. Consider the interpretation of a formula

[[ ∀f :X→X.∃z :X . (x.g f) = (fz) ]]γ

where γ(X) = X and γ(x) = x ∈ Dom([[X �T[X]]]γ). One possibility is to have a
dynamic interpretation. Let φ be the scope of a variable α. Then the denotation
of α is a semantic variable belonging to a PER restricted according to the strictest
usage of the variable in φ. Thus, the denotation of f above is a variable belonging
to (X ∩ DX→X ) ∩ DX→X . This is because the denotation of x.g : (X→X)→X

lies in ((X ∩ DX→X ) ∩ DX→X)→X , and the denotation of f must match this.
Moreover, this entails that the denotation of z belongs to X ∩ DX .

On the other hand, one could argue that the above formula is not really what
we or the specifier should write. We at least, know that x.g will not be applied
to arbitrary f :X→X, but only definable ones, and then f will only be applied
to definable z. So we should really write

[[ ∀f :X→X.∃z :X . Dfnbl(f) ∧ Dfnbl(z) ⇒ (x.g f) = (fz) ]]γ

for suitable Dfnbl clauses. The specifier would be less happy to have to think
about definability. In this case, the proper Dfnbl clauses might be inserted at
least semi-automatically. The appropriate Dfnbl clauses, directly derived from the
Dfnbl and DfnblC clauses used in Ch. 5, would guarantee application according
to Abs-Bar , and hence the regular term semantics would suffice. Yet another
alternative would be to prune proof trees so that free variables of types involving
the virtual data representation are disallowed, but this would not let us quantify
over virtual data representations.

6.4.1 Annotated Types

The path we choose in this thesis is to have special types for data type operators.
We can get the desired effect by introducing a type constructor (−)a : ∗→∗, for
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marking types when using them in data types. There are in the outset several
plausible schemes for doing this. One might conceivably mark types according
to what is indicated by Abs-Bar . However, unless we introduce subtypes, this
will not work; e.g., for x.g0 :X, x.g1 :Xa→X, we cannot form x.g1x.g0. We could
set x.g0 : Xa; then we can form x.g1x.g0, but not x.g1x.g1x.g0. Thus we must set
x.g1 : Xa → Xa as well; in fact we must set x.g1 : (Xa → Xa)a, in the case we
have x.g2 : (X →X)→X (which should be marked x.g2 : ((Xa→Xa)a →Xa)a).
The result is that we mark every single type occurrence involving the virtual
data representation, i.e., the existentially quantified type variable, in the types
of data-type operators. Types that do not involve the virtual data representation
need not be marked, so e.g., types in Obs are not marked, and neither are types
built purely from these. The idea here is to mark types automatically after type
formation, that is, one writes an existential type and then marks the types of
data-type operations as described above. We define this recursively as follows.

Definition 6.7 (Type Marking) With respect to ∃X.T[X], we define

T ra def
= T

if T has no occurrence of (free) X, and otherwise

Xra def
= Xa

(T→T ′)ra def
= (T ra→T ′ra)a

(∀Y.T [Y, X])ra def
= ∀Y.T [Y, X]ra

Alternatively, one could give formation rules for forming marked types.

Semantically, these marked types are to be interpreted as subdomains con-
taining the elements that are term denotable. Now, the ubiquitous type marking
does not exactly mirror the semantic intention according to Abs-Bar , but the
type marking is merely at places superfluous, not actually in miscorrespondence
to the intended semantics. For example, according to our earlier deliberations
and Abs-Bar , the data type operation x.g1 :X→X should be in (X ∩ DX)→X ,
while the interpretation of (Xa→Xa)a will be ((X ∩DX)→(X ∩DX))∩DX→X).
But the DX→X clause is trivially fulfilled for x.g1, and then the DX clause of the
codomain is also trivial, since we have this clause on the domain of definition.

Term formation w.r.t. marked types follows the usual format, but in addition
one needs the following formation rules. These are necessary so that no syntactic
restrictions are introduced; note that type marking is for semantic purposes.
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Definition 6.8 (Additional Term Formation Rules)

Γ, x :T ′ra � t :T ra

Γ � λx :T ′ra.t : (T ′ra→T ra)a

Γ � t : (T ′ra→T ra)a Γ � t′ :T ′ra

Γ � tt′ :T ra

Γ, X � t :T ra

Γ � ΛX.t : (∀X.T ra)a

Γ � t : (∀X.T ra)a Γ � A

Γ � tA :T [A/X]ra

We owe it to the specifier that he should not have to think about type marking,
since type marking fills a gap in the logic in relation to the abstraction barrier
inherent in existential types. When the specifier uses a proof checker, the proof
assistant should mark all abstract types according to the scheme above. This
begs the issue of other types with similar properties to existential types that need
special treatment in the logic. But here we only treat existential types.

6.4.2 Data Type Semantics

The semantics given to marked types is as follows. We keep the parametric PER-
model as structure, but supply a modified interpretation for data type operations.
For clarity we omit parameters Z in the following discussion. We assume that
the proof checker has recognised an existential type ∃X.T[X] and has marked the
body of the abstract type by T[X]ia.

Definition 6.9 (Data Type Semantics for Types) For any PER X and any
x, y ∈ N, we define the Data Type Semantics for marked types as follows.

x [[X � T[X]ia]][X �→X ] y
def⇔ for all components gi :Ti[X]ra in T[X]ia

x.i ([[X � Ti[X]ra]]x,y,X
[X �→X ]) y.i

where, for the list adt = x, y, X and where δ is an environment on Y , X such
that δ(X) = X ,

[[Y , X � T ]]adt
δ

def
= [[Y , X � T ]]δ, for unmarked T

[[Y , X � Xa]]adt
δ

def
= δ(X) ∩ Dadt

X

[[Y , X � ∀Y.U [Y, X]ra]]adt
δ

def
= (∩E∈PER[[Y , Yk+1, X � U [Y , Yk+1, X]ra]]adt

δ[Yk+1 �→E])
�

[[Y , X � (U [Y , X]ra→U ′[Y , X]ra)a]]adt
δ

def
=

([[Y , X � U [Y , X]ra]]adt
δ → [[Y , X � U ′[Y , X]ra]]adt

δ ) ∩ Dadt
U [Y ,X]→U ′[Y ,X]
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where

n Dadt
U [Y ,X] n′ def⇔ there exist terms Γ � t :U [Y , X] and Γ � t′ :U [Y , X]

where Γ = X, Y , y :V [Y ] for V [Y ] not containing X,
such that t[x, z] = n and t′[y, z′] = n′

where t[x, z] and t′[y, z′] denote the realisers generated over x, z and y, z′ accord-
ing to t and t′, respectively, cf. Sect. 3.4. The z and z′ interpret any free term
variables y in t and t′, respectively.

For Def. 6.9, recall that free variables y in t and t′ are due to type instantiations,
represented by Y , of polymorphic subterms in t and t′. The relevant term envir-
onment determines z and z′. The details of this mutual recursion with the term
semantics are omitted to avoid clutter, but the idea should be clear.

For data type operations, the semantics defined in Def. 6.9 in effect captures
the actual use of data type operations according to the definability aspect of
Abs-Bar (p. 54). The essence is the definability condition for arguments in arrow-
type semantics. The PER Dadt

U [Y ,X] relates two natural numbers if there exist
respective terms that are definable as stated by Abs-Bar . The line of reasoning
for abo-relations on p. 121 applies again here for data type operations that cause
non-definable arguments to be applied.

Theorem 6.10 The top-level data type semantics [[X � T[X]ia]][X �→X ] is a PER.

Proof: By induction. Use the fact that for any t :U [Y , X]ra without free variables
of types involving X, we have t[x] ([[Y , X � U [Y , X]ra]]x,y,X

δ ) t[y] �

Theorem 6.10 asserts that the data type semantics is a PER at the top level.
But we also need to establish what the function spaces inside data types are;
so far they appear only as parameterised entities in the overall definition of the
top-level data type semantics. The issue is resolved in the following.

Theorem 6.11 For any x, y such that x [[X � T[X]ia]][X �→X ] y, the data type
semantics [[Y , X � U [Y , X]a]]x,y,X

[X �→X ] is a PER. Moreover, for any x′, y′ such that
x′ [[X � T[X]ia]][X �→X ] x and y [[X � T[X]ia]][X �→X ] y′, it is the case that

[[Y , X � U [Y , X]a]]x,y,X
[X �→X ] = [[Y , X � U [Y , X]a]]x

′,y′,X
[X �→X ]

Proof: By induction. �

Within a given data type we can now determine the appropriate function spaces
for data type operations. If x is any realiser for the data type, by Theorem 6.11,
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[[Y , X � U [Y , X]a]]x,x,X
[X �→X ] is a PER, and by convention, we choose this form for

function spaces for data type operations. Data type semantics are thus qualified,
or parameterised, according to the data type in question.

—

We can now give the relational semantics for data type operations. This
inherits the effectual weakening at arrow types. The relations in question here
are between data type operations possibly from distinct data types. Therefore,
relational semantics bear the qualifications adt and adt′ of both data types.

Definition 6.12 (Data Type Semantics for Relations) For ∆ = E, F , A, B,
Υ = ρ ⊂ E × F , R ⊂ A× B, and environments δ on ∆ and υ on Υ, we define

[[∆ � Υ�U [ρ, R]ra]]adt,adt′

δυ ⊂ Dom([[∆ �U [E, A]ra]]adt
δ )×Dom([[∆ �U [F , B]ra]]adt′

δ )

where adt = x, x, A, for some x ∈ Dom([[A � T[A]ia]]δ), and adt′ = x′, x′, B, for
some x′ ∈ Dom([[B � T[B]ia]]δ), by

[[∆ � Υ � U [ρ]]]adt,adt′

δυ = [[∆ � Υ � U [ρ]]]δυ, for unmarked U

[[∆ � Υ � Ra]]adt,adt′

δυ = υ(R) ∩ Dadt,adt′

X

[[∆ � Υ � ∀Y.U [ρ, Y ]ra]]adt,adt′

δυ = (∩R[[∆ � Υ, ρk+1 � U [ρ, ρk+1, R]ra]]adt,adt′

δυ[ρk+1 �→R])

[[∆ � Υ � (U [ρ, R]ra→V [ρ, R]ra)a]]adt,adt′

δυ =

([[∆ � Υ � U [ρ, R]ra]]adt,adt′

δυ → [[∆ � Υ � V [ρ, R]ra]]adt,adt′

δυ ) ∩ Dadt,adt′

U [Y ,X]→V [Y ,X]

where

[n] Dadt,adt′

U [Y ,X] [n′]
def⇔ there exist terms ΓA � t :U [Y , A] and ΓB � t′ :U [Y , B]

where ΓX = X, Y , y :V [Y ] for V [Y ] not containing X,
such that t[x, z] = n and t′[x′, z′] = n′

The z and z′ interpret y. The intersection ∩R above for universal types ranges
over all saturated relations R ⊂ Dom(E)×Dom(F), for all PERs E and F .

It is easy to verify that [[∆ � Υ�U [ρ, R]]]adt,adt′

δυ is saturated w.r.t. [[∆�U [E , A]]]adt
δ

and [[∆ � U [F , B]]]adt′
δ . Using this, one can show that

(∩E∈PER[[Y , Yk+1, X � U [Y , Yk+1, X]]]adt
δ[Yk+1 �→E])

�

= (∩R[[∆ � ρk+1 � U [eqE, ρk+1, eqA]]]adt,adt
δυ[ρk+1 �→R])

In general we again have

[[U [Z]]]adt
δ = [[U [eqZ]]]adt,adt

δυ

This is a manifestation of the Identity Extension Lemma, Theorem 3.2. We have
that [[eqU [Z]]]

adt,adt
δυ = [[U [Z]]]adt

δ , i.e., the equality predicate on a type has the same
interpretation, i.e., a PER, as the type itself.
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—

Term semantics follow regular denotational structure. We amalgamate con-
texts into a single context Γ, and environments into a single environment γ.

Definition 6.13 (Data Type Semantics for Terms)

[[Γ � t :T ]]adt
γ

def
= [[Γ � t :T ]]γ , for unmarked T

[[Γ, x :U ra � x :U ra]]adt
γ

def
= γ(x), where γ(x) ∈ Dom(A), for A = [[Γ � U ra]]adt

γ

[[Γ � fu :V ra]]adt
γ

def
= [[Γ � f : (U→V )ra]]adt

γ [[Γ � u :U ra]]adt
γ

[[Γ � λx :U ra.t[x] : (U→V )ra]]adt
γ

def
= n ∈ Dom([[Γ � (U→V )ra]]adt

γ ), for n the
code of a partial recursive function λa.[[Γ, x :U ra � t[x] :V ra]]adt

γ[x �→a]

[[Γ � tA :U [A]ra]]adt
γ

def
= [[Γ � t :∀X.U [X]ra]]adt

γ

[[Γ � ΛX.t[X] :∀X.U [X]ra]]adt
γ

def
= n, such that

[[Γ, X � t[X] :U [X]ra]]adt
γ[X �→A] = n for any PER A

Note that Γ contains x :T[X], and γ must be consistent with the list adt.

—

For the ensuing development, we now need the marked versions of the relevant
results from Ch. 5. These follow immediately, since the type marking scheme does
not introduce any logical restrictions. The marked version of the axiom schema
spParamC also immediately holds under data type semantics.

6.5 New Axioms SubG and QuotG

We now give versions of Sub and Quot that employ abstraction barrier-observing
simulation relations. These new axiom schemata hold at any order w.r.t. the data
type semantics proposed in the previous section.

There is now the issue of variables of higher-order and universal type. Recall
from Sect. 4.4 how the imported proof strategy uses Sub and Quot to effectively
replace variables of the quotienting Q in formulae. Here we need to take into
account variables of higher-order types over Q. Ostensibly, we must therefore
have maps monoU :U [S]→U [X] and epiU :U [X]→U [Q] for any type U [X] over
X occurring in the relevant specification axioms Ax . This is feasible, but the
semantic validation of these maps is troublesome. Luckily however, it usually
suffices to have maps at first order. Consider an occurrence of a term t in Ax

involving higher-order variables of types over X. If t is first order of type X, then
we can use the first-order maps on the term t as a whole, rather than mapping
the higher-order constituents of t. If t is of higher-type U [X] over X, then we
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cannot do this, of course. However, the occurrence of t must ultimately find itself
in an atomic formula, i.e., in contexts of the forms t =U [X] u or R(t, u), where R

is a relation variable at higher type. In the first case, we can use the congruence
axioms (Sect. 3.3) and replace t =U [X] u by its equivalent formula according to
extensional equality, thereby obtaining a first-order formula. In the latter case,
we can do nothing, except assume that relation variables at higher-order types
do not occur in the axioms of implemented specifications. We do not know how
restrictive this is in practice. Looking at some present examples, this does not
seem to be an unreasonable assumption, but this is no indication that one will
never need relation variables at higher-order types. Nonetheless, to keep things
simple, we leave the formalisms using higher-order maps monoU and epiU to future
development, and work with the above restriction on relation variables now.

What we have just said about variables of higher-order types over X, also
applies to variables of universal types over X. Congruence applies here too, and
we must assume no relation variables of universal types over X in the axioms of
any implemented specification. To summarise, we thus assume:

FAx : The axioms Ax of a specification to be refined have no relation variables
at higher-order or universal types. This in turn implies without loss of
generality, that Ax has no terms of higher types over X.

—

We omit parameters Z; they would appear as in Defs. 4.23 and 4.24.

Definition 6.14 (Existence of Subobjects (SubG)) For abo = X, S, x, s,

SubG : ∀X . ∀x :T[X]ia . ∀R⊂X×X . (x T[R]ia
X,X,x,x
C x) ⇒

∃S . ∃s :T[S]ia . ∃R′⊂S×S . ∃mono :S→X .

∀s :S . s R′ s ∧
∀s, s′ :S . s R′ s′ ⇔ (mono s) R (mono s′) ∧
x (T[(x :X, s :S).(x =X (mono s))]ia

abo
C ) s

Definition 6.15 (Existence of Quotients (QuotG)) For abo = X, Q, x, q,

QuotG : ∀X . ∀x :T[X]ia . ∀R⊂X×X . (x T[R]ia
X,X,x,x
C x ∧ equiv(R)) ⇒

∃Q . ∃q :T[Q]ia . ∃ epi :X→Q .

∀x, y :X . x R y ⇔ (epi x) =Q (epi y) ∧
∀q :Q.∃x :X . q =Q (epi x) ∧
x (T[(x :X, q :Q).((epi x) =Q q)]ia

abo

C ) q

where equiv(R) specifies R to be an equivalence relation.
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Theorem 6.16 SubG and QuotG hold in the parametric PER-model of (Bain-
bridge et al., 1990), under the assumption of data type semantics, and HADTObs .

In the following, we will write e.g., [[U [X ]]] in place of [[X � U [X]]][X �→X ], and
similar natural abuses of notation. In the following Γ

def
= X, x :T[X]ia.

6.5.1 Soundness of SubG (proof of Theorem 6.16)

Definition 6.17 (Subobject PER) Let X be any PER, and � any relation on
X . Define the subobject R�(X ) of X restricted on � by

n R�(X ) m
def⇔ n X m and [n]X � [m]X

As expected we do not in general have n R�(X ) m ⇐ [n]X � [m]X . We do have
by definition and symmetry n R�(X ) m ⇒ [n]X � [m]X , and also of course
n X m ⇐ n R�(X ) m, but not necessarily the converse implication.

To show the soundness of SubG, consider an arbitrary PER X , � ∈ [[T[X ]ia]],
and relation � on X . We must exhibit a PER S, a relation �′ on S, an � ∈
[[T[S]ia]], and map mono :S→X , all satisfying the following properties,

Sub-1. For all s ∈ S, s �′ s

Sub-2. For all s, s′ ∈ S, s �′ s′ ⇔ mono(s) � mono(s′)

Sub-3. � [[T[(x ∈ X , s ∈ S).(x =X (mono s))]ia
abo
C ]] �

We exhibit S def
= R�(X ), define mono[n]S

def
= [n]X , and define �′ by

s �′ s′
def⇔ mono(s) � mono(s′)

Well-definedness and (Sub-1) and (Sub-2) follow by definition.
We now postulate that we can construct � as the k-tuple where the ith com-

ponent is [ei][[Ti[S]ra]]adt derived from the ith component [ei][[Ti[X ]ra]]adt′ of �, where
adt = s, s, S for s a realiser of �, and adt′ = x, x, X for x a realiser of �. For each
component gi : (U [X]→ V [X])ra in T[X]ia we must show for all n, n′ s.t. there
exist terms t, t′ s.t. Γ � t :U [X], Γ � t′ :U [X], and t[s] = n, t′[s] = n′, that

verSub-1. n [[U [S]ra]]adt n ⇒ ei(n)↓,
verSub-2. n [[U [S]ra]]adt n′ ⇒ ei(n) [[V [S]ra]]adt ei(n

′).

The crucial observation that now lets us show the well-definedness of �, is that
the realiser s can be assumed to be a realiser x for the existing �. It therefore
suffices to show (verSub-1) and (verSub-2) for n, n′ s.t. t[x] = n and t′[x] = n′.



170 General Specification Refinement 6

Lemma 6.18 For any PER X and relation � on X such that � [[T[�]ia
X,X,x,x
C ]] �,

we have for x a realiser of �, that for any n for which there exists a term t such
that Γ � t :X and t[x] = n,

[n]X � [n]X

Proof: This follows from Lemma 5.31. �

Lemma 6.19 For any n, n′ s.t. there exist terms t, t′ s.t. Γ � t : X, Γ � t′ : X,
and t[x] = n, t′[x] = n′, where x is a realiser of �,

n X n′ ⇔ n S n′

Proof: Suppose n X n′. It suffices to show [n]X � [n′]X . By Lemma 6.18 we get
[n′]X � [n′]X , and n X n′ gives [n]X = [n′]X . Suppose n S n′. By definition this
gives n X n′. �

Lemma 6.20 n [[U [X ]ra]]adt n′ ⇔ n [[U [S]ra]]adt n′

Proof: This follows from Lemma 6.19 by induction on type structure. �

So let n, n′ be as proposed, and recall that we are assuming the existence of �,
thus we have ei [[(U [X ]→ V [X ])ra]]adt ei. We may now use Lemma 6.20 directly
and immediately get what we want since ei satisfies its conditions. However, for
illustrative purposes we go a level down. By assumption we have

assmpSub-1. n [[U [X ]ra]]adt n ⇒ ei(n)↓,
assmpSub-2. n [[U [X ]ra]]adt n′ ⇒ ei(n) [[V [X ]ra]]adt ei(n

′).

Showing (verSub-1) is now easy. By assumption on n, we use Lemma 6.20,
and then (assmpSub-1) yields ei(n) ↓. For (verSub-2) assume n [[U [S]ra]]adt n′.
Lemma 6.20 gives n [[U [X ]ra]]adt n′, and (assmpSub-2) gives ei(n) [[V [X ]ra]]adt ei(n

′).
Lemma 6.20 gives ei(n) [[V [S]ra]]adt ei(n

′). This concludes the definition of �.
It is time to verify � [[T[(x ∈ X , s ∈ S).(x =X (mono s))]ia

abo
C ]] �. Let then

ρ
def
= (x :X , s : S).(x =X (mono s)). For any component gi : (U [X]→ V [X])ra in

T[X]ia. we must show for all [n] ∈ [[U [X ]ra]]adt and [m] ∈ [[U [S]ra]]adt that

[n] [[U [ρ]raabo
C ]]adt [m] ∧ [[DfnblCabo([n], [m])]] ⇒ [ei(n)] [[V [ρ]ra]]adt [ei(m)]

Let e be the realiser of the polymorphic functional of which DfnblCabo asserts the
existence. This realiser is the same for all instances of the functional, and by
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construction the realisers for � and � are the same, say x. Hence the DfnblCabo

clause asserts that e(x) = n and e(x) = m, thus n = m. If V [X] is X we must
show [ei(n)]X = mono([ei(m)]S), i.e., [ei(n)]X = [ei(m)]X , and if V [X] is some
D ∈ Obs we must show [ei(n)]D = [ei(m)]D. Both cases follow since n = m.

6.5.2 Soundness of QuotG (proof of Theorem 6.16)

Definition 6.21 (Quotient PER) Let X be any PER, and � any equivalence
relation on X . Define the quotient X /� of X w.r.t. � by

n X /� m
def⇔ n X n and m X m and [n]X � [m]X

The following lemma follows immediately by definition.

Lemma 6.22 For all n, m, we have, provided that [n]X and [m]X exist,

n X /� m ⇔ [n]X � [m]X

We also have by definition and reflexivity of �, n X m ⇒ n X /� m, but not
necessarily the converse implication.

To show the soundness of QuotG, consider any PER X , � ∈ [[T[X ]ia]], and
equivalence relation � on X . We must exhibit a PER Q, a � ∈ [[T[Q]ia]], and map
epi :X →Q, all satisfying the following properties.

Quot-1. For all x, y ∈ X , x � y ⇔ epi(x) =Q epi(y)

Quot-2. For all q ∈ Q, there exists x ∈ X s.t. q =Q epi(x)

Quot-3. � [[T[(x ∈ X , s ∈ Q).(epi(x) =X q)]ia
abo
C ]] �

We exhibit Q def
= X /�, and define epi([n]X )

def
= [n]Q. Well-definedness, (Quot-1)

and (Quot-2) follow by definition and Lemma 6.22.
Both the construction of � and the rest of the proof follow analogously to the

case for SubG. Things are a bit simpler, because we have Lemma 6.22.

6.6 Using QuotG and SubG

We first illustrate schematically the general use of QuotG and SubG in proving
a refinement SP �

F
SP ′. Then we instantiate this schema by giving a specific

example illustrating the use of QuotG and SubG. It might be more instructive
to go straight to the specific example. The general schema is more for future use
and for completeness of presentation.
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First let us make precise what the definitions of specification and specification
refinement are, now in general versions after our work in the previous chapter.

If we choose to relate to the syntactic models of (Hasegawa, 1991), we can
keep our notion of observational equivalence ObsEq from Def. 4.4, and all the
definitions of specification and specification refinement remain the same.

On the other hand, if we want to relate to the non-syntactic parametric PER-
model, or the model obtained using the data type semantics in the previous
section, we have to use the notion of closed observational equivalence ObsEqC

from Def. 5.25. This then percolates to all definitions involving ObsEq, whence the
general versions of these definitions are obtained by replacing ObsEq by ObsEqC.
For example, the general definition of abstract data type specification now reads:

Definition 6.23 (General ADT Specification) An abstract data type spe-
cification SP is a tuple 〈〈SigSP , ΘSP〉, Te

SP ,ObsSP 〉 where

SigSP
def
= ∃X.TSP [X],

ΘSP(u)
def
= ∃X.∃x :Te

SP [X] . u ObsEqCObsSP (packXx|TSP
) ∧ Ax SP [X, x],

where Ax SP [X, x] is a finite set of formulae in the logic. If ΘSP(u) is derivable,
then u is said to be a realisation of SP . We assume that ObsSP contains

• none or more closed inductive types, such as Bool or Nat,

• all parameters Z, in case TSP [X] has free Z other than X.

The only difference here from Def. 4.6 and Def. 4.12 is the use of ObsEqC instead of
ObsEq. The definitions of polymorphic abstract data type specification (Def. 4.9),
and constructor specification (Def. 4.15) are modified similarly. Specification
refinement SP�

F
SP ′ goes as before, i.e., SP ′ is a refinement of SP , via constructor

F :SigSP ′→SigSP if

∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP(Fu)

is derivable. Note that this now involves ObsEqC in ΘSP ′ and ΘSP .

6.6.1 A General Schema

We now illustrate schematically the general use of QuotG and SubG in proving
a refinement SP �

F
SP ′, for a stable constructor F : SigSP ′ → SigSP . We will

assume the following persistency clause that we introduced in Sect. 4.6 when
showing the correspondence between refinement notions.
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∀X, Y.∀x :SigSP ′ [X], y :SigSP [Y ] .

(ΘSP ′(packXx) ∧ (packY y) ObsEqCObsSP
TSP

F (packXx))

⇒ (∃ye :Sige
SP . y = ye|TSP

∧ Ax (HidSP)[Y, ye])

where Ax (HidSP) are the axioms in SP that contain operations other than those
given in TSP . The main task is to derive

∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP(Fu)

In other words, for arbitrary u :SigSP , and assuming

∃A.∃a :Te
SP ′[A] . u ObsEqC

ObsSP ′
TSP ′ (packA a|TSP′ ) ∧ Ax SP ′[A, a]

we must derive

∃B.∃b :Te
SP [B] . (Fu) ObsEqCObsSP

TSP
(packB b|TSP

) ∧ Ax SP [B, b]

Let A and a be projected out from the assumption. Since F is assumed stable,
we may substitute (packA a|TSP′ ) for u, i.e., if we show

(packB b|TSP
) ObsEqCObsSP

TSP
F (packA a|TSP′ )

we have also shown (packB b|TSP
) ObsEqCObsSP

TSP
Fu since

(packA a|TSP′ ) ObsEqC
ObsSP′
TSP ′ u ⇒ F (packA a|TSP′ ) ObsEqCObsSP

TSP
Fu

and observational equivalence is transitive. Let (packA′a′) denote F (packA a|TSP′ ).
In accordance with our earlier discussion, we assume no relation variables of

higher or universal types over X in Ax SP . Without further loss of generality, we
also assume that all equalities in Ax SP at types over X are first order, i.e., simply
over X. As pointed out, this is justified by extensionality which follows by the
congruence axioms in Sect. 3.3.

Let a′e be as asserted by persistency from a. Following the strategy of al-
gebraic specification, we attempt to define a possibly partial congruence ∼ on A′

such that one can show Ax SP [A′, a′e]rel , where Ax SP [A′, a′e]rel is obtained from
Ax SP [A′, a′e] by replacing all occurrences of =A′ by ∼. If ∼ is partial, every
formula φ whose free variables of type A′ are among x1, . . . , xn, must be condi-
tioned by requiring that these variables are in Dom(∼), viz. ∧i(xi ∼ xi) ⇒ φ.
In showing Ax SP [A′, a′e]rel , one uses Ax (HidSP), and information about the con-
structor F ; either direct definitional information as expressed in a′, or perhaps
abstract information provided by a specification of F .

Suppose now Ax SP [A′, a′e]rel is derivable. First, since ∼ is an axiomatisation
of a partial congruence, we have a′ TSP [∼]A

′,A′,a′,a′

C a′. We use SubG to get SA′ ,
sa′ and ∼′⊂ SA′×SA′ , and map mono :SA′→A such that we can derive
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(s1) ∀s :SA′ . s ∼′ s

(s2) ∀s.s′ :SA′ . s ∼′ s′ ⇔ (mono s) ∼ (mono s′)

(s3) a′ (TSP [(a :A, s :SA′).(a =A (mono s))]abo
C ) sa′

By (s2) we get sa′ TSP [∼′]
SA′ ,SA′ ,sa′ ,sa′
C sa′. We also get equiv(∼′) by (s1). We

now use QuotG to get Q and q :TSP [Q] and maps epi :SA′→Q s.t.

(q1) ∀s, s′ :SA′ . s ∼′ s′ ⇔ (epi s) =Q (epi s′)

(q2) ∀q :Q.∃s :SA′ . q =Q (epi s)

(q3) sa′ (TSP [(s :SA′ , q :Q).((epi s) =Q q)]abo′
C ) q

Thus we should exhibit Q for B, and qe for b, where we postulate that we can
obtain qe by persistency. It then remains to derive

1. (packQq) ObsEqCObsSP
TSP

(packA′a′)

2. Ax SP [Q, qe]

To show the derivability of (1), it suffices to observe that, through Theorem 5.33,
(s3) and (q3) give

(packA′
a
′) ObsEqCObsSP

TSP
(packSA′sa′) ObsEqCObsSP

TSP
(packQq)

This thereby warrants the existence of qe according to persistency. For (2) we
must show the derivability of φ[Q, qe] for every conjunct φ in Ax SP . We indicate
how to deal with equations at type X, since these encompass the main issues.
Other formulae are then dealt with in a standard manner. Consider therefore any
∀x . u[Q, qe] =Q v[Q, qe] in Ax SP [Q, qe].

We must now deal with the variables of types over Q occurring in the equa-
tion. As argued previously, it suffices to look at first-order terms in which
these variables occur. For clarity we illustrate the situation with one such term.
The generalisation is obvious. Let q : Q be a term in u[Q, qe] or v[Q, qe], in-
volving variables of types over Q. We may by (q2) assume an sq : SA′ s.t.
(epi sq) =Q q. Since we succeeded in deriving Ax SP [A′, a′e]rel , we can derive
((mono sq) ∼ (mono sq)) ⇒ u[a′e][(mono sq)] ∼ v[a′e][(mono sq)]. By (s2)

and (s3) this is equivalent to sq ∼′ sq ⇒ u[sa′
e][sq] ∼′ v[sa′

e][sq], which
by (s1) is equivalent to u[sa′

e][sq] ∼′ v[sa′
e][sq]. Here sa′

e is obtained by
persistency in the same way as qe through (1). Then from (q1), we derive
(epi u[sa′

e][sq]) =Q (epi v[sa′
e][sq]). By (q3) we get (epi u[sa′

e][sq]) = u[qe] and
(epi v[sa′

e][sq]) = v[qe].

—
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The schema just presented has variations. In practice one might come up with
a partial congruence ∼, abstain from showing Ax SP [A′, a′e]rel as a whole, and
instead attempt to show Ax SP [Q, qe] directly, using the definition of ∼.

6.6.2 A Specific Example

On the following pages we present a specific example instantiating the above
schema in principle. The example is an adaptation of an example in (Honsell
et al., 2000) on the semantic level demonstrating refinement at higher-order with
pre-logical relations. Pre-logical relations are shown in (Honsell et al., 2000) to be
exactly the adequate notion for explaining refinement. Their example also shows
that refinement via logical relations fails. Here, we wish to express the example in
the logical syntactic framework of System F and the logic for relational paramet-
ricity. In Ch. 5 we showed the equivalence between observational equivalence and
the existence of abstraction barrier-observing simulation relations. This suggests
that in our setting, abstraction barrier-observing simulation relations are exactly
the adequate notion for explaining refinement.

The importance of this example is that it demands the use of abstraction
barrier-observing simulation relations. The desired refinement does not go through
using standard simulation relations. Recall that standard simulation relations
could in theory suffice also at higher order, because the existence of simulation
relations implies observational equivalence by Param, regardless. However, this
does not take into account that a standard simulation relation may not exist.

For clarity, we will display axioms in a non-standard way, omitting the con-
junction symbol between axioms, and refraining from dot-prefixing operations
with the relevant data type. We will also use functions defined earlier in the text,
in particular some from Sect. 3.2.4.

—
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Example 6.24 (Adapted from (Honsell et al., 2000)) Here, real numbers
are represented by sequences of natural numbers. Sequences are implemented
by functions. Real-number operations are thus implemented by operations on
natural-number functions.

REAL
def
= 〈〈SigREAL, ΘREAL〉, {Bool⊥}〉, where

SigREAL = ∃X.TREAL[X]

for TREAL[X] = (0 :X, 1 :X,

+:X→X→X, ∗ :X→X→X, − :X→X,

max :X→X→X, sup : (X→X)→X,

< :X→X→Bool⊥)

ΘREAL(u) = ∃X.∃x :TREAL[X] . u ObsEqC{Bool⊥} (packXx) ∧ AxREAL

for AxREAL
def
= open x in i.e., open access, can omit prefixing with x

∀x, y, z :X .

x + y = y + x x ∗ y = y ∗ x

x + (y + z) = (x + y) +z x ∗ (y ∗ z) = (x ∗ y) ∗z
x ∗ (y + z) = (x ∗ y) + (x ∗ z)

x + 0 = x x ∗ 1 = x

x + −x = 0

x ∗ y = 0 ⇒ x = 0 ∨ y = 0

integral domain axioms

∀x, y :X . x ≤ y ∨ y ≤ x X totally ordered by ≤

[≤ def
= (x :X, y :X) . (∃z :X.y = x + (z ∗ z))]

∀x, y :X . x ≤ y ⇒ (maxx y) = y ∧ (y ≤ x ⇒ (maxx y) = x)

∀f :X→X . (∃z :X.∀x :X . 0 ≤ x ∧ x ≤ 1 ⇒ f(x) ≤ z) sup is w.r.t. [0, 1]

⇒ (∀z :X . (supf) ≤ z ⇔ ∀x :X.0 ≤ x ∧ x ≤ 1 ⇒ f(x) ≤ z)

∀x, y :X .

¬(y ≤ x) ⇒ x < y = true

¬(x ≤ y) ⇒ x < y = false

x = y ⇒ x < y = bot

Division is not included in this specification, but the limited signature ensures
total operations. Every algebraic real is definable by a closed term in the language
of REAL. Algebraic reals are a subset of the recursive or computable reals, since
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not every recursive real is definable by a closed term. Models for REAL include
the full set-theoretic hierarchy over R, and also models in which the first-order
function space only contains continuous functions (Normann, 1998).

The specification REAL will be refined to a specification specifying natural
numbers and operators including a primitive recursion combinator. The specific-
ation actually gives the language for PCF (Plotkin, 1977), and the axioms ensure
that models of the specification are models of PCF in the sense of Scott-domains
(Plotkin, 1977) or game-models (Abramsky et al., 1996).

PCF
def
= 〈〈SigPCF, ΘPCF〉, {Nat}〉, where

SigPCF = ∃X.TPCF[X]

for TPCF[X] = (0 :X, succ :X→X, pred :X→X,

ifzero :X→X→X→X,

YT : (T→T )→T for all types T over X)

ΘPCF(u) = ∃X.∃x :TPCF[X] . u ObsEqC{Nat} (packXx) ∧ AxPCF

for AxPCF
def
= open x in

∀x :X . ¬(x ↓x) ⇔ x = ⊥x unique non-terminating
inhabitant of type X

[x ↓x

def
= (ifzero x 0 0) = 0]

[⊥x

def
= YX(λz :X.z)]

∀x, y, z :X .

succ x = succ y ⇒ x = y

0 �= succ x x �= 0 ⇒ ∃y . x = succ y

x + 0 = x x + succ y = succ (x + y)

(φ(0) ∧ ∀x.(φ(x) ⇒ φ(succ x))) ⇒ ∀x.φ(x)

Peano axioms for
succ and 0

for all φ

∀x, y, z :X .

pred 0 = 0 pred(succ x) = x

ifzero 0 y z = y ifzero(succ x) y z = z

ifzero⊥x y z = ⊥x

∀f :T→T . ∀z :T .

YT f = f(YT f) z = (fz) ⇒ YT f  T z for all types T over X

[ T
def
= (z :T, z′ :T ) . (∀f :T→X . (fz ↓x) ⇒ (fz′ ↓x))]
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This concludes the specifications of REAL and PCF. We will use syntactic sugar
for PCF terms. Sugared terms will bear the subscript of the relevant collection
of operations. Examples are the terms ↓x and ⊥x used in AxPCF. Usually, the un-
derlying definitions will be obvious, but when this is not the case, a sugared term
will signify that the indicated function is definable using the given operations.

We now show that REAL�
F

PCF for

F
def
= λu :SigPCF.unpack(u)(SigREAL)(ΛX.λx :TPCF[X] . (pack (X→X) x′))

where

x′
def
= (0 = λx :X . 1x, 1 = λx :X . x.ifzero(x, 2x, 1x),

+ = Plusx, ∗ = Multx, − = Negx,

max = Max x,

sup = Supx,

< = Lessx )

The chosen encoding of reals is in terms of sequences of natural numbers r, where
ri ≤ 2, for all i ≥ 2, thus representing the real number r0− r1 +

∑∞
i=2 21−i(ri−1).

Sequences are represented by functions on natural numbers.
Details for the PCF terms Plusx, Multx, Negx, and Lessx appear in (Plume,

1998). The terms Max x and Supx are derivable from code in (Simpson, 1998).
We now need to show the derivability of

∀u :SigPCF . ΘPCF(u) ⇒ ΘREAL(Fu)

That is, we must for arbitrary u :SigPCF derive

∃B.∃b :TREAL[B] . (packBb) ObsEqC
{Bool⊥}
TREAL

(Fu) ∧ AxREAL[B, b]

assuming ∃A.∃a :TPCF[A] . (packAa) ObsEqC{Nat}
TPCF

u ∧ AxPCF[A, a]. Let A and
a be projected out from the assumption. Since F is stable, we may substitute
(packAa) for u, i.e., if we show

(packBb) ObsEqC
{Bool⊥}
TREAL

F (packAa)

we have also shown (packBb) ObsEqC
{Bool⊥}
TREAL

Fu since

(packAa) ObsEqC
{Nat}
TPCF

u ⇒ F (packAa) ObsEqC
{Bool⊥}
TREAL

Fu

and observational equivalence is transitive. Let (pack(A→A)a′) denote F (packAa).
In order to follow the universal proof strategy, we must axiomatise a suitable

congruence. The congruence must relate functions that represent the same real.
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Moreover, certain functions do not represent reals, so the congruence should be
partial. First define for any r :A→A,

IsReal(r)
def
= ∀a :A . ¬(a = 0a ∨ a = 1a) ⇒ (r a) = 0a ∨ (r a) = 1a ∨ (r a) = 2a

Val : (A→A)→A

Val
def
= λr :A→A . (r 0a)− (r 1a) + Σa

∞
i=2a

21a−i
a ((r i)− 1a)

Then we define

∼ def
= (r :A→A, r′ :A→A) . (IsReal(r) ∧ IsReal(r′) ∧ Val(r) = Val(r′))

Since ∼ is partial, we use SubG prior to using QuotG. In order to use SubG,
we must first show a′ TREAL[∼]abo

C a′. For example, a′.0 ∼ a′.0 is derivable, since
a′.0 = λx :A . 1x, whereby IsReal(a′.0) and Val(a′.0) = Val(a′.0) are derivable.

We cannot use standard simulation relations here, because it is not the case
that a′ TREAL[∼] a′ is derivable. One of the things one must derive in order to
derive a′ TREAL[∼] a′, is

a′.sup ((∼→∼)→∼) a′.sup

This, in fact, fails. To derive a′.sup ((∼ → ∼) → ∼) a′.sup, we must for any
f : (A→A)→(A→A) and g : (A→A)→ (A→A) that satisfy f (∼→∼) g, show
that (a′.sup f) ∼ (a′.sup g). But there happens to exist a for us pathological, PCF
term funnya : (A→A)→ (A→A), that implements the constant zero function,
and that satisfies funnya (∼→∼) 0→a , for 0→a

def
= λr : (A→A).a.0, but for which

a′.sup fails by yielding (a′.sup funnya) = λa : A . ifa x <a 2a thena 1a elsea ⊥a,
thereby violating (a′.sup funnya) ∼ (a′.sup 0→a ).

In contrast, the abstraction barrier-observing notion of simulation relation
weeds out this counter-example. To show a′ TREAL[∼]abo

C a′, we have to derive,
among other things,

a′.sup ((∼→∼)→∼)abo
C a′.sup

That is, we must for any f : (A→A)→(A→A) and g : (A→A)→(A→A) satisfy-
ing f (∼→∼)abo

C g ∧ DfnblCA→A,A→A,a′,a′(f, g), show that (a′.sup f) ∼ (a′.sup g).
But this relieves us from having to consider funnya and 0→a in conjunction for the
clause (a′.sup funnya) ∼ (a′.sup 0→a ), because DfnblCA→A,A→A,a′,a′(funnya, 0

→
a )

does not hold. There is no f : ∀X.(TREAL[X] → (X → X)) such that both
(f(A → A) a′) = funnya and (f(A → A) a′) = 0→a . In fact, the crux of the
matter is that funnya cannot be expressed in terms of TREAL[X], i.e., there is not
even a term f :∀X.(TREAL[X]→(X→X)) such that (f(A→A) a′) = funnya.
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Notice again how abstraction barrier-observing simulation relations complies
firstly with the uniformity part of Abs-Bar , and secondly with the encapsulation
part of Abs-Bar , i.e., clients of REAL data types cannot access funny , so we
should not have to consider funny when verifying properties of REAL.

This thereby excludes the pathological funny from consideration. In other
words, funny exists as a curio in the implementing abstract data type PCF, but
is not accessible in REAL which is implemented in terms of PCF.

With a′ TREAL[∼]abo
C a′ established, we can use SubG to get SA, sa :TREAL[SA]

and ∼′⊂ SA×SA, and a map mono :SA→(A→A) such that

(s1) ∀s :SA . s ∼′ s

(s2) ∀s.s′ :SA . s ∼′ s′ ⇔ (mono s) ∼ (mono s′)

(s3) a′ (TREAL[(a :A→A, s :SA).(a =A→A (mono s))]abo
C ) sa

By (s2) we get sa TREAL[∼′]abo
C sa, and we get equiv(∼′) by (s1). We now use

QuotG to get Q and q :TREAL[Q] and map epi :SA→Q such that

(q1) ∀s, s′ :SA . s ∼′ s′ ⇔ (epi s) =Q (epi s′)

(q2) ∀q :Q.∃s :SA . q =Q (epi s)

(q3) sa (TREAL[(s :SA, q :Q).((epi s) =Q q)]abo′
C ) q

Thus we should exhibit Q for B, and q for b; and it then remains to derive

1. (packQq) ObsEqC{Bool⊥}(pack (A→A) a′), and

2. AxREAL[Q, q].

To show the derivability of (1), observe that through Theorem 5.33, (s3) and (q3)

give (pack (A → A) a′) ObsEqC{Bool⊥} (packSAsa) ObsEqC{Bool⊥} (packQq). The
verification of (2) is done using AxPCF and the definitions of ∼ and F . �

6.7 Final Remarks

In this chapter we described specification refinement up to observational equi-
valence for specifications involving operations of any order. This was done in
System F using both logical and linguistic extensions of Plotkin and Abadi’s
logic for parametric polymorphism, developed in this chapter and in Ch. 5.

The results of Ch. 5 suggest that abstraction barrier-observing simulation re-
lations, through the correspondence to observational equivalence at any order,
constitute exactly the notion we need for data refinement. In this chapter, we
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therefore presented axiom schemata that would incorporate this alternative no-
tion of simulation relation into the proof strategy for proving observational refine-
ment. We gave a model to show the soundness of the logic augmented by these
schemata, namely the PER model with the data type semantics interpretation.
The main stratagem in devising the data type semantics is the same as we used
in developing the alternative notion of simulation relation, namely to observe the
aspect Abs-Bar of the abstraction barrier provided by existential types.

On the other hand, the existence of a standard simulation relation implies by
parametricity observational equivalence, at any order. Thus, if it is possible to
find a standard simulation relation at higher order, then this suffices to prove
refinement. It is therefore relevant to establish the axiom schemata that incor-
porate standard simulation relations, also at higher order. This we did w.r.t. a
parametric setoid model, based on work in (Hofmann, 1995a).

An interesting alternative to the type marking associated with the data type
semantics would be to impose suitable abstraction barriers in the logical deduc-
tion part of the system instead, extending ideas in (Hannay, 1998). The idea
is that abstraction barriers in the deduction system allow intensional aspects of
abstract data types to co-exists with extensional aspects. This is interesting, be-
cause when reasoning about the extensional interface of an abstract data type,
one needs in general to consider certain intensional implementation issues. This
is particularly relevant for stepwise refinement, since the transition from abstract
specification to concrete specifications yields heterogeneous situations where ab-
stract and concrete aspects are mixed.

The co-existence of intensional and extensional aspects is not just a quirk re-
lated to specification refinement. It is also relevant for constructive mathematics.
At the very foundations of real analysis, the reals may be defined as a quotient of
a set of Cauchy-sequences. The nth approximant function is then intensional, and
from a constructivist point of view, so is every discontinuous function (Troelstra
and van Dalen, 1988). Indeed in a constructive setting it might be prudent to
add intensional operators to a data type. See e.g., (Hofmann, 1995b) where a
choice operator is provided for quotient types.
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In this chapter we address polymorphism in data types. This is a different prin-
ciple from that of the polymorphic data types of Ch. 4; polymorphic data types
there really being type-parameterised data types.

We have in principle admitted polymorphism in data types earlier, i.e., accord-
ing to the discussion around HADTObs and ADTObs (p. 113), but the development in
the preceding chapters was based on HADTObs and focused on making things work
for higher-order operations, rather than for polymorphic operations. Indeed, it
seems hard to utilise the amount of polymorphism in data types admitted by
ADTObs . Now we address polymorphism in data types properly. Consider the
archetypical example of a polymorphic functional

map :∀Z.∀Z ′.(Z→Z ′)→ListZ→ListZ′

But how would we define a polymorphic function between two abstract types, say
a map function between a stack of Z and a stack of Z ′? The problem is that the

183
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stack types are indeed abstract and not readily available. One could of course
steal a march on this problem by defining a double stack data type:

∀Z, Z ′.∃X, X ′ . (empty :X, empty′ :X ′, push :Z→X→X, push′ :Z ′→X ′→X ′,

. . . , map :∀Z, Z ′.(Z→Z ′)→X→X ′ )

This is clearly not a nice way of defining an abstract type. Aside from the duplic-
ation of all stack operations for two separate data representations, the universal
quantification of the element types has to be duplicated as well.

7.1 Specification in F3

It seems evident that truly polymorphic data types and specifications have a
different form from what we have seen so far. In particular, we would like a way
of expressing that the data representation might depend on (element) types. One
way of resolving this is to use type constructors. This we do not have in the
calculus F2 (System F), but we do have type constructors in calculus F3. See
(Pierce et al., 1989) for a related account of polymorphic inductive types.

Example 7.1 (Specification of Polymorphic Stack ADT) The following
specification polySTACK

def
=

〈〈
SigpolySTACK, ΘpolySTACK

〉
, Te

polySTACK, {}
〉

specifies a
polymorphic stack ADT, where

SigpolySTACK = ∃X :∗→∗.TpolySTACK[X],

TpolySTACK[X] = (empty :∀Z . XZ, push :∀Z . Z→XZ→XZ,

pop :∀Z . XZ→XZ, top :∀Z . XZ→Z→Z,

map :∀Z, Z ′ . (Z→Z ′)→XZ→XZ ′ ),

TpolySTACK[X]e = TpolySTACK[X]×multipop :∀Z.Nat→XZ→XZ

ΘpolySTACK(u) = ∃X :∗→∗.∃x :Te
polySTACK[X] . u PolyObsEq{} (packX x|TpolySTACK

) ∧
∀Z.∀x :Z, s :XZ . (x.popZ(x.pushZ x s)) = s ∧
∀Z.∀x, z :Z, s :XZ . (x.topZ(x.pushZ x s) z) = x ∧
∀Z.∀s :XZ . (x.multipopZ 0 s) = s ∧
∀Z.∀n :Nat, s :XZ . (x.multipopZ (succ n s)) = (x.multipopZ n (x.popZ s)) ∧
∀Z, Z ′.∀n :Nat.∀s :XZ.∀g :Z→Z ′ .

(x.topZ ′ (x.multipopZ ′ n (x.mapZZ ′gs))) = g(x.topZ(x.multipopZ ns))
�

In this example, the existentially bound variable X is a type constructor. Thus
the data representation generated by the stack operations empty and push (and
pop) depends on the element type Z. We say what PolyObsEq is in a moment.
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Example 7.1 (continued) A data type realising polySTACK is for example

(pack (λZ :∗.ListZ) l)

where

l
def
= (empty = ΛZ.nilZ

push = ΛZ.λz :Z.λl :ListZ .(consZzl)

pop = ΛZ.λl :ListZ .(cond ListZ (isnil l) nilZ (cdrZ l))

top = ΛZ.λl :ListZ .λz :Z.(cond ListZ (isnil l) z (carZ l))

map = ΛZ.ΛZ ′.λg :Z→Z ′.λl :ListZ .

(cond ListZ (isnil l) nilZ′ (consZ′(g(carZl))(mapZZ ′g(cdrZl)))))

where the parameter z for top is a default value in case of an empty stack, and

isnil
def
= λl :ListZ . l Bool true (λb :Bool.false)

returns true when l is nilZ , and false otherwise. �

Here is the definition of specification of polymorphic abstract data types. We
will have various notions of observational equivalence, so the definition below is
in this sense generic.

Definition 7.2 (ADT Specification in F3) An abstract data type specifica-
tion is a tuple 〈〈SigSP , ΘSP〉, Te

SP ,ObsSP〉, where

SigSP
def
= ∃X :∗→∗.TSP [X],

ΘSP(u)
def
= ∃X :∗→∗.∃x :Te

SP [X] . u PolyObsEqXObsSP

TSP [X] (packX x|TSP
) ∧ Ax SP [X, x],

for PolyObsEqX any of the polymorphic notions of observational equivalence be-
low. Here, all profiles of TSP [X] occur in Te

SP [X], and x|TSP
denotes (x.g1, . . . , x.gn)

for all gi :Ti[X] such that Ti[X] is a profile in TSP [X]. Ax SP [X, x] is a finite con-
junction of formulae in the logic. If ΘSP (u) is derivable, then u is said to be a
realisation of SP . We assume that ObsSP contains

• possibly closed inductive types, such as Bool or Nat,

• parameters Z′, in case T[X] has free Z′ other than X,

Specification refinement goes as always:

Definition 7.3 (Specification Refinement in F3) Let SP and SP ′ be abstract
data type specifications in F3. Then SP ′ is a refinement of SP , via constructor
F :SigSP ′→SigSP if

∀u :SigSP ′ . ΘSP ′(u) ⇒ ΘSP(Fu)

is derivable. We write SP �
F

SP ′ for this fact.
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To avoid clutter, we now assume exactly one existentially bound type constructor
of kind ∗ → ∗ in our abstract types. It should be plain sailing to generalise to
type constructors of higher arity and to multiple type constructors.

Again, T[X] is reserved for the body of a given abstract type ∃X.T[X]. In
the ensuing discussion, we use Z′ for type parameters, i.e., free type variables
in ∃X.T[X, Z′], as usual only writing these when necessary. On the other hand,
we use Z for polymorphic variables, i.e., for the universally bound type variables
for polymorphic operations. We assume Z and Z′ to be chosen distinct. We
admit no free type constructors in abstract types, although these could probably
be added without difficulty, albeit adding clutter.

We continue to use a labelled product notation as a notational convenience
when discussing data types, i.e., we will write T[X] in the form

(f1 :T1[X], . . . , fk :Tk[X])

where each Ti[X] is a profile of the abstract type. Again we presume a specification
scenario, and hence a current set of observable types Obs according to Def. 7.2.
We assume the following polymorphic generalisation of HADTObs .

PADTObs : Every profile Ti[X] of an abstract type ∃X.T[X] is of the form ∀Z.Ti
′[X, Z]

where the subprofile Ti
′[X, Z] satisfies the clause HADTF3Obs∪Z: The subpro-

file Ti
′[X, Z] = Ti

′
1→· · ·→T ′

ni
→T ′

ci
is such that Tij has no occurrences of

universal types other than those in Obs, and T ′
ci

is either XZj for some Zj

of Z, or some D ∈ Obs.

7.2 Observational Equivalence in F3

We now have to decide what observational equivalence means in this context, and
for this we have to decide what observable computations are. An observational
computation could intuitively be a functional

f :∀X :∗→∗.∀Z.(T[X]→D)

where D is in Obs including any Z ′
i from any parameters Z′ (recall our assumption

on Obs (p. 79)), or some Zj from Z. Alas, this does not really work. For example,
we would perhaps want to form the observable computation

ΛX :∗→∗.ΛZ :∗.λx :T[X] . x.topZ(x.pushZ(z, x.emptyZ))

But this is ill-typed. The free variable z cannot be of type Z, and there is nothing
else we can put in place for z to form the kind of computation we have in mind.
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A solution would be to have Z free, and have observational computations of
the form

f :∀X :∗→∗.(T[X]→D)

Then we could form the observable computation

ΛX :∗→∗.λx :T[X] . x.topZ(x.pushZ(z, x.emptyZ))

for z :Z. We can then define observational equivalence as follows.

Definition 7.4 (Observational Equivalence in F3) Define observational equi-
valence PolyObsEq w.r.t. T[X] and observable types Obs, in the logic by

PolyObsEqObs
T[X]

def
= (u :∃X :∗→∗.T[X], v :∃X :∗→∗.T[X]).

(∃A :∗→∗, B :∗→∗.∃a :T[A], b :T[B] . u = (packAa) ∧ v = (packBb) ∧
∀Z :∗.

∧
D∈Obs∪{Z} ∀f :∀X :∗→∗.(T[X]→D) . (fAa) =D (fB b))

On the other hand, we would like to lift our results from previous chapters to this
new scenario, and if we choose the above form for observable computations and
observational equivalence, we will have to extend the parametricity axiom to F3,
and much more work will be involved. Therefore, it would in fact be desirable
to somehow keep the notions of observational equivalence and simulation relation
within F2, in the hope that we might get the desired results for free.

—

In Sect. 7.3 we derive the desired results for observational equivalence and sim-
ulation relations for F3 formalisms represented in F2. However, when we look at
specification refinement in Sect. 7.4, we will take a more direct approach using
System F notions of observational equivalence and simulation relations directly,
and not using the results of Sect. 7.3 as such.

In the following, we shall use existential types with more than one existentially
bound type variable. Our treatment of existential types up to now has involved
one single existentially bound type variable, but it is completely straight-forward
to generalise everything so far to existential types with any number of existen-
tially bound variables; one simply performs component-wise treatments for each
variable. See also Sect. 3.2.7.

7.3 Representations in F2

We now attempt to retain for F3 the notion of observable computation that we
had for F2. How can we make this work for inhabitants of existential types
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that are now F3 terms and involve type constructors? Our solution here is to
represent F3-inhabitants of F3-existential types using families of F2-inhabitants
of F2-existential types. For example,

(packAa) : ∃X∗→∗.TpolySTACK[X]

is represented by the family

{(pack (AZ) (AZ ′) (a.emptyZ, a.pushZ, a.popZ, a.topZ,

a.emptyZ ′, a.pushZ ′, a.popZ ′, a.topZ ′,

a.mapZZ, a.mapZZ ′, a.mapZ ′Z, a.mapZ ′Z ′))

: ∃X, X ′.(empty1 :X, push1 :Z→X→X, pop1 :X→X, top1 :X→Z→Z,

empty2 :X ′, push2 :Z ′→X ′→X ′, pop2 :X ′→X ′, top2 :X ′→Z ′→Z ′,

map1 : (Z→Z)→X→X,

map2 : (Z→Z ′)→X→X ′,

map3 : (Z ′→Z)→X ′→X,

map4 : (Z ′→Z ′)→X ′→X ′)}ZZ′

This representation resembles the style derisively mentioned at the beginning of
this chapter. However, this representation is for the purpose of reasoning only,
and not for programming. The justification lies in what we think observable
computations are, namely that they are uniform in any given type instance Z,
as for example in ΛX :∗→∗.λx :T[X] . x.topZ(x.pushZ(z, x.emptyZ)). If we show
observational equivalence between corresponding members in two families, then
this should constitute observational equivalence for the two represented packages.

Definition 7.5 below gives a generic representative for a representation family,
rather than the family itself. Thus, the formal F2 representation for any

(packAa) :∃X∗→∗.TpolySTACK[X]

is obtained by (pack (AZ) (AZ ′) aF2) : ∃X, X ′.TpolySTACKF2
[X, X ′], where

aF2

def
= (a.emptyZ, . . . , a.mapZ ′Z ′)

TpolySTACKF2

def
= (empty1 :X, . . . , map4 : (Z ′→Z ′)→X ′→X ′)

as above. We now give the rather complicated formal definition. However, the
intuition given so far will suffice to follow the discussion.

For a type constructor X, we write XZ for XZ1, . . . , XZn for Z
def
= Z1, . . . , Zn.

We also write T [X/XZ] to indicate replacing every occurrence of XZi by Xi. We
write Zn to indicate the length of Z.
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Definition 7.5 (Representation in F2) For T[X] and x : T[X] we construct
TF2[X , Z] and xF2 as follows. Let n be the maximum number of outermost uni-
versally quantified variables for any operation profile in T[X]. Then for any oper-
ation profile ∀Zni

.Ti[X, Zni
] in T[X], we put nni versions of Ti[Xni

/XZni
, Zni

]

in TF2[X, Z] for every combination of types of Zn for Zni
. Now, xF2 contains

nni versions of x.giZni
for every operation x.gi in x, also for every combination of

types of Zn for Zni
.

We now define observational equivalence by F2 representation.

Definition 7.6 (Observational Equivalence (PolyObsEqF2)) Define observa-
tional equivalence PolyObsEqF2 w.r.t. T[X] and observable types Obs by

PolyObsEqF2
Obs
T[X]

def
= (u :∃X :∗→∗.T[X], v :∃X :∗→∗.T[X]).

(∃A :∗→∗, B :∗→∗.∃a :T[A], b :T[B] . u = (packAa) ∧ v = (packBb) ∧
∀Z.

∧
D∈Obs∪{Z} ∀f :∀X :∗.(TF2[X, Z]→D) . (f(AZ)aF2) =D (f(BZ)bF2))

Similarly, we define relatedness by simulation relation by F2 representation.

Definition 7.7 (Simulation Relation (PolySimRelF2)) Relatedness by simula-
tion relation w.r.t. T[X, Z′] is expressed in the logic by

PolySimRelF2T[X,eqZ ′ ]
def
= (u :∃X :∗→∗.T[X, Z′], v :∃X :∗→∗.T[X, Z′]) .

(∃A :∗→∗, B :∗→∗.∃a :T[A, Z′], b :T[B, Z′] . u = (packAa) ∧ v = (packBb)

∧ ∀Z.∃R⊂(AZ)×(BZ) . aF2(TF2[R, eqZZ′ ])bF2)

With these notions of observational equivalence and simulation relation, we can
lift the results of the previous chapter to polymorphism in F3. First we lift the
results for first-order profiles, i.e., Theorems 4.17 (p. 87) and 4.22 (p. 90).

Theorem 7.8 Suppose T[X] adheres to PADTObs and only contains first-order sub-
profiles. With Param we derive that the existence of a simulation relation is
equivalent to observational equivalence, i.e.,

∀Z′.∀u, v :∃X.T[X, Z′] . u PolySimRelF2T[X,eqZ ′ ] v ⇔ u PolyObsEqF2
Obs
T[X,Z′] v

Proof: It suffices to derive for arbitrary Z,

∀A, B.∀a :T[A, Z′], b :T[B, Z′] .

∃R⊂(AZ)×(BZ) . aF2(TF2[R, eqZZ′ ])bF2

⇔
∧

D∈Obs∪{Z} ∀f :∀X.(TF2[X , Z, Z′]→D) . (f(AZ) aF2) =D (f(BZ) bF2)

But this follows from Theorem 4.17 (p. 87). �
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Theorem 7.9 (Composability of Simulation Relations) Suppose T[X] ad-
heres to PADTObs and only contains first-order subprofiles. Then we can derive

∀Z.∀A, B, C, R⊂(AZ)×(BZ), S⊂(BZ)×(CZ).

∀a :T[A, Z′], b :T[B, Z′], c :T[C, Z′] .

aF2(TF2[R, eqZZ′ ])bF2 ∧ bF2(TF2[S, eqZZ′ ])cF2

⇒ aF2(TF2[S ◦R, eqZZ′ ])cF2

Proof: This follows from Theorem 4.22 (p. 90). �

We now similarly define the F3 analogues to SimRelA (Def. 5.11, p. 123), ObsEqC

(Def. 5.25, p. 134), and SimRelC (Def. 5.30, p. 137), in the same way by F2 rep-
resentation as we did for PolyObsEqF2 and PolySimRelF2 above. In all cases, one
gets the coincidences of observational equivalence with relatedness by simulation
relation, as well as composability of simulation relations. Recall that w.r.t. syn-
tactic models it suffices to use SimRelA together with ObsEq, but if one wants to
relate to models other than those in which one relies on term denotability, then
one can use SimRelC together with ObsEqC. In the following we give the results,
but the discourse is rather similar to the case above.

7.3.1 Abstraction Barrier-Observing Simulation Relation I

Definition 7.10 (abo-Simulation Relation (PolySimRelAF2)) Relatedness by
abstraction barrier observing (abo) simulation relation w.r.t. T[X, Z′] is defined

PolySimRelAF2T[X,eqZ ′ ]
def
= (u :∃X :∗→∗.T[X, Z′], v :∃X :∗→∗.T[X, Z′]) .

(∃A :∗→∗, B :∗→∗.∃a :T[A, Z′], b :T[B, Z′] . u = (packAa) ∧ v = (packBb)

∧ ∀Z.∃R⊂(AZ)×(BZ) . aF2(TF2[R, eqZZ′ ]abo)bF2)

where abo = AZ, BZ, aF2, bF2.

We now lift Theorem 5.14 (p. 125) to polymorphism in F3.

Theorem 7.11 Let T[X, Z′] adhere to PADTObs . With spParam we derive that
the existence of an abo-simulation relation is equivalent to observational equival-
ence,

∀Z′.∀u, v :∃X.T[X, Z′] . u PolySimRelAF2T[X,eqZ ′ ] v ⇔ u PolyObsEqF2
Obs
T[X,Z′] v

Proof: This follows from Theorem 5.14 (p. 125). �

We then lift Theorem 5.17 (p. 127) to polymorphism in F3.
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Theorem 7.12 (Composability of Simulation Relations) Given spParam,
for T[X, Z′] adhering to PADTObs , we can derive

∀Z.A, B, C, R⊂(AZ)×(BZ), S⊂(BZ)×(CZ).

∀a :T[A, Z′], b :T[B, Z′], c :T[C, Z′] .

aF2(TF2[R, eqZZ′ ]abo)bF2 ∧ bF2(TF2[S, eqZZ′ ]abo)cF2

⇒ aF2(TF2[S ◦R, eqZZ′ ]abo)cF2

Proof: This follows from Theorem 5.17 (p. 127). �

We can now repeat all this for the notion of abstraction barrier-observing simu-
lation relation using closed computations.

7.3.2 Abstraction Barrier-Observing Simulation Relation II

Definition 7.13 (Closed Observational Equivalence (PolyObsEqCF2)) Def-
ine closed observational equivalence PolyObsEqCF2 w.r.t. Obs by

PolyObsEqCF2
Obs
T[X]

def
= (u :∃X :∗→∗.T[X], v :∃X :∗→∗.T[X]).

(∃A :∗→∗, B :∗→∗.∃a :T[A], b :T[B] . u = (packAa) ∧ v = (packBb) ∧
∀Z.

∧
D∈Obs∪{Z} ∀f :∀X :∗.(TF2[X, Z]→D) .

ClosedΓIn∪{Z}(f) ⇒ (f(AZ)aF2) =D (f(BZ)bF2))

Definition 7.14 (abo-Simulation Relation PolySimRelCF2) Relatedness by ab-
straction barrier observing closed computation (abo) simulation relation w.r.t.
T[X, Z′] is expressed in the logic by

PolySimRelCF2T[X,eqZ ′ ]
def
= (u :∃X :∗→∗.T[X, Z′], v :∃X :∗→∗.T[X, Z′]) .

(∃A :∗→∗, B :∗→∗.∃a :T[A, Z′], b :T[B, Z′] . u = (packAa) ∧ v = (packBb)

∧ ∀Z.∃R⊂(AZ)×(BZ) . aF2(TF2[R, eqZZ′ ]abo
C )bF2)

where abo = (AZ), (BZ), aF2, bF2.

Theorem 7.15 Let T[X, Z′] adhere to PADTObs . Extending the language with the
predicates Closed of Def. 5.19, with spParamC we derive that the existence of
an abo-simulation relation is equivalent to observational equivalence,

∀Z′.∀u, v :∃X.T[X, Z′] . u PolySimRelCT[X,eqZ ′ ] v ⇔ u PolyObsEqCObs
T[X,Z′] v

Proof: This follows from Theorem 5.33 (p. 138). �
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Theorem 7.16 (Composability of Simulation Relations) With spParamC,
for T[X, Z′] adhering to PADTObs , we can derive

∀Z.A, B, C, R⊂(AZ)×(BZ), S⊂(BZ)×(CZ).

∀a :T[A, Z′], b :T[B, Z′], c :T[C, Z′] .

aF2(TF2[R, eqZZ′ ]abo
C )bF2 ∧ bF2(TF2[S, eqZZ′ ]abo

C )cF2

⇒ aF2(TF2[S ◦R, eqZZ′ ]abo
C )cF2

Proof: This follows from Theorem 5.36 (p. 139). �

We have thus lifted the results concerning simulation relations and observa-
tional equivalence for System F to F3.

Notice however that the clause

∃A :∗→∗, B :∗→∗.∃a :T[A], b :T[B] . u = (packAa) ∧ v = (packBb)

in the definitions above is not obviously derivable in the same way the analogue
clause is in F2 by Theorem 3.6. Theorem 3.6 hinges on parametricity, which we
have not established for F3. This is acceptable at the programming level, since the
user will always supply packages (packAa) and (packBb). For reasoning purposes,
we are restricted to reason in terms of variables X and x, rather than variables of
existential type.

To facilitate this, we can provide expressions of observational equivalence and
simulation relations that speak directly in terms of package components instead
of variables of existential type. These definitions will therefore not be in terms of
a relation in the logic, but rather a meta-statement about a certain proposition.

Definition 7.17 (Observational Equivalence (PolyObsEq)) For A, a : T[A],
B, b : T[B], we say that (packAa) and (packBb) are observationally equivalent
w.r.t. T[X] and observable types Obs if the following proposition is derivable.

PolyObsEqObs
T[X](A, B, a, b)

def
=

∀Z.
∧

D∈Obs∪{Z} ∀f :∀X :∗.(TF2 [X, Z]→D) . (f(AZ)aF2) =D (f(BZ)bF2)

We define relatedness by simulation relation by meta-statement in F2 as follows.

Definition 7.18 (Simulation Relation (PolySimRel)) For any A, B, a :T[A],
b : T[B] we say that (packAa) and (packBb) are related by simulation relation
w.r.t. T[X, Z′], if the following proposition is derivable.

PolySimRelT[X,eqZ ′ ](A, B, a, b)
def
=

∀Z.∃R⊂(AZ)×(BZ) . aF2(TF2[R, eqZZ′ ])bF2
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Notice that the formulae involved in Definitions 7.17 and 7.18 have no F3 syntax
at all. Of course, we have

PolyObsEqObs
T[X](A, B, a, b) ⇔ (packAa) PolyObsEqObs (packBb)

PolySimRelObs
T[X](A, B, a, b) ⇔ (packAa) PolySimRelObs (packBb)

This gives

∀Z′ . PolySimRelT[X,eqZ ′ ](A, B, a, b) ⇔ PolyObsEqObs
T[X,Z′](A, B, a, b)

This can be done for the other notions of simulation relation and observational
equivalence as well.

7.4 Specification Refinement Represented in F2

The ultimate reason for representing notions in F2 is that we want to use Sub

and Quot, or SubG and QuotG, for proving refinements in F3. In this respect,
a problem with the definitions in the previous section is that we will for any type
constructor A be required to exhibit a type constructor B that gives a subobject
or quotient for every BA. This requires an axiom of choice that most likely does
not hold in the models one is likely to consider. For methodological purposes, we
can get around this by avoiding variables of F3 existential types altogether.

Definition 7.19 (ADT Specification Represented in F2) An abstract data
type specification SP in F3 represented in F2 is a tuple 〈〈SigSP , ΘSPF2

〉, Te
SP ,ObsSP〉

where

SigSP
def
= ∃X :∗→∗.TSP [X],

ΘSPF2
(U, u)

def
= ∀Z . ∃X :∗ .∃x :Te

SPF2
[X ] .

(packUZ uF2) ObsEqXObsSP∪Z
TSP F2

[X] (packX x|TSPF2
) ∧ Ax SPF2

[X , x]

for ObsEqX either of ObsEq and ObsEqC, and where Ax SPF2
[X, x] is a conjunction

of formulae in the logic. If ΘSP(U, u) is derivable, then (packUu) is said to be a
realisation of SP . We assume that ObsSP contains

• possibly closed inductive types, such as Bool or Nat,

• parameters Z′, in case T[X] has free Z′ other than X

Here the specifier supplies SigSP and Ax SP . The realisation predicate ΘSP then
employs Ax SPF2

which is equivalent to Ax SP . Specification refinement now goes:
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Definition 7.20 (Specification Refinement in F3 Represented in F2) Let
SP and SP ′ be abstract data type specifications in F3 represented in F2. Then SP ′

is a refinement of SP via constructor F :SigSP ′→SigSP , if for all U and u :T[U],

ΘSP ′(U, u) ⇒ ΘSP(U′, u′)

where (packU′u′) = F (packUu), is derivable. We write SP �
F

SP ′ for this fact.

Example 7.21 We refine polymorphic stacks to polymorphic arrays with top
pointer. Recall the specification of the polymorphic stack ADT from Example 7.1:

polySTACK
def
=

〈〈
SigpolySTACK, ΘpolySTACK

〉
, Te

polySTACK, {}
〉
, where

SigpolySTACK = ∃X :∗→∗.TpolySTACK[X],

TpolySTACK[X] = (empty :∀Z . XZ, push :∀Z . Z→XZ→XZ,

pop :∀Z . XZ→XZ, top :∀Z . XZ→Z→Z,

map :∀Z, Z ′ . (Z→Z ′)→XZ→XZ ′ ),

TpolySTACK[X]e = TpolySTACK[X]×multipop :∀Z.Nat→XZ→XZ

ΘpolySTACK(u) = ∃X :∗→∗.∃x :Te
polySTACK[X] . u PolyObsEqCF2

{} (packX x|TpolySTACK
) ∧

∀Z.∀x :Z, s :XZ . (x.popZ(x.pushZ x s)) = s ∧
∀Z.∀x, z :Z, s :XZ . (x.topZ(x.pushZ x s) z) = x ∧
∀Z.∀s :XZ . (x.multipopZ 0 s) = s ∧
∀Z.∀n :Nat, s :XZ . (x.multipopZ (succ n s)) = (x.multipopZ n (x.popZ s)) ∧
∀Z, Z ′.∀n :Nat.∀s :XZ.∀g :Z→Z ′ .

(x.topZ ′ (x.multipopZ ′ n (x.mapZZ ′gs))) = g(x.topZ(x.multipopZ ns))

We could specify a polymorphic array ADT, also with a map operation, like this:

polyARRAY
def
=

〈〈
SigpolyARRAY, ΘpolyARRAY

〉
, {}

〉
, where

SigpolyARRAY = ∃X :∗→∗.TpolyARRAY[X],

TpolyARRAY[X] = (empty :∀Z . XZ, update :∀Z . Nat→Z→XZ→XZ,

access :∀Z . Nat→XZ→Z,

map :∀Z, Z ′ . (Z→Z ′)→XZ→XZ ′ ),

ΘpolyARRAY(u) = ∃X :∗→∗.∃x :TpolyARRAY[X] . u PolyObsEqCF2
{} (packXx) ∧

∀Z.∀i, j :Nat.∀x :Z, a :XZ . x.accessZ(i)(x.updateZ(j)(x)(a)) =

if i = j then x else x.accessZ(i)(a) ∧
∀Z, Z ′.∀i :Nat.∀a :XZ.∀g :Z→Z ′ .

x.accessZ ′(i)(x.mapZZ ′(g)(a)) = g(x.accessZ(i)(a))
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For representation in F2 we get, for polySTACK:

ΘpolySTACKF2
(U, u) = ∀Z1, Z2 . ∃X1, X2 :∗.∃x :Te

polySTACKF2
[X1, X2] .

(pack(UZ1)(UZ2)uF2) ObsEqC
{Z1,Z2}
TpolySTACKF2

[X1,X2]
(packX1X2 x|TpolySTACKF2

) ∧

∀x :Zi, s :Xi . (xF2.popi(xF2.pushi x s)) = s ∧
∀x :Zi, s :Xi . (xF2.topi(xF2.pushi x s)) = x ∧
∀s :Xi . (xF2.multipopi 0 s) = s ∧
∀n :Nat, s :Xi . (xF2.multipopi(succ n) s) = (xF2.multipopi n (xF2.popi s)) ∧
∀n :Nat.∀s :Xi.∀g :Zi→Zj .

(xF2.topj(xF2.multipopj(n)(xF2.maplgs))) = g(xF2.topi(xF2.multipopi(n)(s)))

and the representation in F2 of polyARRAY is:

ΘpolyARRAYF2
(U, u) = ∀Z1, Z2 . ∃X1, X2 :∗.∃x :TpolyARRAYF2

[X1, X2] .

(packX1X2x) ObsEqC
{Z1,Z2}
TpolyARRAYF2

[X1,X2] (pack(UZ1)(UZ2)uF2) ∧

∀n, m :Nat.∀x :Zi, a :Xi . xF2.accessi(n)(xF2.updatei(m)(x)(a)) =

if n = m then x else xF2.accessi(n)(a) ∧
∀n :Nat.∀a :Xi.∀g :Zi→Zj .

xF2.accessj(n)(xF2.mapl(g)(a)) = g(xF2.accessi(n)(a))

We can now show polySTACK�
F

polyARRAY for

F
def
= λu :SigpolyARRAY .

unpack(u)(SigpolySTACK)(ΛX.λx :TpolyARRAY[X] . (pack (λZ :∗.XZ × Nat) x′))

where

x′
def
= (empty = ΛZ.pair(x.emptyZ)(0),

push = ΛZ.λz :Z.λp :XZ×Nat . pair(x.updateZ(snd p)(z)(fst p))(succ(snd p)),

pop = ΛZ.λp :XZ×Nat . ifzero(snd p)(p)(pair(a)(pred(snd p))),

top = ΛZ.λp :XZ×Nat.λz :Z . ifzero(snd p)(z)(x.access(pred(snd p))(fst p))

map = ΛZ.ΛZ ′.λg :Z→Z ′.λp :XZ×Nat . · · · )

Consider arbitrary U and u : T[U]. Let (packU′u′) denote F (packUu) We must
show the derivability of

ΘpolyARRAYF2
(U, u) ⇒ ΘpolySTACKF2

(U′, u′)

that is, assuming

∀Z1, Z2 . ∃A1, A2 :∗.∃a :TpolyARRAYF2
[A1, A2] .

(pack(UZ1)(UZ2) uF2) ObsEqC
{Z1,Z2}
TpolyARRAYF2

[X1,X2]
(packA1A2a)

∧ Ax polyARRAYF2
[A1, A2, a]



196 Polymorphic Specification Refinement 7

we should be able to derive

∀Z1, Z2 . ∃B1, B2 :∗.∃b :Te
polySTACKF2

[B1, B2] .

(pack(U′Z1)(U
′Z2) u′

F2
) ObsEqC

{Z1,Z2}
TpolySTACKF2

[X1, X2] (packB1B2 b|TpolySTACKF2
)

∧ Ax polySTACKF2
[B1, B2, b]

We postulate that F is stable, and replace pack(UZ1)(UZ2) uF2) by (packA1A2a)

for our purposes. Let (packA′
1A

′
2a

′) denote F (packA1A2a). We can now use the
technology for System F. In particular we would like to use QuotG and SubG.
The first thing we must do is axiomatise a suitable partial congruence. The
congruence must relate array with pointers that represent the same stack. Thus,
we define

∼i
def
= (a :A′

i, a
′ :A′

i) . ((snda) = (snda′) ∧ ∀n :Nat . 0 ≤ n ∧ n < (snda)

⇒ a.accessi(n)(fsta) =Zi
a.accessi(n)(fsta′))

Here ∼ is total, so we only need QuotG. The rest of the verification goes in a
standard manner. �

—

We have now expressed specification refinement for F3 by representation in F2.
There are two gaps that remain to be bridged. The first is the question whether or
not the notion of observational equivalence PolyObsEq in F3 (Def. 7.4) is equivalent
to the representation PolyObsEqF2 in F2 (Def. 7.6). It is easy to show

u PolyObsEq v ⇒ u PolyObsEqF2 v

but the converse implication seems to require the axiom of choice. This also
applies to the closed-computation versions of PolyObsEq and PolyObsEqF2.

Secondly, we want that the F3 notion of specification refinement (Def. 7.2) is
equivalent to the F2 representation version (Def. 7.19). Here we must consider
packages, rather than variables of existential type. It is easy to see that

ΘSP (packUu) ⇒ ΘSPF2
(U, u)

Again the axiom of choice seems necessary for obtaining the converse direction.
It might be easier to show an equivalence between the notions of specification
refinement (Definitions 7.3 and 7.20), rather than between the notions of specific-
ation and between the notions of observational equivalence. In the absence of
these formal equivalences, one has to take the F2 representations as definitional,
rather than derived.

—
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7.5 True F3 Formalisms

The main bulk of this chapter has been devoted to representing polymorphic
notions in F2 in order that we may use the technology developed for System F. The
idea is that the specifier can use F3 expressions to specify the desired abstract data
types, and then that these specifications get translated, ultimately automatically,
into an F2 representation together with F2 verification conditions.

On the other hand, it would be even better if we could have true F3 formalisms
for everything we have developed for System F. From the beginning this would
demand that we decide what the action of type constructors on relations are,
that we assert relational parametricity in the context of type constructors, and
that we find a model for this new logic. Then we should reformulate the notions
of observational equivalence and simulation relation in this context. The axiom
schemata Sub, Quot and SubG, QuotG, should also be reformulated.

We think that this endeavour is compelling and raises some intriguing issues.
Nevertheless, we leave this for future study.

7.6 Summary

This chapter addressed polymorphism inside data types. It is necessary to use the
polymorphic lambda calculus F3, rather than System F, in order to express that
the data representation of abstract types depends on other types. However, we
were able to express the notions of observational equivalence, and relatedness by
simulation relation, in terms of System F technology developed in earlier chapters.
This frees us from the burden of considering relational parametricity for F3, and
at the same time gives us earlier results for System F lifted to F3, virtually
for free. However, the formal equivalence between the F3 notions and their F2

representations is not clear, due to an apparent call for the axiom of choice.
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8.1 Summary

This thesis has expressed specification refinement in type theory. The type-
theoretic setting consisted of the polymorphic lambda calculus together with
extensions of Plotkin and Abadi’s logic for parametric polymorphism asserting
relational parametricity.

The motivation to do this lies in the desire to generalise successful concepts
from the field of algebraic specification refinement to beyond inherent first-order
formalisms. We concentrated on generalisations to higher-order operation pro-
files and polymorphism. The reason for doing this specifically in type theory is
firstly that type theory is an adequately powerful syntactic formalism with several
well-defined semantics. Secondly, the expressivity of type theory allows one to
internalise semantic notions into syntax. This then ultimately links the practice
of specification refinement to a multitude of powerful reasoning tools.

At first order, we showed a correspondence between algebraic specification re-
finement and type-theoretic refinement. The correspondence encompasses normal-
form specifications and constructors. This then applies to structured specifica-
tions in light of the specification normalisation results and the view that the
abstractor operator that in our discussion gives specification up to observational
equivalence, should only be applied outermost. At first order, we utilised the fact

199
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that the existence of simulation relations coincides with observational equivalence,
which then therefore corresponds to equality at existential type.

For data types with higher-order operations, observational equivalence loses
its two-way correspondence to simulation relations. Furthermore, simulation re-
lations do not in general compose at higher order. This compromises the use of
these notions for stepwise refinement. We argued that this situation could in fact
be rectified, because the standard notion of simulation relation fails to observe a
crucial aspect of the information-hiding abstraction barrier promoted by existen-
tial types. The proposed solution is to modify the notion of simulation relation by
weakening the arrow-type relation according to how clients may actually use data
type operations. The connection to observational equivalence and the composab-
ility of simulation relations is thus restored. The correspondence to observational
equivalence suggests that the notion of abstraction barrier-observing simulation
relation is exactly the desired relation for explaining refinement.

A universal proof strategy for proving observational refinements was also im-
ported into the type-theoretic setting. This was done by introducing axioms Sub

and Quot asserting the existence of subobjects and quotients. While validating
these axioms w.r.t. the parametric PER model at first order is easy, the situ-
ations for higher-order operations is more complex. Nonetheless, we can validate
these axioms at any order using a setoid-based model. We then get a scenario for
observational refinement at any order depicted as follows.

Sub

SimRel ⇒ ObsEq

Quot

However, it may not be possible to use standard simulation relations at higher
order. We therefore supplied axioms SubG and QuotG that incorporate the ab-
straction barrier-observing notion of simulation relation. This gives the scenario
for observational refinement at any order depicted as follows.

SubG

SimRelC ⇒ ObsEqC

QuotG

When attempting to validate SubG and QuotG, one can observe that the para-
metric interpretation into the PER structure ignores the same crucial aspect of
the information-hiding abstraction barrier promoted by existential types, as was
in question for simulation relations. Prompted by this, we proposed an abstrac-
tion barrier-observing interpretation into the PER structure.
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The main bulk of the discussion focuses on the higher-order aspect, i.e., data
types with higher-order operations. To deal properly with polymorphism inside
data types, we used the third-order polymorphic lambda calculus for expressivity,
and then reduced the formalisms to second-order ones. This allowed us to use
the results obtained earlier also for data types with polymorphic operations.

8.2 Further Research

During our main discussion, we mentioned several ideas for further work.
For Ch. 4 we mentioned expressing specification building operators in Sys-

tem F and the logic, in order to reflect specificational structure in proofs. We
also mentioned providing a fuller account of specifications of parameterised pro-
grams as well as parameterised specifications.

In Ch. 5, we established the link between observational equivalence and the
existence of simulation relations at higher order. However, the logic is not strong
enough to show the existence of simulation relations for certain examples. We
mentioned that heuristics from semantical reasoning should give rise to a stronger
logic. Alternatively, one could operate with assumptions in the logic, and employ
semantic reasoning outside the logic to informally discharge those assumptions.
This would however be less beneficial to the specifier, unless the specifier is a
mathematician of the appropriate sort.

In Ch. 6, one should investigate further if the setoid semantics can fully replace
the rôle of the data type semantics and annotated types.

For Ch. 7 we would very much like to see pure F3 formalisms all the way
through, indeed one could envision a generalisation of this whole discussion to
any Fi, and thence Fω.

We now suggest in the following, the most promising lines of further investig-
ation that in our view could build on the results of this thesis.

8.2.1 Extending to Object Orientation

Having lifted the concepts of algebraic specification refinement into the realm of
type theory and lambda calculi, one now has the potential to extend this fruitful
idea to various programming concepts. The field that this task constitutes is
vast, and in this light, this thesis only begins to cover some modest ground. An
immediate aim would be to extend the idea of specification refinement to object
orientation. This could be done in the same type-theoretic framework with the
logic for parametric polymorphism that underlies the work in this thesis and



202 Conclusions 8

(Poll and Zwanenburg, 1999; Zwanenburg, 1999). The reason for the anticipated
success of this approach is the results in (Reddy, 1999, 1997, 1988) establishing
a clarifying link between classes and objects and abstract data types. Classes
determine not only what the operations of its objects should do, but may also
to some degree determine the implementations of these operations. Moreover,
classes are seen type-theoretically to be of abstract types similar to the abstract
types accompanying abstract data types. Recall that abstract types are coded
in the polymorphic lambda calculus as existential types. Thus classes are seen
to sub-classify algebras of the same abstract type. There are various other views
on this, see (Hofmann and Pierce, 1996, 1995), (Bruce et al., 1997), (Fischer
and Mitchell, 1997; Fisher and Mitchell, 1996), (Abadi and Cardelli, 1996), and
although we find the one above most apt for our purposes, the other alternatives
should come into consideration. Relating to component-based development, a
certain flexibility is called for in light of the ongoing discussion of what in fact
constitutes a component.

8.2.2 Clarifying Simulation Relations

The exact correspondence between the alternative semantic notions of refinement
relations (Honsell et al., 2000; Honsell and Sannella, 1999; Kinoshita and Power,
1999; Kinoshita et al., 1997; Plotkin et al., 2000), and the syntactic notion of
abstraction barrier-observing simulation relation in Ch. 5 has not been clarified.
This task is important for several reasons. First, the ongoing research on al-
ternative refinement relations is of wide-spread interest, and has resolved a series
of hitherto unclarified issues, e.g., the lack of composability precluding stepwise
refinement, and the failure of correspondence with observational equivalence at
higher order. It is therefore important to connect the semantic and syntactic
notions for reasoning purposes. Secondly, refinement relations also explain ab-
straction in object-oriented approaches. Again, this only works satisfactorily
for first-order operations. Therefore, the recent research on abstraction barrier-
observing simulation relations is highly relevant for the object-oriented approach.
It seems particularly fruitful to look at the connection between the semantic no-
tion of pre-logical relations (Honsell and Sannella, 1999; Honsell et al., 2000), and
the syntactic notions developed in this thesis.

One should also try expressing pre-logical relations directly in the polymorphic
lambda-calculus and logic. For example, in System F and the logic, semantic no-
tions such as applicative structures and combinatory algebras can be internalised
in syntax. The semantic notion of pre-logical relations could therefore also be in-



8.2 Further Research 203

ternalised. The problem posed by an infinite family of relations might be solved
by using the more lenient notion of definability w.r.t. the relevant ADT according
to Abs-Bar , as developed and used in this thesis, rather than more absolute forms
of definability.

8.2.3 Reasoning within Abstraction Barriers

The encapsulation aspect of information hiding provides vital protection of both
the data and the operations of a module. For example, if sets are represented by
built-in lists, one might for performance reasons want the set constructors to build
sorted lists without duplicates, and then, say, a remove operation would benefit
from this sortedness. However, if users are allowed to use arbitrary lists to build
sets, one will get inconsistencies since the operations assume sorted lists, e.g.,
the predicate ∀x, s.in(x, remove(x, s)) = false will fail for wrongfully created sets
with multiple occurrences if the remove operator only removes first occurrences.

Encapsulation solves these issues for programming by raising appropriate ab-
straction barriers. However, for reasoning about data types, one must in general
take into account the internal representation, and then one must take action so
as to avoid inconsistencies. It is argued in (Hannay, 1998) that one should reflect
abstraction barriers in proofs as well. This is demonstrated for simple equational
logic. In fact, when introducing the universal proof strategy for observational
refinement proofs in Sect.2.7, we also mentioned a possibility for proof simplifica-
tion using the referentially opaque equational calculus from (Hannay, 1998). This
simplification carries over to the type-theoretic setting as well. Furthermore, it
might be fruitful to implement abstraction barriers of various kinds in logic to
reflect information hiding in general, and then the information hiding captured
by Abs-Bar in particular. This might in turn present an alternative approach to
that represented by the modified parametric PER-model interpretation of Ch. 6.

8.2.4 Using Tools

There is an obvious thing which we have not done, and that is to use our form-
alisms in practice in tools such as HOL, LEGO, Coq, Isabelle. See (Zwanenburg,
1999) for proofs done in Yarrow. We are fairly convinced of the usefulness of
the formalisms in this thesis, but putting them to use will inevitably disclose any
shortcomings or modifications that ought to be addressed.

This thesis is full of type-theoretic elaborations intended to aid the specifier.
However, these formalistic ideas are meant to be accessible to the specifier only
through a sensible interface, such as a specification language. The type-theoretic
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elaborations typically express proof obligations to be submitted to the tools just
mentioned. Therefore, machinery must be implemented that compiles what the
specifier writes, into proof obligations as devised in this thesis.

8.2.5 Other Models and Other Type Systems

We have added axioms to the logic, but we have not made any model-theoretical
deliberations outside relating the discussion mainly to interpretations into the
parametric PER-model. It is for example highly relevant to investigate the general
power of these axioms in restricting the class of models. This would especially
come into play if one were to consider consistency w.r.t. related type systems. We
have not looked into whether or not the logic extended with the axioms Quot

and Sub, or QuotG and SubG is complete w.r.t. the parametric models.

8.2.6 Semantic Reasoning

We generalised notions of specification refinement in type theory partly because
this brings the subject closer to mechanical reasoning, an absolute necessity for
any real-life software development process based on formal methods. However,
we also recognise the fact that semantic reasoning is often easier and quicker to
perform in the absence of adequate tools and in the presence of experts. Indeed
syntactic formal reasoning can seem unnecessarily cumbersome at times, and some
people might find this exactly the case in this thesis.

We would like to see the development in this thesis inspire reasoning on the
semantic level as well as on the syntactic level explicitly treated in this thesis.
The proposal to look at pre-logical relations in conjunction with our notions of
simulation relation is one such endeavour.

Related to this, one should conduct research emphasising the semantic signi-
ficance of the formalisms developed in this thesis. We have primarily used models
to show the soundnes of extensions of the logic with various axioms, but it is also
relevant to see what sense the formalisms make semantically. This is most fruitful
and interesting when done w.r.t. non-syntactic models. That is why we made the
effort to develop the results in this thesis also referring to such models.

—

This concludes the main body of this thesis. We hope you have enjoyed at least
some of what has been described. Thank you for your attention.



If you have an apple and I have an apple and we exchange apples then
you and I will still each have one apple. But if you have an idea and
I have an idea and we exchange these ideas, then each of us will have
two ideas. George Bernard Shaw
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Appendix A

Logical Deduction Rules

This appendix contains full sets of logical deduction rules, many of which are
omitted from the main discussion.

A.1 Referentially Opaque Equational Calculi

Here we cite the referentially opaque equational calculi �FI and �FRI of (Hannay,
1998). We referred to these calculi in Sect. 2.8.

First, for any signature Σ, a Σ-context c[�] is a term c ∈ TΣ∪{�}(X). If c[�] is
a Σ-context, we will write c ∈ TΣ(X) instead of c ∈ TΣ∪{�}(X).

A.1.1 Congruence Induced by a Set of Equations

Recall that for a set of Σ-equations E ⊆ TΣ(X) × TΣ(X), the congruence ∼A
E

induced by E on any Σ-algebra A is defined as the least Σ-congruence containing
{〈φ(l), φ(r)〉 | 〈l, r〉 ∈ E, φ : TΣ(X) → A}. This definition is equivalent to
demanding the least equivalence relation containing {〈φ(c[l]), φ(c[r])〉 | 〈l, r〉 ∈
E, c ∈ TΣ(X), φ : TΣ(X)→A}, i.e., the relation inductively defined by

induce :
φ(c[l]) ∼A

E φ(c[r])
; 〈l, r〉 ∈ E, c ∈ TΣ(X), φ : TΣ(X)→A

refl :
a ∼A

E a
sym :

a ∼A
E a′

a′ ∼A
E a

trans :
a ∼A

E a′′, a′′ ∼A
E a′

a ∼A
E a′

The quotient w.r.t. to ∼A
E is written A/E. Of course, one usually writes s ∼TΣ(X)

E t

as E � s = t. This defines the equational calculus over equations E.
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A.1.2 Abstraction Barrier by FI Structure

We are focusing on equational instances of FRI and FI specificational structures.
We start with the simpler FI-structure. The particular structure of interest is

quotient (derive 〈Σ, E〉 by incl : Σexport ↪→ Σ) by E ′ (†)

with semantics
{(A|Σexport )/E′ | A ∈ ModΣ(E)}

for ModΣ(E) the class of Σ-algebras satisfying all equations in E. If Σexport � Σ

then the signature fragment Σh = Σ \ Σexport is outside the image of incl , so the
reduct construct hides the interpretations of operator symbols and sorts in Σh.
Structure is the essential abstraction barrier here: It is crucial that the hiding
derive step is done before quotienting, since quotienting in the presence of hidden
operators might yield inconsistency as illustrated in Example 2.5 (p. 35).

A.1.3 Calculus �FI

The calculus �FI will be a generalisation in a certain sense of the equational calcu-
lus for the flat basic case, as explained in the following. For a basic specification
SP = 〈Σ, E〉 we have by Birkhoff for the equational calculus �

[[SP ]] |= s = t ⇔ TΣ(X)/E |= s = t ⇔ E � s = t ∗

Here TΣ(X)/E is a classifying model of [[SP ]]. Now let KFI be the semantics of
the FI structure (†). We shall obtain a calculus �FI and a classifying model TKFI

such that

KFI |= s = t ⇔ TKFI |= s = t ⇔ �FI s = t

Algebras in KFI are of the form (A|Σexport )/E′ where A is a model for E. The
classifying model is (TΣ(X)/E|Σexport )/E′ (Theorem A.1 below). Viewing for the
moment TΣ(X)/E|Σexport as a “term-algebra” T , we directly get an abstract calculus
for KFI by considering ∼T

E′ on T and the classifying model T/E ′. This is a
generalisation of the basic case above where E � is given directly by ∼TΣ(X)

E .
The abstract calculus thus operates on elements of T , i.e., congruence classes
q of TΣ(X)/E|Σexport . Notice that each q has the form [t]E for t ∈ TΣ(X)|Σexport ,
and recall that in general TΣexport (X) �⊇ TΣ(X)|Σexport , because for any s ∈ Sexport ,
TΣ(X)|Σexport s = TΣ(X)s.

Of course, instead of this abstract calculus we would rather have a calculus
operating on terms. We obtain this by “opening up” the congruence classes q and



A.1 Referentially Opaque Equational Calculi 209

then building a calculus over E ′ on TΣ(X)|Σexport . Opening up the congruence
classes necessitates importing the calculus E �. We thus quite naturally get the
following calculus �FI. For all u, v ∈ TΣ(X)|Σexport ,

importE :
E � u = v

�FI u = v

induceE ′ : �FI φ(c[l]) = φ(c[r])
;
〈l, r〉 ∈ E ′, c ∈ TΣexport (X),

φ : TΣexport (X)→TΣ(X)|Σexport

refl : �FI u = u
sym :

�FI u = v

�FI v = u
trans :

�FI u = w,�FI w = v

�FI u = v

In rule induceE ′, the contexts are TΣexport (X)-contexts, giving referential opacity
w.r.t. TΣ(X)|Σexport . This is a direct consequence of the definition of congruence
on a Σexport -algebra (TΣ(X)|Σexport ) induced by a set of Σexport -equations (E ′). In
this way the abstraction barrier provided by the reduct construct in the semantics
KFI, gets its counterpart in the calculus in the form of referential opacity. Notice
that in fact φ(c[�]) ∈ TΣ(X)|Σexport . However, the fact that c[�] is a TΣexport (X)-
context, ensures the essential property that all operator symbols in the path from
� to the root of φ(c[�]) (seen as a tree of subterms) are from Ωexport .

Theorem A.1 (Soundness and completeness) Let KFI be the semantics
{(A|Σexport )/E′ | A ∈ ModΣ(E)} of (†). For all u, v ∈ TΣexport (X),

KFI |= u = v ⇔ TΣ(X)/E|Σexport/E′ |= u = v ⇔ �FI u = v

Proof: This follows from Theorem A.5 by observations A.3 and A.4 below. �

A.1.4 Abstraction Barrier by FRI-structure

The FRI approach is in our context represented by the specification structure

quotient (restrict (derive 〈Σ, E〉 by incl : Σexport ↪→ Σ) on S ′) by E ′ (‡)

where Σexport =
〈
Sexport , Ωexport

〉
, S ′ ⊆ Sexport . Its semantics is

{RS′(A|Σexport )/E′ | A ∈ ModΣ(E)}

As mentioned in the main discussion, the input sorts In are now Sexport \S ′. There
is a range of model classes according to the choice of S ′. The case S ′ = ∅ gives
R∅(A|Σexport ) = A|Σexport , and corresponds to FI.
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A.1.5 Calculus �FRI

Again we relate to the standard equational calculus. For the basic equational
specification SP = 〈Σ, E〉 we have for �ω, i.e., the equational calculus augmented
with the ω-rule,

Reach([[SP ]]) |= s = t ⇔ GΣ/E |= s = t ⇔ �ω s = t ∗∗

where Reach([[SP ]]) is the subclass of [[SP ]] consisting of all algebras reachable on
the sorts S of Σ, i.e., ground term denotable algebras, or computation structures.
Now, in the FRI approach we are interested in classes of reachable subalgebras,
rather than subclasses of reachable algebras. However in a flat equational setting
these two are the same: Let RS′(ModΣ(E)) = {RS′(A) | A ∈ ModΣ(E)} and
ReachS′(ModΣ(E)) = {A ∈ ModΣ(E) | A is reachable on S ′}.

Fact A.2 RS′(ModΣ(E)) = ReachS′(ModΣ(E))

This correspondence means that we can utilise the ω-rule also when considering
RS′([[SP ]]). In fact it is follows that for arbitrary S ′ ⊆ S,

RS′([[SP ]]) |= s = t ⇔ RS′(TΣ(X)/E) |= s = t ⇔ �ω
S′ s = t

where �ω
S′ denotes the standard equational calculus augmented by the following

parameterised ω-rule.

∀τ : TΣ(X)→RS′(TΣ(X)) . � τ(s) = τ(t)

� s = t

The special case S ′ = ∅ is simply ∗. The case S ′ = S is ∗∗, in which case
RS′(TΣ(X)/E) ∼= GΣ/E is the initial object of ModΣ(E).

Now let KFRI
S′ be the semantics the FRI structure (‡). By analogy to the basic

case we will devise a calculus �FRI
S′ with a parameterised ω-rule and classifying

model TKFRI
S′

such that

KFRI
S′ |= s = t ⇔ TKFRI

S′
|= s = t ⇔ �FRI

S′ s = t

By the way, also analogously to the basic case, the classifying model TKFRI
S′

will
in the case S ′ = S be the initial object of KFI.

Observation A.3 For S ′ = ∅, KFRI
S′ = KFI.

Algebras in KFRI
S′ are of the form RS′(A|Σexport )/E′ where A is a model for E.

The classifying model is RS′(TΣ(X)/E|Σexport )/E′ (Theorem A.5 below). As we did
for the FI case, viewing for the moment RS′(TΣ(X)/E|Σexport ) as a “term-algebra”
T ′, we directly get an abstract calculus for KFRI by considering ∼T ′

E′ on T ′ and
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the classifying model T ′/E′. The abstract calculus thus operates on elements of
T ′, i.e., congruence classes q of RS′(TΣ(X)/E|Σexport ), and each q has the form
[t]E for t ∈ RS′(TΣ(X)|Σexport ). Again we obtain a term calculus by opening
up the congruence classes and importing E �. This calculus is defined over
RS′(TΣ(X)|Σexport ) and is given by the congruence on RS′(TΣ(X)|Σexport ) induced
by the set of Σexport -equations

EFRI = (∼TΣ(X)
E )�RS′(TΣ(X)|Σexport ) ∪ E ′

Remember now that as KFRI consists of Σexport -algebras, we are interested in
satisfiability of Σexport statements, i.e., Σexport -equations. However, depending on
S ′ it may be the case that TΣexport (X) �⊆ RS′(TΣ(X)|Σexport ), in which case the
calculus will not respond to all Σexport -equations. Hence, we supply an ω-rule
dependent on S ′.

The calculus �FRI
S′ is given by the following single rule. For all u, v ∈ TΣexport (X),

ωS′ :
∀τ : TΣexport (X)→RS′(TΣ(X)|Σexport ) . τ(u) ∼RS′(TΣ(X)|Σexport )

EFRI τ(v)

�FRI
S′ u = v

To spell that out, let �FI
S′ be the following calculus. For all u, v ∈ RS′(TΣ(X)|Σexport ),

importE :
E � u = v

�FI
S′ u = v

induceE ′ : �FI
S′ φ(c[l]) = φ(c[r])

;
〈l, r〉 ∈ E′, c ∈ TΣexport (X),

φ : TΣexport (X)→RS′(TΣ(X)|Σexport )

refl : �FI
S′ u = u

sym :
�FI

S′ u = v

�FI
S′ v = u

trans :
�FI

S′ u = w,�FI
S′ w = v

�FI
S′ u = v

Now �FRI
S′ is given by the following rule. For all u, v ∈ TΣexport (X),

ωS′ :
∀τ : TΣexport (X)→RS′(TΣ(X)|Σexport ) . �FI

S′ τ(u) = τ(v)

�FRI
S′ u = v

Observation A.4 �FRI
S′ subsumes �FI: If S ′ = ∅ then the rule ωS′ adds nothing

to �FI
S′ , so for u, v ∈ TΣexport (X), �FRI

∅ u = v ⇔ �FI
∅ u = v ⇔ �FI u = v.

Theorem A.5 (Soundness and completeness) Let KFRI
S′ be the semantics of

(‡), namely {RS′(A|Σexport )/E′ | A ∈ ModΣ(E)}. For any u, v ∈ TΣexport (X),

KFRI
S′ |= u = v ⇔ RS′(TΣ(X)/E|Σexport )/E′ |= u = v ⇔ �FRI

S′ u = v

Proof: See (Hannay, 1998). �
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A.2 Logic for Parametric Polymorphism

The inference rules for the logic for parametric polymorphism (Plotkin and Abadi,
1993) is natural deduction, intuitionistic style, extended over formulae involving
relation symbols, together with the axiom schema of relational parametricity. We
use the sequent notation Φ �Γ φ, where every term, type, and relation symbol in
φ and in the formulae in Φ are well-formed given Γ. For negation, when we write
¬φ, we really mean φ ⇒ ⊥.

∧-intro :
Φ �Γ φ Φ �Γ ϕ

Φ �Γ φ ∧ ϕ
∧1-elim :

Φ �Γ φ ∧ ϕ

Φ �Γ φ
∧2-elim :

Φ �Γ φ ∧ ϕ

Φ �Γ ϕ

⇒-intro :
Φ, φ �Γ ϕ

Φ �Γ φ ⇒ ϕ
⇒-elim :

Φ �Γ φ ⇒ ϕ Φ �Γ φ

Φ �Γ ϕ

ty-∀-intro :
Φ �Γ,X φ[X]

Φ �Γ ∀X.φ[X]
, X not free in Φ ty-∀-elim :

Φ �Γ ∀X.φ[X] Γ � T

Φ �Γ φ[T/X]

te-∀-intro :
Φ �Γ,x:T φ[x]

Φ �Γ ∀x :T.φ[x]
, x not free in Φ te-∀-elim :

Φ �Γ ∀x :T.φ[x] Γ � t :T

Φ �Γ φ[t/x]

⊥-elim :
Φ �Γ ⊥
Φ �Γ φ

∨1-intro :
Φ �Γ φ

Φ �Γ φ ∨ ϕ
∨2-intro :

Φ �Γ ϕ

Φ �Γ φ ∨ ϕ

∨-elim :
Φ �Γ φ ∨ ϕ Φ, φ �Γ ψ Φ, ϕ �Γ ψ

Φ �Γ ψ

ty-∃-intro :
Φ �Γ φ[T ] Γ � T

Φ �Γ ∃X.φ[X]

ty-∃-elim :
Φ �Γ ∃X.φ[X] Φ, φ[X] �Γ,X ϕ

Φ �Γ ϕ
, X not free in Φ

te-∃-intro :
Φ �Γ φ[t] Γ � t :T

Φ �Γ ∃x :T.φ[x]

te-∃-elim :
Φ �Γ ∃x :T.φ[x] Φ, φ[x] �Γ,x:T ϕ

Φ �Γ ϕ
, x not free in Φ
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—

re-∀-intro :
Φ �Γ,R⊂A×B φ[R]

Φ �Γ ∀R⊂A×B . φ[R]
, R not free in Φ

re-∀-elim :
Φ �Γ ∀R⊂A×B.φ[R] Γ � ρ⊂A×B

Φ �Γ φ[ρ]

re-∃-intro :
Φ �Γ φ[ρ] Γ � ρ⊂A×B

Φ �Γ ∃R.φ[R]

re-∃-elim :
Φ �Γ ∃R.φ[R] Φ, φ[R] �Γ,R⊂A×B ϕ

Φ �Γ ϕ
, R not free in Φ

—

refl : ∀X.∀x :X.x =X x

subst : ∀X.∀Y.∀R⊂X×Y.∀x :X.∀x′ :X.∀y :Y.∀y′ :Y .

R(x, y) ∧ x =X x′ ∧ y =Y y′ ⇒ R(x′, y′)

ty-cong : (∀X . t[X] =Y u[X]) ⇒ (ΛX.t) =∀X.Y (ΛX.u)

te-cong : (∀x :X . t[x] =Y u[x]) ⇒ (λx :X.t) =X→Y (λx :X.u)

ty-βeq : ∀X.(ΛX.t)X = t

te-βeq : ∀x :T.(Λx :T.t)x = t

ty-ηeq : ∀f :∀X.T (ΛX.fX) =∀X.T f

te-ηeq : ∀X.∀Y.∀x :X→Y.(λx :X.fx) =X→Y f

—

weak :
Φ �Γ φ

Φ, ϕ �Γ φ

—

Param : ∀Y1, . . . , ∀Yn∀u : (∀X.T [X, Y1, . . . , Yn]) . u(∀X.T [X, eqY1
, . . . , eqYn

])u
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A.3 Excluded Middle

The constructive logic for parametric polymorphism in (Plotkin and Abadi, 1993)
can be made classical by adding the rule of excluded middle. This is required for
the correspondence in Sect. 4.6.

Excluded Middle : Φ �Γ φ ∨ ¬φ

A.4 Axiom of Choice

The logic can be augmented with the axiom of choice.

AC : ∀X, Y . (∀x :X.∃y :Y . φ[x, y]) ⇒ (∃f :X→Y.∀x :X . φ[x, (fx)])

AC does not hold in the parametric PER-model. The axiom of choice enters the
discussion in Sect. 4.4 when importing the universal proof strategy for proving
refinement into type theory, and in Sect. 6.2 when discussing the setoid semantics.

A.5 Universal Proof Strategy

In Sect. 4.4, for importing the universal proof strategy for proving refinement into
type theory, it suffices for data types with first-order profiles to assert:

Sub : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ] x) ⇒
∃S . ∃s :T[S, Z] . ∃R′⊂S×S . ∃mono :S→X .

∀s :S . s R′ s ∧
∀s, s′ :S . s R′ s′ ⇔ (mono s) R (mono s′) ∧
x (T[(x :X, s :S).(x =X (mono s)), eqZ]) s

Quot : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ] x ∧ equiv(R)) ⇒
∃Q . ∃q :T[Q, Z] . ∃epi :X→Q .

∀x, y :X . xRy ⇔ (epi x) =Q (epi y) ∧
∀q :Q.∃x :X . q =Q (epi x) ∧
x (T[(x :X, q :Q).((epi x) =Q q), eqZ]) q

These axiom schemata hold also for higher-order profiles if one relates to the
setoid model, Sect. 6.2 and Sect. 6.3, but then Sub has to be modified to:
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Sub : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ] x) ∧ (x T[PR, eqZ] x) ⇒
∃S . ∃s :T[S, Z] . ∃R′⊂S×S . ∃mono :S→X .

∀s :S . s R′ s ∧
∀s, s′ :S . s R′ s′ ⇔ (mono s) R (mono s′) ∧
x (T[(x :X, s :S) . (x =X (mono s)), eqZ]) s

The axiom schemata Sub and Quot do not admit important examples with
higher-order profiles. For data types with first-order or higher-order profiles we
therefore assert:

SubG : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ]X,X,x,x
C x) ⇒

∃S . ∃s :T[S, Z] . ∃R′⊂S×S . ∃mono :S→X .

∀s :S . s R′ s ∧
∀s, s′ :S . s R′ s′ ⇔ (mono s) R (mono s′) ∧
x (T[(x :X, s :S).(x =X (mono s)), eqZ]abo

C ) s

QuotG : ∀X . ∀x :T[X, Z] . ∀R⊂X×X . (x T[R, eqZ]X,X,x,x
C x ∧ equiv(R))

⇒ ∃Q . ∃q :T[Q, Z] . ∃ epi :X→Q .

∀x, y :X . x R y ⇔ (epi x) = Q(epi y) ∧
∀q :Q.∃x :X . q =Q (epi x) ∧
x (T[(x :X, q :Q).((epi x) =Q q), eqZ]abo

C ) q

These axiom schemata hold in the data type semantics of Sect. 6.4.

A.6 ω-Rule

The following infinitary ω-rule is never a part of the logic, but holds in the para-
metric minimal model due to (Hasegawa, 1991), mentioned in Sect. 3.4.2. The
ω-rule is used in semantic arguments in the first sections of Ch. 5.

ω-rule :
Φ �Γ φ[t], for all closed terms Γ � t :T

Φ �Γ ∀x :T . φ[x]
, T is inhabited





Appendix B

Proofs

This Appendix contains proofs that may hold some interest, and that are omitted
from the main discussion for clarity of discourse.

B.1 Simulation Relations in General

Proof of Theorem 3.4: ⇒: Suppose u (∃X.T [X, ρ]) v. Substitution on the
result of Lemma B.2 using the result of Lemma B.1, gives the desired result.
⇐: Suppose u SimRelT [X,ρ] v, i.e.,

∃A, B.∃a :T [A, U ], b :T [B, V ].

∃R⊂A×B . u = (packAa) ∧ v = (packBb) ∧ a(T [R, ρ])b

By assumption we may substitute (packAa) and (packBb) for u and v, so it suffices
to show that (packAa) (∃X.T [X, ρ]) (packBb), i.e., that

∀Y.∀Z.∀S⊂Y ×Z.

∀f :∀X.T [X, U ]→Y. ∀g :∀X.T [X, V ]→Z .

[ ∀A′.∀B′.∀S ′⊂A′×B′ . ∀a′ :T [A′, U ].∀b′ :T [B′, V ].

a′ (T [S ′, ρ]) b′ ⇒ (f A′ a′) S (g B′ b′) ]

⇒ ((packAa) Y f) S ((packBb) Z g)

The conclusion is β-equal to (fA a) S (g B b). Instantiating the antecedent with
A, B, a, b, and the R given by the assumption, gives exactly what we want. �

The two following lemmata were reconstructed in all essence by Martin Hofmann.

Lemma B.1 The following is derivable.

∀Z.∀u :∃X.T [X, Z] . u =∃X.T [X,Z] (u ∃X.T [X, Z] pack)

217
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Proof: By the Identity Extension Lemma (Theorem 3.2) we must show

∀Y.∀Z.∀S⊂Y ×Z.

∀f :∀X.T [X, Z]→Y. ∀g :∀X.T [X, Z]→Z.

[ ∀A′.∀B′.∀S ′⊂A′×B′ . ∀a′ :T [A′, Z].∀b′ :T [B′, Z] .

a′ (T [S ′, eqZ]) b′ ⇒ (f A′ a′) S (g B′ b′) ]

⇒ (u Y f) S ((u ∃X.T [X, Z] pack) Z g)

Let R̃
def
= (y : Y, v : ∃X.T [X, Z]) . (y S (v Z g)). To get the conclusion it suffices

to show (u Y f) R̃ (u ∃X.T [X, Z] pack). This follows from the Param instance
u (∀Y.∀X.(T [X, eqZ]→Y )→Y ) u, if f (∀X.(T [X, eqZ]→ R̃)) pack is derivable.
So we must derive

∀A′.∀B′.∀S⊂A′×B′ . ∀a′ :T [A′, Z].∀b′ :T [B′, Z] .

a′ (T [S ′, eqZ]) b′ ⇒ (f A′ a′) R̃ (pack B′ b′)

� by def. of R̃

(f A′ a′) S ((pack B′ b′) Z g)

� by β red.

(f A′ a′) S (g B′ b′)

which is exactly the antecedent above. �

Lemma B.2 The following is derivable.

∀u :∃X.T [X, U ], v :∃X.T [X, V ] .

u (∃X.T [X, ρ]) v ⇒ (u ∃X.T [X, U ] pack) R̂ (v ∃X.T [X, V ] pack)

where

R̂
def
= (u :∃X.T [X, U ], v :∃X.T [X, V ]) .

(∃A, B.∃a :T [A, U ], b :T [B, V ].∃R⊂A×B .

u = (packAa) ∧ v = (packBb) ∧ a (T [R, ρ]) b)

Proof: The assumption u (∃X.T [X, ρ]) v says

∀Y.∀Z.∀S⊂Y ×Z . uY (∀X.(T [X, ρ]→S)→S) vZ

which instantiates to (u ∃X.T [X, U ]) (∀X.(T [X, ρ]→ R̂)→ R̂) (v ∃X.T [X, V ]).
This in turns says

∀f :∀X.(T [X, U ]→∃X.T [X, U ]).∀g :∀X.(T [X, V ]→∃X.T [X, V ]) .

f (∀X.(T [X, ρ]→ R̂)) g ⇒ (u ∃X.T [X, U ] f) R̂ (v ∃X.T [X, V ]) g)

which instantiates to
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packT [X,U] (∀X.(T [X, ρ]→ R̂)) packT [X,V ] ⇒
(u ∃X.T [X, U ] packT [X,U]) R̂ (v ∃X.T [X, V ] packT [X,V ])

Thus we need only show that packT [X,U] (∀X.(T [X, ρ]→ R̂)) packT [X,V ] is deriv-
able. To do this, we must derive

∀A′.∀B′.∀S ′⊂A′×B′.∀a′ :T [A′, U ].∀b′ :T [B′, V ] .

a′ (T [S ′, ρ]) b′ ⇒ (packT [X,U] A′ a′) R̂ (packT [X,V ] B′ b′)

But indeed this follows from the definition of R̂. �

B.2 Simulation Relations at Higher Order

Proof of Lemma 5.12: We are to show, for T[X, Z] adhering to HADTObs , for
U [X, Z] having no occurrences of universal types other than those in Obs, and
whose only free variables are among X and Z, for f : ∀X.(T[X]→U [X]) whose
only free variables are term variables of types in In, the derivability of

f (∀X.T[X, eqZ]ε→U [X, eqZ]ε) f

Lemma B.5 below establishes

f (∀X.T[X, eqZ]f ε→U [X, eqZ]f ε) f

Since T[X, Z] adheres to HADTObs , and since U [X, Z] has no occurrences of uni-
versal types other than those in Obs , we have, via Lemma B.4 and Lemma 5.10,
for any A, B, R⊂A×B, a :T[A], b :T[B], and abo = A, B, a, b, that by definition,
T[R, eqZ]f abo = T[R, eqZ]abo and U [R, eqZ]f abo = U [R, eqZ]abo. Thus the result
follows. �

Recall from the comments following Def. 5.8 (p. 120) that, according to Abs-Bar
(p. 54), actual computations arising from a virtual computation can have applic-
ations of polymorphic terms of two kinds. If the instantiating type in the virtual
computation does not contain the virtual data representation, then the instanti-
ating type will appear identically in actual computations. On the other hand, if
the instantiating type in the virtual computation does contain the virtual data
representation, then the instantiating type in each actual computation will differ
according to the actual data representations. To capture this in the present type
theory and logic, we can for the second case, relate to a given virtual computation
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and make a finite conjunction over all types involving the virtual data represent-
ation that actually occur in the given virtual computation. This is what we do
in Def. B.3 below, where an abo-relation is defined w.r.t. a given computation f .
Although this is not appropriate for the top-level discussion, this is suitable for
the purpose of proving Lemma 5.12.

We point out that it is essential that we do capture type application as de-
scribed by Abs-Bar . It is not adequate to handle universal types by writing

U = ∀Y.U ′[Y , Y, X] : U [ρ, R]abo def
=

∀(Ek+1, Fk+1, ρk+1⊂Ek+1×Fk+1)(U
′[ρ, ρk+1, R]abo,Ek+1,Fk+1)

where abo, Ek+1, Fk+1
def
= E, Ek+1, F , Fk+1, A, B, a, b

in Def 5.8.

Definition B.3 (abo-Relation) Relative to T[X], for Y , A, B, R ⊂ A×B,
a :T[A], b :T[B], let ρ⊂E×F be s.t. ρi = eqYj

⊂Yj×Yj or ρi = R⊂A×B. Given
f :∀X.(T[X]→U [X]), whose only free variables are term variables of types in In,
define the abo-relation U [ρ, R]f abo ⊂ U [E, A]× U [F , B] relative to f , for the list
abo = A, B, a, b, inductively on U [Y , X] by

U = X : U [ρ, R]f abo def
= R

U = Yi : U [ρ, R]f abo def
= ρi

U = ∀Y.U ′[Y , Y, X] : U [ρ, R]f abo def
= (g :∀Y.U ′[E, Y, A], h :∀Y.U ′[F , Y, B]) .

( (∀Y.gY (U ′[ρ, eqY , R]f abo) hY ) ∧∧
D[Y ,X] (gD[E, A] (U ′[ρ, D[ρ, R], R]f abo) hD[F , B]) )

where the conjunction ranges over all types D[Y , X] con-
taining X, that instantiate polymorphic terms in f .

U = U ′→U ′′ : U [ρ, R]f abo def
=

(g :U ′[E, A]→U ′′[E, A], h :U ′[F , B]→U ′′[F , B]) .

(∀x :U ′[E, A], ∀y :U ′[F , B] .

(x U ′[ρ, R]f abo y ∧ Dfnblf abo
U ′[Y ,X](x, y)) ⇒ (gx) U ′′[ρ, R]f abo (hy))

where,

Dfnblf abo
U ′[Y ,X](x, y)

def
= ∃fU ′ :∀X.(T[X]→U ′[I, X]) . (fU ′A a) = x ∧ (fU ′B b) = y

where Ii is Yj or X as appropriate. To avoid clutter, we omitted parameters Z

of T[X, Z] in the above presentation. Of course, eqZ
f abo def

= eqZ.

We usually omit the type subscript on the Dfnblf abo clause.



B.2 Simulation Relations at Higher Order 221

Lemma B.4 We can derive the following in the logic.

∀g, h :D . g =D h ⇔ g(Df abo)h, for D ∈ Obs

Proof: We illustrate with the inductive type Nat. So consider g(Natf abo)h, i.e.,

(∀Y.∀y, y′ :Y.∀s, s′ :Y →Y .

y =Y y′ ∧ Dfnblf abo(y, y′) ∧ s(eqY →eqY )f abos′ ∧ Dfnblf abo(s, s′)

⇒ (gY ys) =Y (hY y′s′)) ∧∧
D[Y ,X] (∀a :D[E, A], b :D[F , B].∀s :D[E, A]→D[E, A], s′ :D[F , B]→D[F , B] .

a D[ρ, R] b ∧ Dfnblf abo(a, b) ∧ s(D[ρ, R]→D[ρ, R])f abos′ ∧ Dfnblf abo(s, s′)

⇒ (gD[E, A]as) D[ρ, R] (hD[F , B]bs′)))

The clause Dfnblf abo(y, y′) says

∃f :∀X.(T[X]→Y ) . (fA a) = y ∧ (fB b) = y′

Since we have y =Y y′, this is derivable by exhibiting ΛX.λx :T[X].y. Similarly,
we derive Dfnblf abo(s, s′) by exhibiting ΛX.λx : T[X].s : ∀X.(T[X]→ (Y → Y )).
This suffices because s(eqY →eqY )f abos′ is equivalent to s(eqY →eqY )s′, which by
the Identity Extension Lemma gives s =Y →Y s′. Thus, these Dfnblf abo clauses are
vacuous. So this part of the definition of g(Natf abo)h is equivalent to

∀Y.∀y, y′ :Y.∀s, s′ :Y →Y . y =Y y′ ∧ s(eqY →eqY )s′ ∧ ⇒ (gY ys) =Y (hY y′s′)

or ∀Y . gY (eqY →(eqY →eqY )→eqY )hY , i.e., ∀Y . gY = hY . By the congruence
axiom schema, we get ΛY.gY = ΛY.hY , which by η-equality yields g =Nat h.

Furthermore, let R̂
def
= (a : A, b : B) . (a R b ∧ Dfnblf abo(a, b)). We have

that s(R → R)f abos′ ∧ Dfnblf abo(s, s′) ⇒ s(R̂ → R̂)s′. This is easily seen;
s(R → R)f abos′ says ∀a : A, b : B . a R b ∧ Dfnblf abo(a, b) ⇒ sa R s′b, i.e.,
∀a : A, b : B . a R̂ b ⇒ sa R s′b. Since Dfnblf abo(a, b) and Dfnblf abo(s, s′) give
Dfnblf abo(sa, s′b), we get s(R̂→ R̂)s′. This gives

(∀a :A, b :B.∀s :A→A, s′ :B→B .

a R̂ b ∧ s(R̂→ R̂)s′ ⇒ (gAas) R̂ (hBbs′)))

⇒ (∀a :A, b :B.∀s :A→A, s′ :B→B .

a R b ∧ Dfnblf abo(a, b) ∧ s(R→R)f abos′ ∧ Dfnblf abo(s, s′)

⇒ (gAas) R (hBbs′)))

i.e.,
gA (R̂→(R̂→ R̂)→ R̂) hB ⇒ gA (R→(R→R)→R)f abo hB

This argument generalises to any D[ρ, R]⊂D[E, A]×D[F , B].
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From g =Nat h we then get g(Natf abo)h by instantiating

∀E, F, ρ⊂E×F . gE (ρ→(ρ→ρ)→ρ) hF

first by Y and eqY , and then by D[E, A], D[F , B] and suitable R̂. �

Due to induction purposes, Lemma B.5 below is quite general. Note however
that we cannot transfer the full generality to the axiom schema spParam, because
some instances of ∀X.(T[X]→ U [I , X]) are not inhabited by desired terms, in
particular, there is no f :∀X.(T[X]→Y ) for free Y different from any parameter
Z of ∃X.T[X], whose only free variables are term variables of types in In. This
is directly relevant to the discussion in Sect. 5.4.1 (p. 140), where this excludes
an erroneous instance that would otherwise yield inconsistency.

Lemma B.5 For any term f : ∀X.(T[X]→ U [I , X]), where Ii is Yj or X, and
where the free variables of f are term variables of types in In, we can derive

f (∀X.T[X, eqZ]f ε→U [ρ, X, eqZ]f ε) f

where ρi is eqYj
or X.

Proof: Unravelling the definitions, this becomes

∀A, B, R⊂A×B . ∀a :T[A, Z], b :T[B, Z] .

a T[R, eqZ]f abo b ⇒ (fA a) U [ρ, R, eqZ]f abo (fB b)

where ρi is eqYj
or R. By assumption, f has the form ΛX.λx : T[X, Z].t, where

the free term variables of t are among x :T[X, Z] and variables of types in In.
We will prove this lemma by induction on the structure of t. This is however

complicated by the fact that the Dfnblf abo clause is not stable over λ-abstraction.
For example, for t

def
= λx : X.x, where X is the quantified type variable in f the

corresponding Dfnblf abo clause is indeed fulfilled by ft
def
= ΛX.λx : T[X].λx : X.x,

but this cannot be asserted based on an induction hypothesis on subterm x,
because x as a free variable of bound type X cannot occur in any Dfnblf abo clause,
i.e., fx

def
= ΛX.λx :T[X, Z].x is ill-typed in this context.

We will simplify matters via a combinatory approach, since this eliminates
λ-abstraction, and it is easy to assert Dfnblf abo clauses for the combinators. First,
for any types U, V, W , let

KU,V
def
= λx :U.λy :V.x,

SU,V,W
def
= λx :U→V →W.λy :U→V.λz :U.(xz)(yz).
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Any simply-typed term λx :T.t is βη-equal to a term with SK combinators without
any occurrence of λ (other than those in the combinators). However, our terms
involve type abstraction as well. We do not have to eliminate Λ-abstraction as
we must λ-abstraction. But we must account for second-order terms when elim-
inating λ-abstraction. For this we use the following (non-algebraic) combinators.
(Algebraic combinators can be found in (Bruce et al., 1990).)

PU,V
def
= λf :∀X.U→V.λx :U . ΛY.(fY )x, X not free in U .

QD,U,V
def
= λf :U→∀X.V.λx :U . (fx)D

Then, any System F term λx :T.t is βη-equal to a term with SKPQ combinators
without any occurrence of λ (other than those in the combinators). We indicate
the translation clF of System F terms into SKPQ-combinator terms. The parts
marked with (∗) comprise the extension to the otherwise standard (e.g. (Mitchell,
1996)) translation of simply typed terms into SK-combinator terms.

clF (x) = x, for x a variable,

clF (λx :U.t) = 〈x :U〉clF (t),

clF (ut) = clF (u)clF (t),

clF (ΛX.t) = ΛX.clF (t), (∗)

clF (tD) = clF (t)D. (∗)

where for any combinatory term t, 〈x :U〉t is defined by

〈x :U〉x = SKK,

〈x :U〉y = Ky, for x �= y,

〈x :U〉c = Kc, for c a combinator,

〈x :U〉ut = S(〈x :U〉u)(〈x :U〉t),

〈x :U〉ΛX.t = P (ΛX.〈x :U〉t), (∗)

〈x :U〉tD = QD(〈x :U〉t), (∗)

For example, clF (λz :U.ΛX.λx :X.z) = P (ΛX.S(KK)(SKK)), and then intern-
ally applying type D, clF (λz :U.(ΛX.λx :X.z)D) = QD(P (ΛX.S(KK)(SKK))).
One needs to verify firstly that clF maps any System F term to some combinator
term without λ-abstraction, and secondly for any System F term t, that clF (t) is
βη-equal to t. This is straightforward.

—
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We can thus do induction on the structure of t, omitting λ-abstraction, but
considering four more base cases corresponding to the four combinators. So,
assuming a T[R, eqZ]f abo b, we must derive (fA a) U [ρ, R, eqZ]f abo (fB b):

t is a variable x: Well-typing means either (1) x is x, or (2) x is of a type
D in In. For (1) we must prove the derivability of a T[R, eqZ]f abo b. But this
is simply the antecedent. For (2), if U is some Zi we must show x =Zi

x which
is immediate, and if U is some closed D ∈ In, Param gives x(D)x and then
Lemma 5.10 gives x(Df abo)x.

For the remainder of the proof we omit Z and eqZ to avoid excessive clutter.
t is KU,V : We must demonstrate the derivability of

KU [E,A],V [E,A](U [ρ, R]→(V [ρ, R]→U [ρ, R]))f aboKU [F ,B],V [F ,B]

which is trivial, since this expands to

∀a :U [E, A], a′ :V [E, A], b :U [F , B], b′ :V [F , B] .

a(U [ρ, R]f abo)b ∧ Dfnblf abo(a, b) ∧
a′(V [ρ, R]f abo)b′ ∧ Dfnblf abo(a′, b′)

⇒ a(U [ρ, R]f abo)b

t is SU,V,W : We must show the derivability of

∀a :U [E, A]→V [E, A]→W [E, A], a′ :U [E, A]→V [E, A], a′′ :U [E, A],

∀b :U [F , B]→V [F , B]→W [F , B], b′ :U [F , B]→V [F , B], b′′ :U [F , B] .

[ a (U [ρ, R]→V [ρ, R]→W [ρ, R])f abo b ∧ Dfnblf abo(a, b) ∧
a′(U [ρ, R]→V [ρ, R])f abob′ ∧ Dfnblf abo(a′, b′) ∧
a′′(U [ρ, R]f abo)b′′ ∧ Dfnblf abo(a′′, b′′)] ⇒ (aa′′)(a′a′′)(W [ρ, R]f abo)(bb′′)(b′b′′)

First, a′′(U [ρ, R]f abo)b′′ ∧ Dfnblf abo(a′′, b′′) gives (a′a′′) (V [ρ, R]f abo) (b′b′′). Secondly,
Dfnblf abo(a′′, b′′) and Dfnblf abo(a′, b′) give Dfnblf abo((a′a′′), (b′b′′)). The combina-
tion then gives (aa′′)(a′a′′) (W [ρ, R]f abo) (bb′′)(b′b′′).

t is PU,V : We must show the derivability of

∀f :∀X.(U [E, A]→V [E, X, A]), a :U [E, A],

∀g :∀X.(U [F , B]→V [F , X, B]), b :U [F , B] .

[ f (∀X.(U [ρ, R]→V [ρ, X, R]))f abo g ∧ Dfnblf abo(f, g) ∧
a(U [ρ, R]f abo)b ∧ Dfnblf abo(a, b)] ⇒ ΛY.(fY )a (∀Y.V [ρ, Y, R])f abo ΛY.(fY )b

The goal is thus

∀Y . (ΛY.(fY )a)Y (V [ρ, eqY , R]f abo) (ΛY.(gY )b)Y ∧∧
D[Y ,X](ΛY.(fY )a)D[E, A] (V [ρ, D[ρ, R], R]f abo) (ΛY.(gY )b)D[F , B]
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First, f (∀X.(U [ρ, R]→V [ρ, X, R]))f abo g gives

∀Y . fY (U [ρ, R]→V [ρ, eqY , R])f abo gY ∧∧
D[Y ,X] fD[E, A] (U [ρ, R]→V [ρ, D[ρ, R], R])f abo gD[F , B]

And then a (U [ρ, R]f abo) b ∧ Dfnblf abo(a, b) gives

(∀Y . fY a (V [ρ, eqY , R])f abo gY b) ∧∧
D[Y ,X] fD[E, A]a (V [ρ, D[ρ, R], R])f abo gD[F , B]b

which is β-equal to the goal.
t is QD,U,V : We must show the derivability of

∀f :U [E, A]→∀X.V [E, X, A], a :U [E, A],

∀g :U [F , B]→∀X.V [F , X, B], b :U [F , B] .

[ f (U [ρ, R]→(∀X.V [ρ, X, R]))f abo g ∧ Dfnblf abo(f, g) ∧
a(U [ρ, R]f abo)b ∧ Dfnblf abo(a, b)]

⇒ (fa)D[E, A] (V [ρ, D[ρ, R], R])f abo (fb)D[F , B]

From a(U [ρ, R]f abo)b ∧ Dfnblf abo(a, b) we get fa (∀X.V [ρ, X, R])f abo gb, i.e.,

(∀Y . (fa)Y (V [ρ, eqY , R]f abo)(fb)Y ) ∧∧
D[Y ,X](fa)D[E, A] (V [ρ, D[ρ, R], R]f abo) (fb)D[F , B]

Instantiated with D[E, A], D[F , B], and D[ρ, R], this gives the goal.
t is (ut′): We must prove derivability of (ut′)[A, a](U [ρ, R]f abo)(ut′)[B, b],

where for some type U ′, we have u :U ′→U and t′ :U ′. From t we get the terms
fu

def
= ΛX.λx.u and ft′

def
= ΛX.λx.t′, such that fuAa = u[A, a] and fuBb = u[B, b],

and ft′Aa = t′[A, a] and ft′Bb = t′[A, a]. Then by induction hypothesis, we can
derive u[A, a] (U ′[ρ, R]→ U [ρ, R])f abo u[B, b] and t′[A, a] (U ′[ρ, R]f abo) t′[B, b].
Using ft′ to derive the necessary Dfnblf abo(t′[A, a], t′[B, b]) clause, we then get
u[A, a]t′[A, a] (U [ρ, R]f abo) u[B, b]t′[B, b].

t is ΛY.t′: Given ΛY.t′ : ∀Y.U ′[Y , Y, X], we must show the derivability of
ΛY.t′[E, Y, A, a] (∀Y.U ′[ρ, Y, R])f abo ΛY.t′[F , Y, B, b], which expands to

(∀Y . t′[E, Y, A, a] (U [ρ, eqY , R]f abo) t′[F , Y, B, b] ∧∧
D[Y ,X] t

′[E, D[E, A], A, a] (U [ρ, D[ρ, R], R]f abo) t′[F , D[F , B], B, b]

This follows by induction hypothesis on ΛX.λx :T[X].t′.
t is t′D: To derive: t′[E, A, a]D[E, A] (U [ρ, D[ρ, R], R]f abo) t′[F , B, b]D[F , B].

By induction hypothesis, we derive t′[E, A, a] (∀Y.U ′[ρ, Y, R])f abo t′[F , B, b], i.e.,
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(∀Y . t′[E, A, a]Y (U [ρ, eqY , R]f abo) t′[F , B, b]Y ∧∧
D[Y ,X] t

′[E, A, a]D[E, A] (U [ρ, D[ρ, R], R]f abo) t′[F , B, b]D[F , B]

We get what we want by instantiating with D[E, A], D[F , B], and D[ρ, R]. �

Proof of Lemma 5.24: Let γ be any environment on Γ.

1. |=Γ,γ ClosedS�,X(X). We have X in �, X. Thus we choose Γ̂ to include X,
X̂ to be X, and γ̂ such that [X �→ γ(X)].

2. |=Γ,γ ClosedS�(U) ∧ ClosedS�(V ) ⇒ ClosedS�(U → V ). From the ante-
cedent, we have Γ̂U , Û = U [T/X ], and γ̂U , as well as Γ̂V , V̂ = V [T ′/X′],
and γ̂V . Since γ̂U and γ̂V are made to agree with γ, in particular on common
variables, we may choose Γ̂ = Γ̂U ∪ Γ̂V , Û→V = Û→ V̂ , and γ̂ = γ̂U ∪ γ̂V .

3. |=Γ,γ ClosedS�,X(U) ⇒ ClosedS�(∀X.U). The interesting case is when X

occurs freely in U . From the antecedent, we have Γ̂ and Û = U [T/X , T/X],
where [[Γ̂ � Ti]]γ̂ = γ(Xi). Furthermore, since X is in �, X, we have that T

is X with γ̂ = γ̂′[X �→ γ(X)], for some γ̂′. Note that X does not occur in
any Ti, because Ti is either exactly Xi or a closed type. Then we can choose
∀X.Û for ∀̂X.U , and choose γ̂′ for the required environment, since for any
value A, we have [[Γ � U [X , X]]]γ[X �→A] = [[Γ̂ � U [T/X , X]]]γ̂′[X �→A].

4. |=Γ,γ ClosedSU
�,X,U(x), for variable x. Since X and U is in �, we can choose

Γ̂ to include X and x :U . By the same token, we must choose Û = U and
x̂ = x together with an environment γ̂ such that [x �→ γ(x)].

5. |=Γ,γ ClosedS�,X(U) ∧ ClosedSV
�,X,U(v) ⇒ ClosedSU→V

�,X (λx :U.v). The in-
teresting case is when x : U occurs freely in v. From the antecedent, we
firstly get Γ̂U , Û = U [T/X ], and γ̂U , where Û = U , since X is in �, X .
We also get Γ̂V , V̂ = V [T ′/X′], v̂ = v[T ′/X′, t/x, t/x] : V̂ , and γ̂V , such
that [[Γ̂V � V̂ ]]γ̂V

= [[Γ � V ]]γ , and [[Γ̂V � v̂ : V̂ ]]γ̂V
= [[Γ � v :V ]]γ . Since U is

in �, X , U , we have that t is x in v, with γ̂V (x) = γ(x). By assuming an
appropriate renaming of term variables, and since γ̂U and γ̂V are made to
agree with γ, we may set Γ̂ = Γ̂U∪Γ̂V and γ̂ = γ̂U∪γ̂V . Let A def

= [[Γ̂�Û ]]γ̂ =

[[Γ � U ]]γ . For any a ∈ A, we get [[Γ̂ � v̂[x] : V̂ ]]γ̂[x �→a] = [[Γ � v[x] :V ]]γ[x �→a],
and we can choose λx : Û .v̂ and Û→ V̂ , respectively, for λ̂x :U.v and Û→V .

6. |=Γ,γ ClosedSU→V
� (g) ∧ ClosedSU

�(u) ⇒ ClosedSV
�(gu). From the ante-

cedent, we have Γ̂, Û→V = (U→V )[T/X ], ĝ = g[T/X, t/x], and γ̂. We
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also have Γ̂′, Û ′ = U [T ′/X], û = u[T ′/X , t′/x′], and γ̂′. We now replace û

with a û′ :U [T/X ] such that [[Γ̂� û′]]γ̂ = [[Γ̂′� û]]γ̂′ . Such a û′ exists, because
U [T/X ] and U [T ′/X] differ only in the closed types Ti and T ′

i substituted
in for those Xi that are not in �, and Ti and T ′

i have equal denotations.
From this we get the desired V̂

def
= V [T/X ], and ĝu

def
= ĝû′.

7. |=Γ,γ ClosedSU
�,X(t) ⇒ ClosedS∀X.U

� (ΛX.t). The interesting case is when X

is free in U and t. As for (3), we get the desired ∀̂X.U by ∀X.Û , and the
desired environment by using γ̂′ from the environment γ̂ = γ̂′[X �→ γ(X)]

on Γ̂. It remains to deal with the term ΛX.t. From the antecedent, we have
t̂ = t[T/X, T/X, t/x], where T = X. We choose ΛX.t̂ for Λ̂X.t.

8. |=Γ,γ ClosedS
∀X.U [X]
�

(f) ∧ ClosedS�(A) ⇒ ClosedS
U [A]
�

(fA). Here we can
use f̂ , Â, and Û supplied by the antecedent, and form the desired f̂A and
Û [A], by f̂ Â and Û [Â].

9. |=Γ,γ ClosedS�(U) ⇒ ClosedS�′(U), for �′ as stated. Immediate.

10. |=Γ,γ ClosedSU
�(u) ⇒ ClosedSU

�′(u), for �′ as stated. Immediate.

�
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relation, 7
specification-, see specification re-

finement, 24
step, 24
stepwise, 6, 7, 24
up to observational equivalence,

9, 27
Refinement Calculus, 7

refinement map, 85
refinement relation, 10, 11, 126, 202
refines, 25
relation definition, 59
relational parametricity, 9, 61

logic for, 8
relativised, 34
replaceability, 4, 10
representation independence, 62
representation invariant, 62
restrict, 31
reuse, 4

satisfaction, 22
saturated relation, 67
second-order minimal model, 71
semantic reasoning, 204
semi-automated reasoning, see computer-

aided reasoning
setoid semantics, 13, 147, 149
Σ-algebra, 22

free, 22
Σ-context, 207
Σ-formula, 22
signature, 6, 22, 76

morphism, 30
sensible, 26

SIMULA, 26, 54
simulation relation, 10, 62, 78

alternative notion, see abo-simulation
relation

composability, 90
transitivity, 90

SML, see Standard ML
software

crisis, 2, 3
critical, 1
development, 2



INDEX 251

utility, 1
SOL, 40, 56
sorts, 22
specification, 4–7, 9

abstract, 6, 24
basic, 23
complex, 30
concrete, 6, 24
normal form, 31, 33, 110
observational, 27
of abstract data type, 79

in F3 represented in F2, 193
of abstract data types, 24, 172

in F3, 185
of constructors, 38, 86, 172
of polymorphic abstract data types,

172
up to observational equivalence,

9, 80
specification language, 24
specification refinement, 8, 24, 85, 172

in F3, 185
in F3 represented in F2, 194
in type theory, 8, 9

specification with hidden parts, 84
specification-building operators, 23, 30,

84
specifier, 14, 33, 80, 100, 110, 132,

162, 193, 197, 201, 203, 204
spParam, 124–127, 135, 139–141, 190,

191, 222
spParamC, 137–141, 167, 191, 192
stability, 9, 28, 79, 89, 103, 106
Standard ML, 6, 8
stepwise specification refinement, 6,

24, 74
strongly normalising, 42
Sub, 92, 93, 96, 98, 104, 107, 110,

146, 147, 149, 156, 159–161,
167, 193, 197, 200, 204, 214,
215

Sub-Arr, 154, 159, 160
subalgebra, 31
SubG, 146–148, 168, 169, 171–173,

179, 180, 193, 196, 197, 200,
204, 215

subobject, 11, 159, 169
subprofile, 186, 189
substitution, 41
sum, 30
syntactic model, see model
syntactic representation, 9
System R, 59, 66
System T, 43
System F, 49, 197

tequila, 1
term

constants, 41
context, 42, 47
formation, 42, 47
ground-, 22
in type theory, 41
of sort s, 22
variables, 41

terminating function, 43
theory, xxi, 3
total function, 22, see terminating func-

tion
toxins, 14
translate, 30
translation, 99
TΣ(X), 22
TΣ(X)s, 22
type, 41

constants, 41
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context, 47
formation, 47
names, 45

type theory, 8, 9
typing judgement, 42

UML, 3
uniformity, 56, 161
universal algebra, 5

higher-order, 8
universal constructions, 9
universal proof method, 11
universal type relation, 60
unpack, 53
user, 4, 6, 14, 27, 28, 55, 83, 98, 192,

203

valuation, 23
vertical composability, 85
virtual

computation, 54, 118, 121, 122,
219, 220

data representation, 54, 121, 122,
219, 220

operation, 11, 54

we, 14, 80, 132, 162
weakly regular, 32
well-formed, 42, 47, 49
wide-spectrum specification language,

24

Yarrow, 203


