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Abstract

There are two fundamental problems concerning equivalence relations in con-

currency. One is: for which system classes is a given equivalence decidable? The

second is: when do two equivalences coincide? Two well-known equivalences are

history preserving bisimilarity (hpb) and hereditary history preserving bisimi-

larity (hhpb). These are both ‘independence’ equivalences: they reflect causal

dependencies between events. Hhpb is obtained from hpb by adding a ‘back-

tracking’ requirement. This seemingly small change makes hhpb computationally

far harder: hpb is well-known to be decidable for finite-state systems, whereas the

decidability of hhpb has been a renowned open problem for several years; only

recently it has been shown undecidable. The main aim of this thesis is to gain

insights into the decidability problem for hhpb, and to analyse when it coincides

with hpb; less technically, we might say, to analyse the power of the interplay

between concurrency, causality, and conflict.

We first examine the backtracking condition, and see that it has two dimen-

sions: the number of transitions over which one may backtrack, and the number

of backtracking moves. These dimensions translate into two hierarchies of bisim-

ilarities; we find that both of them are strict, and that each of their levels is

decidable.

Our second approach is to analyse which behavioural properties of concur-

rent systems are crucial to the increased power of hhpb. After establishing a

minimum of behavioural situations necessary to keep hpb and hhpb distinct, we

study two aspects of the interplay of causality, concurrency, and conflict: three

synchronization witness (SW) situations, and the notion of confusion. With the

help of a composition and decomposition result we prove that in their entirety

the SW situations are essential for non-coincidence (for bounded-degree systems).

However, we show this is not so for confusion, which disproves the long-standing

conjecture that hpb and hhpb coincide for confusion-free systems.

We continue by studying two structural system classes with promising be-

havioural properties. First we consider basic parallel processes (BPP), with a

suitable partial order semantics. These systems are infinite-state, but they re-

strict synchronization. Using the tableau technique, we prove the decidability

and coincidence of hpb and hhpb for simple BPP (SBPP). The two bisimilarities



do not coincide for the complete BPP class, but we separately achieve decidability

of both (a known result for hpb, but not for hhpb).

The second structural class is (safe) free choice systems, an important class

in Petri net theory. These systems have a controlled interplay of concurrency

and conflict, and thereby exclude confusion. Having shown that hpb and hhpb

do not coincide here, we identify another interesting candidate: live strictly state

machine decomposable (SSMD) free choice systems. For this class, we prove

that an auxiliary bisimilarity satisfies a restricted backtracking property. As a

consequence we achieve the coincidence of hpb and hhpb for a subclass of live

SSMD free choice systems: the only known positive result for a class with a

reasonable amount of interplay between concurrency, causality, and conflict while

still admitting considerable nondeterminism.
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Chapter 1

Introduction

Recent decades have seen a tremendous growth in the deployment of computer

systems. With their advance our dependence on hardware and software has in-

creased, and so has our vulnerability to their failure. Theoretical computer science

aims to model and understand the complexity of computer systems, and thereby

creates the basis for their formal verification: to mathematically prove that a

system satisfies its specification.

Designing software without the use of formal methods is a bit like building

a bridge without having verified its statistics: both can collapse. The difference

is that software can be debugged; that is tested and repaired (while this would

be an expensive exercise in the construction of a bridge!). In many applications

verification by testing is adequate. However, testing can only detect errors, not

prove their absence. If an application is safety-critical, or cost-intensive, then

there is a strong rationale for formal verification. The crash of Ariane 5 in 1996,

caused by software error, is a case in point. Furthermore, with the increasing

complexity and internetworking of computer systems, formal methods may be

the only means to retain control over our artefacts. The most remarkable thing

about the Millenium Bug was not the various disturbances that it actually caused,

but the uncertainty over its possible consequences. This shows that to a certain

degree we have already lost control.

Concurrency theory addresses the phenomenon that many computer applica-

tions involve a high degree of concurrency: examples are digital circuits, network-

ing, and multi-processing. Computation is then about the ongoing behaviour of

a number of interacting processes. Since the complexity of concurrent systems

is high they are prone to failure, and formal verification becomes particularly

important. Formal methods are most convenient to use when they can be run

automatically, i.e. by a computer program. Then a pre-condition is the classical

question of computability: can the verification problem in principle be computed.
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(A second pre-condition is tractability: can the problem practically be computed

considering limitations of space and time.) We speak of decidability instead of

computability if a problem calls for a yes or no answer. One way to approach a

difficult decidability problem ‘from below’ is to compare it to a related problem

which is known to be decidable.

This thesis is concerned with a key notion in concurrency theory: hereditary

history preserving (hhp) bisimilarity. The concrete aim is to gain insights into the

decidability problem of hhp bisimilarity, and to analyse when it coincides with

the weaker history preserving (hp) bisimilarity. hhp bisimilarity is an equivalence

for true-concurrency : it reflects the interplay between causality, concurrency,

and conflict in great detail. More abstractly, we might therefore say, the aim

of this thesis is to investigate the complexity that arises from mixing the three

fundamental situations of concurrent systems. It is the premise of the thesis that

such an investigation contributes to a theory of true-concurrency, and it is hoped

that there will be benefits for automatic verification.

The remainder of this introduction is organized as follows. In Section 1.1

we motivate the decidability and coincidence problem of hhp bisimilarity within

the global context of true-concurrency and true-concurrency in verification. In

Section 1.2 we give an introduction to equivalences for concurrency, in particular

concentrating on hp and hhp bisimilarity. Our discussion will lead us to a ba-

sic theme: true-concurrency versus causality. This is one of two themes which

will provide guidance throughout the thesis. Further, we cover decidability and

complexity issues of equivalences for concurrency in the finite-state world. In Sec-

tion 1.3 we introduce two areas which we will draw upon and the second guiding

theme: the areas Petri net theory and infinite-state verification, and the theme

composition and decomposition. Finally, we provide an overview of the thesis.

1.1 Global Context and Motivation

Interleaving versus True-Concurrency. In concurrency theory one can dis-

tinguish between two fundamental viewpoints. In the interleaving approach con-

currency is equated with nondeterministic sequentialization: P = a || b is unified

with Q = a.b + b.a.1 A concurrent system is then straightforwardly represented

by a set of states and a set of labelled transitions between them, i.e. by a la-

belled transition system. This has the advantage that intrinsic connections with

automata theory can be exploited. The disadvantage is that concurrency and

1As usual, ‘||’ denotes parallel composition, ‘+’ nondeterministic choice, and ‘a.P ’ means ‘a
then P ’.
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Figure 1.2: P and Q are represented by distinct Petri nets

nondeterminism become inseparable (cf. Figure 1.1).

The latter aspect is remedied by the truly-concurrent approach. Here, the

models are able to distinguish between the three fundamental situations of con-

currency: two actions can be in conflict with each other, they can be causally

dependent, or occur concurrently. Common to true-concurrency models is that

they have additional structure which shows when two transitions are indepen-

dent of each other; the independence relation can either be a primary notion, as

in the models labelled asynchronous transition systems (lats’ ) and labelled tran-

sition systems with independence (tsi’s), or be derived from a locality of states

and transitions, as in traditional Petri nets (cf. Figure 1.2). One aspect of true-

concurrency models is that they capture causality : runs are not only viewed as

sequences of transitions, but associated with each run r is a partial order that

expresses how the transitions of r are causally related. A further, perhaps more

fundamental, aspect is that true-concurrency models have an inherent notion of

event : given two runs r1, r2 and two transition occurrences t1 on r1 and t2 on r2 it

is possible to tell whether t1 and t2 are the same modulo independent behaviour.

This ensures that causality, concurrency, and conflict are global concepts: we can
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recognize how any two transitions of a system are related with respect to these

basic situations; causality and concurrency do not have to be interpreted with

respect to a particular run of the system.

A drawback of true-concurrency models is that they do not have as clean

a mathematical theory as the transition system. Some help has been provided

by trace theory, which starts out from the partial commutation aspect of con-

currency: if two transitions t1 and t2 are independent then the run t1t2 can be

identified with t2t1; execution sequences that are the same modulo such identi-

fications are grouped into equivalence classes called traces. The basis for this is

given by the first axiom of independence: whenever two independent transitions

occur consecutively they can also occur in the opposite order. For the systems

we consider, the second axiom of independence also applies: whenever two inde-

pendent transitions are enabled at the same state then they can also occur one

after the other.

Verification Paradigms. There are two primary paradigms for the verification

of concurrent systems: behavioural equivalences, to compare an implementation

against a coarser system that acts as its specification, and temporal logics, to

specify properties and verify whether these are satisfied by an implementation.

Orthogonally to the dichotomy ‘interleaving versus true-concurrency’ behavioural

equivalences and temporal logics are classified according to whether they take a

linear-time or a branching-time view. In linear-time the behaviour of a system

is determined by its set of executable computation paths. In branching-time the

choice structure of a system is preserved: the behaviour of a system is represented

by a tree of possible futures. The equivalences and logics of the interleaving world

are classical: Milner’s bisimilarity is the branching-time equivalence, LTL is the

standard linear-time logic, and CTL the standard among branching-time logics.

Many attempts have been made to design variants of these notions based on the

true-concurrency paradigm: for example, hp and hhp bisimilarity are both truly-

concurrent versions of Milner’s bisimilarity, ISTL, and CTLP generalize LTL,

and CTL respectively. These concepts are more expressive than their classical

counterparts: while interleaving equivalences and logics can only reason about

concurrent behaviour in terms of action patterns, truly-concurrent paradigms

can refer to concurrency and causality explicitly. One way to achieve this higher

expressive power lies in the use of backtracking or past operators; for example

such operations are primary in hhp bisimilarity and CTLP . It seems that this

method is particularly powerful: backtracking or past operators can be employed
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to expose subtle aspects of the interplay between causality, concurrency, and

conflict.

True-Concurrency in Verification. The temporal logic paradigm has been

successfully taken up by industry: model checking [CGP99], i.e. automatically

checking whether a finite-state system is a model of a specified formula, is now

widely applied in the design of digital circuits and communication protocols —

using the classical interleaving logics. The major obstacle hindering the progress

of model-checking is the state explosion problem: the state space grows expo-

nentially with the number of concurrent components in the system, which puts

a limit to the applicability of the model-checking algorithms to realistic systems.

In hardware verification this problem has successfully been tackled by the use

of binary decision diagrams (BDDs): BDDs provide a compact symbolic repre-

sentation of the state transition graph, which reflects regularities typical to the

structure of a circuit. Due to this reduction technique it is now possible to verify

circuits with state space up to more than 10120 states [CGP99].

BDDs are less useful in software verification: software lacks the regular struc-

ture of hardware, and there is typically more asynchrony between the concurrent

components of a system. The latter makes state explosion an even more press-

ing problem in software verification. But, fortunately, it also makes software

amenable to a reduction method based on an idea of true-concurrency: the as-

sumption of the partial order reduction techniques [CGP99] is that if two runs

belong to the same trace then often they will satisfy the same properties, in which

case it is sufficient to consider only one of them. As noted in [PPH97a], “the suc-

cess of partial order techniques in the domain of software verification may be

compared to the success of BDDs in the domain of hardware verification”.

The success of the partial order techniques has sparked off a special branch

of research into true-concurrency logics: to construct new logics that are partial

order robust in that a formula is either satisfied by all the linearizations of a

trace or by none of them. Clearly, this would allow the exploitation of the idea

behind partial order techniques in a very direct fashion. Most work so far has

concentrated on the linear-time spectrum, and more specifically on finding the

natural counterpart to LTL. A key position is held by the logic LTrL [TW02]:

LTrL is equal in expressive power to the first order theory of traces (while LTL

has the same expressive power as the first order theory of sequences), which also

implies that LTrL exactly captures the properties that are expressible by partial

order robust formulae in LTL.
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There seems to be a consensus in the model checking community that all inter-

esting properties can be expressed by interleaving logics, that the higher expres-

siveness of true-concurrency logics is not needed. However, their higher expres-

siveness might be crucial in areas of verification other than the traditional fields

of model-checking. [Pen93] gives examples of important properties that cannot

be expressed by the classical interleaving logics: inevitability under concurrency

fairness assumption, serializability of database transactions, causal successor, or

the parallel execution of program segments. In particular, true-concurrency is of

primary interest in the following areas of verification.

In automatic synthesis the task is to build a system automatically from a spec-

ification such that the correctness of the system is guaranteed by construction.

This approach has much potential: unlike model checking automatic synthesis

could eliminate the expensive development cycles of error detection followed by

error correction altogether. Early work on automatic synthesis goes back to the

80s: seminal papers are [MW82] and [CE82]. Indeed, [CE82] is one of the two

papers in which model-checking is pioneered. However, despite of its potential

usefulness and in contrast to the success of model checking, automatic synthesis

has never taken off. In order to offer an explanation it has been argued that

early synthesis work suffers from two limitations [PR90]. In [CE82] and [MW82]

a specification consists of a property formulated in one of the interleaving logics,

and the synthesis algorithms extract a correct system from a tableau-based proof

that the specification is satisfiable. The first criticism is that this method only ap-

plies to closed systems, where a cooperative environment is assumed. To expand

synthesis to real-life applications, synthesis should generate open systems, which

provide a strategy that will win against any hostile behaviour of the environment.

The second, perhaps more elemental, limitation originates from the fact that

the synthesis problem has been formulated and studied in an interleaving frame-

work: consequently the generated systems consist of a single process. As noted

in [PR90] “this is particularly embarrassing in cases that the problem we set out

to solve is meaningful only in a distributed context, such as the mutual exclusion

problem, and a centralized single module solution does not seem very relevant.”

An ad hoc way to overcome this problem is to decompose the sequential system

after it has been synthesized. However, this method is incomplete and may lead

to unnatural solutions. The more natural solution, which avoids the problem

altogether, consists of considering the synthesis problem in a true-concurrency

setting from the outset. The idea is to integrate into the specification informa-

tion about the architecture of the system. This can either be done in a direct way:

15



then the input to the synthesis problem consists of two parts, the specification of

the architecture besides the usual temporal property; or indirectly via the use of

a true-concurrency logic: the input will still consist of a temporal formula, but

now formulated in a true-concurrency logic: the higher expressiveness of these

logics can be employed to specify properties about the internal structure of a

system, e.g. to express that two activities must be independent of each other.

Examples of the direct approach are the papers [PR90, KV01, MT02, ŞEM03],

while the indirect approach is advocated in [PP90, Pen92]. However, the move

to true-concurrency does not come without cost: these works are littered with

undecidability and intractability results.

As advocated in [Bra] a further application of true-concurrency is the field

of fault analysis. An interleaving model draws no distinction between temporal

ordering and actual causal dependencies. Thus it is not possible to tell whether

two events occur one after the other because the second is dependent on the first

or whether this order is purely coincidental. Why drawing this distinction is

essential is underlined by an example presented in [Bra]: “In the recent Ariane 5

crash, the active Inertial Reference System failed after the backup IRS failed, but

this certainly does not mean that the failure of the backup caused the failure of

the active system: in fact, both failed owing to a common cause, and the temporal

ordering is just an artefact.”

In recent years, true-concurrency has received much attention in the form

of Message Sequence Charts (MSC’s). They are close to the sequence charts of

the Unified Modelling Language (UML), the now standard modelling language

in software engineering, and have become popular in the automatic verification

of communication protocols. Since MSC’s have a partial order semantics true-

concurrency is primary here. This has led to new model checking problems, and

interesting decidability and complexity results [AY99, MP00].

A classical area where true-concurrency plays a crucial role with respect to

behavioural equivalences is action refinement [BGV91, vGG01]. It is popular to

design and verify concurrent systems in top-down fashion by stepwise refinement:

one starts off with a high-level design where actions can represent complex pro-

cesses, and refines this coarse model stepwise by replacing the high-level actions

by concrete implementations at a lower design level. For example, in Petri net

theory action refinement means replacing all the transitions of a specific label by

some net fragment. Naturally, one would expect that the behaviour of a refined

system is fully determined by the behaviour of the unrefined system and the re-

spective refinement operation. In other words, one would require that whenever
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two behaviourally equivalent systems are refined in the same way then the result-

ing systems are still behaviourally equivalent: behavioural equivalence should be

preserved under action refinement.

It was already observed in [Pra86] and [Lam86] that the interleaving approach

is not sufficient when one is concerned with actions at different levels of abstrac-

tion. “A serious difficulty with the interleaving model is that exactly what is in-

terleaved depends on which events of a process one takes to be atomic”2 [Pra86].

This is highlighted by the following standard example (e.g. [vGG01]): under in-

terleaving semantics the behaviour P = a || b is identified with its interleaved

behaviour Q = a.b + b.a. However, if a is refined to a1.a2 then P intuitively

admits the interleaving a1.b.a2, while this is not the case for Q. It follows that

interleaving equivalences are not preserved under action refinement.

Consequently, [Pra86] advocates the use of a more faithful view of concurrency,

suggesting that when moving to partial order semantics the assumption of action

atomicity is no longer necessary: “In the partial-order model what it means for

two events to be concurrent does not depend on the granularity of atomicity.”2

Indeed, this could be confirmed: in linear-time, action refinement is preserved by

pomset trace equivalence [CDMP87, vGG01], while in the branching-time spec-

trum it turned out that hp bisimilarity is the coarsest partial order equivalence

that preserves action refinement. The latter has been proved in [vGG89a, vGG01]

for event structures, and generalized to Petri nets in [BDKP91]. This result has

given hp bisimilarity its prominent place among behavioural equivalences. Being

a strengthening of hp bisimilarity, naturally, hhp bisimilarity is also preserved

under action refinement.

Rationale for True-Concurrency. Besides any practical needs, researchers

and practitioners alike have always been attracted by ideas of true-concurrency.

The interleaving approach might be supported by nice and simple mathematics,

but it does not adequately reflect the nature of a concurrent world. As noted in

[PPH97a], “only when one imagines each and every event in the universe lining

up to take its turn can one confidently apply any of the sequential models”. This,

of course, is not our intuition. The more natural a model is the more flexible

and easier it is to work with, — and the more acceptance it will gain among

practitioners. The traditional use of Petri nets as the modelling language in

a great variety of practical applications is a case in point, and so is the more

recent success of MSC’s in the design of communication protocols. Considering

2Cited similarly to [vGG01].
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temporal logics, Laroussinie and Schnoebelen address the question of practical

expressiveness [LS95]: they find that many important properties can more directly

and naturally be expressed in logics with past operators than in the standard

interleaving logics. Improved practical expressiveness can also be expected from

a move to true-concurrency logics. Finally, as suggested in [PPH97b], unnatural

models are more likely to break down than natural ones when one slightly varies

or generalizes the characteristics of the scenario under study; — a point which is

perfectly exemplified by action refinement. Altogether, a remark of Pratt sums

up [PPH97b]: “having to think about systems in terms of their interleaving is

like trying to do arithmetic with Roman numerals. Yes, Roman numerals indeed

code integers, and furthermore the algorithms for adding and multiplying Roman

numerals do work, but that’s not a great reason to stick with Roman numerals”.

Perhaps the time is ripe to leave the Roman numbers behind us, and to turn to

more faithful models of concurrency — at least whenever this is feasible.

The Hardness of True-Concurrency. The equivalences and logics of the

interleaving world are feasible. In particular, when the systems are finite-state

these notions can in principle be decided by exhaustive search. Furthermore,

tractable algorithms have been developed: classical bisimilarity can be decided

in polynomial-time [KS90], model checking LTL is linear in the state space al-

though PSPACE-complete in the formula (but usually the formulae are small),

and model checking CTL is polynomial in both the model and the formula (cf.

[CGP99]). Recent efforts have concentrated on tackling the state explosion prob-

lem, or on tackling classes of infinite-state systems. In the true-concurency world

decidability and complexity issues are not as well understood. Equivalences and

logics such as hp and hhp bisimilarity, CTLP , and ISTL, are based on ‘history

information’, which means that even in the finite-state case one has to deal —

at least a priori — with infinite spaces. Further, if the notions are sufficiently

fine no obvious quotienting will be available; then the concepts are usually both

difficult to tackle and computationally hard. In particular, one problem remained

open for a long time: it has only recently been resolved that hhp bisimilarity is

undecidable [JN00]. Other negative results are reported in [PK95] and [Pen92]:

satisfiability of CTLP , and respectively ISTL, are shown undecidable. Even if the

concepts are decidable, they seem to be computationally hard: hp bisimilarity

is decidable [Vog91] but DEXPTIME-complete [JM96]; model checking CTLP is

NP-hard [PK95]; and even LTrL, which was designed with partial order reduction

methods in mind, was recently shown to be non-elementary [Wal98].
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The negative trend continues in automatic synthesis. [PR90] proves that the

synthesis problem of distributed open reactive systems is undecidable. [MT98]

addresses the related problem of synthesizing controllers for discrete event sys-

tems: in an interleaving setting this problem is decidable and can be computed

in polynomial-time, but in a truly-concurrent setting the problem is undecidable.

Even in the setting with local specifications, the distributed controller synthesis

problem is undecidable for almost all architectures [MT01]. Some positive results

for restricted architectures have been obtained [PR90, KV01, MT02], but the

algorithms are of high complexity: [PR90, KV01] and [MT02] report nonelemen-

tary, and respectively doubly exponential, complexity.

On the positive side, there are two matters to record. In the context of syn-

thesis Kupferman and Vardi put forward that the high complexity results do not

necessarily present a limitation [KV01]. They argue that when looking behind

the complexity measure synthesis is not any harder than interleaving verification.

In general, the higher complexity of truly-concurrent concepts may be attributed

to the fact that a truly-concurrent measure may, in general, amount to an expo-

nential compression of the corresponding interleaving state space. Indeed, such

considerations apply to the complexity of hp bisimilarity (cf. Section 1.2.2). The

second matter concerns the area of infinite-state verification. Here a positive

trend emerges from the works [EK95] and [SN96]: although in the finite-state

world truly-concurrent problems are typically harder than their interleaving coun-

terparts, [EK95] and [SN96] give examples of the converse holding for standard

classes of infinite-state systems. The same phenomenon has recently been estab-

lished by the complexity results of [Las03] and [Jan03].

However, some of the undecidability results indicate that true-concurrency is

fundamentally hard. At the bottom of the undecidability proofs of [MT98] and

hhp bisimilarity [JN00] is the insight that finite-state concurrent systems have

the power to encode tiling systems. This entails that in their unfolding struc-

ture, where the interplay between the basic situations, causality, concurrency,

and conflict, is visible, concurrent systems are almost Turing powerful; at this

level they can simulate counter machines in a weak sense. This further motivates

hhp bisimilarity as a key concept in developing and refining our understand-

ing of true-concurrency. By characterizing what exactly makes hhp bisimilarity

intractable we can hope to discern the power of concurrent systems. One phe-

nomenon that was experienced in the development of this thesis, and which is

also experienced in Petri net analysis (cf. Section 1.3.1), is that it is the interplay

between causality, concurrency, and conflict that makes things difficult. In view
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of the undecidability of hhp bisimilarity it seems that it is the complexity of this

interplay that stands behind the computational power of concurrent systems.

Rationale for an Exploration of True-Concurrency. The hardness re-

sults should not give us any reason to despair of using true-concurrency. It is

their structural richness that can make truly-concurrent concepts both difficult

to analyse and computationally hard. But in this richness also lies a chance: the

increased structure provides a source to establish patterns, to uncover periodicity.

Such insights may help us to tackle truly-concurrent problems but they may also

be relevant for the interleaving view. Only if we understand concurrent systems

at their most fundamental level will we be able to realize and exploit all the tools

that are at hand for developing more efficient techniques, be it in terms of good

algorithms for subclasses or in terms of heuristics. The partial order reduction

methods are a case in point.

Given this on top of the usefulness and naturalness of true-concurrency there is

a strong rationale for a deeper investigation into the hardness of true-concurrency:

to bring to light when decidability or tractability can be achieved; to characterize

which phenomena of concurrent systems cause problems. So far, the borderline

between decidability and undecidability, tractability and intractability has hardly

been investigated for true-concurrency concepts. One reason for this is, perhaps,

that in true-concurrency there is no well-established hierarchy of subproblems to

consider. This is in contrast to language theory or infinite-state verification where

well-defined hierarchies exist. Thus, part of any analysis in true-concurrency

must be to identify suitable subclasses, to develop an approach that allows for as

systematic a borderline investigation as possible. Only then a unified view can

be obtained.

In this thesis we will investigate the decidability problem of hhp bisimilarity,

and analyse when it coincides with hp bisimilarity. Our investigation is based

on, and motivated by, the following premise: (1) a systematic understanding of

true-concurrency requires a systematic understanding of the interplay between

causality, concurrency, and conflict, and (2) hhp bisimilarity is a key concept in

studying this interplay. Thus, it is hoped that this thesis contributes a small part

towards building a theory of true-concurrency.

1.2 Equivalences for Concurrency

Behavioural equivalences play a fundamental role in the theory and verification

of concurrent systems: they provide the means to identify when two concurrent

20



systems exhibit the same behaviour with respect to a certain viewpoint. On the

one hand, this allows for abstraction of unwanted detail: concrete system mod-

els can be collected together into equivalence classes to obtain a more abstract

semantics. For example, in process algebra the meaning of terms is usually con-

sidered up to some behavioural equivalence to ensure that the terms represent

abstract behaviours. On the other hand, behavioural equivalences constitute a

key verification paradigm: as we saw earlier, they are used to establish whether

an implementation satisfies a specification.

In the following, we introduce hp and hhp bisimilarity informally in the con-

text of other equivalences for concurrency. We also explain a theme, which will

arise from our discussion: true-concurrency versus causality. This is one of the

two themes which will provide guidance throughout the thesis. Furthermore, in

Section 1.2.2 we address the decidability and complexity issues of equivalences for

concurrency on finite-state systems. Results on infinite-state systems are consid-

ered separately in Section 1.3.2. In our examples we employ transition systems,

lats’, and 1-safe Petri nets (net systems) in an informal way. A formal introduc-

tion of these models can be found in Section 2.1. The formal definition of hp and

hhp bisimilarity is given in Section 2.2.

Convention 1.2.1. Throughout the thesis we employ the following convention

with respect to the labelling of transitions. Transitions are labelled by actions

of Act := {a, b, c, . . .}. In the drawings we only exhibit the transition identifiers,

which are supposed to determine the labelling of the transitions: e.g. transitions

a, a1, and a′1 are supposed to be labelled by a.

1.2.1 Equivalences for Concurrency

Linear-Time versus Branching-Time. In concurrency theory, computation

is about the ongoing behaviour of interactive processes. Thus, the behaviour of

a concurrent system cannot be captured in terms of an input-output function,

rather a behavioural equivalence will take into account the patterns of activity

that can be detected by observing or experimenting with a system. Then, the

crudest notion of behavioural equivalence is trace equivalence: two systems are

considered to be equivalent iff they can perform the same sequences of actions.

However, as put forward by Milner [Mil80], there is a sense in which trace equiva-

lence is not sufficient when the systems contain nondeterminism. Consider system

G and H of Figure 1.3. If we accept that nondeterministic choices are resolved ir-

reversibly then G and H are intuitively not behaviourally equivalent even though

they are trace equivalent: G will be deadlocked with respect to the b action after
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Figure 1.3: G and H are trace equivalent but not bisimilar

processing the a on the right, but such a deadlock can never arise in H. In other

words, we would like to reject the distributive law a(x + y) = ax + ay, and take

into account the branching structure of a system.

These thoughts led to the definition of observational equivalence [Mil80], which

was later refined to the technically more elegant bisimulation equivalence (short:

bisimilarity), a concept due to Park [Par81]. Two processes or states P and Q

are bisimilar iff every action that can be performed by P can be matched by

an action that can be executed by Q, and the resulting processes P ′ and Q′ are

bisimilar again; symmetrically, every action that can be performed by Q must

be matched by P in the analogous way. It is easy to see that G and H are not

bisimilar.

Trace equivalence and bisimilarity constitute the two extremes of the linear-

time – branching-time spectrum: many intermediary notions have been defined

which reflect branching to some degree. The full spectrum is reviewed in [vG01].

For us, however, it is more important to pursue an orthogonal direction: the

dichotomy interleaving versus true-concurrency.

The Partial Order Approach. It is clear that trace equivalence and bisim-

ilarity adopt the interleaving approach: they are defined for transition system

semantics and do not reflect the higher structure of true-concurrency models in

any way. Neither equivalence can distinguish between P = a || b and Q = a.b+b.a

(cf. Figure 1.2). Consequently, many generalizations of trace equivalence and

bisimilarity have been suggested to capture aspects of true-concurrency.

A first idea that comes to mind is to capture true-concurrency by allowing

the observation of concurrent steps. This implements the intuition that whenever

two transitions can happen concurrently then they can happen at the same time.

Step semantics (cf. [vGG89a]) can distinguish between P and Q: the step {a, b}

is possible in P but not in Q. However, when it comes to mixing concurrency and

causal dependencies step semantics have not much distinguishing power. Com-
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Figure 1.4: [vGG89b] K and L = (a || b) + a.b are pomset bisimilar but not hp
bisimilar

pare P with L = (a || b)+a.b of Figure 1.4. It is not possible to distinguish P from

L via step semantics [vGG89b]: in P and L exactly the same steps are possible;

{a} followed by {b}, {b} followed by {a}, or {a, b}.

This is why it has been advocated to move to a partial order approach (e.g.

[Pra86, CDMP87, vGG89b]): more powerfully, we allow ourselves to observe the

causal dependencies between the transitions to be matched. Then it is easy to

distinguish between P and L: L can do both, a independent b, and a followed

by dependent b, whereas the latter is not possible in P . Since transitions with

the same label may occur concurrently, technically we are dealing with partially

ordered multisets of actions, or pomsets as coined by Pratt. The partial order

counterpart of trace equivalence is then readily presented by pomset trace equiv-

alence: two systems are pomset trace equivalent iff they can perform the same

pomsets of actions.

There is less clarity when one moves to the branching-time world: branch-

ing and causality can be integrated in different ways, and consequently several

notions of bisimilarity based on the partial order idea have been defined (cf.

[vGG89a, vGG01]). The most straightforward approach is taken by the pomset

bisimilarity of Boudol and Castellani [BC87]: this notion generalizes bisimilarity

by considering transitions of pomsets rather than of single actions. However, an

example of [vGG89b] demonstrates that pomset bisimilarity is not capable of cap-

turing all subtleties that arise from branching and causality. Consider Figure 1.4.

In both K and L the following pomset transitions are possible: we execute a

single action a and then b is possible, or we perform a single action b and then
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the remaining behaviour is a, or we perform ‘a independent b’, or we execute ‘a

dependent b’. Thus, K and L are pomset bisimilar. But, intuitively, K and L do

not have the same causal branching structure: in K, after each a we can choose

between a causally dependent b and an independent b, whereas in L, the choice

between the two options is made at the beginning: once we have executed an a

it is decided whether the remaining b will follow dependently or independently of

the a. It is not possible to detect this difference via pomset bisimilarity because

we cannot see how new actions to match causally relate to the actions we have

already matched. As in interleaving bisimilarity we move from state to state; the

only difference is that we consider transitions with a more sophisticated structure,

we interleave pomsets of actions rather than single actions.

History Preserving Bisimilarity. To be able to fully capture the interplay

between branching and causality we must proceed as follows: we keep the history

of the transitions that have already been matched, and require that this match-

ing history grows pomset isomorphic. This is the idea behind history preserving

(short: hp) bisimilarity. Technically, rather than dealing with pairs of states we

keep triples (r1, r2, f), where r1 is a run of the first system, r2 is a run of the sec-

ond system, and f is a pomset isomorphism relating the transition occurrences of

r1 to those of r2. A triple (r1, r2, f) is contained in the largest hp bisimulation iff

every transition t1 that can be performed at r1 can be matched by a transition t2

that can be executed at r2 such that f can be extended to a pomset isomorphism

f ′ = f ∪ {(t1, t2)}, and the triple (r1t1, r2t2, f
′) is contained in the largest hp

bisimulation again; further, the symmetric condition must also be satisfied.

Via hp bisimilarity it is straightforward to distinguish between K and L: if

a1 is performed in L, clearly, this transition must be matched by a1 in K. Then,

in K we can execute b1, which is dependent on a1. But this move cannot be

matched by L: only b1, which is independent of a1, is possible.

A more subtle example is presented in [vGG89a]; we show it in Figure 1.5. In

both E and F any complete run will consist of two a actions and one b action

such that the two a’s are independent of each other, and the b is dependent on

one and only one of the a’s. The crucial difference between the two systems is:

in E we can do two a actions (a3 and a4) and then we can choose between b that

is dependent on the first a, and b that is dependent on the second a (b3 and b4

respectively). In F this is not possible: it will always be resolved with the second

a at the latest whether the remaining b behaviour will occur dependently on the

first a or on the second a. This difference is easily spotted by hp bisimilarity, but
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Figure 1.5: [vGG89a, vGG01] E and F are pomset bisimilar and wh bisimilar
but not hp bisimilar

it is straightforward (though tedious) to check that E and F are pomset bisimilar.

Furthermore, the example demonstrates that hp bisimilarity is strictly finer

than the NMS partial ordering bisimilarity of [DDM87, DDNM89], which is also

studied as weak history preserving (short: wh) bisimilarity 3 in [vGG89a, vGG01].

Like hp bisimilarity, wh bisimilarity is based on pairs of runs and requires that

any two related runs must be pomset isomorphic. However, wh bisimilarity does

not demand that the matching history grows pomset isomorphic: hp bisimilarity

is stronger in that with each pair of runs a particular pomset isomorphism is as-

sociated, and whenever a tuple is extended by two matching transitions then the

isomorphism associated with the new tuple must be an extension of the one asso-

ciated with the previous tuple. Say we match a3 against a′3 and then a4 against

a′4. In hp bisimilarity this fixes the pomset isomorphism p = {(a3, a
′
3), (a4, a

′
4)},

whereas in wh bisimilarity it is sufficient to know that the two histories are pomset

isomorphic. Now, let’s execute b4. In hp bisimilarity, b4 cannot be matched by F :

the only possible b action in F is b′3; but since b
′
3 is dependent on a

′
3 whereas b4 is

independent of a3, p cannot be extended as required. In contrast, with respect to

wh bisimilarity b′3 does provide a suitable match: the induced pomsets of a3a4b4

and a′3a
′
4b
′
3 are related by the isomorphism p′ = {(a3, a

′
4), (a4, a

′
3), (b3, b

′
4)}. Had

we started out by matching a3 against a′4 a symmetric argument would apply.

The example of Figure 1.5 also demonstrates that the combination of wh and

pomset bisimilarity, whpb bisimilarity, is still not as strong as hp bisimilarity

3Note the clash of terminology: this is not to be confused with the weak hp bisimilarity that
abstracts away from silent actions.
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(cf. [vGG89a, vGG01]). On the other hand, hp bisimilarity subsumes all the

equivalences we have met so far.

hp bisimilarity was first introduced in [RT88] and [DDNM89] under the name

of behaviour structure bisimilarity, and mixed ordering bisimilarity respectively.

The term history preserving results from [vGG89a], where Goltz and vanGlabbeek

define the notion for event structures and prove its key property: hp bisimilarity

is preserved under action refinement. This result has given hp bisimilarity a

prominent place among true-concurrency bisimilarities. In [BDKP91] the notion

is introduced as fully concurrent bisimilarity. There it is independently shown

that hp bisimilarity preserves action refinement for the more general model of

Petri nets. In [DD89, DD90] hp bisimilarity has also been studied as causal

bisimilarity on the model of causal trees.

True-Concurrency versus Causality. So far, we have concentrated on cap-

turing one particular aspect of true-concurrency models: their ability to model

the causal relationship between transitions. In hp bisimilarity we have found an

equivalence that fully reflects the interplay between branching and causality. hp

bisimilarity can thus be considered to be the bisimulation equivalence for causal-

ity. However, as described in the beginning of Section 1.1, a further aspect of

true-concurrency models such as lats’ or net systems is that they induce a notion

of event : given two interleaved runs r1, r2 and two transition occurrences t1 on

r1 and t2 on r2 it is possible to tell whether t1 and t2 are the same modulo inde-

pendent behaviour, that is whether t1 and t2 present the same event. This means

true-concurrency models depart from the interleaving approach in a fundamental

way: the unfolded behaviour of a concurrent system is no longer represented by

a tree-like structure but the various computation branches are interlinked: when

two computations are the same modulo shuffling of independent transitions they

are considered to join together in a common ‘state’. (Technically, unfolded be-

haviour is now represented by an occurrence tsi or lats, or — making the notion

of event primary — by an event structure.) Note that this view of unfolded be-

haviour is accompanied by the idea that history can be traced back in different

ways, reflecting that independent transitions can be shuffled in their order.

There are models which fully capture causality and branching while still taking

a tree-like approach. Such a model is, for example, provided by the causal trees

of [DD89, DD90]: causal trees are tree-shaped labelled transition systems where

a label consists of an action and a set of backwards pointers; the backwards

pointers are understood to identify those arcs which caused the respective arc.
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Figure 1.6: [DD90] The causal tree captures the causal behaviour of both system
A and system B of Figure 1.7
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Figure 1.7: [NC94] Counter-example 1: A and B are hp bisimilar but not hhp
bisimilar

Figure 1.6 gives an example of a causal tree. In models for causality such as

causal trees independence and concurrency are only meaningful when interpreted

with respect to a branch; to be able to recognize how any two transitions of a

system are related with respect to causality, concurrency, and conflict we require

the notion of event. Consequently, causality models are too abstract to capture

all aspects of the interplay between causality, concurrency, and conflict. Indeed,

the causal tree of Figure 1.6 represents the causal behaviour of both system A

and system B of Figure 1.7.

Every notion of bisimilarity we have discussed so far could have been defined

on a model for causality just as well: none of them makes use of the extra structure

associated with the aspect of event. Consequently, hp bisimilarity is not able to

capture subtleties of the interplay between causality, concurrency, and conflict

that rely on recognizing transitions as the same event. We demonstrate this

with the help of the standard counter-example of [NC94], which shows that hhp

bisimilarity is strictly finer than hp bisimilarity.

Counter-example 1, Part 1 (Figure 1.7). Both A and B have an a transition (b
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transition) that can be followed by dependent c (d) or alternatively by indepen-

dent b (a). And both systems can perform an a transition (b transition) which

can be followed by independent b (a) as the only option. The crucial difference

between the two systems is: in A the a and b on which c and respectively d are

dependent are in conflict with each other, whereas in B the respective a and b

are independent of each other. In hp bisimilarity this difference can be hidden

by adopting the following strategy: if we execute a2 as the first transition we will

choose a′2 as its match: this will take care of the c option. We will then have to

match b2 against b′2. But this is no problem: the d′ transition is not visible since

it is disabled by a′2. On the other hand, if we perform b2 as the first transition

we will match it against b′1 avoiding the d′ transition. The c transition is already

hidden, and we can safely match a2 against a
′
1. The remaining cases can be dealt

with in the same spirit.

Hereditary HP Bisimilarity. Hereditary history preserving (short: hhp) bisim-

ilarity does exploit the aspect of event. Technically, hhp bisimilarity is obtained

from hp bisimilarity by the addition of a backtracking requirement: for any two

related runs, the runs obtained by backtracking a pair of related transitions, must

be related, too. We allow backtracking not only in the order which is laid down

by the related runs; as long as a pair of transitions is maximal in the associated

pomset isomorphism, it can be backtracked. This takes into account the first ax-

iom of independence: whenever independent transitions occur consecutively they

can also occur in the opposite order. Ultimately, the backtracking requirement

ensures that the matching is not dependent on the order in which independent

behaviour is linearized: if we first match a transition t1 against a transition t2

and then a sequence of transitions w1 against a sequence w2 such that t1 I w1,

or t2 I w2 equivalently, — meaning t1 (t2) is independent of all the transitions in

w1 (w2) — then backtracking requires that w1 and w2 provide a suitable match

irrespective of whether the (t1, t2) match is interleaved or not. Observe that in

the strategy which proves that A and B of Figure 1.7 are hp bisimilar we make

the matching of the parallel a’s and b’s dependent on the order in which they

appear in the runs to match. With the help of backtracking it is straightforward

to distinguish between the two systems.

Counter-example 1, Part 2 (Figure 1.7). A and B are not hhp bisimilar. As we

saw, the c transition dictates that we have to match a2 to a′2, and further a2b2 to

a′2b
′
2. But now the b2 - b′2 match is no longer safe: we can backtrack the pair of

a transitions and then require that the runs b2 and b′2 are related. But from this
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Figure 1.8: [Bed91] Counter-example 2: A and B are hp bisimilar but not hhp
bisimilar

point, B can perform a d transition, which A cannot match. So b2 and b′2 can

clearly not be related runs.

A second counter-example, which demonstrates the difference between hp and

hhp bisimilarity, is exhibited in [Bed91]; we show it in Figure 1.8.

Counter-example 2 (Figure 1.8). System A can be described by the expression

(a.0 + c.0 || b.0) + (a.0 || b.0) + (a.0 || b.0 + c.0), and B by (a.0 + c.0 || b.0) +

(a.0 || b.0 + c.0). Behaviourally, the key difference between the two systems is

that in A there is a pair of independent a and b transitions such that neither

the a nor the b can ever occur in parallel with a c. In B no such pair of a and

b exists. With respect to hp bisimilarity this difference can easily be hidden by

adopting the following strategy: if a3 occurs as the first transition we will match

it to a′1; then in both systems ‘parallel b’ is the only remaining behaviour, and

b3 can safely be matched to b′1. If we start out with b3 we will match b3 to b′2.

Then it is safe to match a3 to a′2 since the c option is hidden. A and B are not

hhp bisimilar. Their difference is readily detected by backtracking: c′2 dictates to

match a3 to a′1 and further a3b3 to a′1b
′
1; but at (a3b3, a

′
1b
′
1) we can backtrack the

a transitions, and thereby expose c′1.

The two counter-examples demonstrate how hhp bisimilarity integrates the

aspect of event. In summary, we put forward the following view, which we consider

to pinpoint the source of the differing distinguishing and computational power of

hp and hhp bisimilarity. Our view will provide guidance throughout the thesis.

hhp bisimilarity is a notion for true-concurrency whereas hp bisimi-

larity only captures causality.

This characterization was first advocated in [FH99], where it is shown that
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hhp bisimilarity can be understood as hp bisimilarity with the added require-

ment of trace-consistency. Our view is further backed by the theory of open

maps. In [JNW96] Joyal, Nielsen, and Winskel describe a uniform way of defin-

ing a bisimulation equivalence across a wide range of different models by applying

category theory: two objects of a model category are bisimilar iff there exists a

span of open maps between them, where open maps are relative to a choice of

path category within the model category. For many concrete models, the ab-

stract bisimilarity specializes to already known equivalences [JNW96, CN95]. As

one would expect, for standard transition systems one obtains classical bisimilar-

ity. For true-concurrency models such as tsi’s or event structures, the abstract

bisimilarity specializes to hhp bisimilarity. As shown in [Che96] the open map

characterization of hhp bisimilarity is very robust with respect to the choice of

path category. In particular, it is not clear how hp bisimilarity could be captured

when tsi’s or event structures are taken to be the model category. On the other

hand, it has been found that hp bisimilarity can very naturally be characterized

via open maps when a causality model such as history dependent automata or

causal trees is employed [Pis99, Frö03]. This further suggests that hhp bisim-

ilarity is the natural bisimulation equivalence for true-concurrency, whereas hp

bisimilarity is the one for causality. In the context of the open map characteriza-

tions it is shown that a hhp bisimulation can itself be viewed as a tsi or an event

structure, while a hp bisimulation can be understood as a causal tree or a history

dependent automaton. This also underlines our view.

The notion of hhp bisimilarity first appears in [Bed91], where Bednarczyk

studies several history preserving bisimulations with a downwards closure con-

dition. He calls sets that satisfy this condition hereditary. In [JNW96], in the

context of open maps, hhp bisimilarity has independently been introduced under

the name of strong hp bisimilarity. In [NC94] logical and game-theoretical charac-

terizations are found which come as conservative extensions of the corresponding

characterizations of classical bisimilarity.

Coherent HHP Bisimilarity. There is an even stronger notion of bisimilarity,

which will be of importance later on. hhp bisimilarity reflects the first axiom of

independence but it does not relate to the second axiom: whenever two indepen-

dent transitions are enabled at the same state then they can occur one after the

other. This is remedied by the coherent hhp (short: chhp) bisimilarity of [Che96].

chhp bisimilarity complements the backtracking condition with a padding require-

ment: whenever in the matching there is an ‘independent branching’ in that as
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Figure 1.9: [Che96] A and B are hhp bisimilar but not chhp bisimilar

the continuation of two related runs we match on the one hand a transition t1

against a transition t2, and on the other hand a transition sequence w1 against a

sequence w2 such that w1 I t1 and w2 I t2 then we require that (t1, t2) and (w1,

w2) must also appear in the matching in consecutive order.

A counter-example in [Che96] shows that chhp and hhp bisimilarity are indeed

distinct notions. The example is presented in Figure 1.9. In both systems there

are two a transitions and two b transitions such that the a’s are in conflict with

each other but independent of the b’s; and this is symmetrical for the b’s. In

addition, having executed a pair of diagonal a and b, e.g. a1 parallel b2, or a2

parallel b1, we can do a c. For now let us ignore the d transitions. With respect

to hhp bisimilarity if an a or b occurs as the first transition it can be matched

both straight across, e.g. a1 to a
′
1, and also diagonally, e.g. a1 to a

′
2. The c options

enforce that we have to take more care when an a or b transition occurs in second

place; then our strategy must be consistent with that of the previous match: e.g.

if we have matched a1 against a′2 and now want to match b2 we have to stick

to the diagonal strategy and match b2 to b′1. The union of all these matches

certainly provides a hhp bisimulation. In contrast, to obtain a chhp bisimulation

we have to stick to one of the two strategies:4 although (a1, a
′
1) and (b1, b

′
2) are

both suitable matches, in consecutive order they are not.

Now, we take into account the d transitions. In both A and B each b can occur

4Note that this highlights an ‘abnomaly’ of chhp bisimilarity: chhp bisimulations are not
closed under union.
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chhp bisimilarity

hhp bisimilarity

hp bisimilarity

whpb bisimilarity

pomset trace equivalence pomset bisimilarity wh bisimilarity

step trace equivalence step bisimilarity

trace equivalence bisimilarity

Figure 1.10: Equivalences for concurrency

in parallel with a d action, which is in conflict with the a’s. The only difference

between the two systems is that in A there are two conflicting d transitions, d1 in

parallel with b1, and d2 in parallel with b2, whereas in B there is exactly one d,

d′1, which is in parallel with both b′1 and b′2. With respect to hhp bisimilarity it

is possible to hide this difference: d1 and d2 can both be matched by the one d′1.

In contrast, chhp bisimilarity exposes the difference. Say we start with d1, and

necessarily match it to d′1. At this point both b′1 and b′2 are enabled, and have

to be matched against b1. By backtracking this enforces that both (b1, b
′
1) and

(b1, b
′
2) must be in the bisimulation. From above we know that this is no problem

with respect to hhp bisimilarity, but it also means that no chhp bisimulation can

be found.

Final Remarks. Figure 1.10 gives an overview of the equivalences we have

discussed in this section. The partial order approach has mainly been studied in

the context of action refinement. More details and examples can be found in the

surveys [vGG89b, vGG89a, vGG01].

Many other approaches have been studied that model concurrent systems more

faithfully than the interleaving approach, and accordingly many more behavioural

equivalences have been defined. A few of them touch upon this thesis. Timed

semantics [Hen88] and ST semantics [vGV87] capture the aspect of duration: as

the name suggests timed semantics add a notion of time, whereas in ST semantics

each action occurrence is separated out into a start section and an end section. ST
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Equivalence Decidability/Complexity

trace equivalence on transition systems PSPACE-complete
LT trace equivalence on 1-safe Petri nets EXPSPACE-complete

pomset trace equivalence EXPSPACE-complete
bisimilarity on transition systems PTIME-complete

BT bisimilarity on 1-safe Petri nets DEXPTIME-complete
hp bisimilarity DEXPTIME-complete
hhp bisimilarity undecidable

Figure 1.11: Decidability and complexity of equivalences for concurrency on finite-
state systems. LT . . . Linear-time, BT . . . Branching-time

semantics are important with respect to action refinement: like hp bisimilarity the

associated ST equivalences are preserved under this operation. In process algebra,

noninterleaving semantics have been obtained by taking into account the aspects

of distribution and locality [Cas01]. Distributed bisimilarity [Cas88, CH89] is the

natural bisimulation equivalence for Castellani’s distributed transition semantics,

which reflect that a concurrent process can be considered to evolve into two parts,

a local and a concurrent residual. A more sophisticated approach to locality is

provided by the location semantics of [BCHK93, BCHK94]: here process terms

are syntactically enriched by locations, reflecting that concurrent processes are

situated at different locations. A unified framework that enables the study of

both locality and causality has been provided by the local/global cause semantics

of [Kie94].

In the context of process algebra it is important to consider weak versions of

equivalences, which abstract away from the silent action τ . This is an aspect we

shall not be concerned with in this thesis.

1.2.2 Decidability of Equivalences for Concurrency

With respect to automatic verification it is important to know whether a notion

of behavioural equivalence is decidable: is it decidable in general whether two

systems S1 and S2 are equivalent under the given notion of equivalence? In this

section we concentrate on finite-state systems; infinite-state verification will be

considered separately in Section 1.3.2.

The equivalences of the interleaving world are well-understood. Checking

trace equivalence on finite-state transition systems reduces to checking language

equivalence on finite automata, which is known to be decidable by Moore’s clas-

sical algorithm (see e.g. [HU79]). [KS90] studies the complexity of several equiv-

alence problems central to interleaving process theory. Here it is shown that
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trace equivalence is PSPACE-complete (a result due to Chandra and Stockmeyer),

which sharpens PSPACE-completeness of language equivalence [SM73]. Classical

bisimilarity is easily seen to be decidable by exhaustive search: for finite-state

systems bisimulations are subsets of a finite domain; consequently, it is possible

to check whether one of the finitely many candidate sets is indeed a bisimulation.

Moreover, efficient algorithms have been found: [KS90] achieves a polynomial-

time algorithm by reduction to generalized partitioning. Building on an efficient

algorithm by Paige and Tarjan for that problem they achieve a complexity of

O(n+m log n), where n is the number of states and m the number of transitions.

Futhermore, checking bisimilarity is proved PTIME-complete in [ÀBGS91]. The

complexity of the classical equivalences have also been investigated for models

other than transition systems. [Rab97] investigates networks of communicating

finite agents; [JM96] studies finite 1-safe Petri nets. The results of these works

demonstrate that in true-concurrency we may obtain higher complexities simply

because truly-concurrent presentations can be more compact by avoiding state ex-

plosion: [JM96] establishes that with respect to 1-safe Petri nets trace equivalence

is EXPSPACE-complete, and bisimilarity is DEXPTIME-complete. The upper

bounds follow from the complexities on transition systems when considering that

the transition system induced by a 1-safe Petri net is in general exponentially

larger than the size of the net.

Many of the true-concurrency equivalences are also well-investigated. Among

them is hp bisimilarity. hp bisimilarity was first shown to be decidable for 1-safe

Petri nets by Vogler [Vog91]. An alternative proof is provided by Jategaonkar

and Meyer in [JM96], where they study various behavioural equivalences on 1-safe

Petri nets. The insight behind the decidability result is this: it is not necessary

to keep the entire history to capture hp bisimilarity, but to see whether pomsets

grow isomorphic it is sufficient to record only those events that can act as maximal

causes. Vogler and Jategaonkar both develop notions that capture this essential

fragment of the history in a finite way, ordered markings (OMs), and growth-sites

respectively. Altogether, hp bisimilarity can then be decided by exhaustive search.

The approach of Jategaonkar and Meyer provides a tight complexity result: hp

bisimilarity on 1-safe Petri nets is DEXPTIME-complete. Via the growth-sites

quotienting they also achieve decidability and complexity results for pomset trace

equivalence and pomset bisimilarity: the first is EXPSPACE-complete, the latter

DEXPTIME-hard and decidable in EXPSPACE. Thus, with respect to 1-safe

Petri nets the complexity of hp bisimilarity and pomset trace equivalence are not

higher than those of their interleaving counterparts. Vogler’s OM approach has
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been generalized to prove decidability of weak hp bisimilarity [Vog95]; [JM96]

already takes care of nets with silent actions. In a further development, hp

bisimilarity has been shown decidable for n-safe Petri nets by Montanari and

Pistore [MP97].

In Section 1.2.1 we have seen that although hhp bisimilarity is obtained from

hp bisimilarity by the seemingly small addition of a backtracking requirement its

distinguishing power is far greater. The same applies with respect to computa-

tional power. There is no straightforward adaptation of the decidability proofs of

hp bisimilarity to hhp bisimilarity. In contrast, the decidability problem of hhp

bisimilarity has been open for several years, renowned for its inscrutability. Some

conjectures and notes can be found in [Che96]. Only recently the problem has

been resolved: hhp bisimilarity is shown undecidable by Jurdziński and Nielsen

in [JN00]. We will discuss this result, and put it in the context of this thesis

in Section 7.2. It appears hhp bisimilarity is the only equivalence known to be

undecidable for finite-state systems.

Figure 1.11 gives an overview of the decidability and complexity results.

1.3 Further Background

We now present two areas which we will draw upon, Petri net theory and infinite-

state verification, and discuss their relevance for this thesis. Furthermore, we

explain a second theme that will guide and continuously appear throughout the

thesis: composition and decomposition.

1.3.1 Petri Net Theory

Petri Nets. Petri net theory was initiated by Petri in his seminal doctoral thesis

of 1962. The aim was to build a theory “for the description, in a uniform and

exact manner, of as great as possible a number of phenomena related to infor-

mation transmission and information transformation” (cited following [Rei82]).

Petri suggested a net-based approach: the static structure of the system under

study is represented by a net ; that is by a set of circles or places, a set of boxes or

transitions and a neighbourhood relationship which shows how these two types

of elements are interrelated. Places are understood to represent local states, and

transitions represent local activities. The dynamics or behaviour of a Petri net

are determined by an initial global state, or marking, and the transition firing

rule. Markings and transition firing are subject to the principles of distribution

and locality of state change: (1) Markings are composed of local states; they are
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distributions of tokens over places. (2) If a marking evolves into a new marking

via a transition then the marking will be affected only locally: only the places

belonging to the neighbourhood of the transition will change; the other places

stay unaffected. Via these principles Petri nets induce natural notions of inde-

pendence, causality, and concurrency, and a concept of event as is typical for

true-concurrency models. They carefully distinguish between nondeterminism

and concurrency. It is in the context of net theory that Petri identified concur-

rency, conflict, and causality as the fundamental situations of concurrent systems

[BT87]. On the other hand, Petri nets provide a more concrete true-concurrency

model than for example tsi’s or lats’: they maintain structural information such

as concepts of locality and distribution, and the related notions of structural

interaction like synchronization.

There are many different net models (cf. [Rei82]). The perhaps most com-

monly used type is Place/Transition Petri nets ; often they are referred to simply

as Petri nets, a convention we shall follow here. It is essentially this net model we

have described above. Since there is no bound on the number of tokens that can

be held at a place, a Petri net is potentially infinite-state. A Petri net is bounded

if on each place the token load is limited by a natural number. In particular safe

Petri nets, where the bound is one, are a popular system class for finite-state

analysis. In the sequel we will often call them net systems, or simply systems, if

the context is clear.

Petri Net Problems. The traditional verification problem for Petri nets is the

analysis problem: given a Petri net, does it satisfy certain behavioural properties

of interest? Properties of interest are for example deadlock-freedom, reachability,

boundedness or safeness, and liveness. A Petri net is live iff every transition can

always be made to occur again. The decidability and complexity of most analysis

problems were settled in the late 70s and early 80s. As portrayed in [Esp98]

one can intepret this as a first phase of research on computational issues of Petri

nets. In other phases model-checking and equivalence problems were addressed.

Furthermore, the various Petri net problems were also pursued for net systems.

The surveys [Esp98] and [EN94] give thorough accounts of the results that were

achieved in Petri net exploration.

Results on net systems that are relevant for us have already been reviewed in

Section 1.2.2. Relevant results on equivalence checking for Petri nets will be cov-

ered in the next section, where we address infinite-state verification. However, it

is work of the early analysis phase which will be of direct use in this thesis. Con-

fronted with the difficulty of the analysis problem in the general case, the question
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was raised whether good analysability could be obtained for natural subclasses

of Petri nets. (Indeed, all interesting analysis problems for Petri nets were later

shown to be EXPSPACE-hard; cf. [Esp98].) The investigation of the analysabil-

ity border led to the identification of important behavioural and structural Petri

net classes together with the development of a rich structure theory.

Structure versus Behaviour. Structure theory studies the interplay between

the behaviour of a Petri net and the structure of its underlying net. Two typical

questions are: do structural restrictions correspond to behavioural situations?

Can interesting behavioural properties be captured by structural properties? Ac-

cordingly, the motivation and successes of structure theory are twofold. On the

one hand, it has been observed that natural constraints on the structure of the

net yield natural behavioural subclasses — in a sufficient sense. For example,

T-systems, which are also known as marked graphs and synchronization graphs,

structurally capture conflict-free systems, whereas S-systems give rise to sequen-

tial systems.5 The motivation is that structure is easier to work with than be-

haviour; structural classes allow for a very systematic investigation of the border-

line of problems such as Petri net analysis.

On the other hand, structure is more efficiently analysable than behaviour: no

state space exploration is required. This is the rationale behind the second aspect

of structure theory: for restricted classes interesting behavioural properties are

tightly coupled — in a necessary and sufficient way — to structural properties;

then the analysis of the behavioural properties can be done efficiently by analysing

the structure. For example, a classic connection concerning T-systems is: a T-

system is live iff all of its simple cycles carry at least one token at the initial

marking; and further: a live T-system is safe iff it is covered by simple cycles

which carry at most one token at the initial marking [CHEP71, GL73]. Good

surveys on classical structure theory can be found in [Bes87] and [BT87].

Confusion and Free Choice Petri nets. S-systems and T-systems are very

basic system classes, where concurrency, or respectively conflict, is excluded en-

tirely. It was experienced that the mixture of these two fundamental situations

can make the analysis of Petri nets very difficult. In particular, one behavioural

situation was identified as a source of trouble: the situation of confusion arises

when conflict and concurrency are mixed in a specific way such that the firing of

one transition can have an impact on how a conflict concerning a concurrent tran-

sition is resolved. Confusion was probably first pinpointed by Holt (as reported

in [RT86]).

5The Petri net must also be safe and connected.
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A structural restriction that yields confusion-free systems (when imposed on

safe Petri nets) was found: free choice Petri nets were introduced in [Hac72].

Devised as a combination of S-systems and T-systems they admit both conflict

and concurrency, but in a controlled fashion that disentangles the interplay of the

two situations. A rich structure theory was obtained for free choice Petri nets, and

they came to hold a central place in net theory: they are considered the largest

Petri net class that allows for a good theory and consequently good analysability.

To express that beyond free choice Petri nets ‘things become troublesome’ the

term free choice hiatus has been coined [Bes87].

Classic free choice theory is due to Commoner and Hack. They came up with

two central theorems. Commoner’s Theorem [Com72, Hac72] gives a structural

characterization of liveness in free choice Petri nets. This first result is comple-

mented by Hack’s S-coverability Theorem, which structurally captures the safe-

ness of live free choice Petri nets. Importantly for this thesis, the S-coverability

Theorem sets up a decomposition theory; it says: every live and safe free choice

Petri net is covered by S-components which carry exactly one token each, where

S-components are special kinds of S-systems associated with a net. Consequently,

each live free choice system can be understood as a synchronization of a set of live

S-systems. The two theorems are reviewed and elaborated in the surveys [Bes87]

and [BT87], together with other pieces of classic free choice theory (for example,

S-coverability has a dual: T-coverability).

Free choice theory has subsequently been refined and extended. A compre-

hensive presentation is provided by the book [DE95]. It demonstrates how the

free choice hiatus could be confirmed by further developments. The free choice

condition studied in [DE95] slightly generalizes the classic constraint, however it

does so while maintaining the behavioural effect.

It is important to keep in mind that the term ‘free choice hiatus’ was coined

against the backdrop of the nice structure theory of free choice nets and the

EXPSPACE-hardness of all interesting analysis problems for general Petri nets.

Most interesting problems for free choice Petri nets are at least NP-hard [Esp98].

For example, deciding non-liveness is a NP-complete problem [JLL77, DE95]. On

the other hand, analysing liveness and boundedness in one go can be decided

in polynomial-time [DE95]. Furthermore, many interesting questions about live

and safe free choice Petri nets also have polynomial-time algorithms [Esp98].

On second thought, this is not surprising: it is the class of live and safe free

choice Petri nets that enjoys deep structural properties such as the S-coverability

Theorem. Thus, we note: when considering decidability or complexity problems
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for net systems it might be a better strategy to look for a hiatus at live free choice

systems rather than at free choice systems. In particular, one might exploit the

decomposition theory.

Relevancy. To conclude we now extract in which way the presented themes

and insights will be relevant for our investigation of the two hhp bisimilarity

problems.

1. Structure versus Behaviour. We will employ safe Petri nets as our model at

a structural level, where interaction of local components such as synchronization

is visible. hp and hhp bisimilarity abstract away from such detail but with re-

spect to our borderline analysis it may be advantageous to maintain structural

information: to be able to refer to the structure that ultimately stands behind

the interplay of causality, concurrency, and conflict. As in Petri net analysis,

structure is easier to work with than behaviour.

2. A Source of Interesting Subclasses. The behavioural and structural subclasses

which have been identified during research on Petri net analysability seem rel-

evant for us. We may also profit from the rich structure theory that has been

established. Sequential and conflict-free systems, or S-systems and T-systems

respectively, will not occupy us for long; however:

3. Confusion and Free Choice Systems. Since confusion-free and hence free choice

systems keep the interplay between concurrency and conflict under control, they

constitute ideal classes to consider with respect to the hhp bisimilarity problems.

This is further motivated by [Che96]: here it is conjectured that hp and hhp

bisimilarity coincide for free choice systems.

4. Live Free Choice Systems. As motivated by the previous paragraph live free

choice systems provide an alternative candidate for analysing the borderline of

the hhp bisimilarity problems. In particular, we would be able to exploit the rich

decomposition theory induced by the S-coverability Theorem.

1.3.2 Infinite-State Verification

Language Theory. The origin of research on decidability issues for infinite-state

systems can be traced back to classical language theory. Much effort has been

(and still is) dedicated to approximating the decidability border for the language

equivalence problem: given two language generators, do the two languages they

define coincide? Due to the theoretical limits set by the halting problem this

problem cannot be decidable for Turing machines in general. On the other hand,

it was readily proved by Moore in 1956 that language equivalence is decidable for

finite automata [Moo56]. Since then researchers have tried to determine where ex-
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actly the cut-off point between decidability and undecidability lies — considering

the remaining generators of the Chomsky hierarchy of languages and grammars.

Soon enough it was established that context-free languages are too expressive

to allow for a decidable theory [BHPS61]. In particular, this left open the de-

cidability of language equivalence for deterministic pushdown automata, which

was to become one of the most celebrated problems in theoretical computer sci-

ence. Only in 1997, after decades of effort, the problem was proved decidable by

Sénizergues [Sén97, Sén01].

Infinite-State Verification under Interleaving Semantics. With the advent of

process algebras and their associated behavioural equivalences it was natural to

ask how these new formalisms relate to classical language theory. The starting

point for this line of research can be seen in work by Baeten, Bergstra, and Klop

[BBK87, BBK93]: they translated the concept of context-free grammars into the

process calculus Basic Process Algebra (BPA); contrasting the negative result

for language equivalence, they found that classical bisimilarity is decidable for

normed BPA, which corresponds to context-free grammars without redundant

symbols and productions. Later the result was extended to the entire class of

BPA [CHS92, CHS95].

The results on BPA demonstrated how process algebra can be understood as

an extension of formal language theory, and how this generalized view can lead to

a refinement and improvement of known results in the area of formal languages:

research on bisimilarity may expose periodicity or algebraic structure that may

in itself be relevant for the language theoretic view. In particular, for certain

generators, e.g. normed deterministic processes, bisimilarity and language equiv-

alence coincide. The fruitfulness of the interplay between language and process

theory is ultimately illustrated by work concerning the equivalence problem of

deterministic pushdown automata: Stirling provided a simpler proof of decid-

ability by viewing the problem as a bisimilarity problem for a process calculus,

and employing the tableau technique, a method that is common in infinite-state

process theory [Sti01]. This approach also establishes a primitive recursive upper

bound on the complexity of the problem [Sti02].

Research on decidability issues for infinite-state systems is also strongly mo-

tivated from within concurrency theory: the success of automatic verification in

the finite-state world is contrasted by the reality that in practice most systems

have either an infinite or an extremely large state space. Thus, it is important to

clarify: how far can the automatic methods of the finite-state world be extended

to subsume infinite-state classes? It is folklore that full process calculi such as
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CCS are too expressive to allow for a decidable theory. Milner pointed out in

[Mil89] that CCS is Turing powerful: it can express objects such as counters and

stacks, which in turn give rise to Turing powerful computational models; for ex-

ample, the two counter machines of Minsky are universal. In [Tau89] it is made

formal that every Turing machine can be translated into a CCS process such that

the behaviour of that process exactly corresponds to the execution of the Turing

machine. Consequently, the halting problem for Turing machines can be encoded

as a bisimulation problem of CCS processes. In analysing the borderline of decid-

ability a kind of Chomsky hierarchy of infinite-state transition systems emerged.

Apart from BPA and pushdown automata, which provide models of sequential

computation, in particular two formalisms with explicit concurrency turned out to

be significant: the calculus basic parallel processes (BPP) of Christensen [Chr93]

and traditional Petri nets (both considered under interleaving semantics).

The calculus BPP was conceived as a parallel counterpart to BPA: BPA can

be seen as an extension of finite automata by a sequential operator; the class

BPP includes a parallel combinator instead. More precisely, BPP are defined

as a process algebra which comprises action prefix, choice, recursion, and par-

allel composition. They can also be viewed as a special class of Petri nets: in

communication-free Petri nets tokens are allowed to flow freely through the net;

if a token activates a transition it does so independently, without the help of

other tokens [Hir94]. To be precise it is BPP in standard normal form (SNF )

[Chr93] that exactly correspond to communication-free Petri nets [Esp97b]. But

since every BPP can effectively be translated into a bisimilar BPP in SNF [Chr93]

in the interleaving world it is indeed safe to identify BPP and communication-

free nets. In the (branching-time) true-concurrency world BPP in SNF form a

subclass of their own: following [EK95] we call this class simple BPP (SBPP).

Under true-concurrency semantics BPP and SBPP induce a very special dynamic

structure: the partial order computations of BPP are tree-like, more strongly the

partial order unfoldings of SBPP are bipartite forests.

Positive results were soon obtained for BPP: bisimilarity was shown to be de-

cidable first for normed BPP in [CHM93b], then for the entire class in [CHM93a].

Indeed, these results can also be shown for BPPτ (BPP with τ), an extension

of BPP that integrates synchronization on complementary actions [Chr93]. The

two results are based on very different techniques. [CHM93a] relies on syntactic

insights concerning commutativity that help to establish finiteness of a tableau

system. In contrast, the proof for normed BPP is based on a decomposition

result: with respect to bisimilarity normed BPP are uniquely decomposable into
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prime components (cf. Section 1.3.3). Based on this insight [HJM96] show that

bisimilarity on normed BPP can be decided in polynomial-time.

While BPP can be seen as a minimal infinite-state model for concurrency, Petri

nets reside at the upper end of expressiveness: “no natural model of concurrent

computation lying strictly between Petri nets and Turing machines seems to have

been proposed so far” [Esp97a]. It is folklore that Petri nets are very close to

being Turing powerful (cf. [Pet81]): given a counter machine it is straightforward

to construct a Petri net that simulates the machine in a weak sense. Counters are

translated into unbounded places with the token load of a place corresponding to

the value of the respective counter. The program of instructions is represented

by a network of transitions; the transitions will output to or input from counter

places according to whether the corresponding instruction increases or decreases

the respective counter. The weakness of this translation lies in the fact that

Petri nets cannot test for zero: a run of the net can nondeterministically choose

a zero branch even if the value of the respective counter is not zero; there will

always be one ‘faithful’ run which exactly corresponds to the counter machine

execution, but additionally there may be many ‘cheating’ runs. The limits of the

computational power of Petri nets are also demonstrated by the classical result

that reachability, and thus halting, is decidable for Petri nets [May84].

Despite of this, Jančar came up with a reduction from the halting problem

of counter machines which proves that bisimilarity as well as language (or trace)

equivalence6 is undecidable for Petri nets [Jan95]: given a counter machine C one

constructs two variations of the Petri net that weakly simulates C such that the

difference beween these two nets can only be exposed by faithfully simulating C

and reaching the halting state (in one of the nets); the two nets are non-equivalent

iff C halts. Building on Jančar’s technique Hirshfeld managed to resolve that

trace equivalence is undecidable for communication-free Petri nets, and hence

BPP [Hir94].

For both BPA and BPP it was carried over that all the intermediate equiv-

alences of the linear-time – branching-time spectrum are undecidable [GH94,

HT95, Hüt94]. Thus, on BPA and BPP bisimilarity is the only decidable equiv-

alence of the classical spectrum. Many more results, less relevant for this thesis,

have been achieved for classes of infinite-state transition systems. For exam-

ple, model-checking problems have also been studied intensively. The handbook

chapter [BCMS01] provides a comprehensive survey on the key decidability and

6The undecidability of language equivalence was first proved by Hack, but [Jan95] provides
a stronger proof; cf. [Jan95, EN94].
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complexity results that have been achieved for the standard infinite structures.

It subsumes the surveys [Mol96] and [HM96], which concentrate on the area of

equivalence checking; these have partly inspired our presentation. In addition,

all these surveys present unified views of the infinite-state formalisms they inves-

tigate: it is common to present infinite-state processes as a hierarchy of special

classes of term rewrite systems.

Infinite-State Verification under True-Concurrency Semantics. In the above

line of research, classes with explicit concurrency, such as Petri nets and BPP, are

employed under interleaving semantics, in their character as generators of infinite-

state transition systems. It is obvious that such formalisms can be investigated

under true-concurrency semantics just as well. Then, they provide generators

of infinite-state tsi’s or net systems, allowing us to explore how truly-concurrent

equivalences (or logics) behave in the infinite-state world.

As noted in [Jan95] and [Esp98], for Petri nets the undecidability of trace

equivalence and classical bisimilarity (and indeed of all the intermediate equiva-

lences) can directly be carried over: Jančar’s technique only employs sequential

systems, for which partial order and interleaving concepts naturally coincide.

Then, undecidability for Petri nets also applies to notions such as step bisim-

ilarity, pomset trace equivalence, pomset bisimilarity, hp bisimilarity, and hhp

bisimilarity.

However, for BPP many positive results have been obtained. One of the earli-

est such results is Christensen’s proof of the decidability of distributed bisimilarity

for BPP and BPPτ [Chr92, Chr93]. This result actually precedes the works on

classical bisimilarity [CHM93b] and [CHM93a]. Its tableau-based proof relies on

a decomposition property that is directly induced by the nature of distributed

bisimilarity. Alternatively, decidability can be proved in the style of [CHM93b]:

w.r.t. distributed bisimilarity unique decomposition into prime components is

given for the full BPP (or BPPτ ) class [Chr93]. Furthermore, in [KH94] Kiehn

and Hennessy present decision procedures for strong and weak versions of causal

bisimulation, location equivalence, and ST-bisimulation, also for the system class

of BPPτ . This work builds on the proof for classical bisimilarity [CHM93a], and

hence relies on syntactic insights about commutativity.

So far, the results are as one could expect, and in accordance with the re-

sults of the interleaving world. However, a special trend for true-concurrency in

the infinite-state world emerges from the works [SN96] and [EK95]. In [SN96]

Sunesen and Nielsen study causality- and locality-based linear-time equivalences

for infinite-state classes. Contrasting Hirshfeld’s undecidability result for trace
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equivalence they prove that pomset trace equivalence and location trace equiva-

lence are decidable for BPP and BPPM , where BPPM corresponds to BPPτ . With

[EK95] a similar trend had already been revealed in model-checking: Esparza and

Kiehn show that a logic equivalent to CTL∗ is decidable for BPP under partial

order interpretation, whereas under interleaving semantics a small fragment of

this logic is already undecidable for very basic BPP. Both of these works exploit

the special tree-like structure of (S)BPP: the decidability results of [SN96] follow

by a reduction to the equivalence problem of recognizable tree languages; [EK95]

employs a reduction to the validity problem for the monadic second order logic of

a tree with fan-out degree n (SnS). The above trend is also confirmed by recent

complexity results. In [Las03] Lasota proves that distributed bisimilarity (and

thus several other notions of bisimilarity, see below) is polynomial-time decidable

for BPP. In contrast, [Jan03] establishes that classical bisimilarity on BPP is

PSPACE-complete.

Altogether this shows that moving to standard classes of infinite-state systems

does not necessarily increase the difficulty in true-concurrency. On the contrary,

things may become easier. In the finite-state world truly-concurrent paradigms

are typically harder than their interleaving counterparts; in the infinite-state

world this effect may be reversed: the standard infinite-state classes may have

natural decomposition properties and good structural features; such characteris-

tics are particularly exploitable in the true-concurrency world, where they may

very directly translate into decision procedures. In the end, it is the interplay

between causality, concurrency, and conflict that matters in true-concurrency.

The special structure of BPP processes also seems to be responsible for many

coincidence results: several important non-interleaving equivalences coincide for

BPP-like process languages. In [Ace92b] Aceto shows that distributed, timed,

and causal bisimilarity coincide for a language that is essentially BPP without

recursion. Furthemore, Kiehn has recently extended these results by proving that

location equivalence, causal bisimulations, and distributed bisimulations coincide

over CPP, a language that corresponds to BPPτ without explicit τ actions [Kie99].

In the linear-time world, Sunesen and Nielsen find that location and pomset trace

equivalence coincide for BPP and BPPM [SN96].

Relevancy. Analogously to Section 1.3.1 we now summarize in which way the

presented results and themes of the area infinite-state verification are relevant

to an investigation of hp and hhp bisimilarity. The last point will not directly

manifest itself in this thesis but it is important in view of the undecidability

result, which we will discuss in Section 7.2.
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1. General Connection. In general, infinite-state verification is very relevant for

us: even if we are concerned with finite-state systems, these act as generators

of infinite spaces on which the hhp bisimilarity problems are ultimately defined.

As in infinite-state verification the question is whether infinite spaces can be

tamed via insights into regularity or periodicity, or with the help of structural

insights. Thus, the methodology and ideas of infinite-state verification may be

very relevant for an investigation of problems in true-concurrency. Conversely, we

can hope: just as the finer view of interleaving process theory has proved to be

fruitful for formal language theory, true-concurrency may be relevant for refining

our understanding of the coarser interleaving view. This applies to the finite-state

as well as the infinite-state world.

2. Infinite-State Investigations. We have seen that it is fruitful to investigate

truly-concurrent problems on standard infinite-state classes equipped with partial

order semantics. We are interested in examining whether the positive trend that

emerged from the works [EK95] and [SN96] can be confirmed with respect to hp

and hhp bisimilarity. In particular:

3. SBPP and BPP provide the natural classes to start with when exploring truly-

concurrent concepts in the infinite-state world. Under partial order semantics

they exhibit tree-like behaviour, and thereby restrict the interplay of causality,

concurrency, and conflict in an interesting way. Together, this pinpoints SBPP

and BPP as ideal classes to consider in our analysis of hp and hhp bisimilarity.

4. The Tableau Technique provides a formal proof method in which characteristic

insights such as decomposition theorems can be employed to establish decidability.

In particular, this technique allows us to tackle state spaces that are inherently

infinite in that they do not admit a quotienting. By incorporating a way of

looping back to earlier points in the proof tree, a finite tableau can represent an

infinite bisimulation.

5. Composition and Decomposition. As we saw, many of the results in the infinite-

state world are based on an exploitation of decomposition theorems. The idea

of composition and decomposition will be crucial for us in many ways; it will

provide our main technique to prove decidability and coincidence results in the

finite-state as well as the infinite-state world. We will present this theme in more

detail in Section 1.3.3.

6. An Undecidability Proof. Jančar’s technique [Jan95] provides a scheme for

proving a behavioural equivalence undecidable. It gives a starting point when

investigating whether hhp bisimilarity is undecidable: can we show that (finite-

state) concurrent systems can simulate Turing machines in a sense that is relevant
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for the hhp bisimilarity problem? If yes, can we use this find to reduce the halting

problem to checking hhp bisimilarity? With the undecidability result [JN00] these

questions have been answered affirmatively (cf. Section 7.2).

1.3.3 Composition and Decomposition

As we saw in Section 1.3.2 the idea of composition and decomposition is one of

the crucial techniques to establish decidability and complexity results in the area

of infinite-state verification. For example, the polynomial-time decision proce-

dure for bisimilarity on normed BPP [HJM96] is based on the following insight:

any normed BPP can be expressed uniquely, up to bisimilarity, as a parallel

composition of prime factors [CHM93b]. A process is prime if it is not the nil

process and it is irreducible with respect to parallel composition, up to bisimi-

larity. Such a decomposition theory translates into cancellation properties of the

form “P ||Q ∼ R ||Q implies P ∼ R”, which provide the means to reduce pairs

of processes to compare into smaller pairs of processes to check. Questions about

prime decomposability were first addressed by Milner and Moller in [MM93]. In

particular, they show that unique decomposition with respect to bisimilarity is

given for finite processes, but they disprove decomposition (into a finite set of

prime factors) for arbitrary finite-state processes.

In the interleaving world, concurrency is not present at the semantic level.

Consequently, the concepts of prime component and prime decomposability are

considered with respect to syntax, i.e. with respect to the parallel operator ‘||’, and

they are directly coupled to a notion of equivalence: can a process syntactically

be expressed as an equivalent parallel composition of prime processes, and, if

yes, is such a presentation given uniquely up to the equivalence? In contrast, in

the true-concurrency world, composition and decomposition can be considered at

the semantic level: we can directly recognize whether a truly-concurrent system

can be dissected into independent factors. It can then separately be investigated

whether a specific decomposition view translates into a given equivalence.

In Section 4.3 we will introduce a very concrete notion of decomposition into

independent factors, and it will follow easily that every lats uniquely decomposes

into a set of prime factors, where prime factors are semantic entities, defined

as particular subsystems of the respective lats. We then show that for bsc-

decomposable systems hp and hhp bisimilarity are decomposable with respect

to the set of prime components: whenever two bsc-decomposable systems are

hp (hhp) bisimilar then there is a one-to-one correspondence between their prime

components such that related components are hp (hhp) bisimilar. Thus, although
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decomposition has a more concrete flavour in true-concurrency the end is the

same: it gives us the means to check whether two processes are equivalent by

checking for equivalence among their smaller prime processes.

Naturally, to make such an approach sound we need complementary compo-

sition results. It will be straightforward to show that hp and hhp bisimilarity are

composable in the following sense: assume two systems each decomposed into a

set of independent factors; whenever we can exhibit a one-to-one correspondence

between the components of the two systems such that related components are

hp (hhp) bisimilar then the two systems are hp (hhp) bisimilar. This again is

related to syntactic composition in the process algebra world, where the following

congruence result is often exploited: if P ∼ Q and P ′ ∼ Q′ then P ||Q ∼ P ′ ||Q′.

An observation that seems to be valid for both the interleaving and the true-

concurrency world is that composition results are generally easy to obtain, but

decomposition questions can be hard and highly intriguing [MM93].

Composition and decomposition are inherently connected to the shuffling of

independent transitions: by the axioms of independence the global behaviour of

a system is exactly the shuffle product of the behaviour of its independent fac-

tors. Thus, composition and decomposition theorems provide an important tool

to establish coincidence results: after all proving coincidence between hp and hhp

bisimilarity amounts to proving that whenever two systems are hp bisimilar there

exists a hp bisimulation that satifies specific shuffle properties, the hereditary

condition. To make this more precise, assume two bsc-decomposable systems S1

and S2 that are hp bisimilar. By decomposition for hp bisimilarity we obtain a

bijection between the prime components of S1 and those of S2 such that related

components are hp bisimilar. Then, provided that hp and hhp bisimilarity coin-

cide for the class of the prime factors, by composition for hhp bisimilarity we can

conclude that S1 and S2 are hhp bisimilar.

In this spirit we formulate and exploit various composition and decomposi-

tion views throughout the thesis. Our results on composition and decomposition

into independent (prime) factors provide the key to several coincidence results.

We will employ them in an inductive argument (Section 4.4), and furthermore

in a tableau-based proof (Section 5.3), where they establish the soundness and

completeness of a tableau system. In our exploration of BPP (Section 5.4) we

formulate specific decomposition views; we show that these translate into hp and

hhp bisimilarity in a natural way, which again leads to tableau-based proofs. In

our study of live free choice systems (Chapter 6) we develop a more sophisticated

decomposition theory. The idea is to generalize ‘decomposition into indepen-
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dent prime factors’ by integrating a concept of synchronization. Naturally, this

will make things much more difficult, and further tools will be developed, which

help to approach such a decomposition theory. One idea, which is related to the

concept of decomposition, is to design and employ auxiliary equivalences which

reflect notions of compositionality and locality. Such notions of bisimilarity can

be understood to implement the ‘interleaving aspect’ of a decomposition prop-

erty. Here, our theme ‘composition and decomposition’ meets our first theme

‘true-concurrency versus causal (or local) interleaving’.

1.4 Approach and Preview

We now explain how we will proceed and what we shall achieve in the remainder

of this thesis.

In Chapter 2 we gather together the necessary background material. First

of all, we define the models of concurrency which we shall use and set up the

associated technical machinery. Then we give the formal definitions of hp, hhp,

and chhp bisimilarity. We also present the ideas behind the decidability proofs

of hp bisimilarity more formally since we will built on them later on.

We are then ready to present the contributions of this thesis. In general, our

approach is to approximate the decidability of hhp bisimilarity and its coinci-

dence with hp bisimilarity from below: we identify restricted problems for which

we hope to obtain positive solutions. There are two ways in which one can re-

strict the decidability or coincidence problem of a behavioural equivalence: by

coarsening or strengthening the equivalence in a way that will make the problem

more accessible, or by imposing constraints on the behaviour of the systems under

study. (Unlike the first, the second option will give rise to proper subproblems.)

hhp bisimilarity is so powerful due to its backtracking capability: as we saw

in Section 1.2.1 backtracking can be employed to expose subtle aspects of the

interplay between causality, concurrency, and conflict. In Chapter 3 we aim to

disentangle the power of hhp bisimilarity by constraining its backtracking capabil-

ity. We will see that backtracking has two dimensions: the number of transitions

over which one may backtrack, and the number of backtracking moves. These

dimensions translate into two hierarchies of restricted backtracking bisimilarities.

We find that both of them are strict, and that each of their levels is decidable for

finite-state systems. We discuss how the hierarchy insights apply to the decid-

ability problem of hhp bisimilarity. In particular we obtain decidability for two

subclasses: finite-state bounded asynchronous systems and finite-state systems
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with transitive independence relation.

In the second and major part of our analysis we study the coincidence and

decidability problem of hhp bisimilarity on system classes which have a restricted

interplay of the three basic situations. Our interest is to analyse which be-

havioural properties of concurrent systems are crucial to the increased power

of hhp bisimilarity. Chapter 4 is our starting point. Here we identify important

behavioural situations and deliver first insights on the coincidence problem. In

Section 4.2 we start out by investigating the three basic situations separately. We

find that concurrency and conflict are both cruical to keep hp and hhp bisimilar-

ity distinct, but that this is not the case for causality. Furthermore we identify

(L&C)-nondeterminism as a crucial situation. Investigating it will lead us to an

interesting counter-example. In Section 4.3 we prove our first composition and

decomposition results: hp and hhp bisimilarity are composable with respect to

decompositions of systems into independent components, and for bsc-decomposable

systems the two bisimilarities are decomposable with respect to the set of prime

components. It will follow that hp and hhp bisimilarity coincide for parallel com-

positions of sequential systems, which confirms that the increased power of hhp

bisimilarity relies on the intertwining of concurrency with conflict (and causal-

ity). Motivated by this in Section 4.4 we study three synchronization witness

(short: SW ) situations. With the help of our composition and decomposition

result we show that in their entirety they are essential to distinguish between

hp and hhp bisimilarity for bounded-degree systems. As a corollary we obtain

coincidence for bounded-degree communication-free net systems. In Section 4.5

we study a further aspect of the interplay of causality, concurrency, and conflict:

the situation of confusion. We show that hp and hhp bisimilarity do not coincide

for confusion-free systems, or, more strictly, free choice systems, thereby disprov-

ing the conjecture of Cheng. Our counter-example will lead us to identifying a

new kind of confusion: so-called syn-confusion. Finally, in view of Chapter 6 we

introduce the concept of liveness.

Our analysis will be continued in Chapters 5 and 6 with the help of two

structural classes. In Chapter 5 we study the process algebras SBPP and BPP,

with a suitable partial order semantics. Although we are primarily concerned

with finite-state systems, our study of SBPP and BPP contributes to the area of

infinite-state verification. Our motivation is twofold. Due to their behavioural

properties SBPP and BPP exactly fit into our analysis of the interplay between

causality, concurrency, and conflict: they have restricted synchronization and thus

their study links up to our investigation of the SW situations. At the same time,
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we are interested in examining whether we can confirm the positive trend of true-

concurrency in the infinite-state world, which emerged from the works [EK95]

and [SN96]. We will achieve several decidability and coincidence results which

indeed confirm this trend. For SBPP we prove decidability and coincidence of hp

and hhp bisimilarity. Since SBPP are interpreted as a class of communication-

free net systems this result is related (but orthogonal) to the coincidence for

bounded-degree communication-free systems. For BPP the two bisimilarities do

not coincide; this follows from the second standard counter-example. But we

separately achieve decidability for both. The proofs also lead us to two coincidence

results: for BPP, hp bisimilarity coincides with distributed bisimilarity and hhp

bisimilarity with chhp bisimilarity. The results for hp bisimilarity are also known

via insights on causal bisimilarity, which coincides with hp bisimilarity. The

results on hhp bisimilarity are all new. The decidability of hhp bisimilarity on

BPP is particularly interesting: it shows that in the true-concurrency world an

equivalence that is undecidable for finite-state systems can be decidable for a

standard class of infinite-state systems. The proofs behind our results follow a

common scheme: BPP and SBPP have a tree-like structure, and consequently

they enjoy good composition and decomposition properties. These translate into

hp, hhp, and chhp bisimilarity in a natural way, which allows us to construct clear

tableau proof systems. Our work also pinpoints that BPP can be interpreted as

a type of proper-communication free net systems.

In Chapter 6 we study our second group of structural system classes: sub-

classes of finite-state free choice (fc) net systems. Having shown that hp and hhp

bisimilarity do not coincide for the full class, we concentrate on live fc systems.

Apart from being motivated by the free choice hiatus (cf. Section 1.3.1) they make

a particularly good candidate due to their behavioural properties: apart from be-

ing confusion-free they appear to exclude syn-confusion. Yet, live fc systems

provide a demanding class to tackle: since they admit both conflict and synchro-

nization their unfolding structure may amount to a complicated intertwining of

causality, concurrency, and conflict.

By Hack’s S-coverability Theorem live fc systems can be understood as a syn-

chronization of a set of state machine components. We use this decomposition

characteristic as the basis of our work. Indeed we adopt a simplification: for

the present we restrict our attention to live strictly state machine decompos-

able (SSMD) fc systems so as to obtain slightly better decomposition properties.

Our initial idea is to tackle the coincidence problem of live (SSMD) fc systems

by developing a decomposition theory for hp and hhp bisimilarity: to general-
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ize ‘decomposition into independent prime factors’ by integrating a concept of

synchronization. Such a decomposition theory is of course considerably more dif-

ficult to analyse and prove (or even formulate); however, guided by this idea we

have come up with an approach that disentangles the difficulty of the problem by

breaking it down into several accessible subgoals.

As one component of our approach we design and employ auxiliary equiva-

lences which reflect notions of compositionality and locality in net systems. Com-

positionality preserving (cp) bisimilarity reflects the distribution of states into

places and the locality of transition firing. Block preserving bisimilarity more

generally reflects the distribution of states into ‘active blocks’, and is particularly

interesting in the context of fc systems. These equivalences are closer to the de-

composition properties we would like to obtain. Also, cp bisimilarity allows for a

very direct exploitation of the topological information provided by a strict state

machine decomposition.

Another guiding thought is the idea that in true-concurrency structural con-

straints in the systems may very directly lead to characteristics in the matching

of bisimulations. One of our key theorems exposes a constraint in the topology

of live SSMD fc systems: roughly speaking it says that a certain type of path

cannot exist. Building on this insight we then show that a particular aspect of

the matching in cp bisimulations is deterministic, and thus predictable.

In general, if the matching is deterministic in a certain way it could well be the

case that we have so few options of how to build a bisimulation that we are forced

to match in a hereditary way, or that we can easily transform any bisimulation

into a hereditary one by shuffling the matching. In this spirit, we obtain that the

shuffle product of certain extracts of cp bisimulations are contained in the largest

cp bisimulation. Thereby, we will establish a specific decomposition property, and

at the same time it will follow that cp bisimilarity satisfies a restricted coherent

and hereditary property.

Altogether, we achieve a considerable part of the subgoals that together im-

ply that hp and hhp bisimilarity coincide for live SSMD fc systems. We show

that the remaining gaps can easily be overcome by imposing slight restrictions

on our system class; all of these restrictions act locally on the post-set of tran-

sitions. First, we deduce that cp, hereditary cp (hcp), and coherent hcp (chcp)

bisimilarity coincide for live sy-psd SSMD fc systems. Then, we gain decidability

of chhp bisimilarity for live sy-psd buffered SSMD fc systems, and coincidence

between hp, hhp, and chhp bisimilarity for live spsd buffered SSMD fc systems.

To my knowledge, these are the only positive results for classes that allow a rea-
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sonable amount of interplay between causality, concurrency, and conflict while

still admitting considerable nondeterminism.

In Chapter 7 we summarize and discuss our results and draw conclusions.

We also review the undecidability of hhp bisimilarity. Finally, we consider gen-

eral directions for further research. In particular we speculate what might be

gained with respect to automatic verification, connecting back to our motivation

of Section 1.1.
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Chapter 2

Background

In this chapter we gather together the necessary background material. In Sec-

tion 2.1 we define the models of concurrency we shall use, and set up the associated

technical machinery. In Section 2.2 we provide the formal definitions of hp, hhp,

and chhp bisimilarity. Afterwards, in Section 2.3, we present the ideas behind

the decidability proofs of hp bisimilarity. In Section 2.4 we explain some conven-

tions we shall adopt, and in Section 2.5 we introduce further concepts we want

to employ later on.

2.1 Models for Concurrency

For us a model for concurrency must be able to express the three fundamental

situations in which two events can be related: causality, concurrency, and conflict

[RE98, RT86]. Furthermore, it will be useful for us to work with models of three

different levels of abstraction:

1. a structural level, which reveals the structure of the systems in greatest de-

tail: concepts of locality and distribution are maintained, and hence struc-

tural interaction such as synchronization is visible;

2. a first behavioural level, which abstracts away from localities, but keeps the

cyclic structure of the systems; at this level, concurrency will be captured

as independence between transitions;

3. a second behavioural level, which in addition to the abstractions of the sec-

ond level unfolds the systems.

We employ 1-safe Petri nets as our structural model, lats’ as the model at

the first behavioural level, and occurrence lats’ as the model of the third level.

For the remainder of the thesis we fix a set Act := {a, b, c, . . .} of actions.
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2.1.1 Net Systems

As explained in Section 1.3.1 Petri nets capture true-concurrency by making

states and transitions distributed entities. One first defines the underlying struc-

ture of a Petri net:

Definition 2.1.1. A (labelled) net N is a tuple (PN , TN , FN , lN), where

• PN is the set of places,

• TN is the set of transitions,

• FN : (PN × TN) ∪ (TN × PN)→ {0, 1} is the flow relation, and

• lN : TN → Act is the labelling function.

The pre-set of an element x ∈ PN ∪ TN ,
•x, is defined by {y | FN(y, x) > 0}, the

post-set of x, x•, similarly is {y | FN(x, y) > 0}.

For technical convenience we employ a commonly used restriction:

Restriction 2.1.1. We only consider nets N that satisfy the following property:

∀t ∈ TN .
•t 6= ∅.

A net becomes dynamic when it is equipped with a marking:

Definition 2.1.2. Let N be a net.

A marking M of N is a map PN → IN0.

M enables a transition t ∈ TN if M(s) ≥ FN(s, t) for every s ∈ PN . If t is

enabled at M then it can occur or fire. The resulting marking M ′ is defined by

M ′(s) = M(s)− F (s, t) + F (t, s) for all s ∈ PN . Altogether we write M [t〉M ′ or

M
t
→M ′. Extending this notation to sequences of transitions, we write M [w〉M ′

or M
w
→ M ′, where w = t1t2 . . . tn ∈ T ∗N , to denote M

t1→ M1
t2→ · · ·

tn→ Mn for

some markingsM1, . . . ,Mn withMn = M ′. Furthermore, we writeM [w〉 orM
w
→

to say that M
w
→M ′ for some M ′.

A marking M ′ is reachable from M when M
w
→ M ′ for some sequence w. We

denote the set of markings of N reachable from M by Reach(N,M), or simply

by Reach(M) if the net is clear from the context.

Petri nets are then defined as follows:

Definition 2.1.3. A Petri net N is a pair (N,M0), where N is a net, and M0 is

the initial marking of N .

54



We say a marking M is reachable in N iff it is reachable from M0. We denote

the set of reachable markings of N by Reach(N ).

N is 1-safe (short: safe) iff for every M ∈ Reach(N ) we have: ∀p ∈ PN . M(p) ≤

1. Thus, in safe Petri nets a marking can be viewed as a set of places. We say

p ∈ PN holds at marking M iff p ∈M . A marking M of a net N is safe iff (N,M)

is a safe Petri net.

Convention 2.1.1. Unless stated otherwise, we work with 1-safe Petri nets; we

will refer to them as net systems.

2.1.2 Labelled Asynchronous Transition Systems

A more abstract model for concurrency is provided by labelled asynchronous tran-

sition systems (lats’ ); they capture concurrency explicitly as independence be-

tween transitions. Formally, lats’ are defined as transition systems with extra

structure: an additional level of labelling identifies which transitions are to be

thought of as occurrences of the same event, or Petri net transition; a relation

of independence describes which events are independent of each other. Several

axioms ensure that intuitive properties of events and independence are respected.

We follow the definitions of [WN97].

Definition 2.1.4. A (labelled) transition system (lts) is a tuple T = (S, L,Tran),

where S is a set of states, L is a set of labels, and Tran ⊆ S×L×S is the transition

relation.

A lts with initial state (ltsis) is a tuple T = (S, si, L,Tran), where (S, L,Tran) is

a lts, and si ∈ S is the initial state.

We write s
t
→ s′ to indicate that (s, t, s′) ∈ Tran. Similarly to before, we lift the

arc-notation to strings of labels, and we write s
w
→ or s[w〉 to denote that s

w
→ s′

for some s′. We define the states reachable from state s in T by Reach(T , s) :=

{s′ | ∃w. s
w
→ s′}; we also write Reach(s) if the context is clear. If T is a ltsis we

write Reach(T ) for Reach(T , si) to denote the states reachable in T .

Definition 2.1.5. A (labelled) asynchronous transition system (lats) is a struc-

ture S = (SS, s
i
S, TS, IS,TranS, lS), where

• (SS, s
i
S, TS,TranS) is a ltsis,

• TS is the set of events or transitions1,

1Usually, T (or rather E) is called a set of events; we prefer the term transitions here since
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• lS : TS → Act is the labelling function, and

• IS ⊆ TS×TS, the independence relation, is an irreflexive, symmetric relation

on the set TS

such that

1. t ∈ TS =⇒ ∃s, s′ ∈ SS. (s, t, s
′) ∈ TranS,

2. (s, t, s′) ∈ TranS & (s, t, s′′) ∈ TranS =⇒ s′ = s′′,

3. t1 IS t2 & (s, t1, s1) ∈ TranS & (s1, t2, u) ∈ TranS

=⇒ ∃s2. (s, t2, s2) ∈ TranS & (s2, t1, u) ∈ TranS.

We say an lats is coherent if it additionally satisfies

4. t1 IS t2 & (s, t1, s1) ∈ TranS & (s, t2, s2) ∈ TranS

=⇒ ∃u. (s1, t2, u) ∈ TranS & (s2, t1, u) ∈ TranS.

We carry over our notations for ltsis’ of Def. 2.1.4 to lats’ in the obvious way.

Axiom (1) says that every event appears as a transition, and axiom (2) that

the occurrence of an event at a state leads to a unique state. Axioms (3) and

(4) express two natural properties of independence: (3) asserts that if two inde-

pendent transitions can occur consecutively then they can also occur in opposite

order. (4) expresses that if two independent transitions can occur alternatively

at a common state then they can also occur consecutively from that state. The

latter two axioms induce the typical “independence squares”. We refer to axiom

(3) as the first axiom of independence, and to axiom (4) as the second axiom of

independence.

We also employ the following definitions and conventions:

Definition 2.1.6. Let S be a lats.

We call the complement of IS the dependence relation of S, and denote it by DS.

We lift independence and dependence to sequences and sets of transitions, e.g.

we write t1 . . . tn IS t′1 . . . t
′
m iff ti IS t′j for all i ∈ [1, n], j ∈ [1,m].

We say S is without redundant states iff s ∈ SS =⇒ ∃w ∈ T ∗S . s
i
S

w
→ s (in other

words, iff SS = Reach(S)).

in our context events can be interpreted as Petri net transitions (boxes). Note, however, that

this leads to an unfortunate clash of terminology with transitions in the sense of ‘s1
t
→ s2’.

Apart from a few exceptions (such as in the paragraph following this definition) the ambiguity
will be resolved by the context, and we reserve the term ‘event’ for events in the sense of event
structures, that is for ‘unfolded’ models.
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S is empty iff TS = ∅, and non-empty otherwise. (Note that if S is without

redundant states then S is non-empty iff siS
t
→ for some t, and empty iff S =

({si}, si, ∅, ∅, ∅, ∅) for some si.)

Convention 2.1.2. In the following, we assume lats’ to be coherent and without

redundant states. Since lats’ are our primary semantic model we usually refer to

them simply as systems. This is also to indicate that a more structural model,

such as a net system, may stand behind the respective lats.

The three fundamental situations, concurrency, causality, and conflict, are

naturally captured as follows:

Definition 2.1.7. Let S be a system, and s ∈ SS.

1. t1 can occur causally dependent on t2 at s, denoted by t2 <s t1, iff s[t2〉,

t1 DS t2 & s′[t1〉, where s
′ is such that s

t2→ s′.

We say tc can occur causally dependent on t1 and t2 at s, denoted by

{t1, t2} <s tc iff s[t1t2〉 (or s[t2t1〉), tc DS t1, tc DS t2 & s′[tc〉, where s′

is such that s
t1t2→ s′ (or s

t2t1→ s′).

2. t1 and t2 can occur concurrently at s, denoted by t1 cos t2, iff s[t1〉, s[t2〉 &

t1 IS t2.

3. t1 and t2 are in conflict at s, denoted by t1 #s t2, iff s[t1〉, s[t2〉, and t1 DS t2.

We could define analogous characterizations for net systems: we can detect

how two transitions are related with respect to causality, concurrency, and conflict

at a given state, by considering whether and how their environments of places

intersect. On the other hand, we can associate an independence relation with net

systems, and translate them into lats’. This will make concrete that lats’ can be

seen as an abstraction of net systems, and concepts defined for lats’ will carry

over to net systems in the obvious way.

Definition 2.1.8. Let N be a net. We say two transitions t, t′ ∈ TN are indepen-

dent in N , denoted by t IN t′, iff their neighbourhoods of places do not intersect,

i.e. iff (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅. We lift independence to sequences and sets

of transitions as we did for lats’.

Proposition 2.1.1. Let N be a net system. (Reach(N ),M0, T
′
N , IN ∩ (T ′N ×

T ′N),TranN , lN¹T ′
N
) is a lats, where T ′N = {t ∈ TN | ∃M ∈ Reach(N ). M

t
→}, and

TranN is the transition relation induced by the Petri net firing rule.
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Proof. This is straightforward to check. Note that axioms (3) and (4) of the

definition of lats’ easily follow by the definition of IN and the transition firing

rule.

Definition 2.1.9. Let N be a net system. We denote the lats associated with

N in Prop. 2.1.1 by lats(N ).

The following is a consequence of the first axiom of independence:

Proposition 2.1.2. Let N be a net system, M ∈ Reach(N ), and w,w′ ∈ T ∗N
such that w IN w′. If M

w
→M ′ w

′

→M ′′ for some M ′, M ′′, then there is M ′′′ with

M
w′

→M ′′′ w
→M ′′.

Proof. Straightforward.

In studying hp and hhp bisimilarity, we will be concerned with the partial

order behaviour of the systems under study. The runs of a system are defined as

follows:

Definition 2.1.10. Let S be a system.

We say r = t1 . . . tn ∈ T ∗S , is a transition-sequence of S. We write |r| for the

length of r, that is |r| = n. For any i ∈ [1, |r|] we denote the ith transition of r,

ti, by r[i] or tr(r, i); alternatively, if the context of r is clear we also write ti or

ti (even if r is only given as r ∈ T ∗S). For any t ∈ TS we write t ∈ r if t = ti for

some i ∈ [1, n]. If t ∈ r we let last(r, t) denote the position of the last occurrence

of t in r. That is last(r, t) = i iff ti = t and tj 6= t for all j ∈ [i + 1, n]. Given

r′ = t′1 . . . t
′
m ∈ T

∗
S , we write r.r′ for the concatenated sequence t1 . . . tnt

′
1 . . . t

′
m.

Let s ∈ SS. A run of S starting at s is a possibly empty transition-sequence r

such that s
r
→ s′ for some s′. We let Runs(S, s) denote the set of all runs of S

starting at s. We also write RunsS(s), or simply Runs(s) if the context of S is

clear.

A run of S is a run of S starting at siS. We let Runs(S) denote the set of all runs

of S. For r, r′ ∈ Runs(S), w ∈ T ∗S we write r
w
→ r′ iff r′ = r.w.

Following [JM96] we associate a pomset with each run of a system:

Definition 2.1.11. A pomset is defined as a labelled partial order.2 It is a tuple

p = (Ep, <p, Lp, lp), where Ep is a set of events, <p a partial order relation on Ep,

Lp is a set of labels, and lp a labelling function lp : Ep → Lp.

2We do not use the standard definition, but the convention used in [JM96].
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A function f is an isomorphism between pomset p and pomset q iff f : Ep → Eq

is a bijection, such that we have lp = lq ◦ f , and e <p e
′ iff f(e) <q f(e

′) for all

e, e′ ∈ Ep.

Definition 2.1.12. Let S be a system, s ∈ SS, and r = t1 . . . tn ∈ Runs(S, s).

The transition-pomset of r, denoted by trPom(r), has as events the integers from

1 to n, where the label of event i is ti, and the partial ordering is the transitive

closure of the following “proximate cause” relation: event i proximately causes

event j, written i <prox
r j, iff i < j and ti and tj are not independent in S. We

denote this partial ordering on [1,n] by ‘<r’. For i ∈ [1, n] we write k cor l short

for (k 6≤r l) & (l 6≤r k), and k depr l short for (k ≤r l) ∨ (l ≤r k).

The pomset of r, denoted by pom(r), is the transition-pomset of r, where the

label of each event i is lS(ti), the label of ti, rather than ti itself.

We carry these concepts over to net systems in the obvious way. Given a

net system N we write Runs(N ) for the runs of N . Given a net N and a safe

marking M of N , we write Runs(N,M) or RunsN(M) for the runs of N starting

at M ; if N is clear from the context we also use Runs(M).

2.1.3 Unfoldings

By abstracting away from their cyclic structure, lats’ can be unfolded into occur-

rence lats’. We denote the unfolding of a system S by unf (S).

Definition 2.1.13. Given a lats S, for r, r′ ∈ Runs(S) we define r ∼= r′ iff

trPom(r) and trPom(r′) are isomorphic; this is clearly an equivalence relation.

An occurrence lats is a lats U , where

• if s
v
→ s, for some v ∈ T ∗U , then v is empty (i.e. the lats is acyclic), and

• siU
r
→ s & siU

r′

→ s =⇒ r ∼= r′.

The unfolding of a lats S is the occurrence lats unf (S) = (SU , s
i
U , TS, IS,TranU , lS),

where

• SU is defined to be Runs(S)/∼=,

• siU = [ε]∼=, and

• (τ, t, τ ′) ∈ TranU iff r ∈ τ and r.t ∈ τ ′ for some run r ∈ Runs(S).

Naturally, a system and its unfolding will have exactly the same behavioural

properties. Hence, we also have:
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Fact 2.1.1. Let S1 and S2 be two systems. For any notion of behavioural equiv-

alence, say ∼x, we have: S1 ∼x S2 ⇐⇒ unf (S1) ∼x unf (S2).

As we will see in Chapter 5, net systems can be unfolded into occurrence net

systems.

2.1.4 Further Restrictions

In concurrency theory it is common to focus on systems that are image-finite.

Furthermore, we will restrict our attention to concurrency-degree finite systems.

Definition 2.1.14. Let S be a system.

S is image-finite iff for each w ∈ Act∗ the set {s ∈ SS | s
i w
→ s} is finite.

Let s ∈ SS. We define the smallest upper bound on the number of transitions that

can occur concurrently at s by

cboundS(s) = min{κ | ∀r ∈ RunsS(s).
(∀k, l ∈ [1, |r|]. k 6= l⇒ r[k] IS r[l]) =⇒ |r| ≤ κ}.

S is concurrency-degree finite iff for each s ∈ SS, cboundS(s) ∈ IN0.

Restriction 2.1.2. We will only consider systems that are image-finite and

concurrency-degree finite.

By the first axiom of independence finitely-branching processes are always

concurrency-degree finite. Thus, finite-state systems, SBPP and BPP will nat-

urally satisfy this condition. Ultimately, it only imposes a restriction on our

decomposition theory and the coincidence result for S-systems in Section 4.3.

2.2 hp and hhp Bisimilarity

We now provide the formal definitions of the notions of bisimilarity that are

central to this thesis, hp and hhp bisimilarity ; we also define chhp bisimilarity.

For examples and informal explanations we refer the reader to Section 1.2.1.

hp bisimilarity relates two systems whose behaviour can be bisimulated while

ensuring that the matching history grows pomset isomorphic. Technically, this

can be realized by basing hp bisimulation on pairs of synchronous runs [JM96].

Intuitively, two runs are synchronous if their induced pomsets are isomorphic,

and both runs correspond to the same linearization of the associated pomset

isomorphism class.
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Definition 2.2.1 (synchronous runs). Let S1 and S2 be two systems. Let r1

and r2 be runs of S1, and S2 respectively. We say r1 and r2 are synchronous iff

the identity function on {1, 2, . . . , |r1|} is an isomorphism between the pomset of

r1 and the pomset of r2. We denote the set of synchronous runs of S1 and S2 by

SRuns(S1, S2).

Definition 2.2.2 (hp bisimilarity). A history preserving (short: hp) bisimula-

tion between two systems S1 and S2 consists of a set H ⊆ Runs(S1)×Runs(S2)

such that

1. Whenever (r1, r2) ∈ H, then r1 and r2 are synchronous.

2. (ε, ε) ∈ H.

3. Whenever (r1, r2) ∈ H and r1
t1→ r1.t1 for some t1, then there exists t2 such

that r2
t2→ r2.t2 and (r1.t1, r2.t2) ∈ H.

4. Vice versa.

We say S1 and S2 are hp bisimilar, written S1 ∼hp S2, iff there is a hp bisimulation

relating them.

hhp bisimilarity is obtained from hp bisimilarity by the addition of a back-

tracking requirement:

Definition 2.2.3 (backtracking). Let S be a system, r = t1 . . . tn ∈ Runs(S).

For t ∈ TS, we say t is backtrack enabled in r, written t ∈ BEn(r), iff there is

i ∈ [1, n] such that ti = t, and ∀j ∈ [i+ 1, n]. tj IS ti. This means that i is a

maximal element in pom(r).

If t ∈ BEn(r) we define δ(r, t) to be the result of deleting the last occurrence of t

in r, i.e. δ(r, t) = t1 . . . ti−1ti+1 . . . tn iff last(r, t) = i. Note that, given t ∈ BEn(r),

we have δ(r, t) ∈ Runs(S) due to the first axiom of independence.

Definition 2.2.4 (hhp bisimilarity). A hp bisimulation is hereditary (short:

h) when it further satisfies

5. Whenever (r1, r2) ∈ H and t1 ∈ BEn(r1), then t2 = r2[last(r1, t1)] ∈

BEn(r2) and (δ(r1, t1), δ(r2, t2)) ∈ H.

Whenever (r1, r2) ∈ H and t2 ∈ BEn(r2), then t1 = r1[last(r2, t2)] ∈

BEn(r1) and (δ(r1, t1), δ(r2, t2)) ∈ H.

We say S1 and S2 are hereditary hp (short: hhp) bisimilar, written S1 ∼hhp S2, iff

there is a hhp bisimulation relating them.
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Furthermore, we define chhp bisimilarity, which complements the backtracking

condition with a padding requirement:

Definition 2.2.5 (chhp bisimilarity). A hhp bisimulation is coherent (short:

c) when it further satisfies

6. Whenever (r1.w1, r2.w2), (r1.t1, r2.t2) ∈ H for some w1 ∈ T ∗S1 , w2 ∈ T ∗S2 ,

t1 ∈ TS1 , and t2 ∈ TS2 such that |w1| = |w2|, t1 IS1 w1, and t2 IS2 w2, then

(r1.t1.w1, r2.t2.w2) ∈ H.

We say S1 and S2 are coherent hhp (short: chhp) bisimilar, written S1 ∼chhp S2,

iff there is a chhp bisimulation relating them.

It is straightforward to show that ∼hp, ∼hhp, and ∼chhp indeed define equiva-

lence relations on systems. Sometimes, in the context of two systems S1 and S2,

we shall also use ∼(h)hp to denote the set
⋃

{H : H is a (h)hp bisimulation}. It

is easy to see that hp and hhp bisimulations are closed under union. Thus, when

used in this way ∼(h)hp denotes the largest (h)hp bisimulation relating S1 and S2.

A More Compact Definition. Given two systems S1 and S2, it is trivial that

one can regard a relation R ⊆ { (r1, r2) ∈ T
∗
S1
×T ∗S2 | |r1| = |r2|} as a language over

the alphabet TS1 × TS2 , and vice versa. For us, this means a pair of synchronous

runs can be understood as a ‘joint run’ of pairs of transitions rather than a pair

of separate runs.

Convention 2.2.1. We shall regard a pair of synchronous runs as an element of

(TS1 × TS2)
∗ whenever it is convenient, and freely switch between the two views.

We carry over our notations for transition sequences of Def. 2.1.10 (e.g. |r| and

r[i]) to elements of (TS1 × TS2)
∗ in the obvious way.

For r, r′ ∈ SRuns(S1, S2), t ∈ TS1 × TS2 , where we assume r = (r1, r2) and

t = (t1, t2), we write r
t
→ r′ iff r′ = (r1.t1, r2.t2). We refer to (SRuns(S1, S2), TS1×

TS2 ,→) as the hp transition system, and denote it by Thp . If → is not clear from

the context we also write →hp .

In this spirit, backtracking can compactly be understood as the backtracking

of pairs of transitions in joint runs with respect to a notion of joint independence.

Formally, this is motivated by:

Proposition 2.2.1. Let S1, S2 be two systems, and let (r1, r2) ∈ SRuns(S1, S2).

1. ∀i ∈ [1, |r1|]. r1[i] ∈ BEn(r1) ⇐⇒ r2[i] ∈ BEn(r2).
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2. t1 ∈ BEn(r1), t2 ∈ BEn(r2) & last(r1, t1) = last(r2, t2)

=⇒ (δ(r1, t1), δ(r2, t2)) ∈ SRuns(S1, S2).

Proof. This is straightforward from the definitions.

Definition 2.2.6 (joint independence, backtracking). Let S1, S2 be two

systems.

The (joint) independene relation of S1 and S2, I(S1,S2) ⊆ (TS1×TS2)× (TS1×TS2),

is defined by: (t1, t2) I(S1,S2) (t′1, t
′
2) iff t1 IS1 t′1 & t2 IS2 t′2. We lift I(S1,S2) to

sequences and sets of pairs of transitions in the usual way.

Let r ∈ SRuns(S1, S2), and t ∈ TS1 × TS2 . t is backtrack enabled in r, written

t ∈ BEn(r), iff there is i ∈ [1, |r|] such that ti = t, and ∀j ∈ [i+ 1, |r|]. tj I(S1,S2) t.

We employ the notation δ(r, t) analogously to above.

Now we can define in a more compact fashion:

Definition 2.2.7 (hhp and chhp bisimulation, compact). A hp bisimulation

is hereditary (short: h) when it further satisfies

5. Whenever r ∈ H and t ∈ BEn(r) for some t ∈ TS1 × TS2 , then δ(r, t) ∈ H.

A hhp bisimulation is coherent (short: c) when it further satisfies

6. Whenever r.w, r.t ∈ H for some w ∈ (TS1 × TS2)
∗, t ∈ TS1 × TS2 such that

t I(S1,S2) w, then r.t.w ∈ H.

Prefix-closed Bisimulations. Throughout the thesis, it will often be conve-

nient to work with bisimulations that are prefix-closed.

Definition 2.2.8 (prefix-closed). Let Σ be an alphabet. We say a language

L ⊆ Σ∗ is prefix-closed iff rt ∈ L, where t ∈ Σ, implies r ∈ L.

By definition every hhp bisimulation is prefix-closed. This does not apply

to hp bisimulations. However, since prefix-closed hp bisimulations correspond

to bisimulations that have been built up inductively from (ε, ε) without adding

“any redundant tuples”, we can extract from any given hp bisimulation one that

is prefix-closed.

Fact 2.2.1. Two systems are hp bisimilar iff there exists a prefix-closed hp bisim-

ulation relating them.
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A Game Characterization for (h)hp Bisimilarity. It is common to view

bisimulation equivalences in terms of two-player games (e.g. [Sti96]). This is par-

ticularly useful when exhibiting that two systems are non-bisimilar. An extension

of the game characterization of classical bisimilarity that captures hhp bisimilarity

was presented in [NC94]. We describe the game characterization of hhp bisimi-

larity informally (in the style of [Jan95]), incorporating a characterization for hp

bisimilarity.

1. Prerequisites. There are two players, Opponent and Player, and a pair of

systems S1 and S2. A configuration of a play is a pair (r1, r2) ∈ SRuns(S1, S2).

The initial configuration is (ε, ε).

2. Rule for hp bisimilarity. Let (r1, r2) be the current configuration. Opponent

chooses one of the two systems, say S1 (S2), and picks a transition t1 (t2) that

is enabled at r1 (r2). Player has to respond by executing a transition, t2 (t1),

in the opposite system such that the two extended runs stay synchronous.

The new configuration is (r1.t1, r2.t2).

3. Additional rule for hhp bisimilarity. Alternatively to a forwards move, hav-

ing chosen one of the two systems, say S1 (S2), Opponent can pick a tran-

sition t1 (t2) that is backtrack enabled at r1 (r2). Player has to respond by

backtracking t2 := r2[last(r1, t1)] (t1 := r1[last(r2, t2)]) in r2 (r1). The new

configuration is (δ(r1, t1), δ(r2, t2)).

4. Result. The play continues like this forever, in which case Player wins, or

until either Player or Opponent is unable to move (being his or her turn),

in which case the other participant wins.

Fact 2.2.2. Player has a winning strategy in the (h)hp bisimulation game iff S1

and S2 are (h)hp bisimilar; in other words, Opponent has a winning strategy in

the (h)hp bisimulation game iff S1 and S2 are not (h)hp bisimilar.

Note that it immediately follows that hhp bisimilarity is co-semi decidable: it

is easy to see that we can compute all counter-strategies in diagonal fashion step

by step.

2.3 The Decidability of hp Bisimilarity

The key insight behind the proofs of the decidability of hp bisimilarity [Vog91,

JM96] is the following fact: two synchronous runs stay synchronous after the
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addition of a pair of transitions iff the new transitions have the same label, and

the maximal causes of the new transitions in the pomsets associated with the two

runs are the same.

Definition 2.3.1. Let p = (Ep, <p, Lp, lp) be a pomset and e, e′ ∈ Ep. Event e′

is a maximal cause of event e in p iff e′ <p e and there is no event e′′ ∈ Ep such

that e′ <p e
′′ <p e.

Let S be a system, and r ∈ Runs(S). For any i ∈ [1, |r|], we denote the set of

maximal causes of i in pom(r) by mcauses(r, i). Let t ∈ TS such that r
t
→. We

define the maximal causes of t w.r.t. r as mcauses(r, t) := mcauses(r.t, |r.t|).

Proposition 2.3.1. Assume two systems S1 and S2. Let (r1, r2) ∈ SRuns(S1, S2),

and for i ∈ 1, 2 let ti ∈ TSi such that ri
ti→. We have:

(r1.t1, r2.t2) ∈ SRuns(S1, S2) ⇐⇒ lS1(t1) = lS2(t2)
& mcauses(r1, t1) = mcauses(r2, t2).

Proof. Straightforward.

This means, to determine whether two runs grow synchronously, we do not

need to keep the entire history, but it is sufficient to record only those events

that can act as maximal causes. The next step is to find a notion that captures

the corresponding segment of the history, but is finite in the sense that there

are only finitely many instances of it. In any partial order run the events that

can act as maximal causes correspond to distinct transitions. This is so because

a transition cannot be independent of itself. Thus, as one possibility we can

simply take the set of transition-pomsets restricted to the most-recent occurrences

of their transitions. For finite nets there are clearly only finitely many such

restricted pomsets. What we have just described is the notion of growth-sites

defined by Jategaonkar and Meyer. Vogler develops a different concept specific to

net systems: with ordered markings (OMs) the most-recent history is captured

by imposing a pre-order on the places of each marking.

Instead of defining hp bisimulation on runs we can now base our notion on

growth-sites or OMs; for this, Jategaonkar and Meyer define growth-site corre-

spondences (short: gsc’s), the compressed analogue to synchronous runs. The

resulting bisimulations are called gsc-bisimulation, and OM-bisimulation, respec-

tively. Jategaonkar and Meyer show that gsc-bisimilarity is indeed equivalent to

hp bisimilarity. Vogler proves the analogue for OM-bisimilarity. As there are only

finitely many growth-sites or OMs for a system, these bisimilarities can be decided

by exhaustive search. The decidability of hp bisimilarity is then immediate.
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Since we will refer to them later on, we provide the formal definition of growth-

sites and gsc’s:

Definition 2.3.2. Let S be a system. Let r = t1 . . . tn be a transition-sequence of

S. Event i ∈ [1, n] is a most recent occurrence of transition t in r iff ti = t and tj 6=

t for all j ∈ [i+1, n]. Let growth-sites(r) be the transition-pomset of r restricted to

the most-recent occurrences of the transitions in r. We define the set of growth-

site states (short: gs-states) of S as GSs(S) := {(s, g) | ∃r ∈ Runs(S). si
r
→

s & g = growth-sites(r)}. We carry over
w
→, [w〉, and mcauses to gs-states in the

obvious way.

Let S1, S2 be two systems, and (r1, r2) ∈ SRuns(S1, S2). We define the growth-

site correspondence of (r1, r2), denoted by gsc(r1, r2), to be the partial identity

function β : growth-sites(r1) → growth-sites(r2) such that β(i) = j iff i = j and

i ∈ Egrowth-sites(r1) ∩Egrowth-sites(r2). We define the set of gsc-states of S1 and S2 as

GSCs(S1, S2) := {(s1, s2, β) | ∃(r1, r2) ∈ SRuns(S1, S2). s
i
1

r1→ s1, s
i
2

r2→ s2 & β =

gsc(r1, r2)}.

We consider growth-sites and gsc’s only up to isomorphism. This ensures that

GSs(S) and GSCs(S1, S2) are finite sets whenever S, S1, and S2 are finite-state.

We will not make active use of OMs, but we shall briefly bring out the in-

sights underlying the OM quotienting. We will build on them and the associated

concepts later on, in particular in Section 6.14.

If we consider net systems we can make use of the extra information provided

by places. Place holdings mediate between transition occurrences and ultimately

establish the causal dependencies between the events of a run. This induces a

natural concept of immediate cause: let r be a run, and i, j ∈ [1, |r|] be events

of r; j is an immediate cause of i in r iff the firing of i has consumed a place

that was generated by j. In the following, we fix a net system N ; the following

convention will ensure that every event has an immediate cause.

Definition 2.3.3. Let r ∈ Runs(N ). We define init to be the initial cause, that

is we define init <r i for all i ∈ [1, |r|]. We assume our definition of mcauses to

be adapted accordingly. Extending the standard order on natural numbers, we

set init < i for all i ∈ [1, |r|]; we also set init + 1 := 1. We consider the initial

cause init to be an occurrence of the initial transition, which we also call init ;

in other words, we define r[init ] := init . Further, we define init • := M0. In the

context of a pair of synchronous runs, we use init short for (init , init).

Definition 2.3.4. Let r ∈ Runs(N ), and M such that M0[r〉M .
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Let p ∈ M , and i ∈ {init} ∪ [1, |r|]. i is the generator (event) of p w.r.t. r iff

p ∈ (r[i])• and ∀j ∈ [i+ 1, |r|]. p 6∈ •(r[j]). It is easy to see that each p ∈ M has

exactly one generator w.r.t. r. We refer to the unique generator of p w.r.t. r by

gen(r, p). We lift the notation gen(r, p) to sets of places P ⊆ M in the obvious

way.

Let t ∈ TN such that r[t〉. We say i is an immediate cause of t w.r.t. r iff there is

p ∈ •t such that i = gen(r, p). In other words, we define icauses(r, t) := gen(r, •t).

The concept of maximal causes can then be captured as follows: the maximal

causes of an event i in a run r are exactly given by the unsubsumed immediate

causes of i in r.

Proposition 2.3.2. Let r ∈ Runs(N ), and t ∈ TN such that r[t〉. We have:

mcauses(r, t) = {i ∈ icauses(r, t) | 6 ∃j ∈ icauses(r, t). i <r j}.

Proof. Straightforward.

2.4 Conventions

We explain some notation and conventions that will be employed throughout the

thesis. Most of this is standard, but note that in the last paragraph we describe

several conventions very specific to this thesis.

Sequences. Let Σ be a finite alphabet. We use Σ∗ to denote the set of finite

sequences over Σ, and Σω to denote the set of ω-sequences over Σ, where ω =

{1, 2, . . .}. We write ε for the empty sequence. Let r ∈ Σ∗. For A ⊆ Σ, let r ↑A

denote the projection of r onto A, i.e. the sequence obtained by erasing from r

all occurrences of letters which are not in A. We use set(r) to denote the set of

letters occurring on r. Prefixes(r) stands for the set of prefixes of r. Let γ ∈ Σω.

FinPrefixes(γ) is the set of finite prefixes of γ. Given r ∈ FinPrefixes(γ), we use

γ − r to denote the ω-sequence obtained by deleting r from the beginning of γ.

Relations, Functions, Structures. Let A and B be sets. We use IdA to

denote the identity relation on A. Let R, R1, and R2 be relations on A. We use

R−1 for the inverse of R, and R1R2 for the composition of R1 and R2. P(A) is

the power set of A. Given (a, b) ∈ A × B, the cartesian product of A and B,

we use proj 1(a, b) to refer to a and proj 2(a, b) to refer to b. Given a function

f : A→ B, we allow us to apply f to subsets of A as well as elements of A; that
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is we employ f as f : P(A) → P(B) with f(As) = {f(a) | a ∈ As}. Conversely,

given g : P(A)→ P(B), if it is clear that singleton sets are mapped to singleton

sets, we allow us to employ g as g : A→ B in the obvious way. Given a function

f and a domain D, we use f ¹D for f restricted to D. Given two structures U and

V , we write U ∼= V to say U and V are equivalent under the associated notion

of isomorphism. Let (P,≤) be a partially ordered set. Given x ∈ P , we define

↑x = {y ∈ P | y ≥ x} and ↓x = {y ∈ P | y ≤ x}.

Specific to this Thesis. If possible without ambiguity, for ease of notation,

we leave indices away or simplify them, e.g.: in the context of a system S we

write I for IS; given a system S1 we write T1 for TS1 . Conversely, we add indices

to resolve ambiguity when we work with more than one system or net, e.g. we

write BEnS(r), or [t〉N .

If i is used to range over 1 and 2 then we define ī as follows: if i = 1 then ī = 2,

otherwise ī = 1.

Let S1 and S2 be two systems. For a pair (r1, r2) ∈ SRuns(S1, S2) we use r as

a short notation. Similarly, we write t for a pair (t1, t2) ∈ T1 × T2. Further, we

write r
t
→ r′ when we have (r1, r2), (r

′
1, r

′
2) ∈ SRuns(S1, S2) and (t1, t2) ∈ T1× T2

such that r1
t1→ r′1 and r2

t2→ r′2. In the same spirit we use S short for (S1, S2) to

abbreviate indices such as in BEn (S1,S2)(r). Conversely, given r ∈ SRuns(S1, S2)

we write r1 and r2 short for proj 1(r), and proj 2(r) respectively. Given t ∈ T1×T2

we adopt the analogous convention.

2.5 Further Concepts

2.5.1 Bisimulation Approximations

For proving the soundness of tableaux systems that will be exhibited in Chapter 5,

we give an alternative definition of hp and hhp bisimilarity based on bisimulation

approximations. This is analogous to how classical bisimilarity was originally

defined in [Mil80].

Definition 2.5.1. Let S1, S2 be two systems, and n ∈ IN0. A set H is a hp

bisimulation approximation of degree n for S1, S2 if

1. Whenever r ∈ H then r ∈ SRuns(S1, S2).

2. ε ∈ H.

3. Whenever r ∈ H, |r| < n, and r1
t1→ r1.t1 for some t1, then there exists t2

such that r2
t2→ r2.t2, and r.(t1, t2) ∈ H.
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4. Vice versa.

For two systems S1 and S2, we write S1 ∼
n
hp S2 iff there is a hp bisimulation

approximation of degree n relating them.

Definition 2.5.2. Let n ∈ IN0. A hhp bisimulation approximation of degree n is

a hp bisimulation approximation of degree n that further satisfies

5. Whenever r ∈ H and t ∈ BEn(r) then δ(r, t) ∈ H.

For two systems S1 and S2, we write S1 ∼
n
hhp S2 iff there is a hhp approximation

of degree n relating them.

With the standard argument we obtain:

Lemma 2.5.1. For image-finite systems,

∼hp=
∞
⋂

n=0

∼n
hp .

Lemma 2.5.2. For image-finite systems,

∼hhp=
∞
⋂

n=0

∼n
hhp .

Lemma 2.5.2 immediately implies that hhp bisimilarity is co semi-decidable:

if two systems S1 and S2 are not hhp bisimilar then there must be an n such that

S1 6∼
n
hhp S2. It is easy to see that checking whether S1 ∼

n
hhp S2 is decidable for

each n.

2.5.2 Shuffle Product

From the first axiom of independence it is clear that concurrency has to do with

being able to shuffle computations. Following [Pin97] we define:

Definition 2.5.3 (shuffle). Let A be an alphabet. The shuffle of n words

u1, . . . , un ∈ A
∗ is the set u1 ⊗ · · · ⊗ un of all words of the form

u1,1u2,1 · · · un,1u1,2u2,2 · · · un,2 · · · u1,ku2,k · · · un,k

with k ≥ 0, ui,j ∈ A
∗, such that ui,1ui,2 · · · ui,k = ui for 1 ≤ i ≤ n. The shuffle of

k languages L1, . . . , Lk is the language

L1 ⊗ · · · ⊗ Lk =
⋃

{u1 ⊗ · · · ⊗ uk | u1 ∈ L1, . . . , uk ∈ Lk}.
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The following is a natural property of shuffle:

Proposition 2.5.1. We assume a finite alphabet A, and pairwise disjoint sub-

alphabets A1, . . . , An. Let wi ∈ A∗i for i ∈ [1, n], and w ∈ w1 ⊗ · · · ⊗ wn. We

have:

∀i ∈ [1, n]. wi = w↑Ai.

Via shuffle we can infer from existing runs to new runs:

Proposition 2.5.2. Assume a net system N . Let M ∈ Reach(N ), Ms, M
′
s ⊆M

such that Ms ∩M
′
s = ∅. Then for any L ⊆ Runs(Ms), L

′ ⊆ Runs(M ′
s) we have:

L⊗ L′ ⊆ Runs(Ms ∪M
′
s).

This is similar for synchronous runs:

Proposition 2.5.3. Assume two net systems N1, N2. For i ∈ {1, 2} let Mi ∈

Reach(Ni) and M
s
i , M

s
i
′ such that M s

i ,M
s
i
′ ⊆ Mi and M

s
i ∩M

s
i
′ = ∅. Then for

any L ⊆ SRuns(M s
1 ,M

s
2 ), L

′ ⊆ SRuns(M s
1
′,M s

2
′) we have:

L⊗ L′ ⊆ SRuns(M s
1 ∪M

s
1
′,M s

2 ∪M
s
2
′).
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Chapter 3

Approximating hhp Bisimilarity

3.1 Introduction

In this chapter we examine the backtracking condition so as to understand how

this seemingly small addition can give so much power to hhp bisimilarity. When

considering the game characterization it is easy to see that backtracking has two

dimensions:

1. the number of transitions over which Opponent may backtrack during a

backtracking move (in other words the depth of backtracking), and

2. the number of backtracking moves Opponent is allowed to bring into play

during a game.

In hhp bisimilarity backtracking is unbounded with respect to both of these pa-

rameters. It is, however, a priori not clear whether the distinguishing and com-

putational power of the bisimilarity depends on this. As the main result of the

chapter we prove that this is indeed the case.

By restricting the hereditary condition along the two dimensions we obtain

two families of bounded backtracking bisimilarities. As we will see each of them

forms a decreasing chain that approximates hhp bisimilarity from above, starting

with hp bisimilarity. On the one hand, we show that both of these hierarchies

are strict. This establishes that the distinguishing power of hhp bisimilarity can

only be achieved by unbounded backtracking. On the other hand, we prove

that in both hierarchies each level is decidable, which in turn implies that the

computational power of hhp bisimilarity also depends on the unboundedness of

the two dimensions.

We will see that the hierarchy insights can directly be applied to the decid-

ability problem of hhp bisimilarity; in particular we obtain decidability for two
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subclasses: bounded asynchronous systems and systems with transitive indepen-

dence relation.

The chapter is organized as follows: first, we explain a technicality concerning

the definition of (h)hp bisimilarity, which we require later in this chapter. Then,

we attend to the two hierarchies: for each of them we give the necessary descrip-

tion, show strictness, and prove the decidability result. After that follows the

section on applications to the general decidability problem. We then conclude

with some final remarks.

3.2 A Technicality

We now give an alternative way of defining (h)hp bisimilarity, which corresponds

to how interleaving bisimilarities are usually defined. This will make it possible

for us to show that the two hierarchies indeed approximate hhp bisimilarity.

It is clear that instead of comparing separate transition systems with specified

initial state one can just as well compare the states of a large transition system

which covers all the behaviour one is interested in. Typically, the large transition

system will be given by SOS-rules as the semantics of some process algebra.

Accordingly, a notion of bisimilarity can be defined as a relation on states of a

specified transition system rather than as a relation between separate systems.

This approach has the theoretical advantage that the bisimilarity can be defined

as the union of all bisimulations, and it will typically amount to the largest

bisimulation.

We take an analogous approach: we fix a lats (without initial state) S, and

define hp and hhp bisimilarity as relations on runs, or more precisely synchronous

runs over S. We adapt the notions of runs and synchronous runs to the fact that

S does not have a designated initial state:

Definition 3.2.1. We define the set of runs (relative to S) by

Runs =
⋃

s∈SS

{(s, r) | r ∈ Runs(S, s)},

and the set of synchronous runs (relative to S) by

SRuns = {(r1, r2) | r1, r2 ∈ Runs such that proj 2(r1), proj 2(r2) are synchronous}.

Further, we assume→, BEn, δ, etc. to be adapted accordingly. To abbreviate,

we set T = TS × TS. Then, we are ready to define:

Definition 3.2.2 ((h)hp bisimulation, (h)hp bisimilarity). A hp bisimula-

tion is a binary relation H ⊆ SRuns that satifies
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1. If (r1, r2) ∈ H and r1
t1→ r1.t1 for some t1, then there is some t2 so that

r2
t2→ r2.t2 and (r1.t1, r2.t2) ∈ H.

2. Vice versa.

A hp bisimulation H is hereditary when it further satisfies

3. If r ∈ H and t ∈ BEn(r), then δ(r, t) ∈ H.

We say two runs r1 and r2 are (h)hp bisimilar, written r1 ∼(h)hp r2, iff (r1, r2) ∈ H

for some (h)hp bisimulation H. That is, we define:

∼(h)hp=
⋃

{H : H is a (h)hp bisimulation}.

We also define prefix-closed hp bisimilarity by:

∼′hp=
⋃

{H : H is a prefix-closed hp bisimulation}.

Hp and hhp bisimulation are preserved by various operations on relations:

Proposition 3.2.1. Let Hi be a (h)hp bisimulation for i = 1, 2, . . .. The following

relations are all (h)hp bisimulations: (1) IdRuns, (2) H
−1
i , (3) H1H2, (4)

⋃

i∈I Hi.

With this it is easy to prove that:

Proposition 3.2.2.

1. ∼(h)hp is the largest (h)hp bisimulation.

2. ∼(h)hp is an equivalence relation.

In this framework we define (h)hp bisimilarity between systems as a derived

notion:

Definition 3.2.3. We say two systems S1 and S2 are (h)hp bisimilar iff we have

((si1, ε), (s
i
2, ε)) ∈ ∼(h)hp, where ∼(h)hp is interpreted relative to the disjoint union

of both systems.

It is straightforward to show that this relation on systems coincides with

(h)hp bisimilarity as defined in Section 2.2. In the following, we will switch

freely between the two technical frameworks, and work with whatever is more

convenient. It will always be clear from the context which definition we use.

Note that prefix-closed hp bisimilarity, ∼′hp, induces the same relation on systems

as ∼hp: as explained in Section 2.2 from any given hp bisimulation between two

systems it is always possible to extract one that is prefix-closed.
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3.3 Bounding the Depth of Backtracking

3.3.1 Definition: (n)hhp Bisimilarity

We start with the first dimension of the backtracking condition, and constrain the

number of transitions over which one may backtrack. For all n ∈ IN0 we define:

Definition 3.3.1 ((n)hhp bisimulation, (n)hhp bisimilarity).

A hp bisimulation H is (n)hereditary (short: (n)h) when it further satisfies

3. Whenever r ∈ H and t ∈ BEn(r) for some t such that last(r, t) ≥ |r| − n,

then δ(r, t) ∈ H.

We say two runs r1 and r2 are (n)hhp bisimilar, written r1 ∼(n)hhp r2, iff (r1, r2) ∈

H for some (n)hhp bisimulation H. That is, we define:

∼(n)hhp =
⋃

{H : H is a (n)hhp bisimulation}.

It is easy to verify that analogously to Prop. 3.2.1 and 3.2.2 we have:

Proposition 3.3.1. For all n ∈ IN0 the following holds:

1. Let Hi be a (n)hhp bisimulation for i = 1, 2, . . .. The following relations are

all (n)hhp bisimulations: (1) IdP , (2) H
−1
i , (3) H1H2, (4)

⋃

i∈I Hi.

2. ∼(n)hhp is the largest (n)hhp bisimulation.

3. ∼(n)hhp is an equivalence relation.

We now show that the (n)hhp bisimilarities indeed approximate hhp bisimi-

larity from above, starting with prefix-closed hp bisimilarity1.

Clearly, the (0)hhp bisimulations correspond to the prefix-closed hp bisimula-

tions, and so we confirm:

Proposition 3.3.2. ∼(0)hhp =∼
′
hp.

It is also immediate that any (m)hhp bisimulation satisfies the conditions to

be a (k)hhp bisimulation for all k ≤ m; this gives us:

Proposition 3.3.3. Let k,m ∈ IN0. If k ≤ m then ∼(k)hhp ⊇∼(m)hhp.

1We could define the (n)hhp bisimulations in a way such that the hierarchy would start at
hp bisimilarity just as well.
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In other words, our equivalence relations form a decreasing chain:

∼(0)hhp ⊇ ∼(1)hhp ⊇ ∼(2)hhp ⊇ . . . ⊇ ∼(k)hhp ⊇ . . .

We will denote this chain by 〈∼(n)hhp〉n∈ω.

Further, any hhp bisimulation is certainly an (n)hhp bisimulation for all n ∈

IN0, and hence:

Proposition 3.3.4. For all n ∈ IN0, ∼hhp ⊆∼(n)hhp.

Finally, we show that the chain 〈∼(n)hhp〉n∈ω properly approximates ∼hhp, in

that ∼hhp is the limit of the (n)hhp bisimilarities. Note that the proof is only

valid in our context of image-finite systems.

Proposition 3.3.5. ∼hhp =
⋂

n∈ω ∼(n)hhp .

Proof. For the sake of shorter notation, we set Hlim =
⋂

n∈ω ∼(n)hhp.

∼hhp⊆ Hlim follows directly from Prop. 3.3.4. To prove the other direction, we

will show that Hlim is a hhp bisimulation. Since ∼hhp is the largest hhp bisimula-

tion, this is clearly sufficient to establish Hlim ⊆ ∼hhp. Hlim is obviously a relation

on synchronous runs, and so we can go ahead and check whether properties (1) -

(3) of Def. 3.2.2 hold.

To prove (1) we let r ∈ Hlim and assume r1
t1→ r1.t1 for some t1. We need to

find t2 such that r2
t2→ r2.t2 and r.t ∈ Hlim . Consider that for all n, ∼(n)hhp is a hp

bisimulation, and r ∈ ∼(n)hhp by assumption. Then, it is clear that each ∼(n)hhp

contains some match for t1 at r, i.e. some t2 so that r2
t2→ r2.t2 and r.t ∈ ∼(n)hhp.

For each ∼(n)hhp such matches come from the following set of candidates:

Cands = {t2 ∈ TS | r2
t2→ & l(t2) = l(t1)}. By image-finiteness Cands must

be a finite set. But then there is at least one t2 ∈ Cands that appears infinitely

often in the chain 〈∼(n)hhp〉n∈ω as a match of t1 at r. By Prop. 3.3.3 we infer that

r.(t1, t2) ∈ ∼(n)hhp for all n, and hence r.(t1, t2) ∈ Hlim . Altogether, t2 is a match

as required.

Property (2) follows from the symmetric argument.

(3) is easy to prove. Assume r ∈ Hlim and t ∈ BEn(r). Surely, last(r, t) ≥

|r| − k for some k ∈ IN0, and so δ(r, t) ∈ ∼(n)hhp for all n ≥ k. With Prop. 3.3.3

we clearly obtain δ(r, t) ∈ ∼(n)hhp for all n < k, and hence δ(r, t) ∈ Hlim .

3.3.2 Strictness of the Hierarchy

Having seen that the (n)hhp bisimilarities form a hierarchy that approximates

hhp bisimilarity, we would like to know whether this hierarchy is strict in that

the chain of (n)hhp bisimilarities is strictly decreasing.
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Figure 3.1: Two nets N and N ′ that are (n)hhp but not (n+1)hhp bisimilar. Note
that for n = 0 one obtains the two systems of counter-example 1 (Figure 1.7)

The standard example of Figure 1.7 shows that (0)hhp bisimilarity is strictly

weaker than (1)hhp bisimilarity. There is an elegant generalization of this counter-

example, which discriminates between (n)hhp and (n+1)hhp bisimilarity:

Lemma 3.3.1. For any n ∈ IN0, N and N
′ of Figure 3.1 are (n) but not (n+1)hhp

bisimilar.

Proof. Let us first argue that N and N ′ are not hhp bisimilar. In any hp bisimu-

lation we must match ai with a
′
i, and bi with b

′
i for 1 ≤ i ≤ n. Then, one option in

N ′ is to perform a′n+1 and b
′
n+1. These transitions have to be matched with either

an+1 and bn+1, or an+2 and bn+2 respectively. Suppose we choose the match an+1,

bn+1. We can now backtrack all the a-transitions such that d′ becomes enabled

in N ′. But no d-action is possible in N . If we choose an+2, bn+2 as our match,

we can backtrack all the b-transitions. Then a c-action becomes possible in N ′,

but not in N . So, indeed N and N ′ are not hhp bisimilar. It is easy to see that

using this strategy we never need to backtrack over more than n + 1 transitions

(in fact, in N and N ′ we can never backtrack over more than n+ 1 transitions).

76



Thus, N and N ′ are not (n+1)hhp bisimilar either.

The above counter-strategy does not apply for (n)hhp bisimilarity; instead,

we can proceed as follows to match the critical n + 1 transitions. Say we have

to match a′n+1, and b′n+1 has not been fired yet, i.e. we can still choose between

an+1 and an+2 as a match. We make our match dependent on the first transition

in the history. Assume it is an a-transition. Then, it is safe to match a′n+1 with

an+1, which determines that b′n+1 is later matched with bn+1. For d′ to become

enabled in N ′ we need to backtrack all the a-transitions; however, there will be

n + 1 b-transitions following the first a, so this is not possible. A symmetrical

argument applies if the first action was a b-action, and similarly for the remaining

cases.

It follows that the hierarchy is strict, and together with Prop. 3.3.3 we have:

Theorem 3.3.1. Let k,m ∈ IN0. If k < m then ∼(k)hhp ⊃∼(m)hhp.

In other words, 〈∼(n)hhp〉n∈ω is a strictly decreasing chain.

3.3.3 Decidability of (n)hhp Bisimilarity

We now show that for any n ∈ IN0, (n)hhp bisimilarity is decidable for finite-

state systems. The idea behind our proof is that we can define hhp and (n)hhp

bisimulation in a ‘forward fashion’. At each tuple we keep a matching directive

that prescribes how transitions are going to be matched from this point onwards.

The matching directive allows us to express the backtracking requirement as a

property of the matching directives of two ‘connected’ tuples.

To characterize hhp bisimulation in this manner we need to record the match-

ing of the entire future. Because of this the forwards characterization merely

shifts the difficulty of the decidability of hhp bisimilarity from the past to the

future: now we are confronted with an infinity of possible futures. This is not the

case for (n)hhp bisimilarity. But we shall see that it is sufficient to record future

matchings of length n. Our proof builds on this fact and the insights gained in

the proofs of the decidability of hp bisimilarity.

Below is the definition of (n)Dhp bisimulation, our forwards characterization

of (n)hhp bisimulation.

Definition 3.3.2. A (n)Dhp bisimulation between two systems S1 and S2 consists

of a set HD of triples (r1, r2, D) such that

(i) r1 is a run of S1, r2 is a run of S2, and r1 and r2 are synchronous. The

matching directive D is a non-empty and prefix-closed set of pairs of words
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(w1, w2), such that w1 is a transition-sequence of S1, w2 of S2 respectively,

and |w1| = |w2| ≤ n.

(ii) For some D, (ε, ε,D) ∈ HD.

(iii) Whenever (r1, r2, D) ∈ HD, and w ∈ D for some w, such that |w| < n,

and for some t1 we have r1.w1
t1→ r1.w1.t1, then there is some t2 such that

(w1.t1, w2.t2) ∈ D.

Note that (ε, ε) ∈ D because D is prefix-closed and non-empty.

(iv) Vice versa.

(v) Whenever (r1, r2, D) ∈ HD, and (t1, t2) ∈ D, then there is some D′, such

that (r1.t1, r2.t2, D
′) ∈ HD and

(a) ∀w s.t. |w| < n. tw ∈ D ⇔ w ∈ D′.

(b) ∀w′. w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′ ⇒ w′ ∈ D.

We say two systems S1 and S2 are (n)Dhp bisimilar, written S1 ∼(n)Dhp S2, iff

there is a (n)Dhp bisimulation relating them.

We show that for all n ∈ IN0 (n)Dhp bisimilarity is indeed equivalent to (n)hhp

bisimilarity. In the proof we make use of the fact that it is sufficient to consider

only prefix-closed (n)Dhp bisimulations: they correspond to bisimulations that

are built up inductively from the empty runs without adding any “redundant

tuples”.

Definition 3.3.3. We say a (n)Dhp bisimulation HD is prefix-closed iff whenever

(r1.t1, r2.t2, D
′) ∈ HD, then there is (r1, r2, D) ∈ HD for some D such that t ∈ D

and

1. ∀w s.t. |w| < n. tw ∈ D ⇔ w ∈ D′.

2. ∀w′. w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′ ⇒ w′ ∈ D.

Fact 3.3.1. If two systems are (n)Dhp bisimilar then there exists a prefix-closed

(n)Dhp bisimulation relating them.

Lemma 3.3.2. For any n ∈ IN0, two systems are (n)hhp bisimilar iff they are

(n)Dhp bisimilar.
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Proof. For the ‘only if’-direction let H be a (n)hhp bisimulation relating two

systems S1 and S2. Note that by definition H is prefix-closed. We define a set

HD by assigning a matching directive D to every r ∈ H as follows:

HD = {(r,D) | r ∈ H & D = {w | |w| ≤ n & r.w ∈ H}}

Our claim is that HD is a (n)Dhp bisimulation for S1 and S2. Prefix-closure of

D is given by prefix-closure of H; then property (i) of Def. 3.3.2 clearly holds.

Properties (ii), (iii), and (iv) are also trivial.

To see that property (v) holds, let (r1, r2, D) ∈ HD and (t1, t2) ∈ D. Then,

due to the way D is defined there is D′ such that (r.t,D′) ∈ HD. Condition (a) is

clearly satisfied, also due the way matching directives are added to the tuples. To

check condition (b) assume we have w′ ∈ D′ ∧ t I t′ for all t′ ∈ w′. But then we

have r.t.w′ ∈ H with t being backtrack enabled. The fact that |w′| ≤ n together

with the (n)hereditary condition (Def. 3.3.1) implies that r.w′ ∈ H. Hence, by

definition of D we have w′ ∈ D as required.

For the ‘if’-direction assume HD to be a prefix-closed (n)Dhp bisimulation re-

lating two systems S1 and S2. Define H by simply ignoring the matching directive

D of triples (r1, r2, D) ∈ HD. It is easy to verify that H is a hp bisimulation for

S1 and S2 (Def. 2.2.2). We show that in addition H is (n)hereditary (Def. 3.3.1).

Let r.t.w ∈ H such that t is backtrack enabled, and |w| ≤ n. By prefix-closure of

HD we have (r,D), (r.t,D′) ∈ HD for some D, D′ such that t ∈ D, w ∈ D′, and

the two conditions of property (v) of Def. 3.3.2 are satisfied. But then we have

w ∈ D by condition (b), and hence (r.w,D′′) ∈ HD for some D′′ as required.

Now that we have expressed the backtracking condition in a forwards fashion,

we can proceed along the lines of the decidability proofs for hp bisimilarity (see

Section 2.3). Instead of defining (n)Dhp bisimulation on synchronous runs we

can base the notion on gsc’s (or OMs for net systems) just as well; we call the

resulting equivalence (n)Dgsc bisimilarity. The proof that (n)Dgsc bisimilarity

indeed coincides with (n)Dhp bisimilarity is a straightforward adaptation of the

proof in [JM96]. Since there are only finitely many matching directives of size

n, (n)Dgsc bisimilarity can also be decided by exhaustive search. Consequently,

(n)Dhp bisimilarity is decidable, and with it (n)hhp bisimilarity.

Theorem 3.3.2. For any n ∈ IN0, it is decidable whether two finite-state systems

are (n)hhp bisimilar.
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3.4 Bounding the Number of Backtrack Moves

3.4.1 Definition: (n)nhp Bimilarity

We now turn to the second dimension of backtracking, and constrain the number

of backtracking moves. Transferred to the relational framework this amounts to

restricting the recursive depth of the backtracking requirement. So, we inductively

define for all n ∈ IN0:

Definition 3.4.1 ((0)nhp bisimulation, (0)nhp bisimilarity). Every hp

bisimulation is (0)nested (short: (0)n).

Two runs r1 and r2 are (0)nhp bisimilar, written r1 ∼(0)nhp r2, iff r1 and r2 are

hp bisimilar. That is, we define ∼(0)nhp =∼hp.

Definition 3.4.2 ((n+1)nhp bisimulation, (n+1)nhp bisimilarity). A hp

bisimulation H is (n+1)nested (short: (n+1)n) when it further satisfies

3. If r ∈ H and t ∈ BEn(r) for some t, then δ(r, t) ∈ ∼(n)nhp.

We say r1 and r2 are (n+1)nhp bisimilar, written r1 ∼(n+1)nhp r2, iff (r1, r2) ∈ H

for some (n+1)nhp bisimulation H. That is, we define:

∼(n+1)nhp=
⋃

{H : H is a (n+1)nhp bisimulation}.

Similarly to before, we have:

Proposition 3.4.1. For all n ∈ IN0 the following holds:

1. Let Hi be a (n)nhp bisimulation for i = 1, 2, . . .. The following relations are

all (n)nhp bisimulations: (1) IdP , (2) H
−1
i , (3) H1H2, (4)

⋃

i∈I Hi.

2. ∼(n)nhp is the largest (n)nhp bisimulation.

3. ∼(n)nhp is an equivalence relation.

The (n)nhp bisimilarities form another chain of equivalences which approxi-

mates hhp bisimilarity from above, this time starting with hp bisimilarity. Anal-

ogously to the observations in Section 3.3.1 the following can easily be read from

the definition:

Proposition 3.4.2. 1. ∼(0)nhp =∼hp.

2. Let k,m ∈ IN0. If k < m then ∼(k)nhp ⊇∼(m)nhp.

3. For all n ∈ IN0, ∼hhp ⊆∼(n)nhp.
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The second clause shows that the (n)nhp bisimilarities form a decreasing chain:

∼(0)nhp ⊇ ∼(1)nhp ⊇ ∼(2)nhp ⊇ . . . ⊇ ∼(k)nhp ⊇ . . .

We denote this second chain by 〈∼(n)nhp〉n∈ω. Presupposing image-finiteness we

obtain:

Proposition 3.4.3. ∼hhp =
⋂

n∈ω ∼(n)nhp.

Proof. To abbreviate we set Hlim =
⋂

n∈ω ∼(n)nhp.

The direction ∼hhp⊆ Hlim is immediate with Prop. 3.4.2(3). The other direc-

tion follows if we can establish that Hlim is a hhp bisimulation. To prove that

Hlim is a hp bisimulation we can employ the same argumentation as used in the

proof of Prop. 3.3.5. Then, it only remains to verify that property (3) of Def. 3.2.2

holds. This is readily done: assume r ∈ Hlim and t ∈ BEn(r). We show that for

all n ∈ IN0 δ(r, t) ∈ ∼(n)nhp, and hence δ(r, t) ∈ Hlim . Let n ∈ IN0. By assump-

tion we have r ∈ ∼(n+1)nhp; but then by the (n+1)nested condition (Def. 3.4.2)

we obtain r ∈ ∼(n)nhp as required.

3.4.2 Strictness of the Hierarchy

The family of counter-examples which demonstrates that the first hierarchy is

strict proves strictness for the second hierarchy just as well:

Lemma 3.4.1. For any n ∈ IN0, N and N
′ of Figure 3.1 are (n) but not (n+1)nhp

bisimilar.

Proof. In the proof of Lemma 3.3.1 consider the counter-strategy which demon-

strates that N and N ′ are not hhp bisimilar. It is easy to check that we employ

no more than n+1 backtracking moves: to backtrack n+1 a-transitions, or n+1

b-transitions. Thus, N and N ′ are not (n+1)nhp bisimilar.

To show that N and N ′ are (n)nhp bisimilar the strategy of Lemma 3.3.1

does not apply; instead we simply proceed as follows. If we encounter an+1 or

an+2 before we have matched bn+1 or bn+2 we will take care of the c: then we

match an+1 to a′n+1 and an+2 to a′n+2. This implies that later on we will have to

match bn+1 to bn+1 and bn+2 to bn+2. The b-match will not be in accord with the

d-actions, but it is still safe: to expose the respective d-action we would have to

backtrack all n + 1 a-transitions, while we are only allowed n + 1 backtracking

moves. Symmetrical arguments apply in the remaining cases.

Theorem 3.4.1. Let k,m ∈ IN0. If k < m then ∼(k)nhp ⊃∼(m)nhp.

In other words, 〈∼(n)nhp〉n∈ω is a strictly decreasing chain.
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3.4.3 Decidability of (n)nhp Bisimilarity

We shall now demonstrate that for any n ∈ IN0, (n)nhp bisimilarity is decidable

for finite-state systems. Similarly to Section 3.3.3 our proof relies on an alternative

characterization of hhp and (n)nhp bisimilarity, which is ‘forwards’ in that there

is no explicit backtracking, and the histories can be compressed to gsc’s. Again,

for hhp bisimilarity the alternative characterization merely shifts the complexity

of the decidablity problem somewhere else; for (n)nhp bisimilarity, however, the

gsc-version of the alternative characterization is based on finite domains only.

Thus, this equivalence is decidable, and so is (n)nhp bisimilarity.

Let us be more concrete now: how can we obtain a forwards characterization

suitable for deciding the (n)nhp bisimilarities? The idea is to record for each run

(or more exactly pair of synchronous runs) r all the runs that are reachable by

backtracking from r. We can conveniently keep this information in a ‘backtrack

tree’: r constitutes the root; nodes of depth one correspond to runs reachable

by one backtracking move from r; nodes of depth two to runs reachable by one

backtracking move from their immediate parent node, or by backtracking twice

from r, and so on. To record backtrack information that is relevant to hhp

bisimilarity in this manner there is no bound on the depth of the trees required.

On the other hand, it is clear that for (n)nhp bisimilarity we only need to keep

trees of depth n.

Thus, backtrack trees seem to provide a suitable domain to base our forwards

characterization on. There is, however, a further requirement: we need to be able

to compute the backtrack tree of a continuation run r.t without inspecting the

history, but merely from t and the backtrack tree of r. This is possible due to the

following insight: the one-move backtrack runs of a continuation run r.t are fully

determined by t and the one-move backtrack runs of r. Formally, and in more

detail we have:

Definition 3.4.3. Let r ∈ SRuns .

For tb ∈ T we define the set of one-move tb-backtrack runs of r by:

1btRuns(tb, r) = {rb | ∃i ∈ BEn(r). rb = δ(r, i) & ti = tb}.
2

The set of one-move backtrack runs of r is defined by:

1btRuns(r) = {rb | ∃i ∈ BEn(r). rb = δ(r, i)} (=
⋃

tb∈T
1btRuns(tb, r)).

Proposition 3.4.4. Let t, tb ∈ T , and r
′, r′.t ∈ SRuns.

We have rb ∈ 1btRuns(tb, r
′.t) iff one of the following conditions holds:

2We always have |1btRuns(tb, r)| ≤ 1, but this is not crucial here.
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1. t = tb & rb = r′, or

2. t I tb & ∃r
′
b ∈ 1btRuns(tb, r

′). r′b
t
→ & rb = r′b.t.

3

Proof. Easy to see from the definitions.

Altogether we then proceed as follows: for each n ∈ IN0 we define a domain

BTTs [n], which corresponds to the data structure required to record a backtrack

tree of depth n. We associate a partial transition function tr [n] : BTTs [n] × T →

BTTs [n] with each of these domains, so that tr [n] implements the above insight in

recursive fashion. Based on this transition system we then define a family of (n)btt

bisimilarities, and show that for each n ∈ IN0 (n)btt bisimilarity corresponds to

(n)nhp bisimilarity.

The family of domains is defined as follows. Note that for technical reasons

we additionally keep a transition t at each node excluding the root node; this is

intended to specify that the run of the respective node is obtained by backtracking

t from the run of the parent node.

Definition 3.4.4. For each n ∈ IN0, we define the domain of inner backtrack

trees of depth n inductively as follows:

IBTTs [0] = T × SRuns ,

IBTTs [n+1] = T × SRuns × P(IBTTs [n]).

The domain of (outer) backtrack trees of depth n is then defined by:

BTTs [0] = SRuns ,

BTTs [n+1] = SRuns × P(IBTTs [n]).

Let ρ range over BTTs [n] and IBTTs [n], and R over P(BTTs [n]) and P(IBTTs [n]);

if the domains are not specified it will be clear from the context whether we are

concerned with BTTs [n] or IBTTs [n].

Let ρ ∈ IBTTs [n+1] with ρ = (tb, r, R). We refer to tb by t
ρ
b , to r by rρ, and to R

by Rρ. We will use similar conventions for ρ ∈ IBTTs [0], and ρ ∈ BTTs [n].

We will need the following two operations on (inner) backtrack trees:

Definition 3.4.5. By discarding their innermost level we can prune inner and

outer backtrack trees of depth n + 1 into ones of depth n. For all n ∈ IN, we

define a function prune [n] : IBTTs [n] → IBTTs [n−1] by:

prune [1](t, r, R[0]) = (t, r),
prune [n+1](t, r, R[n]) = (t, r, prune [n](R[n])),

3r′b
t
→ is always satisfied, but we prefer to make this explicit.
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and correspondingly a function prune [n] : BTTs [n] → BTTs [n−1] by:

prune [1](r, R[0]) = r,
prune [n+1](r, R[n]) = (r, prune [n](R[n])).

For all n ∈ IN0, we define a function cast [n] : IBTTs [n] → BTTs [n] to typecast

inner backtrack trees into outer ones:

cast [0](t, r) = r,
cast [n+1](t, r, R[n]) = (r, R[n]).

Now comes the partial transition function for backtrack trees; note how it is

inspired by Prop. 3.4.4.

Definition 3.4.6. For all n ∈ IN0, we define a partial transition function for

inner backtrack trees, tr [n] : IBTTs [n] × T → IBTTs [n], as follows:

tr [n](ρ, t) =

{

new [n](ρ, t) if rρ
t
→ & t I tρb ,

undefined otherwise,

where new [n] : IBTTs [n] × T → IBTTs [n] is inductively defined by:

new [0]((tb, r), t) = (tb, r.t),
new [n+1]((tb, r, R), t) = (tb, r.t, tr

[n](R, t) ∪ (t, r, prune(R)).

Correspondingly, we define for all n ∈ IN0 a partial transition function for back-

track trees, tr [n] : BTTs [n] × T → BTTs [n], by:

tr [n](ρ, t) =

{

new [n](ρ, t) if rρ
t
→,

undefined otherwise,

where new [n] : BTTs [n] × T → BTTs [n] is inductively given by:

new [0](r, t) = r.t,
new [n+1]((r, R), t) = (r.t, tr [n](R, t) ∪ (t, r, prune(R)).

We use ρ
t
→ to express ‘tr(ρ, t) is defined’, and ρ

t
→ ρ′ as short notation for ‘ρ

t
→

& ρ′ = tr(ρ, t)’.

We define analogues of 1btRuns for our family of domains:

Definition 3.4.7. Let n ∈ IN, and ρ ∈ BTTs [n].

For tb ∈ T we define the set of first-level tb-backtrack trees of ρ by:

1btTrees(tb, ρ) = {cast(ρ
′) | ρ′ ∈ Rρ with tρ

′

b = tb}.

The set of first-level backtrack trees of ρ is defined by:

1btTrees(ρ) = cast(Rρ), that is 1btTrees(ρ) =
⋃

tb∈T
1btTrees(tb, ρ).
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Analogously to Prop. 3.4.4 we have:

Proposition 3.4.5. Let n ∈ IN, t, tb ∈ T , and ρ
′, ρ ∈ BTTs [n] with ρ = tr(ρ′, t).

We have ρb ∈ 1btTrees(tb, ρ) iff one of the following conditions holds:

1. t = tb & ρb = prune(ρ
′), or

2. t I tb & ∃ρ
′
b ∈ 1btTrees(tb, ρ

′). ρ′b
t
→ & ρb = tr(ρ

′
b, t).

Proof. Easy to see from the definitions.

At last, we come to define our family of (n)btt bisimilarities:

Definition 3.4.8 ((0)btt bisimulation, (0)btt bisimilarity). A (0)btt bisim-

ulation is a relation B ⊆ BTTs [0] that satisfies

1. If ρ ≡ (r1, r2) ∈ B and r1
t1→ r1.t1 for some t1, then there is some t2 so that

r2
t2→ r2.t2, ρ

t
→, and tr(ρ, t) ∈ B.

2. Vice versa.

Two runs r1 and r2 are (0)btt bisimilar, written r ∈ ∼(0)btt, iff r ∈ B for some (0)btt

bisimulation B. That is, we define: ∼(0)btt=
⋃

{B : B is a (0)btt bisimulation}.

Definition 3.4.9 ((n+1)btt bisimulation, (n+1)btt bisimilarity).

A (n+1)btt bisimulation is a relation B ⊆ BTTs [n+1] that satisfies

1. If ρ ≡ ((r1, r2), R) ∈ B and r1
t1→ r1.t1 for some t1, then there is some t2 so

that r2
t2→ r2.t2, ρ

t
→, and tr(ρ, t) ∈ B.

2. Vice versa.

3. If ρ ∈ B then 1btTrees(ρ) ⊆ ∼(n)btt.

Two runs r1 and r2 are (n+1)btt bisimilar w.r.t. R ⊆ IBTTs [n], written (r, R) ∈

∼(n+1)btt, iff (r, R) ∈ B for some (n+1)btt bisimulation B. That is, we define:

∼(n+1)btt=
⋃

{B : B is a (n+1)btt bisimulation}.

We now show that for all n ∈ IN0, (n)btt bisimilarity and (n)nhp bisimilarity

indeed correspond to each other. For this, we translate every pair of synchronous

runs into a corresponding backtrack tree.

Definition 3.4.10. For all n ∈ IN0, and r ∈ SRuns we inductively define a

map btt [n] : SRuns → BTTs [n] to translate a pair of synchronous runs into a

corresponding backtrack tree:

btt [0](ε) = ε,

btt [n+1](ε) = (ε, ∅),

btt [n](r.t) = tr [n](btt [n](r), t).
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Next, we present some straightforward properties about this map. Note that

by clause (2) of Prop. 3.4.6, btt [n] is a function. Clause (1) and (3) are important

in view of our plan to show that the (n)btt bisimilarities coincide with the (n)nhp

bisimilarities: the two properties ensure that the ‘bisimulation’-conditions of the

two notions correspond to each other.

Proposition 3.4.6. For all n ∈ IN0, and r ∈ SRuns we have:

1. Let ρ ∈ BTTs [n] with ρ = btt [n](r), and let t ∈ T .

(a) r
t
→ =⇒ ρ

t
→ & tr(ρ, t) = btt [n](r.t).

(b) ρ
t
→ =⇒ r

t
→ & btt [n](r.t) = tr(ρ, t).

2. btt [n](r) is defined.

3. rbtt
[n](r) = r.

4. btt [n](r) = prune(btt [n+1](r)).

Proof. (1), (2), and (3) can be proved in one go by induction on the length of r

and inspecting the definitions. (4) can also be shown by induction on the length of

r; employ the fact tr [n](prune [n+1](ρ[n+1]), t) = prune [n+1](tr [n+1](ρ[n+1], t)), which

follows by induction on n.

Now comes the crux of the proof: using Prop. 3.4.4 and 3.4.5 we show that

1btRuns and 1btTrees correspond to each other in the following way:

Lemma 3.4.2. For any n ∈ IN0, and r ∈ SRuns we have:

1. Let tb ∈ T . btt
[n](1btRuns(tb, r)) = 1btTrees(tb, btt

[n+1](r)), and so

2. btt [n](1btRuns(r)) = 1btTrees(btt [n+1](r)).

Proof. We only need to prove (1); (2) follows as an immediate consequence. Let

n ∈ IN0, r ∈ SRuns , and tb ∈ T . We proceed by induction on the length of

r. Base case r = ε: the property clearly holds since btt [n](1btRuns(tb, r)) =

∅ = 1btTrees(tb, btt
[n+1](r)). Inductive case r = r′.t: we prove the two inclusions

separately.

For the ‘⊆’-direction assume rb ∈ 1btRuns(tb, r). Then, by Prop. 3.4.4 one

of the following two conditions holds: (1) t = tb & rb = r′, or (2) t I tb &

∃r′b ∈ 1btRuns(tb, r
′). r′b

t
→ & rb = r′b.t. We show that in both cases btt [n](rb) ∈

1btTrees(tb, btt
[n+1](r)).
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Case (1): Prop. 3.4.6(1a) implies btt [n+1](r′)
t
→, and further by Prop. 3.4.5 we

infer prune(btt [n+1](r′)) ∈ 1btTrees(t, tr(btt [n+1](r′), t)). Since tr(btt [n+1](r′), t) =

btt [n+1](r′.t) (Prop. 3.4.6(1a)), and prune(btt [n+1](r′)) = btt [n](r′) (Prop. 3.4.6(4))

this immediately establishes btt [n](r′) ∈ 1btTrees(t, btt [n+1](r)) as required.

Case (2): we can apply the induction hypothesis to r′ and r′b, and obtain

btt [n](r′b) ∈ 1btTrees(tb, btt
[n+1](r′)). By Prop. 3.4.6(1a) we have btt [n+1](r′)

t
→,

and btt [n](r′b)
t
→. Altogether, with Prop. 3.4.5 we then get tr(btt [n](r′b), t) ∈

1btTrees(tb, tr(btt
[n+1](r′), t)). But with Prop. 3.4.6(1a) this immediately gives us

the required fact: btt [n](r′b.t) ∈ 1btTrees(tb, btt
[n+1](r′.t)).

To prove the ‘⊇’-direction assume ρb ∈ 1btTrees(tb, btt
[n+1](r)). Consider ρ′ =

btt [n+1](r′); by Prop. 3.4.6(2) ρ′ is defined, and by Prop. 3.4.6(1a) we have ρ′
t
→

& btt [n+1](r) = tr(ρ′, t). Then, by Prop. 3.4.5 there are the following two possible

cases: (1) t = tb & ρb = prune(ρ′), or (2) t I tb & ∃ρ′b ∈ 1btTrees(tb, ρ
′). ρ′b

t
→

& ρb = tr(ρ′b, t). We show that in both cases there is rb ∈ 1btRuns(tb, r) with

btt [n](rb) = ρb.

Case (1): r′ is a run as required: obviously (formally by Prop. 3.4.4), we

have r′ ∈ 1btRuns(tb, r), and since prune(ρ′) = btt [n](r′) (by Prop. 3.4.6(4)) we

certainly have btt [n](r′) = ρb.

Case (2): we can apply the induction hypothesis to ρ′ and ρ′b, and obtain

r′b ∈ 1btRuns(tb, r
′) such that btt [n](r′b) = ρ′b. Since ρ′b

t
→ we also have r′b

t
→

(by Prop. 3.4.6(1b)). But then r′b.t provides a run as required: by Prop. 3.4.4

r′b.t ∈ 1btRuns(tb, r
′.t), and with btt [n](r′b.t) = tr(ρ′b, t) (by Prop. 3.4.6(1b)) we

obtain btt [n](r′b.t) = ρb.

Now, it is straightforward to prove that (n)btt bisimilarity coincides with

(n)nhp bisimilarity in the following sense:

Lemma 3.4.3. For all n ∈ IN0, and r ∈ SRuns we have:

r ∈ ∼(n)nhp ⇐⇒ btt [n](r) ∈ ∼(n)btt .

Proof. We prove the lemma by induction on n. Base case n = 0: from the

definitions it is clear that ∀r ∈ SRuns . btt [0](r) = r, and ∼(0)nhp = ∼hp = ∼(0)btt.

Hence, the property is immediate. Inductive Case n > 0: Let r ∈ SRuns . We

prove the two directions separately.

To establish the ‘⇒’-direction we assume a (n)nhp bisimulationH with r ∈ H,

and show that B = btt [n](H) is a (n)btt bisimulation. For this, we need to verify

that B satisfies the three conditions of Def. 3.4.9. With Prop. 3.4.6(3) and (1a)

it is easy to see that conditions (1) and (2) indeed hold; condition (3) in turn

follows from the induction hypothesis and Lemma 3.4.2.
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For the ‘⇐’-direction let B be a (n)btt bisimulation such that btt [n](r) ∈ B.

We define a set H ⊆ SRuns as follows: H is the least set satisfying

1. r ∈ H.

2. Let t ∈ T . If r ∈ H, and

(a) there is ρ, ρ′ ∈ B such that ρ = btt [n](r) & ρ
t
→ ρ′, and

(b) r
t
→ & btt [n](r.t) = ρ′

then r.t ∈ H.

Fact 3.4.1. If r ∈ H then btt [n](r) ∈ B.

We claim that H is a (n)nhp bisimulation. Clearly, r ∈ H; so if this is true

then r ∈ ∼(n)nhp. With the above fact, and clause (3) and (1b) of Prop. 3.4.6 it is

easy to see that H is a hp bisimulation (Def. 3.2.2). Further, it follows from the

induction hypothesis and Lemma 3.4.2 that H satisfies the (n)nested condition

(Def. 3.4.2).

This proves that the (n)btt bisimilarities indeed provide an alternative charac-

terization of the (n)nhp bisimilarities. Let us now exploit that the characterization

is ‘forwards’.

Instead of keeping runs in backtrack trees, we can record their gsc’s just as

well. Accordingly, we compress each domain BTTs [n] to a domain gsc-BTTs [n] by

substituting GSCs for SRuns . The partial transition function carries over easily

to this domain. It is then straightforward to check that a corresponding family of

(n)gsc-btt bisimilarities coincides with the (n)btt bisimilarities. The gsc-BTTs [n]

domains are surely finite for finite-state systems, and so the (n)gsc-btt bisimilar-

ities can be decided by exhaustive search. To decide (n)nhp bisimilarity we then

simply translate the respective runs into their gsc-based backtrack tree (which

clearly can be done effectively), and test for (n)gsc-btt bisimilarity.

Theorem 3.4.2. For any n ∈ IN0, it is decidable whether two finite-state systems

are (n)nhp bisimilar.

3.5 Application to the Decidability Problem of

hhp Bisimilarity

We will now see how the insights about the hierarchies can be applied to the

decidability problem of hhp bisimilarity. First, we review how they might have

helped to solve the general problem. Then, we identify two system classes for
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which the hierarchy insights indeed help to establish results: we show that for

bounded asynchronous systems and systems with transitive independence decid-

ing hhp bisimilarity reduces to deciding (n)hhp bisimilarity.

3.5.1 Retrospection

The two hierarchies were identified, and the material of the first elaborated when

the decidability of hhp bisimilarity was still an open problem. At that time we

hoped that the decidability of the (n)hhp bisimilarities would directly help to

solve the general problem.

From the strictness result we already knew that hhp bisimilarity does not

coincide with (n)hhp bisimilarity for any n ∈ IN0 (now, this also follows from the

undecidability of the former). However, for two fixed systems hhp bisimilarity

does fall together with (n)hhp bisimilarity from some n ∈ IN0 onwards: if two

systems are not hhp bisimilar then by Prop. 3.3.5 this will show within some

bound n. Thus, the decidability of the general problem would immediately follow,

if this bound could be effectively computed for any two finite-state systems. Via

the undecidability result it is now clear that this is not possible.

Analogous considerations are valid for the second hierarchy.

Proposition 3.5.1. 1. For any two (image-finite) systems S1 and S2 there is

a bound n ∈ IN0 such that S1 ∼hhp S2 iff S1 ∼(n)hhp S2.

This bound is not effectively computable for finite-state systems.

2. For any two (image-finite) systems S1 and S2 there is a bound n ∈ IN0 such

that S1 ∼hhp S2 iff S1 ∼(n)nhp S2.

This bound is not effectively computable for finite-state systems.

3.5.2 Bounded Asynchronous Systems

For each n ∈ IN0, we define a behavioural system class for which hhp bisimilarity

naturally coincides with (n)hhp bisimilarity. With Theorem 3.3.2 it is immediate

that hhp bisimilarity is decidable for the finite-state subsets of these classes.

Definition 3.5.1. Let n ∈ IN0. A system S is (n)bounded asynchronous iff for

all r ∈ Runs(S) we have: i ∈ BEn(r) =⇒ |r| − i ≤ n.

Proposition 3.5.2. For any n ∈ IN0 we have:

1. Two (n)bounded asynchronous systems are hhp bisimilar iff they are (n)hhp

bisimilar.
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2. It is decidable whether two finite-state (n)bounded asynchronous systems are

hhp bisimilar.

Proof. (1) is immediate by definition; (2) follows from (1) and Theorem 3.3.2.

We can also consider the union of this family of system classes.

Definition 3.5.2. A system S is bounded asynchronous iff S is (n)bounded asyn-

chronous for some n ∈ IN0.

Note that we have:

Proposition 3.5.3.

1. It is decidable whether a finite-state system is bounded asynchronous.

2. For any finite-state bounded asynchronous system S it is possible to compute

the smallest n for which S is (n)bounded asynchronous.

Proof. (1.) It is easy to check that a finite-state system S fails to be bounded

asynchronous if and only if there is t ∈ TS, s ∈ Reach(S), and a loop s = s0
t1→

s1 · · ·
tn→ sn = s such that s

t
→ & ∀i ∈ [1, n]. t IS ti. Clearly, this condition can

be decided for finite-state systems.

(2.) To compute the smallest bound n for which S is (n)bounded asynchronous

we can then simply test for all t ∈ TS, s, s
′ ∈ Reach(S) with s

t
→ s′ how many

transitions independent of t can be computed from s′ onwards; as the bound we

take the maximum.

With this fact, decidability for finite-state bounded asynchronous systems is

also immediate.

Theorem 3.5.1. It is decidable whether two finite-state bounded asynchronous

systems are hhp bisimilar.

This is in fact a strong result: hhp bisimilarity becomes decidable as soon

as we disallow ‘threads’ being left behind indefinitely; this is already achieved

by systems which satisfy suitably defined criteria of ‘concurrency-fairness’ and

‘thread-liveness’. Also note that bounded asynchrony seems to be closely related

(if not equivalent) to the property ‘strongly synchronized’ of [Maz89].
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3.5.3 Systems with Transitive Independence Relation

In trace theory, there are several decision problems which are undecidable in the

general case, but which can be decided as soon as one assumes the independence

relation to be transitive [DM97]. We will now see that, analogously, it is fruitful

for us to consider systems with transitive independence relation.

Definition 3.5.3. An independence relation I over an alphabet Σ is transitive

if, for every distinct t, t′, t′′ ∈ Σ, t I t′ & t′ I t′′ implies t I t′′.

Let S be a system. A transition t ∈ TS is a self-loop iff ∃s ∈ Reach(S). s[t t〉.

(For 1-safe net systems a static condition is: •t = t•.) Intuitively, a self-loop is a

transition that can be repeated immediately, i.e. independently of the occurrence

of other transitions.

Let us first draw our attention to systems with transitive independence rela-

tion that do not contain any self-loops. It is easy to see that for such systems

the number of transitions over which we can backtrack is bounded by the size of

the maximal independence clique. In other words, a system with maximal inde-

pendence clique of size k is (k)bounded asynchronous, and hence decidability for

finite-state systems of this subclass is immediate.

If a system contains a self-loop that can occur concurrently with another tran-

sition, then this system is clearly not bounded asynchronous. However, we can

transfer the decidability result to the full class of finite-state systems with tran-

sitive independence with the help of another key observation. In every (h)hp

bisimulation between two systems with transitive independence, concurrently oc-

curring self-loop transitions have always to be matched with self-loops. Hence, we

do not need to consider the unfoldings of such self-loops: it is sufficient to match

the first occurrence of such a transition when we make sure that the match is

indeed a self-loop. But then the number of transitions over which one can back-

track is again bounded by the size of the maximal independence clique, and so

we have established decidability. The precise definition of what it means for a

self-loop to occur concurrently in a given context, and the details of the proof can

be found in Appendix A.

Theorem 3.5.2. It is decidable whether two finite-state systems with transitive

independence relation are hhp bisimilar.

For systems with transitive independence and no self-loops it can be proved

that hhp bisimilarity coincides with coherent hhp bisimilarity. Based on this

insight there is an alternative decidability proof for the finite-state subset of this
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class, and thereby for the the full class of finite-state systems with transitive

independence. Both of the proofs can be found in [Frö98].

3.6 Final Remarks

We have approximated hhp bisimilarity by two hierarchies of bounded back-

tracking bisimilarities corresponding to the two dimensions of backtracking. By

analysing these hierarchies we have found that the distinguishing and computa-

tional power of hhp bisimilarity can only be achieved by leaving the two dimen-

sions unbounded. With the help of our hierarchy insights we have also obtained

two partial results: decidability of hhp bisimilarity for bounded asynchronous

systems and transition systems with independence.

There are some interesting points for further research. One point is to relate

the hierarchy insights further to the undecidability result. Inspired by the sys-

tems that are employed in [JN00], a second family of counter-examples has been

developed that demonstrates strictness for the second hierarchy. The counter-

example explicates an aspect of the undecidability proof: it illustrates how the

second ingredient of unboundedness gives the power to propagate a piece of infor-

mation, such as tiling information, indefinitely. This connection has to be worked

out in more detail. It still needs to be analysed how the first ingredient of un-

boundedness manifests itself in the undecidability proof, and whether there is an

equally intuitive interpretation. So far, one connection is clear: one central part

of the reduction is to encode the two-dimensional grid by two sets of independent

transitions; it is obvious that in the corresponding systems Opponent has the

opportunity to backtrack transitions of arbitrary depth. Note how this connec-

tion agrees with our decidability result for bounded asynchronous systems: such

systems do not have the expressive power to encode the grid.

This brings us to a symmetric point. For the first hierarchy, bounded asyn-

chronous systems provide a natural system class for which bounded backtracking

achieves the same power as hhp bisimilarity. This also helped to establish the

decidability of systems with transitive independence. It still has to be checked

whether a corresponding restriction for the second hierarchy gives rise to a natural

system class, or whether it helps to find results for other interesting subclasses.

Further, one could analyse whether the two hierarchies interact with each other

in any way; one could also consider a hierarchy which reflects both dimensions.

A general idea for further research is to study the relationship between tiling

games and independence systems and/or backtracking; this could lead to useful
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intuitions and new results. An obvious technical point is to check whether the

two hierarchies still approximate hhp bisimilarity in the general case, when lifting

our restriction to image-finite systems.
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Chapter 4

The Interplay of Causality,
Concurrency & Conflict

4.1 Introduction

In this chapter we lay the foundations for the remaining material of the thesis.

Having examined the backtracking condition in the previous chapter we now begin

with the second and major part of our analysis: we study the coincidence and

decidability problem of (hp and) hhp bisimilarity on system classes with restricted

behaviour. Thereby, we hope to identify which behavioural aspects of concurrent

systems are crucial to the increased expressive and computational power of hhp

bisimilarity. We have put forward that backtracking is so powerful because it

can expose subtle differences arising from the mixture of the three fundamental

situations: causality, concurrency, and conflict. We will substantiate this intuition

by exhibiting concrete coincidence and decidability results. This chapter is our

starting point: it identifies important behavioural situations, and delivers first

insights on the coincidence problem. We shall also prove our first composition

and decomposition results. Two of the themes identified here will be continued in

the following two chapters: in Chapter 5 we study a structural class with restricted

synchronization, and in Chapter 6 we investigate a structural characterization of

confusion-free systems. After concluding this introduction with a first insight, we

will proceed as follows:

Section 4.2. Naturally, we start by investigating the basic situations causal-

ity, concurrency, and conflict. We find that concurrency and conflict are both

crucial to keep hp and hhp bisimilarity distinct, but that this is not the case for

causality. Furthermore, we identify (L&C)-nondeterminism as a crucial situation.

Investigating it will lead us to an interesting counter-example.

Section 4.3. We prove that hp and hhp bisimilarity are composable with
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respect to decompositions of systems into independent components, and that for

bsc-decomposable systems the two bisimilarities are decomposable with respect to

the set of prime components. With this it will be straightforward to show that

hp and hhp bisimilarity coincide for parallel compositions of sequential systems,

confirming our intuition that the increased power of hhp bisimilarity relies on the

interplay of concurrrency with conflict and/or causality.

Section 4.4. Motivated by the previous section we identify and investigate

behavioural situations that witness structural synchronization: three ‘synchro-

nization witness’ (short: SW ) situations. On the one hand, we find that taken

by themselves each of them is significant but not essential to distinguish hp and

hhp bisimilarity. On the other hand, we show that in their entirety they are a

necessary condition for bounded-degree systems. We conclude that hp and hhp

bisimilarity coincide for bounded-degree communication-free net systems.

Section 4.5. We consider a well-known behavioural situation which results

from the interplay of concurrency and conflict, the situation of confusion. We

find that confusion is significant for distinguishing hp and hhp bisimilarity, but

we also show that the two bisimilarities do not coincide for confusion-free systems;

this disproves a long-standing conjecture. However, our counter-example leads us

to identifying a new kind of confusion, so-called syn-confusion.

Section 4.6. Finally, we introduce the well-known concept of liveness. This

behavioural property will be particularly interesting later on, when we study

it in combination with the structural condition of free choice: free choice net

systems are confusion-free, while live free choice net systems additionally appear

to exclude syn-confusion.

As in the previous chapter we work at the behavioural level here, and employ

lats’ as our primary semantic model. We will refer to lats’ simply as systems.

4.1.1 A First Intuition

In studying the distinction between hp and hhp bisimilarity we will seek to capture

which behavioural aspects are significant or even necessary to construct a counter-

example. It is immediate to identify two conditions that any counter-example

must provide:

Insight 4.1.1.

1. We must be given the opportunity to match in a non-hereditary way: it

must be possible to match two interleavings of the same partial order run

differently depending on the order in which independent transitions are

linearized.
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2. The non-hereditary matching must be made necessary in that: if we do

not seize the provided opportunity to make the matching dependent on the

linearization then a difference between the two systems will be exhibited,

and a hp bisimulation cannot be obtained.

Accordingly, we can distinguish between two types of scenarios which will be

present in any counter-example. Let A and B be two systems that are hp but

not hhp bisimilar.

Frame Scenario. In a hp bisimulation relating A and B the matching of some

transitions of A, and B respectively, will depend on the order in which they or

other transitions are linearized. We call the specific arrangement of such key

transitions the frame scenario of the counter-example.

MNH Situations. There must be a second kind of key transitions: the ones that

together ensure that the non-hereditary matching is made necessary. Typically,

this will involve two parallel transitions such that one of them has an indirect

effect on the other, in that it can change the ‘behavioural environment’ of the

first. We call such scenarios MNH situations (‘MNH’ is short for ‘Match Non-

Hereditary’).

The difficulty in constructing counter-examples is that such situations must

be combined while preserving that the two systems are still hp bisimilar. We

illustrate our concepts with the help of the two standard counter-examples:

Counter-example 1 (Figure 1.7). The counter-example’s frame situation consists

of two conflicting ‘independence squares’ in each system. a1 and b1 can either be

matched by a′1 and b′1, or by a′2 and b′2. Which of the two squares is employed

can be made dependent on the order in which a1 and b1 are linearized. This is

similar for a2 and b2, and symmetric in B. The following describes one of the

MNH situations employed in A: a1 and b1 are independent of each other but a1

holds an influence over the ‘behavioural environment’ of b1: if b1 occurs first then

a transition d can occur causally dependent on b1. If a1 occurs before b1 then the

d option is no longer available.

Counter-example 2 (Figure 1.8). Here, the frame situation is made up of three

conflicting ‘independence squares’ in system A, and two conflicting ‘independence

squares’ in system B. Similarly to counter-example 1 the matching of each square

can be made dependent on the order in which its transitions are linearized. Since

the ‘independence squares’ are in conflict the third square can easily be incor-

porated into this scheme. The following describes one of the MNH situations

employed in A: a1 and b1 are in parallel, but a1 has an indirect influence on b1:
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assume a1 and b1 are still both enabled. If b1 occurs first then there is the option

to execute c1 in parallel to b1. If a1 occurs before b1 then this opportunity is taken

away.

4.2 A Minimum of Behavioural Situations

In this first section we will settle a minimum of behavioural situations which must

be allowed to keep hp and hhp bisimilarity distinct from each other. These situ-

ations are concurrency, conflict, and a specific notion of nondeterminism, which

we shall call (L&C)-nondeterminism. Causality is not a necessary condition. We

will also find that (L&C)-nondeterminism can be classified into (L&C)-nondet.

conflict and (L&C)-nondet. concurrency, but that the availability of one of the

two is sufficient for non-coincidence. The three essential situations will, of course,

also constitute a minimum for keeping hhp bisimilarity undecidable.

4.2.1 Concurrency and Conflict but not Causality

The fact that concurrency and conflict are both necessary to keep hp and hhp

bisimilarity apart becomes immediately clear with Insight 4.1.1 and the following

observations. Without concurrency there will never be an occasion to match

two distinct linearizations of the same computation in a different way, trivially

because there will only be one linearization per computation. Thus, if there is no

concurrency we cannot fulfill requirement (1.). On the other hand, in the absence

of conflict requirement (2.) cannot be met: the behaviour of a conflict-free system

consists of a single (possibly infinite) partial order run, and therefore there will

not be any alternative behaviour that could make it necessary to match in a non-

hereditary way. More detailed proofs of both results can be found in [Frö00b];

here we simply state:

Definition 4.2.1 (sequential systems, conflict-free systems).

A system S is sequential iff

∀s ∈ Reach(S). ∀t1, t2 ∈ TS. s[t1〉 & s[t2〉 =⇒ t1 DS t2.

A system S is conflict-free iff

∀s ∈ Reach(S). ∀t1, t2 ∈ TS. t1 6= t2 & s[t1〉 & s[t2〉 =⇒ t1 IS t2.

Theorem 4.2.1.

1. hp and hhp (and classical) bisimilarity coincide for sequential systems.
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2. hp and hhp bisimilarity coincide for conflict-free systems.

The result for sequential systems also follows from the fact that hp bisimilarity

naturally coincides with classical bisimilarity in this case, and that adding ‘linear’

backtracking to classical bisimilarity does not increase its distinguishing power.

The latter has been shown in [DNMV90].

Interestingly, a look at the second counter-example (Figure 1.8) tells us that

causality is not a necessary condition for non-coincidence: it is easy to see that

the two systems are entirely causality-free.

Definition 4.2.2 (causality-free systems). A system S is causality-free iff

∀s ∈ Reach(S). ∀t1, t2 ∈ TS. s[t1t2〉 =⇒ t1 IS t2.

Theorem 4.2.2. hp and hhp bisimilarity do not coincide in general for causality-

free systems.

S-systems and T-systems. There are two well-studied subclasses of Petri

nets which give rise to structural characterizations of sequential and, respec-

tively, conflict-free systems. These so-called S-systems and T-systems will also

be interesting later on with regard to free-choice net systems (cf. Chapter 6).

In S-systems every transition has exactly one pre-place and one post-place,

and thereby a transition can neither be used to join a number of input threads,

nor to fork an input thread into several output strands.

Definition 4.2.3 (S-graphs, S-systems).

A net N is an S-graph iff ∀t ∈ TN . |
•t| = 1 & |t•| = 1.

A net system N is an S-system iff its underlying net is an S-graph.

Dually, in T-systems every place has exactly one pre-transition and one post-

transition. This ensures that such systems do not contain any backwards or

forwards branched places, and hence no conflict at all.

Definition 4.2.4 (T-graphs, T-systems).

A net N is a T-graph iff ∀s ∈ SN . |
•s| = 1 & |s•| = 1.

A net system N is a T-system iff its underlying net is a T-graph.

It is clear that all T-systems are conflict-free. On the other hand, S-systems are

not necessarily sequential since they can contain several independent components.

Instead we have that all connected S-systems are sequential.1 Then with our

results of above (Theorem 4.2.1) we immediately get:

1Remember that we always assume a net system to be 1-safe.
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Theorem 4.2.3.

1. hp and hhp (and classical) bisimilarity coincide for the class of connected

S-systems.

2. hp and hhp bisimilarity coincide for the class of T-systems.

More to the theory of S-systems and T-systems can be found in [RT86] and

[DE95].

4.2.2 (L&C)-nondeterminism

Apart from concurrency there is yet another basic behavioural situation which is

needed to satisfy requirement (1.) (of Insight 4.1.1). Certainly, it is only possible

to make the matching of a transition dependent on the order in which independent

behaviour is linearized if there are suitable alternative matches available in the

respective systems. It could well be the case that we have so few options of how

to build up a bisimulation that we are forced to match in a hereditary way.

By the axioms of independence (see Section 2.1.2) and the fact that our match-

ing preserves independence this need for variety translates into the requirement

for a certain kind of nondeterministic choice: at a respective state there must be

at least two transitions available that are ‘matching-equivalent’ in that if one of

them is suited to match some transition of the opposite system, say t2, then the

other one will make a suitable match for t2 just as well. With the insights of

Section 2.3 it is not difficult to see that two transitions are ‘matching-equivalent’

at some gsc state g iff they have the same label and the same maximal causes at

g. Accordingly, we define the behavioural situation of (L&C)-nondeterministic

choice.

Definition 4.2.5 (choice, nondeterministic choice). Let S be a system, t1,

t2 ∈ TS, s ∈ Reach(S), and g ∈ GSs(S).

The triple (s, t1, t2) is a choice situation (at s) iff t1 6= t2, s[t1〉 & s[t2〉. Analo-

gously, the triple (g, t1, t2) is a choice situation (at g) iff t1 6= t2, g[t1〉 & g[t2〉.

Let c = (s, t1, t2), c
′ = (g, t1, t2) be choice situations. We say

• c or c′ is nondeterministic w.r.t. the labelling (short: (L)-nondet.) iff l(t1) =

l(t2),

• c′ is nondeterministic w.r.t. the maximal causes (short: (C)-nondet.) iff

mcauses(g, t1) = mcauses(g, t2), and

99



• c′ is nondeterministic w.r.t. labelling and maximal causes (short: (L&C)-

nondet.) iff c′ is both, (L)- and (C)-nondet..

We can then add (L&C)-nondet. choice as our third basic requirement for

non-coincidence. Formally, we have:

Definition 4.2.6 ((L/C)-det. systems). A system S is deterministic w.r.t.

labelling or maximal causes (short: (L/C)-det.) iff for all g ∈ GSs(S) there is no

(L&C)-nondet. choice at g.

Theorem 4.2.4. hp and hhp bisimilarity coincide for (L/C)-det. systems.

Proof. Let S1, S2 be two systems such that S1 is (C/L)-det., and let H be a

prefix-closed hp bisimulation relating S1 and S2.

Assume rtw ∈ H with t I w. By prefix-closure of H, r ∈ H. Clearly, w2 is

enabled at r2 just as well, and thus there must be a match for w2 at r: there is w
∗
1

such that (r1w
∗
1, r2w2) ∈ H. By induction on the length of w we show w1 = w∗1.

This certainly proves rw ∈ H as required. Base case |w| = 0: There is nothing

to prove. Inductive case |w| > 0: Assume w1 = w′1t
′
1, w2 = w′2t

′
2, and, integrating

the induction hypothesis, w∗1 = w′1t
∗
1. On the one hand, we have l(t′1) = l(t′2)

and mcauses(r1w
′
1, t

′
1) = mcauses(r2w

′
2, t

′
2) because clearly rw must be a pair of

synchronous runs. On the other hand, since t∗1 is a match for t′2 at rw
′, t∗1 must be

such that l(t∗1) = l(t′2) and mcauses(r1w
′
1, t

∗
1) = mcauses(r2w

′
2, t

′
2), and thereby a

transition with the same label, and the same maximal causes at r1w
′
1 as t

′
1. Since

S1 is (C/L)-det. this means t∗1 must be t′1 as required.

In fact, the proof shows that the two bisimilarities also coincide if only one

of two related systems is (L/C)-det., and this in the strong sense that every

prefix-closed hp bisimulation is hereditary.

4.2.3 (L&C)-nondet. Conflict or (L&C)-nondet. Concur-
rency

In concurrent systems two simultaneously enabled transitions are either in con-

flict with each other or concurrently executable. Accordingly, we can distinguish

between the following two types of choice.

Definition 4.2.7 (#-choice, co-choice). Let S be a system, t1, t2 ∈ TS, s ∈

Reach(S), g ∈ GSs(S), and let c = (s, t1, t2), c
′ = (g, t1, t2) be choice situations.

We say
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• c or c′ is a choice situation due to conflict (short: #-choice) iff t1 DS t2,

and

• c or c′ is a choice situation due to concurrency (short: co-choice) iff t1 IS t2.

This classification gives us the opportunity to further analyse whether to keep

hp and hhp bismilarity distinct we require (L&C)-nondeterminism in the disguise

of (L&C)-nondet. #-choice, (L&C)-nondet. co-choice, either, or both of the two.

A look at the two counter-examples (Figure 1.7, 1.8) shows that (L&C)-

nondet. co-choice is not necessary for non-coincidence: the systems do not con-

tain any (L&C)-nondet. co-choice, indeed they do not even contain (L)-nondet.

co-choice (or auto-concurrency as it is usually called).

Definition 4.2.8 (auto-concurrency free, (L&C)-co free systems). A sys-

tem S is auto-concurrency free iff for all s ∈ Reach(S) there is no (L)-nondet.

co-choice at s.

A system S is (L&C)-concurrency free (short: (L&C)-co free) iff for all g ∈

GSs(S) there is no (L&C)-nondet. co-choice at g.

Theorem 4.2.5. hp and hhp bisimilarity do not coincide in general for auto-

concurrency free systems, and hence not for (L&C)-co free systems.

At the same time this means (L&C)-nondeterminism can be employed in the

disguise of (L&C)-nondet. #-choice to distinguish between hp and hhp bisimi-

larity. It is more difficult to resolve whether (L&C)-nondet. #-choice is neces-

sary for non-coincidence, or whether alternatively we can employ (L&C)-nondet.

co-choice. The two standard counter-examples (Figure 1.7, 1.8) do not give us

any help: their frame situations are based on (L&C)-nondet. conflict, and there

is no obvious way of converting them into counter-examples that use (L&C)-

nondet. co-choice instead (cf. Section 4.1.1). However, we have come up with a

new counter-example, which indeed employs (L&C)-nondet. co-choice rather than

#-choice. The two systems are presented in Figure 4.1 and 4.2. They are clearly

(L&C)-nondet. conflict free, and even (L)-nondet. conflict free.

In both of them there is a bundle of parallel e-transitions and a bundle of

parallel f -transitions such that depending on how the conflict between the a- and

b-transition, and respectively the c- and d-transition, is resolved, either (1)(b,

c) the two bundles can occur in parallel, (2)(a, d) none of the bundles can occur,

(3)(b, d) the f -bundle can occur but the e-bundle is prevented from occurring, or

(4)(a, c) vice versa. In case (1) the e-threads can synchronize with the f -threads
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Figure 4.1: Counter-example 3, System S
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Figure 4.2: Counter-example 3, System S ′
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via g-transitions; in case (3) one particular thread of the f -bundle can do a j-

synchronization; and similarly in case (4) one particular thread of the e-bundle

can do an i-synchronization. The only difference between the two systems is

that in S the e- and f -transition with the i-, and respectively, j-synchronization

option are g-synchronization partners, whereas in S ′ these transitions have g-

synchronizations with the alternative e- or f -transition.

We will see that with the help of backtracking this difference can easily be

detected, but that without it we can use non-hereditary matching to disguise it.

That is we claim:

Lemma 4.2.1 (counter-example 3). S and S ′ of Figure 4.1 and 4.2 are hp

bisimilar but not hhp bisimilar.

Proof. We shall first argue why the two systems are not hhp bisimilar, and then

explain why they are hp bisimilar still.

(1.) Opponent (short: Op) has the following counter-strategy against Player

(short: Pl). Op opens the game by choosing the c-transition of system S; Pl

has to answer this move by c′. Then, Op picks e1, and Pl can choose between

e′1 and e′2. We first consider the latter case and assume to be at configuration

(c, c′)(e1, e
′
2). Op does the a-transition, and Pl has to react with the a′-transition.

But note that Op has tricked Pl into a losing position: Op can do the i-transition,

but there is no i-transition enabled in system S ′, and so Pl is stuck.

Let’s go back and allow Pl to try out the other possibility. We assume con-

figuration (c, c′)(e1, e
′
1). Pl could now perfectly match the above sequence. But

of course, Op has something different in mind: Op chooses b; Pl has to react

with b′. Then Op picks f2; Pl can now choose between f ′1, and f ′2. Let’s try the

latter option first. We are at (c, c′)(e1, e
′
1)(b, b

′)(f2, f
′
2). Op does g1, but there is

no g-transition Pl could use to match this move, and so he is stuck again.

Previously, Pl could have reacted with f ′1 though, and then he would have

managed this sequence easily. But of course, Op will employ a different strategy in

this case. We presume configuration (c, c′)(e1, e
′
1)(b, b

′)(f2, f
′
1). Op finally brings

the backtracking capability into play and backtracks the e1- and c-transition;

Pl has to react with the corresponding backtracking move. This brings us to

configuration (b, b′)(f2, f
′
1). Op chooses the d-transition, which is now available;

Pl reacts with d′. But then Op can do the j-synchronization, and Pl is definitely

stuck this time.

(2.) To see that the two systems are hp bisimilar first note that without Op’s

power to backtrack Pl ’s last strategy would have been perfectly successful. In

general, Pl can take the following strategy to win the game.
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For all transitions apart from the e- and f -labelled ones, the matching will

be forced by the labelling. Pl can match the e-transitions either straight across,

that is e1 to e′1 and e2 to e′2, or diagonally, that is e1 to e′2 and e2 to e′1 (and vice

versa). We call the first option Es, and the second Ed. This is analogous for the

f -transitions, and we shall refer to the corresponding strategies by Fs and Fd.

With regard to the g-synchronizations, the strategies Es and Fd are compatible,

and the combination (Ed, Fs) also works fine. For the i-synchronization Es will

do, but not Ed. Similarly, Fs is suitable for the j-synchronization, but Fd is not.

Because a#b and c#d (a′#b′ and c′#d′), Pl will never have to consider the i-,

or respectively, j-transition, and the g-synchronizations in the same game, and

thus he can adopt the following strategy: if he has to match c (or c′) before b (or b′)

has occurred then he will orientate himself by the i-synchronization, and employ

the matching strategy (Es, Fd). This is perfectly safe: the i-synchronization is

well taken care of, and Pl is in no danger from the j-transitions, since they have

been put out of action by the c-transitions. Analogously, Pl will adopt strategy

(Ed, Fs) if he encounters transition b (or b
′) before c (or c′). Note that there is an

overlap when b and c have both occurred before any e- or f -transition has: then

naturally both strategies will work.

Together with our observation that S and S ′ do not contain any (L&C)-

nondet. #-choice nor (L)-nondet. #-choice, Lemma 4.2.1 immediately proves:

Definition 4.2.9 ((L)-conflict free, (L&C)-conflict free systems). A sys-

tem S is (L)-conflict free iff for all s ∈ Reach(S) there is no (L)-nondet. #-choice

at s.

A system S is (L&C)-conflict free iff for all g ∈ GSs(S) there is no (L&C)-nondet.

#-choice at g.

Theorem 4.2.6. hp and hhp bisimilarity do not coincide in general for (L)-

conflict free systems, and hence not for (L&C)-conflict free systems.

Thus, we have shown that (L&C)-nondeterminism may come as either (L&C)-

nondet. #-choice or (L&C)-nondet. co-choice; the availability of both or one in

particular of these situations is not necessary to distinguish hp and hhp bisimi-

larity.

4.3 Composition and Decomposition Results

We now make a digression into something more structural, and prove our first

composition and decomposition results: hp and hhp bisimilarity are composable
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with respect to decompositions of systems into independent components (short:

decompositions), and for systems that are decomposable into components each of

which is behaviourally strongly connected (short: bsc-decomposable systems) the

two bisimilarities are decomposable with respect to the set of prime components.

As we will see in this section and later on (cf. Section 4.4 and 5.3) these in-

sights provide the key to several coincidence results. Here we will derive that

hp and hhp bisimilarity coincide for parallel compositions of sequential systems.

We can therefore add: to distinguish the two bisimilarities it is essential that

the sequential parts of a system can interact, or communicate, with each other.

Behaviourally this means: the increased power of hhp bisimilarity relies on the

interplay of concurrency with conflict and/or causality.

The section is organized as follows: we begin with some preliminaries, then

follow the composition, and in turn the decomposition, results, and finally we

discuss their consequences, which include the coincidence result for parallel com-

positions of sequential systems.

4.3.1 Preliminaries

First, we present the concept of concurrent step; it will be needed for the decom-

position result, and also later on (in Section 4.4.3, 5.4.5 and 6.14). Secondly, we

introduce the notions central to this section: the concept of decomposition, set of

prime components, and bsc-decomposable system.

4.3.1.1 Concurrent Steps

Concurrent steps and maximal concurrent steps are defined as follows:

Definition 4.3.1 (csteps, mcsteps). Let S be a system.

A run r ∈ Runs(S) is a concurrent step of S iff we have: ∀k, l ∈ [1, |r|]. k 6= l =⇒

k cor l (or equivalently r[k] IS r[l]). We denote the set of concurrent steps of S

by csteps(S).

r is a maximal concurrent step (short: mc step) of S iff r ∈ csteps(S) and

∀t ∈ TS. r.t 6∈ csteps(S). We denote the set of maximal concurrent steps of S by

mcsteps(S).

Proposition 4.3.1 (facts about csteps and mcsteps). Let S be a system.

1. r.t ∈ csteps(S) =⇒ r ∈ csteps(S).

2. Let r, r′ ∈ csteps(S). (∀t ∈ r. ∀t′ ∈ r′. t IS t′) =⇒ r.r′ ∈ csteps(S).
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3. Let S be non-empty. ∃r ∈ csteps(S). |r| ≥ 1.

4. Let S be non-empty. r ∈ mcsteps(S) =⇒ |r| ≥ 1.

Proof. (1) and (3) are obvious. (2) follows with the second axiom of independence,

and (4) with (3).

We will make use of two straightforward but important insights about the

matching of concurrent steps: in synchronous runs, and hence in hp bisimilarity,

concurrent steps are always matched against concurrent steps; furthermore, in hp

bisimilarity mc steps are always matched against mc steps.

Proposition 4.3.2 (hp bisimilarity respects csteps and mcsteps). Let S1

and S2 be two systems.

1. Let (r1, r2) ∈ SRuns(S1, S2). r1 ∈ csteps(S1) ⇐⇒ r2 ∈ csteps(S2).

2. Let (r1, r2) ∈ ∼hp. r1 ∈ mcsteps(S1) ⇐⇒ r2 ∈ mcsteps(S2).

Proof. (1.) This is a consequence of the fact that synchronous runs are partial

order preserving.

(2.) We show that the contrary leads to a contradiction. Let S1 and S2 be two

systems, and w.l.o.g. assume r ≡ (r1, r2) ∈ ∼hp such that (a) r1 ∈ mcsteps(S1) but

(b) r2 6∈ mcsteps(S2). By (1) and (a) we have r2 ∈ csteps(S2), and considering

(b) there must be t2 ∈ TS2 with r2.t2 ∈ csteps(S2). Clearly, t2 must have a match

at r, that is there must be t1 such that r.(t1, t2) ∈ ∼hp. But this contradicts either

(1) or the maximality of r1.

4.3.1.2 Decomposed Systems

The primary notion of decomposition employed in this section is very simple:

we deal with decompositions of systems into components that are completely

independent of each other.

Definition 4.3.2 (sub-system terminology). Let S be a system.

We say a system S ′ is a sub-system of S iff

1. SS′ ⊆ SS with siS ∈ SS′ ,

2. siS′ = siS,

3. TS′ ⊆ TS,

4. →S′ =→S ∩ (SS′ × TS′ × SS′),
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5. IS′ = IS ∩ (TS′ × TS′),

6. lS′ = lS ¹TS′ .

Let S1 and S2 be two sub-systems of S. We say S1 and S2 are independent,

written S1 IS S2, iff TS1 IS TS2 .

The empty sub-system of S is defined by cSempty = ({siS}, s
i
S, ∅, ∅, ∅, ∅).

The sub-system of S induced by T ⊆ TS is defined by:

(ST , s
i
S, T,→S ∩ (ST × T × ST ), IS ∩ (T × T ), lS ¹T ),

where ST = {s ∈ SS | ∃w. s
i
S

w
→ s & set(w) ⊆ T}.

Definition 4.3.3 (decomposition terminology). Let S be a system.

A set D = {c1, . . . , cn}, n ∈ IN, of sub-systems of S is a decomposition of S into

independent components (short: decomposition of S) iff

1. ∀i, j ∈ [1, n]. (i 6= j =⇒ ci IS cj), and

2. Runs(S) =
⋃

{τ1 ⊗ · · · ⊗ τn | τi ∈ Runs(ci) for i ∈ [1, n]}.

A pair S = (S,D) is a system decomposed into independent components (short:

decomposed system) iff S is a system, and D a decomposition of S. In the context

of a decomposed system (S,D) we use the following decomposition functions:

• K : TS → D, defined by K(t) = ci ⇐⇒ t ∈ Tci , and

• Ks : T ∗S → P(D), defined by Ks(w) =
⋃

t∈wK(t).

(K is a function by clause (1) of the definition of decomposition, and the irreflex-

ivity of independence.)

A sub-system c of S is a divisor of S iff there exists a decomposition D of S such

that c ∈ D. If c is a divisor of S we define S\c to be the sub-system of S induced

by TS\Tc.

Every system S has at least one decomposition: the one consisting of S itself.

Moreover, a system might have many different decompositions. Every non-empty

system will, however, uniquely decompose into a set of prime components.

Definition 4.3.4 (prime systems). Let S be a non-empty system. S is prime

iff cSempty and S are the only divisors of S.

Fact 4.3.1. Each non-empty system S has a unique decomposition D such that

for all c ∈ D c is prime.
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For the proof we require the following observations on decompositions.

Proposition 4.3.3. Let (S, {c1, . . . , cn}) be a decomposed system.

1. If Ci is a decomposition of ci then {c1, . . . , ci−1, ci+1, . . . , cn} ∪ Ci is a de-

composition of S, for all i ∈ [1, n].

2. {c1, . . . , ci−1, ci+1, . . . , cn} is a decomposition of S\ci, for all i ∈ [1, n].

3. Let p be a divisor of S. If p is prime then p must be a divisor of ci for some

i ∈ [1, n].

Proof. (1) and (2) follow easily from the definitions. (3) seems more involved but

this is also straightforward if one considers that divisors are defined as concrete

sub-systems of the respective system: with the help of the definitions and the

two axioms of independence one can show that p must be a divisor of the ci that

satisfies Tp ∩ Tci 6= ∅ (such ci must clearly exist).

Now Fact 4.3.1 can be established following the standard proof of unique prime

factorization of natural numbers. (We follow [Nor86].)

Proof (Fact 4.3.1). Let S be a non-empty system. Denote the smallest upper

bound on the number of transitions that can occur concurrently at the initial state

by ib(S). Since we only consider concurrency-degree finite systems ib(S) ∈ IN0

(cf. Section 2.1.4). We prove the fact by induction on ib(S), say k.

If k = 0 the fact vacuously holds: this case is only possible for empty systems.

Assume k > 0 and suppose the fact is true for systems S ′ with ib(S ′) ≤ k − 1.

First we show that S is decomposable into a set of primes. If S is prime this is

immediate. If S is not prime then there must be a decomposition of S, say D =

{c1, . . . , cn}, such that n > 1, and for all i ∈ [1, n] ci is non-empty. This means

for all i ∈ [1, n] we must have ib(ci) < k. But then by the induction hypothesis

each ci is decomposable into a set of primes, and so must be S (Prop. 4.3.3(1)).

Secondly, we prove the uniqueness of the factorization. Suppose S can be

decomposed into {b1, . . . , bn}, and {c1, . . . , cm} respectively, where b1, . . . , bn, and

c1, . . . , cm are prime. By Prop. 4.3.3(3) b1 divides one of the factors in the

decomposition {c1, . . . , cm}. Say b1 is a divisior of c1. Since c1 is prime we

conclude b1 = c1, and so {b2, . . . , bn} and {c2, . . . , cm} are decompositions of

S\b1 (Prop 4.3.3(2)). But clearly ib(S\b1) < k, and thus by the induction hy-

pothesis we can assume that n = m and (possibly on renumbering c1, . . . , cm)

b2 = c2, . . . , bn = cm. Hence the two prime decompositions of S are identical.
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Definition 4.3.5 (prime components). Let S be a system. We define the

prime components of S, denoted by PComps(S), as follows: if S is empty we

set PComps(S) = ∅, otherwise we define PComps(S) to be the decomposition

associated with S by Fact 4.3.1. When it is clear that PComps(S) 6= ∅ we also

use the term prime decomposition.

Convention 4.3.1. Let S be a system. If it is clear from the context that S is

non-empty and there is no other decomposition specified, we shall understand S as

the decomposed system S = (S,PComps(S)). In particular, we shall then use the

decomposition functions K and Ks . If S is empty (or equivalently PComps(S) =

∅) then we define Ks(ε) = ∅. The intuition behind this is: ε is the only possible

computation of S, and the set of prime components involved in it is the empty

set.

Fact 4.3.2. Let S be a finite-state system. Then PComps(S) is computable.2

Proof. Given a finite-state system S, we construct a set C of sub-systems of S in

three steps, which are clearly computable.

1. We partition TS into non-empty subsets T1, . . . , Tn such that each Ti is a

connected component with respect to the dependence relation D, that is

two transitions t, t′ belong to the same Ti iff t D t1 D · · ·D tm D t′ for some

t1, . . . , tm ∈ TS.

2. For i ∈ [1, n] we compute ci, the sub-system of S induced by Ti.

3. We define C = {ci}i∈[1,n].

We claim that C = PComps(S). If S is empty then C = ∅ as required.

Assume S is non-empty. First, we check that C is a decomposition of S. By

definition it is clear that for all distinct c, c′ ∈ C, c IS c′. For i ∈ [1, n] let

τi ∈ Runs(ci). Clearly ∀i ∈ [1, n], τi ∈ Runs(S). Then, by repeated use of the

second axiom of independence we obtain τ1 ⊗ · · · ⊗ τn ⊆ Runs(S). Conversely,

let r ∈ Runs(S). Clearly r ∈ r ¹T1 ⊗ · · · ⊗ r ¹Tn . Further, by repeated use of

the first axiom of independence we obtain ∀i ∈ [1, n], r ¹Ti ∈ Runs(Ti). To see

that each ci ∈ C is prime consider that by definition each ci does not contain any

independent factors.

Our decomposition results concern systems which are decomposable into be-

haviourally strongly connected (short: bsc) systems. In bsc systems every concur-

rent step has an ‘observable link’ with any further concurrently enabled transition.

2My thanks to Monika Maidl, who has helped to clarify a related question.
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This feature will enable us to prove a key insight later on (Lemma 4.3.2), which

will act as one of the pillars of the proof of the decomposition results.

Definition 4.3.6 (bsc-decomposition terminology). Let S be a system.

Let r ∈ Runs(S), and k, l ∈ [1, |r|]. We say w ∈ T+
S is a run at r that is causally

dependent on the events k and l, denoted by w ∈ depRunsS(r, k, l), iff

1. r.w ∈ Runs(S), and

2. ∃m ∈ [|r + 1|, |r.w|]. k <r.w m & l <r.w m.

S is behaviourally strongly connected (short: bsc) iff for all r ∈ csteps(S) with

|r| ≥ 1 we have: ∀t ∈ TS. r.t ∈ csteps(S) =⇒ ∃k ∈ [1, |r|], w ∈ T+
S . w ∈

depRunsS(r.t, k, |r.t|).

A set D of sub-systems of S is a decomposition of S into independent components

that are behaviourally strongly connected (short: bsc-decomposition of S) iff D is

a decomposition of S, and for all c ∈ D c is a bsc system.

S is decomposable into independent components of which each is behaviourally

strongly connected (short: bsc-decomposable) iff S has a bsc-decomposition.

It is clear that not every system is bsc-decomposable; for example system B

of Figure 4.3 (page 119) is not. If a system is bsc-decomposable then its prime

components are bsc. In more detail, we have:

Fact 4.3.3.

1. Non-empty bsc systems are prime.

2. Let C be a class of bsc systems, and (S,D) be a decomposed system such

that for all c ∈ D c is a C system. Then the prime components of S are C

systems.

3. The prime components of bsc-decomposable systems are bsc.

Proof. (1) Let S be a non-empty bsc system. To the contrary suppose S is not

prime. Then we can assume a decomposition D of S such that |D| > 1 and

for all c ∈ D c is non-empty. Select two distinct components c1, c2 ∈ D, and

two transitions t1 ∈ Tc1 , t2 ∈ Tc2 such that ti ∈ Runs(ci) for i = 1, and 2. By

definition of decomposition we obtain t1, t1t2 ∈ csteps(S). Then, since S is bsc

there must be a run at t1t2 that is causally dependent on the events corresponding

to t1 and t2. But this contradicts that t1 and t2 belong to distinct independent

factors of S.

110



(2) If S is empty PComps(S) = ∅, and (2) vacuously holds. If S is non-

empty then D\cSempty is still a decomposition, and by (1) and uniqueness of prime

decomposition we must have D\cSempty = PComps(S).

(3) is a consequence of (2) and the definition of bsc-decomposable.

Finally, we introduce terminology and observations, which will be employed

later on.

Definition 4.3.7. Let (S,D) be a decomposed system.

Given c ∈ D and an entity x of S, we use x↑c short for x↑(Sc ∪ Tc).

Let r ∈ T ∗S , c ∈ D, and k ∈ [1, |r ↑ c|]. We say k′ ∈ [1, |r|] is the kth c-event of r

iff k′ is the kth event e in r satisfying K(r[e]) = c.

Proposition 4.3.4 (basic observations). Let (S,D) be a decomposed system.

1. Assume c ∈ D. Let r ∈ T ∗S , w ∈ T ∗c , k ∈ [1, |(r ↑ c).w|], and k′ be the kth

c-event of r.w.

(a) k ∈ [1, |(r↑c)|] =⇒ k′ ∈ [1, |r|].

(b) k ∈ [|r↑c|+ 1, |(r↑c).w|] =⇒ k′ ∈ [|r|+ 1, |r.w|].

2. ∀t, t′ ∈ TS. K(t) 6= K(t′) =⇒ t IS t′.

3. Let r ∈ Runs(S). For all events k, l ∈ [1, |r|] we have:

(a) K(r[k]) 6= K(r[l]) =⇒ k cor l, or equivalently

(b) k depr l =⇒ K(r[k]) = K(r[l]).

4. Let D = {c1, . . . , cn}, ri ∈ T
∗
ci
for i ∈ [1, n], and r ∈ r1⊗· · ·⊗ rn. We have:

∀i ∈ [1, n]. ri = r↑ci.

Proof. (1) is obvious. (2) is immediate from clause (1) of the definition of de-

composition. (3) follows with (2) by induction on the length of r. To see (4)

consider: by clause (1) of the definition of decomposition and the irreflexivity of

independence we have Tci ∩ Tcj = ∅ for all distinct i, j ∈ [1, n]; then (4) is a

consequence of Prop. 2.5.1.

Proposition 4.3.5 (inferring behaviour). Let (S,D) be a decomposed system,

and c ∈ D.

1. r ∈ Runs(S) =⇒ r↑c ∈ Runs(c).

2. (a) r ∈ Runs(c) =⇒ r ∈ Runs(S) & Ks(r) ⊆ {c}.
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(b) r ∈ Runs(S) & (r↑c).w ∈ Runs(c) =⇒

r.w ∈ Runs(S) & Ks(w) ⊆ {c}.

3. Let r ∈ Runs(S). For all k, l ∈ [1, |r ↑ c|] and k′, l′ ∈ [1, |r|] such that k′ is

the kth, and l′ the lth, c-event of r, we have: k <c
r↑c l ⇐⇒ k′ <S

r l
′.

Proof. We write (D2) short for “clause (2) of the definition of decomposition”.

(1) follows from (D2)‘⊆’ and Prop. 4.3.4(4). (2a) is immediate with (D2)‘⊇’ and

the fact that for all c′ ∈ D, ε ∈ Runs(c′). To see (2b) consider both directions

of (D2) and Prop. 4.3.4(4). (3) follows by induction on the length of r while

considering Prop. 4.3.4(2) and the following fact: ∀t, t′ ∈ Tc. t Ic t
′ ⇐⇒ t IS t′.

The latter is immediate by the definition of sub-system.

Proposition 4.3.6 (on decomposed systems and csteps). Let S be a system,

and D be a decomposition of S; we also allow D = PComps(S).

1. Let c ∈ D, and r ∈ T ∗S .

(a) r ∈ csteps(c) =⇒ r ∈ csteps(S) & Ks(r) ⊆ {c}.

(b) r ∈ csteps(S) =⇒ r↑c ∈ csteps(c).

(c) Let r ∈ csteps(S), and t ∈ TS.

(r↑c).t ∈ csteps(c) ⇐⇒ r.t ∈ csteps(S) & K(t) = c.

2. Let r, r′ ∈ csteps(S). Ks(r) ∩Ks(r′) = ∅ =⇒ r.r′ ∈ csteps(S).

3. Let C ⊆ D such that ∀c ∈ C. c is non-empty. ∃r ∈ csteps(S). Ks(r) = C.

Proof. (1a) follows by Prop. 4.3.5(2a) and (3), (1b) with Prop. 4.3.5(1) and (3).

(1c)‘⇐’ is immediate with (1b), whereas ‘⇒’ follows with Prop. 4.3.5(2b),(3) and

Prop. 4.3.4(3a). (2) is a consequence of Prop. 4.3.1(2) and Prop 4.3.4(2). (3) is

immediate with Prop. 4.3.1(3), and clause (1a) and (2) of this proposition.

4.3.2 Composition Results

We now show that hp and hhp bisimilarity are composable with respect to de-

compositions in the following sense: whenever we can exhibit a one-to-one corre-

spondence between the components of two decomposed systems such that related

components are hp (hhp) bisimilar then the two systems are hp (hhp) bisimilar.

Theorem 4.3.1 (composition result). Let (S1,D1) and (S2,D2) be two de-

composed systems.
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1. If there exists a bijection β : D1 → D2 such that c1 ∼hp β(c1) for each

c1 ∈ D1 then we have S1 ∼hp S2.

2. If there exists a bijection β : D1 → D2 such that c1 ∼hhp β(c1) for each

c1 ∈ D1 then we have S1 ∼hhp S2.

Proof. Let (S1,D1) and (S2,D2) be two decomposed systems.

(1.) Assume we are given a bijection β : D1 → D2, say β = {c1, . . . , cn}, and a

family {Hci}
n
i=1 such that for i ∈ [1, n] Hci is a hp bisimulation relating proj 1(ci)

and proj 2(ci). We define H =
⋃

{rc1 ⊗ · · · ⊗ rcn | rci ∈ Hci for i ∈ [1, n]}. It is

straightforward to check that H is a hp bisimulation relating S1 and S2. To see

that clause (1) of Def. 2.2.2 holds assume r ≡ (r1, r2) ∈ H, and consider: by clause

(2)‘⊇’ of the definition of decomposition r1 ∈ Runs(S1) and r2 ∈ Runs(S2); since

for all k ∈ [1, |r|], i ∈ [1, n] we have K(r1[k]) = proj 1(ci) ⇐⇒ K(r2[k]) =

proj 2(ci), with Prop. 4.3.4(3a), and Prop. 4.3.5(3) combined with Prop. 4.3.4(4)

we infer r1 and r2 must be synchronous. Clause (2) follows since clearly for

all i ∈ [1, n] ε ∈ Hci . (3) and (4) are easy to verify with Prop. 4.3.5(1) and

Prop. 4.3.4(4).

(2.) Let r ∈ H and t ≡ (t1, t2) ∈ BEnS(r). For i ∈ [1, n] set rci ∈ Hci

such that r ∈ rc1 ⊗ · · · ⊗ rcn . Further, set j such that K(t1) = proj 1(cj) and

K(t2) = proj 2(cj). It is easy to see: we also have t ∈ BEnc(rcj). But then we can

easily infer: if for all i ∈ [1, n] Hci is hereditary then H will also be hereditary.

4.3.3 Decomposition Results

On the other hand, for the class of bsc-decomposable systems, hp and hhp bisim-

ilarity are decomposable with respect to the set of prime components: whenever

two bsc-decomposable systems are hp (hhp) bisimilar then there is a one-to-one

correspondence between their prime components such that related components

are hp (hhp) bisimilar. The proof of this statement is more involved than that of

the composition result. In addition to two crucial insights about hp (hhp) bisim-

ilarity we will require the combinatorial argument of Hall’s Marriage Theorem3

(e.g. see [Tru91]).

First of all, building on our concepts of concurrent step and mc step, we

introduce the notion of concurrent step that is maximal and exclusive with respect

to a set of components (short: mec step). Such concurrent steps are defined for

decomposed systems as follows.

3My thanks to Walter Vogler for correcting an earlier version of a similar proof, and pointing
out to me that this theorem has to be applied.
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Definition 4.3.8 (mec steps). Let S = (S,D) be a decomposed system, and

C ⊆ D. A concurrent step r ∈ csteps(S) is maximal and exclusive w.r.t. C iff

∀c ∈ C. r↑c ∈ mcsteps(c) and Ks(r) ⊆ C. We denote the set of concurrent steps

of S that are maximal and exclusive w.r.t. C by mecsteps(S,C).

Proposition 4.3.7 (facts about mec steps). Let S = (S,D) be a decomposed

system.

1. Let c ∈ D, and r ∈ mcsteps(c). r ∈ mecsteps(S, {c}).

2. Let C,C ′ ⊆ D with C ∩C ′ = ∅, r ∈ mecsteps(S,C), and r′ ∈ mecsteps(S,C ′).

r.r′ ∈ mecsteps(S,C ∪ C ′).

3. ∀C ⊆ D. ∃r. r ∈ mecsteps(S,C).

4. Let C ⊆ D, r ∈ mecsteps(S,C), and t ∈ TS.

r[t〉S & K(t) 6∈ C ⇐⇒ r.t ∈ csteps(S).

5. Let C ⊆ D, and r ∈ mecsteps(S,C).

(∀c ∈ C. c is non-empty) =⇒ Ks(r) = C.

Proof. (1) follows with Prop. 4.3.6(1a), (2) with Prop. 4.3.6(2), and (3) with (1),

(2), and the fact that for any system S ∃r. r ∈ mcsteps(S); (4)‘⇐’ is immediate

with Prop. 4.3.6(1b) and the definition of mc step, and the ‘⇒’-direction with

Prop. 4.3.4(3a). (5) follows from Prop. 4.3.1(4).

Let (S1,D1), (S2,D2) be two decomposed systems such that S1 and S2 are hp

(hhp) bisimilar. With our concept of mec steps it is easy to identify a situation

which will allow us to infer that two components c1 ∈ D1, c2 ∈ D2 are hp (hhp)

bisimilar: whenever there is r ∈ ∼(h)hp such that for i = 1, and 2, proj i(r)

is a mec step w.r.t. Di\ci, then we can extract a hp (hhp) bisimulation that

relates c1 and c2 from any hp (hhp) bisimulation containing r. This is so because:

(1) the full behaviour of c1 and c2 has still to be matched at r, and (2) the causal

dependencies will force that behaviour of c1 has to be matched against c2, and

vice versa. Formally, we have:

Lemma 4.3.1. Let (S1,D1), (S2,D2) be two decomposed systems, c1 ∈ D1, and

c2 ∈ D2.

1. If there exists r ∈ ∼hp such that proj i(r) ∈ mecsteps(Si,Di\ci) for i = 1,

and 2 then we have c1 ∼hp c2.
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2. If there exists r ∈ ∼hhp such that proj i(r) ∈ mecsteps(Si,Di\ci) for i = 1,

and 2 then we have c1 ∼hhp c2.

Proof. (1.) Let (S1,D1), (S2,D2), c1, and c2 be given as above. Assume r ≡

(r1, r2) ∈ ∼hp such that ri ∈ mecsteps(Si,Di\ci) for i = 1, and 2. Consider the

following statement, say (S):

For all r′ such that r.r′ ∈ ∼hp we have:

(∗) ∀k ∈ [1, |r′|]. r′1[k] ∈ Tc1 ⇐⇒ r′2[k] ∈ Tc2 .

Given a hp bisimulation H for S1 and S2 such that r ∈ H, define Hc = {r′′ ↑

(Tc1 × Tc2) | r
′′ ∈ H & r′′ ≡ r.r′ for some r′}. Considering (S) it is easy to check

that Hc is a hp bisimulation relating c1 and c2: clause (1) of Def. 2.2.2 follows

with Prop. 4.3.5(1) and (3); clause (2) holds because r ∈ H and Ks(ri) ⊆ Di\ci

for i ∈ {1, 2} by definition of mec step; (3) and (4) follow with Prop. 4.3.5(2b).

By induction on the length of r′ we shall now prove that (S) indeed holds.

Base case r′ ≡ ε: there is nothing to prove. Inductive case r′ ≡ r′′.(t1, t2):

set r′′i = proj i(r
′′) for i ∈ {1, 2}. By prefix-closure of ∼hp and the induction

hypothesis we can assume that (∗) holds for r′′. Thus, we only need to show:

t1 ∈ Tc1 ⇔ t2 ∈ Tc2 .

Suppose t1 ∈ Tc1 . We prove t2 ∈ Tc2 by case analysis. First, assume there

is k ∈ [1, |r′′|] such that k <r′1
|r′|. By Prop. 4.3.4(3b) this implies K(r′1[k]) =

c1 (= K(r′1[|r
′|])). Since we can assume that (∗) holds for r′′, we furthermore

obtain K(r′2[k]) = c2. On the other hand, considering that ∼hp is partial order

preserving, we infer k <r′2
|r′|. But then, Prop. 4.3.4(3b) immediately implies

K(r′2[|r
′|]) = c2, or t2 ∈ Tc2 as required.

If there is no k as above then it is easy to derive that r.(t1, t2) ∈ SRuns(S1, S2).

Together with r1 ∈ mecsteps(S1,D1\c1) and t1 ∈ Tc1 this means that we can apply

Prop. 4.3.7(4)‘⇒’ to obtain r1.t1 ∈ csteps(S1), which by Prop. 4.3.2(1) implies

r2.t2 ∈ csteps(S2). But then by r2 ∈ mecsteps(S1,D2\c2) and Prop. 4.3.7(4)‘⇐’

it is immediate that t2 ∈ Tc2 .

The opposite direction follows from the symmetric argument.

(2.) Let rc ∈ Hc and r′′ ∈ H such that r′′ ≡ r.r′ for some r′, and rc =

r′′ ↑ (Tc1 × Tc2). With (S) and Prop. 4.3.4(2) it is easy to see: ∀t ∈ Tc. t ∈

BEnc(rc) =⇒ t ∈ BEnS(r
′′). But then we can easily infer: if H is hereditary

then Hc will also be hereditary.

We now come to our second crucial insight. Let S be a bsc-decomposable

system, and c be a prime component of S. By Fact 4.3.3(3) c is bsc, and thus

in c every concurrent step has an ‘observable link’ with any further concurrently
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enabled transition. Naturally, we have: (1) The ‘observable links’ of each c can

also be computed in the context of S. (2) In S ‘observable links’ always connect

events that belong to the same prime component. Then, considering that concur-

rent steps of S exhaustively fall into concurrent steps of prime components, we

obtain: in hp bisimilarity on bsc-decomposable systems the matching of concur-

rent steps respects prime decompositions. Otherwise, the observable links could

not be matched in a partial order preserving fashion.

Proposition 4.3.8. Let (S,D) be a decomposed system, and r ∈ Runs(S).

1. Let c ∈ D, k, l ∈ [1, |r↑c|], and w ∈ depRuns c(r↑c, k, l). Then we have:

w ∈ depRunsS(r, k
′, l′), where k′ denotes the kth, and l′ the lth, c-event

of r.

2. Let k, l ∈ [1, |r|]. K(r[k]) 6= K(r[l]) =⇒ 6 ∃w. w ∈ depRunsS(r, k, l).

Proof. (1) is immediate with Prop. 4.3.5(2b),(3), Prop. 4.3.4(1), and the definition

of depRuns . (2) follows from Prop. 4.3.4(3b) and the definition of depRuns .

Lemma 4.3.2. Let S1 and S2 be two bsc-decomposable systems. For all r ≡

(r1, r2) ∈ ∼hp such that ri ∈ csteps(Si) for i = 1, or 2 equivalently (Prop. 4.3.2(1)),

we have:

(∗) ∀k, l ∈ [1, |r|]. K(r1[k]) = K(r1[l]) ⇐⇒ K(r2[k]) = K(r2[l]).

Proof. Let S1, S2, and r ≡ (r1, r2) be given as above. We prove the lemma

by induction on the length of r. Base case r ≡ ε: there is nothing to prove.

Inductive case r ≡ r′.t: for i ∈ {1, 2} set r′i = proj i(r
′), and ti = proj i(t). Since

r′i ∈ csteps(Si) for i = 1, and 2 (Prop. 4.3.1(1)), by prefix-closure of ∼hp and the

induction hypothesis we can assume that (∗) holds for r′. Thus, we only have to

prove: ∀k ∈ [1, |r′|]. K(t1) = K(r1[k]) ⇐⇒ K(t2) = K(r2[k]). We establish this

by reductio ad absurdum.

Assume there is k ∈ [1, |r′|] such that (a) K(t1) = K(r1[k]) but (b) K(t2) 6=

K(r2[k]). Set c1 = K(t1), and r′c1 = r′1 ↑c1. Clearly, r1 ↑c1 = r′c1 .t1. Further, it is

easy to see: (c) |r| is the |r′c1 .t1|th c1-event in r1. (d) If for l ∈ [1, |r′c1 |] m is the

lth c1-event in r1 then m ∈ [1, |r′|] and K(r1[m]) = c1.

By Prop. 4.3.6(1b) we obtain r′c1 , r
′
c1
.t1 ∈ csteps(c1). Then, by Fact 4.3.3(3)

and the definition of bsc there exist w1 ∈ T+
c1
, l ∈ [1, |r′c1 |] such that w1 ∈

depRunsc1(r
′
c1
.t1, l, |r

′
c1
.t1|). Employing Prop. 4.3.8(1), (c), and (d), we infer

w1 ∈ depRunsS1(r1,m, |r|), where m satisfies (e) m ∈ [1, |r′|] & K(r1[m]) = c1.

Clearly, there must be a match for w1 at r, that is we can assume w with r.w ∈ ∼hp
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and proj 1(w) = w1. Set w2 = proj 2(w). Since ∼hp is partial order preserv-

ing we must have w2 ∈ depRunsS2(r2,m, |r|). But considering Prop. 4.3.8(2)

this is not possible: since we can assume that (∗) holds for r′, by (e), (a),

and k ∈ [1, |r′|] we obtain K(r2[k]) = K(r2[m]), and furthermore with (b),

K(r2[m]) 6= K(t2)(= K(r2[|r|]).

The other direction follows from the symmetric argument.

Based on Lemma 4.3.2 we could now prove that more generally we have: for

bsc-decomposable systems, every match r ∈ ∼hp respects prime decompositions.

However, since this statement only concerns the matching within and not across

linearizations it does not bring us any closer to our decomposition results. Instead,

we shall derive the following two corollaries.

On the one hand, we infer that in hp bisimilarity on bsc-decomposable sys-

tems mec steps are matched against mec steps. This is important in view of

Lemma 4.3.1.

Corollary 4.3.1. Let S1, S2 be two bsc-decomposable systems, r ≡ (r1, r2) ∈ ∼hp,

i ∈ {1, 2}, and Ci ⊆ PComps(Si). We have:

ri ∈ mecsteps(Si, Ci) =⇒ rī ∈ mecsteps(Sī,Ks(rī)).

Proof. Let S1, S2, r ≡ (r1, r2), i, and Ci be given as above. Assume (A) ri ∈

mecsteps(Si, Ci). We need to show: (1) rī ∈ csteps(Sī), (2) Ks(rī) ⊆ Ks(rī), and

(3) ∀cī ∈ Ks(rī). rī ↑cī ∈ mcsteps(cī). (1) is given by (A) and Prop. 4.3.2(1), and

(2) is trivial.

For (3) let cī ∈ Ks(rī). Clearly, there must be k ∈ [1, |r|] such that K(rī[k]) =

cī. Set ci = K(ri[k]). To the contrary, suppose (B) rī↑cī 6∈ mcsteps(cī). Consider-

ing rī ∈ csteps(Sī) and Prop. 4.3.6(1b) we have rī↑cī ∈ csteps(cī), and thus by (B)

and the definition of mc step we can assume tī such that (rī ↑ cī).t̄i ∈ csteps(cī).

By Prop. 4.3.6(1c)‘⇒’ we obtain (a) rī.t̄i ∈ csteps(Sī) and (b) K(tī) = cī. There

must be a match for tī at r, that is we can assume ti such that r.(t1, t2) ∈ ∼hp.

By (a) and Prop. 4.3.2(1) ri.ti ∈ csteps(Si), and by (b) and Lemma 4.3.2 we

infer K(ti) = ci. Then by Prop. 4.3.6(1c)‘⇐’ (ri ↑ ci).ti ∈ csteps(ci). But this is

a contradiction to our assumption ri ∈ mecsteps(Si, Ci), which, since obviously

ci ∈ Ks(ri), entails ri ↑ci ∈ mcsteps(ci).

On the other hand, Lemma 4.3.2 implies that in hp bisimilarity on bsc-

decomposable systems the matching of concurrent steps respects the number of

prime components involved. Furthermore, we obtain that whenever two bsc-

decomposable systems are hp bisimilar then they have the same number of prime

components.
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Corollary 4.3.2. Let S1 and S2 be two bsc-decomposable systems.

1. For all r ≡ (r1, r2) ∈ ∼hp such that ri ∈ csteps(Si) for i = 1, or 2 equiva-

lently (Prop. 4.3.2(1)), we have: |Ks(r1)| = |Ks(r2)|.

2. If S1 ∼hp S2 then |PComps(S1)| = |PComps(S2)|.

Proof. (1) is a direct consequence of Lemma 4.3.2. (2) is easy with (1) and

Prop. 4.3.6(3).

Together with the combinatorial argument of Hall’s Marriage Theorem these

corollaries make it possible that we can employ Lemma 4.3.1 to obtain our de-

composition result. Finally, we prove:

Theorem 4.3.2 (decomposition result). Let S1, S2 be two bsc-decomposable

systems.

1. If S1 ∼hp S2 then there exists a bijection β : PComps(S1) → PComps(S2)

between the prime components of S1 and those of S2 such that c1 ∼hp β(c1)

for each c1 ∈ PComps(S1).

2. If S1 ∼hhp S2 then there exists a bijection β : PComps(S1)→ PComps(S2)

between the prime components of S1 and those of S2 such that c1 ∼hhp β(c1)

for each c1 ∈ PComps(S1).

Proof. Let S1 and S2 be two bsc-decomposable systems.

(1.) Assume S1 ∼hp S2. We shall prove that a bijection β exists as required.

By Corollary 4.3.2(2) it is clear that (A) |PComps(S1)| = |PComps(S2)|, and

it only remains to show that an injective map can be found. For each c1 ∈

PComps(S1) let C2c1
be the set of prime components of S2 which are hp bisimilar

to c1. By Hall’s Marriage Theorem (see e.g. [Tru91]) the required injection exists

if and only if the following condition is fulfilled:

(∗) ∀C1 ⊆ PComps(S1). |
⋃

c1∈C1

C2c1
| ≥ |C1|.

Choose an arbitrary subset C1 of PComps(S1). Let C̄1 = PComps(S1)\C1,

and consider a run r1 ∈ mecsteps(S1, C̄1) (this is possible by Prop. 4.3.7(3)); by

Prop. 4.3.7(5) we have (B) Ks(r1) = C̄1. Clearly, there must be r ∈ ∼hp with

proj 1(r) = r1; set r2 = proj 2(r), C̄2 = Ks(r2), and C2 = PComps(S2)\C̄2. By

Corollary 4.3.1 we obtain (C) r2 ∈ mecsteps(S2, C̄2). On the other hand, (B)

and Corollary 4.3.2(1) give us |C̄1| = |C̄2|, and considering (A) we further gain

(D) |C1| = |C2|. Next we show that for each remaining component c2 ∈ C2 there
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Figure 4.3: hp bisimilarity is not decomposable with respect to the set of prime
components in general

is a component c1 ∈ C1 such that c1 ∼hp c2. With (D) this will immediately

establish |
⋃

c1∈C1

C2c1
| ≥ |C1|, and thereby (∗).

Assume C2 is non-empty, and choose any c2 ∈ C2. Further, consider a

run r′2 ∈ mecsteps(S2, C2\c2) (again this is possible by Prop. 4.3.7(3)). By

(C) and Prop. 4.3.7(2) we have r2.r
′
2 ∈ mecsteps(S2,PComps(S2)\c2), and with

Prop. 4.3.7(5) we obtain (E) Ks(r2.r
′
2) = PComps(S2)\c2. Clearly, there must

be r′ such that r.r′ ∈ ∼hp and proj 2(r
′) = r′2; set r′1 = proj 1(r

′). Corol-

lary 4.3.2(1) gives us |Ks(r1.r
′
1)| = |Ks(r2.r

′
2)|, and by (E), (A), and (B) this

implies Ks(r1.r
′
1) = PComps(S1)\c1 for some c1 ∈ C1. Then, by Corollary 4.3.1

we obtain r1.r
′
1 ∈ mecsteps(S1,PComps(S1)\c1). But altogether this means we

can apply Lemma 4.3.1(1) to infer c1 ∼hp c2. Thus, c1 provides a component

exactly as required.

(2.) This can be proved analogously to (1); simply employ Lemma 4.3.1(2)

instead of (1). But there is also a simpler proof: the required bijection can be

obtained by employing backtracking instead of the argument of Hall’s Marriage

Theorem.

Is it possible to strengthen this decomposition result? Clearly, hp and hhp

bisimilarity are not decomposable with respect to arbitrary decompositions, but

maybe they are with respect to the set of prime components, for all systems? I

conjecture that this is indeed the case for hhp bisimilarity. The crucial step would

be to prove an analogue of Lemma 4.3.2, which should be possible with the help

of backtracking. It is certain that in general hp bisimilarity is not decomposable

with respect to the set of prime components: Figure 4.3 shows an example of two

hp bisimilar systems such that a bijection between their prime components can

clearly not be found. Note that the two systems are not hhp bisimilar.

One could hold the view that truly-concurrent bisimilarities should respect
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independent components in the sense of being decomposable with respect to the

set of prime components. Under this aspect the negative result for hp bisimilarity

underlines the non truly-concurrent character of the notion. Thus, provided we

indeed obtain a positive result for hhp bisimilarity, we can put forward a new

piece of evidence for our thesis of Section 1.2.1: hhp bisimilarity is a notion for

true-concurrency whereas hp bisimilarity only captures causality.

4.3.4 Consequences

What are the gains of our composition and decomposition results? First of all,

they provide us with the following proof technique:

Definition 4.3.9 (parallel compositions of C systems). Let C be a system

class. A system S is a parallel composition of C systems iff S has a decomposition

D such that for all c ∈ D c is a C system.

Corollary 4.3.3 (proof technique). Let C be a class of bsc systems.

1. If hp and hhp bisimilarity coincide for the class of C systems then they also

coincide for the class of parallel compositions of C systems.

2. In addition, let the systems of C be finite-state. If hhp bisimilarity is de-

cidable for the class of C systems then it is also decidable for the class of

parallel compositions of C systems.

Proof. Let C be a class of bsc systems, and let S1, S2 be parallel compositions of

C systems. Note that by Fact 4.3.3(2) the prime components of S1 and S2 are

contained in C.

(1.) Assume hp and hhp bisimilarity coincide for the class of C systems, and let

S1 ∼hp S2. By Theorem 4.3.2(1) we obtain a bijection between PComps(S1) and

PComps(S2) such that two related components are hp, and hence, hhp bisim-

ilar. Either PComps(S1) and PComps(S2) both are empty sets, or both are

non-empty. In the first case S1 ∼hhp S2 is trivial, in the second case this follows

from Theorem 4.3.1(2).

(2.) Assume the systems of C are finite-state, and that hhp bisimilarity is

decidable for C. We can decide whether S1 ∼hhp S2 as follows. First, compute

the set of prime components of S1 and S2; this is possible by Fact 4.3.2. Then,

check by exhaustive search whether there is a bijection between PComps(S1)

and PComps(S2) such that two related components are hhp bisimilar. Note

that for PComps(S1) = ∅ = PComps(S2) this method is sound because then
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S1 ∼hhp S2 is trivially given. Otherwise soundness follows from Theorem 4.3.1(2).

By Theorem 4.3.2(2) the method is complete.

Hence, whenever we investigate the two problems of hhp bisimilarity for a

class of bsc-decomposable systems we can restrict our attention to the class of

the bsc factors. Besides, we can apply the method to extend one of our previous

results:

Theorem 4.3.3. hp and hhp bisimilarity coincide for parallel compositions of

sequential systems.

Proof. Clearly, sequential systems are bsc, and so the result follows from Theo-

rem 4.2.1(1) and Corollary 4.3.3(1).

Note that the class of parallel compositions of sequential systems provides all

of the behavioural situations which we have identified to be essential for the non-

coincidence of hp and hhp bisimilarity in the previous section. We can now add:

it is not sufficient if concurrency comes as the juxtaposing of sequential parts,

but we need the sequential parts to interact, or communicate, with each other.

Behaviourally this means: concurrency has to be mixed with conflict and/or

causality.

We will attend to this in more detail in the next section, where we shall investi-

gate behavioural situations that witness synchronization. There, our composition

and decomposition insights will once more provide the key to a coincidence result;

this time they will be employed in an inductive argument. A third application

will follow in Section 5.3.2: the composition and decomposition insights will give

soundness and completeness of a tableau system, and thereby help to establish a

coincidence and decidability result.

Results for Structural Subclasses. To complete the picture we record that

the coincidence result of Theorem 4.3.3 can be carried over to two structural

subclasses: S-systems are parallel compositions of sequential systems, and this

is also true for systems with transitive dependence relation, the counterpart of

systems with transitive independence (cf. Section 3.5.3). In each case, this is an

easy consequence of the definition. Thus, we obtain:

Corollary 4.3.4.

1. hp and hhp bisimilarity coincide for S-systems.

2. hp and hhp bisimilarity coincide for systems with transitive dependence re-

lation.
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4.4 Synchronization Witness Situations

In the previous section we have established that to keep hp and hhp bisimilarity

distinct concurrency has to be mixed with conflict and/or causality. Since such

interplay can ultimately be put down to the interaction of sequential compo-

nents it seems promising to analyse mixtures of concurrency with conflict and/or

causality which manifest natural forms of structural interaction. In this section,

we examine situations which witness synchronization: we identify three ‘synchro-

nization witness ’ (short: SW ) situations, and investigate their importance to the

coincidence problem. On the one hand, we find: taken by themselves all of the

SW situations are significant but not essential to keep hp and hhp bisimilarity

distinct. On the other hand, we show: in their entirety they constitute a nec-

essary condition to distinguish the two bisimilarities on bounded-degree systems.

The proof of the latter fact makes use of a characterization of SW-free systems

in terms of decomposition properties, which allows us to employ the composition

and decomposition results of the previous section. We also conclude that hp and

hhp bisimilarity coincide for bounded-degree communication-free net systems.

4.4.1 Definition

We define our synchronization witness situations with net systems as the un-

derlying structural model in mind. In net theory it is natural to understand

synchronization as the firing of a transition that has several preplaces, thereby

uniting several concurrent ‘components’ (see Figure 4.4).

Definition 4.4.1 (synchronization). Let N be a net system, M ∈ Reach(N ),

and t ∈ TN . We say t is a synchronization at M iff M [t〉 and |•t| > 1.

We identify three basic ways in which such synchronization can manifest itself

behaviourally (illustrated in Figure 4.5):

1. There is a state with two concurrently enabled transitions t1 and t2 such

that a third transition ts can happen causally dependent on t1 and t2.

122



���
�

���
�

���
�

���
�

��	
	



�
�

SW−1 SW−3SW−2

PSfrag replacements

t1

t1t1

t2

t2t2

ts

ts

ts

Figure 4.5: Illustration of the three SW situations

2. There is a state with two concurrently enabled transitions t1 and t2 such that

t2 is in conflict with a third transition ts that can occur causally dependent

on t1.

3. There is a state with two concurrently enabled transitions t1 and t2 such

that both of them are in conflict with a third enabled transition ts.

With Def. 2.1.7, Def. 2.1.8, and safeness it is easy to check that these situations

are sound with respect to synchronization in the sense of Def. 4.4.1: in any of

the three scenarios we can infer that ts must occur as synchronization at the

structural level. Formally, we define the following three synchronization witness

situations:

Definition 4.4.2 (synchronization witness situations). Let S be a system,

s ∈ Reach(S), ts ∈ TS, and t1, t2 ∈ TS with t1 cos t2.

The tuple (s, t1, t2, ts) is a synchronization witness situation of type 1 (short:

SW-1 situation) (at s) iff we have {t1, t2} <s ts.

The tuple (s, t1, t2, ts) is a synchronization witness situation of type 2 (short:

SW-2 situation) (at s) iff we have t1 <s ts & t2 #s′ ts, where s′ is such that

s
t1→ s′.

The tuple (s, t1, t2, ts) is a synchronization witness situation of type 3 (short:

SW-3 situation) (at s) iff we have t1 #s ts & t2 #s ts.

We say there is a synchronization witness situation (short: SW situation) at s iff

there is a SW-1, SW-2, or SW-3 situation at s.
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In the following two sections, we shall consider systems with restricted syn-

chronization. In preparation, we define:

Definition 4.4.3. Let X, Y range over {1, 2, 3}. A system S is SW-X free iff

for all s ∈ Reach(S) there is no SW-X situation at s. S is SW-{X,Y } free iff for

all s ∈ Reach(S) there is neither an SW-X nor an SW-Y situation at s. Finally,

S is SW-free iff for all s ∈ Reach(S) there is no SW situation at s.

There is a well-known net class, which provides a structural characterization

of SW-free systems: the communication-free nets of [Hir94] and [Esp97b].

Definition 4.4.4. A net N is communication-free (short: comm-free) iff we have:

∀t ∈ TN . |
•t| = 1. A net system N is comm-free iff N is comm-free.

Proposition 4.4.1. Every comm-free net system is SW-free.

Proof. Clearly, in comm-free net systems there is no synchronization in the sense

of Def. 4.4.1. Then, the proposition follows from the soundness of the SW situa-

tions with respect to synchronization.

4.4.2 The SW-X Situations and the Coincidence Problem

A look at the counter-examples shows that all of the three SW situations are

significant for keeping hp and hhp bisimilarity distinct:

Counter-example 1 (Figure 1.7). Consider system B. The tuples (s′, a′2, b
′
2, c

′)

and (s′, b′2, a
′
2, d

′) are both SW-2 situations. They correspond to the two MNH

situations employed in the system. The tuple (s′, a′2, b
′
2, a

′
1) is a SW-3 situation.

Together with further SW-3 situations, it originates from the counter-example’s

frame situation. There are corresponding SW-2 and SW-3 situations in system A.

Counter-example 2 (Figure 1.8). There are several SW-3 situations in both sys-

tems, e.g. the tuple (s, a1, b1, a2). They all stem from the frame situation employed

in the two systems. The counter-example’s MNH situations do not give rise to

any SW situation.

Counter-example 3 (Figure 4.1, 4.2). We regard system S. Set s = {p1, p2}, and

s′ = {p2, p3}. The tuples (s, e1, a, i) and (s′, e1, f2, g1) are SW-1 situations. There

are further SW-1 situations in S, and corresponding ones in system S ′; all are

due to MNH situations employed in the systems. The counter-example’s frame

does not involve any SW situations.

However, the counter-examples also demonstrate that none of the three SW

situations is essential for non-coincidence, and even more they show that we can

do without SW-1 and SW-2, and also without SW-2 and SW-3.
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Theorem 4.4.1.

1. hp and hhp bisimilarity do not coincide for SW-X free systems, where X

ranges over {1, 2, 3}, and even more:

2. hp and hhp bisimilarity do not coincide for SW-{1, 2} free systems, nor for

SW-{2, 3} free systems.

Proof. Simply observe: counter-example 2 does not contain SW-1 nor SW-2;

counter-example 3 manages without SW-2 and SW-3.

It is probably also true that hp and hhp bisimilarity do not coincide for SW-

{1, 3} free systems: it seems possible to construct a counter-example without

SW-1 and SW-3 by employing the framework of counter-example 3 together with

the MNH scenario of counter-example 1.

On the other hand, all of the three counter-examples employ at least one type

of SW situation. So we ask: are the SW situations necessary to distinguish hp

and hhp bisimilarity when taken together? In the following we prove that this is

indeed the case for bounded-degree systems.

4.4.3 hp and hhp Bisimilarity Coincide for Bounded-degree
SW-free Systems

First of all, we will see that SW-free systems have characteristic decomposition

properties: a system is SW-free iff its unfolding4 is decomposable into a set of

initially sequential components, and stays so at every reachable state.

Definition 4.4.5 (IS, cis-decomposable systems). Let S be a system.

S is initially sequential (short: IS ) iff ∀r ∈ csteps(S). |r| ≤ 1.

S is continuously decomposable into a set of initially sequential systems (short:

cis-decomposable) iff at every s ∈ Reach(S) S has a decomposition D such that

each c ∈ D is IS.

Theorem 4.4.2. A system S is SW-free iff unf (S)4 is cis-decomposable.

Proof. The proof can be found in Appendix B.2.

Fact 4.4.1 (facts about cis-decomposable systems).

1. IS systems are bsc.

2. cis-decomposable systems are bsc-decomposable at every reachable state.

4This can probably be strengthened to ‘the system itself’.
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3. The prime components of cis-decomposable systems are IS.

4. The prime components of cis-decomposable systems are cis-decomposable.

Proof. (1) is a consequence of the definition of IS and bsc. (2) follows from (1).

(3) is immediate with (1) and Fact 4.3.3(2): certainly a cis-decomposable system

is decomposable into IS components at its initial state.

(4) To the contrary, assume a cis-decomposable system S has a prime com-

ponent c with a state sc such that c cannot be decomposed into a set of IS

components at sc. There must be a state s in S such that the behaviour at s

corresponds to the behaviour that is possible at sc in parallel with behaviour of

the prime components of S other than c. But then if the behaviour at sc cannot

be decomposed into IS components this is not possible for the behaviour at s

either, contradicting that S is cis-decomposable.

Note that the class of cis-decomposable systems strictly contains the class

of parallel compositions of sequential systems: the prime components of a cis-

decomposable system initially look like sequential systems, but by executing a

transition each component may evolve into a set of independent sub-components.

These must again be initially sequential, so that the whole system still consists of

a set of IS components at the new state. From there, the system can ‘fork’ once

again, and so on. Thus, as a first merit of Theorem 4.4.2 we obtain the following

intuition: the SW situations capture all interaction between the sequential parts

of a system apart from ‘fork’. The typical structure of cis-decomposable systems

is illustrated by Figure 4.6.

Figure 4.6: A cis-decomposable system
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More concretely, Theorem 4.4.2 helps us to obtain our coincidence result:

we show that hp and hhp bisimilarity coincide for bounded-degree (short for

concurrency-degree bounded) cis-decomposable systems, and carry this result over

to bounded-degree SW-free systems. Bounded-degree is a strengthening of our

general restriction ‘concurrency-degree finite’ (cf. Section 2.1.4): in a bounded-

degree system S the smallest upper bound on the number of transitions that can

be executed concurrently (with respect to any state), say cbound(S), is given by

a natural number. This implies that whenever S can be decomposed into more

than one prime component then cbound(S) is strictly smaller for the components

than for the entire system. Consequently, any bounded-degree cis-decomposable

system will, from a certain point onwards, behave like a parallel composition of

sequential systems. With Theorem 4.2.1(1) and the composition and decomposi-

tion results of Section 4.3 we can then prove our coincidence result by induction

on cbound(S); by Fact 4.4.1(2) it is ensured that the decomposition theorem does

apply.

Definition 4.4.6 (bounded-degree). Let S be a system.

Given s ∈ Reach(S) we lift csteps(S) to csteps(S, s) to denote the concurrent

steps of S at reachable state s rather than the initial state in the obvious way.

The smallest upper bound on the number of transitions that can be executed con-

currently in S, cbound(S), is defined by

cbound(S) = min{κ | ∀s ∈ Reach(S). ∀r ∈ csteps(S, s). |r| ≤ κ}.

S is bounded-degree (short for concurrency-degree bounded) iff cbound(S) ∈ IN0.

Proposition 4.4.2 (facts about cbound). Let S be a system.

1. cbound(S) = cbound(unf (S)).

2. Let S ′ be a second system. S ∼hp S
′ ⇒ cbound(S) = cbound(S ′).

3. Let S be bounded-degree.

|PComps(S)| > 1 =⇒ ∀c ∈ PComps(S). cbound(c) < cbound(S).

Proof. Let S be a system. (1) is obvious. (2) is immediate with Prop. 4.3.2(1).

(3) follows by definition of bounded-degree and the fact that the prime compo-

nents of S are non-empty, and independent of each other.

Theorem 4.4.3.

1. hp and hhp bisimilarity coincide for bounded-degree cis-decomposable sys-

tems.
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2. hp and hhp bisimilarity coincide for bounded-degree SW-free systems.

Proof. (1.) Let S1 and S2 be two bounded-degree cis-decomposable systems such

that S1 ∼hp S2. By definition cbound(S1) and cbound(S2) are both in IN0, and by

Prop. 4.4.2(2) we have cbound(S1) = cbound(S2), say n. We prove S1 ∼hhp S2 by

induction on n. Base case n = 0: the two systems must be empty, and S1 ∼hhp S2

is trivially given.

Inductive case n > 0: by Fact 4.4.1(2) S1 and S2 are bsc-decomposable, and

we can apply Theorem 4.3.2(1) to obtain a bijection β between PComps(S1) and

PComps(S2) such that c1 ∼hp β(c1) for all c1 ∈ PComps(S1). First of all, this

implies we have PComps(S1) = PComps(S2), say m. Assume m > 1. Each c1 ∈

PComps(S1) is cis-decomposable, and satisfies cbound(c1) < cbound(S1); this

follows from Fact 4.4.1(4), and Prop. 4.4.2(3) respectively. Together with c1 ∼hp

β(c1) this means we can apply the induction hypothesis, and obtain c1 ∼hhp β(c1)

for each c1 ∈ PComps(S1). But then S1 ∼hhp S2 follows from Theorem 4.3.1(2).

Ifm = 1 then with Fact 4.4.1(3) it is clear that S1 and S2 are IS. We distinguish

between the following two cases: (a) S1 and S2 are sequential systems; (b) S1 and

S2 initially behave like sequential systems, but will fork later on. Our case split

is complete since in general we have: if a sequential system is hp bisimilar to

another system S ′ then S ′ will also be sequential. If (a) holds then S1 ∼hhp S2

follows from Theorem 4.2.1(1). In case (b) we proceed as follows. We match the

sequential beginning by simply copying suitable tuples from any prefix-closed hp

bisimulation relating S1 and S2. As soon as we reach a state s with |PComps(s)| >

1 in S1, or S2 equivalently, we proceed similarly to above when m > 1. It is

straightforward to verify that in this manner we can obtain a hhp bisimulation

for S1 and S2. If m = 0 then the base case applies.

(2.) This follows from (1) by Theorem 4.4.2, Prop. 4.4.2(1), and Fact 2.1.1.

By Prop. 4.4.1 we also obtain:

Corollary 4.4.1. hp and hhp bisimilarity coincide for bounded-degree comm-free

net systems.

4.5 Confusion

4.5.1 Introduction

We now consider a behavioural situation which results from the interplay of con-

currency and conflict, the situation of confusion. Assume that two transitions, t1

and t2, are concurrently enabled at some state. It can happen that the occurrence
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of one of them, say t2, brings about a change in the set of transitions that are in

conflict with the other one, t1. This is what makes an instance of confusion. The

confusion lies in the fact that the two possible linear realizations of the concur-

rent step {t1, t2} have different behavioural properties: t1 resolves a conflict in

one of the linearizations which it does not decide in the other one (because the

conflict is either not visible or has already been resolved by t2). Good accounts

of confusion can be found in [RT86] and [RE98]; according to the first reference

this behavioural situation was probably first identified by Holt.

Definition 4.5.1 (conflict set, confusion, confused). Let S be a system, and

s ∈ Reach(S).

Let t ∈ TS such that s[t〉. The conflict set of t at s, denoted by cfl(s, t), is the

set {t′ ∈ TS | s[t
′〉 & t DS t′}.

Let t1, t2 ∈ TS such that s[t1〉, s[t2〉 & t1 IS t2. The triple (s, t1, t2) is a confusion

(at s) iff cfl(s, t1) 6= cfl(s
′, t1), where s

′ is such that s
t2→ s′.

We say S is confused at s iff there is a confusion at s.

It is common to classify instances of confusion as follows.

Definition 4.5.2 (types of confusion). Let S be a system, s ∈ Reach(S), t1,

t2 ∈ TS, and let γ = (s, t1, t2) be a confusion.

Let s′ be such that s
t2→ s′. γ is a conflict-increasing confusion (short: ci-

confusion) iff cfl(s, t1) ⊂ cfl(s
′, t1), and γ is a conflict-decreasing confusion (short:

cd-confusion) iff cfl(s, t1) ⊃ cfl(s
′, t1).

γ is symmetric iff (s, t2, t1) is also a confusion, and asymmetric otherwise.

The classification of confusions into ci and cd is not exhaustive: as shown in

[RT86] and [RE98] there are examples of confusions which are neither ci nor cd.

Also note that the two lines of classification are independent, the only nontrivial

relation between the two is that cd confusions are always symmetric [RT86, RE98].

To further analyse a situation of confusion we can also consider whether it is a

confusion with respect to a particular transition.

Definition 4.5.3 (tc-confusion). Let S be a system, s ∈ Reach(S), t1, t2 ∈ TS,

such that γ = (s, t1, t2) is a confusion. Given tc ∈ TS, we say γ is a confusion

w.r.t. tc (short: tc-confusion) iff we have either (a) tc 6∈ cfl(s, t1) & tc ∈ cfl(s
′, t1)

or (b) tc ∈ cfl(s, t1) & tc 6∈ cfl(s
′, t1), where s

′ is such that s
t2→ s′. If (a) holds

then γ is a conflict-increasing (short: ci) tc-confusion, and in the case of (b) a

conflict-decreasing (short: cd) tc-confusion.
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Figure 4.7: The two basic cases of confusion

By definition such relative confusions exhaustively fall into ci or cd. They can

also be classified along the line symmetric – asymmetric, but at least for 1-safe net

systems, the cd tc-confusions exactly correspond to the symmetric tc-confusions,

and similarly for ci and asymmetric tc-confusions. Figure 4.7 depicts the two

basic cases of confusion:

Basic confusion A. Set s = {p1, p2}. The triple (s, t1, t2) is a ci tc-confusion.

Observe that the potential conflict of t1 with tc is not visible at s and how the

occurrence of t2 introduces this conflict.

Basic confusion B. Set s = {p1, p2}. The triple (s, t1, t2) is a cd tc-confusion. Note

how the conflict of t1 with tc is resolved by the occurrence of t2. Similarly, the

occurrence of t1 would resolve the conflict of t2 with tc, which makes the confusion

symmetric.

As reported in [RT86] and [RE98] confusion seems to be a fundamental phe-

nomenon that occurs wherever both, concurrency and conflict, are present; for

example, it appears as the so-called glitch problem in the area of switching cir-

cuits. In net theory, confusion is well-known to make the analysis of systems more

difficult. And, as stated in [RE98] and [RT86], it has even been suggested that

“it is not the combination of choice and concurrency as such that causes difficul-

ties. Only those combinations of concurrency and conflict that result in confusion

create problems.” Thus, it seems worthwhile to investigate what influence this

behavioural situation has on the coincidence problem of hp and hhp bisimilarity.
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4.5.2 Confusion and the Coincidence Problem

With the explanation of above it seems immediately clear that confusion is sig-

nificant for separating hhp from hp bisimilarity. This is confirmed by a look at

the two standard counter-examples:

Counter-example 1 (Figure 1.7). Consider system A. The triple γ = (s, b2, a2) is a

confusion, which in general is symmetric but neither ci nor cd. On the one hand,

γ is a ci c-confusion, which is caused by one of the MNH-situations employed

in the example. On the other hand, γ is a cd a1-, and also a cd b1-confusion;

this results from the counter-example’s frame situation. There are corresponding

confusions in the other square of system A, and in system B.

Counter-example 2 (Figure 1.8). Consider system B. The triple γ = (s′, a′1, b
′
1) is

a confusion, which in general is cd and symmetric. On the one hand, γ is a cd

a′2-, and also a cd b′2-confusion; this is caused by the frame situation employed

in the example. On the other hand, γ is a cd c′1- and also a cd c′2-confusion; in

turn, this originates from the integration of the counter-example’s MNH-situation

into its frame situation. By themselves the MNH-situations do not give rise to

confusion. (cf. Section 4.1.1). Again, there are corresponding confusions in the

other squares of system B, and also in system A.

It has long been believed that confusion is not only significant but also nec-

essary to distinguish hp and hhp bisimilarity. Specifically, in [Che96] it has been

conjectured that the two bisimilarities coincide for free choice net systems, which

are a structural characterization of confusion-free systems.

Definition 4.5.4. A system S is confusion-free iff for all s ∈ Reach(S) S is not

confused at s.

The conjecture is, however, incorrect: it is easy to check that our third counter-

example (Figure 4.1, 4.2) does not contain any instance of confusion, and, as we

will be able to tell later, the two systems are actually free choice.

Theorem 4.5.1.

hp and hhp bisimilarity do not coincide, in general, for confusion-free systems.

A more compact counter-example is presented in Figure 4.8. Again the two

systems are confusion-free, and they are also free choice. In both, A and B, we can

concurrently compute an a- and a b-transition such that afterwards the system

will either have reached a final state, or the a-thread and b-thread can synchronize

via a c-transition. The crucial difference is that in A we can compute an a- and
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Figure 4.8: Counter-example 4: a more compact counter-example that demon-
strates non-coincidence for confusion-free systems

a b-transition such that the resulting threads cannot synchronize with each other

but both of them could do if they were in parallel with their true synchronization

partner. This difference is easily detected by hhp bisimilarity via backtracking

but cannot be seen by hp bisimilarity.

4.5.3 A New Kind of Confusion: Syn-confusion

Although we have seen that counter-example 3 and 4 do not employ any instance

of confusion in the sense of Def. 4.5.1 it is still intuitive that every counter-example

should rely on some kind of confusion (in the non-formal sense). A closer look at

counter-example 3 and 4 shows that they both use MNH situations that can be

captured by a new type of confusion. Consider counter-example 3:

Counter-example 3 (Figure 4.1, 4.2). Consider system S. Set s = {p1, p2}, and

observe: the transitions e1 and a are concurrently enabled at s. The sequence

‘b f2’ is enabled at s such that the threads ‘b f2’ and e1 can occur concurrently,

and then synchronize via the g1-transition. Although a is independent of e1, a’s

occurrence has an impact on the ‘behavioural environment’ of e1: if a occurs it

will take away the g1-synchronization capability of e1.

We can capture this scenario in the style of confusion as follows: a situation

of syn-confusion is present at a state s iff there are two transitions, t1 and t2,

concurrently enabled at s such that the occurrence of one of them, say t2, brings

about a change in the set of transitions that can occur as a synchronization of
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t1 later on; we say a transition ts can occur as a synchronization of t1 later on

iff there is a thread r enabled concurrently with t1 at s such that ts can oc-

cur causally dependent on t1 and r. The confusion lies in the fact that the two

possible linearizations of the concurrent step {t1, t2} have different behavioural

properties: if t1 is computed before t2, it occurs as a transition that has a spe-

cific synchronization capability, which it does not have if it is computed after t2.

Formally, we define:

Definition 4.5.5 (synchronization, synchronization set, syn-confusion).

Let S be a system, s ∈ Reach(S), and t ∈ TS such that s[t〉.

A transition ts is a synchronization of t at s iff there is w ∈ T ∗S with s[w〉 & w IS t,

and t′ ∈ TS such that (s′, t, t′, ts) is a SW-1 situation, where s′ is such that s
w
→ s′.

The synchronization set of t at s, denoted by syn(s, t), is defined to be the set

{ts ∈ TS | ts is a synchronization of t at s}.

Let t1, t2 ∈ TS so that s[t1〉, s[t2〉 & t1 IS t2. We say the triple (s, t1, t2) is a

synchronization-confusion (short: syn-confusion) (at s) iff syn(s, t1) 6= syn(s
′, t1)

(or equivalently syn(s, t1) ⊃ syn(s
′, t1)), where s

′ is such that s
t2→ s′.

Let γ = (s, t1, t2) be a syn-confusion, and ts ∈ Ts. γ is a syn-confusion w.r.t. ts

(short: ts syn-confusion) iff ts ∈ syn(s, t1) & ts 6∈ syn(s
′, t1), where s

′ is such that

s
t2→ s′.

We say S is syn-confused at s iff there is a syn-confusion at s.

Similarly to confusion, instances of syn-confusion can be classified into sym-

metric and asymmetric; this is even fruitful for relative syn-confusions. On the

other hand, as a consequence of the definition syn-confusions are always decreas-

ing. The example shown in Figure 4.9 can be regarded as the most basic case of

syn-confusion:

Basic Syn-confusion. Set s = {p1, p2} and s′ = {p1, p3}. The triple (s, t1, t2) is a

syn-confusion (w.r.t. ts) since syn(s, t1) = {ts} but syn(s
′, t1) = ∅. Note how the

occurence of t2 takes away t1’s synchronization capability.

We already know that syn-confusion is significant for separating hhp from hp

bisimilarity. Just as with classical confusion, it is not a necessary condition. This

fact is quickly established by a look at the two standard counter-examples: they

do not contain any instance of syn-confusion.

Definition 4.5.6. A system S is syn-confusion free iff for all s ∈ Reach(S) S is

not syn-confused at s.

133



���
�

���
�

PSfrag replacements

t1 t2

ts

p1 p2

p3

Figure 4.9: The basic case of syn-confusion

Theorem 4.5.2. hp and hhp bisimilarity do not coincide, in general, for syn-

confusion free systems.

The question is whether excluding both, classical confusion and syn-confusion,

will make hp and hhp bisimilarity coincide. We will pursue this theme in Chap-

ter 6. There, we will study the coincidence problem for a (half-)structural system

class that apart from being confusion-free appears to exclude syn-confusion: the

class of live free choice net systems.

4.6 Liveness

Finally, we introduce the well-known concept of liveness. This behavioural prop-

erty will be particularly interesting later on, when we study it in combination with

the structural condition of free choice. A system is live iff each of its transitions

can always be made to occur again; formally, we define:

Definition 4.6.1 (liveness, well-formedness). Let S be a system.

A transition t ∈ TS is live iff ∀s ∈ Reach(S). ∃s′ ∈ Reach(S, s). s′[t〉.

S is live iff ∀t ∈ TS. t is live.

Consider S as a system base, that is without a specified initial state. S is well-

formed iff there exists a state s ∈ SS such that S with initial state s is a live

system.

Example 4.6.1. The system of Figure 4.10 is live, whereas the systems of Figure 1.7

are not.
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Figure 4.10: A live version of system A of Figure 1.7

Considering liveness by itself is not very interesting for the two hhp bisimilarity

problems: the systems of the two standard counter-examples (Figure 1.7 and 1.8)

can easily be transformed into live systems such that they still demonstrate the

non-coincidence of hp and hhp bisimilarity. The analogue is true for the systems

employed in the undecidability proof of hhp bisimilarity (cf. [JN00]). In both

cases, one simply adds a ‘resetting’ transition from every final state to the initial

state, just as it has been done in the example above. We record:

Theorem 4.6.1.

1. hp and hhp bisimilarity do not coincide, in general, for live systems.

2. hhp bisimilarity is undecidable for live systems.

However, it will be worthwhile to study liveness in combination with the

structural property of free choice; as mentioned in the previous section, this com-

bination appears to exclude both confusion and syn-confusion.
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Chapter 5

Basic Parallel Processes

5.1 Introduction

We now come to investigate hp and hhp bisimilarity on our first group of structural

system classes: the process algebra basic parallel processes (short: BPP) and

its specialization to simple BPP (short: SBPP), equipped with partial order

semantics. BPP and SBPP come from the area of infinite-state verification, and

constitute the natural classes to start with when exploring partial order paradigms

on infinite-state systems (cf. Section 1.3.2). It turns out that they restrict the

interplay of causality, concurrency, and conflict in an interesting way: under

our semantics, SBPP are interpreted as a class of (infinite-state) comm-free net

systems, and BPP as a class of (infinite-state) proper-comm free net systems.

From Section 4.4 we know that the first are SW-free; proper-comm free is a new

concept, and we will see that net systems satisfying this condition are SW-{1,2}

free.

We obtain the following results: for SBPP we prove decidability and coinci-

dence of hp and hhp bisimilarity. Since SBPP are not necessarily bounded-degree

but always finitely describable, this result is orthogonal to the one of Section 4.4.3.

For BPP the two bisimilarities do not coincide; this follows from the second stan-

dard counter-example. But we separately achieve decidability for both. Besides,

our proofs lead us to two coincidence results: for BPP, hp bisimilarity coincides

with the distributed bisimilarity of [Cas88, CH89], and hhp bisimilarity with chhp

bisimilarity. As noted earlier, the decidability of hp bisimilarity for BPP is al-

ready known via that of causal bisimilarity [KH94], and the coincidence of hp and

distributed bisimilarity is also proved in [Kie99]; further, [Chr92, Chr93] prove the

decidability of distributed bisimilarity. The results concerning hhp bisimilarity

are all new.

There is a general scheme behind our proofs: due to their restricted synchro-
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nization comm-free and proper-comm free net systems have good composition

and decomposition properties. We will see that this translates into corresponding

composition and decomposition results for hp and hhp bisimilarity, first of all on

the level of the respective net class, and second on the syntactic level of process

terms. Based on the syntactic insights we then construct tableau systems which

establish the decidability and coincidence results.

Altogether our proofs confirm the predicted trend that partial order paradigms

on standard classes of infinite-state systems can have clear decision procedures due

to good composition/decomposition properties. Importantly, the results on hhp

bisimilarity show that in the non-interleaving world equivalences can be compu-

tationally harder for finite-state systems than for standard classes of infinite-state

systems; it is primarily the interplay of causality, concurrency, and conflict that

matters.

A word about our partial order semantics: inspired by the SBPP semantics

of [EK95] we translate each given BPP or SBPP into an occurrence net that

intuitively presents the partial order unfolding of the process. For SBPP we can

employ the standard notion of Petri net unfolding: SBPP can be identified with

‘full standard form’ BPP, and these in turn have a well-known interpretation as

(weighted, non-safe) comm-free Petri nets. For BPP there is no suitable Petri net

representation, and we shall therefore develop a direct notion of BPP unfolding.1

The remainder of the chapter is organized as follows: in Section 5.2 we give

the necessary definitions concerning BPP and SBPP, and explain the tableau

method in more detail. Afterwards we present the partial order semantics and

results, first for SBPP in Section 5.3, then for BPP in Section 5.4. Finally, we

draw conclusions and give directions for further research.

5.2 Definitions and Methodology

5.2.1 BPP and SBPP

We first give the definition of BPP; we follow [Chr93] but for technical convenience

we use labelled transitions instead of the usual actions. In the following assume

a countably infinite set of transitions T = {t, t1, . . . , u, u1, . . .}, and a countably

infinite set of process variables Vars = {X,X1, . . . , Y, Y1, . . .}.

1Note that for our purpose it is perfectly natural to employ a semantics of unfoldings; using a
truly-concurrent operational semantics would not give us any advantage since our equivalences
are based on partial order runs.
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Definition 5.2.1 (BPP expressions). BPP expressions are given by the fol-

lowing grammar:

E ::= 0 (inaction)
| X (process variable, X ∈ Vars)
| t.E (transition prefix, t ∈ T )
| E + E (choice)
| E || E (parallel composition)

Let E be a BPP expression. We denote the set of variables that occur in E by

Vars(E), and the set of transitions by T (E).

E is guarded iff every variable in E occurs within the scope of transition prefix.

E is transition-genuine iff every t ∈ T (E) appears syntactically only once in E.

We usually consider BPP expressions modulo the structural congruence ≡ :

let ≡ be the least syntactic congruence satisfying associativity, commutativity,

and 0 as unit for the operators choice and parallel composition.

Informally, the meaning of the operators can be understood as follows: 0

represents the inactive process that is not capable of performing any transition.

The process t.E can perform transition t and thereby evolve into E. E + F

behaves either like E or like F , depending on whether the first transition is

chosen from E or F . In the parallel composition E || F , the components E and

F act concurrently and independently of each other.

We allow variables in BPP expressions as a means of defining recursive pro-

cesses. The meaning of the variables will be determined by a system of equations

that associates a defining expression to each variable. By assuming defining ex-

pressions to be guarded we ensure that recursive definitions yield unique solutions.

In our setting of labelled transitions it is natural to further require that defining

expressions are transition-genuine, and that the transitions of distinct defining ex-

pressions are disjoint. The labels of the transitions will be specified by a labelling

function.

Definition 5.2.2 (BPP defining system). A BPP defining system is a triple

∆ = (T∆, l∆,∆), where

• T∆ ⊂ T is a finite set of transitions,

• l∆ : T∆ → Act is a labelling function, and

• ∆ = {Xi
def
= Ei | i = 1, 2, . . . , n} is a finite family of recursive process

equations, where the Xi are distinct variables, and the Ei are guarded

and transition-genuine BPP expressions such that ∀i ∈ [1, n]. Vars(Ei) ⊆
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t.E
t
→ E

E
t
→ E ′

X
t
→ E ′

(X
def
= E) ∈ ∆

E
t
→ E ′

E + F
t
→ E ′

F
t
→ F ′

E + F
t
→ F ′

E
t
→ E ′

E || F
t
→ E ′ || F

F
t
→ F ′

E || F
t
→ E || F ′

Figure 5.1: Transition rules relative to a BPP defining system ∆

Vars(∆)
def
= {X1, X2, . . . , Xn} & T (Ei) ⊆ T∆, and ∀i, j ∈ [1, n]. i 6= j =⇒

T (Ei) ∩ T (Ej) = ∅.

Let ∆ be a BPP defining system. We say a BPP expression E is defined by ∆

iff Vars(E) ⊆ Vars(∆) and T (E) ⊆ T∆. We denote the set of BPP expressions

defined by ∆ by BPP(∆).

A BPP is a BPP expression that is defined by a defining system:

Definition 5.2.3 (BPP). A BPP is a pair E = (∆E , E0), where ∆E is a BPP

defining system, and E0 ∈ BPP(∆E). If the defining system is clear from the

context, we shall denote a BPP simply by its BPP expression.

The standard interleaving semantics for BPP is given via the SOS rules of Fig-

ure 5.1: every BPP defining system ∆ determines a lts T∆ = (BPP(∆), T∆,→∆),

where →∆ is the least relation satisfying the transition rules; elements of T∆ can

be substituted by elements of Act via l∆. A BPP E = (∆E , E0) can be under-

stood as the ltsis TE = (T∆, E0). Note how the semantics implements the informal

meaning of the BPP operators.

SBPP. We now define the subclass SBPP following [EK95]. SBPP restrict the

nesting of ‘choice’ and parallel composition by requiring choice to be guarded in

that the expressions of a choice must be prefixed terms. As a consequence every

SBPP corresponds to a parallel composition of initially sequential processes.

In the following assume two countably infinite subsets of Vars , Vars [E ] =

{X,X1, X2, . . .} and Vars
[S ] = {Y, Y1, Y2, . . .}.
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Definition 5.2.4 (SBPP). SBPP expressions are defined by the following gram-

mar:
E ::= S (an initially sequential process)

| X (process variable, X ∈ Vars [E ])
| E || E (parallel composition),

where initially sequential process (short: ISP) expressions are given by:

S ::= 0 (inaction)
| Y (process variable, Y ∈ Vars [S ])
| t.E (transition prefix, t ∈ T , E a SBPP)
| S + S (choice).

Clearly, SBPP and ISP expressions are both special kinds of BPP expressions.

A SBPP defining system is a BPP defining system ∆ such that for each ‘X
def
= E’ ∈

∆ with X ∈ Vars [E ], E is a SBPP expression, and for each ‘Y
def
= S’ ∈ ∆ with

Y ∈ Vars [S ], S is an ISP expression. We denote the set of SBPP expressions

defined by ∆ by SBPP(∆).

A SBPP is a pair E = (∆E , E0), where ∆E is a SBPP defining system, and

E0 ∈ SBPP(∆E).

5.2.2 Normal Forms

When working with process algebras it is often convenient to restrict one’s at-

tention to processes that are in a certain normal form. Naturally, this requires

that every process can effectively be transformed into a semantically equivalent

normal form process. In the interleaving world it is common to consider BPP in

so-called full standard form (SNF ) [Chr93]. Every BPP can be represented as a

bisimilar SNF process; however, the transformation relies on the expansion law,

and therefore SNF is not valid under partial order semantics. We shall introduce

a new concept for BPP, the so-called execution normal form (ENF ); for SBPP

we can still employ the simpler SNF (with more generous initial expression).

We have not given a partial order semantics yet; in fact, for technical conve-

nience we would like to define it on normal form processes only. How can we then

be sure that we capture the entire class of BPP, and SBPP respectively? Our

normal forms are very unrestricted in that every BPP and SBPP can effectively

be transformed into a normal form representative by using operations that only

affect the appearance of the defining expressions, that is ‘syntactic’ operations

like introduction of new variables, substitution of variables for subexpressions,

and unfolding of variables. Certainly, any semantic equivalence of interest is

preserved under such operations.
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BPP in ENF are based on ENF expressions; these are BPP expressions in

which every variable occurrence is immediately guarded and every transition pre-

fix is directly followed by a variable. In other words, ENF expressions are based

on subexpressions of the form t.X or 0, which are arbitrarily nested by choice

and parallel composition.

Definition 5.2.5 (BPP in ENF). The class of BPP expressions in execution

normal form (short: ENF expressions) is defined by the following grammar:

E ::= 0 | t.X | E + E | E || E.

In the following we assume ENF expressions to be transition-genuine (as defined

in Def. 5.2.1).

A BPP defining system ∆ is in ENF iff for each ‘X
def
= E’ ∈ ∆, E is in ENF. To

abbreviate we also use the term ENF defining system for ‘BPP defining system in

ENF’. We denote the set of ENF expressions defined by an ENF defining system

∆ by ENF (∆).

A BPP E = (∆E , E0) is in ENF iff ∆E is in ENF, and E0 ∈ ENF (∆E)∪Vars(∆E).

Let ∆ = {Xi
def
= Ei | i = 1, . . . , n} be an ENF defining system such that T∆ =

⋃

i∈[1,n] T (Ei), and t ∈ T∆. t appears in exactly one defining equation ‘X
def
= E’

∈ ∆; we denote X by prevar(t). Further, there will be exactly one subexpression

of the form ‘t.Y ’ in E; we denote Y by postvar(t).

The name “execution normal form” comes from the fact that the transitions

occurring in a defined ENF expression are exactly the ones that can be executed

as next transition via the standard semantics:

Proposition 5.2.1. Let ∆ be an ENF defining system. For all E ∈ ENF (∆),

t ∈ T∆ we have:

E
t
→ ⇐⇒ t ∈ T (E).

Proof. Obvious from the definitions.

For SBPP we shall employ SNF, or to be precise, a slight generalization of

SNF concerning the initial expression.

For a given defining system ∆, let Vars(∆)⊗ = {α, β, . . .} be the set of finite

multisets over Vars(∆). We identify a multiset α = {X,X, Y } with the parallel

composition X || X || Y ; the empty multiset will be recognized as the process 0.

We allow sums to be written via
∑

, and correspondingly identify the empty sum

with 0.
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Definition 5.2.6 (SBPP in SNF). A SBPP defining system ∆ is in full stan-

dard form (short: SNF ) iff for every ‘X
def
= E’ ∈ ∆, E is of the form

E =
n
∑

i=1

ti.αi,

where ti ∈ T∆, and αi ∈ Vars(∆)⊗ for i ∈ [1, n]. To abbreviate we also use the

term SNF defining system for ‘SBPP defining system in SNF’.

A SBPP E is in SNF iff ∆E is in SNF, and E0 = α with α ∈ Vars(E)⊗, or

E0 =
∑n

i=1 ti.αi with ti ∈ TE , αi ∈ Vars(E)
⊗.

Let ∆ = {Xi
def
= Ei | i = 1, . . . , n} be a SNF defining system such that T∆ =

⋃

i∈[1,n] T (Ei), and t ∈ T∆. t appears in exactly one defining equation ‘X
def
=

∑n

i=1 ti.αi’ ∈ ∆; we denote X by prevar(t). Further, there is exactly one i ∈ [1, n]

with ti = t; we denote αi by postvars(t).

It is a routine exercise to check that, as motivated above, our normal forms

are indeed semantically nonrestrictive in that every BPP (SBPP) can effectively

be transformed into a BPP in ENF (SBPP in SNF) by using operations that only

affect the appearance of the defining expressions.

5.2.3 The Tableau Technique

The results of this chapter will be proved by means of tableau systems. In prepa-

ration, we now describe the tableau method in technical detail, geared to our

purpose.

A tableau system is a syntax-driven goal-directed proof scheme. To prove that

two processes E and F are equivalent w.r.t. to a given equivalence one starts

with the goal ‘E = F ’, and builds from this root node a tableau, or proof tree, as

prescribed by the system’s tableau rules and terminal conditions.

The tableau rules specify how goals can be substituted by a set of subgoals.

For our purpose they are of the form:

E = F

E1 = F1 · · · En = Fn

sometimes with side conditions. The premise ‘E = F ’ represents the goal, and

the consequents ‘Ei = Fi’ the subgoals that have to be achieved. The applica-

tion of the rules is steered by the structure of the processes. But we allow rule

instantiations to be nondeterministic.

Terminal conditions are of the form ‘E = F ’, usually with side conditions. If

a node matches a terminal condition the construction will stop at this point. The
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node is called a terminal node; it will constitute a leaf in the proof tree. Terminal

conditions are classified as either successful or unsuccessful. The matching of

terminal conditions to nodes will be deterministic, and hence terminal nodes can

also be classified as either successful or unsuccesful. A tableau is successful iff it

is finite and all its terminals are successful, and unsuccessful otherwise.

The intuition is that a goal ‘E = F ’ is true iff there is a successful tableau with

root node ‘E = F ’. Two properties are crucial to ensure that this is guaranteed:

the tableau system must be complete in that whenever the root is correct it

is possible to construct a successful tableau. On the other hand, the tableau

system must be sound in that whenever the root is false it is not possible to

construct a successful tableau. If we want to employ a tableau system as a

decision procedure then we further need finiteness : if for any two given processes

there is only a finite number of possible tableaux, and each of them is finite then

we can decide the respective equivalence by exhaustive search; simply construct

all possible tableaux, and check if there is a successful one among them. We

shall also use tableau systems to establish coincidence results: if a finite tableau

system is complete and sound for two a priori different equivalences, then the two

equivalences are decided by the same decision procedure, and hence they clearly

coincide with each other.

Finally, we introduce some standard tableau terminology as it can be found

e.g. in [CHM93a]: we denote a tableau with the root labelled ‘X = Y ’ by T (X =

Y ). We use the letter π to designate paths through a tableau, and the letter n

to denote nodes of a tableau. When we want to indicate the label of a node n we

write n : E = F .

5.2.4 Further Definitions

In view of our partial order semantics, we introduce some more definitions; most

of them are standard, and we define them following [EK95].

A (labelled) weighted net is a tuple (S, T,W, l), where S and T are disjoint

sets of places and transitions, W : (S × T ) ∪ (T × S)→ IN0 is a weight function,

and l : T → Act is a labelling function. The pre-set of an element x ∈ S ∪ T ,
•x, is defined by {y ∈ S ∪ T | W (y, x) > 0}, the post-set of x, x•, similarly is

{y ∈ S ∪ T | W (x, y) > 0}. A weighted Petri net is a pair (N,M0), where N is a

weighted net and M0 is a marking of N ; markings are defined as for unweighted

nets.

Let (S, T, F, l) be a net and let x1, x2 ∈ S ∪ T . We say x1 and x2 are in

conflict, denoted by x1#x2, if there exist distinct transitions t1, t2 ∈ T such that
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•t1 ∩
•t2 6= ∅, and there exist paths in the net leading from t1 to x1, and from t2

to x2. x ∈ S ∪ T is in self-conflict iff x#x. Note that this definition of conflict

is not intuitive for general nets, but in the context of our partial order semantics

we will think of occurrence nets.

A (labelled) occurrence net is an acyclic net N = (BN , EN , FN , lN) such that:

• for every b ∈ BN , |
•b| ≤ 1,

• N is finitely preceded, i.e., for every x ∈ BN ∪ EN , the set of elements

y ∈ BN ∪ EN such that there exists a path from y to x is finite,

• no e ∈ EN is in self-conflict.

We call the places of occurrence nets conditions, and the transitions events. For

two elements x, y ∈ BN ∪ EN we define x ≤N y iff there exists a path from x to

y. Since occurrence nets are acyclic, it is clear that ≤N is a partial order. We

denote the set of minimal elements of B ∪ E with respect to ≤N by Min(N).

LetN1 = (N1,M
0
1 ) andN2 = (N2,M

0
2 ) be net systems such thatN1 andN2 are

occurrence nets. We write N1
occ
= N2 iff the reachable part of N1, reach(N1), and

that of N2, reach(N2), are isomorphic. reach(N,M0), where N is an occurrence

net, is defined by ((S ′, T ′, F ′, l′),M0), where S
′ = SN ∩ (↑NM0), T

′ = TN ∩ (↑N

M0), F
′ = FN ∩ ((S ′ × T ′) ∪ (T ′ × S ′)), and l′ = lN ¹T ′ ; ↑N is interpreted with

respect to ≤N .

We shall also employ the following terminology: given a net system N , we

use En(N ) to denote the set of transitions that are initially enabled in N , that

is En(N ) := {t ∈ TN | M0[t〉}.

5.3 Simple Basic Parallel Processes

5.3.1 Partial Order Semantics

Analogously to [EK95] we first translate SBPP into communication-free Petri

nets, and then use the notion of Petri net unfolding given in [Eng91]. As explained

in Section 5.2.2 it is justified to assume SBPP in SNF, and we can therefore employ

the standard characterization of SNF processes as communication-free Petri nets

[Esp97b]. This is different to [EK95], where a direct transformation for the entire

SBPP class is developed. The concept of communication-free for weighted Petri

nets is defined as follows:

Definition 5.3.1. A weighted net N = (S, T,W, l) is communication-free iff

∀t ∈ T . |•t| = 1 & ∀s ∈ S, t ∈ T . W (s, t) ≤ 1.
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Figure 5.2: The Petri net representation of E

A weighted Petri net N = (N,M0) is communication-free iff N is communication-

free.

Next we present the standard translation from BPP in SNF to communication-

free Petri nets:

Definition 5.3.2. Let ∆ be a SNF defining system. The net representation of

∆, denoted by net(∆), is defined by the tuple (S, T,W, l), where

1. S = Vars(∆),

2. T = T∆,

3. W is such that for all X ∈ Vars(∆), t ∈ T∆ we have:

(a) W (X, t) =

{

1 prevar(t) = X,
0 otherwise,

(b) W (t,X) = |postvars(t)|X ,

4. l = l∆.

Let E be a SBPP in SNF; w.l.o.g. assume E0 = α for some α ∈ Vars(E)⊗.

The Petri net representation of E , denoted by PN (E), is defined by the pair

(net(∆E),M0), where M0 is such that ∀X ∈ Vars(E). M0(X) = |α|X .

Example 5.3.1. Figure 5.2 gives the Petri net representation of the SBPP E =

(∆, X1), where ∆ = {X1
def
= t1.(X1 || X2) + t2.X2; X2

def
= t3.0+ t4.(X1 || X1)}.

The notion of Petri net unfolding is formalized in [Eng91] for Petri nets without

weights; following [EK95] we lift the concept to our setting with weights. One

starts off with the definition of partial unfoldings, so-called branching processes :
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Definition 5.3.3. LetN = (N,M0) be a weighted Petri net withN = (S, T,W, l).

A branching process of N is a pair β = (N ′, f), where N ′ = (B,E, F, l′) is an

occurrence net, and f is a function f : B ∪ E → S ∪ T satisfying:

1. f(B) ⊆ S, and f(E) ⊆ T .

2. For all t ∈ T , e ∈ E such that f(e) = t we have: ∀s ∈ S. |•e ∩ f−1(s)| =

W (s, t) & |e• ∩ f−1(s)| = W (t, s).

3. For all e1, e2 ∈ E we have: •e1 =
•e2 & f(e1) = f(e2) =⇒ e1 = e2.

4. ∀s ∈ S. |Min(N ′) ∩ f−1(s)| = M0(s).

5. l′ = l ◦ f ¹E.

Let β1 = (N1, f1), β2 = (N2, f2) be two branching processes of N . An isomor-

phism from β1 to β2 is an isomorphism h from N1 to N2 such that f2 ◦ h = f1 (or

equally f1◦h
−1 = f2). Branching processes are only considered up to isomorphism.

The set of branching processes of a Petri net N , denoted by BP(N ), is nat-

urally structured by the following partial order: let β1, β2 ∈ BP(N ). β1 ≤ β2

iff β1 is an initial part of β2, and thus unfolds N to a lesser degree than β2. For

N without weights it is shown in [Eng91] that (BP(N ),≤) forms a complete

lattice. The result naturally carries over to our setting with weights. Then, each

(weighted) Petri net N has a largest branching process, the unfolding of N . In

the following, we will denote it by unf (N ).

Altogether, we are now ready to define the unfolding of SBPP in SNF:

Definition 5.3.4. Let E be a SBPP in SNF. The unfolding of E , denoted by

unf (E), is defined by unf (PN (E)).

Example 5.3.2. Figure 5.3 demonstrates the unfolding of PN (E), and thus E ,

where E is as given in Example 5.3.1.

For our purpose it will be convenient to consider SBPP unfoldings via a con-

crete representative of the respective isomorphism class, and to view the net part

as a Petri net:

Convention 5.3.1. Let E be a SBPP in SNF. We shall view unf (E) as a pair

((N,Min(N)), f) such that (N, f) is a concrete representative of unf (E).

(This convention makes sense since isomorphic net systems are always (h)hp

bisimilar, and because isomorphism classes of concrete branching processes (N, f)

extend to isomorphism classes of Petri nets (N,Min(N))).

146



PSfrag replacements

t1 t2

t3t3 t4t4

X1

X1

X1 X1 X1 X1

X2 X2

Figure 5.3: The unfolding of PN (E), and thus E

It is easy to see that the Petri net of an unfolding is actually 1-safe. Hence,

our partial order notions carry over, and we are finally in a position to define

(h)hp bisimilarity for SBPP:

Definition 5.3.5. Two SBPP in SNF E and F are (h)hp bisimilar iff proj 1(unf (E))

and proj 1(unf (F)) are (h)hp bisimilar.

In Section 4.4.1 we have defined ‘communication-free’ for net systems. It is

easy to see that:

Proposition 5.3.1. Let E be a SBPP in SNF, and N = proj 1(unf (E)). N is a

comm-free net system, and hence SW-free.

Proof. Obvious.

5.3.2 Decidability and Coincidence of hp and hhp Bisim-
ilarity

We now establish the decidability and coincidence of hp and hhp bisimilarity

for SBPP. Similarly to our result on bounded-degree SW-free systems (cf. Sec-

tion 4.4.3) the composition and decomposition theorems of Section 4.3 will de-

liver the crucial insight behind our proof; this time they will help us to develop a

tableau-based procedure that decides hp and hhp bisimilarity at the same time.

First of all, we transfer the composition and decomposition results to SBPP.

We proceed via comm-free occurrence net systems: the lats of a comm-free oc-

currence net system is a SW-free occurrence lats, and with Theorem 4.4.2 and

Fact 4.4.1(3) it is easy to see that its prime components must be IS. This is cap-

tured at the level of net systems as follows: each ‘active’ place of a comm-free
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occurrence net system defines an initially sequential component. Moreover, since

we do not allow synchronization these components will never communicate with

each other but run completely independently. Formally, we define and formulate:

Definition 5.3.6. Let N = (N,M0) be a comm-free occurrence net system. We

define the active places of N as APlaces(N ) = {p | p ∈ M0 & p• 6= ∅}, and the

components of N as Comps(N ) = {(N, {p}) | p ∈ APlaces(N )}.

Proposition 5.3.2. Let N be a comm-free occurrence net system. We have:

lats(Comps(N )) ∼= PComps(lats(N )), and every c ∈ PComps(lats(N )) is IS.

Proof. This is easy to see with the above explanation and the definition of comm-

free.

Now, we can transfer the composition and decomposition results to comm-

free net systems; we require decomposition for hp bisimilarity, and composition

for hhp bisimilarity, or to be precise for hhp bisimilarity approximations (this

strengthening is naturally also valid). Since IS systems are bsc the decomposition

result does apply.

Lemma 5.3.1. Let N1, N2 be two comm-free occurrence net systems.

1. Whenever we have N1 ∼hp N2 then there exists a bijection b : Comps(N1)→

Comps(N2) such that ∀c1 ∈ Comps(N1). c1 ∼hp b(c1).

2. Whenever there exists a bijection b : Comps(N1) → Comps(N2) such that

∀c1 ∈ Comps(N1). c1 ∼
n
hhp b(c1) then we have N1 ∼

n
hhp N2.

Proof. (1.) is immediate with Prop. 5.3.2 and Theorem 4.3.2(1). (2.) follows sim-

ilarly from Prop. 5.3.2 and the analogue of Theorem 4.3.1(2) for approximations

(which naturally also holds).

With the help of an observation on SBPP unfoldings, it is then straightforward

to further transfer these insights to SBPP.

Definition 5.3.7. Let E be a SBPP in SNF with E0 = α. We define the active

variables of E as AVars(E) = {X | X ∈ α & E 6= 0, where E is such that

(X
def
= E) ∈ ∆E}.

Proposition 5.3.3. Let E be a SBPP in SNF with E0 = α, and unf (E) =

((N,M0), f). Then there is a bijection b : APlaces(N ) → AVars(E) such that

∀(p,X) ∈ b. X = f(p) & proj 1(unf (X))
occ
= (N, {p}).

Proof. Easy to read from the definitions.
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Lemma 5.3.2. Let E, F be two SBPP with E0 = α, F0 = β.

1. If we have E ∼hp F then there exists a bijection b : AVars(E)→ AVars(F)

such that ∀X ∈ AVars(E). X ∼hp b(X).

2. If there exists a bijection b : AVars(E) → AVars(F) such that we have

∀X ∈ AVars(E). X ∼n
hhp b(X) then E ∼n

hhp F .

Proof. Immediate with Lemma 5.3.1 and Prop. 5.3.3.

This will provide the means of decomposing a goal of two processes to check

into subgoals of “smaller” processes to test. Note however, that the lemma will

not take us any further if the processes consist of one non-empty IS component

each, or, in other words, if the processes correspond to sums. For this case we

need a further insight about comm-free net systems.

Lemma 5.3.3. Let N1, N2 be two comm-free net systems such that |M
0
1 | = 1,

|M0
2 | = 1.

1. If N1 ∼hp N2 then the following two conditions hold:

(a) Whenever M 0
1

t1→ M1 for some t1, M1, then there exist t2, M2 such

that l1(t1) = l2(t2), M
0
2

t2→M2, and M1 ∼hp M2.

(b) Vice versa.

2. If the following two conditions hold then N1 ∼
n+1
hhp N2:

(a) Whenever M 0
1

t1→ M1 for some t1, M1, then there exist t2, M2 such

that l1(t1) = l2(t2), M
0
2

t2→M2, and M1 ∼
n
hhp M2.

(b) Vice versa.

Proof. Let N1 and N2 be given as above. (1.) Clearly holds for any two hp

bisimilar net systems.

(2.) Assume we are given label-preserving functions f : En(N1) → En(N2),

g : En(N2)→ En(N1), and a family of hhp bisimulation approximations of degree

n, {H(t1,t2)}(t1,t2)∈f∪g, such that for each (t1, t2) ∈ f ∪ g, H(t1,t2) relates M
t1
1 and

M t2
2 , where M 0

1
t1→ M t1

1 , and M 0
2

t2→ M t2
2 . The existence of these entities is

guaranteed by the assumption of (2.). We define a relation H as follows:

H = {ε} ∪ {(t1, t2).r | (t1, t2) ∈ g ∪ f & r ∈ H(t1,t2)}.

It is easy to check that H is a hhp bisimulation approximation of degree n + 1

relating N1 and N2. In particular, consider the following two facts: (a) all enabled

149



transitions of N1, and N2 respectively, are in conflict with each other; (b) the

remaining behaviour of N1 after the occurrence of a transition t1 is dependent on

the event corresponding to t1, and similarly for N2.

With the help of a further observation on SBPP unfoldings we carry this

insight over to SBPP.

Proposition 5.3.4. Let E be a SBPP in SNF with E0 =
∑n

i=1 ti.αi, and unf (E) =

((N,M0), f).

1. For all e ∈ EN such that M0[e〉 there is i ∈ [1, n] so that ti = f(e), and

proj 1(unf (αi))
occ
= (N,M), where M0

e
→M .

2. For all i ∈ [1, n] there is e ∈ EN such that f(e) = ti, M0[e〉, and (N,M)
occ
=

proj 1(unf (αi)), where M0
e
→M .

Proof. Easy to read from the definitions.

Lemma 5.3.4. Let E, F be two SBPP with E0 =
∑n

i=1 ti.αi, F0 =
∑m

j=1 uj.βj.

1. If E ∼hp F then the following two conditions hold:

(a) For each i ∈ [1, n] there is j ∈ [1,m] such that lE(ti) = lF(uj), and

αi ∼hp βj.

(b) For each j ∈ [1,m] there is i ∈ [1, n] such that lE(ti) = lF(uj), and

αi ∼hp βj.

2. If the following two conditions hold then E ∼n+1
hhp F :

(a) For each i ∈ [1, n] there is j ∈ [1,m] such that lE(ti) = lF(uj), and

αi ∼
n
hhp βj.

(b) For each j ∈ [1,m] there is i ∈ [1, n] such that lE(ti) = lF(uj), and

αi ∼
n
hhp βj.

Proof. Immediate with Lemma 5.3.3 and Prop. 5.3.4.

The Tableau System. We translate these insights directly into a tableau sys-

tem. The rules can be found in Figure 5.4. Note how rule Decomp corresponds

to Lemma 5.3.2, and rule Match to Lemma 5.3.4. W.l.o.g. we assume that a

tableau is started with an expression of the form α = β. Then the typical order

of rule instantiations will be: Decomp, Rec, Match, Decomp, . . . ; it will al-

ways be the case that the subgoals of a rule instantiation match the premise of
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Rec
X = Y

E = F
(X

def
= E) ∈ ∆E , (Y

def
= F ) ∈ ∆F

Match

∑n

i=1 ti.αi =
∑m

j=1 uj.βj

{αi = βf(i)}ni=1 {αg(j) = βj}mj=1

where f : {1, . . . , n} → {1, . . . ,m}, g : {1, . . . ,m} → {1, . . . , n}
are functions such that ∀i ∈ [1, n]. lE(ti) = lF(uf(i)), and similarly
for g.

Decomp
α = β

{X = Y }(X,Y )∈b

where b : AVars(α)→ AVars(β) is a bijection.

Figure 5.4: Tableau rules relative to two SBPP in SNF E , F

the rule next in this sequence. We proceed in this manner until we hit one of the

following terminal nodes.

A node n : label is a successful terminal iff one of the following conditions

holds:

1. label = “0 = 0”.

2. label = “X = Y ”, and there is an ancestor node na above n in the tableau

such that na is labelled with “X = Y ” as well.

A node n : label is an unsuccessful terminal iff one of the following conditions

holds:

3. label = “α = β”, and a bijection b as required by rule Decomp does not

exist.

4. label = “
∑n

i=1 ti.αi =
∑m

j=1 uj.βj”, and a pair of functions f and g as

required by rule Match does not exist.

Clearly, it is easy to check whether a node is a terminal condition. Note how

condition (2.) makes sure we ‘loop back’ whenever we encounter a pair of variables

that we have already dealt with before. This will ensure finiteness of the tableau

system. Completeness for hp bisimilarity and soundness for hhp bisimilarity will

then follow with the first, and respectively second, part of Lemma 5.3.2 and 5.3.4.

Lemma 5.3.5 (finiteness). Every tableau for two given SBPP in SNF is finite.

Furthermore, for two given SBPP in SNF the number of possible tableaux is finite.
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Proof. Let E with ∆E = {Xi
def
= Ei : i = 1, 2, . . . , n}, F with ∆F = {Yj

def
= Fj :

j = 1, 2, . . . ,m} be two given SBPP in SNF. Assume to the contrary an infinite

tableau T (E0 = F0). Since we consider only guarded SBPP any tableau will be

finite-branching. Then, König’s Lemma applies, and we can assume an infinite

path π through the tableau. It is easy to see that any infinite path must contain

an infinite number of instantiations of rule Rec. But this immediately leads to

a contradiction. There are only n variables in E and m variables in F . Thus, we

only have m× n different nodes of the form X = Y at our disposal, and after at

most m×n instances of Rec we will hit a terminal node by the second condition

for successful terminals.

This observation also establishes an upper bound on every tableau for given

E and F . So clearly, there can be only finitely many different tableaux for two

SBPP.

Lemma 5.3.6 (completeness for hp bisimilarity). Let E and F be two SBPP

in SNF. If E ∼hp F then there exists a successful tableau T (E0 = F0).

Proof. Assume we are given two SBPP in SNF E and F such that E ∼hp F . We

shall show there exists a successful tableau T (E0 = F0).

The tableau rules are forward sound in the following sense: if we apply a rule

to a pair of hp bisimilar expressions, we can always find a rule instantiation such

that the expressions related by the subgoals of the rule are hp bisimilar as well.

This is obvious for rule Rec, and follows for Decomp from Lemma 5.3.2(1), and

for Match from Lemma 5.3.4(1).

Thus, starting from the root we can build a tableau such that every node

relates two expressions that are hp bisimilar. Since every tableau is finite, this

construction will surely terminate. It follows from Lemma 5.3.2(1) and 5.3.4(2)

that two expressions that are related by unsuccessful terminal nodes cannot be

hp bisimilar, and so each terminal node will be successful. Hence, we have proved

that there indeed exists a successful tableau.

Lemma 5.3.7 (soundness for hhp bisimilarity). Let E and F be two SBPP

in SNF. If there is a successful tableau T (E0 = F0) then E ∼hhp F .

Proof. Let E , F be two SBPP in SNF. To the contrary assume there is a successful

tableau T (E0 = F0), but E 6∼hhp F . We shall show that this assumption leads to

a contradiction.

If E 6∼hhp F then by Lemma 2.5.2 there is a least k such that E ∼n
hhp F for all

n < k and E 6∼n
hhp F for all n ≥ k.
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Note that the tableau rules are backwards sound w.r.t. ∼n
hhp: if we have a rule

instantiation such that the related expressions of each subgoal are hhp bisimilar

of approximation n, then the expressions related by the premise must be hhp

bisimilar of approximation n, as well. This is obvious for rule Rec, and follows

forDecomp from Lemma 5.3.2(2). ForMatch we actually have a strengthening:

the expressions related by the premise must be hhp bisimilar of approximation

n+ 1. This is a consequence of Lemma 5.3.4(2).

Thus, in our assumed tableau we can trace a path π such that E 6∼(k)hhp F

for the related expressions E and F of each node. While tracing this path we

can mark each node with the least l such that E ∼n
hhp F for all n < l, and

E 6∼n
hhp F for all n ≥ l. Note that the sequence of these measures along π is

strictly decreasing due to instantiations of Match.

By finiteness (Lemma 5.3.5) π will end in a terminal node nt. Since the tableau

is successful nt must be a successful terminal, i.e. it is labelled by “0 = 0”, or

by “X = Y ” and we have an ancestor node na labelled by “X = Y ” as well.

The first case cannot be possible since clearly 0 ∼hhp 0. So let us consider the

second case. Let knt be the measure of nt, and kna the measure of na respectively.

Observe that there must be an instantiation ofMatch between na and nt on our

path π, and hence we have knt < kna . But this is clearly a contradiction.

Completeness for hp bisimilarity implies completeness for hhp bisimilarity,

and similarly soundness for hhp bisimilarity gives soundness for hp bisimilarity.

Then the decidability of hp and hhp bisimilarity is straightforward: we only have

to check whether there exists a successful tableau; by finiteness this can easily

be done by exhaustive search. Since we decide the two bisimilarities by the same

decision procedure it also follows that they coincide.

Theorem 5.3.1.

1. Two SBPP are hp bisimilar iff they are hhp bisimilar.

2. It is decidable whether two SBPP are hp or hhp bisimilar.

5.4 Basic Parallel Processes

5.4.1 Partial Order Semantics

Similarly to SBPP, we translate each BPP into an occurrence net that gives the

unfolding of the BPP. However, since there is no suitable Petri net representation

for BPP we cannot employ the mechanism of [Eng91]; instead we shall develop
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a direct notion of unfolding for BPP. We proceed as follows: first, we show how

each variable of a BPP can be represented by a net fragment. Based on this, we

develop a concept of branching processes for BPP. The unfolding of a BPP will

then be given as the largest branching process with respect to a natural partial

order. As justified in Section 5.2.2, we assume BPP to be in ENF.

BPP Net Fragments. It is straightforward to give a net fragment that in-

tuitively represents a given ENF expression E: take a set of net transitions to

represent the transitions of E, and equip them with preplaces in a way that re-

flects how the corresponding base expressions are nested in E by the operators

choice and parallel merge. A variable of an ENF defining system is then natu-

rally represented by the net fragment of its defining expression. Moreover, we

will embed the name of the variable into the place identifiers of the net fragment.

For technical simplicity, net fragments will be defined as unlabelled nets. In

the definition we employ the following two operations:

Definition 5.4.1. Let N1 and N2 be two unlabelled nets with T1 ∩ T2 = ∅, and

Fi ⊆ Si × Ti for i ∈ {1, 2}.

The parallel composition of N1 and N2 is defined by:

N1 || N2
def
= (S1 ] S2, T1 ∪ T2, {((p, i), t) | i ∈ {1, 2} & (p, t) ∈ Fi}),

and the choice composition of N1 and N2 by:

N1 +N2
def
= (S1 × S2, T1 ∪ T2,
{((p1, p2), t) | (p1, p2) ∈ S1 × S2 & ((p1, t) ∈ F1 ∨ (p2, t) ∈ F2)}).

Note that the Petri net (N1 + N2, SN1+N2) behaves either like (N1, SN1) or like

(N2, SN2) depending on the choice of the first transition.

Now, we are ready to define:

Definition 5.4.2. Let ∆ be an ENF defining system.

Let ‘X
def
= E’ ∈ ∆. The net fragment of X, denoted by NF (X), is given by

netFrag(E), where netFrag translates every ENF expression into an unlabelled

net; it is inductively defined by:

netFrag(0) = ({X}, ∅, ∅),
netFrag(t.Y ) = ({X}, {t}, {(X, t)}),
netFrag(E1 || E2) = netFrag(E1) || netFrag(E2),
netFrag(E1 + E2) = netFrag(E1) + netFrag(E2).

154



PSfrag replacements

t1 t2t3 t4 t5 t6

t7 t8 t9 t10

X1 X2

X3

Figure 5.5: The net fragments of ∆

We define the set of net fragments of ∆ by NFs(∆) = {NF (X) | X ∈ Vars(∆)}.

Example 5.4.1. Figure 5.5 shows the net fragments of the ENF defining sys-

tem ∆ = {X1
def
= (t1.X2 || t2.X3) + t3.0;X2

def
= (t4.X1 + t5.0) || t6.X2;X3

def
=

(t7.X1 || t8.0) + (t9.0 || t10.X3)}.

BPP Branching Processes. It seems natural to interconnect the net frag-

ments of a BPP in the following way: simply add arrows that connect each

transition t to the places of the net fragment representing the post-variable of t.

The resulting net, equipped with an appropriate marking, does, however, not give

a satisfying representation of the BPP: tokens generated by parallel occurrences

of transitions might jointly enable a transition; such ‘cross-synchronization’ is

clearly contrary to the intuition.

Based on the net fragments we shall instead develop an intuitive notion of

partial unfolding for BPP. We first define canonical branching processes: their

elements are labelled in a special way that keeps track of the history of transition

firings; this makes it easy to avoid any ‘cross-synchronization’. BPP branching

processes are then defined as the isomorphism classes of the canonical represen-

tatives.

We start with the definition of the domains from which the elements of canon-

ical branching processes will be picked; after that comes the actual definition.

Definition 5.4.3. Let ∆ be an ENF defining system.
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We define the set of places of all net fragments of ∆ by S∆ =
⋃

N∈NFs(∆) SN . Note

that for each p ∈ S∆ there exists exactly one X ∈ Vars(∆) such that p ∈ NF (X);

we denote this variable by Var(p).

Let init be a designated ‘initial transition’ with init 6∈ T∆. We define ICAN to

be the smallest set satisfying:

1. init ∈ ICAN , and

2. if t ∈ T∆ and r ∈ ICAN then (t, r) ∈ ICAN .

Further, we define CAN T = T∆ × ICAN (⊂ ICAN ), and CAN S = S∆ × ICAN .

Definition 5.4.4. Let E be a BPP in ENF; w.l.o.g. assume E0 = X for some

X ∈ Vars(E).

A canonical branching process of E is a pair β = (N, f), where N = (B,E, F, l)

is an occurrence net satisfying:

1. B ⊆ CAN S(E), and E ⊆ CAN T (E),

2. (a) {(p, init) | p ∈ SNF (X)} ⊆ B,

(b) (t, r) ∈ E =⇒ {(p, r) | p ∈ pres(NF (prevar(t)), t)} ⊆ B,

(c) (p, (t, r)) ∈ B =⇒ (t, r) ∈ E,

3. F is such that

(a) ∀(p, init) ∈ B. •(p, init) = ∅,

(b) ∀(p, (t, r)) ∈ B. •(p, (t, r)) = {(t, r)},

(c) ∀(t, r) ∈ B. •(t, r) = {(p, r) | p ∈ pres(NF (prevar(t)), t)},

4. ∀(t, r) ∈ E. l(t, r) = lE(t),

and f is a function f : B ∪ E → SE ∪ TE such that ∀(p, r) ∈ B. f(p, r) = p and

∀(t, r) ∈ E. f(t, r) = t.

A branching process of E is a pair β = (N, f), where N is an occurrence net and f

a function f : BN∪EN → SE∪TE such that there is a canonical branching process

β′ = (N ′, f ′) of E and an isomorphism h from N to N ′ satisfying f = f ′ ◦ h.

Let β1 = (N1, f1), β2 = (N2, f2) be two branching processes of E . An isomorphism

from β1 to β2 is an isomorphism h from N1 to N2 such that f2 ◦h = f1. Naturally,

we consider branching processes only up to isomorphism.

We denote the set of branching processes of E by BP(E).
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Figure 5.6: The unfolding of E

BPP Unfoldings. Analogously to Petri net branching processes we can struc-

ture the branching processes of a BPP E by a corresponding partial order ≤, and

then show that BP(E) forms a complete lattice with respect to ≤. The latter

ensures that each BPP E has a largest branching process, the unfolding of E .

Definition 5.4.5. Let E be a BPP in ENF. We define the unfolding of E , denoted

by unf (E), to be the largest element of (BP(E),≤).

Example 5.4.2. Figure 5.6 demonstrates the unfolding of E = (∆, X1), where ∆

is as defined in Example 5.4.1.

We adopt a convention analogous to Convention 5.3.1, and view BPP unfold-

ings as concrete pairs (N , f), where N is a Petri net. As can easily be checked

Petri nets of BPP unfoldings are in fact 1-safe. Then, (h)hp bisimilarity for BPP

is given by:

Definition 5.4.6. Two BPP in ENF E and F are (h)hp bisimilar iff proj 1(unf (E))

and proj 1(unf (F)) are (h)hp bisimilar.

Note that for SBPP the semantics given here coincides with the one defined

in Section 5.3.1.

BPP Unfoldings are Proper-comm Free Net Systems. The nets of BPP

unfoldings are certainly not comm-free, but they can be characterized by a gen-

eralization of this net type. Note that in BPP unfoldings communication is only
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employed to implement conflict between two net components with parallel ele-

ments; this makes the occurrence of communication very restricted: only places

with identical sets of pre-transitions, might share a post-transition. Dynamically,

this means that at every reachable marking for any transition t either none of

the pre-places of t hold, or all of them do. Thus, in these net systems there

is no synchronization in the sense of ‘uniting two independent flows of tokens’,

since then one would expect that the pre-places of a corresponding synchroniza-

tion transition can hold separately. This is of course intuitive for the semantics

of a BPP. Excluding such synchronization naturally has implications for the be-

haviour: the corresponding net systems are SW-1 and SW-2 free, but note that

they may contain SW-3. Formally, these explanations amount to:

Definition 5.4.7. A net N is proper-communication free (short: proper-comm

free) iff for all p1, p2 ∈ SN we have: p1
• ∩ p2

• 6= ∅ =⇒ •p1 = •p2. A net system

N = (N,M0) is proper-comm free iff N is proper-comm free.

Proposition 5.4.1. Proper-comm free net systems are SW-{1, 2} free.

Proof. This is easy to check with the above description.

Proposition 5.4.2. Let E be a BPP in ENF, and N = proj 1(unf (E)). N is a

proper-comm free net system, and hence SW-{1, 2} free.

Proof. This is also obvious.

5.4.2 Non-coincidence of hp and hhp Bisimilarity

It is immediate that hp and hhp bisimilarity do not coincide for the entire BPP

class:2 recall that system A of counter-example 2 (Figure 1.8) can be described

by the expression (a.0 + c.0 || b.0) + (a.0 || b.0) + (a.0 || b.0 + c.0), and system

B by (a.0 + c.0 || b.0) + (a.0 || b.0 + c.0); these are certainly BPP processes, and

it is easy to verify that the lats characterization agrees with our partial order

semantics.

Theorem 5.4.1. hp and hhp bisimilarity do not coincide for BPP in general.

5.4.3 Decidability of hp Bisimilarity

In this section we show that hp bisimilarity is decidable for BPP.

2Many thanks to Rob van Glabbeek for pointing this out to me.
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t.E
t
→ (E,0)

E
t
→ (El, Ec)

X
t
→ (El, Ec)

(X
def
= E) ∈ ∆

E
t
→ (El, Ec)

E + F
t
→ (El, Ec)

F
t
→ (Fl, Fc)

E + F
t
→ (Fl, Fc)

E
t
→ (El, Ec)

E || F
t
→ (El, Ec || F )

F
t
→ (Fl, Fc)

E || F
t
→ (Fl, E || Fc)

Figure 5.7: Distributed transition rules relative to a BPP defining system ∆

Distributed Transition Semantics. We begin with the introduction of a

concept that is crucial for the proof. In [Cas88] Castellani introduces a non-

interleaving semantics for a BPP-like process language. The semantics is based

on the principle of distribution: to reflect that concurrent processes are situ-

ated at different locations, a transition in Castellani’s distributed transition sys-

tems leads to a compound residual, consisting of a local residual and a con-

current residual. The local residual describes the remaining behaviour of the

locality where the action took place, whereas the concurrent residual represents

the unaffected behaviour of the localities that have not been involved in the

action performance. The parallel composition of the two residuals constitutes

the global remaining behaviour. For BPP these distributed transitions are de-

fined by the SOS rules given in Figure 5.7: for a BPP defining system ∆ let

→ ⊆ BPP(∆) × T∆ × (BPP(∆) × BPP(∆)) be the least relation satisfying the

transition rules.

The distributed transition relation is consistent with the standard one in the

following way:

Proposition 5.4.3. Let ∆ be a BPP defining system, E ∈ BPP(∆), and t ∈ T∆.

1. Let E ′ ∈ BPP(∆). E
t
→ E ′ =⇒ ∃El, Ec. E

t
→ (El, Ec) & El || Ec ≡ E ′.

2. Let El, Ec ∈ BPP(∆). E
t
→ (El, Ec) =⇒ ∃E ′. E

t
→ E ′ & E ′ ≡ El || Ec.

Proof. Easy by rule induction.

The following ensures that if a BPP is in ENF then its local and concurrent

residuals can also be understood as BPP in ENF:
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Proposition 5.4.4. Let ∆ be an ENF defining system, E ∈ ENF (∆)∪Vars(∆),

t ∈ T∆, and El, Ec ∈ BPP(∆) such that E
t
→ (El, Ec). Then we have El ∈

Vars(∆), and Ec ∈ ENF (∆).

Proof. Easy by rule induction.

It will be useful to have a characterization of local and concurrent residuals

of ENF expressions in terms of functions. This is possible due to our restriction

to transition-genuine expressions.

Definition 5.4.8. Let E be an ENF expression, and t ∈ T (E).

We define the local residual of E after the occurrence of t by locR(E, t) = X,

where t.X is a base expression of E.

The concurrent residual of E after the occurrence of t is inductively defined by:

conR(t.X, t) = 0,
conR(E + F, t) = if t ∈ T (E) then conR(E, t)

else conR(F, t),
conR(E || F, t) = if t ∈ T (E) then conR(E, t) || F

else E || conR(F, t).

The following is obvious:

Proposition 5.4.5. Let ∆ be an ENF defining system, E ∈ ENF (∆), and t ∈

T (E). We have locR(E, t) ∈ Vars(∆), and conR(E, t) ∈ ENF (∆).

Our functions capture local and concurrent residuals as follows:

Proposition 5.4.6. Let ∆ be an ENF defining system, E,Ec ∈ ENF (∆), El ∈

Vars(∆), and t ∈ T∆.

E
t
→ (El, Ec) ⇐⇒ t ∈ T (E), El = locR(E, t) & Ec = conR(E, t).

Proof. Easy with Prop. 5.4.3 and 5.2.1 by induction on the structure of E.

Partial Order Split. In proper-comm free net systems we can split the sys-

tem behaviour that remains after the execution of a transition t into two parallel

components just as well. Then one component describes the remaining behaviour

that is dependent on t, whereas the other one stands for the remaining behaviour

independent of t. We call these components the dependent and independent re-

mainder of the net system. Formally, we define:

Definition 5.4.9. Let N be a proper-comm free net, M a safe marking of N ,

and t ∈ TN with M [t〉.
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We define the dependent remainder of M after the firing of t by depR(M, t) = t•,

and the independent remainder of M after the firing of t by indR(M, t) = M ′−t•,

where M
t
→M ′.

In the following we write M
t
→ (Md,Mi) as a short notation for “M [t〉, Md =

depR(M, t) & Mi = indR(M, t)”.

It is immediate from the definition that analogously to Prop. 5.4.3 we have:

Observation 5.4.1. Let N be a proper-comm free net, M a safe marking of N ,

and t ∈ TN .

1. Let M ′ ⊆ SN . M
t
→M ′ =⇒ ∃Md,Mi. M

t
→ (Md,Mi) & Md ∪Mi = M ′.

2. Let Md, Mi ⊆ SN . M
t
→ (Md,Mi) =⇒ ∃M ′. M

t
→M ′ & M ′ = Md ∪Mi.

The following shows that our definition agrees with the intuition behind the

concepts ‘dependent and independent remainder’:

Proposition 5.4.7. Let N be a proper-comm free net, M a safe marking of N ,

and t, Md, Mi, M
′ such that M

t
→ (Md,Mi), and M

t
→M ′.

1. Runs(Md) = {r | t.r ∈ Runs(M) & ∀i ∈ [2, |t.r|]. 1 <t.r i}.

2. Runs(Mi) = {r | t.r ∈ Runs(M) & ∀i ∈ [2, |t.r|]. 1 cot.r i}.

3. Runs(M ′) =
⋃

{rd ⊗ ri | rd ∈ Runs(Md) & ri ∈ Runs(Mi)}.

Proof. The ‘⊆’-direction of (1), both directions of (2), and ‘⊇’ of (3) are general

consequences of the definition of IN and Runs. For the remaining directions of

(1) and (3) additionally employ the proper-comm property.

Coincidence of the Two Views. Via our partial order semantics the ‘partial

order split’ view carries over to BPP, and — importantly for our proof — it

coincides with the distributed semantics in the following sense:

Proposition 5.4.8. Let E be a BPP in ENF, and unf (E) = ((N,M0), f).

1. Let Md,Mi ⊆ BN , e ∈ EN .

M0
e
→ (Md,Mi) =⇒ ∃El, Ec, t. E0

t
→ (El, Ec), t = f(e), proj 1(unf (El))

occ
=

(N,Md) & proj 1(unf (Ec))
occ
= (N,Mi).

2. Let El ∈ Vars(E), Ec ∈ ENF (∆E), t ∈ TE .

E0
t
→ (El, Ec) =⇒ ∃Md,Mi, e. M0

e
→ (Md,Mi), f(e) = t, (N,Md)

occ
=

proj 1(unf (El)) & (N,Mi)
occ
= proj 1(unf (Ec)).

Proof. This can be read from the definitions.
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Crucial Insights. The ‘partial order split’ view translates in a natural way into

hp bisimilarity: assume two proper-comm free net systems N1 and N2. Whenever

N1 and N2 are hp bisimilar then there is a match for each enabled transition

of N1 by one of N2 and vice versa such that the resulting pairs of dependent

remainders and independent remainders are hp bisimilar. Conversely, whenever

we can exhibit a match for each enabled transition of N1 by one of N2 and vice

versa such that the resulting pairs of dependent remainders and independent

remainders are hp bisimilar then N1 and N2 are hp bisimilar as well. The latter

can in fact be strengthened to a statement about hp bisimulation approximations.

Formally, we formulate and prove:

Lemma 5.4.1. Let N1 and N2 be two proper-comm free net systems.

1. If N1 ∼hp N2 then the following two conditions hold:

(a) Whenever M 0
1

t1→ (Md
1 ,M

i
1) then there exist t2, M

d
2 ,M

i
2 such that

l1(t1) = l2(t2), M
0
2

t2→ (Md
2 ,M

i
2), M

d
1 ∼hp M

d
2 , and M

i
1 ∼hp M

i
2.

(b) Vice versa.

2. If the following two conditions hold then N1 ∼
n+1
hp N2:

(a) Whenever M 0
1

t1→ (Md
1 ,M

i
1) then there exist t2, M

d
2 , M

i
2 such that

l1(t1) = l2(t2), M
0
2

t2→ (Md
2 ,M

i
2), M

d
1 ∼

n
hp M

d
2 , and M

i
1 ∼

n
hp M

i
2.

(b) Vice versa.

Proof. Let N1, N2 be given as above.

(1.) Assume H to be a hp bisimulation relating N1 and N2. We shall show

that property (a) holds; (b) can be proved symmetrically.

Let t1, M
d
1 ,M

i
1 such that M 0

1
t1→ (Md

1 ,M
i
1). Clearly, this means M 0

1
t1→M1 for

M1 = Md
1 ∪M

i
1. Then, by definition of hp bisimulation we obtain t2, M2 such

that M 0
2

t2→M2, and (t1, t2) ∈ H. This gives us M
0
2

t2→ (Md
2 ,M

i
2) for M

d
2 , M

i
2 with

M2 = Md
2 ∪M

i
2. (t1, t2) ∈ H implies that (t1, t2) must be a pair of synchronous

runs, which in turn implies l1(t1) = l2(t2). Further, (t1, t2) ∈ H means H must

‘hp bisimulate’ the behaviour of M1 and M2 such that the matching reflects

the dependencies to t1 and t2 correctly. Naturally, these matchings will cover

the behaviour of the sub-markings M d
1 , M

i
1, and Md

2 , M
i
2 respectively. With

Prop. 5.4.7(1) it is easy to see that any behaviour of M d
1 has to be matched by

behaviour of M d
1 , and vice versa. Similarly, it follows from Prop. 5.4.7(2) that

any behaviour of M i
1 has to be matched by M i

2, and also the other way around.
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But this amounts to the existence of two hp bisimulations, one relating M d
1 and

M2
d , and the other relating M i

1 and M i
2.

(2.) Imagine we are given label-preserving functions f : En(N1) → En(N2),

g : En(N2) → En(N1), and two families of hp bisimulation approximations

of degree n, {H(t1,t2)dR}(t1,t2)∈f∪g and {H(t1,t2)iR}(t1,t2)∈f∪g, such that for each

(t1, t2) ∈ f ∪ g, H(t1,t2)dR relates depR(M 0
1 , t1) with depR(M 0

2 , t2), and H(t1,t2)iR

relates indR(M 0
1 , t1) with indR(M 0

2 , t2). The existence of these entities is guar-

anteed by the assumption of the lemma.

We shall now construct a hp bisimulation approximation of degree n + 1 for

N1 and N2 based on these entities. First, we define for each (t1, t2) ∈ f ∪ g a set

H(t1,t2) as follows:

H(t1,t2) =
⋃

{rd ⊗ ri | rd ∈ H(t1,t2)dR & ri ∈ H(t1,t2)iR}.

With the help of Prop. 5.4.7(3) it is easy to verify that each H(t1,t2) provides a hp

bisimulation approximation of degree n for Mt1 and Mt2 , where M
0
1

t1→ Mt1 , and

M0
2

t2→Mt2 .

Then, we define:

H = {ε} ∪ {(t1, t2).r | (t1, t2) ∈ f ∪ g & r ∈ H(t1,t2)}.

With the above and Prop. 5.4.7(1,2) it is clear that H is a hp bisimulation ap-

proximation of degree n+ 1 relating N1 and N2.

By the coincidence result of the previous paragraph it follows that the dis-

tributed view translates into hp bisimilarity for BPP in analogous fashion; that

is:

Lemma 5.4.2. Let E and F be two BPP in ENF.

1. If E ∼hp F then the following two conditions hold:

(a) Whenever E0
t
→ (El, Ec) then there exist u, Fl, Fc such that lE(t) =

lF(u), F0
u
→ (Fl, Fc), El ∼hp Fl, and Ec ∼hp Fc.

(b) Vice versa.

2. If the following two conditions hold then E ∼n+1
hp F :

(a) Whenever E0
t
→ (El, Ec) then there exist u, Fl, Fc such that lE(t) =

lF(u), F0
u
→ (Fl, Fc), El ∼

n
hp Fl, and Ec ∼

n
hp Fc.

(b) Vice versa.

Proof. Immediate with Lemma 5.4.1 and Prop. 5.4.8.
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Rec
X = Y

E = F
(X

def
= E) ∈ ∆E , (Y

def
= F ) ∈ ∆F

Match E = F ⇐















{locR(E, t) = locR(F, f(t))}t∈T (E)

{conR(E, t) = conR(F, f(t))}t∈T (E)

{locR(E, g(u)) = locR(F, u)}u∈T (F )
{conR(E, g(u)) = conR(F, u)}u∈T (F )

where E ∈ ENF (∆E), F ∈ ENF (∆F), and f : T (E)→ T (F ),
g : T (F )→ T (E) are functions such that ∀t ∈ T (E). lE(t) = lF(f(t)),
and similarly for g.

Figure 5.8: Tableau rules for hp bisimilarity relative to two BPP in ENF E , F

The Tableau System. With this insight it is straightforward to construct

a tableau system that decides hp bisimilarity for BPP (assumed in ENF). We

simply translate Lemma 5.4.2 into a tableau rule; it will provide matching and

decomposition at the same time. Altogether the tableau consists of the two rules

depicted in Figure 5.8.

Note that our rules only cover goals of the form “X = Y ” or “E = F”,

where E and F are ENF expressions. This is sufficient since we start the tableau

with an expression of either form, and our rules only generate subgoals that are

again of either form. The latter is obvious for Rec, and follows for Match from

Prop. 5.4.5. We develop the tableau until we hit a node that satisfies one of the

following terminal conditions.

A node n : label is a successful terminal iff one of the following conditions

holds:

1. label = “0 = 0”.

2. label = “X = Y ”, and there is an ancestor node na above n in the tableau

such that na is labelled with “X = Y ” as well.

A node n : label is an unsuccessful terminal iff the following condition holds:

3. label = “E = F”, where E and F are ENF expressions, and a pair of

functions f and g as required by rule Match does not exist.

As in Section 5.3.2 condition (2.) makes sure we ‘loop back’ whenever we

encounter a pair of variables that we have already dealt with before. Finiteness

of the tableau can then be established by using the arguments of Lemma 5.3.5
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together with the following observation: there is a uniform bound on how of-

ten rule Match can be applied consecutively; to see this simply consider that

each application of conR ‘filters out’ one base expression, and hence repeatedly

applying conR leads to process 0.

With Lemma 5.4.2 and Prop. 5.4.6, forward and strengthened backwards

soundness of rule Match for hp bisimilarity are immediate; completeness and

soundness of the tableau can then be proved by following the proof of Lemma 5.3.6

and 5.3.7. Together with finiteness this establishes the decidability of hp bisimi-

larity.

Theorem 5.4.2. It is decidable whether two BPP are hp bisimilar.

5.4.4 Coincidence of hp and Distributed Bisimilarity

Distributed bisimulation [Cas88, CH89] is the natural notion of bisimulation cor-

responding to Castellani’s distributed transition semantics: it refines classical

bisimulation by requiring that local residuals and concurrent residuals are related

separately. It is defined as follows:

Definition 5.4.10. Let ∆ be a BPP defining system. A relation D ⊆ BPP(∆)×

BPP(∆) is a distributed bisimulation if for any (E,F ) ∈ D we have

(i) Whenever E
t
→ (El, Ec) for some t, El, Ec, then there exist u, Fl, Fc such

that l∆(t) = l∆(u), F
u
→ (Fl, Fc), (El, Fl) ∈ D, and (Ec, Fc) ∈ D.

(ii) Vice versa.

We say two BPP E, F ∈ BPP(∆) are distributed bisimilar iff there is a distributed

bisimulation D with (E,F ) ∈ D.

It follows directly from the definition that the tableau rules for hp bisimilarity

are forward and (strengthened) backwards sound for distributed bisimulation.

Hence, the tableau provides a decision procedure for distributed bisimilarity just

as well, which immediately establishes the coincidence of the two notions for BPP.

Theorem 5.4.3. Two BPP are hp bisimilar iff they are distributed bisimilar.

As mentioned earlier, the decidability of distributed bisimilarity for BPP has

already been established by Christensen in [Chr92]. This proof also employs

the tableau technique, and — not surprisingly — a comparison shows that our

tableau is similar to the one exhibited there. The major new ingredient in proving
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the decidability of hp bisimilarity lies in Lemma 5.4.2, which shows that the

distributed view translates into hp bisimilarity.

Otherwise, there are technical differences between Christensen’s tableau and

the one exhibited above. Christensen makes use of his BPP standard normal form,

where every defining expression is of the form
∑n

i=1 ai.αi b βi such that each αi, βi

is a parallel composition of variables. The left merge operator b acts like parallel

composition under the constraint that the first action must come from the left

process. Due to the use of this normal form the local and concurrent residuals

are separated out in the process expressions of Christensen’s tableau rules. In

contrast, we employ labelled transitions and BPP in ENF, and use our functions

locR and conR to determine local and concurrent residuals.

5.4.5 Decidability of hhp Bisimilarity

Now, we will see that for BPP hhp bisimilarity can be decided by means of a

tableau system in a straightforward way. The tableau system will also show that

for BPP hhp bisimilarity coincides with its strengthening to chhp bisimilarity.

Concurrent Steps. First of all, let us recall the concepts of concurrent and

maximal concurrent step from Section 4.3.1.1. Their definition (Def. 4.3.1) is

formulated for lats’, and carries over to net systems in the natural way. Rather

than considering concurrent steps to be sequences of transitions it is intuitive to

regard them as sets of transitions just as well. Since this will be more convenient

here, we define:

Definition 5.4.11. Let N be a net system, and M ∈ Reach(N ). A set γ ⊆ TN

is a concurrent step at M iff we have: M
w
→ for some w such that set(w) = γ,

and t IN t′ for any distinct t, t′ ∈ γ. The concept of maximal concurrent step, the

expressions csteps(M), and mcsteps(M) are defined analogously to Def. 4.3.1.

For BPP we can exhibit corresponding ‘syntactic’ concepts; specifically for

defined ENF expressions we define:

Definition 5.4.12. Let ∆ be an ENF defining system, and E ∈ ENF (∆).

A step of E is a set σ ⊆ T (E) such that there exists w ∈ T ∗∆ with E
w
→ and

set(w) = σ. We denote the set of steps of E by steps(E).

A step σ of E is maximal iff ∀t ∈ T (E). t 6∈ σ ⇒ σ ∪ {t} 6∈ steps(E). We denote

the set of maximal steps of E by msteps(E).
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The (maximal) steps of a defined ENF expression correspond to the (maximal)

concurrent steps of its unfolding in the following way:

Proposition 5.4.9. Let ∆ be an ENF defining system, E0 ∈ ENF (∆), and

unf (E0) = ((N,M0), f).

1. (a) γ ∈ csteps(M0) =⇒ f(γ) ∈ steps(E0).

(b) σ ∈ steps(E0) =⇒ f−1(σ) ∩ En(M0) ∈ csteps(M0).

2. (a) γ ∈ mcsteps(M0) =⇒ f(γ) ∈ msteps(E0).

(b) σ ∈ msteps(E0) =⇒ f−1(σ) ∩ En(M0) ∈ mcsteps(M0).

Proof. This can be read from the definitions.

Crucial Insights. The first step towards the decidability proof is to realize

that the behaviour of a proper-comm free net system can be expressed in terms

of concurrent steps and dependent remainders as follows:

Proposition 5.4.10. Let N be a proper-comm free net system. We have:

Runs(M0) =
⋃

{t1.r1 ⊗ · · · ⊗ tn.rn |
{t1, . . . , tn} ∈ csteps(M0) & ∀i ∈ [1, n]. ri ∈ depR(M0, ti)}

Proof. The ‘⊇’-direction is a general consequence of the definition of IN and

Runs; the other direction additionally relies on the proper-comm property.

Crucially, this characterization translates into hhp bisimilarity in the follow-

ing way: assume two proper-comm free net systems N1 and N2. If N1 and N2

are hhp bisimilar then there is a match between the concurrent steps of N1 and

N2 such that this match amounts to a hhp bisimulation, and the resulting pairs

of dependent remainders are hhp bisimilar. Conversely, if there is a match be-

tween the concurrent steps of N1 and N2 such that this match amounts to a hhp

bisimulation, and the resulting pairs of dependent remainders are hhp bisimilar,

then N1 and N2 are hhp bisimilar as well. As one would expect, the latter can

be strengthened to a statement about hhp bisimulation approximations.

Note that hp bisimilarity can be decomposed and composed according to

Prop. 5.4.10 just as well. It is possible to develop a procedure for deciding hp

bisimilarity analogously to what will follow for hhp bisimilarity rather than exploit

the distributed view as was done in the previous section.

We now proceed to prove the above insight, or, to be precise, a slight strength-

ening: it suffices to employ matchings of maximal concurrent steps when we

ensure a certain continuation property is satisfied. Formally, this amounts to:
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1. (a) {proj1(γ) | γ ∈ R} = mcsteps(M
0
1 ).

(b) {proj2(γ) | γ ∈ R} = mcsteps(M
0
2 ).

2. ∀(t1, t2) ∈
⋃

γ∈R γ. l1(t1) = l2(t2).

3. For all γ ∈ P(T1 × T2) such that ∃γ ′ ∈ R. γ ⊆ γ ′ we have:

(a) If proj1(γ)∪t1 ∈ csteps(M
0
1 ) for some t1 ∈ T1, then there exist t2 ∈ T2,

γ′′ ∈ R so that γ ∪ (t1, t2) ⊆ γ′′.

(b) Vice versa.

Figure 5.9: Let N1, N2 be two net systems. The figure gives conditions for a set
R ⊆ P(T1 × T2)

Lemma 5.4.3. Let N1, N2 be two proper-comm free net systems.

1. If N1 ∼hhp N2 then there is a set R ⊆ P(T1 × T2) such that R satis-

fies the conditions of Figure 5.9, and ∀(t1, t2) ∈
⋃

γ∈R γ. depR(M
0
1 , t1) ∼hhp

depR(M 0
2 , t2).

2. If there is a set R ⊆ P(T1 × T2) such that R satisfies the conditions of

Figure 5.9, and ∀(t1, t2) ∈
⋃

γ∈R γ. depR(M
0
1 , t1) ∼

n
hhp depR(M

0
2 , t2) then

we have N1 ∼
n+1
hhp N2.

Proof. Let N1, N2 be given as above.

(1.) Presuppose a hhp bisimulation H for N1 and N2. We define a set R as

follows:

R = {set(r) | r ∈ H & proj i(set(r)) ∈ mcsteps(M
0
i ) for i = 1, or 2}

It is clear that R ⊆ P(T1 × T2). Next, we show that R satisfies the conditions of

Figure 5.9.

To see that condition (1) holds consider: (a) maximal concurrent steps give rise

to runs, which are naturally matched by any hp bisimulation; and (b) in any hp

bisimulation maximal concurrent steps are matched against maximal concurrent

steps (Prop. 4.3.2(2)). Since the elements of R stem from pairs of synchronous

runs, it is immediate that condition (2) is also satisfied. To verify condition (3a)

assume γ ∈ P(T1 × T2) such that ∃γ ′ ∈ R. γ ⊆ γ ′. Further, assume t1 ∈ T1 with

proj 1(γ) ∪ t1 ∈ csteps(M
0
1 ). By definition of R we have r′ ∈ H with set(r′) = γ′.

Note that from r′ we can backtrack all pairs of transitions t ∈ γ ′\γ; thereby, we

obtain r ∈ H with set(r) = γ. Clearly, we have proj 1(r)
t1.w1→ for some w1 ∈ T ∗1
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so that set(proj 1(r).t1.w1) ∈ mcsteps(M
0
1 ), and by definition of hp bisimulation

there must be t2 ∈ T2, w2 ∈ T ∗2 with r.(t1, t2).(w1, w2) ∈ H. Certainly, γ ′′ ≡

set(r.(t1, t2).(w1, w2)) ∈ R, and γ ∪ (t1, t2) ⊆ γ′′, which means t2 and γ′′ provide

entities as required. (4b) follows from the symmetrical argument.

It remains to show that depR(M 0
1 , t1) ∼hhp depR(M

0
2 , t2) for each pair (t1, t2) ∈

⋃

γ∈R γ. Whenever two transitions t1 and t2 are matched against each other in

a hhp bisimulation, the remaining behaviour of N1 that is dependent on t1 must

be matched by remaining behaviour of N2 that is dependent on t2, and vice

versa. But by Prop. 5.4.7(1) and the way R is defined this amounts to the

existence of a hhp bisimulation relating depR(M 0
1 , t1) and depR(M

0
2 , t2) for each

(t1, t2) ∈
⋃

γ∈R γ, as required.

(2.) Imagine we are given a set R ⊆ P(T1 × T2) satisfying the condi-

tions of Figure 5.9, and a family of hhp bisimulation approximations of de-

gree n, {H(t1,t2)}(t1,t2)∈
⋃

γ∈R γ , such that for each (t1, t2) ∈
⋃

γ∈R γ, H(t1,t2) relates

depR(M 0
1 , t1) with depR(M

0
2 , t2). We show that a hhp bisimulation approximation

of degree n+ 1 can be constructed for N1 and N2, based on these entities.

First, we prefix each H(t1,t2) by (t1, t2) in the following way:

H′(t1,t2) = {(t1, t2).r | r ∈ H(t1,t2)}.

Then we define:

H =
⋃

{rt1 ⊗ · · · ⊗ rtn | ∃γ ∈ R. {t1, t2, . . . , tn} ⊆ γ & ∀i ∈ [1, n]. rti ∈ H
′
ti
}.

To see that H is a hp bisimulation approximation of degree n+1 consider the

following three points: (a) condition (3) of Figure 5.9 ensures that the ‘subset-

closure’ of R gives a complete bisimulation match for the concurrent steps of N1

and N2; the match is label-preserving by condition (2). (b) By the ‘⊇’-direction

of Prop. 5.4.10 we clearly haveH ⊆ Runs(N1)×Runs(N2); with the ‘⊆’-direction

and point (a) it follows that H provides a complete bisimulation match for the

behaviour of N1 and N2 up to ‘length’ n + 1. (c) Because concurrent steps

are matched against concurrent steps, and due to Prop. 5.4.7(1) it follows that

dependencies are reflected correctly by H.

Moreover, H is hereditary: this follows because the concurrent steps of N1

and N2 are clearly matched in a hereditary way, and each H(t1,t2) is hereditary by

assumption.

Analogously, we then obtain for BPP:

Lemma 5.4.4. Let E, F be two BPP in ENF with E0 ∈ ENF (∆E), F0 ∈

ENF (∆F).
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1. (a) {proj1(σ) | σ ∈ R} = msteps(E0).

(b) {proj2(σ) | σ ∈ R} = msteps(F0).

2. ∀(t, u) ∈
⋃

σ∈R σ. lE(t) = lF(u).

3. For all σ ∈ P(T (E0)× T (F0)) such that ∃σ′ ∈ R. σ ⊆ σ′ we have:

(a) If proj1(σ) ∪ t ∈ steps(E0) for some t ∈ T (E0), then there exist u ∈
T (F0), σ

′′ ∈ R so that σ ∪ (t, u) ⊆ σ′′.

(b) Vice versa.

Figure 5.10: Let E , F be two BPP in ENF with E0 ∈ ENF (∆E), F0 ∈ ENF (∆F).
The figure gives conditions for a set R ⊆ P(T (E0)× T (F0))

Rec
X = Y

E = F
(X

def
= E) ∈ ∆E , (Y

def
= F ) ∈ ∆F

Match
E = F

{locR(E, t) = locR(F, u)}(t,u)∈⋃

σ∈R σ

where E ∈ ENF (∆E), F ∈ ENF (∆F), and R ⊆ P(T (E)× T (F ))
satisfies the conditions of Figure 5.10.

Figure 5.11: Tableau rules for hhp bisimilarity relative to two BPP in ENF E , F

1. If E ∼hhp F then there is a set R ⊆ P(T (E0) × T (F0)) such that R sat-

isfies the conditions of Figure 5.10, and ∀(t, u) ∈
⋃

σ∈R σ. locR(E0, t) ∼hhp

locR(F0, u).

2. If there is a set R ⊆ P(T (E0)× T (F0)) such that R satisfies the conditions

of Figure 5.10, and ∀(t, u) ∈
⋃

σ∈R σ. locR(E0, t) ∼
n
hhp locR(F0, u) then we

have E ∼n+1
hhp F .

Proof. Straightforward with Lemma 5.4.3, Prop. 5.4.9, 5.4.8, and 5.4.6.

The Tableau System. Analogously to the other proofs, we translate this in-

sight into a tableau system that decides hhp bisimilarity. Again, the system is

designed for BPP in ENF. The rules can be found in Figure 5.11. Match and

Rec will be applied alternately until one of the terminal conditions is reached.

A node n : label is a successful terminal iff one of the following conditions

holds:
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1. label = “0 = 0”.

2. label = “X = Y ”, and there is an ancestor node na above n in the tableau

such that na is labelled with “X = Y ” as well.

A node n : label is an unsuccessful terminal iff the following condition holds:

3. label = “E = F”, where E and F are ENF expressions, and a set R as

required by rule Match does not exist.

It is clear that Lemma 5.4.4 provides forward and strengthened backwards

soundness of ruleMatch for hhp bisimilarity. Finiteness as well as completeness

and soundness for hhp bisimilarity of the tableau system can then be proved by

using the same arguments as in the corresponding proofs of Section 5.3.2. As

usual, the decidability of hhp bisimilarity follows from these three properties.

Theorem 5.4.4. It is decidable whether two BPP are hhp bisimilar.

Coincidence of hhp and chhp Bisimilarity. We now benefit from having

proved a slight strengthening of the crucial insight: it is easy to check that in

the proof of Lemma 5.4.3(2) H matches the concurrent steps of N1 and N2 not

only in hereditary fashion but also coherently. Further, if one assumes that the

hhp bisimulation approximations relating the dependent remainders are coherent

then H will be coherent, too. Thus, statements analogous to Lemma 5.4.3(2)

and Lemma 5.4.4(2) are true for chhp bisimilarity, which gives us strengthened

backwards soundness ofMatch for this stricter notion. Then, the tableau system

decides chhp bisimilarity just as well, and we obtain:

Theorem 5.4.5. Two BPP are hhp bisimilar iff they are chhp bisimilar.

5.5 Final Remarks

Due to their tree-like behaviour SBPP and BPP enjoy good composition and

decomposition properties. We have seen that this translates into hp, hhp, and

chhp bisimilarity in natural ways, which allowed us to construct straightforward

decision procedures, and exhibit several coincidence results. Our main results are

summarized in Figure 5.12. There are some further considerations, and points

for future research:
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hp bisimilarity hhp bisimilarity chhp bisimilarity

SBPP coincidence & decidability
BPP decidability coincidence & decidability

Figure 5.12: Summary of the main results
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PSfrag replacements

t1 t2 t3 t4 t5

X1X1 X2 X2X3

Figure 5.13: A proper-comm free net system that has no BPP representation

Generalized BPP. When we are investigating process languages under true-

concurrency semantics the hierarchy of formalisms to consider will be finer than

in the interleaving world: a given process language P will typically divide into a

spectrum of languages which under interleaving semantics are all equally expres-

sive as P but which form independent classes when moving to true-concurrency

semantics. In this chapter, we have already distinguished between SBPP and

BPP; now we would like to motivate the addition of a third class to the BPP

spectrum.

BPP are not expressive enough to implement all possible mixtures of concur-

rency and conflict between transitions of one ‘level’. This is reflected by the fact

that there are (finitely representable) proper-comm free net systems which cannot

be represented by any BPP. Figure 5.13 gives an example. One could generalize

BPP to overcome this restriction: simply employ lats or Petri net fragments to

specify how the transitions of one level are connected (cf. Figure 5.13). To obtain

a more process algebra like presentation one could use the left merge operator ‘b ’

(cf. Section 5.4.4), together with suitable concurrency axioms. For example, the

process corresponding to the net system of Figure 5.13 can also be represented

by the following expression: (t1 b ((t3 || t5) + t4)) + (t2 b t5) + (t3 b (t1 || t5)) +

(t4 b t1) + (t5 b ((t1 || t3) + t2)).

It should be straightforward to express these ideas formally, and define the

class of generalized BPP (short: GBPP). Naturally, GBPP will coincide with BPP

under interleaving semantics. For causal interleaving semantics the situation is

a little more involved. The causal tree induced by the above example cannot be

captured by the use of ‘ || ’ to express causal independence. To see this note that

the component t1 || ((t3 || t5) + t4) gives rise to a subtree of behaviour where we
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Interleaving semantics SBPP = BPP = GBPP

Causal interleaving semantics SBPP ⊂ BPPb = GBPP
True-concurrency semantics SBPP ⊂ BPP ⊂ GBPP

Table 1: The BPP spectrum

SBPP conflict is transitive
BPP the interplay can be expressed by nesting the transitions

via ‘ || ’ and ‘+’
GBPP any interplay is allowed

Table 2: Admitted interplay of concurrency and conflict

Figure 5.14: The BPP spectrum

can execute t5 as first transition, and then t2 is not possible; such a subtree is

not induced by the example. On the other hand, if we allow the ‘ b ’ operator

(naturally without imposing any concurrency axioms as is necessary to define

GBPP) then the resulting class, say BPPb , will indeed coincide with GBPP

under causal interleaving semantics. Figure 5.14 gives the full BPP spectrum,

and shows how the particular classes restrict the interplay of concurrency and

conflict.

True-concurrency semantics for GBPP can be defined analogously to our BPP

semantics; the resulting net systems will naturally be proper-comm free. Then,

it is clear that the BPP results carry over to GBPP: the crucial insights behind

our proofs are all formulated for proper-comm free net systems; it should be

straightforward to carry the insights over to GBPP and construct tableaux in the

same way as we did for BPP.

Results for Net Systems and Lats’. In Section 4.4.3 we showed that hp and

hhp bisimilarity coincide for bounded-degree SW-free lats’ and bounded-degree

comm-free net systems by employing our composition and decomposition insights

in an inductive argument. It seems straightforward that coincidence between

hhp and chhp bisimilarity can be established for bounded-degree proper-comm

free net systems and SW-{1, 2} free lats’ by applying the decomposition view of

Section 5.4.5 in an analogous fashion. Thus, we conjecture:

Conjecture 5.5.1. 1. Two bounded-degree proper-comm free net systems are

hhp bisimilar iff they are chhp bisimilar.

2. Two bounded-degree SW-{1, 2} free lats’ are hhp bisimilar iff they are chhp

bisimilar.
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hp bisimilarity hhp bisimilarity chhp bisimilarity

A bounded-degree coincidence
A finite-state coincidence & decidability

B bounded-degree coincidence
B finite-state decidability coincidence & decidability

Group A: comm-free net systems and SW-free lats’
Group B: proper-comm free net systems and SW-{1, 2} free lats’

Figure 5.15: Results and conjectures for net sytems and lats’

Since finite-state systems are always bounded-degree we also know that hhp

bisimilarity is decidable for finite-state SW-free lats’ and finite-state comm-free

net systems. On the other hand, we can transfer our conjectures for GBPP to

finite-state proper-comm free net systems, and further to finite-state SW-{1, 2}

free lats’: it is easy to see that any finite-state proper-comm free net system N

can be expressed as a GBPP E such that the unfolding of N agrees with the

unfolding of E . Further, one would expect that there is a translation from SW-

{1, 2} free lats’ to proper-comm free net systems such that two SW-{1, 2} free

lats’ are (c)hhp bisimilar iff their translations to proper-comm free net systems

are (c)hhp bisimilar.

Conjecture 5.5.2. 1. It is decidable whether two finite-state proper-comm

free net systems are hhp or chhp bisimilar.

2. It is decidable whether two finite-state SW-{1, 2} free lats’ are hhp or chhp

bisimilar.

From Section 5.4.2 we can carry over that hp and hhp bisimilarity do not coin-

cide for proper-comm free net systems; this also follows from our non-coincidence

result for SW-{1, 2} free lats’ of Section 4.4.2. Figure 5.15 gives a summary of

our results and conjectures.

In contrast to decidability problems, coincidence investigations can be under-

taken for infinite-state classes whose elements are not necessarily finitely describ-

able. This is illustrated by our results on bounded-degree systems. An obvious

question to ask is: can we extend our coincidence results to the full classes of

comm-free and, respectively, proper-comm free net systems, and similarly for the

lats classes? This question has yet to be analysed. It is of theoretical interest to

find out whether the results carry over smoothly, and if not what kind of obsta-

cles make this difficult or impossible. If obstacles arise they are bound to be of

general interest for the true-concurrency world.
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Further Points for Future Research. An interesting point for further re-

search is to extend the BPP algebras by a more sophisticated parallel operator

that allows synchronization, and investigate the consequences this has on hp and

hhp bisimilarity. For hp bisimilarity it is already known that decidability carries

over to BPPτ , which is BPP plus CCS-style synchronization: in [KH94] it has

been proved that causal bisimilarity is decidable for this process algebra. It is im-

portant to analyse whether decidability also carries over for hhp bisimilarity: the

answer will tell whether the BPP classes are tractable because they have tree-like

behaviour or whether syntactically controlled synchronization is still within the

border of decidability.

Instead of extending BPP by synchronization, one could also move up in

the Process Rewrite Systems Hierarchy [May98]. The next process languages to

consider are Petri nets and PA (Process Algebra). For Petri nets hhp bisimilarity

is definitely undecidable, but for PA, which incorporates sequential composition

in addition to parallel composition, one might find interesting results.
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Chapter 6

Free Choice Systems

6.1 Introduction

In this chapter we focus on our second group of structural system classes: finite-

state free choice systems and important subclasses thereof. As described in Sec-

tion 1.3.1 free choice systems constitute a central class in Petri net theory; they

have a structurally controlled interplay of concurrency and conflict, which ensures

that they are efficiently analysable while not overly restricted in expressive power.

Live free choice systems are often considered to be the largest Petri net class that

allows a good theory.

Their structural restriction gives free choice systems interesting behavioural

properties: it is well-known that they exclude confusion, and consequently they

also exclude SW-2 and SW-3; on the other hand, they do admit SW-1. In fact,

they can be understood as an alternative generalization of comm-free systems to

the one to proper-comm free systems: now we admit synchronization that is sep-

arate from conflict rather than allowing an unrestricted interplay of concurrency

and conflict at ‘one level’.

It has long been believed that confusion is essential to keep hp and hhp bisim-

ilarity distinct, and hence it has been conjectured that the two bisimilarities

coincide for free choice systems [Che96]. In Section 4.5, however, we managed to

exhibit counter-examples which disprove coincidence for confusion-free systems.

Here we will see that the systems employed in these counter-examples are free

choice, and consequently we shall carry over that hp and hhp bisimilarity do not

coincide for this subclass.

There are now two directions to follow: one is to tackle the yet unresolved

decidability problem of free choice systems; the second is to consider coincidence

and/or decidability for a subclass. We decide to adopt the second approach, and

focus our attention on live free choice systems. This subclass makes a strong can-
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didate for both, decidability and coincidence. Firstly, it comes with an additional

good behavioural property: apart from being confusion-free, live free choice sys-

tems appear to be syn-confusion free; they exclude all combinations of frame and

MNH situations that have been employed in counter-examples so far. Secondly,

classical free choice theory shows that our subclass has good static decompo-

sition properties. In particular, we hope to exploit the S-coverability Theorem

[Hac72], which states that every live free choice system is covered by its state

machine (short: SM-) components ; consequently, each live free choice system can

be understood as a synchronization of a set of live S-systems.

On the one hand, this gives us more reason to believe that hp and hhp bisim-

ilarity coincide for our subclass. It is well-known that in live free choice systems

the computations of SM-components are unconstrained by their composite con-

text [TV84]; their computations will at most be interspersed with transitions of

other components. As a result, the future behaviour of an SM-component is fully

determined by its local state; its computation options cannot be influenced by

any parallel action. Considering that all behaviour is made up of component

behaviour, one could then speculate that in general there is no reason why the

matching should be made dependent on the order of how independent transitions

are linearized, and further that hp and hhp bisimilarity coincide. Naturally, this

is only a crude intuition; to confirm it we will require deep insights about the

matching in hp bisimilarity.

On the other hand, the S-coverability Theorem provides topological infor-

mation that may help us to prove such insights. One would expect that hp

bisimilarity (and more so hhp bisimilarity) respects the compositionality given

by an SM-cover to a certain degree; at least one would assume that during the

matching of a sequential stretch, the components to which related transitions are

assigned stay constant, and that a change can only occur when the respective

components synchronize with other components. By fixing a component of one

system and tracing how its behaviour is matched in a (h)hp bisimulation we can

then gain information about the static structure of the opposite system. This sets

up a connection between the matching in (h)hp bisimulations and the topology

of the related systems, with whose help we may be able to expose characteristics

in the matching, which may in turn be exploited to obtain a coincidence and/or

decidability result.

Inspite of this intuition the problem remains inaccessible. What we addition-

ally need is an overall approach that will guide us as to what kind of insights are

promising to prove, and how they can be employed to obtain full results. Apart
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from their static decomposability, live free choice systems also enjoy good dynamic

decomposition properties: their unfoldings can be understood as interconnections

of initially sequential units. This view provides a generalization of our decomposi-

tion view for comm-free systems (cf. Section 5.3.2), and the analogy immediately

suggests a global way of tackling the coincidence problem: generalizing our proof

method for SW-free systems (cf. Section 4.4.3) one could prove that hp and hhp

bisimilarity coincide by showing that the dynamic decomposition view translates

into the bisimilarities. This idea in turn is hard to implement, but guided by it

we have come up with an approach that disentangles the difficulty of the prob-

lem by breaking it down into several accessible subgoals. Thereby, we allow for

a stepwise advance towards a solution; e.g. decidability can be achieved as an

interim result.

Our approach directs us to work with coherent hhp (short: chhp) bisimilarity

instead of hhp bisimilarity. This will not be to our disadvantage. If we achieve

coincidence between hp and chhp bisimilarity then in fact we will obtain coinci-

dence between hp, hhp, and chhp bisimilarity. Furthermore, at this stage we are

as happy to achieve a decidability result for chhp bisimilarity as we are about one

for hhp bisimilarity. The two notions are very close; they bring about the same

degree of difficulty due to their ‘truly-concurrent’ nature. Their subtle difference

has yet to be analysed.

Furthermore, as part of our approach we shall adopt two simplifications.

Firstly, we restrict our attention for the time being to live strictly state ma-

chine decomposable (short: SSMD) free choice (short: fc) systems. They have

the behavioural advantage that each of their SM-components can take its deci-

sions in full freedom. As a consequence, a live SSMD fc system can be viewed as

an interconnection of a set of autonomously computing live S-systems. This class

is very close to the live strict fc systems of [ES91]. Secondly, instead of directly

working with hp and chhp bisimilarity we shall first tackle the coincidence prob-

lem of an auxiliary bisimilarity and its coherent and hereditary version. So-called

compositionality preserving (short: cp) bisimilarity has the benefit of allowing a

very direct exploitation of the topological information provided by a strict SM

(short: SSM ) cover.

We shall achieve the following results. For live SSMD fc systems we show that

cp bisimilarity satisfies a certain decomposition property, calledK-decomposability.

We shall prove this result via the Crucial SubgoalK , which will allow us to infer

a second result about live SSMD fc systems: the largest cp bisimulation is sw-

(1)coherent and sw-(1)hereditary. This amounts to achieving the first of two
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conditions that are sufficient for the coincidence of cp, hcp, and chcp bisimilar-

ity. By excluding a special kind of nondeterminism we can additionally overcome

the second of the two conditions, and thereby obtain coincidence between cp,

hcp, and chcp bisimilarity for the class of live sy-psd SSMD fc systems. This is

already a good result: it proves that an interleaving concept is as strong as a

truly-concurrent one for a substantial system class. Moreover, by further restrict-

ing our system class we gain results for hp and (c)hhp bisimilarity: we obtain

decidability of chhp bisimilarity for the class of live sy-psd buffered SSMD fc sys-

tems, and coincidence of hp, hhp, and chhp bisimilarity for the class of live spsd

buffered SSMD fc systems. The buffered restriction introduces a slight structural

constraint, whereas the spsd condition slightly restricts the nondeterminism in a

way that subsumes the sy-psd condition. To my knowledge, these are the only

positive results for a class that allows a reasonable amount of interplay between

causality, concurrency, and conflict while still admitting considerable nondeter-

minism.

On the way to the Crucial SubgoalK there are two theorems that deserve men-

tioning. The SWFSI Matching Theorem exhibits a characteristic of the interior

of cp bisimulations; it states that in cp bisimilarity on live SSMD fc systems the

matching of switch first synchronization interfaces (short: swfsi’s) is determinis-

tic. The SWFSI Matching Theorem builds on the WNL Theorem, which in turn

exposes a constraint in the topology of live SSMD fc systems; the constraint con-

cerns two new topological entities called links and wedges. It seems plausible that

the two theorems are of further consequence. The first may be employed to im-

prove our results on the coincidence and decidability problem of (hp and) (c)hhp

bisimilarity. The second could prove to be useful in a wider context; indeed, there

seems to be some connection with a result of [ES91].

The remainder of this introduction is organized as follows. In Section 6.1.1

we give a summary of the approach underlying this work; some intuition can also

be found in Appendix C.1. In Section 6.1.2 we then explain what we will achieve,

and how we shall arrive there, in view of our approach. Finally, in Section 6.1.3

we provide a synopsis of the chapter.

6.1.1 Approach

We shall now outline the approach that stands behind the work of this chapter.

As mentioned earlier, our starting point is the idea that we can tackle the co-

incidence problem of hp and (c)hhp bisimilarity on live fc systems analogously

to our proof method for SW-free systems (cf. Section 4.4.3) by showing that
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the bisimilarities satisfy certain composition and decomposition aspects. This

idea is inspired by the insight that (live) fc systems satisfy a decomposition view

(short: DV-lfcs) that generalizes the view put forward for comm-free systems (cf.

Section 5.3.2): the unfolding of a (live) fc system can be understood as an inter-

connection of unfoldings of initially sequential units, where the interconnection

consists of causality, concurrency, and conflict. DV-lfcs gives rise to a composi-

tion and a decomposition property for bisimilarities, called DV-lfcs composability

and DV-lfcs decomposability. As the crucial element of our general plan one has

to prove that hp bisimilarity satisfies DV-lfcs decomposability. The degree of

difficulty involved in this goal is considerable, and we have developed two inter-

mediary concepts, bp bisimilarity and U-decomposability, to approach it. Indeed,

the latter has led us to a new way of achieving the desired coincidence result,

which is more direct than the route via DV-lfcs decomposability; after all, we

shall not implement our initial idea but it has acted as the vehicle for leading us

onto the right track.

Altogether, we now explain in four steps how, guided by the goal ‘hp bisim-

ilarity is DV-lfcs decomposable’, the coincidence problem can be broken down

into three accessible subgoals. The concepts, insights, and goals we shall come up

with are all valid for live fc systems; but according to our second simplification

we shall pursue our approach for live SSMD fc systems first.

(1.) In the first step we separate out the interleaving aspect of DV-lfcs de-

composability, and translate it into a strengthening of hp bisimilarity, called block

preserving (short: bp) bisimilarity. Thereby, we reduce the problem ‘hp bisim-

ilarity is DV-lfcs decomposable’ into two sufficient and necessary subproblems:

(1.) hp bisimilarity implies bp bisimilarity, and (2.) bp bisimilarity is DV-lfcs

decomposable. The benefit of this reduction is as follows. First of all, it means

we have moved everything that can be dealt with on an interleaving level into

subproblem (1); this will allow us to focus on the difficult truly-concurrent as-

pects in ‘crystallized form’ when tackling subproblem (2). Moreover, if we achieve

subproblem (2), we will obtain the decidability of chhp bisimilarity as an interim

result: it is straightforward to show that bp bisimilarity is decidable, and with

a bit more thought we obtain that chhp bisimilarity implies bp bisimilarity; on

the other hand with (2) we will be able to show that bp bisimilarity implies chhp

bisimilarity. Naturally, this is the reason why we work with chhp bisimilarity

instead of hhp bisimilarity. Subproblem (2) needs to be dissected further, but

subproblem (1) we lay down as our first official subgoal:

Subgoal 6.1.1. hp bisimilarity implies bp bisimilarity.
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(2.) Pursuing the second subproblem, we identify a basic but truly-concurrent

decomposition aspect of DV-lfcs decomposability, which is only defined for notions

of bisimilarity that already satisfy the interleaving aspect in that they are at

least as strong as bp bisimilarity. Our new concept is called U-decomposability.

Naturally, our aim will be to establish U -decomposability for bp bisimilarity. Not

only will this provide a first advance towards subproblem (2), but we speculate

that it already gives us the key insight: we hope that DV-lfcs decomposability can

be reached by employing its basic aspect U -decomposability in some complicated

inductive argument.

(3.) In the end, our quest for U -decomposability leads us to a shortcut that

provides a more direct way of achieving ‘bp bisimilarity implies chhp bisimilarity’

than the route via subproblem (2); this is the point where we can abandon the

concept of DV-lfcs decomposability altogether.

Analysing how U -decomposability can be achieved, we come up with a suf-

ficient condition, called the Crucial Subgoal x, where x denotes the respective

type of bisimilarity. Apart from establishing U -decomposability for x bisimilarity

Crucial Subgoalx has a second consequence: it implies that the largest x bisimu-

lation satisfies specific padding and backtracking properties, from which we can

read that x bisimilarity is (1)coherent and (1)hereditary. We can then exploit a

general insight about bisimilarities and their (1)coherent and (1)hereditary ver-

sions: if x bisimilarity coincides with its (1)coherent and (1)hereditary version

in the strict sense that any x bisimulation can be extended to a (1)coherent and

(1)hereditary one, then any x bisimulation can furthermore be extended to one

that is fully coherent and hereditary. To sum up, by achieving Crucial Subgoalbp

we will obtain coincidence between bp bisimilarity and its coherent and hered-

itary version, chbp bisimilarity. Since chbp bisimilarity naturally implies chhp

bisimilarity, and considering that chhp bisimilarity implies bp bisimilarity, this

will entail coincidence between bp and chhp bisimilarity, and furthermore the

decidability of chhp bisimilarity.

We will classify the places and transitions of free choice systems into two

types, called switch and synch. U -decomposability, Crucial Subgoalx, and the

properties (1)coherent and (1)hereditary can be split into two analogous parts.

This will provide us with an easy way of further structuring our approach: the

first part of Crucial Subgoalx is designed to prove swi-U decomposability, and

as a second consequence it will imply that x bisimilarity is swi-(1)coherent and

swi-(1)hereditary ; symmetrically, the second part of Crucial Subgoalx will entail

that x bisimilarity satisfies syi-U decomposability, and that it is syi-(1)coherent

181



and syi-(1)hereditary ; the i can be set to either 1 or 2.

(4.) The last step corresponds to our second simplification: for technical ease

and to be better able to exploit the static decomposition information given by

an SSM cover, we shall first work with cp bisimilarity instead of bp bisimilarity.

Accordingly, as our second official subgoal we set:

Subgoal 6.1.2.

1. Achieve the first part of Crucial Subgoal cp.

2. Achieve the second part of Crucial Subgoal cp.

As we know from above, by achieving Subgoal 6.1.2 we obtain coincidence

between cp bisimilarity and its coherent and hereditary version (and correspond-

ing partial results in case we only achieve part 1 or 2). But since we lack the

inclusion ‘chhp bisimilarity implies cp bisimilarity’ we will not be able to conclude

to results for chhp bisimilarity. To be able to do so, we will need to transfer our

proof of Subgoal 6.1.2 to bp bisimilarity. Potential pitfalls in overcoming this

gap are captured by the difference between bp and cp bisimilarity, which can be

characterized as consisting of technical inaccuracies and more crucially the open

issue of pending synch places. As an alternative approach, we could overcome the

technical inaccuracies by defining a more sophisticated version of cp bisimilarity,

say cpb’, carry over Subgoal 6.1.2 to cpb’, and then deal with the issue of pend-

ing synch places while trying to show that chhp bisimilarity implies cpb’ (which

might be done via bp bisimilarity). Thus, our final subgoal will be:

Subgoal 6.1.3. Overcome the discrepancy that results from our working with cp

bisimilarity instead of bp bisimilarity, which amounts to resolving the technical

inaccuracies and the issue of pending synch places.

6.1.2 Realization

Having summarized our overall plan we now explain what we will realize in this

chapter, and how we shall arrive there.

As our main achievement we will establish that the first part of Subgoal 6.1.2

indeed holds. We set out to prove that cp bisimilarity on live SSMD fc systems

satisfies K-decomposability. The latter captures swi-U decomposability for cp

bisimilarity (where i = 1, or equivalently 2) in a way that incorporates the fact

that cp bisimilarity respects the static decompositionality given by SSM covers in

a natural manner. Analysing how K-decomposability could be achieved we come
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up with a subgoal that directly corresponds to the Crucial Subgoalcp . This so-

called Crucial SubgoalK will only provide an intermediate step in our analysis. Via

a chain of further subgoals we are led to the concept of switch first synchronization

interface (short: swfsi). We sketch how the Crucial SubgoalK will follow if we

can show that the matching of swfsi’s in cp bisimilarity on live SSMD fc systems

is deterministic. This final subgoal is far from trivial: it requires us to expose

a deep insight about the interior of cp bisimulations. We will establish it as

the SWFSI Matching Theorem. The essence of its proof is as follows: on the

one hand, we show that whenever there exists more than one swfsi-match for

a given place then we can infer a specific topological scenario, namely a wedge

and a link connected in a characteristic way; this will be possible by exploiting

a connection between the matching in cp bisimulations and the topology of the

related systems. On the other hand, we show that the topology of live SSMD fc

systems is constrained in that the very same scenario cannot exist. This is the

statement of theWNL Theorem. Altogether, by reductio ad absurdum we can then

conclude that the matching of swfsi’s in cp bisimilarity is indeed deterministic.

In the proof of the WNL Theorem we exploit our understanding of live SSMD

fc systems as interconnections of autonomously computing SM-components; in

particular, we shall employ a setting where we allow the fixing of courses for a

subset of components.

With the SWFSI Matching Theorem it will then be straightforward to estab-

lish the Crucial SubgoalK , and furthermore our two main results for live SSMD

fc systems: the Crucial Lemma directly implies that cp bisimilarity is indeed

K-decomposable, and as a second consequence we obtain that cp bisimilarity is

sw-(1)coherent and sw-(1)hereditary. Figure 6.1 gives an overview of the modules

and their interconnections.

From Section 6.1.1 we know that the latter amounts to solving half of the coin-

cidence problem of cp and chcp bisimilarity in the positive direction. Full coinci-

dence would follow if we could further show that cp bisimilarity is sy-(1)coherent

and sy-(1)hereditary, which is consequent on Subgoal 6.1.2(2). Subgoal 6.1.3 and

Subgoal 6.1.1 represent two more gaps. Subgoal 6.1.3 captures the discrepancy

that results from our working with cp bisimilarity instead of bp bisimilarity; by

additionally overcoming this gap we would achieve decidability for chhp bisimi-

larity. Subgoal 6.1.1 depicts the difference between hp and bp bisimilarity, and

thereby what is still required, to obtain coincidence for hp, hhp, and chhp bisim-

ilarity.

In general, the three subgoals will remain open for now, but we shall see that

183



Behavioural insights on live
SSMD fc systems

(Section 6.6)

?

The WNL Theorem
(Section 6.7)

A
A
A
A
A
AAU

Observations on the match-
ing in cp bisimulations of
SSMD fc systems

(Section 6.8)

?

Analysis: K-decomposa-
bility and how it can be
proved (Section 6.9)

¢
¢

¢¢®

The SWFSI Matching Theorem
(Section 6.10)

?

Proof of the Crucial SubgoalK

∼cp is K-decomposable ∼cp is sw-(1)coherent and
sw-(1)hereditary

A
A
AU

¢
¢

¢®

(Section 6.11)

£
£

£
£

£
£

£
£

£
£

£
£
£°

?

Figure 6.1: Overview of the modules and their logical interdependence (← means
‘immediately depends on insights of’)

the gaps they represent can easily be overcome by imposing slight restrictions on

our system class. A constraint on the nondeterminism available at the postset

of a synch transition, called sy-psd, forces that cp bisimilarity is sy-(1)coherent

and sy-(1)hereditary. With the buffered condition we achieve that each synch

place occurrence is uniquely identified by its generator event. Thereby we will

overcome the issue of pending synch places as well as the technical inaccuracies,

and induce bp and cp bisimilarity to coincide. By additionally restricting the

nondeterminism available at the postset of a transition in a way that subsumes

the sy-psd condition, we obtain that cp, bp, and hp bisimilarity coincide; the

corresponding condition is called spsd. Altogether, this gives us our full results:

coincidence of cp, hcp, and chcp bisimilarity for live sy-psd SSMD fc systems,

184



Gap Restriction Achievement
Subgoal 6.1.2(2) sy-psd ∼cp is sy-(1)coherent & sy-(1)hereditary
Subgoal 6.1.3 buffered coincidence between cp and bp bisimilarity
Subgoal 6.1.1 spsd buffered coincidence between bp and hp bisimilarity

Figure 6.2: Closing the remaining gaps

decidability of chhp bisimilarity for live sy-psd buffered SSMD fc systems, and

coincidence of hp, hhp, and chhp bisimilarity for live spsd buffered SSMD fc

systems. A summary of the gaps and corresponding restrictions can be found in

Figure 6.2.

6.1.3 Synopsis

The remainder of the chapter is organized into three parts, which are separated

by two ‘interludes’.

Part I comprises the following three sections. In Section 6.2 we provide the

background material, including the introduction of our primary system classes

and their behavioural properties. In Section 6.3 we formally carry over our non-

coincidence result for confusion-free systems to free choice systems. Section 6.4

is about cp bisimilarity: we introduce this notion together with its coherent and

hereditary version, provide some preliminary observations, and give our proof

methodology.

Part II consists of Section 6.5 to 6.11. Here we present the modules that

together prove our two main results on live SSMD fc systems: cp bisimilarity is

K-decomposable, and sw-(1)coherent and sw-(1)hereditary. In Section 6.5, which

is Interlude I, we describe in detail how this material is organized.

Part III is formed by the final three sections. Section 6.12 provides Interlude II.

In the subsequent two sections we bridge over the remaining gaps by further

restricting our system class: in Section 6.13 we achieve coincidence of cp, hcp,

and chcp bisimilarity for live sy-psd SSMD fc systems; in Section 6.14 we obtain

decidability of chhp bisimilarity for live sy-psd buffered SSMD fc systems, and

coincidence of hp, hhp, and chhp bisimilarity for live spsd buffered SSMD fc

systems. Later on, in Section 7.2, we shall comment on our attempt at the

decidability problem of free choice systems.
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Allowed Excluded

Figure 6.3: Allowed and excluded substructures of free choice nets

6.2 Background

We now present the relevant background material. In the first four sections we

give a formal account of the system classes central to this chapter; we present

the necessary definitions, and formally introduce the properties that we have

identified as crucial to our approach. In Section 6.2.1 we give the definition of

free choice systems. In Section 6.2.2 we introduce the notions of SM- and SSM-

decomposability. Section 6.2.3 is about live free choice systems: we conjecture

that such systems are syn-confusion free, and formally introduce the S-coverability

Theorem. Furthermore, in Section 6.2.4 we give the properties that motivate live

SSMD fc systems as an interconnection of a set of autonomously computing live

S-systems. The fifth and final section presents technical concepts and properties

that will be required in the course of the chapter.

6.2.1 Free Choice Systems

Formally, free choice nets and systems are defined as follows ([Rei82]):

Definition 6.2.1 (free choice nets, free choice systems).

A net N is a free choice net iff for each arc (s, t) ∈ FN ∩ (SN × TN) we have:

s• = {t} ∨ •t = {s}.

A system N is a free choice system iff its underlying net is free choice.

Free choice nets can also be characterized by either of the following two con-

ditions: (1.) If two transitions share an input place p then neither has any input

place apart from p. Or equivalently: (2.) If two places have a common output
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transition t then neither has any output transition apart from t. This underlines

how conflict and synchronization are separated out by the free choice restriction:

conflict is only allowed in the ‘S-system way’, and synchronization only in the

‘T-system way’ (cf. Figure 6.3). It is a direct consequence of the first condition

that if several transitions compete for a token, it is always possible to choose

between the transitions freely:

Observation 6.2.1. Let N be a free choice net. If two transitions t1 and t2 of N

have a common input place then at any marking of N , either t1 and t2 are both

enabled, or neither of them is enabled.

For free choice systems this means that the conflict set of a transition t stays

constant during the entire time of its enabledness.1 Conflict sets can therefore not

be influenced by parallel transitions, which immediately implies that free choice

systems are confusion-free.

Fact 6.2.1. Free choice systems are confusion-free.

The elements of free choice nets can naturally be classified into two different

types: we distinguish between switch and synchronization places, and transitions,

respectively. Note that we consider ‘switch’ to be the default type.

Definition 6.2.2 (types of elements). Let N be a free choice net.

We say t ∈ TN is

• a synchronization (short: synch) transition iff |•t| > 1, and

• a switch transition otherwise.

We say p ∈ PN is

• a synchronization (short: synch) place iff |•(p•)| > 1, and

• a switch place otherwise.

Clearly, we have:2

Observation 6.2.2.

1. A switch transition has exactly one input place p, and p is of type switch.

2. A synch place has exactly one output transition t, and t is of type synch.

1Note that 1-safeness is crucial here.
2For (1) consider Restriction 2.1.1.
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We assign to a synch place p its set of synchronization partners:

Definition 6.2.3 (synch partners). Let N be a free choice net, and p a

synch place of N . We define the synchronization (short: synch) partners of p

as SPartners(p) := {p′ ∈ PN | p
′ 6= p & p′ ∈ •(p•)}.

We have the following two characteristic properties:

Observation 6.2.3.

1. A switch transition is enabled iff its unique input place has a token.

2. A token on a synch place p can only be taken away by p’s unique output

transition.

For technical convenience we introduce the following restriction:

Restriction 6.2.1. From now on, we will only consider nets N that satisfy the

following property: ∀p ∈ PN .
•p ∪ p• 6= ∅.

We carry over the property of liveness from lats’ to net systems, and well-

formedness from lats bases to nets in the obvious way (cf. Def. 4.6.1). It is easy

to see that for well-formed free choice nets Restriction 6.2.1 implies:

Fact 6.2.2. Let N be a well-formed free choice net. ∀p ∈ PN . p
• 6= ∅ & •p 6= ∅.

Finally, recall that we are only concerned with finite-state free choice systems.

6.2.2 SMD and SSMD Systems

We now introduce the two notions of decomposability which are central in this

chapter: state machine (short: SM-) decomposability, and in particular strict state

machine (short: SSM-) decomposability. We shall also present several related

facts: first about decomposition functions, then about the behaviour of SM-

components. We will make use of these facts later on.

6.2.2.1 Definitions

SM- and SSM-decomposability are based on the concept of a state machine com-

ponent (short: SM-component). Roughly speaking, SM-components are strongly

connected S-systems which fully reflect the forwards and backwards branching at

the respective places in the underlying system. For their definition we require the

idea of an induced subnet.

Definition 6.2.4 (subnet, induced subnet). Let N = (S, T ;F ) be a net.
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We say a net N ′ = (S ′, T ′;F ′) is a subnet of N iff

1. S ′ ⊆ S,

2. T ′ ⊆ T , and

3. F ′ = F ∩ ((S ′ × T ′) ∪ (T ′ × S ′)).

Let X be a non-empty set of elements of N . We define the subnet induced by X

to be the subnet N ′ = (S ′, T ′;F ′) with

S ′ = S ∩ (•X ∪X• ∪X),
T ′ = T ∩ (•X ∪X• ∪X), and
F ′ = F ∩ ((S ′ × T ′) ∪ (T ′ × S ′)).

Definition 6.2.5 (S-components, SM-components). Let N = (SN , TN ;FN)

be a net, and K = (SK , TK ;FK) be a subnet of N . K is an S-component of N iff

1. K is a strongly connected S-graph, and

2. K is the subnet of N induced by SK , i.e. TK = •SK ∪ SK
• and FK =

FN ∩ ((SK × TK) ∪ (TK × SK)) (where the dot relation is the one of N).

Let N = (N,M0) be a system. A net K = (SK , TK ;FK) is a state machine

component (short: SM-component) of N iff K is an S-component of N , and

|M0(SK)| = 1.

The concept needed next is that of an SM-cover:

Definition 6.2.6 (S-covers, SM-covers). Let N be a net. A set Cover =

{K1, . . . , Kn} of S-components of N is an S-cover of N iff for every p ∈ PN there

exists Ki ∈ Cover such that p ∈ PKi
. We then say Cover covers N .

Let N = (N,M0) be a system. A set Cover = {K1, . . . , Kn} of SM-components

of N is an SM-cover of N iff Cover is an S-cover of N .

If a system has an SM-cover then it can be understood as a synchronization of

strongly connected S-systems. This gives us the notion of SM-decomposability;

the corresponding structural concept is that of S-decomposability.

Definition 6.2.7 (S-decomposability, SM-decomposability). A net N is

S-decomposable (short: SD) iff N has an S-cover. A pair (N,Cover) is an S-

decomposed (short: SD3) net iff N is a net, and Cover is an S-cover of N .

A system N is state machine decomposable (short: SMD) iff N has an SM-

cover. A pair (N ,Cover) is a state machine decomposed (short: SM-decomposed

or SMD3) system iff N is a system, and Cover is an SM-cover of N .
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Figure 6.4: A free choice system that is SMD but not SSMD

Example 6.2.1. Figure 6.4 gives an example of a SMD fc system. Its SM compo-

nents are indicated by the frames.

The example demonstrates that in SM-decomposability we allow components

to overlap not only in transitions but also in places. This is excluded in strict

SM-decomposability: SSMD systems can be viewed as a set of strongly connected

S-systems which are connected together only through transitions. Behaviourally

this means that each component holds the sole control over its tokens. Note that

in SSMD fc systems the interconnecting transitions are exclusively of type synch.

We will see in Section 6.2.4 that as a result each component can take its decisions

in full freedom.

Definition 6.2.8 (strict S-cover, strict SM-cover). Let N be a net. A set

Cover = {K1, . . . , Kn} of S-components of N is a strict S-cover of N iff for every

p ∈ PN there exists exactly one Ki ∈ Cover such that p ∈ PKi
.

Let N = (N,M0) be a system. A set Cover = {K1, . . . , Kn} of SM-components

of N is a strict SM-cover of N iff Cover is a strict S-cover of N .

Definition 6.2.9 (SS-decomposability, SSM-decomposability). A net N is

strictly S-decomposable (short: SSD) iff N has a strict S-cover. A pair (N,Cover)

is a strictly S-decomposed (short: SS-decomposed or SSD 3) net iff N is a net, and

Cover is a strict S-cover of N .

3The ambiguity with ‘decomposable’ will be resolved by the context.
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Figure 6.5: A SSMD fc system

A system N is strictly state machine decomposable (short: SSMD) iff N has a

strict SM-cover. A pair (N ,Cover) is a strictly state machine decomposed (short:

SSM-decomposed or SSMD3) system iff N is a system, and Cover is a strict

SM-cover of N .

Example 6.2.2. Figure 6.5 shows a SSMD fc system. The system of Figure 6.4 is

SMD but not SSMD.

Convention 6.2.1. In the following, we will transfer definitions and properties

of systems and nets to (S)SM-decomposed systems, and (S)S-decomposed nets

respectively.

Let (N = (N,M0),Cover) be a (S)SM-decomposed system. (N,Cover) is clearly

a (S)S-decomposed net, and hence we shall transfer definitions and properties of

(N,Cover) to (N ,Cover).
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It will be useful to associate a decomposition function with each S-decomposed

net:

Definition 6.2.10. Let (N,Cover) be a S-decomposed net.

The decomposition function associated with N , Ks : SN ∪ TN → P(Cover), is

defined by:

∀x ∈ SN ∪ TN , K ∈ Cover . K ∈ Ks(x) ⇐⇒ x ∈ SK ∪ TK .

If Cover is a strict cover then clearly ∀p ∈ PN . |Ks(p)| = 1; in this case we shall

use K(p) to denote the corresponding singleton component.

Further, we generalize the function Ks to sets of places, and sets and (infinite)

sequences of transitions in the obvious way.

Finally, we shall employ the following terminology:

Definition 6.2.11. Let (N,Cover) be a S-decomposed net, and K ∈ Cover .

Let M be a marking of N . We denote M ↑SK by M(K).

Furthermore, assume N to be free choice. We define the synch transitions of K

by:

synchT (K) = {t ∈ TN | t is of type synch & K ∈ Ks(t)}.

Let w ∈ T ∗N . We say there is no synchronization of K on w, denoted by

nosynch(w,K), iff 6 ∃t ∈ w. t ∈ synchT (K).

Let p ∈ PN of type synch. We define the synchronization (partner) components

of p by: KSPartners(p) = Ks(SPartners(p)).

Let MK be a safe marking of K. We say γK is an infinite K-computation

at MK iff γK ∈ T ω
K & ∀w ∈ FinPrefixes(γK). MK [w〉. Given an infinite K-

computation γK at MK we define the infinite synchronization partners of K on

γK by InfSPartners(K, γK) =
⋃

{Ks(t)\{K} | t occurs infinitely often on γK}.

Bibliographic Notes. The concepts concerning SM-decomposability are stan-

dard; they go back to the pioneering work on fc systems by Hack in [Hac72]

(reference quoted from [TV84]). The particular names and definitions used here

are partly from [TV84], and partly from [ES91].

Although SSM-decomposability is clearly very natural, I have not come across

this concept in literature. On the other hand, SSMD fc systems are very close to

the strict fc systems of [ES91]. These were defined to exactly capture the subclass

of SMD fc systems in which the SM-components can take their decisions in full
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freedom. We will require that very property in our proofs, and this is in fact what

compelled me to work with something stricter than live fc systems. I was led to

defining SSMD systems since for our purpose they are technically very convenient

to use. It should, however, be no problem to transfer all our results on SSMD fc

systems to the slightly more general strict fc systems.

6.2.2.2 Structural Observations

We now present some elementary properties about S-decomposed nets and their

associated decomposition functions.

For this, two immediate facts about S-components will be helpful:

Proposition 6.2.1. Let N be a net, and K an S-component of N . Note that the

dot relation refers to the one of N .

1. ∀t ∈ TK . |
•t ∩ SK | = 1 = |t• ∩ SK |.

2. ∀p ∈ SK .
•p ∪ p• ⊆ TK.

Proof. Immediate with the definition of S-component.

Then, the following is straightforward:

Proposition 6.2.2. Let (N,Cover) be a S-decomposed net. For all t ∈ TN we

have:

1. (a) ∀p, p′ ∈ •t. p 6= p′ =⇒ Ks(p) ∩Ks(p′) = ∅, and

(b) ∀p, p′ ∈ t•. p 6= p′ =⇒ Ks(p) ∩Ks(p′) = ∅.

2. (a) ∀p ∈ •t. Ks(p) ⊆ Ks(t), and

(b) ∀p ∈ t•. Ks(p) ⊆ Ks(t), and even more:

3. (a) Ks(•t) = Ks(t), and

(b) Ks(t•) = Ks(t).

Proof. (1.) is immediate with Prop. 6.2.1(1), and (2.) with Prop. 6.2.1(2). For

(3.) consider: the ‘⊆’-directions are given by (2), whereas the ‘⊇’-directions easily

follow with Prop. 6.2.1(1).

Next comes a natural fact about independence: whenever two transitions have

disjoint sets of components then they are independent of each other.

Proposition 6.2.3. Let (N,Cover) be a S-decomposed net.
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1. For all t, t′ ∈ TN we have: Ks(t) ∩Ks(t
′) = ∅ =⇒ t IN t′, and so:

2. For all w, w′ ∈ T ∗N we have: Ks(w) ∩Ks(w
′) = ∅ =⇒ w IN w′.

Proof. (1.) If Ks(t)∩Ks(t′) = ∅, then by Prop. 6.2.2(3) Ks(•t∪t•)∩Ks(•t′∪t′•) =

∅, and so certainly (•t ∪ t•) ∩ (•t′ ∪ t′•) = ∅. (2.) is immediate with (1.).

In SS-decomposed fc nets the type of transitions is identifed by the decompo-

sition function:

Proposition 6.2.4. Let (N,Cover) be a SS-decomposed fc net. For all t ∈ TN

we have: t is of type switch iff |Ks(t)| = 1 (or equivalently: t is of type synch iff

|Ks(t)| > 1).

Proof. By Prop. 6.2.2(1a) and since Cover is strict, we obtain |Ks(•t)| = |•t|, and

further by Prop. 6.2.2(3a) |Ks(t)| = |•t|. Then the proposition is immediate: t is

of type switch (synch) iff |•t| = 1 (|•t| > 1).

This implies an intuitive characterization of synchT (K), which we shall often

employ implicitly.

Proposition 6.2.5. Let (N,Cover) be a SS-decomposed fc net, K ∈ Cover, and

t ∈ TN . t 6∈ synchT (K) ⇐⇒ Ks(t) = {K} ∨ Ks(t) ⊆ Cover\K.

Proof. This is straightforward with Prop. 6.2.4.

6.2.2.3 Behavioural Observations

In the following, we give several behavioural properties of SM-components.

By definition every SM-component K of a system N holds exactly one token

at the initial marking of N . This stays so during any computation of N :

Proposition 6.2.6. Let N be a system, and K an SM-component of N . For all

M ∈ Reach(N ) we have: |M(K)| = 1.

Proof. By induction on the number of transitions that need to be fired to reach

M , and with the help of Prop. 6.2.1.

Convention 6.2.2. We shall sometimes employ M(K) to denote the singleton

place given by Prop. 6.2.6. It will always be clear from the context whether we

regard M(K) as a place, or as a set of places as usual.

Let N be an S-graph, andM a marking of N . It is a well-known result thatM

is live and safe for N iff N is strongly connected and |M | = 1 (see e.g. [BT87]).

Together with Prop. 6.2.6 and the definition of S-component this immediately

gives us:
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Proposition 6.2.7. Let N be a system, and K an SM-component of N . For all

M ∈ Reach(N ) we have: M(K) is a live and safe marking for K.

Thus, at any reachable markingM of its underlying system an SM-component

K can be understood as the live system (K,M(K)). Naturally, a computation in

the underlying system implies a computation for K in the following way:4

Proposition 6.2.8. Let N be a system, K an SM-component of N , and M ∈

Reach(N ). IfM [w〉NM
′ for some w ∈ T ∗N ,M

′, then we haveM(K)[w↑TK〉KM
′(K).

Proof. Easy by induction on the length of w with the help of Prop. 6.2.1(2),

and the following fact: ∀t ∈ TK . (pres(K, t) = pres(N, t) ∩ SK) & (posts(K, t) =

posts(N, t) ∩ SK).

The property has the following immediate consequences, which will be helpful

later on:

Proposition 6.2.9. Let N be a system, K an SM-component of N , and M ∈

Reach(N ).

1. M(K) ∈ Reach(K,M0(K)).

2. Let M [w〉NM
′ for some w ∈ T ∗N , M

′. K 6∈ Ks(w) =⇒ M(K) = M ′(K).

3. Let M [w〉NM
′ for some w ∈ T ∗N , M

′. For all p ∈ SN satisfying Ks(p) ∩

Ks(w) = ∅ we have:

p ∈M ⇐⇒ p ∈M ′.

Proof. (1.) and (2.) follow from Prop. 6.2.8; (3.) is easy with (2.).

Furthermore, it is now easy to present a counterpart of Prop. 6.2.3: whenever

two independent transitions can occur consecutively in a SM-decomposed system

then their sets of components must be disjoint.

Proposition 6.2.10. Let (N ,Cover) be a SM-decomposed system. For all t,

t′ ∈ TN we have: t I t
′ & (∃M ∈ Reach(N ). M [tt′〉) =⇒ Ks(t) ∩Ks(t′) = ∅.

Proof. Let entities be given as above, and to the contrary assume K ∈ Ks(t) ∩

Ks(t′). By Prop. 6.2.8 we can infer M(K)[tt′〉K , which, since t I t
′, implies K is

capable of concurrent behaviour. But K is an S-system, and hence this cannot

be true.

4This is similar to one direction of Theorem 2.1 in [TV84].
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By themselves SM-components are live; but when considered in the context

of their underlying system they can clearly become deadlocked. It is natural that

from the liveness of a given system we can conclude that its SM-components can

never become deadlocked in context:

Proposition 6.2.11. Let N be a system, K an SM-component of N , and M ∈

Reach(N ). If N is live then there exists r ∈ RunsN(M) such that K ∈ Ks(r).

Proof. Trivial by liveness and the fact that TK 6= ∅ for any S-component K (this

follows from Restriction 6.2.1).

Finally, we note some straightforward connections, which will be useful later

on.

Proposition 6.2.12. Let (N ,Cover) be a SSM-decomposed system; assumeM,M ′ ∈

Reach(N ), K ′ ∈ Cover, p ∈ SN , and t ∈ TN .

1. Let p ∈M . M(K(p)) = p.

2. M(K ′) = p ⇐⇒ K ′ = K(p) & p ∈M .

3. Let M [t〉M ′. K ′ ∈ Ks(t) =⇒ M(K ′) ∈ •t & M ′(K ′) ∈ t•.

4. M [t〉, p ∈M & K(p) ∈ Ks(t) =⇒ p ∈ •t.

Proof. (1) and (2) easily follow by definition; (3) is immediate with Prop. 6.2.2(3a)

and (2), and (4) with (1) and (3).

6.2.3 Live Free Choice Systems

Initially, we motivated live fc systems as a promising candidate for the coincidence

of hp and (c)hhp bisimilarity on the basis of the following two characteristics.

Firstly, live fc systems come with good behavioural properties: in addition to

being confusion-free, they appear to be syn-confusion free; they exclude all the

combinations of MNH and frame situations that have been employed in counter-

examples so far. Although it is straightforward that live fc systems exclude a

net specific version of syn-confusion it seems tricky to prove that they satisfy the

behavioural version of Section 4.5.3. For now, we can only conjecture:

Conjecture 6.2.1. Live fc systems are syn-confusion free.

Secondly, live fc systems come with interesting decomposition properties: they

are SMD. This follows from a major piece of classical free choice theory, the S-

coverability Theorem of Hack [Hac72] (reference quoted from [TV84]):
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Theorem 6.2.1 (S-coverability Theorem). Every live fc system (N,M0) is

covered by S-components which have exactly one token each at M0.

Corollary 6.2.1. Live fc systems are SMD.

The S-coverability Theorem provides a structural characterization of safeness

in live fc Petri nets. This is the purpose for which the theorem was originally

developed. It is complemented by another classical result, known as Commoner’s

Theorem, which in turn gives a structural criterion for liveness in fc Petri nets

(see [Com72, Hac72]). Together, the two theorems make up a major part of the

structure theory of Petri nets.

For us the S-coverability Theorem is important in its nature as a decomposi-

tion result for live fc systems. We will mainly focus on live SSMD fc systems in

this chapter, but Corollary 6.2.1 underlines how close the two classes are. Live

fc systems have been the starting point for this work, and there is hope that our

results on live SSMD fc systems can be carried over to this slightly more general

class.

6.2.4 More on Free Choice Systems

In this subsection we consider the following two issues: (1.) How can the compu-

tations of SM-components be affected by a free choice context? (2.) How much

freedom do SM-components have for taking their decisions in SM-decomposed

fc systems? Concerning these issues, we will derive the following two impor-

tant properties: (1.) In live fc systems the computations of SM-components are

unconstrained by their context; their computations will at most be interspersed

with transitions of other components. (2.) The SM-components of strictly SM-

decomposed fc systems can take their decisions in full freedom. Together, the

two properties ensure: any live and SSMD fc system can be viewed as an inter-

connection of a set of autonomously computing live S-systems that occasionally

synchronize with each other.

A bibliographic note: the first property was proved in [TV84]. As mentioned

earlier, the second property is the key characteristic of the strict fc systems of

[ES91], and indeed the motivation for their definition. The presentation given

here is influenced by these two references, but more elaborate in several aspects

and geared towards the needs of this chapter. In particular, note that in [TV84]

live fc systems (which are SMD by Corollary 6.2.1) have been characterized as an

“interconnection of a set of autonomous live and safe S-graphs that occasionally

synchronize with each other”. For us the second aspect of autonomy is crucial,

and we shall therefore reserve such a characterization for live SSMD fc systems.
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6.2.4.1 The Computations of SM-components in Free Choice Systems

Assuming a fc system N and an SM-component K of N , we would like to know

how the computations of K can be affected by the context of N . To find out, we

examine how the composite context influences the enabledness of transitions of

K. It is easy to see that the enabledness of switch transitions is not affected at

all:

Observation 6.2.4. Let N be a fc system, K an SM-component of N , t ∈ TK

of type switch w.r.t. N , and M ∈ Reach(N ). We have:

M(K)[t〉K =⇒ M [t〉N .

This is not the case for synch transitions: let t be a K-transition of type

synch; in the context ofN , the singletonK-preplace of t will have synchronization

partners, and hence t’s enabledness will also depend on whether these are ready

for the transition. Note that due to the free choice restriction K will be stuck

until the respective synchronization can be performed. In particular, K cannot

perform a transition other than t as its next transition.

Observation 6.2.5. Let N be a fc system, K an SM-component of N , t ∈ TK

of type synch w.r.t. N , and M ∈ Reach(N ). M(K)[t〉K implies in N :

1. t can only be performed after the synchronization partners of K have got

ready for t; that is for all t1t2 . . . tn ∈ RunsN(M), i ∈ [1, n] we have:

ti = t =⇒ ∃j ∈ [0, i− 1]. SPartners(M(K)) ⊆Mj,

where for i ∈ [0, n] Mi is given by M0 ≡M
t1→M1

t2→ . . .Mn−1
tn→Mn.

2. There is no other K-transition that can be executed before t; that is for all

t1t2 . . . tn ∈ RunsN(M), i ∈ [1, n] we have:

ti ∈ TK & (∀j ∈ [1, i− 1]. tj 6∈ TK) =⇒ ti = t.

Altogether we have: an SM-component K is not affected by its context as

long as it performs switch transitions; if K reaches a synchronization interface it

can get delayed waiting for its synchronization partners to get ready. Thereby,

K can become deadlocked: it may be the case that the synchronization partners

can never be reached. Figure 6.6 gives an example of a system that is prone to

such deadlocks.
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K1 K3

K2

PSfrag replacements

t1 t2

Figure 6.6: A SSMD fc system, which is prone to deadlocks; e.g. if K2 chooses t1
as its next transition then K3 will be deadlocked, and later on K2 and K1 will
also become deadlocked

Live Free Choice Systems. Now, assume N to be live. Then, by Prop. 6.2.11

it is not possible that SM-components of N become deadlocked. Moreover, by

definition of liveness any transition of N can always be made to occur again.

Combining either of these facts with Obs. 6.2.5(2) gives us: if a synch transition

t is enabled in K then it can also be performed in N , although possibly delayed

by transitions that do not belong to K.

Observation 6.2.6. Let N be a live fc system, K an SM-component of N , t ∈ TK

of type synch w.r.t. N , and M ∈ Reach(N ).

If M(K)[t〉K then there is r ∈ RunsN(M) such that r↑TK= ε & M [r.t〉.

Together, Obs. 6.2.4 and 6.2.6 imply that in live fc systems the computations

of SM-components are not constrained at all by the composite context: any com-

putation of an SM-component K can also be performed in the context of N ; the

computation will at most be interspersed by transitions that do not belong to K.

Theorem 6.2.2. Let N be a live fc system, K an SM-component of N , and

M ∈ Reach(N ).

For all rK ∈ RunsK(M(K)) there is r ∈ RunsN(M) such that r↑TK= rK.

Proof. By induction on the length of rK using Obs. 6.2.4 and 6.2.6.
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Finally, we give a related observation, which will be useful in the sequel:

Proposition 6.2.13. Let (N ,Cover) be a live SM-decomposed fc system, K ∈

Cover, and M ∈ Reach(N ). For all p ∈ M such that p is of type synch, there

are r, M ′ such that M [r〉NM
′, SPartners(p) ⊆M ′, and Ks(p) ∩Ks(r) = ∅.

Proof. This follows similarly to Obs. 6.2.6.

6.2.4.2 The Decision-Making of SM-components in SM-decomposed
Free Choice Systems

We now investigate how much freedom the components of SM-decomposed fc

systems have for making their decisions.

Definition 6.2.12 (choice set). Let N be a system, and M ∈ Reach(N ). A

choice set of N at M is a set C ⊆ TN such that |C| > 1 & ∀t ∈ C. M [t〉.

First of all, assume a fc system N , and an SM-component K of N . We study

how choice sets of K can be affected by the context of N . Thereby, we find:

decisions cannot be taken away from K by its context; whenever in K there is a

decision to take on how to proceed then the corresponding decision is pending in

N and at any successor marking of N until K resolves the decision by taking its

next move.

Observation 6.2.7. Let N be a fc system, K an SM-component of N , M ∈

Reach(N ), and C a choice set of K at M(K). For all w ∈ T ∗N and M
′ such that

M [w〉M ′ we have:

TK ∩ set(w) = ∅ =⇒ C is a choice set of N at M ′.

Proof. Note that the elements of C must all be switch transitions with the same

unique input placeM(K). The observation then follows easily with Prop. 6.2.9(2)

and Obs. 6.2.3(1).

Thus, N does not constrain at all the decisions that are due in its SM-

components. However, given a concrete SM-decomposition Cover for N , it is

easy to see that the components of Cover might influence each other in how to

resolve their decisions: since the components can overlap not only in synch tran-

sitions but also in switch transitions, they might have to make some decisions in

agreement with each other. This is illustrated by Figure 6.4: K1 and K2 have to

synchronize their pending choice between t1 and t2.
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SSM-decomposed Free Choice Systems. The components of strictly SM-

decomposed systems do not overlap in switch transitions, and hence they can take

their decisions by themselves, without having to agree with other components:

Observation 6.2.8. Let (N ,Cover) be an SSM-decomposed fc system, K ∈

Cover, M ∈ Reach(N ), and C a choice set of K at M(K). For all t ∈ C

we have:

1. Ks(t) = {K}.

2. Let M ′ be such that M [t〉M ′. ∀K ′ ∈ Cover\K. M(K ′) = M ′(K ′).

Proof. Note that the elements of C are all switch transitions. Then (1.) follows

with 6.2.4. (2.) follows from (1.) with Prop. 6.2.9(2).

Taken together Obs. 6.2.7 and 6.2.8 mean:

The components of an SSM-decomposed fc system can take their de-

cisions in full freedom.

6.2.5 Further Preliminaries

Finally, we present technical concepts and properties, which will be required in the

sequel. Section 6.2.5.1 gives a well-known fact concerning liveness. Section 6.2.5.2

is about paths; in particular we deal with paths in decomposed nets, and cover

the close relationship between paths and runs in S-graphs. In Section 6.2.5.3 we

present observations about projections of processes and runs onto components.

Finally, Section 6.2.5.4 introduces a technical framework, which we shall employ

in most sections of this chapter.

6.2.5.1 Place-liveness

As defined in Section 4.6 liveness is concerned with the occurrence of transitions.

It is possible to consider a notion of liveness with respect to places just as well:

a place is live if from any reachable marking it can always be filled with a token

again. Correspondingly, we call a system place-live, if all of its places are live.

This notion has been defined e.g. in [Bes87].

Definition 6.2.13 (place-liveness). Let N be a system.

p ∈ PN is live iff ∀M ∈ Reach(N ). ∃M ′ ∈ [M〉. p ∈M ′.

N is place-live iff ∀p ∈ PN . p is live.
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It is not difficult to see that under Restriction 6.2.1 liveness implies place-

liveness. For an explicit proof see [DE95] or [Bes87].

Proposition 6.2.14. If a system N is live then it is also place-live.

For a superclass of free choice systems, called asymmetric choice systems, the

converse also holds, that is place-liveness and liveness are equivalent. This has

been proved in [Bes87]. But for our purpose the above direction is sufficient.

6.2.5.2 Paths

Since nets can be regarded as bipartite graphs, we can employ standard graph

terminology. We will use the concept of paths together with the following termi-

nology. Note that we will classify paths according to the type of their first and

last elements e.g. we speak of PP-paths or PT-paths. (similar to [ES91]).

Definition 6.2.14 (paths). Let N be a net.

A (directed finite) path of N is a nonempty sequence π = x1x2 . . . xn such that

xi ∈ SN ∪ TN , and for i ∈ [1, n − 1], (xi, xi+1) ∈ FN . We say π leads from x1 to

xn.

The first element of π is defined as first(π) := x1, and the last element of π as

last(π) := xn.

Let X, Y range over {P, T}. If x1 is an X-element and xn is a Y -element, then

we say π is an XY -path.

We shall also employ circuits and infinite paths.

Definition 6.2.15 (circuits, infinite paths). Let N be a net.

A circuit of N is a path π of N such that (last(π), first(π)) ∈ FN .

An infinite path of N is an infinite sequence π = x1x2 . . . xi . . . such that xi ∈

SN ∪ TN , and for i ∈ IN (xi, xi+1) ∈ FN . We say π starts at x1, and define the

first element of π as first(π) := x1. If first(π) ∈ SN then we say π is an infinite

P-path.

Paths and infinite paths are always alternating sequences of places and tran-

sitions; we associate the corresponding (infinite) transition sequence to each (in-

finite) path:

Definition 6.2.16 (ts(π)). Let N be a net, and π either a finite or infinite path

of N . We define the (infinite) transition sequence of π as ts(π) := π↑TN.
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Paths in S-decomposed Nets. In the context of an S-cover, we attach to a

path π the set of components participating in π. Moreover, given some component

K, we distinguish the paths which are also paths in K and call them K-paths.

Definition 6.2.17 (Ks(π), K-paths). Let (N,Cover) be an S-decomposed net,

and π either a finite or infinite path of N .

We define the components of π as Ks(π) :=
⋃

x∈π Ks(x).

Let K ∈ Cover . We say π is an (infinite) K-path iff π is an (infinite) path of K.

With a corresponding meaning we employ the term K-circuit.

Proposition 6.2.15. Let (N,Cover) be an S-decomposed net, and π a path of N

that contains at least one transition. We have: Ks(π) = Ks(ts(π)).

Proof. This is immediate with Prop. 6.2.2(3).

To K-paths of SS-decomposed nets we associate their set of synchronization

partners as follows.

Definition 6.2.18 (SPartners(K, πK)). Let (N,Cover) be an SS-decomposed

net, K ∈ Cover , and πK a K-path of N . We define the synchronization partners

of K on πK as SPartners(K, πK) := Ks(ts(π))\{K}.

The Interrelation between Paths and Runs in S-graphs. In S-graphs

there is a close relation between paths and runs: on the one hand, PP-paths give

rise to runs; on the other hand, certain runs induce PP-paths.

Proposition 6.2.16. Let N be an S-graph.

1. For all PP-paths π of N we have: {first(π)}[ts(π)〉N{last(π)}.

2. Let p ∈ PN . For all runs t1 . . . tn ∈ RunsN({p}) we have: p0t1p1 . . . tnpn is a

PP-path of N , where p0 = p and for i ∈ [1, n] pi is given by {pi−1}[ti〉N{pi}.

Proof. This is easy to read from the definition of S-graph and the Petri net firing

rule.

The first part has the following two immediate consequences:

Proposition 6.2.17. Let N be an S-graph.

1. Let πω be an infinite P-path of N . ts(πω) is an infinite run at {first(πω)}.

2. Assume N to be strongly connected, and let p, p′ ∈ PN . There exists a run

r such that {p}[r〉N{p
′}.

Proof. (1) and (2) are immediate with Prop. 6.2.16(1). For (2) consider that by

strong connectedness there exists a PP-path from p to p′.
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6.2.5.3 Subprocesses

We now present several observations, which will be required to introduce and

investigate our decomposition property K-decomposability (cf. Section 6.9). We

work in the context of a SSM-decomposed fc system (N , Cover), and intend to

view its set of reachable markings as a domain of processes. Accordingly, we work

with the following technical setting:

Definition 6.2.19. We define the set of processes of N by Proc := Reach(N ),

and the set of runs of N by Runs :=
⋃

M∈Proc{(M, r) | r ∈ Runs(N,M)}. We

carry over → to Proc and Runs in the obvious way.

In the previous sections we have often projected processes and runs of N

onto the elements of a component K ∈ Cover in order to extract the share of

K. Usually, we have interpreted the outcome with respect to K, and employed

the projection functions to infer local behaviour from global. Now, given a set

K ⊆ Cover , we shall interpret such projections with respect to the entire net N .

Thereby, we will obtain subprocesses and sub-behaviour of N .

Convention 6.2.3. Given K ⊆ Cover and an entity x of N , we use x ↑ K as

short for x↑(
⋃

K∈K SK ∪ TK).

From the behaviour of a process M we can infer behaviour for the subprocess

M ↑K in the following way:

Proposition 6.2.18. Let M
t
→M ′, and K ⊆ Cover.

1. Ks(t) ⊆ K =⇒ M ↑K
t
→M ′ ↑K.

2. Ks(t) ∩ K = ∅ =⇒ M ↑K= M ′ ↑K.

Proof. This follows easily from the Petri net firing rule and Prop. 6.2.2(3).

Conversely, from the behaviour of M ↑K we can infer behaviour for M :

Proposition 6.2.19. Let M ∈ Proc, and K ⊆ Cover.

M ↑K
t
→M ′

K =⇒ Ks(t) ⊆ K & M
t
→M ′

K ∪M ↑(Cover\K).

Proof. Again, this is straightforward by the Petri net firing rule and Prop. 6.2.2(3).

With these insights it is easy to show: a subprocess M ↑K exactly captures

the share of K in the behaviour of M up to synchronization between components

of K and components not contained in K.
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Proposition 6.2.20. Let M ∈ Proc, and K ⊆ Cover.

RunsN(M ↑K) =
{r↑K | r ∈ RunsN(M) s.t. ∀t ∈ r. (Ks(t) ⊆ K ∨ Ks(t) ⊆ (Cover\K))}.

Proof. For the ‘⊆’-direction we prove:

M ↑K
r
→M ′

K =⇒ Ks(r) ⊆ K & M
r
→M ′

K ∪M ↑(Cover\K),

which is straightforward by induction on the length of r and Prop. 6.2.19. On

the other hand, the ‘⊇’-direction follows from:

M
r
→M ′ & ∀t ∈ r. (Ks(t) ⊆ K ∨Ks(t) ⊆ (Cover\K)) =⇒ M ↑K

r↑K
→M ′ ↑K.

Analogously, this is easy by induction on the length of r and Prop. 6.2.18.

Later, given M ∈ Proc and K ∈ Cover , we will split M into its subprocesses

M ↑K and M ↑ (Cover\K). The following two propositions will be helpful; they

are immediate with the previous characterization.

Proposition 6.2.21. Let M ∈ Proc.

1. Let K ∈ Cover, and set R = Cover\K.

(a) For all r ∈ RunsN(M ↑K) we have nosynch(K, r).

(b) For all r ∈ RunsN(M ↑R) we have nosynch(K, r).

2. Let K ⊆ Cover. For all r ∈ RunsN(M ↑K) we have Ks(r) ⊆ K.

Proof. This is immediate by Prop. 6.2.20. For (1) also consider Prop. 6.2.5.

Conversely, we have:

Proposition 6.2.22. Let M ∈ Proc, and r ∈ RunsN(M).

1. Let K ∈ Cover, and set R = Cover\K. If nosynch(K, r) then we have:

(a) r↑K∈ RunsN(M ↑K), and

(b) r↑R ∈ RunsN(M ↑R).

2. Let K ⊆ Cover. If Ks(r) ⊆ K then we have: r↑K ∈ RunsN(M ↑K).

Proof. Again, this is immediate by Prop. 6.2.20. For (1) also consider Prop. 6.2.5.

Finally, the following shows how from shuffling behaviour of subprocesses of

M we can infer behaviour for M .
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Proposition 6.2.23. Let M ∈ Proc, and K, K′ ⊆ Cover such that K ∩ K′ = ∅

and K∪K′ = Cover. Then for any L ⊆ RunsN(M ↑K), L
′ ⊆ RunsN(M ↑K

′) we

have: L⊗ L′ ⊆ RunsN(M).

Proof. It is easy to see that for anyM ∈ Proc, K, K′ ⊆ Cover the following holds:

(1) K ∩ K′ = ∅ =⇒ M ↑K ∩M ↑K′= ∅. (2) K ∪ K′ = Cover =⇒ M ↑K ∪M ↑

K′= M . But then the proposition immediately follows from Prop. 2.5.2.

6.2.5.4 A Framework

So far, we have employed two alternative ways of defining hp and (c)hhp bisimi-

larity: in the standard definition we introduced each of the notions as a relation

on separate systems with specified initial state. On the other hand, in Section 3.2

we presented (h)hp bisimilarity as a relation on the runs of a fixed system which

is thought to cover all the behaviour one is interested in. Here, we shall require

yet another technical setting.

Assume two net systems N1 and N2, and consider that their sets of reachable

markings can be viewed as two domains of processes (cf. Section 6.2.5.3). We

are interested in comparing behaviour of the first process domain with behaviour

of the second, and vice versa. Accordingly, we define ((c)h)hp bisimilarity as a

relation of pairs of runs (r1, r2), where r1 is a run of N1, and r2 a run of N2. Since

we primarily regard N1 and N2 as generators of process domains we naturally

allow runs to start at any reachable marking, or process as we will say in this

context.

Formally, we fix net systems Ni = (Ni ≡ (Si, Ti;Fi),M
i
0) for i = 1, 2, and

associate the following entities with them:

Definition 6.2.20. For i = 1, 2 we define

• the set of processes of Ni by Proci := Reach(Ni), and

• the set of runs of Ni by Runsi :=
⋃

Mi∈Proci
{(Mi, r) | r ∈ Runs(Ni,Mi)}.

We carry over→ to Proci and Runsi in the obvious way. Furthermore, we define

the set of synchronous runs (of N1 and N2) by:

SRuns := {(r1, r2) ∈ Runs1 ×Runs2 | proj 2(r1) and proj 2(r2) are synchronous}.

We assume BEn and δ to be adapted correspondingly; for subsets of SRuns we

carry over the property of prefix-closed in the obvious way.

Now, we are ready to redefine ((c)h)hp bisimilarity. As usual we restrict

ourselves to prefix-closed hp bisimulations.
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Definition 6.2.21 (((c)h)hp bisimilarity). A hp bisimulation is a prefix-closed

relation H ⊆ SRuns that satisfies

1. If (r1, r2) ∈ H and r1
t1→ r1.t1 for some t1, then there is some t2 so that

r2
t2→ r2.t2 and (r1.t1, r2.t2) ∈ H.

2. Vice versa.

A hp bisimulation H is hereditary (short: h) when it further satisfies

3. If r ∈ H and t ∈ BEn(r), then δ(r, t) ∈ H.

A hhp bisimulation H is coherent (short: c) when it further satisfies

4. If rw, rt ∈ H such that t I w then rtw ∈ H.

We say two runs r1 ∈ Runs1, r2 ∈ Runs2 are ((c)h)hp bisimilar, written r1 ∼((c)h)hp

r2, iff (r1, r2) ∈ H for some ((c)h)hp bisimulation H. That is, we define:

∼((c)h)hp=
⋃

{H : H is a ((c)h)hp bisimulation}.

We can then define ((c)h)hp bisimilarity between systems as a derived notion:

Definition 6.2.22. N1 and N2 are ((c)h)hp bisimilar iff ((M 1
0 , ε), (M

2
0 , ε)) ∈

∼((c)h)hp.

It is easy to check that this relation on systems coincides with ((c)h)hp bisim-

ilarity as given by the standard definitions (Def. 2.2.2, 2.2.7).
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6.3 hp and hhp Bisimilarity do not Coincide for

Free Choice Systems

Having defined free choice systems we can now easily see that the systems of

Counter-example 3 (Figure 4.1, 4.2) and Counter-example 4 (Figure 4.8) are free

choice. Thus, we have:

Theorem 6.3.1. hp and hhp bisimilarity do not coincide in general for free choice

systems.
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6.4 cp and (c)hcp Bisimilarity

This section is about our auxiliary notions of bisimilarity: compositionality pre-

serving (short: cp) bisimilarity together with its (coherent and) hereditary ver-

sion. In Section 6.4.1 we introduce and define our new concepts. In Section 6.4.2

we briefly discuss how the cp bisimilarities are related to the hp bisimilarities.

Section 6.4.3 gives some first observations, and introduces a shuffle operation for

the domain cp bisimilarity is based on. Finally, in Section 6.4.4 we introduce

two insights, which provide proof methodology analogously to two points of our

general approach (cf. Section 6.1.1). Throughout the section we fix two systems

N1 and N2, and adopt the setting of Section 6.2.5.4.

6.4.1 Introducing cp and (c)hcp Bisimilarity

The behaviour of a net system N is compositional in the following sense: each

process of N can be viewed as a parallel composition of atomic subprocesses, or

places. Accordingly, if a process M evolves into a new process via a transition t,

M is affected only locally: t replaces a subset of subprocesses of M by a new set

of subprocesses as it is specified by the input and output places of t; all the other

subprocesses of M remain unaffected.

cp bisimilarity is designed to preserve these aspects of compositionality: firstly,

it ensures that two related processes M1 and M2 are decomposed in the same

fashion: it requires that the subprocesses of M1 and M2 are matched to each

other by a bijection. Secondly, cp bisimilarity makes sure that whenever two

transitions t1, t2 are matched against each other at a pair of processes M1, M2

then t1 has the same local effect on M1 as t2 has on M2: (a) in the bijection that

relates M1 and M2 the input places of t1 must be matched to the ones of t2, and

vice versa; (b) in the bijection that relates the resulting processes M ′
1 and M

′
2 the

output places of t1 must be matched to the ones of t2, and vice versa, and the

remaining places must be related as before.

We shall see that preserving the compositional structure of two systems in

this manner entails preserving their causal structure: cp bisimilarity respects the

immediate cause relationship between transition occurrences in runs. Importantly

for us, this immediately implies that cp bisimilarity is partial order preserving.

On the other hand, cp bisimilarity is not a truly-concurrent notion: it fully re-

spects the compositional dependencies between processes and transitions within a

linearized run, but it is not capable of coordinating the matching of linearizations

which represent the same partial order execution. To ensure that the match-
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ing is done in a truly-concurrent fashion we need to impose a backtracking (and

padding) condition on cp bisimilarity: we will define a hereditary (and coherent)

version of cp bisimilarity in the same way as we obtained (c)hhp bisimilarity.

The coincidence and decidability problems associated with cp and (c)hcp

bisimilarity have similar characteristics to the ones associated with hp and (c)hhp

bisimilarity. In particular, decidability of cp bisimilarity is easily obtained whereas

the decidability problem of (c)hcp bisimilarity is difficult. On the other hand, cp

and (c)hcp bisimilarity provide a better target because we can make use of their

place matchings. As explained in Section 6.1, by first analysing the problems of

cp and (c)hcp bisimilarity, we ultimately hope to obtain results for hp and (c)hhp

bisimilarity.

The remainder of this section falls into five parts. In the first part we formally

introduce cp bisimilarity. In the second part we give an alternative characteriza-

tion of cp bisimilarity which keeps the ‘matching history’. This is a prerequisite

for the next two parts: in the third part we show that cp bisimilarity is causal-

ity preserving, and in the fourth part we define our hereditary (and coherent)

version of cp bisimilarity. In the last part we comment on the coincidence and

decidability problems of cp and (c)hcp bisimilarity.

cp Bisimilarity. First of all, we translate the above matching requirements into

a compositionality preserving transition system. It will be based on the domains

of joint processes, and joint transitions :

Definition 6.4.1. The domain of joint processes is defined as

JProc :=
⋃

{β : M1 →M2 is a bijection | M1 ∈ Proc1 & M2 ∈ Proc2},

and the domain of joint transitions as

JT := T1 × T2.

Usually, we let β range over JProc, and t over JT . (It will be clear from the

context whether t denotes a joint transition or a standard Petri net transition.)

For i = 1, 2 we assume projection functions proj i : JProc → Proci, and proj i :

JT → Ti to recover the ith process, and the ith transition respectively. For

JT , proj i is given via the standard projection functions associated with product

domains. For JProc, we transfer the standard projection functions of P1 × P2 to

the domain P(P1 × P2): for γ ⊆ P1 × P2 we define:

proj i(γ) :=
⋃

{proj i(p) | p ∈ γ}.

This certainly induces a function proj i : JProc → JProc.
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Convention 6.4.1. Let β ∈ JProc. If the ambiguity is resolved by the argument

we shall refer to β−1 by β.

We associate the following transition relation with JProc:

Definition 6.4.2. The compositionality preserving (short: cp) transition rela-

tion, →cp⊆ JProc × JT × JProc, is defined as follows:

β
(t1,t2)
→cp β

′ iff

1. proj i(β)
ti→ proj i(β

′) for i = 1, 2,

2. l(t1) = l(t2),

3. β(•t1) =
•t2, and

4. β ¹proj 1(β)\•t1= β′ ¹proj 1(β)\•t1 .

The cp transition relation can also be characterized in the spirit of the Petri

net firing rule: executing a joint transition amounts to replacing a joint set of

input places with a joint set of output places.

Proposition 6.4.1. Let β, β ′ ∈ JProc, and t ∈ JT. β
t
→cp β

′ iff there exists

βpre , βpost ⊆ P1 × P2 such that

1. proj i(βpre) =
•proj i(t) & proj i(βpost) = proj i(t)

• for i = 1, 2,

2. βpre ⊆ β,

3. β ′ = β\βpre ∪ βpost , and

4. l(proj 1(t)) = l(proj 2(t)).

Furthermore, βpre is uniquely given by t and β, and βpost is uniquely given by t

and β ′.

Proof. This follows easily from the Petri net firing rule, and Def. 6.4.2.

We refer to (JProc, JT ,→cp) as the compositionality preserving (short: cp)

transition system, and denote it by Tcp . Based on Tcp we now define cp bisimi-

larity:

Definition 6.4.3. A cp bisimulation is a relation C ⊆ JProc that satisfies

1. If β ∈ C and proj 1(β)
t1→ for some t1 ∈ T1, then there are t2 ∈ T2, β

′ ∈ JProc

such that β
(t1,t2)
→cp β

′ and β′ ∈ C.
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2. Vice versa.

Two processes M1 ∈ Proc1, M2 ∈ Proc2 are cp bisimilar w.r.t. β ∈ JProc, written

β ∈ ∼cp, iff proj i(β) = Mi for i = 1, 2, and β ∈ C for some cp bisimulation C.

That is, we define: ∼cp=
⋃

{C | C is a cp bisimulation}.

N1 and N2 are cp bisimilar iff M 1
0 and M2

0 are cp bisimilar w.r.t. some β ∈ JProc.

Example 6.4.1. It is easy to see that the two systems of Figure 4.8 are cp bisimi-

lar: to construct a cp bisimulation start with the joint process {(p1, p
′
1), (p2, p

′
2)}

and match the transitions according to the hp bisimulation that relates the two

systems. The matching of the resulting processes will be dictated by the joint

transitions.

cp Bisimilarity with History. We now present an alternative characterization

of cp bisimilarity which does not abstract away from the ‘matching history’.

The new definition will be based on joint firing sequences (short: jfs’ ), which

constitute the natural notion of run for the cp transition system: in addition to

recording the history of joint transitions jfs’ also show how past processes were

related to each other. For technical reasons, jfs’ will be based on ‘joint place

set’/transition sequences (short: jpts’ ).

Definition 6.4.4 (jpts’). A ‘joint place set’/transition sequence (short: jpts)

(of N1 and N2) is a non-empty sequence γ0t1γ1 . . . tnγn, where n ≥ 0, such that

∀i ∈ [0, n]. γi ⊆ P1 × P2, and ∀i ∈ [1, n]. ti ∈ JT . We denote the set of jpts’ by

JPTS , and let φ range over JPTS .

Let φ ≡ γ0t1 . . . γn ∈ JPTS . We define the first element of φ as first(φ) := γ0,

and the last element of φ as last(φ) := γn.

For i = 1, 2, we inductively define a projection function proj i : JPTS → P(Pi)×

T ∗i to recover the ith initial set of places, and the ith underlying transition se-

quence:

proj i(γ) = (proj i(γ), ε),
proj i(φ tγ) = let (M,w) = proj i(φ) in (M,w.proj i(t)).

We use a function ts : JPTS → JT ∗ to extract the joint transitions of a jpts in

the obvious way.

Let B ⊆ JPTS . We say B is prefix-closed iff φ tγ ∈ B =⇒ φ ∈ B.

Definition 6.4.5 (jfs’). A jpts β0t1β1 . . . tnβn is a joint firing sequence (short:

jfs) (of N1 and N2) iff ∀i ∈ [0, n]. βi ∈ JProc, and ∀i ∈ [1, n]. βi−1
ti→cp βi. We
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denote the set of jfs’ by JFS , and the set of jfs’ starting at β by JFS (β). We let

σ range over JFS .

We transfer the cp transition relation to jfs’ in the obvious way, and define →cp

⊆ JFS × JT × JFS by:

σ
t
→cp σ

′ ⇐⇒ ∃β. (σ′ = σ tβ & last(σ)
t
→cp β).

The following ensures that proj i on jpts’ induces a projection function proj i :

JFS → Runsi:

Proposition 6.4.2. Let σ ∈ JFS. For i = 1, 2 we have: proj i(σ) ∈ Runsi.

Proof. Easy by induction on the length of σ and the definition of →cp.

Now, we are ready to reformulate cp bisimilarity as a relation of jfs’. To make

sure that the jfs’ indeed represent ‘matching history’ we consider only prefix-

closed bisimulations.

Definition 6.4.6 (cp bisimilarity on jfs’). A cp bisimulation is a prefix-closed

relation B ⊆ JFS that satisfies

1. If σ ∈ B and proj 1(σ)
t1→ for some t1 ∈ T1, then there are t2 ∈ T2, σ

′ ∈ JFS

such that σ
(t1,t2)
→cp σ

′ and σ′ ∈ B.

2. Vice versa.

Two runs r1 ∈ Runs1, r2 ∈ Runs2 are cp bisimilar w.r.t. σ ∈ JFS , written

σ ∈ ∼cp, iff proj i(σ) = ri for i = 1, 2, and σ ∈ B for some cp bisimulation B.

That is, we define: ∼cp =
⋃

{B | B is a cp bisimulation}.

N1 and N2 are cp bisimilar iff (M 1
0 , ε) and (M 2

0 , ε) are cp bisimilar w.r.t. some

σ ∈ JFS .

In the sequel, it will always be clear from the context whether we consider ∼cp

and cp bisimulations as sets of joint processes or as sets of jfs’. It is clear that

our new definition is equivalent to the original one in the following sense:

Proposition 6.4.3. Let σ ≡ β0t1 . . . βn ∈ JFS. We have:

σ ∈ ∼cp ⇐⇒ ∀i ∈ [0, n]. βi ∈ ∼cp .

Proof. Obvious.

Later, it will be convenient to investigate cp bisimilarity relative to a fixed

joint process. For this, we introduce some terminology.
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Definition 6.4.7. Let β ∈ JProc.

We say a set B ⊆ JFS is a cp bisimulation for β iff B ⊆ JFS (β), β ∈ B, and B is

a cp bisimulation.

We define cp bisimilarity relative to β by:

∼cp-β =
⋃

{B | B is a cp bisimulation for β}.

The following connection is immediate:

Proposition 6.4.4. Let β ∈ JProc, and σ, σ′ ∈ JFS such that last(σ) = β =

first(σ′).

1. σ.σ′ ∈ ∼cp =⇒ σ′ ∈ ∼cp-β.

2. σ ∈ ∼cp & σ′ ∈ ∼cp-β =⇒ σ.σ′ ∈ ∼cp.

Proof. Obvious.

cp Bisimilarity is Causality Preserving. Having defined a notion of run for

the cp transition system, we can now see that cp transitions are causality pre-

serving in a very strict sense: each jfs respects the immediate cause dependencies

that exist between its transitions (= Petri net boxes). Of course, this immediately

implies that cp bisimilarity is partial order preserving.

Proposition 6.4.5. Let σ ∈ JFS, and (t1, t2) ∈ JT such that σ
(t1,t2)
→cp .

1. icauses(proj 1(σ), t1) = icauses(proj 2(σ), t2), and hence

2. mcauses(proj 1(σ), t1) = mcauses(proj 2(σ), t2).

Proof. (1.) Let σ and (t1, t2) be given as above; set ri = proj i(σ) for i = 1, 2.

We shall show: ∀e ∈ {init} ∪ [|r1|]. e ∈ icauses(r1, t1) ⇐⇒ e ∈ icauses(r2, t2).

Clearly, this will prove the proposition.

Assume e ∈ icauses(r1, t1), which means there is p1 ∈ proj 1(last(σ)) such that

p1 ∈
•t1 and e = gen(r1, p1). The latter gives us p1 ∈ (te1)

• and ∀e′ ∈ [e+ 1, |r1|].

p1 6∈
•(te

′

1 ). With the definition of →cp it is easy to see that last(σ)(p1) satisfies

corresponding properties, so that altogether we can conclude e ∈ icauses(r2, t2)

as required. The other direction follows from the symmetric argument.

(2.) is a consequence of (1).

Naturally, we have:

Proposition 6.4.6. For all σ ∈ JFS, ts(σ) ∈ SRuns.

Proof. This follows since cp transitions are label preserving by definition, and

maximal cause preserving by Prop. 6.4.5(2).
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(c)hcp Bisimilarity. In the beginning of this subsection we anticipated that cp

bisimilarity is not a truly-concurrent notion. This is illustrated by Example 6.4.1

(or Example 6.4.2 ultimately): like other transitions, b3 has to be matched depen-

dent on the way in which it is linearized: if b3 is performed as first transition then

it has to be matched against b′2; on the other hand, if b3 is computed after the

a2-transition then it has to be matched against b′1. To ensure that the matching is

done in a truly-concurrent fashion, we can impose a (padding and) backtracking

condition on cp bisimilarity, and thereby strengthen our notion to (coherent and)

hereditary cp (short: (c)hcp) bisimilarity. We first define backtracking and hcp

bisimulation, and then furthermore padding and chcp bisimulation.

In our standard definition of hhp bisimilarity, we implemented the backtrack-

ing requirement compactly as the ‘joint’ backtracking of pairs of transitions in

synchronous runs. The following ensures that we can proceed analogously in the

framework of jfs’:

Proposition 6.4.7. Let β0t1β1 . . . tnβn ∈ JFS. For all i ∈ [1, n] we have:

∀j ∈ [i+ 1, n]. proj 1(tj) I1 proj 1(ti) ⇐⇒ ∀j ∈ [i+ 1, n]. proj 2(tj) I2 proj 2(ti).

Proof. This follows from Prop. 6.4.6.

Thus, we define:

Definition 6.4.8 (I, BEn). We associate an independence relation I ⊆ JT ×JT

with N1 and N2 in the following way:

t I t′ ⇐⇒ (proj 1(t) I1 proj 1(t
′)) & (proj 2(t) I2 proj 2(t

′)).

Let σ ≡ β0t1β1 . . . tnβn ∈ JFS , and t ∈ JT . t is backtrack enabled in σ, written

t ∈ BEn(σ), iff there is i ∈ [1, n] such that ti = t, and ∀j ∈ [i+ 1, n]. tj I ti.

Having defined BEn we still need to define the result of backtracking; in other

words we need to transfer the backtrack function δ to our framework of jfs’. δ

on jfs’ is more involved: in addition to removing the backtracked transition from

the respective jfs we also have to make sure that the joint processes over which

it is backtracked are adjusted correspondingly. Here Prop. 6.4.1 comes in useful:

executing a joint transition in the cp transition system amounts to replacing a

set of joint input places with a set of joint output places.

Definition 6.4.9. Let β ∈ JProc, and t ∈ JT .

Let β
t
→. We call the uniquely given βpre of Prop. 6.4.1 the set of joint input

places of t w.r.t. β, and denote it by preSet(β, t).
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Let β′
t
→ β for some β ′. Analogously, we call the uniquely given βpost of Prop. 6.4.1

the set of joint output places of t w.r.t. β, and denote it by postSet(β, t).

Thus, when backtracking a joint transition t in a jfs we naturally adapt the

intermediate joint processes by replacing t’s joint output places with its joint

input places. To formalize this the following operations will be helpful:

Definition 6.4.10. Let φ, φ′ ∈ JPTS . If last(φ) = first(φ′), we define the

concatenation of φ and φ′ as

φ.φ′ := γ0t1 . . . γnt
′
1γ
′
1 . . . γ

′
m,

where φ = γ0t1 . . . γn, and φ′ = γnt
′
1γ
′
1 . . . γ

′
m.

Let γ, γold , γnew ⊆ P1 × P2. If γold ⊆ γ and γnew ∩ (γ\γold) = ∅, we define the

substitution of γnew for γold in γ as

γ[γnew\γold ] := γ\γold ∪ γnew .

We generalize this operation to jpts’, and inductively define:

γ[γnew\γold ] := γ[γnew\γold ] (substitution for P1 × P2 as above),
(φ tγ)[γnew\γold ] := (φ[γnew\γold ]) t(γ[γnew\γold ]).

The following proposition ensures: (1.) concatenation on jpts’ induces con-

catenation on jfs’; (2.) if applied in the way we intend, the substitution function

will always be defined, and return a jfs.

Proposition 6.4.8.

1. Let σ, σ′ ∈ JFS with last(σ) = first(σ′). Then σ.σ′ ∈ JFS.

2. Let βt.σ ∈ JFS with t I ts(σ). Then σs := σ[preSet(β, t)\postSet(first(σ), t)]

is defined, and we have: σs ∈ JFS & first(σs) = β.

Proof. This follows easily by applying the definitions.

It is now straightforward how to define δ:

Definition 6.4.11 (δ). Let σ ≡ β0t1β1 . . . tnβn ∈ JFS , and t ∈ BEn(σ).

In the following, we use last(σ, t) to denote the position of the last occurrence of

t in σ. That is, last(σ, t) = i iff ti = t and tj 6= t for all j ∈ [i+ 1, n].

We define δ(σ, t) to be the result of backtracking t in σ, that is δ(σ, t) := σ ′.σ′′,

where σ′ = β0t1 . . . βi−1, and σ′′ = (βiti+1 . . . βn)[preSet(βi−1, t)\postSet(βi, t)] for

i = last(σ, t). By Prop. 6.4.8 it is clear that the operations are defined, and we

have δ(σ, t) ∈ JFS .
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Finally, we are ready for the definition of hcp bisimulation:

Definition 6.4.12 (hcp bisimulation). A cp bisimulation B ⊆ JFS is heredi-

tary (short: h) when it further satisfies

3. If σ ∈ B and t ∈ BEn(σ) for some t ∈ JT , then δ(σ, t) ∈ B.

Having already defined backtracking and hcp bisimulation we can now define

padding and chcp bisimulation more succinctly. Analogously to chhp bisimilarity,

we impose padding whenever there is a fork between a new joint transition tβ and

an alternative continuation σ′ such that tβ and σ′ are independent of each other.

The notion of independence will be the one of Def. 6.4.8, which implies we only

demand padding if both, proj 1(t) and proj 2(t) are independent of the transitions

in proj 1(σ
′), and proj 2(σ

′) respectively. The following makes sure our definition

of padding will be sound:

Proposition 6.4.9. Let σ′, β′ tβ ∈ JFS such that first(σ′) = β ′ and t I ts(σ′).

Then σ′s := σ′[postSet(β, t)\preSet(β ′, t)] is defined, and we have: σ′s ∈ JFS &

first(σ′s) = β.

Proof. As above this follows easily by applying the definitions.

Now, we define:

Definition 6.4.13 (padding). Let σ.σ′, σ tβ ∈ JFS such that t I ts(σ′). Then

we can pad tβ between σ and σ′, and define the result as

ζ(σ, tβ, σ′) := σ tβ.(σ′[postSet(β, t)\preSet(last(σ), t)]).

By Prop. 6.4.9 and 6.4.8(1) it is clear that the operations are defined, and we

have ζ(σ, tβ, σ′) ∈ JFS .

And hence, chcp bisimulation is given as follows:

Definition 6.4.14 (chcp bisimulation). A hcp bisimulation B ⊆ JFS is co-

herent (short: c) when it further satisfies

4. If σ.σ′, σ tβ ∈ B such that t I ts(σ′) then ζ(σ, tβ, σ′) ∈ B.

Finally, we define (c)hcp bisimilarity:

Definition 6.4.15 ((c)hcp bisimilarity). Two runs r1 ∈ Runs1, r2 ∈ Runs2

are (c)hcp bisimilar w.r.t. σ ∈ JFS , written σ ∈ ∼(c)hcp, iff proj i(σ) = ri for

i = 1, 2, and σ ∈ B for some (c)hcp bisimulation B. That is, we define:

∼(c)hcp=
⋃

{B | B is a (c)hcp bisimulation}.
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N1 and N2 are (c)hcp bisimilar iff (M 1
0 , ε) and (M 2

0 , ε) are (c)hcp bisimilar w.r.t.

some σ ∈ JFS .

Example 6.4.2. The systems of Example 6.4.1 are not hcp bisimilar just as they

are not hhp bisimilar.

The Coincidence and Decidability Problem(s) of cp and (c)hcp Bisim-

ilarity. Together, Example 6.4.1 and 6.4.2 clearly show:

Fact 6.4.1. cp and (c)hcp bisimilarity do not coincide in general; they do not

even coincide for free choice systems.

The decidability problem of cp bisimilarity is also readily resolved: two finite-

state systems have only finitely many joint processes, and hence cp bisimilarity

can be decided by exhaustive search.

Fact 6.4.2. It is decidable whether two finite-state systems are cp bisimilar.

On the other hand, the decidability problem of (c)hcp bisimilarity remains

open: we face similar difficulties as for (c)hhp bisimilarity.

6.4.2 Relation to hp and (c)hhp Bisimilarity

Since cp bisimilarity is partial order preserving (Prop. 6.4.5) it is straightforward

to transform any cp bisimulation B ⊆ JFS into a hp bisimulation H: simply

set H := ts(B). The transformation preserves the hereditary property, and for

cp bisimulations that satisfy a natural minimality criterion also the coherent

property. The minimality criterion can always be achieved, and thus altogether

we have:

Fact 6.4.3.

1. cp bisimilarity implies hp bisimilarity.

2. (c)hcp bisimilarity implies (c)hhp bisimilarity.

It is immediately clear that the opposite implications do not hold: hp, hhp,

and chhp bisimilarity are all behavioural notions; they abstract away from places,

and hence they are not capable of reflecting compositionality in the sense of cp

bisimilarity. This is demonstrated by the example of Figure 6.7: the three systems

implement exactly the same behaviour, and are clearly chhp bisimilar; on the

other hand, they are not cp bisimilar. The systems are already free choice; even

more, by means of a loop-back transition they could easily be transferred into a

counter-example of live fc systems.
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Figure 6.7: A trivial counter-example

Fact 6.4.4. chhp bisimilarity does not imply cp bisimilarity, not even for live fc

systems.

On the other hand, we could argue that counter-examples that rely on be-

haviourally irrelevant places merely highlight technical inaccuracies, and that

these might be overcome by employing a more sophisticated version of cp bisim-

ilarity. For example, we could allow that places can be matched to a designated

‘nil’ place, and thereby create the opportunity to ‘submerge’ behaviourally irrele-

vant place occurrences within a bisimulation. We would hope that a decidability

or coincidence result for the original cp bisimilarity could be carried over to such

a new version. It is clear that handling the technical inaccuracies will not auto-

matically give us coincidence between the hp and the cp bisimilarities. Indeed,

there remains a more essential issue to be resolved, the open problem of pending

synch places. We will explain this issue in Section 6.14.1, where we discuss it in

the context of bp bisimilarity.

6.4.3 Further Concepts and Observations

We shall now attend to two technical issues. Firstly, we investigate whether the

free choice types switch and synch are preserved by the matching in cp bisimula-

tions. Secondly, we introduce a shuffle operation for jfs’.
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cp Bisimilarity on Free Choice Systems. For this paragraph, assume N1

and N2 to be free choice. It is not difficult to see that the cp transition system,

and hence cp bisimilarity, respects the types of transitions:

Proposition 6.4.10.

1. Let β ∈ JProc, and t ∈ JT such that β
t
→cp.

proj 1(t) is of type switch (synch) ⇐⇒ proj 2(t) is of type switch (synch).

2. Let β0t1β1 . . . tnβn ∈ JFS. For all i ∈ [1, n] we have:

proj 1(ti) is of type switch (synch) ⇐⇒ proj 2(ti) is of type switch (synch).

Proof. (1.) Let β and t ≡ (t1, t2) be given as above. For i ∈ {1, 2} ti is of type

switch iff |•ti| = 1 (ti is of type synch iff |•ti| > 1). Then (1) is immediate since

by definition of →cp there must be a bijection between •t1 and •t2.

(2.) is a consequence of (1).

This is not always given for places (e.g. consider the jfs’ in the cp bisimulation

of Example 6.4.1). But it will hold if one of two related places (and hence both)

contributes to enabling a joint transition:

Proposition 6.4.11. Let β ∈ JProc, (p1, p2) ∈ β, and (t1, t2) ∈ JT such that

β
(t1,t2)
→cp and pi ∈

•ti for i = 1, or 2.

p1 is of type switch (synch) ⇐⇒ p2 is of type switch (synch).

Proof. Let entities be given as above, and w.l.o.g. assume i = 1. Clearly, for

j ∈ {1, 2} the places of •tj are of type switch (synch) iff tj is of type switch

(synch). But then the proposition easily follows from Prop. 6.4.10(1) and since

by definition of →cp we must have p2 ∈
•t2.

If a system is live then every place occurrence will contribute to enabling a

transition at some future point. Whenever a place is matched in a cp bisimulation

this case will be anticipated, and with the previous proposition it is clear that in

cp bisimilarity on live fc systems the types of places are indeed respected.

Proposition 6.4.12. Assume N1 and N2 to be live.

1. Let β ∈ ∼cp. For all (p1, p2) ∈ β we have:

p1 is of type switch (synch) ⇐⇒ p2 is of type switch (synch).

2. Let β0t1β1 . . . tnβn ∈ ∼cp. For all i ∈ [0, n], and (p1, p2) ∈ βi we have:

p1 is of type switch (synch) ⇐⇒ p2 is of type switch (synch).
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Proof. (1.) Let β and (p1, p2) be given as above. Since N1 is live we can choose

t1 ∈ p1
• and r1 ∈ Runs1(proj 1(β)) such that (a) r1[t1〉, and (b) 6 ∃t′1 ∈ r1. p1 ∈

•t′1

(recall Fact 6.2.2).

Certainly, ∼cp-β contains a match for r1.t1; this means we can assume σ tβ ′ ∈

∼cp-β such that proj 1(σ) = r1 and proj 1(t) = t1. Considering the cp transition

function and property (b) of r1 it is easy to see that we must have (p1, p2) ∈

last(σ). But then (1) immediately follows from Prop. 6.4.11.

(2.) Considering Prop. 6.4.3 this is easily seen to be a consequence of (1).

Justified by Prop. 6.4.10 and 6.4.12 we adopt the following convention:

Convention 6.4.2. Let t ≡ (t1, t2) be a joint transition that occurs in some jfs.

We classify t as type switch (synch) iff t1, or equivalently t2, is of type switch

(synch). Let p ≡ (p1, p2) ∈ β, where β is a joint process that occurs in ∼cp on

live fc systems. We classify p as type switch (synch) iff p1, or equivalently p2, is

of type switch (synch).

Finally, the following related observation will be useful for later:

Proposition 6.4.13. Let β ∈ JProc, (p1, p2) ∈ β such that pi is of type synch,

and (t1, t2) ∈ JT such that pi
• = {ti} and β

(t1,t2)
→ , where i = 1, or 2.

1. pī is of type synch, and

2. SPartners(pī) = β(SPartners(pi)).

Proof. Let entities be given as above. (1) is immediate by Prop. 6.4.11. Then (2)

easily follows when considering that by definition of →cp we have: pī ∈
•t̄i and

•t̄i = β(•ti).

Shuffle for jfs’. We now define a shuffle operation for jpts’, and hence jfs’.

Since we have to take care of the ‘joint place sets’ the definition will be more

involved than the one of shuffle for words (cf. Def. 2.5.3).

Definition 6.4.16. The shuffle of two jpts’ φ? ≡ γ?0t
?
1γ

?
1 . . . t

?
nγ

?
n, and φ◦ ≡

γ◦0t
◦
1γ
◦
1 . . . t

◦
mγ

◦
m is the set φ? ⊗ φ◦ of all words of the form

φ?1.φ
◦
1.φ

?
2.φ

◦
2 . . . φ

?
k.φ

◦
k,

where k ≥ 1, and there exist functions e? : [0, k]→ [0, n], e◦ : [0, k]→ [0,m] such

that e?(0) = 0 = e◦(0), both e? and e◦ are monotonic (∀a, b ∈ [0, k]. a ≤ b ⇒
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e?(a) ≤ e?(b), and similarly for e◦), and for j ∈ [1, k] we have:

φ?j = (γ◦e◦(j−1) ∪ γ
?
e?(j−1)) t

?
e?(j−1)+1 (γ

◦
e◦(j−1) ∪ γ

?
e?(j−1)+1) t

?
e?(j−1)+2 . . .

. . . t?e?(j) (γ
◦
e◦(j−1) ∪ γ

?
e?(j)),

φ◦j = (γ?e?(j) ∪ γ
◦
e◦(j−1)) t

◦
e◦(j−1)+1 (γ

?
e?(j) ∪ γ

◦
e◦(j−1)+1) t

◦
e◦(j−1)+2 . . .

. . . t◦e◦(j) (γ
?
e?(j) ∪ γ

◦
e◦(j)).

The shuffle of two sets L1, L2 ⊆ JPTS is the set

L1 ⊗ L2 =
⋃

φ1∈L1, φ2∈L2

φ1 ⊗ φ2.

Naturally, we have:

Proposition 6.4.14. Let L1, L2 ⊆ JPTS. If L1 and L2 are prefix-closed then

L1 ⊗ L2 is also prefix-closed.

Proof. This is easy to see from the definition.

And analogously to shuffle on (joint) transition sequences (cf. Prop 2.5.2,

2.5.3) we obtain:

Proposition 6.4.15. Let β ∈ JProc, and βs, β
′
s ⊆ β such that βs∩β

′
s = ∅. Then

for any L ⊆ JFS (βs), L
′ ⊆ JFS (β ′s) we have: L⊗ L′ ⊆ JFS (βs ∪ β

′
s).

Proof. Straightforward.

6.4.4 Proof Methodology

In preparation, we now present two insights, which will provide important proof

methodology in our quest for the coincidence between cp and chcp bisimilarity

on live fc systems. The insights directly correspond to two points of our general

approach (cf. Section 6.1.1(3)).

A General Insight. Let x bisimilarity be any notion of bisimilarity that has

a hereditary and coherent version. Inspired by Section 3.3 we obtain a (1)heredi-

tary and (1)coherent version of x bisimilarity by imposing backtracking over only

one transition, and an analogously restricted version of padding. We will make

use of the following insight: if x bisimilarity coincides with its (1)hereditary and

(1)coherent version, in the strict sense that any x bisimulation can be extended

to a (1)hereditary and (1)coherent one, then any x bisimulation can furthermore

be extended to one that is fully hereditary and coherent. This is so because the

largest x bisimulation satisfies a simple closure property; e.g. for cp bisimilarity
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we have: let σ.σc, σ
′ ∈ ∼cp; if σ and σ′ are the same up to reshuffling of inde-

pendent transitions then σ′.σc ∈ ∼cp. For us this means: we can establish the

coincidence between cp and chcp bisimilarity by proving that ∼cp is (1)hereditary

and (1)coherent. Formally, we define and formulate:

Definition 6.4.17. A set B ⊆ JFS can satisfy the following properties:

• (1)hereditary (short: (1)her): σ tβ t′β′ ∈ B & t I t′ =⇒ σ t′β′s ∈ B,

where β ′s = β′[preSet(last(σ), t)\postSet(β, t)].

• (1)coherent (short: (1)coh): σ t′β′, σ tβ ∈ B & t I t′ =⇒ σ tβ t′β′s ∈ B,

where β ′s = β′[postSet(β, t)\preSet(last(σ), t)].

Lemma 6.4.1 (proof method I).

∼cp|= (1)her & (1)coh =⇒ ∼cp = ∼chcp .

Lemma 6.4.1 is formally shown for hp bisimilarity in Appendix C.2; the proof

carries over in a straightforward manner to cp bisimilarity. Appendix C.2 also

shows that it is possible to separately achieve ‘∼cp|= (1)her ⇒ ∼cp|= her’, and

‘∼cp|= (1)coh⇒ ∼cp|= coh’.

Divide and Conquer. The second insight is trivial but it provides us with

an important method of further structuring the coincidence problem of cp and

chcp bisimilarity on live fc systems. Assume N1 and N2 to be free choice. From

Section 6.4.3 we know that the joint transitions of jfs’ can be classified into type

switch or synch. Accordingly, we can split the properties (1)hereditary and (1)co-

herent into two parts, and establish ‘∼cp|= (1)her & (1)coh’ by separately prov-

ing that on the one hand cp bisimilarity is sw-(1)hereditary and sw-(1)coherent,

and on the other hand sy-(1)hereditary and sy-(1)coherent.

Definition 6.4.18. A set B ⊆ JFS can satisfy the following properties:

• sw-(1)hereditary(short: sw-(1)her):

σ tβ t′β′ ∈ B, t I t′ & t′ is of type switch =⇒ σ t′β′s ∈ B,

where β ′s = β′[preSet(last(σ), t)\postSet(β, t)].

• sy-(1)hereditary (short: sy-(1)her):

σ tβ t′β′ ∈ B, t I t′ & t′ is of type synch =⇒ σ t′β′s ∈ B,

where β ′s = β′[preSet(last(σ), t)\postSet(β, t)].
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• sw-(1)coherent (short: sw-(1)coh):

σ t′β′, σ tβ ∈ B, t I t′ & t′ is of type switch =⇒ σ tβ t′β′s ∈ B,

where β ′s = β′[postSet(β, t)\preSet(last(σ), t)].

• sy-(1)coherent (short: sy-(1)coh):

σ t′β′, σ tβ ∈ B, t I t′ & t′ is of type synch =⇒ σ tβ t′β′s ∈ B,

where β ′s = β′[postSet(β, t)\preSet(last(σ), t)].

Lemma 6.4.2 (proof method II). Let B ⊆ JFS.

B |= sw-(1)her, sw-(1)coh, sy-(1)her & sy-(1)coh
=⇒ B |= (1)her & (1)coh.

It is important to note that we split the properties according to the type of t′

rather than t. Our motivation for this will become clear later on (cf. Section 6.11).
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6.5 Interlude I

We have now arrived at Part II, which, apart from this interlude, comprises the

following six sections, up to Interlude II. As explained in Section 6.1.2, the six sec-

tions provide the modules that together prove our two main results on live SSM-

decomposable systems: cp bisimilarity is K-decomposable, and sw-(1)coherent

and sw-(1)hereditary. In detail, the material is organized as follows:

1. (Section 6.6) Building on Section 6.2.4 we refine our insight into the be-

haviour of live SSMD fc systems. In particular, we introduce a setting in which

we assume fixed courses for a subset of components.

2. (Section 6.7) We introduce the two new topological entities for free choice

nets, links and wedges. With the help of the behavioural concepts of (1.) we

will prove important properties about them. This will culminate in the WNL

Theorem, which reveals a structural constraint of links and wedges in live SSMD

fc systems.

3. (Section 6.8) We investigate the cp transition system in the context of

SSMD fc systems. This will provide us with insights about the matching in cp

bisimilarity, which will be required in the following three parts.

4. (Section 6.9) We introduce the property of K-decomposability, and provide

a first analysis into whether cp bisimilarity indeed satisfies this decomposition

property. In particular, we are led to the Crucial SubgoalK , and sketch how it

will follow if we can prove that swfsi-matching is deterministic. Throughout the

analysis we rely on observations of (3.).

5. (Section 6.10) Motivated by (4.) we set out to prove that for live SSMD fc

systems swfsi-matching in cp bisimilarity is deterministic. We indeed achieve this

result, and call it the SWFSI Matching Theorem. The WNL Theorem delivers

the crucial ingredient to the proof while its application is made possible by an

observation of (3.).

6. (Section 6.11) With the result of (5.) we can now implement our plan of

(4.): we prove the Crucial SubgoalK , and conclude that cp bisimilarity on live

SSMD fc systems is indeed K-decomposable. The Crucial SubgoalK will have a

second consequence: with its help we additionally achieve that cp bisimilarity on

live SSMD fc systems is sw-(1)coherent and sw-(1)hereditary.

An overview of this structure can be found in Figure 6.1.
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6.6 On the Behaviour of Live SSMD FC Sys-

tems

In this section we will utilize and refine our knowledge about the behaviour of

live SSM-decomposed fc systems. The newly developed concepts and results will

be employed in the next section to prove the WNL Theorem.

Recall that in Section 6.2.4 we derived the following two important facts:

(1.) In live fc systems the computations of SM-components are unconstrained

by their context (Theorem 6.2.2). (2.) The SM-components of SSM-decomposed

fc systems can take their decisions in full freedom. We shall translate (2.) into

action, and grant components a will of their own: we will define a setting where

we assume fixed courses for a subset of components. As we will see, in this setting

(1.) is no longer valid: components can become frozen, and may never be able

to complete their computation. We will, however, obtain a generalized version of

Theorem 6.2.2.

We proceed as follows: first of all, we formalize the concept of waiting. Sec-

ondly, we give the definitions for the setting with courses. In a third part, we will

see how components can become frozen by a course, and finally we present the

generalization of Theorem 6.2.2. Throughout this section we assume an SSM-

decomposed fc system (N ,Cover). If we require N to be live we will denote it

by NL. For the examples consider the system of Figure 6.5.

Waiting Orders. As we saw in Section 6.2.4.1 the SM-components of a fc

system may have to wait at synch places for their synchronization partners to

get ready. In the context of a SSM-decomposition there will be a characteristic

scenario of ‘waiting dependencies’ between the components at each reachable

marking. We formally capture this by defining the following relation:

Definition 6.6.1. Let M ∈ Reach(N ), and K ∈ Cover .

Let p ∈ PN . We say K is directly waiting for p at M , denoted by p¢M K, iff

1. M(K) is a synch place with p ∈ SPartners(M(K)), and

2. p 6∈M .

Let K ′ ∈ Cover . We say K is directly waiting for K ′ atM , denoted by K ′ ≺M K,

iff there is p ∈ PK′ such that p¢M K. If we want to specify p (which is uniquely

given by Prop. 6.2.2(1a)) we will write K ′(p) ≺M K.

226



We denote the transitive closure of ≺M by ≺≺M , and call it the waiting order

at M . If K ′ ≺≺M K then we say K is waiting for K ′ at M . We will write

K ′(p) ≺≺M K if we want to specify a synch place of K ′ for which K is waiting

(note that there could be several).

We say K is waiting at M iff K ′ ≺≺M K for some K ′.

Example 6.6.1. LetM = {p1, p6, p12, p14}. We have K1(p3) ≺M K2
(p10)≺M K3

(p8)≺M K4.

Indeed, we have:

Proposition 6.6.1. Let M ∈ Reach(N ), K,K ′ ∈ Cover, and p ∈ PK′ such

that K ′(p) ≺≺M K. Further, let r ≡ t1t2 . . . tn ∈ RunsN(M), and M ′ such that

M [r〉M ′.

1. (a) K is inactive at least until K ′ performs some transition:

∀i ∈ [1, n]. (ti ∈ TK =⇒ ∃j ∈ [1, i− 1]. tj ∈ TK′),

and more exactly:

(b) K is inactive at least until K ′ performs a p-enabling transition:

∀i ∈ [1, n]. (ti ∈ TK =⇒ ∃j ∈ [1, i− 1]. tj ∈ TK′ & p ∈ tj
•).

2. (a) K stays waiting for K ′ at least until K ′ performs some transition:

(∀i ∈ [1, n]. ti 6∈ TK′) =⇒ K ′ ≺≺M ′ K,

and more exactly:

(b) K stays waiting for K ′ at least until K ′ performs a p-enabling transi-

tion:

(∀i ∈ [1, n]. ¬(ti ∈ TK′ & p ∈ ti
•)) =⇒ K ′(p) ≺≺M ′ K.

Proof. (1.) We only need to prove the stronger clause (b). If K ′(p) ≺≺M K then

there is a chain K ′(p) ≺M K1(p1) ≺M . . . Kn(pn) ≺M K. The property can easily

be proved by induction on the length of this chain. To prove the inductive step

one employs the definition of ≺M , Obs. 6.2.5(1,2), and the fact that if p ∈ PK′

then all p-enabling transitions (t ∈ TN with p ∈ t•) are contained in TK′ (this

follows from Prop. 6.2.2(2b)).

(2.) Again it is sufficient to prove (b). Assume K ′(p) ≺≺M K, and with it

a chain K ′(p) ≺M K1(p1) ≺M . . . Kn−1(pn−1) ≺M Kn ≡ K. Further, let M [r〉M ′

such that r does not contain any p-enabling K ′-transition. By Prop. 6.2.9(2)

we obtain M(K ′) = M ′(K ′), and by additionally employing (1.) of the current

proposition M(Ki) = M ′(Ki) for all i ∈ [1, n]. It is then clear that the same

waiting chain is also present at M ′, and hence we have K ′(p) ≺≺M ′ K.
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For SSM-decomposed fc systems in general, ≺≺M can be reflexive, which

expresses that components may be deadlocked. For live SSM-decomposed fc

systems, ≺≺M is always a strict order:

Proposition 6.6.2. For all M ∈ Reach(NL), ≺≺M is a strict order.

Proof. Let M ∈ Reach(NL). We only have to prove that ≺≺M is irreflexive. To

the contrary assume there is K ∈ Cover with K ≺≺M K. Then by Prop. 6.6.1(1)

K is deadlocked; it can never do any action again. But this is a clear contradiction

to liveness (Prop. 6.2.11).

In our context of finite-state systems this implies:

Proposition 6.6.3. Let M ∈ Reach(NL). There is at least one component K ∈

Cover which is not waiting at M .

Proof. Follows from Prop. 6.6.2 and the fact that strict orders on finite sets have

at least one minimal element.

Components on Courses. In Section 6.2.4.2 we explained that the compo-

nents of SSM-decomposed fc systems can take their decisions in full freedom. As

promised, we now translate this fact into action, and grant components a will of

their own: we allow local computation paths for a subset of components to be

fixed, and require that global computations conform to these component courses.

Definition 6.6.2. Let M ∈ Reach(N ).

Let K ∈ Cover . A course for K (short: K-course) at M is an infinite K-

computation5 γK at M(K). Let K ⊆ Cover . A course for K (short: K-course)

at M is a family C = {γCK}K∈K, where each γCK is a K-course at M .

For the next two items let K ⊆ Cover and C be a K-course at M .

Let r ∈ RunsN(M). We say r conforms to C iff for all K ∈ K we have: r ↑

TK ∈ FinPrefixes(γ
C
K). We denote the set of runs of M conforming to C by

CRunsN(M, C).

Let r ∈ CRunsN(M, C). We define the continuation course of C after r to be:

cont(C, r) = {γcontK }K∈K, where γcontK = γCK − r↑TK.

The following proposition complements the definition; in particular the first

part shall be used implicitly later on.

5Recall Def. 6.2.11

228



Proposition 6.6.4. Let M ∈ Reach(N ), K ⊆ Cover, and C a K-course at M .

Further let r ∈ CRunsN(M, C), C ′ = cont(C, r), and M ′ such that M [r〉M ′.

1. C ′ is a K-course at M ′.

2. Let r′ ∈ CRunsN(M
′, C ′), C ′′ = cont(C ′, r′), and M ′′ such that M ′[r′〉M ′′.

Then we have: r.r′ ∈ CRunsN(M, C), cont(C, r.r′) = C ′′, and M [r.r′〉M ′′.

Proof. (1.) follows with Prop. 6.2.8. (2.) is immediate with the definitions.

Example 6.6.2. LetM0 be as indicated in Figure 6.5. γCK1
:= (t2t1)

ω is a K1-course

at M0, γ
C
K2

:= (t5t6t4t9t10)
ω a K2-course at M0, and hence C := {γCK1

, γCK2
} is a

{K1, K2}-course at M0.

Set r := t2t5t1t2t6t1, γ
C′

K1
:= (t2t1)

ω, γC
′

K2
:= (t4t9t10t5t6)

ω, and C ′ := {γC
′

K1
, γC

′

K2
}.

We have r ∈ CRunsN(M0, C), and cont(C, r) = C ′. Note that C ′ is a {K1, K2}-

course at M , where M is as defined in Example 6.6.1, or equivalently given by

M0[r〉M .

Freezing Components. From Obs. 6.2.6 we know that whenever in a live fc

system an SM-component K has arrived at a synch place, K never has to wait

in vain: there is always a computation of the remaining system that makes K’s

synch partners ready for synchronization. However, the observation presupposes

that the remaining system can be steered according to the requirements of K.

If we grant other components a will of their own, and compute the system in

conformity with a course C, it can happen that K is made to wait indefinitely; it

will be inactive as long as C is kept. Formally, a component can be frozen by a

course in the following way:

Definition 6.6.3. Let M ∈ Reach(NL), K ⊆ Cover , and C a K-course at M .

We say a component K ∈ Cover is frozen by C at M iff there are K ′ ∈ K and

p ∈ PK′ such that K ′(p) ≺≺M K & 6 ∃t ∈ γCK′ . p ∈ t•. We use frozen(M, C) to

denote the set of components frozen by C at M .

Example 6.6.3. LetM0,M , C, C ′ be as in Example 6.6.2. We have frozen(M0, C) =

{K3}, and frozen(M, C ′) = {K2, K3, K4}.

Naturally, we have:

Proposition 6.6.5. Let M ∈ Reach(NL), K ⊆ Cover, and C be a K-course at

M . If K ∈ frozen(M, C) then for all r ∈ CRunsN(M, C) we have:

1. K 6∈ Ks(r).
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2. K ∈ frozen(M ′, cont(C, r)), where M ′ is such that M [r〉M ′.

Proof. (1.) is immediate with Prop. 6.6.1(1b); (2.) follows with Prop. 6.6.1(2b).

Clause (2) implies that while computing in conformity with a course C the

number of frozen components can only increase, never decrease. On the other

hand, liveness makes sure that at least one component remains active: it is not

possible to freeze all components; this is a consequence of the definition of frozen

and Prop. 6.6.3. Moreover, if C is non-empty at least one of the components

participating in C will be active:

Proposition 6.6.6. Let M ∈ Reach(NL), K ⊆ Cover with K 6= ∅, and C be a K-

course atM . There is at least one component K ∈ K such that K 6∈ frozen(M, C).

Proof. Let M , K, and C be given as above. If K ⊆ frozen(M, C) then for each

K ∈ K there would be K ′ ∈ K such that K ′ ≺≺M K. But this is clearly not

possible since K is finite and ≺≺M is a strict order (Prop. 6.6.2).

The following property will be helpful later on; it can be derived from the

definitions by case analysis.

Proposition 6.6.7. Let M ∈ Reach(NL), K ⊆ Cover, C be a K-course at M ,

and K, K ′ ∈ Cover. If K ′ ∈ frozen(M, C) and M(K) is a synch place such that

∃p′ ∈ SPartners(M(K)). p′ ∈ PK′ then we also have K ∈ frozen(M, C).

Proof. See Appendix C.3.

The Computations of Components in the Context of a Course. As ex-

pressed in Theorem 6.2.2, in live fc systems the computations of an SM-component

K are unconstrained in that any computation of K can also be achieved in the

composite context. It is clear that this is not valid in the setting with courses:

components can become frozen and Obs. 6.2.6 is not true. However, the following

generalization of Theorem 6.2.2 does hold:

Any computation of a component K that conforms to the present

course can either also be performed in the context of the composite

net, or it can be performed partially and K will be frozen at the

resulting marking.

Theorem 6.6.1. Let M ∈ Reach(NL), K ⊆ Cover, C be a K-course at M , and

K ∈ Cover. For all rK ∈ RunsK(M(K)), where rK ∈ FinPrefixes(γ
C
K) if K ∈ K,

there is r ∈ CRunsN(M, C) such that we have:
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1. r↑K= rK, or

2. r ↑K ∈ Prefixes(rK) & K ∈ frozen(M ′, cont(C, r)), where M ′ is such that

M [r〉M ′.

The proof of Theorem 6.6.1 is lengthy: one has to prove a generalized version

of it for a setting where not only infinite but also finite computations are admitted

as courses of components. The generalized theorem can then be proved by double

induction on the number of components not frozen by C at M , and the length of

rK . The detailed proof can be found in [Frö00a].

We have already seen that when computing NL in conformity with a non-

emptyK-course C, there is at least oneK ∈ K which is not frozen by C (Prop. 6.6.6).

It is intuitive that there should be at least one K ∈ K which is always able to

follow its course. With Theorem 6.6.1 this is now easy to prove.

Proposition 6.6.8. Let M ∈ Reach(NL), K ⊆ Cover with K 6= ∅, and C a

K-course at M . There is at least one K ∈ K which can follow its course γCK while

C is kept; that is for all rK ∈ FinPrefixes(γ
C
K) there is r ∈ CRunsN(M, C) such

that r↑K= rK.

Proof. To the contrary assume there is no suchK. This means for allK ∈ K there

exists rK ∈ FinPrefixes(γ
C
K) such that there is no r ∈ CRunsN(M, C) with r ↑

K= rK . With the help of Theorem 6.6.1 one can then bring one component after

another into a frozen state. But this is certainly a contradiction to Prop. 6.6.6.
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6.7 On Links and Wedges

In this section we will introduce the new topological entities links and wedges,

and present important results about them. We will first attend to links in Sec-

tion 6.7.1, then to wedges in Section 6.7.2. After that the section will culminate

in a structural result concerning both of these topological entities in live SSMD fc

systems, namely the promised WNL Theorem; it will be formulated and proved

in Section 6.7.3.

6.7.1 Links

Links are topological entities of free choice nets, which — when interpreted w.r.t. a

strict decomposition — exhibit that two components are interconnected or linked

to each other in a certain way. We are interested in two forms of interconnection,

and define two corresponding types of links, so-called simple links and indirect

links. Both of these types play an important role when observing how components

are matched against each other in a cp bisimulation, and how this can change in

the course of the matching.

The section is organized as follows. In the next paragraph we introduce two

types of paths, which we need for the definition of links. The definitions of simple

links, indirect links, and links in general follow together with their attributes.

We then show that in live SSMD fc systems, starting from either the initial or

the final component we can freeze all of a link’s components. This property

will be essential for proving an important result about links, the so-called Link

Theorem, which will follow in the last paragraph together with a corollary. The

Link Corollary will make up half of the WNL Theorem.

WS-paths and FOS-paths. The two types of paths are called WS-paths and

FOS-paths ; they are defined as follows:

Definition 6.7.1 (WS-paths, FOS-paths). Let N be a free choice net.

A WS-path (path without synchronization) of N is a PP-path π = p1t1 . . . tnpn+1

of N such that for all i ∈ [1, n] ti is a switch transition.

An FOS-path (path from the only synchronization) of N is a TP-path π =

t1p1 . . . tnpn of N such that t1 is a synchronization transition, and p1 . . . tnpn is a

WS-path.

When interpreted w.r.t. a strict decomposition we can make the following

statement about the components of a WS-path, and FOS-path respectively:
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Proposition 6.7.1. Let (N,Cover) be an SSD fc net, and π = x1 . . . xn a path

in N .

1. If π is a WS-path then we have:

Ks(π) = {K} for some distinct K ∈ Cover.

2. If π is a FOS-path then we have:

Ks(x2 . . . xn) = {K} & K ∈ Ks(x1) for some distinct K ∈ Cover.

Proof. (1.) and (2.) are straightforward: consider that Cover is strict, and

employ Prop. 6.2.4(1) and 6.2.2(2a,b).

We associate the respective component to a WS- or FOS-path:

Definition 6.7.2 (DK (π)). Let (N,Cover) be an SSD fc net, and π either a WS-

or FOS-path of N . We define the designated component of π, denoted by DK (π),

to be the component associated with π by Prop. 6.7.1(1), or (2) respectively.

Simple Links. We are now ready to introduce our first type of link. Sim-

ple links — when interpreted w.r.t. to a strict decomposition — give a route

to traverse from one component to another, possibly by passing through other

components via synch transitions. They are essentially PP-paths divided up into

segments; the segments will naturally be FOS-paths, and a WS-path in the case

of the initial segment. Formally, we define:

Definition 6.7.3 (simple links). Let N be a free choice net.

A simple link of N is a non-empty and finite family of segments λ = {Sλ-i}i∈[1,nλ],

nλ ∈ IN, where

• Sλ-1 is a WS-path, and

• for i ∈ [2, nλ] Sλ-i is an FOS-path

such that last(Sλ-i) ∈
•first(Sλ-i+1) for all i ∈ [1, nλ − 1].

We call nλ the number of segments of λ, and Sλ-i the ith segment of λ.

We equip simple links with the following attributes; note how they obtain

their full meaning with the “decomposition attributes”.

Definition 6.7.4 (attributes of simple links). Let N be a free choice net,

and λ = {Sλ-i}i∈[1,nλ] a simple link in N .

We define:
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• the initial place of λ as pinλ := first(Sλ-1),

• the final place of λ as pfiλ := last(Sλ-nλ), and

• for i ∈ [1, nλ − 1] the exiting synchronization place of Sλ-i as pexλ-i :=

last(Sλ-i).

W.r.t. a strict cover Cover of N we further define:

• for i ∈ [1, nλ] the ith component of λ as Kλ-i := DK (Sλ-i),

• the components of λ as Kλ := {Kλ-i}i∈[1,nλ],

• the initial component of λ as K in
λ := K(pinλ ) = Kλ-1,

• the final component of λ as Kfi
λ := K(pfiλ) = Kλ-nλ , and

• for i ∈ [2, nλ] the entering synchronization place of Sλ-i as p
en
λ-i given by

penλ-i ∈
•first(Sλ-i) & K(penλ-i) = Kλ-i (this uniquely defines a place by

Prop. 6.2.2(1a)).

We say λ is a simple link from K in
λ to Kfi

λ .

Example 6.7.1. Figure 6.8 shows a simple link together with its attributes.

Indirect Links. In the context of a strict decomposition, indirect links show

how two components are indirectly connected via a middle component: an indirect

link is made up of two simple links that overlap in their initial place.

Definition 6.7.5 (indirect links). Let N be a free choice net.

An indirect link of N is a pair λ = (λl, λr), where λl and λr are simple links

of N such that pinλl = pinλr . We call λl the left link of λ, and λr the right link of λ.

Definition 6.7.6 (attributes of indirect links). Let (N,Cover) be an SSD fc

net, and λ = (λl, λr) an indirect link of N . We define:

• the initial component of λ as K in
λ := Kfi

λl
,

• the final component of λ as Kfi
λ := Kfi

λr
,

• the middle component of λ as Kmi
λ := K in

λl
= K in

λr
, and

• the components of λ as Kλ = Ks(λl) ∪Ks(λr).

We say λ is an indirect link from K in
λ to Kfi

λ .
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Figure 6.8: A simple link λ of the system in Figure 6.5; λ leads from K1 to K3,
and we have Kλ = {K1, K2, K3}
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and we have Kλ = {K1, K2, K4}
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Note that the initial component of an indirect link is the final component of

its left link. This is so because the left link has to be understood as a backwards

connection to the middle component.

Example 6.7.2. Figure 6.9 shows an indirect link together with its attributes.

Links. Links are then simply defined by:

Definition 6.7.7 (links). Let N be a free choice net. A link of N is either a

simple or an indirect link of N .

K in
λ , Kfi

λ , and Kλ are attributes for both types of links, and thus we shall

assume them for links in a generic way.

Freezing the Components of a Link. In Section 6.6 we have seen that when

a live SSD fc system is computed in conformity with a course it can happen

that some of the components become frozen. We will now prove the following

interesting property about links in such systems:

If we can freeze the initial component of a link λ by some K-course C

then, provided that K and the components of λ do not overlap, we can

steer the system into a state where all the components of λ are frozen.

This also works in the other direction when the final component of λ

is frozen.

Formally, this amounts to:

Lemma 6.7.1 (freeze the components of a link). Let (N ,Cover) be a live

SSMD fc system, M ∈ Reach(N ), K ⊆ Cover, and C a K-course at M . For all

links λ of N with Kλ ∩ K = ∅ we have:

1. If K in
λ ∈ frozen(M, C) then there is r ∈ CRunsN(M, C) such that we have

Kλ ⊆ frozen(M
′, C ′) for C ′ = cont(C, r), and M ′ given by M [r〉M ′.

2. If Kfi
λ ∈ frozen(M, C) then there is r ∈ CRunsN(M, C) such that we have

Kλ ⊆ frozen(M
′, C ′) for C ′ = cont(C, r), and M ′ given by M [r〉M ′.

Proof. Let N , Cover , M , K, C, and λ be given as specified in the lemma. We

shall prove the property separately for the two types of links. In the next two

paragraphs we will establish (1.) and (2.) assuming λ to be a simple link.
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(S1.) We suppose K in
λ = Kλ-1 ∈ frozen(M, C), and demonstrate by induc-

tion on nλ that there is r ∈ CRunsN(M, C) such that (∗) ∀i ∈ [1, nλ]. Kλ-i ∈

frozen(M ′, C ′), where C ′ = cont(C, r), M ′ is given by M [r〉M ′. This will certainly

prove the first part of the lemma for simple links.

Case nλ = 1: we take r to be the empty sequence; since Kλ-1 is the only

component of λ, (∗) is satisfied by assumption.

Case nλ > 1: certainly λ′ = {Sλ-i}i∈[1,nλ−1] is a simple link such that the

induction hypothesis applies; then there is r ∈ CRunsN(M, C) such that we obtain

∀i ∈ [1, nλ − 1]. Kλ-i ∈ frozen(M
′, C ′), where C ′ = cont(C, r), M ′ is given by

M [r〉M ′. If Kλ-nλ ∈ frozen(M
′, C ′) we can clearly return r as the required run;

otherwise we proceed as follows to bring Kλ-nλ into a frozen state.

First of all, pick aKλ-nλ-computation r′Kλ-nλ
which bringsKλ-nλ fromM ′(Kλ-nλ)

to penλ-nλ ; this must be possible by Prop. 6.2.17(2). Recall that Kλ-nλ 6∈ K by as-

sumption. Then, by Theorem 6.6.1 there is r′ ∈ CRunsN(M
′, C ′) such that we

have (i) r′ ↑ Kλ-nλ = r′Kλ-nλ
, or (ii) r′ ↑ Kλ-nλ ∈ Prefixes(r

′
Kλ-nλ

) & Kλ-nλ ∈

frozen(M ′′, C ′′), where C ′′ = cont(C ′, r′), M ′′ such that M ′[r′〉M ′′.

By Prop. 6.6.5(2) frozen components stay frozen, and soKλ-i ∈ frozen(M
′′, C ′′)

for all i ∈ [1, nλ− 1]. But we also have Kλ-nλ ∈ frozen(M
′′, C ′′), just as we aimed

for. This is trivial in the case when (ii) holds. In the case of (i) consider that we

clearly have M ′′(Kλ-nλ) = penλ-nλ (Prop. 6.2.8); but then Kλ-nλ ∈ frozen(M
′′, C ′′)

follows from Kλ-(nλ−1) ∈ frozen(M
′′, C ′′) with Prop. 6.6.7.

Altogether r.r′ clearly satisfies all of our requirements (with Prop. 6.6.4(2)).

(S2.) The proof of the second part is similar to (S1.); the only difference is

that we freeze the components of λ in reverse order. Formally, we assume

Kfi
λ = Kλ-nλ ∈ frozen(M, C), and show by induction on nλ that there is r ∈

CRunsN(M, C) such that we have (∗) ∀i ∈ [1, nλ]. Kλ-i ∈ frozen(M
′, C ′), where

C ′ = cont(C, r), M ′ is given by M [r〉M ′.

Case nλ = 1: again we take r to be the empty sequence; as in (S1.) (∗) holds

by assumption.

Case nλ > 1: this time we consider {Sλ-i}i∈[2,nλ]. Clearly, we can transform

this family of segments into a simple link λ′ such that the induction hypothesis

applies; then we can assume r ∈ CRunsN(M, C) such that ∀i ∈ [2, nλ]. Kλ-i ∈

frozen(M ′, C ′) , where C ′ = cont(C, r), M ′ is given by M [r〉M ′.

If Kλ-1 ∈ frozen(M
′, C ′) we are already done; otherwise we pick a Kλ-1-

computation fromM ′(Kλ-1) to p
ex
λ-1, and proceed analogously to (S1.). By the cor-

responding argument we obtain r′ ∈ CRunsN(M
′, C ′) such that ∀i ∈ [1, nλ]. Kλ-i ∈
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frozen(M ′′, C ′′), where C ′′ = cont(C ′, r′), and M ′′ is given by M ′[r′〉M ′′. But then

clearly, r.r′ provides a sequence as required.

Now that we know the lemma holds for simple links, we can also prove it

for indirect links. So let us assume λ to be an indirect link for the next two

paragraphs.

(I1.) We presuppose K in
λ = Kfi

λl
∈ frozen(M, C), and need to prove: there is

r ∈ CRunsN(M, C) satisfying Kλ ⊆ frozen(M
′, C ′), where C ′ = cont(C, r), M ′

such that M [r〉M ′. With the lemma being established for simple links this is not

difficult; we first freeze the components of λl, then the ones of λr. Formally:

By (S2.) there is r ∈ CRunsN(M) such that we have Kλl ⊆ frozen(M
′, C ′),

where C ′ = cont(C, r),M ′ such thatM [r〉M ′. Then, byK in
λr

= K in
λl
∈ frozen(M ′, C ′)

and (S1.) there is r′ ∈ CRunsN(M
′, C ′) such that we have Kλr ⊆ frozen(M

′′, C ′′),

where C ′′ = cont(C ′, r′), M ′′ such that M ′[r′〉M ′′. By Prop. 6.6.5(2) the compo-

nents of λl are also frozen by C ′′ at M ′′, and so we have Kλ ⊆ frozen(M
′′, C ′′).

But then the sequence r.r′ clearly fulfils all of our requirements.

(I2.) Follows by the symmetric argument; this time we first freeze the compo-

nents of λr then the ones of λl.

The Link Theorem. The “freeze the components of a link” lemma enables us

to prove an important theorem about links in live SSMD fc systems. Informally,

it says:

LetKF be a component, and λ a link such thatKF is not a component

of λ. If a KF -course γF freezes the initial or final component of λ then

KF does not synchronize infinitely often with any of the components

of λ on γF .

Theorem 6.7.1 (Link Theorem). Let (N ,Cover) be a live SSMD fc system,

and M ∈ Reach(N ). Further, let λ be a link of N , KF ∈ Cover with KF 6∈ Kλ,

and γF a KF -course at M .

1. If K in
λ ∈ frozen(M, {γF}) then we have InfSPartners(KF , γF )

6 ∩ Kλ = ∅.

2. If Kfi
λ ∈ frozen(M, {γF}) then we have InfSPartners(KF , γF ) ∩ Kλ = ∅.

6Recall Def. 6.2.11.
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Proof. Let N , Cover , M , λ, KF , and γF as specified above, and set CF = {γF}.

(1.) To prove the first clause let K in
λ ∈ frozen(M, CF ), and to the contrary

assume Ks ∈ Cover such that (A) Ks ∈ InfSPartners(KF , γF ), and (B) Ks ∈

Kλ. By Lemma 6.7.1(1) and (B) there is r ∈ CRunsN(M, CF ) such that Ks ∈

frozen(M ′, C ′F ), where C
′
F = cont(CF , r), M

′ such that M [r〉M ′. Let γ′F be given

by C ′F = {γ′F}. γ′F is a suffix of γF , and thus with (A) we obtain rF , ts such

that rF .ts ∈ FinPrefixes(γ
′
F ), and ts is a synch transition with Ks ∈ Ks(ts).

Further, since KF is the only component of C ′F by Prop. 6.6.8 there must be

r′ ∈ CRunsN(M
′, C ′F ) such that r′ ↑ KF = rF .ts, and hence Ks ∈ Ks(r

′). But

this means we have reached a contradiction: Ks ∈ frozen(M
′, C ′F ), which by

Prop. 6.6.5(1) implies Ks must not be involved in r′.

(2.) This is similar: simply use the second part of Lemma 6.7.1 instead of

the first.

The Link Theorem will make up half of the WNL Theorem, but it will be

more convenient to employ it in the form of a corollary. For the formulation of

this Link Corollary we first define:

Definition 6.7.8. Let (N ,Cover) be a live SSMD fc system, and Kc, K1, K2 ∈

Cover .

Let M ∈ Reach(N ). We say a Kc-course γc at M is (K1, K2)-critical iff

1. K1 ∈ frozen(M, {γc}), and

2. K2 ∈ InfSPartners(Kc, γc).

We say Kc is critical w.r.t. K1 and K2 iff there exists a Kc-course γc at some

M ∈ Reach(N ) such that γc is (K1, K2)-critical or (K2, K1)-critical.

We can now understand the statement of the Link Theorem as follows:

For three components Kc, K1, and K2 in a live SSMD fc system we

have: if Kc is critical w.r.t. K1 and K2 then K1 and K2 can only be

linked via Kc.

Corollary 6.7.1 (Link Corollary). Let (N ,Cover) be a live SSMD fc system,

and Kc, K1, K2 ∈ Cover. If Kc is critical w.r.t. K1 and K2 then the following

holds:

1. For any link λ from K1 to K2 we have Kc ∈ Kλ.

2. For any link λ from K2 to K1 we have Kc ∈ Kλ.
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Proof. Let N , Cover , Kc, K1, and K2 be given as above. If Kc is critical w.r.t.

K1 and K2 then by definition there exists a Kc-course γc at some M ∈ Reach(N )

such that γc is (a) (K1, K2)-critical, or (b) (K2, K1)-critical. In the case of (a),

(1.) follows from the first part of Theorem 6.7.1, and (2.) from its second part.

Conversely, if (b) holds, (1.) follows from the second part of Theorem 6.7.1, and

(2.) from its first part.

6.7.2 Wedges

We now turn to our second topological entity, wedges. A wedge is made up of

two TFS-paths, which overlap in their first element. TFS-paths are special kinds

of WS-paths: apart from not containing any synch transitions they start with a

switch place and end in a synch place. If the two synch places of a wedge are

different we consider it to be proper. Wedges are motivated by our interest in

the matching of swfsi’s : if a swfsi occurrence of a live SSMD fc system has two

alternative matches in a cp bisimulation with another system of the same class,

say N2, then there will be a proper wedge in N2.

The remainder of the section is organized as follows: in the next two para-

graphs, we define TFS-paths and wedges. Then follow two paragraphs with pre-

liminary observations. With their help we then obtain our key result in the final

paragraph: the so-called Wedge Theorem complements the Link Corollary, and

makes up the other half of the WNL Theorem.

TFS-paths. TFS-paths are defined as follows:

Definition 6.7.9 (TFS-paths). Let N be a free choice net.

A TFS-path (path from switch place To First Synchronization place) of N is a

WS-path π of N such that first(π) is a switch place, and last(π) is a synch place.

Since TFS-paths are special kinds of WS-paths they naturally inherit the

attributes and properties of the latter; in particular, we will employ DK (π), and

the fact that WS-paths are dynamic in the following sense:

Proposition 6.7.2 (WS-paths are dynamic). Let N be a free choice system,

and M ∈ Reach(N ). If π is a WS-path of N with first(π) ∈ M then we have:

M [ts(π)〉 & last(π) ∈M ′, where M ′ is such that M [ts(π)〉M ′.

Proof. Easy by induction on the length of π. Consider that for any WS-path

π′ t p we have: t is of type switch, •t = {last(π′)}, and p ∈ t•.
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Wedges. Wedges and proper wedges are then given by:

Definition 6.7.10 (wedges, proper wedges). Let N be a free choice net.

A wedge of N is a pair W = (πW -l, πW -r), where πW -l and πW -r are TFS-paths of

N such that first(πW -l) = first(πW -r). We call πW -l the left TFS-path of W , and

πW -r the right TFS-path of W .

We say a wedge W is proper iff last(πW -l) 6= last(πW -r).

We equip wedges with the following attributes:

Definition 6.7.11 (attributes of wedges). Let N be a free choice net, and W

a wedge of N .

We define:

• the choice place of W as pchW := first(πW -l) = first(πW -r),

• the left synchronization interface of W as psiW -l := last(πl),

• the right synchronization interface of W as psiW -r := last(πr),

• the left synchronization partners of W as P sp
W -l := SPartners(p

si
W -l), and

• the right synchronization partners of W as P sp
W -r := SPartners(p

si
W -r).

W.r.t. a strict cover Cover of N we further define:

• the component of W as KW := DK (πW -l) = DK (πW -r),

• the left synchronization components of W as Ksp
W -l := Ks(P

sp
W -l), and

• the right synchronization components of W as Ksp
W -r := Ks(P

sp
W -r).

Example 6.7.3. Figure 6.10 shows a proper wedge together with its attributes.

Wedge has Markings. We now prove that for any given wedge in a live SSMD

fc system we obtain the following reachable markings:

Lemma 6.7.2 (wedge has markings). Let N be a live SSMD fc system, and

W a wedge of N .

1. (a) There is M ∈ Reach(N ) such that pchW ∈M & P sp
W-l ⊆M .

(b) There is M ∈ Reach(N ) such that pchW ∈M & P sp
W-r ⊆M .

2. (a) There is M ∈ Reach(N ) such that psiW-l ∈M & P sp
W-r ⊆M .
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P sp
W -r = {p14}

Ksp
W -l = {K1}

Ksp
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KW = K2

πW -l πW -r

Figure 6.10: A proper wedge W of the system in Figure 6.5

(b) There is M ∈ Reach(N ) such that psiW-r ∈M & P sp
W-l ⊆M .

Proof. Let N and W be given as specified above; further assume a strict cover

Cover for N . Note that we clearly have Ks(ts(πW -l)) = {KW}. We will employ

this fact several times, and shall refer to it by (F).

(1a) By place-liveness (Prop. 6.2.14) we can assume M ∈ Reach(N ) such

that pchW ∈ M . πW -l is dynamic (Prop. 6.7.2), and so there must be M ′ with

M [ts(πW -l)〉M
′ and psiW -l ∈ M ′. Then by Prop. 6.2.13 there is r,M ′′ such that

M ′[r〉M ′′, P sp
W -l ⊆ M ′′, and KW (= K(psiW -l)) 6∈ Ks(r). Further, by (F) and

Prop. 6.2.3(2) we have ts(πW -l) IN r, and so we can reshuffle these computations

(Prop. 2.1.2): we obtain M ′′′ such that M [r〉M ′′′[ts(πW -l)〉M
′′.

We claim that M ′′′ is a marking as required. To see P sp
W -l ⊆ M ′′′ consider

the following: let p ∈ P sp
W -l. We certainly have K(p) 6= KW (Prop. 6.2.2(1a));

then p ∈ M ′′′ follows immediately with p ∈ M ′′ and (F) by Prop. 6.2.9(3). The

requirement pchW ∈ M ′′′ is similarly obtained from pchW ∈ M , K(pchW ) = KW , and

KW 6∈ Ks(r) via Prop. 6.2.9(3). Hence (1a) is proved.

(1b) follows from the symmetric argument of (1a).

(2a) By (1b) we can assume M ∈ Reach(N ) such that pchW ∈ M & P sp
W -r ⊆
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M . πW -l is dynamic (Prop. 6.7.2), and so there is M ′ with M [ts(πW -l)〉M
′ and

psiW -l ∈ M
′. We still have P sp

W -r ⊆ M ′; this follows from (F) and KW 6∈ K
sp
W -r (by

Prop. 6.2.2(1a)) with Prop 6.2.9(2). Altogether, M ′ is a marking as required.

(2b) is symmetric to (2a).

The dp-l and dp-r Property. Given a wedge W of a SSD fc net we can con-

sider whether there is a KW -path which leads from psiW -l to pchW without passing

through psiW -r; and naturally we can also consider the symmetric property. Ac-

cordingly, we define two properties, called dp-l (direct path left) and dp-r (direct

path right):

Definition 6.7.12 (dp-l, dp-r). Let (N,Cover) be an SSD fc net. A wedge W

of N can satisfy the following two properties:

1. dp-l: There is a KW -path π from psiW -l to p
ch
W such that psiW -r 6∈ π.

2. dp-r: There is a KW -path π from psiW -r to p
ch
W such that psiW -l 6∈ π.

We now prove a fact that will be crucial in the next paragraph: each proper

wedge of a well-formed SSD fc net satisfies at least one of our two properties.

Lemma 6.7.3 (proper wedges satisfy dp-l∨dp-r). Let (N,Cover) be a well-

formed SSD fc net, and W a proper wedge of N . We have:

W |= dp-l ∨ dp-r.

Proof. Let N , Cover , and W be given as above.

To the contrary suppose W satisfies neither dp-l nor dp-r. It is easy to see

that under this assumption there cannot be a KW -path from psiW -l to pchW . By

W 6|= dp-l any candidate path π will lead us to psiW -r before reaching pchW . By

W 6|= dp-r π will be forced from psiW -r to p
si
W -l, again without passing through pchW .

Then, since psiW -l and psiW -r are distinct, any candidate path will circle between

psiW -l and psiW -r without ever reaching pchW . But this means we have reached a

contradiction: by definition of S-components KW is strongly connected, and so

certainly there must be a KW -path from psiW -l to p
ch
W .

The Wedge Theorem. With the help of our previous insights we now prove

a complement to the Link Corollary; the so-called Wedge Theorem says:

For any proper wedge W in a live SSMD fc system we have: KW is

critical w.r.t. any pair of opposite synchronization components of W .
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By employing Lemma 6.7.2 we first show that the dp-l and dp-r properties

give rise to critical KW -courses in the following way:

Lemma 6.7.4. Let (N ,Cover) be a live SSMD fc system, W a proper wedge of

N , Kl ∈ K
sp
W-l, and Kr ∈ K

sp
W-r.

1. If W |= dp-l then there exists a (Kr, Kl)-critical KW -course at some M ∈

Reach(N ).

2. If W |= dp-r then there exists a (Kl, Kr)-critical KW -course at some M ∈

Reach(N ).

Proof. Let N , Cover , W , Kl, and Kr be given as above. Since W is proper we

have (P) psiW -l 6= psiW -r.

(1.) Assume W |= dp-l, and with it a KW -path πdpl from psiW -l to pchW such

that (dpl) psiW -r 6∈ πdpl. We need to exhibit M ∈ Reach(N ), and a KW -course γW

at M such that (1) Kr ∈ frozen(M, {γW}), and (2) Kl ∈ InfSPartners(KW , γW ).

For M we take the marking given by Lemma 6.7.2(2a); then M is such that

(a) psiW -l ∈M , and (b) P sp
W -r ⊆M .

We obtain γW from πdpl and πW -l in the following way: assuming πdpl =

p0t1 . . . tnpn+1, and πW -l = p′0t
′
1 . . . t

′
mp

′
m+1, we set πW = p0t1 . . . tnp

′
0t
′
1 . . . t

′
m.

Since pn+1 = pchW = p′0, and p0 = psiW -l = pm+1, πW is obviously a circuit. Further,

πdpl and πW -l are both KW -paths, and hence πW is a KW -circuit. Then, πW in-

duces an infinite KW -path πωW in the obvious way. We set γW to be ts(πωW ). γW is

certainly aKW -course atM : by Prop. 6.2.17(1) γW is an infiniteKW -computation

at {psiW -l}, and from (a) and K(psiW -l) = KW , we obtain M(KW ) = {psiW -l}.

We can make two observations about γW : (i) 6 ∃t ∈ γW . p
si
W -r ∈ t

•, and (ii) let

tsl be given by psiW -l
•
= {tsl}; tsl occurs infinitely often on γW .

To see that (i) holds, note that anyKW -circuit π that contains t with psiW -r ∈ t
•

must also contain psiW -r: by Prop. 6.2.2(1b) and K(psiW -r) = KW , psiW -r is the

only possible successor of t on π, and if t is the last element of π then the first

element must be psiW -r. On the other hand, we have psiW -r 6∈ πW : psiW -r 6∈ πdpl,

and psiW -r 6∈ πW -l; the first is given by (dpl), and the latter follows from (P) and

because psiW -l is the only synch place of πW -l. Then (i) is immediate: there can

be no t with psiW -r ∈ t
• on πW , nor on the infinite path induced by it.

To verify (ii), note that on any path, tsl is the only possible successor of psiW -l,

and thus if a circuit contains psiW -l it will also contain tsl. Further, it is clear that

all elements of a circuit π occur infinitely often on the infinite path induced by

π. Since we have psiW -l ∈ πW , altogether this certainly implies (ii).
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With these observations it is now easy to prove that (1) and (2) are indeed

satisfied. To see that (1) holds, note that from (a), (P), and K(psiW -l) = KW =

K(psiW -r) we can deduce psiW -r 6∈ M (Prop. 6.2.6), and further with (b) that

KW (psiW -r) ≺M Kr. Then with (i) it is clear that Kr ∈ frozen(M, {γW}). (2)

is immediate with (ii) since naturally we have Kl ∈ Ks(tsl).

(2.) follows from the symmetric argument.

With Lemma 6.7.3 it is then clear:

Theorem 6.7.2 (Wedge Theorem). Let (N ,Cover) be a live SSMD fc system,

W a proper wedge of N , Kl ∈ K
sp
W-l, and Kr ∈ K

sp
W-r. We have:

KW is critical w.r.t. Kl and Kr.

Proof. Immediate with Lemma 6.7.3 and Lemma 6.7.4.

6.7.3 The WNL Theorem

We can now join together the statements of the Link Corollary and the Wedge

Theorem, and thereby arrive at the WNL Theorem (proper Wedge has No direct

Link); informally it says:

In live SSMD fc systems, opposite synchronization components of a

proper wedge W can only be linked via KW .

Theorem 6.7.3 (WNL Theorem). Let (N ,Cover) be a live SSMD fc system,

W a proper wedge of N , Kl ∈ K
sp
W-l, and Kr ∈ K

sp
W-r.

1. For any link λ from Kl to Kr we have KW ∈ Kλ.

2. For any link λ from Kr to Kl we have KW ∈ Kλ.

Proof. Follows directly from Corollary 6.7.1 and Theorem 6.7.2.
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6.8 The cp Transition System on SSMD fc Sys-

tems

We now return to issues that directly concern cp bisimilarity. In the following we

investigate the cp transition system Tcp in the context of SSMD fc systems. This

will provide us with insights about the matching in ∼cp, which will be required

in the following three sections. We work in the context of two SSMD fc systems

(N1,Cover 1), (N2,Cover 2), and build on the setting of Section 6.4. If not stated

otherwise or resolved by an earlier occurrence, i will range over {1, 2}.

First, we observe that preserving the compositionality in the spirit of Tcp

(and thus ∼cp) entails that the static compositionality given by a strict cover

will be respected to a certain degree: (1) any joint process β naturally induces a

component match cm ·β; (2) if β evolves into a new process via a cp transition,

then, although in general cm ·β will not be preserved, any change to cm ·β will

occur in a ‘controlled fashion’.

After that, to obtain further insights, we define trace functions to capture the

involvement of a set of components Ki ⊆ Cover i in a joint process, or jfs. On

the one hand, we find that in many ways our trace functions behave similarly to

the projection functions on Proci and Runsi (cf. Section 6.2.5.3); in particular,

the corresponding propositions give us a tool for composing new jfs’ by shuffling

component traces of given jfs’. We will make use of this mainly in Section 6.9.

On the other hand, our trace functions help us to set up a connection between

the matching in cp bisimilarity and the topology of the related systems. By

fixing a component Ki ∈ Cover i and tracing its involvement in a jfs, we can gain

information about the static structure of the opposite net Nī; in particular, we

shall infer specific simple links and TFS-paths. These findings prepare for the

crucial application of the WNL Theorem in Section 6.10.

Component Match. At any process Mi ∈ Proci, the decomposition function

Ki establishes a 1-to-1 correspondence between the subprocesses of Mi and the

components of Cover i: by strictness each pi ∈ Mi represents exactly one Ki ∈

Cover i
7; conversely, as we know from Prop. 6.2.6, each Ki ∈ Cover i is represented

by exactly one pi ∈ Mi. But then, any bijection between two processes M1 ∈

Proc1, M2 ∈ Proc2 naturally induces a bijection between Cover 1 and Cover 2; —

any β ∈ JProc gives rise to a component match in the following way:

7As convenient as the use of ‘K’ (or ‘Ki’) to denote both, the respective decomposition
function and a fixed component, otherwise is, here it is unfortunate terminology. It will always
be clear from the context, though, in which meaning ‘K’ (or ‘Ki’) is employed.
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Definition 6.8.1. Let β ∈ JProc. Set β1 = β, and β2 = β−1. The component

match induced by βi, cm ·βi : Cover i → Cover ī, is given by: cm ·βi(Ki) =

Kī(βi(proj i(β)(Ki))).

Proposition 6.8.1. Let β ∈ JProc.

1. cm ·βī ◦ cm ·βi = idCover i.

2. cm ·βi is a bijection, and (cm ·βi)
−1 = cm ·βī.

Proof. (1.) follows directly from the definitions. (2.) is immediate with (1.).

Naturally, we also have:

Proposition 6.8.2. Let β ∈ JProc. Kī ◦ βi = cm ·βi ◦Ki.

Proof. This follows easily with Prop. 6.2.12(1).

Convention 6.8.1. Let β ∈ JProc. If the interpretation is clear from the context

we shall ignore the index i of cm·βi. Similarly, we shall discard the index i of the

decomposition functions Ki and Ks i if the meaning is resolved by the argument.

In the context of a joint component K ∈ cm ·β, we set Ki = proj i(K), and

analogously, in the context of a set of joint components Ki ⊆ cm ·β we set

Ki = proj i(K).

By design of Tcp, a transition β
(t1,t2)
→cp β′ respects the match of subprocesses

given by β in that t1 has the same (with respect to β) local effect on proj 1(β)

as t2 has on proj 2(β), and vice versa. Clearly, this does not guarantee that the

corresponding component match will be preserved: in general, cm ·β ′ can be

different from cm ·β. However, component matches will be respected to a certain

degree; namely as follows:

• At both β and β ′, the components involved in t1 are matched to the com-

ponents involved in t2, and vice versa.

• Components not involved in t1 are matched at β ′ exactly as at β, and vice

versa.

Proposition 6.8.3. Let β
(t1,t2)
→cp β

′, and set Kti = Ks(ti). We have:

1. cm ·β(Kti) = Ks(tī),

2. cm ·β ′(Kti) = Ks(tī), and

3. ∀Ki ∈ Cover i\Kti . cm ·β
′(Ki) = cm ·β(Ki).
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Proof. Considering the definition of→cp (Def. 6.4.2), (1.) follows with Prop. 6.8.2

and Prop. 6.2.2(3a), (2.) with Prop. 6.8.2, and Prop. 6.2.2(3b), and (3.) with

Prop. 6.2.2(3a) and the definition of cm ·β.

We can refine this observation by taking the type of ti into consideration; with

Prop. 6.2.4 it is easy to see:

• If ti is of type switch then tī is of type switch and the component match

will be preserved for all components.

• If ti is of type synch then tī is of type synch and the component match may

change while complying to the rule given by Prop. 6.8.3.

From Prop. 6.4.10 we already know that in Tcp the type of transitions is

respected, and so we only formalize the first insight:

Proposition 6.8.4. Let β
(t1,t2)
→cp β

′. If ti is of type switch then we have:

1. t̄i is of type switch, and

2. ∀Ki ∈ Cover i. cm ·β
′(Ki) = cm ·β(Ki).

Proof. This is immediate with Prop. 6.8.3 and Prop. 6.2.4.

For jfs’ we then obtain:

Proposition 6.8.5. Let β ∈ JProc, and σ ∈ JFS (β).

1. Let K ∈ cm ·β, and set R = cm ·β\K.

nosynch(Ki, proj i(σ)) =⇒
nosynch(Kī, proj ī(σ)) & cm ·last(σ)(Ki) = Kī & cm ·last(σ)(Ri) = Rī.

2. Let K ⊆ cm ·β.

Ks(proj i(σ)) ⊆ Ki =⇒ Ks(proj ī(σ)) ⊆ Kī & cm ·last(σ)(Ki) ⊆ Kī.

Proof. This is straightforward by induction on the length of σ: (1.) follows with

Prop. 6.8.3 and Prop. 6.8.4; for (2.) Prop. 6.8.3 is sufficient.
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Tracing Components. As announced, we now define trace functions to cap-

ture the involvement of a set of components Ki ⊆ Cover i in a joint process or jfs.

We start with the trace function for JProc:

Definition 6.8.2. We define a trace function ↑: JProc×P(Cover i)→ P(P1×P2)

to trace the involvement of a set of components in a joint process as follows:

β ↑Ki= {(p1, p2) ∈ β | K(pi) ∈ Ki}.

We collect some straightforward observations:

Proposition 6.8.6. Let β ∈ JProc, and Ki ⊆ Cover i.

1. proj i(β ↑Ki) = proj i(β)↑Ki.

2. proj ī(β ↑Ki) = βi(proj i(β)↑Ki).

3. Ks ī(proj ī(β ↑Ki)) = cm ·β(Ki).

4. Let K ⊆ cm ·β. β ↑K1= β ↑K2.

5. Let β ′ ∈ JProc, and pi ∈ Pi ↑Ki such that pi ∈ proj i(β) ∩ proj i(β
′).

β ↑Ki= β′ ↑Ki =⇒ β(pi) = β ′(pi).

Proof. Easy with the definitions.

Proposition 6.8.7. Let β ∈ JProc, and Ki ⊆ Cover i. For all σ ∈ JFS (β ↑Ki)

we have: Ks(proj i(σ)) ⊆ Ki.

Proof. This follows from Prop. 6.4.2, Prop. 6.8.6(1), and Prop. 6.2.21(2).

Our trace function behaves similarly to the projection function on Proc i; anal-

ogously to Prop. 6.2.18(1) and (2) we have:

Proposition 6.8.8. Let β
t
→cp β

′, and Ki ⊆ Cover i.

Ks(ti) ⊆ Ki =⇒ β ↑Ki
t
→cp β

′ ↑Ki.

Proof. This follows easily: consider that Ks(ti) ⊆ Ki implies Ks(•ti) ⊆ Ki and

Ks(ti
•) ⊆ Ki (Prop. 6.2.2(2)), and employ Prop. 6.4.1.

Proposition 6.8.9. Let Ki ⊆ Cover i.

1. Let β
t
→cp β

′. Ks(ti) ∩ Ki = ∅ =⇒ β ↑Ki= β′ ↑Ki.

2. Let σ ∈ JFS. Ki ∩Ks(proj i(σ)) = ∅ =⇒ last(σ)↑Ki= first(σ)↑Ki.
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Proof. (1.) Analogously to the previous proposition: by Prop. 6.2.2(2) we obtain

Ks(•ti)∩Ki = ∅ = Ks(ti
•)∩Ki; then simply consider Prop. 6.4.1. (2.) This easily

follows from (1.) by induction on the length of σ.

Justified by Prop. 6.8.9(1) we can then define our trace function for jfs’ as

follows:

Definition 6.8.3. We define a trace function ↑: JFS × P(Cover i) → JPTS to

trace the course of a set of components in a jfs inductively by:

β ↑Ki = β ↑Ki (↑Ki for JProc as above),

(σ(t1, t2)β)↑Ki =

{

(σ↑Ki)(t1, t2)(β ↑Ki) if Ks(ti) ∩ Ki 6= ∅,
σ↑Ki otherwise.

Naturally, we have:

Proposition 6.8.10. Let L ⊆ JFS, and Ki ⊆ Cover i. If L is prefix-closed then

L↑Ki is also prefix-closed.

Proof. Easy by applying the definitions.

Proposition 6.8.11. Let σ ∈ JFS, and Ki ⊆ Cover i. last(σ)↑Ki= last(σ↑Ki).

Proof. Straightforward by induction on the length of σ.

Our trace function for jfs’ behaves in many ways analogously to the projection

function on Runsi. Moreover, with our insights of the previous paragraph it is

not difficult to show that under certain circumstances our trace function can be

understood as a projection of jfs’ onto two joint sets of components:

Proposition 6.8.12. Let σ ∈ JFS, and set β = first(σ).

1. Let K ∈ cm ·β, and R = cm ·β\K. If nosynch(Ki, proj i(σ)) then we have:

(a) σ↑K1= σ↑K2, and

(b) σ↑R1= σ↑R2.

2. Let K ⊆ cm ·β. If Ks(proj i(σ)) ⊆ Ki then we have: σ↑K1= σ↑K2.

Proof. (1.) This is straightforward by induction on the length of σ when employ-

ing Prop. 6.8.6(4), Prop. 6.8.3(1),(3), and Prop. 6.8.5(1). (2.) Similarly, but use

the second part of Prop. 6.8.5 instead of the first.

The following two propositions are analogous to Prop. 6.2.22 and 6.2.23. Note

how together they provide a tool that allows us to infer new matchings by shuffling

traces of given matchings. We will make use of this in the following section.
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Proposition 6.8.13. Let σ ∈ JFS, and set β = first(σ).

1. Let K ∈ cm ·β, and R = cm ·β\K. If nosynch(Ki, proj i(σ)) then we have:

(a) σ↑Ki∈ JFS (β ↑Ki) & last(σ↑Ki) = last(σ)↑Ki, and

(b) σ↑Ri∈ JFS (β ↑Ri) & last(σ↑Ri) = last(σ)↑Ri.

2. Let K ⊆ cm ·β. If Ks(proj i(σ)) ⊆ Ki then we have:

σ↑Ki∈ JFS (β ↑Ki) & last(σ↑Ki) = last(σ)↑Ki.

Proof. (1.) and (2.) are both straightforward by induction on the length of σ: for

(1.) employ Prop. 6.8.8 and Prop. 6.8.9(1); for (2.) Prop. 6.8.8 is sufficient.

Proposition 6.8.14. Let β ∈ JProc, and Ki, K
′
i ⊆ Cover i such that Ki∩K

′
i = ∅

and Ki∪K
′
i = Cover i. Then for any L ⊆ JFS (β ↑Ki), L

′ ⊆ JFS (β ↑K′i) we have:

L⊗ L′ ⊆ JFS (β).

Proof. It is easy to see that for any β ∈ JProc, Ki, K
′
i ⊆ Cover i the following

holds: (1) Ki∩K
′
i = ∅ =⇒ β ↑Ki∩β ↑K

′
i= ∅. (2) Ki∪K

′
i = Cover i =⇒ β ↑Ki∪

β ↑K′i= β. But then the proposition immediately follows from Prop. 6.4.15.

Finally, we present a straightforward connection between our trace function

and shuffle:

Proposition 6.8.15. Let β ∈ JProc, K ∈ cm ·β, and set R = cm ·β\K.

1. Let σK ∈ JFS (β ↑Ki), σR ∈ JFS (β ↑Ri). For all σ ∈ σK ⊗ σR we have:

σK = σ↑Ki & σR = σ↑Ri.

2. Let BK ⊆ JFS (β ↑Ki), and BR ⊆ JFS (β ↑Ri). For all σ ∈ BK ⊗ BR we

have: σ↑Ki∈ BK & σ↑Ri∈ BR.

Proof. (1.) This is easy to see with Prop. 6.8.7 and the definitions. (2.) follows

from (1).

Gaining Topological Entities. We now show how by tracing a single com-

ponent Ki ∈ Cover i in a jfs σ ∈ JFS we gain information about the topology of

the opposite system: σ ↑Ki induces a PP-path and a corresponding simple link

in Nī. First of all, note that for a single component we certainly have:

Proposition 6.8.16. Let β ∈ JProc, and Ki ∈ Cover i. |β ↑Ki| = 1.
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Proof. Obvious with Prop. 6.2.6.

Thus, we can adopt the following convention:

Convention 6.8.2. Let β ∈ JProc, σ ∈ JFS , and Ki ∈ Cover i. We shall

identify β ↑Ki with the joint place p ∈ P1×P2 given by β ↑Ki = {p} (considering

Prop. 6.8.16). Accordingly, we shall understand σ ↑Ki as an element of (P1 ×

P2)(T (P1 × P2))
∗. It will always be clear from the context whether we assume

the conventional or this new interpretation of β ↑Ki, and σ↑Ki respectively.

It is now easy to anticipate: we will show that the ī-part of σ ↑Ki is a PP-

path. Since our standard projection function proj i for jpts’ abstracts away from

places, we define a second projection function to get hold of the full ī-part of an

entity σ↑Ki:

Definition 6.8.4. We define a projection function proj ∗i : (P1 × P2)(T (P1 ×

P2))
∗ → Pi (Ti Pi)

∗ inductively by:

proj ∗i ((p1, p2)) = pi,
proj ∗i (σ(t1, t2)(p1, p2)) = proj ∗i (σ) ti pi.

We use a function ts : Pi (Ti Pi)
∗ → T ∗i to extract the transitions of a ‘place/transition’

sequence in the obvious way.

Proposition 6.8.17. Let σ ∈ JFS, and Ki ∈ Cover i. We have:

proj ī(σ↑Ki) = ts(proj
∗
ī
(σ↑Ki)).

Proof. Obvious with the definitions.

Now, we indeed prove:

Proposition 6.8.18. Let σ ∈ JFS, and Ki ∈ Cover i; we set β = first(σ), and

β′ = last(σ).

1. proj ∗
ī
(σ↑Ki) is a PP-path in Nī that leads from proj ī(β ↑Ki) to proj ī(β

′ ↑Ki).

2. The path of (1), say πī, induces a simple link λī such that

(a) pinλī = proj ī(β ↑Ki) & pfiλī = proj ī(β
′ ↑Ki),

(b) K in
λī

= cm ·β(Ki) & Kfi
λī

= cm ·β ′(Ki), and

(c) Kλī ⊆ Ks(πī).
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Proof. (1.) This is straightforward by induction on the length of σ. For the

inductive case σ ≡ σ′(t1, t2)β
′ consider the following two cases: (a) Ki 6∈ Ks(ti),

and (b) Ki ∈ Ks(ti). If (a) holds then (1.) follows by induction hypothesis and

Prop. 6.8.9(1). In the case of (b), (1.) is immediate by induction hypothesis and

this property: proj ī(last(σ
′) ↑Ki) ∈

•t̄i & proj ī(β
′ ↑Ki) ∈ t̄i

•. The latter can be

obtained by employing Prop. 6.4.1 and Prop. 6.2.12(3).

(2.) It is easy to see: any PP-path π can uniquely be divided up into one WS-

and n ≥ 0 FOS-segments, and thus induces a simple link λ. Furthermore, λ will

satisfy: pinλ = first(π), pfiλ = last(π) & Kλ ⊆ Ks(π). Clearly, this implies (2.) up

to (a) and (c); (b) follows with (a) and Prop. 6.8.6(3).

Definition 6.8.5. Let σ ∈ JFS , and Ki ∈ Cover i. We call the PP-path given

by Prop. 6.8.18(1) path ī(σ↑Ki), and the link given by (2) link ī(σ↑Ki).

Set Kī = cm·first(σ)(Ki). From our previous observations we know: if Ki does

not synchronize on proj i(σ) then Ki and Kī stay matched to each other during

σ, and Kī does not synchronize on proj ī(σ), either. This allows us to gain further

information about the path and link induced by tracing Ki, or a component of

Cover i other than Ki, on σ. First of all, we prove:

Proposition 6.8.19. Let σ ∈ JFS, Ki ∈ Cover i, and set Kī = cm ·first(σ)(Ki).

If nosynch(Ki, proj i(σ)) then we have:

1. Ks(proj ī(σ↑Ki)) ⊆ {Kī}.

2. Let Ki ⊆ Cover i\Ki. Kī 6∈ Ks(proj ī(σ↑Ki)).

Proof. Let σ, Ki, Kī be given as above, and assume nosynch(Ki, proj i(σ)). Note

that by Prop. 6.8.5(1) we also have nosynch(Kī, proj ī(σ)). We shall employ this

fact, and refer to it by (A).

(1.) With (A) it is easy to see that Ks(proj ī(σ ↑Kī)) ⊆ {Kī}. But since by

Prop. 6.8.12(1a) σ↑K1= σ↑K2, this immediately proves (1.).

(2.) Set Ri = Cover i\Ki, and Rī = cm ·first(σ)(Ri). Clearly, Kī 6∈ Rī, and

thus with (A) we obtain Kī 6∈ Ks(proj ī(σ ↑Rī)). By Prop. 6.8.12(1b) this gives

us Kī 6∈ Ks(proj ī(σ↑Ri)). But note how this already establishes (2.): clearly, for

any Ki ⊆ Ri we have Ks(proj ī(σ↑Ki)) ⊆ Ks(proj ī(σ↑Ri)).

We can now refine Prop. 6.8.18 as follows.

Proposition 6.8.20. Let σ ∈ JFS, Ki ∈ Cover i, β = first(σ), and β ′ = last(σ).

If nosynch(Ki, proj i(σ)) then we have:
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1. path ī(σ↑Ki) is a WS-path.

2. Let K ′
i ∈ Cover i such that K

′
i 6= Ki.

(a) cm ·β(Ki) 6∈ Ks(path ī(σ↑K
′
i)), and

(b) cm ·β(Ki) 6∈ Kλī, where λī = link ī(σ↑K
′
i).

Proof. (1.) is immediate with Prop. 6.8.19(1), 6.8.17, and 6.2.4. (2.) (a) fol-

lows with Prop. 6.8.19(2), 6.8.17, and 6.2.15. (b) is immediate with (a) and

Prop. 6.8.18(2c).

Additionally making use of Prop. 6.4.11, from the first part of the previous

proposition we further obtain:

Proposition 6.8.21. Let σ ∈ JFS, Ki ∈ Cover i, β = first(σ), and β ′ = last(σ).
If we have (0) nosynch(Ki, proj i(σ)),

(i) proj i(β)(Ki) is of type switch,
(ii) p′i ≡ proj i(β

′)(Ki) is of type synch, and

(iii) σ
(t1,t2)
→cp for ti given by p

′
i
• = {ti}, and some tī ∈ Tī,

then path ī(σ↑Ki) is a TFS-path.

Proof. Let σ, Ki, β, and β ′ be given as above, and suppose that conditions (0)-

(iii) are satisfied; set πī = path ī(σ↑Ki), and pi = proj i(β)(Ki). By Prop. 6.8.20(1)

and (0) it is clear that πī is a WS-path. We further need to show: (A) first(πī) =

proj ī(β ↑Ki) is a switch place, and (B) last(πī) = proj ī(β
′ ↑Ki) is a synch place.

By Prop. 6.4.11 and 6.8.6(2), (B) is a consequence of (ii) and (iii). In turn, (A)

will follow by the same propositions and (i) if we can exhibit σ ′(t′1, t
′
2) ∈ JFS (β)

such that t′i ∈ pi
•.

By (i), (ii), and Prop. 6.8.6(1) we clearly have β ↑ Ki 6= β′ ↑ Ki, and with

Prop. 6.8.9(2) we obtain Ki ∈ Ks(proj i(σ)). Then, considering condition (0)

we can assume a prefix σ′(t′1, t
′
2) of σ such that Ks(t′i) = {Ki}, and Ki 6∈

Ks(proj i(σ
′)). But by Prop. 6.8.9(2), 6.8.6(1), and 6.2.12(3) it is easy to see

that t′i ∈ pi
•, and altogether we have found entities σ′(t1, t2) as required.

Prop. 6.8.20(2) and Prop. 6.8.21 will be crucial with respect to our application

of the WNL Theorem in Section 6.10.
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6.9 Is cp Bisimilarity K-decomposable?

We are now coming closer to our main results about cp bisimilarity on live SSMD

fc systems: in Section 6.10 we will prove the SWFSI Matching Theorem; with its

help we will then show in Section 6.11 that cp bisimilarity is K-decomposable,

and further that cp bisimilarity is sw-(1)coherent and sw-(1)hereditary. This

section gives introductory material: we present the concept of K-decomposability,

and provide a first analysis of whether cp bisimilarity satisfies this property. In

particular, we are led to the Crucial SubgoalK , and sketch how it will follow if we

can prove that swfsi-matching is deterministic.

In more detail, the section is organized as follows: first, we introduce a basic

decomposition view for systems, the so-called ‘K-split’ view. In the second part,

we derive K-decomposability by translating the ‘K-split’ view into a decompo-

sition property for cp bisimilarity. Then follow three parts with basic insights.

Building on these we come up with the Crucial SubgoalK , and sketch how it can

be reduced to the subgoal “swfsi-matching is deterministic”.

In the first paragraph we assume a SSMD fc system (N ,Cover) with the

setting of Section 6.2.5.3. Otherwise we work in the context of two live SSMD

fc systems (N1,Cover 1), (N2,Cover 2), and build on the framework of the pre-

vious section. (To be precise, liveness will only be required from paragraph (5)

onwards.)

(1.) The ‘K-split’ View. Assume a process M ∈ Proc, a component K ∈

Cover , and set R = Cover\K. We can naturally divide M into a K-part, and a

remaining part as follows:

Definition 6.9.1. We define the K-part of M to be MK = M ↑ K, and the

remaining part of M (w.r.t. K) to be MR(K ) = M ↑R; we fix that MK and MR(K )

are always interpreted with respect to N .

With our observations of Section 6.2.5.3 it is easy to see: MK characterizes

the share of K in the behaviour of M up to synch of K, in turn MR(K ) represents

the share of R in the behaviour of M up to synch of K, and naturally these

processes compute independently of each other. On the other hand, since the

split into K and R covers all components of Cover , the behaviour of M up to

synch of K exhaustively falls into the behaviour of MK and the behaviour of

MR(K ). Altogether, this gives us our basic decomposition insight, the ‘K-split’

view :
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Up to synchronization of K, the process M behaves like the parallel

composition of its subprocesses MK and MR(K ).

Definition 6.9.2. The behaviour of M up to synchronization of K is defined by:

UpToSynch(M,K) = {r ∈ RunsN(M) | nosynch(K, r)}.

Proposition 6.9.1 (‘K-split’ view).

UpToSynch(M,K) = RunsN(MK)⊗RunsN(MR(K )).

Proof. The ‘⊆’-direction follows with Prop. 6.2.22(1) and the obvious fact that

N is covered by K and R. The ‘⊇’-direction is immediate with Prop. 6.2.23 and

6.2.21(1).

(2.) K-decomposability. We are going to translate the ‘K-split’ view into a

decomposition property for cp bisimilarity; this is how we obtain the concept

of K-decomposability. Assume a joint process β ∈ JProc, a joint component

K ∈ cm ·β, and set R = cm ·β\K. Analogously to Def. 6.9.1 we divide β into a

K-part and a remaining part :

Definition 6.9.3. We define the K-part of β to be βK = β ↑ Ki, and the re-

maining part of β (w.r.t. K) to be βR(K ) = β ↑Ri, where i = 1, or 2 equivalently

(considering Prop. 6.8.6(4)). We fix that βK and βR(K ) are always interpreted

with respect to N1 and N2.

If the ‘K-split’ view translates into cp bisimilarity then we will naturally

expect:

Whenever β ∈ ∼cp there exists a cp bisimulation B for β such that

the part of B that covers the behaviour up to synchronization of K1,

and K2 respectively, is uniformly composed of a cp bisimulation for

βK , and a cp bisimulation for βR(K ).

Note that we are not content with merely requiring the existence of cp bisim-

ulations for βK and βR; this would ignore all behaviour from the point of K-

synchronization onwards, and only give us a decomposition property at the level

of SBPP.

Due to Prop. 6.8.5(1), runs of M1 without synch of K1 have to be matched

against runs of M2 without synch of K2, and vice versa. This means, matches up

to synch of K1 and K2 can very naturally be captured as follows:
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Definition 6.9.4. Let B be a cp bisimulation for β. We define the matching up

to synchronization of K in B by:

UpToSynch(B, K) = {σ ∈ B | nosynch(Ki, proj i(σ))},

where i = 1, or 2 equivalently (considering Prop. 6.8.5(1)).

Now, we are ready to formulate:

Definition 6.9.5 (K-decomposability). Let B be a cp bisimulation for β. We

say B is decomposable w.r.t. K (short: K-decomposable) iff there exist sets BK

and BR(K) such that

1. BK is a cp bisimulation for βK ,

2. BR(K) is a cp bisimulation for βR(K ), and

3. UpToSynch(B, K) = BK ⊗ BR(K).

We say cp bisimilarity is K-decomposable iff for all β ∈ ∼cp, and K ∈ cm·β there

exists a cp bisimulation B for β which is K-decomposable.

(3.) First Basic Insight. First of all, we shall see: assuming β ∈ ∼cp, it is

straightforward to obtain cp bisimulations for βK , and βR(K ) respectively; we can

read the required matching from any cp bisimulation B for β. There are even two

ways of achieving this. On the one hand, we can extract cp bisimulations for βK

and βR(K ) from UpToSynch(B, K):

Definition 6.9.6. Let B be a cp bisimulation for β. We define:

BuK = {σ↑Ki | σ ∈ UpToSynch(B, K)}, and
BuR(K) = {σ↑Ri | σ ∈ UpToSynch(B, K)},

where i = 1, or 2 equivalently (considering Prop. 6.8.12(1)).

Proposition 6.9.2. Let B be a cp bisimulation for β.

1. BuK is a cp bisimulation for βK.

2. BuR(K) is a cp bisimulation for βR(K ).

Proof. Let B be given as above.

(1.) We need to show: (1) BuK ⊆ JFS (βK), (2) βK ∈ B
u
K , (3) B

u
K is prefix-

closed, and (4) BuK satisfies the two bisimulation clauses of Def. 6.4.6. Since

B is a cp bisimulation for β we clearly have: (i) UpToSynch(B, K) ⊆ JFS (β),

(ii) β ∈ UpToSynch(B, K), and (iii) UpToSynch(B, K) is prefix-closed. Then (1)
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follows from (i) and Prop. 6.8.13(1a), (2) is immediate with (ii), and (3) is a

consequence of (iii) and Prop. 6.8.10.

To prove that (4) holds, suppose σK ∈ B
u
K such that (∗) proj i(σK)

ti→ for

some ti ∈ Ti, i = 1, 2. We need to find entities tī ∈ Tī, σ
′
K ∈ JFS satisfying

σK
(t1,t2)
→ σ′K , and σ′K ∈ B

u
K . By definition of BuK there must be σ ∈ B such

that σK = σ ↑Ki. The latter entails last(σK) = last(σ) ↑Ki (Prop. 6.8.11), and

thus with (∗), Prop. 6.8.6(1), and Prop. 6.2.19 we obtain (a) Ks(ti) = {Ki},

and (b) proj i(σ)
ti→. Since B is a cp bisimulation, (b) implies we can assume

t̄i ∈ Tī, σ
′ ∈ JFS such that (c) σ

(t1,t2)
→ σ′, and (d) σ′ ∈ B. But clearly, tī and

σ′K ≡ σ′ ↑Ki provide entities as required: by Prop. 6.8.13(1a) we have σ ′K ∈ JFS ,

and considering (a) and (c) we obtain σ′K = σK(t1, t2)(last(σ
′)↑Ki); together this

implies σK
(t1,t2)
→ σ′K . σ

′
K ∈ B

u
K follows from (d) and the definition of BuK .

(2.) This can be proved in analogous fashion; employ Prop. 6.8.13(1b) instead

of (1a).

On the other hand, we can extract the required cp bisimulations from the

matching of ‘K-only’ behaviour, and ‘R-only’ behaviour respectively:

Definition 6.9.7. Let B be a cp bisimulation for β.

Let K ⊆ cm ·β. We define the matching of ‘K-only’ behaviour in B by:

BehavOnly(B,K) = {σ ∈ B | Ks(proj i(σ)) ⊆ proj i(Ki)}, where i = 1, or 2

equivalently (considering Prop. 6.8.5(2)).

Further, we define:

BoK = {σ↑Ki | σ ∈ BehavOnly(B, K)}, and
BoR(K) = {σ↑Ri | σ ∈ BehavOnly(B,R)},

where i = 1, or 2 equivalently (considering Prop. 6.8.12(2)).

Proposition 6.9.3. Let B be a cp bisimulation for β.

1. BoK is a cp bisimulation for βK.

2. BoR(K) is a cp bisimulation for βR(K ).

Proof. This can be proved analogously to Prop. 6.9.2; employ Prop. 6.8.13(2)

instead of (1).

Clearly, we have:

Proposition 6.9.4. Let B be a cp bisimulation for β.
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1. BehavOnly(B, K) ⊆ UpToSynch(B, K) and

BehavOnly(B,R) ⊆ UpToSynch(B, K), and thus

2. BoK ⊆ B
u
K & BoR(K) ⊆ B

u
R(K).

Proof. Obvious with Prop. 6.2.5.

In general, the converse directions do not hold. However, if B isK-decomposable

we do obtain BuK = BoK , and B
u
R(K) = B

o
R(K). This is a consequence of the follow-

ing:

Proposition 6.9.5. Let B be a cp bisimulation for β, BK ⊆ JFS (βK), and

BR(K) ⊆ JFS (βR(K )). If BK ⊗ BR(K) = UpToSynch(B, K) then we have:

1. BK = BuK = BoK, and

2. BR(K) = B
u
R(K) = B

o
R(K).

Proof. Let B, BK , and BR(K) be given as above, and assume (A) BK ⊗ BR(K) =

UpToSynch(B, K).

(1.) Considering Prop. 6.9.4(2), (1.) will follow if we can achieve (a) BK ⊆ B
o
K ,

and (b) BuK ⊆ BK .

To prove (a) assume σK ∈ BK . Since clearly β ∈ UpToSynch(B, K), with (A)

we obtain βR(K ) ∈ BR(K), and further σ ∈ UpToSynch(B, K), where σ is given by

σK ⊗βR(K ) = {σ}. Moreover, if we consider that by Prop. 6.8.7 Ks(proj i(σK)) ⊆

{Ki}, we can refine the latter to σ ∈ BehavOnly(B, K). But this implies σ↑Ki∈

BoK , and together with Prop. 6.8.15(1) we obtain σK ∈ B
o
K as required.

To verify (b) let σK ∈ B
u
K . By definition of BuK , there is σ ∈ UpToSynch(B, K)

such that σ↑Ki= σK . By (A) we have σ ∈ BK ⊗BR(K), and with Prop. 6.8.15(2)

it is immediate that indeed σK ∈ BK .

(2.) This follows by analogous argumentation.

Then, naturally we infer:

Proposition 6.9.6. Let B be a cp bisimulation for β. The following two state-

ments are equivalent:

1. B is K-decomposable.

2. BxK ⊗ B
y

R(K) = UpToSynch(B, K), where x, y ∈ {u, o}.

Proof. By Prop. 6.9.2 and Prop. 6.9.3 it is immediate that (2) implies (1) for any

combination x, y ∈ {u, o}. On the other hand, it follows from Prop. 6.9.5 that

(1) implies (2).
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(4.) Second Basic Insight. Having observed that from UpToSynch(B, K) we

can extract cp bisimulations for βK and βR(K ), we now show that conversely

the following holds: a cp bisimulation for βK and a cp bisimulation for βR(K )

together provide complete matching for β up to synchronization of K; formally,

they provide a cp bisimulation for β up to K-synch.

Definition 6.9.8. Bu is a cp bisimulation for β up to K-synch iff

1. Bu ⊆ JFS (β),

2. β ∈ Bu,

3. Bu is prefix-closed, and

4. for i = 1, 2 the following is satisfied:

if σ ∈ Bu and proj i(σ)
ti→ for some ti ∈ Ti with ti 6∈ synchT i(Ki) then there

are t̄i ∈ Tī, σ
′ ∈ JFS such that σ

(t1,t2)
→ σ′ and σ′ ∈ Bu.

Proposition 6.9.7. Let BK be a cp bisimulation for βK, and BR(K) a cp bisim-

ulation for βR(K ). BK ⊗ BR(K) is a cp bisimulation for β up to K-synch.

Proof. Let BK and BR(K) be given as above, and set Bs = BK ⊗ BR(K). We need

to verify that the conditions (1)-(4) of Def. 6.9.8 are satisfied.

Since BK and BR(K) are cp bisimulations for βK , and βR(K ) respectively, we

have: (i) BK ⊆ JFS (βK) & BR(K) ⊆ JFS (βR(K )), (ii) βK ∈ BK & βR(K ) ∈

BR(K), and (iii) BK and BR(K) are prefix-closed. Then, (1) follows from (i) and

Prop. 6.8.14, (2) is immediate with (ii), and (3) is a consequence of (iii) and

Prop. 6.4.14.

To prove (4), assume σ ∈ Bs such that (∗) proj i(σ)
ti→ for some ti ∈ Ti with

ti 6∈ synchT i(Ki), i = 1, 2. We need to find entities tī ∈ Tī, σ
′ ∈ JFS satisfying

σ
(t1,t2)
→ σ′, and σ′ ∈ Bs. Since ti 6∈ synchT i(Ki) we either have (a) Ks(ti) = {Ki}

or (b) Ks(ti) ⊆ Ri (Prop. 6.2.5). We first consider case (a). Set σK = σ ↑Ki.

By definition of Bs, (i), and Prop. 6.8.15(2) we have σK ∈ BK . By Prop. 6.8.11

we obtain last(σ) ↑Ki= last(σK), and further with Prop. 6.8.6(1), (∗), (a), and

Prop. 6.2.18(1) we infer proj i(σK)
ti→. Since BK is a cp bisimulation, this implies

there must be tī ∈ Tī, σ
′
K ∈ JFS such that σK

(t1,t2)
→ σ′K , and σ′K ∈ BK . Set

σ′ = σ (t1, t2) (last(σ
′
K) ∪ last(σ)\last(σK)). It is straightforward to show that

σ′ ∈ Bs Having proved (1) it is then clear that σ′ ∈ JFS , and further that

σ
(t1,t2)
→ σ′. But altogether, this means tī and σ

′ provide entities as required. Case

(b) can be proved in the analogous way.
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With Prop. 6.9.2 and 6.9.3 it follows:

Corollary 6.9.1. Let B be a cp bisimulation for β, and choose x, y ∈ {o, u}.

BxK ⊗ B
y

R(K) is a cp bisimulation for β up to K-synch.

(5.) Third Basic Insight. With Prop. 6.8.16, liveness and Prop. 6.4.12 it is

clear: if β ∈ ∼cp then βK either corresponds to a joint switch place or to a joint

synch place. In the latter case K1 and K2 will not be capable of performing any

independent behaviour at β; we then naturally have:

Proposition 6.9.8. If βK corresponds to a joint synch place then every cp bisim-

ulation for β is K-decomposable.

Proof. Let B be a cp bisimulation for β, and assume βK corresponds to a joint

synch place. It is easy to see that: (1) UpToSynch(B, K) = BehavOnly(B,R);

(2) BoK = {βK}; and (3) BehavOnly(B,R) = BoR(K)⊗{βK} (this holds is general).

From (2) and (3) we easily obtain BoK ⊗ B
o
R(K) = BehavOnly(B,R), and further,

considering (1), UpToSynch(B, K) = BoK ⊗B
o
R(K). But by Prop. 6.9.6 this means

B is indeed K-decomposable.

If βK corresponds to a joint switch place then it is not obvious whether there

exists a K-decomposable cp bisimulation for β whenever β ∈ ∼cp. The only

immediate observation we can make for this case is that in general cp bisimulations

that are not K-decomposable do exist. Thus, to prove K-decomposability we will

require deeper insights.

(6.) Key Idea. Let us summarize what we have achieved so far:

1. By Prop. 6.9.8 we can restrict our attention to the case when βK is a joint

switch place.

2. By Corollary 6.9.1 we know: it is always possible to bisimulate the behaviour

of β up to synchronization of K in a ‘composite’ way; we can simply employ

BxK⊗B
y

R(K), x, y ∈ {u, o}. The difficulty lies in whether we can extend such

a partial bisimulation to one that covers the full behaviour of β.

Inspired by this, we adopt the following approach: we fix βK to be of type

switch, assume a cp bisimulation B for β, and set Bs = B
u
K ⊗B

o
R(K). (The choice

of x = u, and y = o is crucial; it will be discussed in Section 6.11.) Our aim is to

show:
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Subgoal 6.9.1 (Crucial SubgoalK). Bs can be extended to a full cp bisimulation

for β.

Clearly, if we achieve this goal, we can conclude that cp bisimilarity is indeed

K-decomposable. In the following, we resolve the Crucial SubgoalK by exhibiting

a chain of sufficient subgoals. We will be led to the concept of swfsi’s, and

altogether K-decomposability will be reduced to our final subgoal ‘the matching

of swfsi’s in ∼cp is deterministic’.

To achieve the Crucial SubgoalK we need to extend Bs by matches for Ki-

transitions of type synch and the behaviour beyond such synchronizations. Thus,

our focus must be on critical jfs’ :

Definition 6.9.9. We consider a jfs σ ∈ Bs to be critical iff we have proj i(σ)
ti→

for some ti ∈ synchT (Ki), i = 1, or 2. We write critical(Bs) to denote the set of

critical jfs’ of Bs.

It is now easy to formulate a condition that is sufficient to prove the Cru-

cial SubgoalK : if we achieve ‘Subgoal 1: ∀σ ∈ critical(Bs). ∃σ
′ ∈ ∼cp. last(σ) =

last(σ′)’, then it will be possible to copy the required matches from a cp bisimu-

lation that contains the respective tuples σ′.

Assume σ ∈ critical(Bs), and set last(σ) ↑ Ki = {(p
1
si , p

2
si)}. By definition

of Bs and Prop. 6.8.15(2) we obtain (A) σ ↑Ki ∈ B
u
K , and (B) σ ↑ Ri ∈ B

o
R(K).

From (B) and the definition of BoR(K) we further infer: there must be σ◦ ∈ B

such that (a) Ks(proj i(σ
◦)) ⊆ Ri, and (b) σ◦ ↑Ri= σ ↑Ri. (b) and Prop. 6.8.11

entail (c) last(σ◦) ↑ Ri = last(σ) ↑ Ri. Exploiting liveness it will be straight-

forward to show that we can extend σ◦ to a jfs σe ≡ σ◦.σ¦ ∈ ∼cp such that:

(d) Ks(proj i(σ
¦)) = {Ki}, and (e) proj i(last(σ

e) ↑Ki) = {p
i
si}. Importantly, by

(d), Prop. 6.8.9(2), and (c) we obtain (f) last(σe)↑Ri= last(σ)↑Ri. Altogether,

this means we have found σe ∈ ∼cp such that last(σe) is almost identical with

last(σ): by (e) and (f), last(σe) and last(σ) can at most differ in their match of pisi .

Thus, if we achieve ‘Subgoal 2: in general, last(σe)(pisi) = pīsi ’, we can conclude

last(σ) = last(σe), which will immediately imply that Subgoal 1 is satisfied.

On the other hand, from (A) and the definition of BuK we obtain: there must

be σ? ∈ B such that (i) nosynch(Ki, proj i(σ
?)), and (ii) σ? ↑Ki= σ ↑Ki. (ii) and

Prop. 6.8.11 imply last(σ?)↑Ki= {(p
1
si , p

2
si)}. In view of Subgoal 2 this means: pīsi

has successfully been employed as a match for pisi in the jfs σ?, which is contained

in ∼cp. The difficulty is that a priori we do not know whether pīsi provides a valid

‘∼cp-match’ for pisi in the context of last(σ) ↑ Ri just as it does in the context

of last(σ?) ↑Ri. The hope then is: maybe we can show that the matching in cp
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bisimilarity is deterministic in a certain sense that would allow us to conclude:

if pīsi acts as the match of pisi in σ? then pīsi must also be the match of pisi in σe.

Accordingly, we set: ‘Subgoal 3: in general, last(σ?)(pisi) = last(σ
e)(pisi)’.

A close look at σe and σ? tells us that in both jfs’ pisi occurs in a very special

way: (1) it is easy to derive that pisi is a synch place of Ki; (2) by (i) Ki does not

synchronize on σ?, and considering (a) and (d) this also follows for σe; (3) by our

assumption ‘βK is of type switch’ we know that Ki starts off at a switch place in

both, σ? and σe. Together, (1) and (2) mean pisi occurs as first synchronization

interface (short: fsi) of Ki w.r.t. proj i(σ
?) and proj i(σ

e). Integrating (3), we

further say: pisi occurs as switch fsi (short: swfsi) of Ki w.r.t. proj i(σ
?) and

proj i(σ
e). Now, it is clear: Subgoal 3 would immediately follow, if we knew that

the matching of swfsi’s in ∼cp was deterministic in the following sense: given a

place pi ∈ Pi and a jfs σ ∈ ∼cp-β, whenever pi occurs as swfsi w.r.t. proj i(σ), it

is matched to one particular place pī ∈ Pī in σ, where pī only depends on pi and

β. Thus, as our last subgoal we put forward: Subgoal 4: the matching of swfsi’s

in ∼cp is deterministic.

Note that this last subgoal is far from obvious: it requires us to prove a strong

statement about the interior of cp bisimulations. In the following section, we will

achieve it with the help of the WNL Theorem.

264



6.10 swfsi Matching in cp Bisimilarity is Deter-

ministic

Motivated by the previous section, we now want to show that for live SSMD fc

systems the matching of swfsi’s in cp bisimulations is deterministic. Let β ∈

JProc, and pi ∈ Pi. Concretely, we need to prove: for any two jfs’ σ, σ ′ ∈ ∼cp-β

that are swfsi-adequate w.r.t. pi in that pi occurs as swfsi w.r.t. proj i(σ), and

proj i(σ
′) respectively, we have last(σ)(pi) = last(σ

′)(pi). We will indeed achieve

this result, and in fact we will prove it as a consequence of the WNL Theorem.

The argument goes as follows. In the beginning we observe that any jfs

σ ∈ ∼cp-β that is swfsi-adequate w.r.t. pi can be extended to a jfs σ′ that is

‘active swfsi’-adequate (short: aswfsi-adequate) w.r.t. pi, and crucially, pi and its

match will remain unaffected by the extension. The key insight then is: from any

two given σ, σ′ ∈ JFS (β) that are aswfsi-adequate w.r.t. pi we can infer specific

topological entities for Nī, namely a wedge and an indirect link; this will be pos-

sible via our observations of Section 6.8(3). Further, if last(σ)(pi) 6= last(σ
′)(pi)

then the wedge will be proper, and altogether the entities will be contradictory

to the WNL Theorem. Thus, we conclude that aswfsi matching in JFS is de-

terministic, and carry over that swfsi matching in ∼cp must be deterministic as

well.

We will organize and refine this material as follows. In the first part, we shall

provide the necessary definitions and some straightforward insights. In particular,

we shall see that we can restrict our attention to places that are topological swfsi’s

(short: t-swfsi’s); swfsi matching in ∼cp can then be more conveniently studied

as fsi matching of t-swfsi’s in ∼cp, and aswfsi matching in JFS as afsi matching

of t-swfsi’s in JFS . In the first part, we shall also establish the analogue of our

initial observation on the connection between swfsi- and aswfsi-adequate jfs’. In

the second part, we then prove: given β ∈ JProc and a t-swfsi pi of M
i, there

exists at most one afsi-match for pi in JFS (β). We will call this result the SWFSI

Matching Lemma. With its help it will then be immediate to derive our main

result, the SWFSI Matching Theorem: given β ∈ ∼cp and a t-swfsi pi of M
i,

there exists exactly one fsi-match for pi in ∼cp-β. This makes the third part. In

the final part, we will see that with the help of the SWFSI Matching Theorem

we can indeed make predictions about the interior of cp bisimulations as required

by Section 6.9(6). This will give rise to two SWFSI Prediction Theorems.

For the beginning of the first part we fix a live SSMD fc system (N ,Cover),

and assume the setting of Def. 6.2.19. Otherwise (and as already done in this
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introduction), we work in the context of two live SSMD fc systems (N1,Cover 1),

(N2,Cover 2), and build on the framework of Section 6.8. We shall use the fol-

lowing additional convention: in the context of β ∈ JProc, we set Mi = proj i(β).

6.10.1 Definitions and First Insights

swfsi’s and t-swfsi’s. We start with the formal definition of swfsi occurrences:

Definition 6.10.1. Let M ∈ Proc, K ∈ Cover , r ∈ Runs(M), p ∈ P , and M ′

such that M [r〉M ′. We say p occurs as fsi of K w.r.t. r (short: p is fsi(K, r)) iff

1. p is of type synch,

2. M ′(K) = p, and

3. nosynch(K, r).

We say p occurs as switch fsi of K w.r.t. r (short: p is swfsi(K, r)) if we further

have

4. M(K) is of type switch.

A place which can occur as swfsi relative to a given process M satisfies the

following topological criterion:

Proposition 6.10.1. Let M ∈ Proc, p ∈ P . If p is swfsi(K, r) of some K ∈

Cover w.r.t. some r ∈ Runs(M) then there exists a TFS-path in N leading from

M(K(p)) to p.

Proof. Let M ∈ Proc, p ∈ P , K ∈ Cover , r ∈ Runs(M), and set M ′ such

that M [r〉M ′. Assume p is swfsi(K, r), and thereby that the conditions (1)-

(4) of Def. 6.10.1 are satisfied. We need to exhibit a PP-path π such that:

(a) nosynch(ts(π)), (b) first(π) = M(K(p)) is of type switch, and (c) last(π) = p

is of type synch.

By Prop. 6.2.8 we have M(K)[r↑K〉KM
′(K), and hence with Prop. 6.2.16(2)

we obtain a PP-path π that leads from M(K) to M ′(K) and satisfies (∗) ts(π) =

r ↑K. Clearly, π is a PP-path as required: (a) is immediate with (∗) and (3); by

Prop. 6.2.12(2) and condition (2) we have K(p) = K, and then (b) follows from

(4); (c) is a consequence of (1) and (2).

Accordingly, we define the concept of topological swfsi’s :

Definition 6.10.2. Let M ∈ Proc, and psi ∈ P . We say psi is a topological swfsi

(short: t-swfsi) of M iff there exists a TFS-path in N leading from M(K(psi)) to

psi . We denote the set of t-swfsi’s of M by T -SWFSIs(M).
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We equip t-swfsi’s with the following attributes:

Convention 6.10.1. Let M ∈ Proc. In the context of psi ∈ T -SWFSIs(M), we

set Ksi = K(psi), and tsi such that psi
• = {tsi}. Given Mi ∈ Proci, we carry this

convention over to pisi ∈ T -SWFSIs(Mi) in the obvious way.

The runs w.r.t. which t-swfsi’s will occur as fsi’s can be captured as follows:

Definition 6.10.3. Let M ∈ Proc, psi ∈ T -SWFSIs(M), r ∈ Runs(M), and M ′

such thatM [r〉M ′. We say r is fsi-adequate w.r.t. psi iff psi ∈M
′ & nosynch(Ksi , r).

We denote the set of runs ofM that are fsi-adequate w.r.t. psi by fsi -Runs(M, psi).

Naturally, whenever a t-swfsi is fsi(K, r) for someK and r, it is also swfsi(K, r).

Altogether, we then have:

Proposition 6.10.2. Let M ∈ Proc, K ∈ Cover, r ∈ Runs(M), and psi ∈ P .

psi is swfsi(K, r) ⇐⇒ psi ∈ T-SWFSIs(M) & Ksi = K & r ∈ fsi-Runs(M, psi).

Proof. Consider the definitions of swfsi , T -SWFSIs , and fsi -Runs . The ‘⇒’-

direction follows with Prop. 6.10.1 and Prop. 6.2.12(2). The ‘⇐’-direction is

immediate with Prop. 6.2.12(2), and the definition of TFS-paths.

Example 6.10.1. Consider the system of Figure 6.5 and let M be the marking

indicated in the figure. p4t5p5t7p7t8p8 is a TFS-path leading from M(K2) = p4 to

p8, where K(p8) = K2. Thus, we have p8 ∈ T -SWFSIs(M). It is easy to see that

r ≡ t5t3t7t8 ∈ fsi -Runs(M, p8). Independently, one can check that p8 occurs as

swfsi of K2 w.r.t. r. Finally note that p8 is not swfsi of K2 w.r.t. the run t5t6t3t4.

The following proposition shows that each t-swfsi can indeed occur as swfsi.

Note that together with Prop. 6.10.2 this means: t-swfsi’s exactly capture the set

of ‘potential swfsi’s’.

Proposition 6.10.3. Let M ∈ Proc, and psi ∈ T-SWFSIs(M).

|fsi-Runs(M, psi)| ≥ 1.

Proof. Let M , and psi be given as above. By definition there must be a TFS-

path π leading from M(Ksi) to psi . Clearly, we have ts(π) ∈ fsi -Runs(M, psi): by

Prop. 6.7.2 ts(π) is a valid run of M , which will enable psi ; with the definition of

TFS-paths it is immediate that nosynch(Ksi , r).

Slightly stronger we also have:
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Proposition 6.10.4. Let M ∈ Proc, psi ∈ T-SWFSIs(M), and r ∈ Runs(M)

such that Ksi 6∈ Ks(r). Then there exists a run r
′ such that

1. r.r′ ∈ fsi-Runs(M, psi), and

2. Ks(r′) = {Ksi}.

Proof. Let M , psi , and r be given as above, and set M ′ such that M [r〉M ′. We

refer to our assumption Ksi 6∈ Ks(r) by (A).

We can assume a TFS-path π leading from M(Ksi) to psi . Again, ts(π)

provides r′ as required: with Prop. 6.7.1(1) we infer Ks(π) = {Ksi}, which implies

(2.). To see that (1.) holds, consider: by Prop. 6.2.9(2) and (A) we obtain

M(Ksi) = M ′(Ksi), and so similarly to above ts(π) is a valid run of M ′, which

will enable psi ; with (A) and (2.) it is clear that nosynch(Ksi , r.r
′).

swfsi Matching in ∼cp. Justified by Prop. 6.10.2 we shall restrict our attention

to t-swfsi’s, and study swfsi matching in ∼cp more conveniently as fsi matching

of t-swfsi’s in ∼cp. Accordingly, we define:

Definition 6.10.4. Let β ∈ JProc, and pisi ∈ T -SWFSIs(Mi).

Let σ ∈ JFS (β). We say σ is fsi-adequate w.r.t. pisi iff proj i(σ) ∈ fsi -Runs(Mi, p
i
si).

We denote the set of jfs’ of β that are fsi-adequate w.r.t. pisi by fsi -JFS (β, p
i
si).

We say pī ∈ Pī is a fsi-match of p
i
si in ∼cp-β iff there is σ ∈ fsi -JFS (β, pisi) ∩ ∼cp-β

such that pī = last(σ)(p
i
si). We denote the set of fsi-matches of pisi in ∼cp-β by

cp ·fsi -Matches(β, pisi).

With Prop. 6.10.3 it is immediate: given β ∈ ∼cp, there exists at least one

fsi-match in ∼cp-β for each t-swfsi of Mi:

Proposition 6.10.5. Let β ∈ ∼cp, and p
i
si ∈ T-SWFSIs(Mi).

1. |fsi-JFS (β, pisi) ∩ ∼cp-β | ≥ 1, and thus

2. |cp ·fsi-Matches(β, pisi)| ≥ 1.

Proof. Let β, and pisi be given as above.

(1.) By Prop. 6.10.3 we can assume ri ∈ fsi -Runs(Mi, p
i
si). Clearly, ∼cp-β must

contain a match for ri, that is there must be σ ∈ ∼cp-β such that proj i(σ) = ri.

But altogether this gives us σ ∈ fsi -JFS (β, pisi) ∩ ∼cp-β as required.

(2.) is immediate from (1.).

With Prop. 6.10.4 we obtain a correspondingly stronger statement:
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Proposition 6.10.6. Let β ∈ JProc, B be a cp bisimulation for β, further pisi ∈

T-SWFSIs(Mi), and σ ∈ B such that K
i
si 6∈ Ks(proj i(σ)). Then there exists a jfs

σ′ such that

1. σ.σ′ ∈ fsi-JFS (β, pisi) ∩ B, and

2. last(σ.σ′)↑Ri= last(σ)↑Ri, where Ri = Cover i\K
i
si .

Proof. Let β, B, pisi , and σ be given as above. By Prop. 6.10.4 we obtain a

run r′i such that (a) proj i(σ).r
′
i ∈ fsi -Runs(Mi, p

i
si), and (b) Ks(r′i) = {K i

si}.

With similar reasoning as used for Prop. 6.10.5 we can infer a jfs σ ′ such that

(i) proj i(σ
′) = r′i, and (ii) σ.σ′ ∈ fsi -JFS (β, pisi) ∩ B. (ii) means σ′ satisfies

condition (1). With (b), (i), and Prop. 6.8.9(2) it is clear that σ ′ also meets

condition (2).

Note how Prop. 6.10.6 relates to our sketch of Section 6.9(6): it confirms that

σ◦ can be extended to σ◦.σ¦ as required.

aswfsi Matching in JFS . As explained in the beginning, we will gain our

insight on swfsi matching in ∼cp via a result about ‘active swfsi’ (short: aswfsi)

matching in JFS . We say a place p occurs as aswfsi w.r.t. a run r, iff p occurs

as swfsi w.r.t. r, and the synch transition of p is enabled at r. Importantly, we

consider a jfs σ to be aswfsi-adequate w.r.t. a place pi, only if σ is swfsi-adequate

w.r.t. pi, and the synch transition ti of pi is enabled in the joint context of σ, that

is σ[t〉 for some t ∈ T satisfying proj i(t) = ti. Taking into account that we can

study aswfsi matching in JFS as ‘active fsi’ (short: afsi) matching of t-swfsi’s in

JFS we accordingly define:

Definition 6.10.5. Let β ∈ JProc, and pisi ∈ T -SWFSIs(Mi).

Let σ ∈ JFS (β). We say σ is afsi-adequate w.r.t. pisi iff σ ∈ fsi -JFS (β, pisi), and

σ[t〉 for some t ∈ T such that proj i(t) = tisi. We denote the set of jfs’ of β that

are afsi-adequate w.r.t. pisi by afsi -JFS (β, p
i
si).

We say pī ∈ Pī is an afsi-match of p
i
si in JFS (β) iff there is σ ∈ afsi -JFS (β, pisi)

such that pī = last(σ)(p
i
si). We denote the set of afsi-matches of pisi in JFS (β)

by afsi -Matches(β, pisi).

We also define:

Definition 6.10.6. Let M ∈ Proc, psi ∈ T -SWFSIs(M), r ∈ Runs(M), and M ′

such that M [r〉M ′. We say r is afsi-adequate w.r.t. psi iff r ∈ fsi -Runs(M, psi)

and M ′[tsi〉. We denote the set of runs of M that are afsi-adequate w.r.t. psi by

afsi -Runs(M, psi).
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Liveness ensures that every swfsi occurrence can become active later on; for-

mally we write:

Proposition 6.10.7. Let M ∈ Proc, and psi ∈ T-SWFSIs(M). For all r ∈

fsi-Runs(M, psi) there is a run r
′ such that

1. r.r′ ∈ afsi-Runs(M, psi), and

2. Ksi 6∈ Ks(r
′).

Proof. Let M , and psi be given as above, and assume r ∈ fsi -Runs(M, psi). By

Prop. 6.2.13 there must be a run r′ such that (a) r.r′[tsi〉, and (b) Ksi 6∈ Ks(r
′).

Clearly, this implies r.r′ ∈ afsi -Runs(M, psi), and thus we have found a run as

required.

Thus, whenever a swfsi occurrence is matched in a cp bisimulation one has

to anticipate the case when it becomes an aswfsi. Accordingly, we have: any

fsi-match in ∼cp is also an afsi-match.

Proposition 6.10.8. Let β ∈ JProc, and pisi ∈ T-SWFSIs(Mi).

1. For all σ ∈ fsi-JFS (β, pisi) ∩ ∼cp-β there exists a jfs σ
′ such that

(a) σ.σ′ ∈ afsi-JFS (β, pisi), and

(b) last(σ.σ′)(pisi) = last(σ)(p
i
si),

and thus:

2. cp ·fsi-Matches(β, pisi) ⊆ afsi-Matches(β, p
i
si).

Proof. Let β, and pisi be given as above.

(1.) Assume σ ∈ fsi -JFS (β, pisi) ∩ ∼cp-β. Set ri = proj i(σ); by definition,

we have ri ∈ fsi -Runs(Mi, p
i
si). Then, by Prop. 6.10.7 there is r′i such that

(i) ri.r
′
i ∈ afsi -Runs(Mi, p

i
si), and (ii) K i

si 6∈ Ks(r
′
i). Clearly, ∼cp-β will contain

a match for r′i at σ, that is there must be a jfs σ′ such that σ.σ′ ∈ ∼cp-β, and

(∗) proj i(σ
′) = r′i. Further, since by (i) we have ri.r

′
i [t

i
si〉, ∼cp will provide a

match for tisi at σ.σ′; this implies there must be t ∈ T such that σ.σ′[t〉, and

proj i(t) = tisi. Considering that proj i(σ.σ
′) = ri.r

′
i, with (i) it is then clear

that σ.σ′ ∈ afsi -JFS (β, pisi), and thus σ′ provides a jfs satisfying condition (a).

To see that σ′ also satisfies (b) consider: with (ii), (∗) and Prop. 6.8.9(2) we

obtain last(σ.σ′) ↑K i
si = last(σ) ↑K

i
si , and by Prop. 6.8.6(5) this clearly implies

last(σ.σ′)(pisi) = last(σ)(p
i
si).

(2.) is immediate from (1.).
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6.10.2 The SWFSI Matching Lemma

We now prove: for any β ∈ JProc and pisi ∈ T-SWFSIs(Mi), there exists at most

one afsi-match for pisi in JFS (β). This is the statement of the SWFSI Matching

Lemma. In the following we demonstrate how it follows as a consequence of the

WNL Theorem.

Using the findings of Section 6.8(3) we first observe that from a given afsi-

adequate jfs we can extract well-known topological entities for the opposite sys-

tem, namely a TFS-path and a family of simple links. Due to Prop. 6.4.13, the

entities are such that the final component of each link is a synchronization partner

of the TFS path’s synchronization interface.

Convention 6.10.2. Let β ∈ JProc, pisi ∈ T -SWFSIs(M i), σ ∈ afsi -JFS (β, pisi),

and set β ′ = last(σ). In the context of σ we assume:

• pīsi = proj ī(β
′ ↑K i

si), or β
′(pisi) equivalently (considering Prop. 6.8.6(2) and

Prop. 6.2.12(2)).

• pīto-si = proj ī(β ↑K
i
si), and

• K ī
si = cm ·β(K

i
si), or K(pīsi) equivalently (considering Prop. 6.8.6(3)).

Given pisp ∈ SPartners(p
i
si) we further assume:

• Ki
sp = K(pisp),

• pīto-sp = proj ī(β ↑K
i
sp),

• K ī
sp = cm ·β ′(K i

sp), and

• K ī
to-sp = cm ·β(K i

sp).

For entities a-σ, b-σ ∈ afsi -JFS (β, pisi) we assume a-pīsi , b-p
ī
si , etc. in an analogous

way.

Lemma 6.10.1 (topological entities). Let β ∈ JProc, pisi ∈ T-SWFSIs(M
i).

For all σ ∈ afsi-JFS (β, pisi) we have:

1. There is a TFS-path πī in Nī leading from pīto-si to p
ī
si ,

namely πī = path ī(σ↑K
i
si).

2. For all pisp ∈ SPartners(p
i
si) there is a simple link λī in Nī such that

(a) pinλī = pīto-sp,
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(b) K in
λī

= K ī
to-sp & Kfi

λī
= K ī

sp, and

(c) K ī
si 6∈ Kλī,

namely λī = link ī(σ↑K
i
sp).

3. For all pisp ∈ SPartners(p
i
si) we have K

ī
sp ∈ KSPartners(p

ī
si).

Proof. Let β, pisi , and σ be given as above. Since σ ∈ afsi -JFS (β, pisi) we have:

(i) pisi ∈ proj i(last(σ)), (ii) nosynch(K
i
si , proj i(σ)), and (iii) last(σ)

t
→ for t ∈ T

such that proj i(t) = tisi.

(1.) follows from Prop. 6.8.18(1), and Prop. 6.8.21; to see that the latter

applies consider (ii), the definition of t-swfsi’s, (i) with Prop. 6.2.12(2), and (iii).

(2.) In turn, this follows as a consequence of Prop. 6.8.18(2) and Prop. 6.8.20(2);

the latter applies by (ii), and since clearly K i
sp 6= K i

si (Prop. 6.2.2(1a)).

(3.) is immediate with (i),(iii) and Prop. 6.4.13 when employing Prop. 6.8.2.

Note that a TFS-path makes up half of a wedge, and a simple link makes up

half of an indirect link. In particular, given two jfs’ a-σ, b-σ ∈ afsi -JFS (β, pisi)

for fixed β and pisi , we can combine their associated topological entities to obtain

a wedge W , and a family of indirect links {λ} such that each λ links opposite

synchronization components of W without passing through KW . The SWFSI

Matching Lemma then follows with the following argument: if a-σ and b-σ gave

rise to different afsi-matches then W would be a proper wedge, and together W

and each λ would be such as forbidden by the WNL Theorem.

Lemma 6.10.2 (SWFSI Matching Lemma). Assume β ∈ JProc, and pisi ∈

T-SWFSIs(Mi). We have:

|afsi-Matches(β, pisi)| ≤ 1.

Proof. Let β ∈ JProc, and pisi ∈ T -SWFSIs(Mi). To the contrary suppose there

are a-pīsi , b-p
ī
si ∈ afsi -Matches(β, p

i
si) with a-pīsi 6= b-pīsi ; we will show that this

assumption leads to a contradiction.

By definition, we can assume a-σ, b-σ ∈ afsi -JFS (β, pisi) such that a-pīsi =

a-β′(pisi), and b-pīsi = b-β ′(pisi), where a-β
′ = last(a-σ), b-β ′ = last(b-σ).

Then by Lemma 6.10.1(1), in Nī there is a TFS-path a-πī leading from

a-pīto-si to a-pīsi , and a TFS-path b-πī leading from b-pīto-si to b-pīsi respectively.

Since clearly a-pīto-si = b-pīto-si , these two TFS-paths form a wedge, namely

Wī = (a-πī, b-πī). Crucially, by our assumption a-pīsi 6= b-pīsi , Wī is a proper

wedge.
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On the other hand, if we pick some pisp ∈ SPartners(p
i
si) then by Lemma 6.10.1(2)

we obtain a simple link a-λī in Nī leading from a-K ī
to-sp to a-K ī

sp with pina-λī =

a-pīto-sp , and K ī
si 6∈ Ka-λī , and likewise a simple link b-λī leading from b-K ī

to-sp to

b-K ī
sp with pinb-λī = b-pīto-sp , and K ī

si 6∈ Kb-λī . Since clearly a-pīto-sp = b-pīto-sp , this

time we can combine the two entities to an indirect link λī = (a-λī, b-λī).

By Lemma 6.10.1(3) we have a-K ī
sp ∈ KSPartners(a-p

ī
si)(= K

sp
Wī-l), and b-K

ī
sp ∈

KSPartners(b-pīsi)(= K
sp
Wī-r). But altogether this means we have indeed reached

a contradiction to the WNL Theorem (Theorem 6.7.3): λī leads from a-K ī
sp to

b-K ī
sp and satisfies K ī

si(= KWī
) 6∈ Kλī .

Convention 6.10.3. Let β ∈ JProc, and pisi ∈ T -SWFSIs(Mi). If we have

afsi -Matches(β, pisi) 6= ∅ then we denote the, by Lemma 6.10.2 uniquely given,

afsi-match of pisi in JFS (β) by afsi -Match(β, p
i
si).

6.10.3 The SWFSI Matching Theorem

Having established that afsi matching of t-swfsi’s in JFS is deterministic, via

Prop. 6.10.8(2) we can now conclude that fsi matching of t-swfsi’s in ∼cp must

be deterministic as well. Integrating Prop. 6.10.5(2) we obtain: for any β ∈ ∼cp

and pisi ∈ T-SWFSIs(Mi), there exists exactly one fsi-match for pisi in ∼cp-β. In

full detail, we have:

Theorem 6.10.1 (SWFSI Matching Theorem). Assume β ∈ ∼cp, and p
i
si ∈

T-SWFSIs(Mi).

1. afsi-Match(β, pisi) exists, and

2. cp ·fsi-Matches(β, pisi) = {afsi-Match(β, p
i
si)}.

Proof. Considering Lemma 6.10.2 and Conv. 6.10.3 this follows from Prop. 6.10.8(2)

and Prop. 6.10.5(2).

Convention 6.10.4. Let β ∈ ∼cp, and p
i
si ∈ T -SWFSIs(Mi). We denote the, by

Theorem 6.10.1 uniquely existing, fsi-match of pisi in ∼cp-β by cp ·fsi -Match(β, p
i
si).

6.10.4 The SWFSI Prediction Theorems

Naturally, we can employ the SWFSI Matching Theorem to make predictions

about the interior of cp bisimulations.

As a direct consequence, we obtain:
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Theorem 6.10.2 (SWFSI Prediction Theorem I). Let β ∈ JProc, B a cp

bisimulation for β, σ ∈ B, Ki ∈ Cover i, and p
i
si ∈ Pi.

pisi is swfsi(Ki, proj i(σ)) =⇒
pisi ∈ T-SWFSIs(Mi) & K i

si = Ki & last(σ)(p
i
si) = cp ·fsi-Match(β, p

i
si).

Proof. Considering Theorem 6.10.1 and Conv. 6.10.4 this follows with Prop. 6.10.2,

and the fact that B ⊆ ∼cp-β.

With Prop. 6.10.6 we can further predict:

Theorem 6.10.3 (SWFSI Prediction Theorem II). Let β ∈ JProc, B

a cp bisimulation for β, pisi ∈ T-SWFSIs(M
i), and σ ∈ B such that K i

si 6∈

Ks(proj i(σ)). Then there exists a jfs σ
′ such that

1. σ.σ′ ∈ B,

2. last(σ.σ′) ↑K i
si = {(p1, p2)}, where pi = pisi , pī = cp ·fsi-Match(β, p

i
si) for i

instantiated as above, and

3. last(σ.σ′)↑Ri= last(σ)↑Ri, where Ri = Cover i\K
i
si .

Proof. Considering Theorem 6.10.1 and Conv. 6.10.4 this follows with Prop. 6.10.6,

and the fact that B ⊆ ∼cp-β.

Note how the two theorems complement each other: together they will make

sure that, assuming entities as in Section 6.9(6), for any σ ∈ critical(BuK ⊗B
o
R(K))

there exists σ′ ∈ B such that last(σ) = last(σ′).
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6.11 cp Bisimilarity is K-decomposable, sw-(1)-

coherent, and sw-(1)hereditary

Having established that swfsi matching in ∼cp is deterministic, we are now ready

to present the two main results of Part II: cp bisimilarity on live SSMD fc systems

is K-decomposable, and sw-(1)coherent and sw-(1)hereditary. We achieve these

results by implementing the Crucial SubgoalK of Section 6.9(6): given β ∈ JProc,

K ∈ cm ·β such that βK is of type switch, and a cp bisimulation B for β, we

show that the set BuK ⊗ B
o
R(K) can be extended to a full cp bisimulation B′ for

β. We then immediately conclude that cp bisimilarity is K-decomposable. As

a second consequence we achieve that cp bisimilarity is sw-(1)coherent and sw-

(1)hereditary.

We work in the context of two live SSMD fc systems (N1,Cover 1), (N2,Cover 2),

and build on the setting of Section 6.9 and 6.10.

Crucial SubgoalK. For this paragraph, fix β ∈ JProc, and K ∈ cm ·β such

that βK corresponds to a joint switch place. As usual, set R = cm·β\K. We now

translate our sketch of Section 6.9(6) into action.

For any cp bisimulation B for β we define:

Bs = BuK ⊗ B
o
R(K),

Bc = {σstsσc | σs ∈ Bs, σbtsσc ∈ B, last(σs) = last(σb) &
proj i(ts) ∈ synchT i(Ki) for i = 1, or 2},

B′ = Bs ∪ Bc.

Bc is intended to provide matches for synchronizations of K1, or K2 respec-

tively, and the behaviour beyond. The SWFSI Prediction Theorems will ensure

that Bc indeed fulfils this role; with their help it is now possible to prove:

Lemma 6.11.1 (Crucial SubgoalK). B′ is a cp bisimulation for β.

Proof. To verify that B′ is a cp bisimulation for β we need to show: (1) B′ ⊆

JFS (β), (2) β ∈ B′, (3) B′ is prefix-closed, and (4) B′ satisfies the two bisimulation

clauses of Def. 6.4.6. Since B is a cp bisimulation for β, and Bs is a cp bisimulation

for β up to K-synch (by Corollary 6.9.1), we clearly have: (i) B ⊆ JFS (β) &

Bs ⊆ JFS (β), (ii) β ∈ Bs, and (iii) B and Bs are prefix-closed. Then, (1) is

immediate with (i), (2) follows from (ii), and (3) with (iii).

To prove (4), assume σ ∈ B′ and proj i(σ)
ti→ for some ti ∈ Ti, i = 1, 2. We

need to find tī ∈ Tī, σ
′ ∈ JFS such that σ

(t1,t2)
→ σ′, and σ′ ∈ B′. We proceed

by case analysis; clearly, one of the following three conditions must be satisfied:

(a) σ ∈ Bc, (b) σ ∈ Bs & ti 6∈ synchT i(Ki), or (c) σ ∈ Bs & ti ∈ synchT i(Ki).
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If (a) holds then consider: by definition of Bc there are σs ∈ Bs, and σb.ts.σc ∈

B such that σ = σs.ts.σc. Clearly, proj i(σ)
ti→ implies proj i(σb.ts.σc)

ti→, and thus

B will provide a match for ti at σb.ts.σc. In turn, by definition of Bc this match

will be passed on to σ in Bc, giving us tī and σ
′ as required. Case (b) is also easy:

since Bs provides a cp bisimulation up to K-synch (Corollary 6.9.1) the required

entities certainly exist in Bs, and hence in B′.

(c) is the interesting case. With the help of the SWFSI Prediction Theorems

we will show: there is σb ∈ B such that last(σb) = last(σ). Clearly, this will settle

(c): B will then contain a match for ti at σb, which will be passed on to σ in B′

via Bc.

Let p1si , p
2
si be given by last(σ) ↑ Ki = {(p

1
si , p

2
si)}. In preparation, consider

the following two basic facts: (F1) pisi is of type synch, and (F2) proj i(β)(Ki) is

of type switch. (F1) follows with ti ∈ synchT i(Ki) and Prop. 6.2.12(4); (F2) is

a consequence of our basic assumption ‘βK corresponds to a joint switch place’

and Prop. 6.8.6(1). Further, note that by definition of Bs and Prop. 6.8.15(2) we

obtain (∗) σ↑Ki∈ B
u
K , and (◦) σ↑Ri∈ B

o
R(K).

On the one hand, by definition of BuK and (∗) there must be σ? ∈ B such

that (c) nosynch(Ki, proj i(σ
?)), and (d) σ? ↑Ki = σ ↑Ki. (d) and Prop. 6.8.11

entail last(σ?)↑Ki= {(p
1
si , p

2
si)}, from which we infer (e) proj i(last(σ

?))(Ki) = pisi

(Prop. 6.8.6(1)), and (f) last(σ?)(pisi) = pīsi . With (F1), (e), (c), and (F2) it is then

immediate that pisi is swfsi(Ki, proj i(σ
?)). Hence, we can apply Theorem 6.10.2,

and with (f) we obtain: (IR) pisi ∈ T -SWFSIs(proj i(β)), K
i
si = Ki & pīsi =

cp ·fsi -Match(β, pisi).

On the other hand, the definition of BoR(K) and (◦) gives us σ◦ ∈ B such

that (u) Ks(proj i(σ
◦)) ⊆ Ri, and (v) σ◦ ↑ Ri = σ ↑ Ri. (v) and Prop. 6.8.11

imply (w) last(σ◦) ↑ Ri = last(σ) ↑ Ri. Then, by combining (u),(w), and our

interim result (IR) with Theorem 6.10.3, we obtain σ¦ such that (i) σ◦.σ¦ ∈

B, (ii) last(σ◦.σ¦) ↑ Ki = {(p
1
si , p

2
si)}, and (iii) last(σ◦.σ¦) ↑ Ri = last(σ) ↑ Ri.

Together, (ii) and (iii) give us last(σ◦.σ¦) = last(σ), and thus with σ◦.σ¦ we have

found σb as required.

As intended, we have:

Lemma 6.11.2. B′ is K-decomposable.

Proof. By construction of B′ we clearly have UpToSynch(B′, K) = BuK ⊗ B
o
R(K).

With Prop. 6.9.2(1) and 6.9.3(2) it then follows that B′ is indeedK-decomposable.
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Two Important Consequences. With the previous lemmas it is now imme-

diate:

Theorem 6.11.1. ∼cp is K-decomposable.

Proof. This follows from Lemma 6.11.1 and 6.11.2, and Prop. 6.9.8.

As a second consequence, we obtain:

Theorem 6.11.2.

1. ∼cp |= sw-(1)her.

2. ∼cp |= sw-(1)coh.

Proof. (1.) Let σ tβ t′β′ ∈ ∼cp such that (1) t I t′, and (2) t′ is of type switch. Set

βσ = last(σ), βpreσ = preSet(βσ, t), β
post = postSet(β, t), and β ′s = β′[βpreσ \β

post ].

We need to prove that σ t′β′s ∈ ∼cp.

Choose i = 1, or 2. By (2) and Prop. 6.2.4, Ks(proj i(t
′)) is a singleton set;

thereby justified, we let Ki be given by (a) Ks(proj i(t
′)) = {Ki}. Further, we set

Ri = Cover i\Ki, and K = (K1, K2), where Kī = cm ·βσ(Ki). Observe that with

(1), (a), and Prop. 6.2.10 we obtain (b) Ks(proj i(t)) ⊆ Ri.

Set σ′ = βσ tβ t
′β′, and σ′b = βσ t

′β′s. Note that σ
′ and σ′b are related as follows:

(C) σ′b = σ′ ↑ Ki ⊗ βσ ↑ Ri. To see that (C) is indeed satisfied, consider the

following three facts: (i) σ′ ↑Ki= (βσ ↑Ki) t
′ (β′ ↑Ki), (ii) βσ = βσ ↑Ki ∪ βσ ↑Ri,

and (iii) β ′s = β′ ↑ Ki ∪ βσ ↑ Ri. (i) follows with (a) and (b). (ii) is obvious.

To understand (iii) recall that β ′s = β′[βpreσ \β
post ]; we split β ′ into β ′ ↑ Ki and

β′ ↑ Ri, and analyse the effect of the substitution operation separately for the

two parts: (A) With (b) and Prop. 6.2.2(2) we obtain Ki 6∈ Ks(proj i(β
pre
σ )) &

Ki 6∈ Ks(proj i(β
post)). Thus, β ′ ↑ Ki is not affected by the substitution at all.

(B) By β
t′

→ β′, (a), and Prop. 6.8.9(1) we have β ′ ↑Ri= β ↑Ri, and from βσ
t
→ β

we infer βσ = β[βpreσ \β
post ]. Then, clearly β ′ ↑Ri[β

pre
σ \β

post ] = βσ ↑Ri. Together

with (A) this immediately implies (iii).

Clearly, there is a cp bisimulation B for βσ such that σ′ ∈ B (Prop. 6.4.4(1)).

With (a) and (b) it is easy to see that nosynch(Ki, proj i(σ
′)), and thus we can

infer σ′ ↑Ki∈ B
u
K . On the other hand, we obtain βσ ↑Ri∈ B

o
R(K) since obviously

βσ ∈ B. Together with (C) this implies σ′b ∈ B
u
K⊗B

o
R(K). But from Lemma 6.11.1

we know: there exists a cp bisimulation B′ for βσ which is based on BuK ⊗B
o
R(K),

and hence satisfies σ′b ∈ B′. Clearly, this gives us σ.t′β′s ∈ ∼cp as required

(considering prefix-closure of ∼cp and Prop. 6.4.4(2)).

(2.) follows by an analogous argument.
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Note that to prove K-decomposability we could have based B′ on the weaker

BoK ⊗ B
o
R(K) just as well: it is easy to check that analogues of Lemma 6.11.1 and

6.11.2 can be proved by a similar argument. Furthermore, these analogues would

have been sufficient to prove that ∼cp is sw-(1)coherent: if σtβ, σt′β′ ∈ ∼cp with

t I t′ and t′ of type switch, then t′β′ can be viewed as ‘K-only matching’, and tβ

as ‘R(K)-only matching’ with respect to last(σ) and respective K. In contrast,

to gain that ∼cp is sw-(1)hereditary it is essential to employ BuK rather than BoK :

if σtβt′β′ ∈ ∼cp with t I t′ and t′ of type switch, then t′β′ can be understood as

‘matching up to K-synch’ but not as ‘K-only matching’ with respect to last(σ)

and respective K.

Had we based B′ on BoK ⊗ B
u
R(K) (or even BuK ⊗ B

u
R(K)) then we would have

gained alternative (additional) backtracking capability: we could have inferred

that ∼cp is sw’-(1)hereditary, where we assume t rather than t′ to be of type

switch (in Def. 6.4.18), or even more that ∼cp is sw’-hereditary, which is full

hereditary with t assumed to be of type switch (in Def. 6.4.12). It remains open

for now whether it is indeed possible to base B′ on these alternative combinations.

Our proof depends on the use of BoR(K): it guarantees that the SWFSI Prediction

Theorem II (which relies on Prop. 6.10.6) can be applied, or — in terms of the

sketch of Section 6.9(6) — that σ◦ can be extended to σ◦.σ¦. The intuition behind

this asymmetry can be interpreted as follows: it is up to K-behaviour to decide

whether a t-swfsi will indeed occur as swfsi or not. Altogether, this explains why

we have to resort to the (1)hereditary property, and split it according to the type

of t′.

As far as padding is concerned we obtain that ∼cp is sw’-coherent even when

basing B′ on the weakest combination BoK ⊗ B
o
R(K). However, in view of Sec-

tion 6.13 it is crucial to employ (1)coherent split according to t′: we will exhibit

a restriction that induces ∼cp to be sy-(1)coherent and sy-(1)hereditary, but it

is not obvious how one could achieve the alternative padding and backtracking

properties.
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6.12 Interlude II

Having achieved our two main results on live SSMD fc systems, we shall now see

how by further restricting our system class we can derive full results for cp and

(h)cp bisimilarity, and furthermore for hp and (c)hhp bisimilarity.

By Lemma 6.4.1 we know that Theorem 6.11.2 amounts to solving half of

the coincidence problem of cp and chcp bisimilarity in the positive direction.

Full coincidence would follow if we could further show that cp bisimilarity is sy-

(1)coherent and sy-(1)hereditary. By restricting the nondeterminism available

at the postset of a synch transition, we effect that for live sy-psd fc systems the

matching of synch transitions in ∼cp is deterministic. With this characteristic it is

straightforward to achieve that cp bisimilarity satisfies the desired properties sy-

(1)coherent and sy-(1)hereditary. Altogether, we then obtain coincidence between

cp, hcp, and chcp bisimilarity for live sy-psd SSMD fc systems.

As explained in Section 6.1.1 and 6.1.2 there are two further gaps left. One

amounts to the difference between bp and cp bisimilarity; overcoming it will

achieve a decidability result for chhp bisimilarity. The second gap lies in the

difference between hp and bp bisimilarity; additionally closing this gap will give us

a coincidence result for hp, hhp, and chhp bisimilarity. Exploiting our knowledge

about causes of Section 2.3 we impose a structural constraint on the postset

of transitions, and thereby induce bp and cp bisimilarity to coincide for live

buffered fc systems. By additionally restricting the nondeterminism available

at the postset of a transition in a way that subsumes the sy-psd condition, we

obtain that cp, bp, and hp bisimilarity coincide for live spsd buffered fc systems.

Altogether, this gives us decidability of chhp bisimilarity for live sy-psd buffered

SSMD fc systems, and coincidence between hp, hhp, and (c)hhp bisimilarity for

live spsd buffered SSMD fc systems.

Accordingly, the remainder is structured as follows. In Section 6.13 we derive

our coincidence result for the cp bisimilarities, and in Section 6.14 we at last

obtain our results for the hp bisimilarities. The proofs will be straightforward,

but technically involved. In particular, to derive our decidability result it is

necessary to introduce the intermediate concept bp bisimilarity.
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6.13 A Coincidence Result for cp, hcp, and chcp

Bisimilarity

In this section we show that cp, hcp, and chcp bisimilarity coincide for the class of

live SSMD synch postset deterministic (short: sy-psd) fc systems. When imposed

on live fc systems the sy-psd restriction ensures that the matching of synch tran-

sitions in ∼cp is deterministic in the following sense: assuming σ (t1, t2)β ∈ ∼cp

with ti of type synch, tī and postSet(β, (t1, t2)) are fully determined by last(σ)(•ti).

With this characteristic it is straightforward to achieve that cp bisimilarity is sy-

(1)coherent and sy-(1)hereditary for live sy-psd fc systems. Together with Theo-

rem 6.11.2 we then obtain that cp bisimilarity is (1)coherent and (1)hereditary for

live SSMD sy-psd fc systems, which as we know from Lemma 6.4.1 immediately

implies the above coincidence result.

In this section we either assume a fc system N within the framework of

Def. 6.2.19, or we work in the context of two fc systems N1, N2, and the setting of

Section 6.4. Usually, our results will concern systems of more restricted classes;

if this is the case we will specify the system class in the respective proposition or

theorem. As usual, if not already instantiated i will range over {1, 2}.

Basic Observation. Deciding on a cp match for a transition ti at a joint process

β generally involves two degrees of freedom: first, one has to fix an adequate

transition tī as the counterpart of ti; second, one has to specify a bijection between

the postplaces of ti and the ones of tī. Note that the second degree of freedom is

dependent on the first but not resolved by it.

A closer look reveals: if ti is of type synch then the first degree of freedom

will never apply; the match tī is fully determined by β(•ti).

Proposition 6.13.1. Let ti ∈ Ti be of type synch, β
t
→cp, and β

′ t′

→cp such that

proj i(t) = ti = proj i(t
′). If β(•ti) = β ′(•ti) then we have proj ī(t) = proj ī(t

′).

Proof. Let entities be given as above, set tī = proj ī(t), t
′
ī
= proj ī(t

′), and assume

β(•ti) = β ′(•ti), say Pī. On the one hand, considering the definition of →cp we

have •t̄i = Pī =
•t′
ī
. On the other hand, since ti is of type synch, we know that tī

and t′
ī
must also be of type synch (Prop. 6.4.10). But then it is clear: tī = ts

ī
= t′

ī
,

where ts
ī
is given by pī

• = {ts
ī
} for any pī ∈ Pī.

On the other hand, there may well be more than one postset match to choose

from. In the following, we design a property for transitions which, when im-

posed on live fc systems, ensures that this second degree of freedom is excluded.
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Figure 6.11: Examples of nondeterminism admitted (transition t1) and disallowed
(transition t2) by the psd restriction

Thereby, we can achieve a system class for which the matching of synch transitions

in ∼cp is deterministic in the above sense.

Postset Deterministic Transitions. We define a property for transitions,

which in live fc systems ensures: let β
(t1,t2)
→ β′ with β ′ ∈ ∼cp; if t1 or t2 satisfy the

property then postSet(β ′, (t1, t2)) is fully determined by t1 and t2. The property is

called postset deterministic; it works by restricting the nondeterminism available

at the postset of a transition.

Definition 6.13.1 (psd transitions). A transition t ∈ TN is postset-deterministic

(short: psd) iff for any distinct pa, pb ∈ t
• we have

1. ∃ta ∈ pa
•. ∀tb ∈ pb

•. l(ta) 6= l(tb), or symmetrically

2. ∃tb ∈ pb
•. ∀ta ∈ pa

•. l(tb) 6= l(ta).

The psd restriction is illustrated in Figure 6.11. The following can be seen as

the characteristic property of psd transitions:

Proposition 6.13.2. Let t1 ∈ T1, t2 ∈ T2 such that t1 or t2 is psd. There exists

at most one bijection βpost : t1
• → t2

• such that the following condition is satisfied:

(∗) for all (p1, p2) ∈ βpost we have

1. ∀tx1 ∈ p1
•. ∃tx2 ∈ p2

•. l(tx1) = l(tx2), and symmetrically

2. ∀tx2 ∈ p2
•. ∃tx1 ∈ p1

•. l(tx1) = l(tx2).

Proof. Let t1, t2 be given as above, and w.l.o.g. suppose t2 is psd. To the contrary

assume two distinct bijections βapost , β
b
post : t1

• → t2
• that both satisfy (∗). By

distinctness, there must be p1 ∈ t1
• such that βapost(p1) 6= βbpost(p1); set pa2 =

βapost(p1), and pb2 = βbpost(p1). Since t2 is psd, pa2 and pb2 satisfy condition (1) or
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(2) of Def. 6.13.1. W.l.o.g. suppose that (1) holds, and assume ta2 ∈ p
a
2
• such that

(A) ∀tb2 ∈ p
b
2
•
. l(ta2) 6= l(tb2). Then, since βapost satisfies (∗) we can infer tx1 ∈ p1

•

such that l(tx1) = l(ta2). But note how this leads to a contradiction: since βbpost

also satisfies (∗) we should be able to find tb2 ∈ p
b
2
•
with l(tb2) = l(tx1) = l(ta2); but

this is not possible by (A).

Definition 6.13.2. Let t1 ∈ T1, t2 ∈ T2 such that t1 or t2 is psd. If it exists we

denote the uniquely given bijection of Prop. 6.13.2 by psd(t1, t2).

In the context of a live fc system, given M ∈ Procs , p ∈ M , every post-

transition of p can be enabled by some run of M such that t will directly consume

p. With this observation it is then easy to see that postset matches of psd

transitions in ∼cp on live fc systems must satisfy property (∗) of Prop. 6.13.2.

Consequently, we obtain:

Proposition 6.13.3. Assume N1 and N2 to be live fc systems.

Let β
(t1,t2)
→cp β

′ such that β ′ ∈ ∼cp, and t1 or t2 is psd. Then psd(t1, t2) exists, and

we have postSet(β ′, (t1, t2)) = psd(t1, t2).

Proof. Let entities be given as above. It is clear: the proposition will follow if

we can show that postSet(β ′, (t1, t2)) satisfies condition (∗) of Prop. 6.13.2. Let

(p1, p2) ∈ postSet(β
′, (t1, t2)), and assume txi ∈ pi

•, i = 1, 2. We need to exhibit

tx
ī
∈ pī

• such that l(tx1) = l(tx2).

Note that there must be a run ri ∈ Runsi(proj i(β
′)) satisfying (a) ri[t

x
i 〉, and

(b) 6 ∃t′i ∈ ri. pi ∈
•t′i: if t

x
i is of type switch, then by Obs. 6.2.3(1) we can take ri

to be ε. If txi is of type synch then by liveness there must be ri ∈ Runsi(proj i(β
′))

satisfying (a); by Obs. 6.2.3(2) we can clearly take ri such that property (b) is

also satisfied.

Certainly, there must be a match for ri t
x
i in ∼cp-β′ , that is we can assume

σ txβx ∈ ∼cp-β′ such that proj i(σ) = ri, and proj i(t
x) = txi . Considering the cp

transition function and property (b) of ri, it is easy to see that we must have

tx
ī
≡ proj ī(t

x) ∈ pī
•, and l(tx1) = l(tx2). But this means we have found tx

ī
as

required.

Live sy-psd fc Systems. Now, it is clear: if we restrict live fc systems by

requiring that every synch transition is psd then for the corresponding system

class we will obtain: the matching of synch transitions in ∼cp is fully determined

by the respective preset match.

Definition 6.13.3 (sy-psd fc nets and systems). A fc net N is sy-psd iff for

all t ∈ TN we have: t is of type synch =⇒ t is psd.
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A fc system N is sy-psd iff its underlying net is sy-psd.

Proposition 6.13.4. Assume N1 and N2 to be live sy-psd fc systems.

Let ti ∈ Ti be of type synch, and σ tβ, σ
′ t′β′ ∈ ∼cp with proj i(t) = ti = proj i(t

′).

If last(σ)(•ti) = last(σ
′)(•ti) then we have t = t′ & postSet(β, t) = postSet(β ′, t′).

Proof. Considering the definition of sy-psd systems, this follows from Prop. 6.13.1

and Prop. 6.13.3.

Consequences. With this characteristic, it is straightforward to prove that for

live sy-psd fc systems cp bisimilarity is sy-(1)coherent and sy(1)-hereditary.

Theorem 6.13.1. Let N1, N2 be live sy-psd fc systems.

1. ∼cp |= sy-(1)her.

2. ∼cp |= sy-(1)coh.

Proof. (1.) Let (a) σ tβ t′β′ ∈ ∼cp, (b) t I t′, and (c) t′ be of type synch. We

need to prove that σ t′β′s ∈ ∼cp, where β
′
s = β′[preSet(last(σ), t)\postSet(β, t)].

Another way of looking at β ′s is given by β ′s = last(σ)[postSet(β
′, t′)\preSet(β, t′)].

Set ti = proj i(t), and t′i = proj i(t
′).

Clearly, we have proj i(σ) ti t
′
i ∈ Runsi, and ti Ii t

′
i. Then, by reshuffling ti and

t′i (Prop. 2.1.2) we achieve proj i(σ)
t′i→. By prefix-closure of ∼cp we infer σ ∈ ∼cp,

and thus there must be a match for t′i at σ, that is we can assume t¦, β¦ such

that (i) proj i(t
¦) = t′i, (ii) last(σ)

t¦

→cp β
¦, and (iii) σ t¦β¦ ∈ ∼cp.

By definition of→cp and (b) we derive (∗) last(σ)(•t′i) = β(•t′i). Together with

(a), (iii), (c), and (i) this means we can apply Prop. 6.13.4 to σ tβ t′β′ and σ t¦β¦;

thereby we obtain: (A) t′ = t¦, and (B) postSet(β ′, t′) = postSet(β¦, t′). Further,

by (ii), considering Prop. 6.4.1, (∗), and (B) we can infer β¦ = last(σ)\preSet(β, t′)∪

postSet(β ′, t′), and thus β¦ = β′s. But with (A) and (iii) this means we have

achieved σ t′β′s ∈ ∼cp as required.

(2.) follows by an analogous argument.

With Theorem 6.11.2 it is then immediate:

Theorem 6.13.2. Let N1, N2 be live SSMD sy-psd fc systems.

∼cp |= (1)coh & (1)her.

Proof. This follows from Theorems 6.11.2 and 6.13.1 with Lemma 6.4.2.
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And further, with Lemma 6.4.1 we obtain our first coincidence result for a fc

system class:

Theorem 6.13.3. Two live SSMD sy-psd fc systems are cp bisimilar iff they are

hcp bsimilar iff they are chcp bisimilar.

Proof. This follows from Theorem 6.13.2 by Lemma 6.4.1.

Note that we can slightly strengthen this result: making use of the fact that

synch transitions are matched to synch transitions, we can generalize Prop. 6.13.4

to the case when only one of the two live fc systems is sy-psd. Then, we can carry

over: in the above three theorems it is sufficient to require that only one of the

two systems satisfies the sy-psd condition.
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6.14 Results for hp and (c)hhp Bisimilarity

In this section we shall at last obtain our results on hp and (c)hhp bisimilar-

ity. Considering the previous section it is clear that there are now two gaps left.

One amounts to the difference between bp and cp bisimilarity; overcoming it will

achieve a decidability result for chhp bisimilarity. The second gap lies in the

difference between hp and bp bisimilarity; additionally closing this gap will give

us a coincidence result for hp, hhp, and chhp bisimilarity. We shall develop two

restrictions to bridge over these gaps. By constraining the structure at the postset

of transitions we induce bp and cp bisimilarity to coincide for live buffered fc sys-

tems. By additionally restricting the nondeterminism at the postset of transitions

(in similar but stricter fashion than the sy-psd condition) we obtain that hp, bp,

and cp bisimilarity coincide for live spsd buffered fc systems. With our previous

results this gives us decidability of chhp bisimilarity for live sy-psd buffered SSMD

fc systems, and coincidence between hp, hhp, and chhp bisimilarity for live spsd

buffered SSMD fc systems.

We proceed as follows: first of all, we need to introduce our intermediate

concept bp bisimilarity, and present necessary facts about it. Then, we close the

gap between bp and cp bisimilarity, and furthermore the gap between hp and

bp (and cp) bisimilarity. Finally, we can derive our results on hp and (c)hhp

bisimilarity.

Convention 6.14.1. In the context of a free choice system N , given r ∈ Runs

we denote the switch places of r by switchP(r), that is we set switchP(r) = {p ∈

M | p is of type switch}, where M is such that M0[r〉M . Similarly, we denote the

synch places of r by synchP(r).

In the context of two systems N1, N2, we shall make use of our usual con-

vention: given r ∈ SRuns we set ri = proj i(r), and given t ∈ T1 × T2 we set

ti = proj i(t), for i ∈ {1, 2}.

6.14.1 bp Bisimilarity

bp bisimilarity is designed to reflect the interleaving aspect of the decomposition

view DV-lfcs (short: DVI-lfcs) (cf. Section 6.1.1). In the following, we shall

first present DVI-lfcs and then derive bp bisimilarity from it. After that we

collect together the facts that have motivated bp bisimilarity as a convenient

intermediate concept. Finally, we clarify the relationship between cp and bp

bisimilarity.
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DVI-lfcs. DVI-lfcs can be summarized as follows:

The branching structure of a live fc system is structured by evolving

blocks, which respect certain aspects of locality and causality while

employing pending synch places as ‘mediators’.

Fix a live fc system N , and adopt the setting of Def. 6.2.19. We explain

DVI-lfcs in more detail in the following three points.

(1) Each state of N can be decomposed into a set of blocks and a set of pending

synch places :

Definition 6.14.1. Let M ∈ Proc.

A subset b ⊆M is a block of M iff there is t ∈ T such that M
t
→ and b = •t. We

denote the blocks of M by blocks(M).

A place p ∈M is a pending synch place of M iff ∃p′ ∈ •(p•). p′ 6∈M .

We generalize our notions to runs in the obvious way; that is for r ∈ Runs we

define b ∈ blocks(r) iff b ∈ blocks(M), where M is given by M0
r
→ M , and

similarly for pending synch places.

Due to the fc restriction for any block b we have •(b•) = b, and thus it is

easy to see that any state uniquely partitions into its blocks and pending synch

places. In more detail, we have: either (a) a block contains exactly one switch

place which enables a non-empty set of switch transitions in the S-system way,

or (b) a block consists of several synch places which together enable exactly one

synch transition in the T-system way. Accordingly, we classify blocks into switch

blocks and synch blocks.

(2) The system evolves while respecting the structure of its states: if a state

M evolves into a new state M ′ by performing a transition t, the blocks of M

will be affected only locally: (a) t will belong to exactly one block, namely •t.

(b) Blocks other than •t will remain unaffected by the transition. (c) •t will be

replaced by a set of new places, which can be structured into a set of new blocks

and a set of ‘locally’ pending synch places; in the context of M\•t, the locally

pending synch places can either be pending as well, or they can form new blocks

by joining with synch places that were pending at M .

(3) The evolving blocks are related by a natural notion of causality, which is

obtained as the transitive closure of the following immediate cause relation: let b

be a new block that is formed with the execution of a transition t; then, (a) b is

immediately dependent on the block that has generated t, and (b) if b is formed
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jointly with a previously pending synch place p, b is immediately dependent on

the block that has generated t′, where t′ is the transition that earlier gave rise

to p.8

bp Bisimilarity. In the following, we work in the context of two live fc systems

N1 and N2 within a setting as in Section 6.4.

It is straightforward to design a notion of bisimilarity that reflects DVI-lfcs.

block preserving (short: bp) bisimilarity ensures: (1) Two related states M1 and

M2 are decomposed into blocks in the same fashion; we require that blocks(M1)

and blocks(M2) are linked by a bijection. (2) Whenever two transitions t1, t2

are matched against each other at a pair of states M1, M2 then t1 has the same

local effect on M1 as t2 has on M2 (with respect to the bijection that relates the

blocks ofM1 andM2); we will realize this by defining a block preserving transition

relation. (3) The matching of blocks preserves the causal dependencies between

them; this is conveniently achieved by basing bp bisimilarity on synchronous

runs, and requiring that whenever two blocks b1, b2 are related at a joint run r

then mcauses(r1, t1), where t1 is any transition enabled by b1, exactly correspond

to mcauses(r2, t2), where t2 is any transition enabled by b2. This works since

respecting the partial order of blocks exactly amounts to respecting the partial

order of transitions.

Definition 6.14.2 (bp bisimilarity). A bp tuple is a pair (r, β), where r ∈

SRuns , β is a bijection between blocks(r1) and blocks(r2), and for all (b1, b2) ∈

β we have: ∀t1 ∈ T1, t2 ∈ T2. (b1 = •t1) & (b2 = •t2) ⇒ (mcauses(r1, t1) =

mcauses(r2, t2)). We denote the domain of bp tuples by BP .

The bp transition relation, →bp ⊆ BP × JT × BP , is defined as follows:

(r, β)
(t1,t2)
→ bp (r

′, β′) ⇐⇒

1. r1
t1→ r′1 & r2

t2→ r′2,

2. l(t1) = l(t2),

3. β(•t1) =
•t2, and

4. β′ ¹blocks(r1)\•t1= β ¹blocks(r1)\•t1 .

A bp bisimulation is a relation B ⊆ BP that satisfies

8Blocks, places, and transitions have to be understood as occurrences here.
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1. If (r, β) ∈ B and r1
t1→ for some t1 ∈ T1, then there are t2 ∈ T2, (r

′, β′) ∈ BP

such that (r, β)
(t1,t2)
→bp (r′, β′) and (r′, β′) ∈ B.

2. Vice versa.

Two runs r1 ∈ Runs1, r2 ∈ Runs2 are bp bisimilar w.r.t. (r, β) ∈ BP , written

(r, β) ∈ ∼bp, iff proj i(r) = ri for i = 1, 2, and (r, β) ∈ B for some bp bisimulation

B. That is, we define ∼bp =
⋃

{B | B is a bp bisimulation}.

N1 and N2 are bp bisimilar iff ((ε, ε), β) ∈ ∼bp for some β.

Properties of bp Bisimilarity. We now collect together the properties that

commend bp bisimilarity as an intermediate concept in our quest for a coincidence

result on hp and (c)hhp bisimilarity (cf. Section 6.1.1).

Firstly, it is easy to see that bp bisimilarity is decidable for finite-state systems:

in the definition of BP we can use gsc’s instead of synchronous runs just as well;

then for finite-state systems BP will be a finite domain, and bp bisimilarity can

be decided by exhaustive search.

Fact 6.14.1. bp bisimilarity is decidable.

Secondly, since block assignments are cause-preserving and bp tuples are based

on synchronous runs, it immediately follows that bp bisimilarity is a strengthening

of hp bisimilarity:

Fact 6.14.2. bp bisimilarity implies hp bisimilarity. Formally, we have:

(r, β) ∈ ∼bp =⇒ r ∈ ∼hp .

Finally, with a bit more effort, we obtain that chhp bisimilarity implies bp

bisimilarity. The proof rests on the following two insights: (1) Given a hp bisim-

ulation H, and a pair of runs (r1, r2) ∈ H, we can obtain a bijection between the

blocks of r1 and the ones of r2 by considering a maximal concurrent step of r1

(or r2) and observing how it is matched in H. This is so because: (a) a maximal

concurrent step γ of a run r exactly defines the blocks of r (each transition of γ

corresponds to a block of r); and (b) by Prop. 4.3.2(2) maximal steps are matched

against maximal steps. (2) It can be shown that in a coherent and hereditary hp

bisimulation transitions are matched in accordance with any bijection of blocks

that is obtained via insight (1); thus each chhp bisimulation can be transformed

into a bp bisimulation.

Fact 6.14.3. chhp bisimilarity implies bp bisimilarity.
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Altogether this means: if we achieve coincidence between bp bisimilarity and

its corresponding coherent and hereditary version, we will obtain decidability

of chhp bisimilarity (consider that by Fact 6.14.2 chbp bisimilarity will certainly

imply chhp bisimilarity); if we additionally manage to show that hp and bp bisim-

ilarity coincide, we can infer coincidence between hp, hhp, and chhp bisimilarity.

However, we have worked with cp bisimilarity rather than bp bisimilarity, and

to exploit the coincidence result of the previous section we will further need to

overcome the discrepancy resulting from this simplification. Therefore, let us now

analyse the difference between cp and bp bisimilarity.

bp and cp Bisimilarity. It is easy to see that cp bisimilarity implies bp bisim-

ilarity: a bijection between two processes clearly implies a bijection between their

blocks. Further, if a joint transition is compositionality preserving in the sense

of cp bisimilarity it will certainly be block preserving w.r.t. the thus induced

bijection of blocks. Finally, by Prop. 6.4.5 we know that cp bisimilarity is cause-

preserving, which ensures that the induced block assignments are cause-preserving

as well, and that the induced transitions produce synchronous runs.

Fact 6.14.4. cp bisimilarity implies bp bisimilarity.

The other direction does not hold: bp bisimilarity is still behavioural in that

it abstracts away from ‘behaviourally irrelevant’ places; the counter-example of

Figure 6.7, which proved non-coincidence between cp and chhp bisimilarity, also

demonstrates that bp bisimilarity does not imply cp bisimilarity. However, as

before, we could argue that the counter-example merely highlights technical in-

accuracies, and that these might be overcome by employing a more sophisticated

version of cp bisimilarity. This being so, asssume we have indeed managed to

handle the technical inaccuracies, and that from a bijection between blocks we

can now infer a matching between the places of the blocks in a style as it is

required by the new cp bisimilarity. After all, there still remains an essential dif-

ference between cp and bp bisimilarity: bp bisimilarity can only provide a match

for place occurrences that are active in that they take part in enabling a tran-

sition, whereas in cp bisimilarity we need to match places as soon as they come

into existence; in particular, this creates a problem for the matching of pending

synch places. In our context of live systems, any pending occurrence of a synch

place can become active later on, and thus we could hope to solve the problem

by employing future matches. However, to make this work we would need to

know that retrieved matches are uniform in that they are valid for all possible

futures, which is a priori not provided by bp bisimilarity: different computation
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type A type B

Figure 6.12: An example of the two substructures allowed at the postset of a
transition in buffered fc nets

paths may lead to different matches of a pending place; future assignments could

be dependent on the order in which independent transitions are linearized. We

consider this issue of pending synch places to be the key difference between bp

and cp bisimilarity (and equally between chhp and cp bisimilarity).

6.14.2 Overcoming the Gap between bp and cp Bisimilar-
ity

We shall now see that the difference between bp and cp bisimilarity can be over-

come by imposing a slight structural constraint: the two bisimilarities coincide

for live buffered fc systems. The buffered restriction enforces a natural bijection

between the synch places of a pair (r1, r2) ∈ ∼hp such that the block assignment of

any (γ, (r1, r2)) ∈ ∼bp will be dictated to respect that bijection. This will resolve

the issue of pending synch places and the technical inaccuracies at the same time.

An assignment for switch blocks will exactly correspond to a bijection between

switch places. Our restriction is defined as follows:

Definition 6.14.3 (buffered). A fc net N is buffered iff for each arc (t, s) ∈

FN ∩ (TN × SN) we have: t• = {s} or s is of type switch.

A fc system N = (N,M0) is buffered iff N is buffered, and M0 contains only

places of type switch.

As illustrated by Figure 6.12, in buffered fc systems the postset of each tran-

sition consists either of a set of switch places, or of exactly one synch place.

Accordingly, we classify the transitions of our subclass into two types, called A

and B. These ‘buffered types’ are orthogonal to our standard ‘free choice types’

switch and synch.
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Definition 6.14.4. Let N be a buffered fc net. We say t ∈ TN is

• of type A iff all the places of t• are of type switch, and

• of type B otherwise (that is iff t• consists of a single place of type synch).

Let N be a buffered fc system. In the context of N we set init to be of type A.

In the following, we either assume a live buffered fc system N within the

framework of Def. 6.2.19, or we work in the context of two live buffered fc systems

N1, N2 and a setting as in Section 6.4. Our proof exploits our terminology and

knowledge concerning causes of Section 2.3.

We start with two straightforward observations:

Proposition 6.14.1. Let r ∈ Runs, M be given by M0[r〉M , and p ∈M .

1. p is of type switch ⇐⇒ tgen(r,p) is of type A, or equivalently

p is of type synch ⇐⇒ tgen(r,p) is of type B.

2. p is of type synch =⇒ (tgen(r,p))
•
= {p}.

Proof. (1) is easy by induction on the length of r. (2) is immediate with (1).

Prop. 6.14.1(2) captures what for our proof is the key property of buffered

fc systems: let r ∈ Runs; each synch place of r is uniquely identified by its

generator event in r. Now, let r ∈ SRuns . Imagine r preserves the buffered

types in that two related transitions of r are either both of type A or both of

type B. Then, considering Prop. 6.14.1(2), there is an obvious way of obtaining a

bijection between the synch places of r1 and the ones of r2: match p1 ∈ synchP(r1)

against p2 ∈ synchP(r2) iff their generator events are related in r, that is iff

gen(r1, p1) = gen(r2, p2). We shall refer to this assignment by syass(r).

Naturally, we would like to employ syass(r) to obtain a translation from bp

tuples contained in ∼bp to the domain of joint processes with the goal of trans-

forming any bp bisimulation into a cp bisimulation. To implement this plan we

will essentially have to prove that the following two requirements are satisfied for

every (r, γ) ∈ ∼bp : (1) r preserves types A and B, and hence syass(r) is defined;

(2) the block assignment γ respects syass(r). By exploiting Prop. 6.14.1(2) and

the fact that transitions of Thp and the block assignments of bp tuples preserve

maximal causes, it will be straightforward to show that the two requirements

are indeed given. In fact, we will also achieve the analogues of (1) and (2) for

r ∈ ∼hp. This is important in view of the next section, and we shall include the

corresponding insights here.

291



First of all, we shall see that in buffered fc systems structural synchronization

(of places) coincides with behavioural synchronization (of observable threads in

the sense of SW-3): whenever a transition t is enabled at a run r then each

preplace of t is uniquely represented by a maximal cause of t in r. Formally, we

have:

Proposition 6.14.2. Let r ∈ Runs, and t ∈ T such that r
t
→.

1. mcauses(r, t) = icauses(r, t) (= gen(r, •t)).

2. |gen(r, •t)| = |•t|.

Proof. Let r and t be given as above.

(1) Considering Prop. 2.3.2 we only need to show that any immediate cause

cannot be subsumed by another immediate cause; that is:

(∗) ∀i ∈ icauses(r, t). 6 ∃j ∈ icauses(r, t). i < j.

Recall that by definition we have icauses(r, t) = gen(r, •t). If t is of type switch,

then gen(r, •t) is a singleton since •t is a singleton. This immediately implies

(∗). On the other hand, assume t to be of type synch. Consider i ∈ icauses(r, t),

which means i = gen(r, p) for some p ∈ •t. It is easy to see that i cannot be

subsumed by any other immediate cause: clearly, p is of type synch; but then by

Prop. 6.14.1(2) ti has only p as postplace, and thus i <prox |r| + 1 is the only

possible causal line leading from i to |r|+ 1 in r.t.

(2) If t is of type switch then clearly both, •t and gen(r, •t) are singleton sets.

If t is of type synch then all the places of •t are of type synch, and (2) follows

from Prop. 6.14.1(2).

As a natural consequence of this, the issue of technical inaccuracies is resolved

for (live) buffered fc systems. In particular, this means synchronous runs as well

as the block assignments of bp tuples respect the free choice types switch and

synch. Exploiting liveness, from the first fact and Prop. 6.14.2(1) we then obtain

that types A and B are preserved by all r ∈ ∼hp, which immediately implies our

first requirement is achieved.

Proposition 6.14.3.

1. Let r ∈ SRuns, and t ∈ JT such that ri
ti→ for i ∈ {1, 2}.

mcauses(r1, t1) = mcauses(r2, t2) =⇒

t1 is of type switch (synch) ⇐⇒ t2 is of type switch (synch).

2. For all r ∈ SRuns we have:

∀t ∈ r. t1 is of type switch (synch) ⇐⇒ t2 is of type switch (synch).
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3. For all (r, γ) ∈ BP we have:

∀b ∈ γ. b1 is of type switch (synch) ⇐⇒ b2 is of type switch (synch).

4. For all r ∈ ∼hp (and hence for all r such that ∃γ. (r, γ) ∈ ∼bp) we have:

∀t ∈ r. t1 is of type A (B) ⇐⇒ t2 is of type A (B).

Proof. (1) Let r, t be given as above, and assumemcauses(r1, t1) = mcauses(r2, t2).

By Prop. 6.14.2 (1) and (2) we obtain |•t1| = |
•t2|. Since for i ∈ {1, 2} |•ti| = 1

iff ti is of type switch (|•ti| > 1 iff ti of type synch) this immediately implies t1

and t2 must either be both of type switch or both of type synch.

(2) This is easy by induction on the length of r: for the inductive case consider

that transitions of Thp respect maximal causes, and consequently apply (1).

(3) Let (r, γ) ∈ BP , and b ∈ γ. For i ∈ {1, 2} set ti such that ri
ti→ and

•ti = bi. By definition of BP we have mcauses(r1, t1) = mcauses(r2, t2), and thus

by (1) t1 and t2 are either both of type switch or both of type synch. But then

the analogue must hold for b1 and b2.

(4) Let r ∈ ∼hp. We prove (4) by induction on the length of r. The base case

vacuously holds. Assume r ≡ r′.t. By induction hypothesis and prefix-closure of

∼hp (4) holds for r
′, and we only have to show: t1 is of type A (B) iff t2 is of type

A (B). By liveness we can choose t∗1 ∈ (t1
•)• (Fact 6.2.2) and a run r∗1 such that

r1.r
∗
1

t∗1→ and |r| ∈ gen(r1.r
∗
1,
•(t∗1)). Clearly, ∼hp contains a match for r∗1.t

∗
1 at r;

this implies there must be r∗.t∗ ∈ SRuns such that proj 1(r
∗) = r∗1, and proj 1(t

∗) =

t∗1. Since transitions of Thp respect maximal causes, and by Prop. 6.14.2(1) they

coincide with immediate causes, we infer |r| ∈ gen(r2.r
∗
2,
•(t∗2)). Assume t1 is

of type A (B). Then by choice of t∗1 it is easy to see that t∗1 must be of type

switch (synch). By (2) this implies t∗2 is also of type switch (synch), and by

Prop. 6.14.1(1) and t|r| = t we can conclude back that t2 must be of type A

(B) as required. The opposite direction follows from the symmetrical argument;

alternatively consider the brackets.

Furthermore, it is now straightforward to prove that transitions of Thp and

the block assignments of bp tuples will be in agreement with syass(r).

Proposition 6.14.4.

1. Let r ∈ SRuns, and t ∈ JT such that ri
ti→ for i ∈ {1, 2}, and t1 or t2 is of

type synch.

(a) mcauses(r1, t1) = mcauses(r2, t2) =⇒ •t2 = (tr(r2, gen(r1,
•t1)))

•.

(b) r
t
→ =⇒ •t2 = (tr(r2, gen(r1,

•t1)))
•.
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2. Let (r, γ) ∈ BP, and b1 ∈ blocks(r1), b2 ∈ blocks(r2) such that b1 or b2 is of

type synch.

γ(b1) = b2 =⇒ b2 = (tr(r2, gen(r1, b1)))
•.

Proof. (1a) Let r, t be as above, and assume mcauses(r1, t1) = mcauses(r2, t2).

By Prop. 6.14.3(1) we obtain that both, t1 and t2, must be of type synch, and

by Prop. 6.14.2(1) we gain gen(r1,
•t1) = gen(r2,

•t2). But then (1a) immediately

follows from Prop. 6.14.1(2).

(1b) Since transitions of Thp respect maximal causes, this is a direct conse-

quence of (1a).

(2) also follows from (1a): let r, b1, b2 be given as above, and for i ∈ {1, 2}

set ti such that ri
ti→ and •ti = bi; clearly t1 or t2 must be of type synch, and by

definition of BP we have mcauses(r1, t1) = mcauses(r2, t2).

The remainder is routine, and we shall only sketch the necessary steps; a

full proof can be found in Appendix C.4.1. First, one defines a map jproc to

translate every ρ ≡ (r, γ) ∈ ∼bp into a corresponding joint process. jproc(ρ) gives

a bijection between the places of r1 and those of r2 as follows: (1) synch places of

r1 are matched against synch places of r2 according to syass(r), which is defined

due to Prop. 6.14.3(4); (2) switch places of r1 are matched against switch places

of r2 as given by γ: each switch place is represented by exactly one switch block,

and by Prop. 6.14.3(3) γ matches switch blocks against switch blocks. With

Prop. 6.14.4(2) it is immediate that ρ respects its associated joint process in the

following way:

let b1 ∈ blocks(r1), b2 ∈ blocks(r2). γ(b1) = b2 =⇒ jproc(ρ)(b1) = b2.

This ensures that transitions of Tbp that relate bp tuples contained in∼bp translate

into transitions of Tcp:

let t ∈ JT , ρ′ ∈ BP . ρ
t
→bp ρ

′ & ρ′ ∈ ∼bp =⇒ jproc(ρ)
t
→cp jproc(ρ

′).

With this, in turn, it is straightforward to show that any bp bisimulation can be

transformed into a cp bisimulation, and hence we obtain:

Lemma 6.14.1. For all ρ ∈ BP we have:

ρ ∈ ∼bp =⇒ jproc(ρ) is defined & jproc(ρ) ∈ ∼cp .

Finally, we conclude:

Theorem 6.14.1. Two live buffered fc systems are bp bisimilar iff they are cp

bisimilar.

Proof. This is immediate with Fact 6.14.4 and Lemma 6.14.1.
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6.14.3 Overcoming the Gap between hp and bp Bisimi-
larity

We shall now close the only remaining gap. Building on the buffered restriction

we design a constraint to additionally overcome the difference between hp and

bp bisimilarity: we show that hp, bp, and cp bisimilarity coincide for the class of

live strictly postset-deterministic (short: spsd) buffered fc systems.

Fix two live buffered fc systems N1, N2, and assume the framework of Sec-

tion 6.4. Let r ∈ ∼hp. From the previous section we know that the buffered

condition enforces a natural bijection between the synch places of r1 and those of

r2 such that the assignment is respected by transitions of Thp . If we achieved the

analogue for switch places then certainly we could translate any hp bisimulation

into a cp bisimulation. From the previous section we also know: (1) the switch

places of r1, and r2 respectively, have been generated by transitions of type A;

(2) r preserves types, and hence transitions of type A are matched against tran-

sitions of type A. Thus, as a first rule for obtaining an assignment for switch

places it seems natural to adopt the following constraint: allow p1 ∈ switchP(r1)

to match p2 ∈ switchP(r2) only if their generator events are related in r, that is

only if gen(r1, p1) = gen(r2, p2). The following observation implies that this rule

is in agreement with how switch places are consumed by transitions of Thp :

Convention 6.14.2. For ti ∈ Ti of type switch we write ◦ti to denote the single-

ton preplace of ti.

Proposition 6.14.5. Let r ∈ SRuns, and t ∈ JT such that r1
t1→, r2

t2→, and ti

is of type switch, where i = 1, or 2.

mcauses(r1, t1) = mcauses(r2, t2) =⇒
t̄i is of type switch & ◦t̄i ∈ (te)•, where e = gen(ri,

◦ti).

Proof. Let r, t, and i be given as above, and assume (A) mcauses(r1, t1) =

mcauses(r2, t2). By Prop. 6.14.3(1) and (A) it is clear that both, t1 and t2,

must be of type switch. On the other hand, by Prop. 6.14.2(1) (A) gives us

gen(r1,
◦t1) = gen(r2,

◦t2). Since we clearly have ◦t̄i ∈ (tgen(rī,
◦ t̄i))

•
, this immedi-

ately implies the proposition.

In fact, our constraint corresponds to the definition of syass , but, since transi-

tions of type A can have several postplaces, it can only act as a partial definition

here. We additionally require a rule that tells us of how to assign the postplaces of

two transitions of type A related in ∼hp. Thus, on top of the buffered condition

we want a restriction that enforces a natural bijection between the postplaces
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Figure 6.13: Examples of nondeterminism admitted (transition t1) and disallowed
(transition t2) by the spsd restriction

of any such pair of transitions. Moreover, the assignment should be respected

by transitions of Thp . This is exactly what we achieve with the spsd constraint.

It works by restricting the nondeterminism at the postset of transitions (in the

spirit of, but stricter than, the sy-psd condition of Section 6.13), and exploits

that transitions of Thp are not only cause-preserving but also label-preserving. It

is defined as follows:

Definition 6.14.5. Let N be a net system.

t ∈ TN ∪ {init} is strictly postset-deterministic (short: spsd) iff for any distinct

pa, pb ∈ t
• we have: ∀ta ∈ pa

•. ∀tb ∈ pb
•. l(ta) 6= l(tb).

N is spsd iff for all t ∈ TN ∪ {init} we have: t is spsd. (If N is buffered fc, this

is equivalent to: t is of type A =⇒ t is spsd.)

The spsd restriction is illustrated in Figure 6.13. It is easy to see that it

subsumes the sy-psd restriction:

Proposition 6.14.6. If a fc system is spsd then it is also sy-psd.

Proof. Obvious.

In the following, we assume N1 and N2 to be live spsd buffered fc systems.

First, we shall see that the spsd restriction indeed enforces a natural bijection be-

tween the postplaces of two transitions t1, t2 of type A that are matched against

each other in ∼hp: there exists exactly one bijection βpost : t1
• → t2

• such that

whenever two places are related in βpost then they have label-matching posttran-

sitions.

Proposition 6.14.7. Let t ∈ JT ∪ {init} such that

t = init =⇒ r′′ ∈ ∼hp for some r
′′, and

t ∈ JT =⇒ t1, t2 are of type A & r′.t.r′′ ∈ ∼hp for some r
′, r′′.
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There exists exactly one bijection βpost : t1
• → t2

• such that the following condition

is satisfied:

(∗) for all (p1, p2) ∈ βpost we have

1. ∀tx1 ∈ p1
•. ∃tx2 ∈ p2

•. l(tx1) = l(tx2), and symmetrically

2. ∀tx2 ∈ p2
•. ∃tx1 ∈ p1

•. l(tx1) = l(tx2).

Proof. This can essentially be proved by employing the following three ingredi-

ents: (1) ∼hp matching is maximal cause preserving and Prop. 6.14.5; (2) concur-

rent steps have to be matched against concurrent steps (Prop. 4.3.2(1)); (3) ∼hp

matching is label-preserving. The proof is lengthy, and has therefore be moved

to Appendix C.4.2(1).

Definition 6.14.6. Let t be defined as in Prop. 6.14.7. We denote the uniquely

given bijection of Prop. 6.14.7 by psd(t).

Now it is clear how we can obtain a bijection between the switch places of

a pair (r1, r2) ∈ ∼hp: match p1 ∈ switchP(r1) against p2 ∈ switchP(r2) iff p2 =

psd(te)(p1), where e = gen(r1, p1). As anticipated te1 and te2 must both be of type

A, and thus the assignment is defined. We shall refer to it by swass(r). On the

other hand, we still have to prove that swass(r) will be respected by transitions

of Thp . This will follow from Prop. 6.14.5 and the following observation:

Proposition 6.14.8. Let t ∈ JT ∪ {init} such that psd(t) is defined.

∀ta1 ∈ (t1
•)•. ∀ta2 ∈ (t2

•)•. l(ta1) = l(ta2) =⇒ ◦ta2 = psd(t)(
◦ta1).

Proof. Let t be given as above, and assume ta1 ∈ (t1
•)• and ta2 ∈ (t2

•)• such

that (A) l(ta1) = l(ta2). It is clear that ta1 and ta2 are of type switch satisfying
◦ta1 ∈ t1

• and ◦ta2 ∈ t2
•. By definition of psd(t) there exists tb2 ∈ (psd(t)(◦ta1))

•

such that l(ta1) = l(tb2). But by the spsd restriction and (A) this immediately

implies ◦tb2 =
◦ta2, which in turn proves the proposition.

Now it is straightforward to prove:

Proposition 6.14.9. Let r ∈ ∼hp, and t ∈ JT such that ti is of type switch for

i = 1, or 2.

r
t
→ =⇒ t1, t2 are both of type switch &

psd(te)(◦t1) is defined &
◦t2 = psd(t

e)(◦t1), where e = gen(r1,
◦t1).
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Proof. Let r and t be given as above, and assume r
t
→. By Prop. 6.14.3(2) it

is clear that both, t1 and t2, must be of type switch. It follows that te1 and

te2 must be of type A (Prop. 6.14.1(1), 6.14.3(4)), and hence, psd(te) is defined;
◦t1 ∈ (te)• is obvious. Finally, considering that transitions in Thp respect maximal

causes as well as labels, with Prop. 6.14.5 and Prop. 6.14.8 we easily obtain
◦t2 = psd(t

e)(◦t1).

The remainder is routine and analogous to Section 6.14.2; a full proof can be

found in Appendix C.4.2(2). We define a map jproc to translate every r ∈ ∼hp into

a corresponding joint process; this time jproc is composed of syass and swass .

With Prop. 6.14.4(1b) and Prop. 6.14.9 it is then immediate that r respects

jproc(r) in the following way: let t ∈ JT . r
t
→ =⇒ jproc(r)(•t1) = •t2. And

thus, transitions of Thp that are contained in ∼hp translate into transitions of

Tcp: r
t
→ r.t & r.t ∈ ∼hp =⇒ jproc(r)

t
→cp jproc(r.t). This, in turn, makes it

straightforward to prove that hp bisimilarity implies cp bisimilarity:

Lemma 6.14.2. For all r ∈ SRuns we have:

r ∈ ∼hp =⇒ jproc(r) is defined & jproc(r) ∈ ∼cp .

Finally we conclude:

Theorem 6.14.2. Two live spsd buffered fc systems are hp bisimilar iff they are

bp bisimilar iff they are cp bisimilar.

Proof. This is immediate with Fact 6.14.2, Lemma 6.14.2, and Fact 6.14.4.

6.14.4 Final Results

At last, we are able to derive our results for hp and (c)hhp bisimilarity. Closing

the gap between bp and cp bisimilarity gives us our decidability result:

Theorem 6.14.3.

1. Two live sy-psd buffered SSMD fc systems are cp bisimilar iff they are chhp

bisimilar.

2. It is decidable whether two live sy-psd buffered SSMD fc systems are chhp

bisimilar.

Proof. (1.) Our results give rise to the following circuit of inclusions and equiva-

lences, which clearly proves (1):

∼chhp

a

⊆ ∼bp
b
= ∼cp

c
= ∼chcp

d

⊆ ∼chhp .
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(a) follows by Fact 6.14.3, (b) by Theorem 6.14.1 and the buffered restriction, (c)

by Theorem 6.13.3 and the sy-psd restriction, and (d) by Fact 6.4.3(2).

(2.) follows from (1) and the decidability of cp bisimilarity (Fact 6.4.2).

And, by furthermore closing the gap between hp and bp bisimilarity we obtain

our coincidence result:

Theorem 6.14.4. Two live spsd buffered SSMD fc systems are hp bisimilar iff

they are hhp bisimilar iff they are chhp bisimilar.

Proof. Considering Prop. 6.14.6 and Theorem 6.14.2 we can extend the above

circuit of inclusions and equivalences as follows:

∼chhp ⊆ ∼hhp ⊆ ∼hp
e
= ∼bp

e
= ∼cp

c
= ∼chcp

d

⊆ ∼chhp,

where the unlabelled relations are trivial, and e corresponds to Theorem 6.14.2.
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Chapter 7

Final Remarks

Although hhp bisimilarity is obtained from hp bisimilarity by the seemingly small

addition of a backtracking requirement the computational and distinguishing

power of hhp bisimilarity is far greater than that of hp bisimilarity. The reason

for this lies in the fact that by introducing backtracking we abandon the usual

view of a concurrent system as a tree of future behaviour and take ourselves to

a mathematically more involved structure: the truly-concurrent unfolding level

where the interplay of causality, concurrency, and conflict is fully visible and

exploitable. We hope to have shown throughout this thesis how by imposing

restrictions on this interplay we can systematically approach the borderlines of

power of a truly-concurrent concept such as hhp bisimilarity. We also hope this

work demonstrates how mathematically intriguing working with true-concurrency

can be. Finally, we hope the following conclusions will show how this thesis takes

us a very small step towards a unified theory of true-concurrency, and that there

may be benefits for automatic verification.

In Section 7.1 we summarize our results, draw conclusions, and discuss some

shortcomings; in doing so directions for future work will arise. In Section 7.2 we

inspect the undecidability of hhp bisimilarity. Finally, in Section 7.3 we outline

two general directions for further research; in particular, we speculate what might

be gained with respect to automatic verification.

7.1 Summary and Conclusions

7.1.1 Summary

Firstly we shall summarize the results of this thesis. In particular, this will provide

an overview of the coincidence and decidability results we achieved. Note that

whenever hp and hhp bisimilarity coincide for a system class then (recalling that

hp bisimilarity is decidable for finite-state systems) hhp bisimilarity is decidable
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Figure 7.1: Classes with restricted nondeterminism
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Figure 7.2: Classes with tree-like behaviour
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live spsd buffered SSMD fc systems

live sy-psd buffered SSMD fc systems

live sy-psd SSMD fc systems

live SSMD fc systems

live fc systems
(= live SMD fc systems)

confusion-free and
syn-confusion free

free choice systems
confusion-free/
SW-{2,3} free

comm-free
systems

SW-free

S-systems T-systems
parallel compositions
of sequential systems

conflict-free

Figure 7.3: The free choice spectrum

for the finite-state fragment of that class. Also note that all the non-coincidence

results already hold for finite-state systems. Figures 7.1 – 7.3 give a map of (most

of) the system classes considered, illustrating their interconnections. Our results

fall into five categories:

1. Restricted Backtracking. We constrained the hereditary condition in two

different ways, which translated into two hierarchies of restricted backtracking

bisimilarities: (n)hhp bisimilarity, and (n)nhhp bisimilarity for n ∈ IN0. Via the

decidability of (n)hhp bisimilarity we obtained decidability of hhp bisimilarity for

two subclasses. For finite-state systems, and n ∈ IN0 we have:

1. Restricted Backtracking
Result Sec.

(n) and (n+1)hhp bisimilarity do not coincide 3.3.2
(n)hhp bisimilarity is decidable 3.3.3
(n) and (n+1)nhp bisimilarity do not coincide 3.4.2
(n)nhp bisimilarity is decidable 3.4.3

hhp b. is decidable for bounded asynchronous systems 3.5.2
hhp b. is decidable for systems with transitive independence 3.5.3

The classes ‘bounded asynchronous systems’ and ‘systems with transitive inde-
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pendence’ may seem disconnected from our remaining analysis of system classes;

however, they provide important complementary insights on the role of synchro-

nization for hhp bisimilarity. We will come back to this under Point 3 of the

following section.

2. Basic Behavioural Classes. This group comprises the basic system classes

we examined to establish a minimum of behavioural situations which must be

allowed to keep hp and hhp bisimilarity distinct. We considered causality, con-

currency, and conflict, and (L&C)-nondeterminism.

2. Basic Behavioural Classes
Behavioural Class Petri Net Class C? Sec.

sequential connected S-systems yes 4.2.1
conflict-free T-systems yes 4.2.1
causality-free no 4.2.1
(L)-det. ⊂ (L/C)-det. yes 4.2.2
auto-concurrency free ⊂ (L&C)-co free no 4.2.3
(L)-conflict free ⊂ (L&C)-conflict free no 4.2.3

C? . . . Coincidence between hp and hhp bisimilarity?

The most interesting result here is, perhaps, that (L&C)-nondeterminism due

to conflict is not necessary for non-coincidence: hp and hhp bisimilarity do not

coincide for (L)-conflict free systems. To prove this result we exhibited a new

counter-example, counter-example 3, which is also important with respect to

confusion-free and free choice systems.

3. Advanced Behavioural Classes. We then studied a group of more ad-

vanced behavioural classes: they admit all the situations identified to be neces-

sary for non-coincidence; the classes also admit causality. In our analysis, we

proved and built on the following composition and decomposition theory:

Composition and Decomposition
Result Sec.

(h)hp b. is composable w.r.t. decompositions into independent factors 4.3.2
for bsc-decomposable systems,
(h)hp b. is decomposable w.r.t. the set of prime components 4.3.3

With this it was straightforward to obtain that hp and hhp bisimilarity co-

incide for parallel compositions of sequential systems, which confirmed that it

is the mixture of concurrency with conflict and/or causality that stands behind

the increased power of hhp bisimilarity. This led us to formulate and investigate

the three SW-situations. Employing the composition and decomposition theory
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in an inductive argument we showed that the coincidence result carries over to

bounded-degree SW-free systems.

SW-free systems exhibit tree-like behaviour in a strict sense, and thus two dif-

ferent directions to proceed emerged: (1) to stick to tree-like behaviour, but allow

more interaction ‘at one level’; intuitively, this amounts to investigating systems

that exclude SW-1 and SW-2; (2) to allow ‘proper’ synchronization, in the sense

of SW-1, but only in a controlled way, separated from conflict; intuitively, this

amounts to excluding SW-2 and SW-3, or equivalently, the well-known situation

of confusion.

For both SW-{1,2} free and confusion-free systems hp and hhp bisimilarity do

not coincide. In the latter case this insight disproves a long-standing conjecture.

Proof of non-coincidence was provided by counter-example 3; we also exhibited

a more compact counter-example, counter-example 4. We defined the concept of

syn-confusion to capture the kind of MNH situation these two counter-examples

rely on. We suspect that, in the absence of confusion, liveness may play a role in

excluding syn-confusion.

3. Advanced Behavioural Classes
Behavioural Class Petri Net Class C? Sec.

parallel compositions of
sequential systems

S-systems yes 4.3.4

bounded-degree SW-free bounded-degree comm-free yes 4.4.3
SW-{1,2} free proper-comm free no 4.4.2,5.4.2
SW-{2,3} free/confusion-free free choice no 4.4.2,4.5.2
SW-{1,3} free no? 4.4.2
syn-confusion free no 4.5.3
live no1 4.6

C? . . . Coincidence between hp and hhp bisimilarity?
1 We also know: hhp b. is undecidable for live finite-state systems.

4. The BPP Spectrum. We addressed two standard classes of infinite-state

verification: SBPP and BPP. Their partial order semantics are given in terms of

comm-free net systems, and proper-comm free net systems respectively. Thus,

by studying them we took further our investigation of classes with tree-like be-

haviour.
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4. The BPP Spectrum
Class BC Result Sec.

SBPP SW-free hp and hhp b. coincide, and are decidable 5.3.2
BPP SW-{1,2} free hp and hhp b. do not coincide 5.4.2

hp b. is decidable 5.4.3
hp and distributed b. coincide 5.4.4
hhp and chhp b. coincide, and are decidable 5.4.5

BC . . . Behavioural Characteristic

All the positive results follow by clear tableau decision procedures, which are

based on composition and decomposition insights. For SBPP our theorems on

(de)composition with respect to independent (prime) factors once more applied;

for BPP specific decomposition views were developed. The decidability of hp

bisimilarity and its coincidence with distributed bisimilarity is also induced via

results on causal bisimilarity [Ace92a, KH94, Kie99]. All the results on hhp

bisimilarity are new.

5. The Free Choice Spectrum. Finally, we studied classes of free choice sys-

tems, and thereby continued the theme of confusion (or SW-{2,3}): free choice

systems allow synchronization but only in a controlled way, separated out from

conflict. Having shown non-coincidence for the entire class, we concentrated on

tackling live fc systems. On top of being confusion-free these appear to be syn-

confusion free: they exclude all combinations of MNH and frame situations that

have been employed in counter-examples so far. Yet, in comparison with the

tree-like classes, live fc systems proved a very demanding class to tackle. Based

on decomposition ideas we devised an approach that breaks the coincidence prob-

lem down into several subgoals, and thereby disentangles the difficulty. Crucial

subgoals were established, and several coincidence and decidability results could

be deduced for subclasses of live fc systems. For finite-state systems, we have:

5. The Free Choice Spectrum
Class Result Sec.

free choice hp and hhp b. do not coincide 6.3
live fc (= live SMD fc) ? 6
live SSMD fc cp b. is K-decomposable 6.11

cp b. is sw-(1)her & sw-(1)coh 6.11
live sy-psd SSMD fc cp, hcp, and chcp b. coincide 6.13
live sy-psd buffered SSMD fc chhp b. is decidable 6.14
live spsd buffered SSMD fc hp, hhp, and chhp b. coincide 6.14
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7.1.2 Main Conclusions and Future Work

Having summarized our results we now present several main conclusions and

prognoses that we can deduce from this work. We also outline the most impor-

tant directions for further research. The conclusions and prognoses apply to hhp

bisimilarity, first of all; however, we expect they are relevant for true-concurrency

investigations in general. In particular, they should apply to concepts that are

truly-concurrent in that they, in some way, refer to the notion of event (cf. Sec-

tion 1.2.1). This section can also be read in the context of Section 7.2.

1. The Dimensions of Past Operators. Past operators such as backtracking

have two dimensions: (1) How far back in the history are we allowed to refer?

(2) How often are we allowed to refer to the past? The full distinguishing and

computational power of hhp bisimilarity can only be achieved by leaving these

two dimensions unbounded.

This conclusion follows from our hierarchy results of Chapter 3. There are

still gaps to close in our understanding of restricted backtracking. For example,

one could study a variant of (n)nhp bisimilarity where Opponent is allowed to

backtrack as many transitions ‘in one block’ as he likes. The counter-example of

Section 3.3.2 is not strong enough to establish strictness for this hierarchy, but the

counter-example derived from the undecidability proof (mentioned in Section 3.6)

should still apply. In general, the relationship between (n)hhp and (n)nhp bisimi-

larity and their relation to the undecidability proof should be investigated in more

detail. Thinking beyond hhp bisimilarity, the hierarchy ideas could be applied to

approach other truly-concurrent concepts, e.g. CTLP . Altogether, they could help

to draw up a complete picture of the role past operators play in true-concurrency.

2. Composition and Decomposition. The idea of composition and decom-

position is very natural for true-concurrency, and provides an important—if not

the—technique to establish decidability (and tractability) results.

In contrast to the interleaving world, where decomposition must be considered

with respect to syntax (e.g. with respect to the process algebra operator ‘||’), in

true-concurrency decomposition has a semantic flavour: we can directly recognize

whether a truly-concurrent system can be dissected into independent ‘chunks’ of

behaviour. Accordingly, it may be possible to decide a truly-concurrent problem

by a ‘divide and conquer’ approach: we have experienced throughout this the-

sis how decomposition characteristics of a system class can translate into (h)hp
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bisimilarity in a natural way, and thereby lead us to decidability and coincidence

results. It will be interesting to see whether this approach can be taken beyond

hhp bisimilarity (e.g. be used to tackle a truly-concurrent logic), and, orthogo-

nally, beyond the system classes considered here. Regarding the last point, one

would expect that the more complex the interplay of causality, concurrency, and

conflict gets the more difficult it will be to obtain a fruitful (de)composition

theory. This has already been experienced in this thesis when we moved from

tree-like systems to systems with proper synchronization. In general, the idea

of composition and decomposition seems important with respect to designing

efficient algorithms, and it appears to be inherently related to partial order re-

duction.

3. Synchronization. (A) For system classes with tree-like behaviour truly-

concurrent problems seem to be particularly natural and straightforward, both to

tackle and to decide. (B) As soon as we admit synchronization (in the sense that

SW-1 can occur) the interplay of causality, concurrency, and conflict is in general

considerably more difficult, and so is the tackling of truly-concurrent problems.

Systems with structurally controlled synchronization are still difficult to tackle,

but, at least in the presence of liveness, they are probably within the decidability

border. (C) If we assume that the systems under study are tightly synchronized

(in that no thread can be left behind indefinitely) then true-concurrency seems

to lose its computational power.

(A) is based on the experience that all the classes with tree-like behaviour

we analysed were straightforward to handle via decomposition insights. We

also achieved many coincidence results for this group, which indicates that true-

concurrency brings about less subtlety here.

(B) In contrast, during our work on live fc systems we witnessed that admit-

ting synchronization, even if it is structurally controlled and investigated in the

presence of liveness, makes things tremendously more difficult. Our work also

shows, though, that, building on structural exploits and decomposition insights,

we are still able to expose regularities within truly-concurrent problems on such

systems. This indicates that true-concurrency is within the decidability border

here.

(C) is suggested by the decidability of hhp bisimilarity for (finite-state) bounded

asynchronous systems. The prognosis is further supported by the proof of the

undecidability of hhp bisimilarity in the general case [JN00]: one aspect of the

proof, and—one could claim—of the power of true-concurrency in general, is that
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(finite-state) truly-concurrent systems can encode the ω×ω grid (cf. Section 7.2).

Tightly synchronized systems do not have this expressive power.

It would be interesting to see whether the three rules of thumb can be con-

firmed with respect to other truly-concurrent problems, e.g. in logic. Indeed, we

know of a case that goes against rule (A): model-checking the fixpoint version

of the backtracking logic that characterizes hhp bisimilarity is already undecid-

able for finite-state comm-free net systems. This follows via a weak simulation

of 2-counter machines, inspired by that of Jančar (cf. Section 1.3.2).1 Is this a

phenomenon particular to that logic, or is there a sense in which truly-concurrent

logic problems can hide more irregularity than equivalence problems (relying less

on the power of the interplay)?

4. The Infinite-State World. In the finite-state world truly-concurrent prob-

lems are typically harder than their interleaving counterparts, but in the infinite-

state world this trend may be reversed. Standard infinite-state classes such as

SBPP and BPP enjoy natural decomposition properties and good structural fea-

tures which are particularly exploitable in true-concurrency.

This trend first emerged from the works [EK95] and [SN96], and could further

be confirmed by our decidability and coincidence results on SBPP and BPP. In

particular, the decidability of hhp bisimilarity on BPP shows that in the true-

concurrency world an equivalence that is undecidable for finite-state systems can

have a clear decision procedure for a standard class of infinite-state systems. The

positive trend for true-concurrency is also motivated by the recent complexity

results reported in [Las03] and [Jan03].

An important way to proceed is to investigate whether our results carry over

to versions of SBPP and BPP with synchronization, such as BPPτ . Are SBPP

and BPP tractable because they have tree-like behaviour or is syntactically con-

trolled synchronization still within the border of decidability? To clarify this

point is particularly important in view of Paragraph (3) and (5): to complement

our study of structurally controlled synchronization. Positive results for BPPτ

have been achieved for hp bisimilarity [KH94], distributed bisimilarity [Chr93],

and pomset trace equivalence [SN96]; but hhp bisimilarity may well behave in a

different way. In general, it will be interesting to see whether the positive trend

for true-concurrency in infinite-state verification can further be substantiated, in

particular with respect to logic.

1Many thanks to Julian Bradfield for pointing this out to me.
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5. A Free Choice Hiatus? (A) With respect to truly-concurrent problems,

such as deciding hhp bisimilarity, we speculate that live fc systems lie within

the decidability border. It may even be the case that the interplay does not

bring about much subtlety here. More specifically, chhp, hhp, and hp bisimilarity

coincide for a subclass of live fc systems; chhp bisimilarity is decidable for a

slightly less restricted class. (B) For the full free choice class the situation is less

clear. (C) In general, free choice and live fc systems may prove difficult to tackle,

but—on the positive side—they should still be approachable.

(A) It would be very satisfying to obtain a full understanding of how hhp

bisimilarity behaves on live fc systems. Being able to build on Chapter 6 this

should be comparatively straightforward now. We speculate that hhp bisimilar-

ity is at least decidable here. If hhp bisimilarity turned out undecidable this

would entail that the restrictions we imposed to bridge over the remaining sub-

goals highlighted situations that are significant with respect to the power of true-

concurrency. Then, true-concurrency would seem very subtle indeed.

(B) A second task is to clarify the situation for the full free choice class.

The fact that hhp and hp bisimilarity do not coincide for free choice systems

indicates that the interplay is subtle here; but is it sufficiently subtle to induce

undecidability? There are two contrasting intuitions: on the one hand, there

is a sense in which free choice systems can simulate any mixture of causality,

concurrency, and conflict by which transitions may be related; on the other hand,

one could speculate that as long as the mixture is separated out in that the

situation of confusion does not occur we do not obtain the same computational

power. We will come back to this point in Section 7.2, where we report on some

preliminary investigations on free choice systems.

(C) is witnessed by Chapter 6. We were able to approach live fc systems,

but only by developing and employing various tools, which can be seen as the

culmination of our previous insights and methods on true-concurrency. Although

the techniques were designed with free choice systems and hhp bisimilarity in

mind we hope that the principles will be relevant in general to tackle and dissect

a problem of the true-concurrency world, maybe in logic or automatic synthesis.

One would expect, though, that beyond free choice systems (the next obvious class

to consider is simple net systems) things will be much, much more inscrutable.

In that sense there certainly is a free choice hiatus.
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7.1.3 Shortcomings and Future Work

Finally, we discuss some shortcomings in the work presented. In doing so further

themes and prognoses for future work arise; a difficulty that applies to true-

concurrency investigations in general is highlighted.

A Hierarchy of System Classes for True-Concurrency? In Section 1.1

we have motivated that a unified understanding of true-concurrency and its bor-

derlines depends on being able to work relative to a well-established hierarchy of

subclasses. We have taken care to choose our system classes as systematically as

possible, but we have encountered certain pitfalls.

For most truly-concurrent problems (including hhp bisimilarity) models such

as lats’ or tsi’s provide the primary semantic model: it is the behavioural level

which will ultimately be relevant. However, one experience of our project is that

this behavioural level is difficult to work with. Firstly, it seems, disentangling

and classifying behaviour successfully is only possible up to a certain degree: to

identify behavioural situations beyond the ones discussed in Chapter 4 seems not

only technically awkward, but also prone to redundancy and ambiguity. Even

at our basic level we experienced both: the two basic cases of confusion coincide

with SW-2 and SW-3; there are many ways of defining a concept of syn-confusion.

A related difficulty is that working with behavioural classes can be technically

awkward: to prove something intuitively straightforward may turn out to be

technically involved; an interesting proof may be drowned in technicalities. The

first was experienced in showing that SW-free systems are CIS-decomposable (cf.

Section 4.4.3); the second is exemplified by the proof of the decomposition result

of Section 4.3.3. (Indeed, the issue of technial awkwardness may be related to

difficulties experienced in work on characterizing regular event structures [NT02].)

Thus, it proved essential to move to models which maintain concepts of lo-

cality and distribution along with notions of structural interaction such as syn-

chronization: to be able to refer to the structure that ultimately stands behind

the complexity of the interplay. The problem with moving to such structural

classes is that we sacrifice uniformity: there are various structural models, and

various model-dependent restrictions have been employed (for example, it is also

popular to work with distributed automata, or networks of agents connected via

communication channels). Furthermore, working with structural subclasses will

disguise which behavioural characteristics we ultimately rely on.

In view of a uniform theory of true-concurrency it is important to study the

interplay between behaviour and structure; to establish a more general structure
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theory that encompasses the various structural models: to discern how struc-

tural features translate into aspects of behaviour; to understand the relationship

between the different structural models and their restrictions—albeit, such con-

nections will almost certainly be tedious to prove. It will surely be impossible

to draw up hierarchies as formal and straightforward as those used in infinite-

state verification and language theory. However, a map of informal connections

and rules of thumb would in itself contribute much towards a uniform study of

true-concurrency.

The Role of Nondeterminism. Throughout our analysis we have focused our

attention on the interplay of causality, concurrency, and conflict. On the other

hand, from Section 4.2.2 (and Sections 6.13, 6.14.3) we know: the distinguish-

ing and computational power of hhp bisimilarity also depends on the amount of

nondeterminism available in the system class under study. Therefore, to com-

plete our understanding of hhp bisimilarity, and the power of true-concurrency in

general, it seems important to systematically analyse the role of nondeterminism

and its interaction with causality, concurrency, and conflict. An important step

into this direction has already been undertaken: [Muk02] investigates the class of

(finite-state) trace-labelled systems, and finds that hhp bisimilarity is decidable

here.

Complexity. One obvious shortcoming is that we did not consider the aspect

of complexity in this work. It should be interesting to analyse the complexities

of our tableau-based decision procedures for SBPP and BPP, and compare them

to the polynomial-time result that has been obtained for hp bisimilarity on BPP

in [Las03]. Otherwise, with respect to finite-state systems, our decidability re-

sults typically follow from having shown that hhp bisimilarity coincides with hp

bisimilarity for the respective system class. In this case, we can carry over up-

per bounds of DEXPTIME. For the algorithms that decide (n)hhp and (n)nhp

bisimilarity, and conseqently those that decide hhp bisimilarity on bounded asyn-

chronous systems and systems with transitive independence, the complexities may

well be higher.

One could argue that the coincidence results provide a basis for the construc-

tion of more efficient algorithms for hp (and hhp) bisimilarity: the coincidence

proofs uncover regularities within hp bisimilarity; consequently, the expensive gsc

state space exploration may be avoidable. In general, there is a sense in which

hhp bisimilarity is inherently amenable for partial order reduction: we only need
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to consider those hp bisimulations that are trace-consistent. In this spirit, coin-

cidence results may be of practical use. In summary, we say:

If hhp bisimilarity is decidable for a subclass then it may well be

efficiently decidable due to structural exploits and inherent partial

order reduction. If hhp bisimilarity coincides with hp bisimilarity for

a subclass, this may lead us to efficient algorithms for checking the

bisimilarities on that class.

Projecting to true-concurrency in general, and integrating what has been in-

dicated in Section 1.2.2 following [KV01], we further suggest:

Although, in general, truly-concurrent problems can be hard, even

undecidable, we can hope to achieve efficient algorithms for subclasses

by exploiting the higher structure of true-concurrency. If a truly-

concurrent concept is found to be of high complexity one has to keep

in mind that this may be attributed to the fact that, in general, a

truly-concurrent measure may amount to an exponential compression

of the corresponding interleaving state space.

7.2 The Undecidability of hhp Bisimilarity

We now discuss the undecidability of hhp bisimilarity, which has been established

by Jurdziński and Nielsen in [JN00].

The undecidability proof proceeds in two steps: (1) The intermediate problem

of checking domino bisimilarity for origin constrained tiling systems is introduced,

and shown to be undecidable by a reduction from the halting problem of 2-counter

machines. (2) Checking domino bisimilarity for origin constrained tiling systems

is then in turn reduced to checking hhp bisimilarity on finite-state lats’. It is also

shown that this reduction, and thus the undecidability result, can be strengthened

to hhp bisimilarity on finite 1-safe Petri nets, which can be seen as a proper

subclass of finite-state lats’.

The following two works helped pave the way for the undecidability proof.

In [JN99] Jurdziński and Nielsen prove the undecidability of hhp simulation in

two analogous steps, proceeding via the intermediate problem of determining the

winner in domino snake games. In [MT98] Madhusudan and Thiagarajan address

the problem of synthesizing controllers for discrete event systems; they show that

in a truly-concurrent setting this problem is undecidable. The proof proceeds by

a reduction from the problem of tiling the ω× ω grid, and exhibits an important
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technique: it is shown how a tiling system on the ω×ω grid can be encoded in a

finite-state lats. A modified version of this ‘gadget’ is employed in the reductions

from the domino tiling problems to hhp bisimulation and simulation. Tiling

problems also play a role in truly-concurrent logic: CTLP is shown undecidable

by a reduction from the recurring tiling problem [PK95].

Altogether, this demonstrates that there is a fruitful connection between true-

concurrency and the theory of tiling problems. This connection is not only prof-

itable for concurrency theory but it feeds both ways: the two domino tiling prob-

lems, introduced in the context of hhp bisimulation and simulation, present an

interesting addition to the ‘toolbox’ of undecidable problems: “the combinatorical

and geometrical simplicity of domino problems renders them an ideal medium for

[. . . ] proving “bad behaviour” such as NP-hardness or undecidability” [Har85].

Since tiling systems are strong enough to encode Turing machines or 2-counter

machines in a relatively straightforward way, the tiling connection mediates that

there is a sense in which true-concurrency is fundamentally hard: in general, when

considered at the level of their unfolding structure, finite-state true-concurrency

models, such as lats’, are almost Turing powerful. This has to be kept in mind

whenever one tackles a truly-concurrent problem.

The insight that finite-state concurrent systems have the power to encode

tiling systems involves two aspects: (1) There is a class of concurrent systems

whose structure corresponds to the two-dimensional grid with the addition that

the nodes are decorated with an encoding of a tiling specification; altogether

there is a natural notion of tiling associated with systems of this class: we can

faithfully mimic the building of a domino snake by a combination of forwards and

backtracking moves. (2) Such systems can be folded into finite-state systems.

It seems the basic situations causality, concurrency, and conflict can interact

in a complicated way such that, in general, we cannot cover all the situations

the unfolding will create by looking at a finite portion of it; the interplay must

somehow cause a loss of regularity.

Crucial to an understanding of true-concurrency is then to further explain and

disentangle the computational power of concurrent systems: to analyse which as-

pects of the interplay make true-concurrency so powerful. Naturally, this directly

connects to this thesis: we have approximated the borderline from below by gain-

ing positive results for hhp bisimilarity on classes with restricted behaviour. In a

complementary approach we could approximate the borderline from above by in-

vestigating whether the tiling encoding is still possible for systems with restricted

interplay. Live free choice systems seem too restricted to allow for a simulation
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of the encoding; we speculate that for this class hhp bisimilarity is decidable,

and possibly even coincides with hp bisimilarity. However, free choice systems

make an interesting candidate. On the one hand, they can simulate any mixture

of causality, concurrency, and conflict by which transitions may be related: the

respective transitions may only have to be separated out by other transitions

to ensure that conflict and synchronization are kept apart. On the other hand,

confusion may well be necessary to guarantee that the tiling movement can be

simulated faithfully.

Some preliminary investigations have already been undertaken: the idea is to

simulate the net systems used in the undecidability proof by free choice systems

via a method of inserting dummy transitions so as to separate out conflict and

synchronization. The question is whether the simulation can be done in a suf-

ficiently faithful way so that a domino bisimulation will still give rise to a hhp

bisimulation. At the moment it is not clear to me whether this is possible. The

closest I could get was to exhibit a simulation that seems strong enough to allow

a reduction from a strengthened version of domino bisimulation, so-called bijec-

tive domino bisimulation. The reduction from the halting problem of 2-counter

machines to domino bisimulation relies on non-bijectiveness in an essential way;

so the bijective version may well be decidable. One could speculate that the

construction cannot be stretched any further: while many instances of confusion

can be avoided it seems there is one particular situation that makes the move to

bijective domino bisimulation unavoidable. Isolating this situation may bring us

a step closer to understanding the power of true-concurrency.

7.3 General Outlook and Application

Where to go from here? In the last two sections we have highlighted how one could

proceed to further explain and disentangle the hardness of true-concurrency. To

obtain a fundamental understanding of true-concurrency it also seems crucial to

strengthen the already existing links with trace theory and the field of tiling prob-

lems. Another important, complementary, direction to pursue is to back up what

has been put forward in the introduction: that an analysis of hhp bisimilarity,

and, more generally, investigations into the hardness of true-concurrency, should

have practical benefits with respect to the automatic verification of concurrent

systems. We hope the following points will further motivate this postulate.

Clearly, there should be direct exploits in areas where true-concurrency is a

primary notion, e.g. in automatic synthesis. Indeed, we have already seen a con-
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nection: the undecidability proof of hhp bisimilarity employs a technique that

has been developed in the context of automatic synthesis. In turn, one would

expect that insights obtained with hhp bisimilarity in mind might feed towards

this practically relevant topic. Above we suggested to complement the work on

hhp bisimilarity by analysing truly-concurrent logic such as CTLP ; results in this

area should be of direct interest to automatic synthesis: the higher expressive-

ness of true-concurrency logics is crucial to specify properties about the internal

structure of a system, e.g. to express that two activities must be independent of

each other. So far, in most work on automatic synthesis, the input specification

is made up of two parts: a formula expressed in one of the classical logics, and

some information about the architecture of the system to be synthesized. Since

via truly-concurrent logics finer issues about the architecture could be expressed

they could play an important role to ward off unwanted solutions. As [KV01]

suggests “the real challenge that synthesis algorithms and tools face in the com-

ing years is mostly [. . .] that of making automatically synthesized systems more

practically useful.”

Hopefully our insights into true-concurrency can also be employed to develop

more efficient model checking techniques. One idea is to extend the partial order

reduction methods. Simplified, they exploit the following insight: if two indepen-

dent transitions t1 and t2 are both executed at a state s, then the resulting state

s′ is independent of the order in which t1 and t2 are interleaved; if, moreover, t1

has no indirect influence over t2 in that the state reached after executing only t2

does not give rise to any behaviour that is not also visible at s′ then t2 can safely

be pruned. There are connotations to the coincidence problem: investigating the

difference between hp and hhp bisimilarity led us to analysing in which ways

a transition can influence the behavioural environment of a parallel transition.

A close understanding of this aspect may allow us to identify situations when

it is possible to prune t2 even if t1 has indirect influence over t2; namely if we

know that, overall, this influence will not lead to a loss of information. A second,

related, idea is to construct model checking algorithms of low complexity for sys-

tem classes with restricted behaviour; working with truly-concurrent models will

automatically integrate a degree of partial order reduction.

When one achieves positive results for classes with restricted behaviour, it is

important to analyse whether they are useful in practice. Live free choice sys-

tems are a promising candidate for efficient techniques. The free choice constraint

can usually be achieved by suitable abstractions; in contrast, liveness seems more

difficult to obtain. There are, however, two areas, where liveness is natural: asyn-
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chronous circuit design and workflow analysis in business process modelling.2 In

these areas the analysability of live free choice systems has already been exploited

(e.g. [Esp03]). Two more areas seem relevant: medical electronics, and computer

integrated manufacturing (CIM). They have a high potential for the use of formal

methods: medical electronics are safety-critical; failures in CIM are expensive.

Importantly, it appears that systems in these areas will naturally satisfy liveness.

2Many thanks to Javier Esparza for providing this information on free choice nets.
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[CHS95] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence

is decidable for all context-free processes. Information and Compu-

tation, 121(2):143–148, 1995.

[CN95] A. Cheng and M. Nielsen. Open maps (at) work. Research Series

RS-95-23, BRICS, Department of Computer Science, University of

Aarhus, 1995.

[Com72] F. Commoner. Deadlocks in Petri nets. Technical Report CA-7206-

2311, Applied Data Inc., 1972.

[DD89] Ph. Darondeau and P. Degano. Causal trees. In Automata, languages

and programming (1989), volume 372 of Lecture Notes in Comput.

Sci., pages 234–248. Springer, 1989.

[DD90] Ph. Darondeau and P. Degano. Causal trees: interleaving + causality.

In Semantics of systems of concurrent processes (1990), volume 469

of Lecture Notes in Comput. Sci., pages 239–255. Springer, 1990.

[DDM87] P. Degano, R. DeNicola, and U. Montanari. Observational equiva-

lences for concurrency models. In Formal Description of Programming

Concepts III, IFIP WG 2.2 working conference (1986), volume 259

of Lecture Notes in Comput. Sci., pages 105–129. Springer, 1987.

[DDNM89] P. Degano, R. De Nicola, and U. Montanari. Partial orderings descrip-

tions and observations of nondeterministic concurrent processes. In

Linear Time, Branching Time and Partial Order in Logics and Mod-

els for Concurrency (1988), volume 354 of Lecture Notes in Comput.

Sci., pages 438–466. Springer, 1989.

[DE95] J. Desel and J. Esparza. Free choice Petri nets. Cambridge University

Press, 1995.

[DM97] V. Diekert and Y. Métivier. Partial commutation and traces. In

Handbook of formal languages, Vol. 3, pages 457–533. Springer, 1997.

320



[DNMV90] R. De Nicola, U. Montanari, and F. Vaandrager. Back and forth

bisimulations. In CONCUR’ 90: concurrency theory, volume 458 of

Lecture Notes in Comput. Sci., pages 152–165. Springer, 1990.

[EK95] J. Esparza and A. Kiehn. On the model checking problem for branch-

ing time logics and basic parallel processes. In Computer Aided Ver-

ification (1995), volume 939 of Lecture Notes in Comput. Sci., pages

353–366. Springer, 1995.

[EN94] J. Esparza and M. Nielsen. Decidability issues for Petri nets - a

survey. Journal of Informatik Processing and Cybernetics, 30(3):143–

160, 1994.

[Eng91] J. Engelfriet. Branching processes of Petri nets. Acta Informatica,

28(6):575–591, 1991.

[ES91] J. Esparza and M. Silva. Circuits, handles, bridges and nets. In

Advances in Petri nets 1990, volume 483 of Lecture Notes in Comput.

Sci, pages 210–242. Springer, 1991.

[Esp97a] J. Esparza. Decidability of model checking for infinite-state concur-

rent systems. Acta Informatica, 34(2):85–107, 1997.

[Esp97b] J. Esparza. Petri nets, commutative context-free grammars, and basic

parallel processes. Fundamenta Informaticae, 31(1):13–25, 1997.

[Esp98] J. Esparza. Decidability and complexity of Petri net problems – an

introduction. In Lectures on Petri Nets I: Basic Models, volume 1491

of Lecture Notes in Comput. Sci., pages 374–428. Springer, 1998.

[Esp03] J. Esparza. A polynomial-time algorithm for checking consistency

of free-choice signal transition graphs. In ACSD’03: Application of

Concurrency to System Design, pages 61–70. IEEE, 2003.
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[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some re-

lated problems. Theoretical Computer Science, 148(2):281–301, 1995.

STACS’94.
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Appendix A

Relating to Chapter 3

Here we will give the detailed proof of the decidability of hhp bisimilarity for

the full class of finite-state systems with transitive independence relation. As

described in Section 3.5.3 the essence of the proof is the observation that concur-

rently occurring self-loops have always to be matched with self-loops. We will first

give the precise definition of what it means for a self-loop to occur concurrently,

and then formulate and prove the corresponding lemma.

Definition A.0.1. Assume a given system S. Let t be a self-loop transition of

S, and let r be some run of S. We say the self-loop t is concurrently occurring at

r iff

• t is enabled at r, and

• there exists t′, s. t. t I t′ and we have r
t′

→ r.t′ or BEn(r, t′).

Lemma A.0.1. Let H be a hp bisimulation relating two systems with transitive

independence relation, S1, S2.

• Whenever (r1.t1, r2.t2) ∈ H, and t1 is a concurrently occurring self-loop at

r1, then t2 is a self-loop as well.

• Vice versa.

Proof. To prove the first part of the lemma let (r1.t1, r2.t2) ∈ H and let t1 be

a concurrently occurring self-loop at r1. First assume we have t′1 I t1, such

that r1
t′1→ r1.t

′
1. Clearly we have (r1.t1.t1, r2.t2.t

∗
2) ∈ H for some t∗2 D t2, and

(r1.t1.t1.t
′
1, r2.t2.t

∗
2.t
′
2) ∈ H for some t′2, s. t. t

′
2 I t2 and t′2 I t

∗
2. With transitivity

of independence the latter leads to a contradiction with the requirement t∗2 D t2,

unless t∗2 = t2. But if t∗2 = t2, then t2 must be a self-loop because it can occur

twice consecutively.
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Secondly, assume we have t′1 I t1, such that BEn(r1, t
′
1). A similar argument

shows that t2 must be a self-loop, too.

The second part of the lemma can be proved by a symmetric argument.

This lemma ensures that we do not need to consider the unfoldings of concur-

rently occurring self-loops. It is sufficient to match one instance of a concurrently

occurring self-loop transition, and to make sure it is really matched to a self-loop.

This idea is translated into what we shall call ‘no self-loop unfolding’ (short:

nsu) hp bisimilarity. After giving the definition we will show that for systems with

transitive independence relation this new kind of bisimilarity indeed coincides

with (hereditary) hp bisimilarity.

Definition A.0.2. A ‘no self-loop unfolding’ (short: nsu) hp bisimulation be-

tween two systems S1 and S2 consists of a set Hnsu of pairs (r1, r2) such that

(i) Whenever (r1, r2) ∈ Hnsu , then r1 is a run of S1, r2 is a run of S2, and r1

and r2 are synchronous.

(ii) (ε, ε) ∈ Hnsu .

(iii) Whenever (r1, r2) ∈ Hnsu and r1
t1→ r1.t1 for some t1, such that t1 is not a

concurrently occurring self-loop at r1, then there exists t2, such that r2
t2→

r2.t2 and (r1.t1, r2.t2) ∈ Hnsu .

(iv) Vice versa.

(v) Whenever (r1, r2) ∈ Hnsu and r1
t1→ r1.t1 for some t1, such that t1 is a

concurrently occurring self-loop at r1, and there exists no x2 such that

(t1, x2) ∈ BEn(r), then there exists t2, such that t2 is a self-loop, r2
t2→ r2.t2,

and (r1.t1, r2.t2) ∈ Hnsu .

(vi) Vice versa.

A nsu hp bisimulation is hereditary (short: h) when it further satisfies

(vii) Whenever (r1, r2) ∈ Hnsu and t1 ∈ BEn(r1) and t2 ∈ BEn(r2) for some t1,

t2 such that last(r1, t1) = last(r2, t2), then (δ(r1, t1), δ(r2, t2)) ∈ Hnsu .

We say two systems are (h) nsu hp bisimilar iff there is a (h) nsu hp bisimulation

relating them.

Lemma A.0.2. Two systems with transitive independence relation are (h) hp

bisimilar iff they are (h) nsu hp bisimilar.
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Proof. With Lemma A.0.1 it is easy to check that every (h)hp bisimulation is also

a (h) nsu hp bisimulation.

For the non-trivial direction let Hnsu be a (h) nsu hp bisimulation. Define H

by unfolding self-loop matches inductively as follows:

Base Step H = Hnsu ,

Inductive Step Whenever rr′ ∈ H and t1, t2 is a pair of concurrently occurring

self-loops at r1, r2, s. t. (t1, t2) ∈ BEn(r) then r.t.r′ ∈ H.

It is easy to check that H is a (h)hp bisimulation.

We can restrict our attention to the special class of minimal (h) nsu hp bisim-

ulations, which strictly do not contain any unfoldings of concurrently occurring

self-loops.

Definition A.0.3. A (h) nsu hp bisimulation Hnsu is minimal iff

• Whenever r.t.r′ ∈ Hnsu and t1 is a concurrently occurring self-loop at r1,

then there exists no x2 such that (t1, x2) ∈ BEn(r).

• Vice versa.

Lemma A.0.3. Two systems are (h) nsu hp bisimilar iff there exists a minimal

(h) nsu hp bisimulation relating them.

Proof. We can simply ‘collapse’ any given (h) nsu hp bisimulation Hnsu to a

minimal one: erase all tuples that violate the above conditions fromHnsu . Clearly,

the result is still a (h) nsu hp bisimulation.

Minimal (h) nsu hp bisimulations between systems of our subclass look exactly

like (h)hp bisimulations of systems with transitive independence relation and no

self-loops. They meet all characterisics that made it possible to find a decision

procedure for the latter subclass. In particular, the number of joint transitions

which one can backtrack over is bounded by the size of the maximal independence

clique. So, we get the following result.

Lemma A.0.4. h nsu hp bisimilarity is decidable for finite-state systems with

transitive independence relation.

Proof. By Lemma A.0.3 it is sufficient to check whether there exists a minimal

h nsu hp bisimulation. But this is clearly decidable for our subclass. We only

need to adapt the steps of the proof of the decidability of (n)hhp bisimilarity to

show that the corresponding notion of (n)h nsu hp bisimilarity is decidable for

our subclass.
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With this and Lemma A.0.2 we immediately get decidability for the whole

class of finite-state systems with transitive independence relation.
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Appendix B

Relating to Chapter 4

B.1 Event Structures

In the following section we assume the standard definitions of (prime) event struc-

tures; they can, for example, be found in [Win89]. We also employ the following

straightforward facts:

Fact B.1.1 (basic facts about event structures). Let E be an event structure.

1. Let e ∈ E, σ ⊆ E with ∀ep ∈ σ. ep ≺ e.

x\(σ ∪ {e}) ∈ Confs(E).

2. Let ep1, e
p
2 ∈ E such that e

p
1 6= ep2.

(∃e ∈ E. ep1 ≺ e & ep2 ≺ e) =⇒ ep1 co e
p
2.

3. Let x ∈ Confs(E), e1, e2 ∈ E.

x[e1〉 & x[e2〉 =⇒ (e1 co e2) ∨ (e1 # e2).

B.2 Proof of Theorem 4.4.2.

It is clear that a given system S is SW-free iff unf (S) is SW-free, and thus

Theorem 4.4.2 will follow if we achieve:

Lemma B.2.1. An occurrence lats is SW-free iff it is cis-decomposable.

The ‘if’-direction is easy to prove: assume a system S such that there is a

SW situation at some reachable state s of S. Then, it is easy to check that S

cannot be decomposed into a set of IS components at s. Hence, S cannot be

cis-decomposable.
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To establish the ‘only if’-direction it is technically smoother to work with

event structures. We carry the definition of SW-free, IS, and cis-decomposable

over to event structures in the obvious way. Clearly, we have:

Fact B.2.1. Let U be an occurrence lats.

1. U is SW-free iff ev(U) is SW-free.

2. U is cis-decomposable iff ev(U) is cis-decomposable.

For any SW-free event structure E we exhibit a family of decompositions which

will demonstrate that E can be decomposed into IS components at any configu-

ration. We then conclude that any SW-free occurrence lats is cis-decomposable.

First of all, we establish some behavioural consequences of excluding SW

situations, which will come in useful later on.

Lemma B.2.2 (consequences of excluding SW situations). Let E be an

event structure.

1. If E is SW-1 free then for all e1, e2 ∈ E we have:

∃ej ∈ E. e1 < ej & e2 < ej =⇒ ¬(e1 co e2).

2. If E is SW-1 and SW-2 free then for all e1, e2 ∈ E we have:

∃ec1, e
c
2 ∈ E. e1 < ec1 & e2 ≤ ec2 & ec1 # ec2 =⇒ ¬(e1 co e2).

3. Let x ∈ Confs(E). If E is SW-3 free then # is transitive1 at x, that is for

all distinct events e1, e2, e3 ∈ E with x[e1〉, x[e2〉 & x[e3〉 we have:

e1#e2 & e2#e3 =⇒ e1#e3.

Proof. Let E be an event structure.

(1.) Assume e1, e2, ej ∈ E such that e1 < ej, e2 < ej, and e1 co e2. Consider

the set σ = {e ∈ E | e1 < e & e2 < e}. Since it at least contains ej the set σ is

non-empty, and hence, we can assume a minimal element e of σ. Let’s regard e’s

prime configuration x =↓e. Since e ∈ σ there must be ep1, e
p
2 ∈ x with e1 ≤ ep1 ≺ e,

and e2 ≤ ep2 ≺ e respectively. Now, consider x′ = x\{e}, and x′′ = x\{e, ep1, e
p
2}.

With Fact B.1.1(1) it is clear that x′ and x′′ are valid configurations such that

x′[e〉, x′′[ep1〉, and x′′[ep2〉. Further, by e1 co e2 and the minimality of e in σ, ep1

and ep2 must be distinct, and hence concurrent by Fact B.1.1(2). But then it is

1when regarding distinct events.
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easy to see that (x′′, ep1, e
p
2, e) is a SW-1 situation, and we have thereby proved

the property.

(2.) The proof is in principle similar to (1), but it requires a tedious case

analysis; it is therefore omitted.

(3.) Let x ∈ Confs(E), and let e1, e2, e3 ∈ E be distinct events with x[e1〉,

x[e2〉 & x[e3〉. Clearly, if e1 # e2, e2 # e3 & e1 co e3 then (x, e1, e3, e2) is a SW-3

situation. The property is then immediate with Fact B.1.1(3).

Now, we define:

Definition B.2.1 (icflE, compE, CompsE). Let E be a SW-free event structure,

x ∈ Confs(E), and e ∈ E with x[e〉.

The inclusive conflict set of e at x, denoted by icflE(x, e), is the set {e′ ∈

E | x[e′〉 & e # e′} ∪ {e}.

The component of x defined by e, denoted by compE(x, e), is the tuple (E ′,≤E

¹E′×E′ ,#E ¹E′×E′), where E ′ =
⋃

e′∈icflE(x,e)
↑e′.

The components of x are then defined by: CompsE(x) = {compE(x, e) | e ∈

E such that x[e〉}.

We claim that CompsE gives us a family of decompositions for each SW-free

event structure as we have promised to exhibit. To prove this claim we first

establish that compE satisfies the following essential properties:

Lemma B.2.3 (facts about compE). Let E be an SW-free event structure,

x ∈ Confs(E), and e ∈ E with x[e〉.

1. compE(x, e) is a sub-structure of (E, x).

2. compE(x, e) is IS.

3. Let e′ ∈ E with x[e′〉.

(a) e′ # e =⇒ compE(x, e
′) = compE(x, e).

(b) e′ co e =⇒ compE(x, e
′) co compE(x, e).

4. Let e′ ∈ compE(x, e).

(a) ↓compE(x,e) e
′ =↓(E,x) e

′.

(b) cfl compE(x,e)(e
′) = cfl (E,x)(e

′).

336



Proof. Let E, x, and e be given as above.

(1.) Obvious by definition.

(2.) This is straightforward to prove with Lemma B.2.2(3).

(3.) Let e′ ∈ E with x[e′〉.

(a) If e′ # e then by Lemma B.2.2(3) we have icflE(x, e
′) = icflE(x, e), and

thus clearly compE(x, e
′) = compE(x, e).

(b) Let e′ co e, and to the contrary assume there are e1 ∈ compE(x, e) and

e2 ∈ compE(x, e
′) such that ¬(e1 co e2). This means we either have (1) e1 = e2,

(2) e1 < e2, (3) e1 > e2, or (4) e1 # e2. We show that all of these cases lead

to a contradiction with SW-freeness, and thereby establish the property. By

definition of compE there must be ei1, e
i
2 ∈ E such that ei1 ∈ icflE(x, e) & ei1 ≤ e1,

and ei2 ∈ icflE(x, e
′) & ei2 ≤ e2 respectively. Note that with Lemma B.2.2(3) and

Fact B.1.1(3) we obtain ei1 co e
i
2; in the following we refer to this fact by (A).

Suppose (1) e1 = e2; use e1. Because of (A) we have ei1 6= e1, e
i
2 6= e1, and

hence ei1 < e1, e
i
2 < e1. But by Lemma B.2.2(1) and (A) this certainly is a

contradiction to SW-freeness.

Let’s try (2) e1 < e2. Firstly, this assumption immediately gives us ei1 < e2.

With (A) we further obtain e2 6= ei2, and hence ei2 < e2. But then again by

Lemma B.2.2(1) and (A) we have reached a contradiction to SW-freeness.

Case (3) can be disproved by the symmetric argument.

Finally, assume (4) e1 # e2. By (A) we obtain that at least one of the two

statements must hold: ei1 6= e1 or ei2 6= e2. W.l.o.g. assume the first, and with it

ei1 < e1. Then by Lemma B.2.2(2) we have clearly a contradiction to SW-freeness

since altogether: ei1 < e1, e
i
2 ≤ e2, e1 # e2, but e

i
1 co e

i
2.

(4.) Let e′ ∈ compE(x, e), and to abbreviate set c = compE(x, e), and Ex =

(E, x).

(a) By definition of c, (↓c e
′) ⊆ (↓Ex e

′) is clearly given, and (↓c e
′) ⊇ (↓Ex e

′)

follows from (↓Ex e
′) ⊆ c.

To prove the latter assume e∗ ∈ Ex with e∗ ≤ e′ but e∗ 6∈ c; we will see that

this assumption leads to a contradiction. Since e′ ∈ c, we clearly have e∗ < e′.

Then e′ is not minimal in Ex, and by definition of compE we further obtain e′i ∈ c

such that e′i is minimal in Ex, and ei < e′. On the other hand, we can also

assume e∗i ∈ Ex such that e∗i is minimal in Ex and e∗i ≤ e∗. By e∗ 6∈ c we must

also have e∗i 6∈ c. Then we have ¬(e∗i # e′i), and by Fact B.1.1(3) e′i co e
∗
i . But

with Lemma B.2.2(1) we have now arrived at a contradiction with SW-freeness.

(b) By definition of c, cfl c(e
′) ⊆ cflEx(e

′) is obvious, and for cfl c(e
′) ⊇ cflEx(e

′)

it is sufficient to prove cflEx(e
′) ⊆ c.
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To the contrary assume e∗ ∈ Ex with e∗ # e′ but e∗ 6∈ c. Clearly, there must

be e′i, e
∗
i ∈ Ex such that e′i, e

∗
i are minimal in Ex, and e′i ≤ e′, e∗i ≤ e∗. Because

e∗ 6∈ c, we also have e∗i 6∈ c, and further ¬(e∗i # e′i). Then, by Fact B.1.1(3)

we obtain e′i co e∗i . With Lemma B.2.2(3) this in turn means we have e′i 6= e′

or e∗i 6= e∗. But note that in either case by Lemma B.2.2(2) we have reached a

contradiction to SW-freeness.

Now, it is not difficult to obtain:

Lemma B.2.4 (crucial fact about CompsE). Let E be an SW-free event struc-

ture, and let x ∈ Confs(E). Then CompsE(x) is a decomposition of (E, x) into

IS systems.

Proof. Suppose E and x are given as above, and set D = CompsE(x). We need

to show: (a) for all c ∈ D c is an IS sub-structure of (E, x), (b) for all c, c′ ∈ D

c 6= c′ ⇒ c co c′, and (c) Confs(E, x) = {
⋃

c∈D xc | ∀c ∈ D. xc ∈ Confs(c)}.

(a) is obvious with Lemma B.2.3(1) and (2); (b) follows from Fact B.1.1(3)

and Lemma B.2.3(3a,b). To establish (c) we have to prove that for all x′ ⊆ (E, x):

x′ ∈ Confs(E, x) iff there is a family {xc}c∈D such that ∀c ∈ D. xc ∈ Confs(c)

and x′ =
⋃

c∈D xc. This can be done by induction on the size of x′ with the help

of Lemma B.2.3(4a,b).

It is clear that together with Fact B.2.1, Lemma B.2.4 immediately proves

Lemma B.2.1, and hence Theorem 4.4.2.
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Appendix C

Relating to Chapter 6

C.1 Some Intuition

A Decomposition View for Live fc Systems. The crucial feature of free

choice systems is that conflict and synchronization are both allowed but separated

out from each other: conflict is only permitted in the ‘S-system way’, and synchro-

nization only in the ‘T-system way’ (cf. Figure 6.3). As a result, the unfolding of

a free choice system has good decomposition properties: it can be understood as

an interconnection of initially sequential components. In the following, we derive

and elaborate this view slightly more specialized as a decomposition aspect of live

fc systems, our class of focus in this chapter. Naturally, we work in the context

of a live fc system N .

The Structure of States. Assume M ∈ Reach(N ), and let APlaces(M) be the

places that are active at M in that they take part in enabling a transition at M

(formally: APlaces(M) = {•t | t ∈ TN with M [t〉}). Due to the fc restriction,

APlaces(M) can uniquely be partitioned into blocks such that the places of a

block have identical sets of output transitions, say Tout , and together they enable

all the transitions of Tout . In more detail, we have: either (1) a block contains

exactly one place which enables a non-empty set of transitions in the S-system

way, or (2) a block consists of several places which together enable exactly one

transition in the T-system way. Accordingly, we classify the blocks into switch

blocks and synch blocks ; the default case (one place enables one transition) is set

to type switch. The places of M not contained in APlaces(M) are synch places

that are waiting for their synch partners to get ready (formally: p ∈M such that

∃p′ ∈ •(p•). p′ 6∈M); we will refer to them as pending synch places. In summary,

we have:

Each state of a live fc system can uniquely be structured into a set of

blocks, which classify into type switch and synch, and a set of pending
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synch places.

Units. The blocks of M give rise to special components of N : each block b

defines a unit (N, b), which according to the type of b can be classified as either a

switch or a synch unit. Four things are important about the behaviour of units:

(1) The units ofM compute independently of each other. (2) Each unit is initially

sequential. (3) Each unit is capable of external synchronization at and only at its

behavioural end points. (4) In the unfolding of each unit, the place occurrences

that can act as end points are related by a typical pattern of concurrency and

conflict.

Global Behaviour. The behaviour of N can then be described as follows:

the system starts out as the parallel composition of the initially sequential units

induced by M0. Due to the units’ capability of external synchronization the

behaviour can go beyond this initial stage: if a unit has reached a local end

point then together with end points of other units and/or initially pending synch

places it may be able to form a new unit, say U , of type synch. U will be causally

related to its ‘parent units’ and concurrent to the remaining ones. It in turn may

create further units by synchronizing with existing units and/or initially pending

synch places. The synchronization partners of U can be of any ‘level of creation’,

and may even include U ’s parent units, which could have several concurrent end

points. The behaviour of N further evolves in this fashion. Accordingly, the

unfolding of N can be seen as a complex interconnection of unfoldings of initially

sequential units, where the interconnection consists of causality, concurrency, and

conflict; the conflict relation will be induced by the conflict relation that connects

the end points of each unit.

A Hierarchy of Units. The same view carries on within each unit in a hier-

archical fashion: by executing a transition the unit will evolve into a new local

state, which gives rise to a set of independently computing sub-units and a set of

locally pending synch places. The sub-units have corresponding synchronization

capability, which can now occur at the different levels of the hierarchy: let U be

a unit, and Us be a sub-unit of U ; at the level of U an end point of Us is either

an end point as well, or an internal synchronization place.

Conclusion. Altogether, this gives us our decomposition view for live fc sys-

tems (short: DV-lfcs):

The unfolding of a live fc system can be understood as a complex

ccc-interconnection of unfoldings of initially sequential units, and the

same view applies within each unit in a hierarchical way.
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(We use ‘ccc-interconnection’ short for ‘interconnection which consists

of causality, concurrency, and conflict’.)

General Idea. As already mentioned, fc systems generalize comm-free sys-

tems by admitting synchronization in the T-system way. Accordingly, we can

understand DV-lfcs as a generalization of our decomposition view for comm-free

systems, which can be formulated as follows: each comm-free system is a parallel

composition of initially sequential units, and the same view applies within each

unit in a hierarchical way (cf. Section 4.4 and 5.3). DV-lfcs adds synchroniza-

tion capability to this view: now units can jointly evolve into new units at their

behavioural end points.

This analogy immediately suggests a general way of tackling the coincidence

problem for live fc systems: we obtained our coincidence results for comm-free

systems (in the disguise of SW-free systems and SBPP; cf. Section 4.4 and 5.3)

with the help of the key insight that their decomposition properties translate into

corresponding composition and decomposition results for hp and hhp bisimilarity.

We could now try to prove that hp and hhp bisimilarity coincide for live fc systems

by showing that DV-lfcs translates into hhp and hp bisimilarity in an analogous

way.

Informally, DV-lfcs can be translated into a composition and decomposition

property for notions of bisimilarity as follows:

Definition C.1.1 (informal). Let x be a notion of bisimilarity.

Let N1 and N2 be two live fc systems. We say W is a x DV-lfcs match for N1

and N2 iff W is a ccc-interconnection of x bisimulations such that

1. each x bisimulation of W relates a unit of N1 with a unit of N2, and

2. for i = 1, 2, the projection of W onto Ni is ‘isomorphic up to conflict’ to

the unfolding of Nī.

We say x bisimilarity is DV-lfcs composable iff for any two live fc systems N1 and

N2 we have: if there exists a x DV-lfcs match for N1 and N2 then N1 and N2 are

x bisimilar.

We say x bisimilarity is DV-lfcs decomposable iff for any two live fc systems N1

and N2 we have: if N1 and N2 are x bisimilar then there exists a x DV-lfcs match

for N1 and N2.

If we achieve
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1. hhp bisimilarity is DV-lfcs composable, and

2. hp bisimilarity is DV-lfcs decomposable,

then it should be possible to prove coincidence for live fc systems analogously

to our coincidence proof for SW-free systems (cf. Section 4.4.3): let N1 ∼hp

N2; roughly speaking we can obtain N1 ∼hhp N2 in the following three steps:

(a) By (2) we can assume a hp DV-lfcs match for N1 and N2, say W . (b) By

induction on the smallest upper bound on the number of transitions that can be

executed concurrently we can transform each hp bisimulation of W into an hhp

bisimulation, and thereby obtain an hhp DV-lfcs match. (c) By (1) we can then

indeed conclude N1 ∼hhp N2.

We expect that (1) can be proved without any difficulty; it is very intuitive

that hhp (and also hp) bisimilarity is DV-lfcs composable. The real challenge lies

in showing that hp bisimilarity is DV-lfcs decomposable. This is far from obvious,

and the degree of difficulty involved is considerable: a ccc-interconnection can be a

very complicated structure (as opposed to a parallel composition as for comm-free

systems!). Therefore, we cannot hope to solve the problem in one go, but we will

present an approach that divides it up into several subproblems. Our approach

will have the merit that decidablity of (c)hhp bisimilarity can be achieved as a

partial result.
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C.2 Diamond Interrelations

A trace alphabet is a pair (Σ, I), where the alphabet Σ is a finite set, and I ⊆ Σ×Σ

is an irreflexive and symmetric independence relation. Let t, t′ range over Σ. Let

Σ∗ be the set of finite words over Σ, and let r, r′, w, v range over Σ∗. The

independence relation I induces a relation ∼I ⊆ Σ∗ × Σ∗ defined by r ∼I r
′ iff

r ↑ {t, t′} = r′ ↑ {t, t′} for all t, t′ ∈ Σ such that ¬(t I t′). Clearly, ∼I is an

equivalence relation.

We define the following properties:

Definition C.2.1 (properties). Let (Σ, I) be a trace alphabet. A language

H ⊆ Σ∗ can satisfy the following properties w.r.t. I:

1. 1-backtrack (short: 1-bt): rtt′ ∈ H & t I t′ =⇒ rt′ ∈ H.

2. backtrack (short: bt): rtw ∈ H & t I w =⇒ rw ∈ H.

3. 1-coherent (short: 1-coh): rt ∈ H & rt′ ∈ H & t I t′ =⇒ rtt′ ∈ H.

4. (wt)-coherent (short: (wt)-coh):

rw ∈ H & rt ∈ H & t I w =⇒ rwt ∈ H.

5. (tw)-coherent (short: (tw)-coh):

rw ∈ H & rt ∈ H & t I w =⇒ rtw ∈ H.

6. continuation (short: cont): r, rw, r′ ∈ H & r ∼I r
′ =⇒ r′w ∈ H.

7. (tw, w)-closure (short: (tw, w)-cl):

rtw ∈ H & rw ∈ H & t I w =⇒ rwt ∈ H.

8. (tw, w)-closure continuation (short: (tw, w)-clcont):

rtwv ∈ H & rw ∈ H & t I w =⇒ rwtv ∈ H.

Let X range over the set of properties {1-bt,bt,1-coh, (wt)-coh, (tw)-coh,

cont, (tw, w)-cl, (tw, w)-clcont}. We write H |=I X to denote that H satisfies

property X w.r.t. I. To express that H satisfies several properties we allow a list

of properties behind the ‘|=I ’.

We first state some obvious interrelations:

Proposition C.2.1 (obvious interrelations). Let (Σ, I) be a trace alphabet,

and let H ⊆ Σ∗ be a prefix-closed language over Σ. We obviously have:

1. H |=I bt =⇒ H |=I 1-bt,
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2. H |=I (wt)-coh =⇒ H |=I 1-coh,

3. H |=I (tw)-coh =⇒ H |=I 1-coh, and

4. H |=I (tw, w)-clcont =⇒ H |=I (tw, w)-cl.

For prefix-closed languages there are the following connections:

Proposition C.2.2 (interrelations between the properties). Let (Σ, I) be

a trace alphabet, and let H ⊆ Σ∗ be a prefix-closed language over Σ. Then the

following holds:

1. H |=I 1-coh ⇐⇒ H |=I (wt)-coh,

2. H |=I 1-coh & cont =⇒ H |=I (tw)-coh,

3. H |=I 1-coh,1-bt & cont =⇒ H |=I bt, and

4. H |=I 1-bt & (tw, w)-clcont =⇒ H |=I bt.

Proof. (1.) The ‘⇐’-direction is immediate. For the ‘⇒’ direction we presuppose

H |=I 1-coh, and let rw, rt ∈ H with t I w. We show rwt ∈ H by induction on

the length of w.

If w ≡ ε there is nothing to prove: rt ∈ H by assumption. We move on to the

inductive case and assume w ≡ vt′. By prefix-closure of H we then have rv ∈ H;

together with the induction hypothesis, rt ∈ H, and t I v this gives us rvt ∈ H.

Now, with rvt′, rvt ∈ H and t′ I t we can apply the 1-coh-property, and thereby

obtain rvt′t ∈ H as required.

(2.) We assume the 1-coh- and the cont-property for H, and let rw, rt ∈ H

with t I w. Again we will proceed by induction on the length of w; this time to

establish rtw ∈ H.

As before, in the case w ≡ ε, rtw ≡ rt ∈ H is given by assumption.

For the inductive case let w ≡ vt′. By prefix-closure of H we know that

rv ∈ H. rv ∈ H together with rt ∈ H and t I v gives us rvt ∈ H by the

(wt)-coh-property. We are allowed to employ the (wt)-coh-property, because

as we know from (1.) it follows from the 1-coh-property. With rvt, rvt′ ∈ H and

t I t′ we then apply the 1-coh-property to obtain rvtt′ ∈ H.

On the other hand from rv ∈ H, rt ∈ H, and t I v we deduce rtv ∈ H by

induction hypothesis. Now, together with rvt, rvtt′ ∈ H this makes a case for

the cont-property, since clearly rvt ∼I rtv. But this gives us rtvt
′ ∈ H, which is

exactly what we have set out to prove.
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(3.) Presuppose H |=I 1-coh,1-bt & cont, and let rtw ∈ H with t I w. We

prove rw ∈ H by induction on the length of w. If w ≡ ε, then rw ≡ r ∈ H follows

from H being prefix-closed.

To tackle the inductive case we assume w ≡ vt′. By prefix-closure of H we

have rtv ∈ H and also rt ∈ H. From rtv ∈ H and t I v together with the

induction hypothesis we obtain rv ∈ H. This, rt ∈ H, and t I v in turn give us

rvt ∈ H by the 1-coh-property and clause (1.) of the proposition.

We have rtv, rtvt′, rvt ∈ H, and clearly rvt ∼I rtv; so by the cont-property

we know that rvtt′ ∈ H. But now we can apply the 1-bt-property, and easily

obtain rvt′ ∈ H.

(4.) To prove the last clause we assume that the 1-bt- and the (tw, w)-clcont-

property hold for H, and let rtw ∈ H with t I w. We show rw ∈ H by induction

on the length of w.

Case w ≡ ε: We need to prove r ∈ H. But this is clearly given because

rtw ∈ H and H is prefix-closed.

Case w ≡ vt′: By prefix-closure of H and rtvt′ ∈ H we have rtv ∈ H. With

the induction hypothesis we further obtain rv ∈ H. rtvt′, rv ∈ H, t I v and

the (tw, w)-clcont-property then give us rvtt′ ∈ H. Now we can apply the

1-bt-property and obtain rvt′ ∈ H as required.

We now apply our knowledge about diamond relations to (h)hp bisimilarity.

Given two systems S1 and S2, we can regard (h)hp bisimulations as languages

over the trace alphabet (Σ, I) := (TS1 × TS2 , I(S1,S2)). First of all, we have that

cont and (tw, w)-clcont hold for ∼hp and ∼′hp, where the latter denotes the

largest prefix-closed hp bisimulation.

Proposition C.2.3. We have:

1. (a) ∼hp|=I cont, and (b) ∼
′
hp|=I cont.

2. (a) ∼hp|=I (tw, w)-clcont, and (b) ∼
′
hp|=I (tw, w)-clcont.

Proof. (1.(a)) Define a relation R inductively by:

base case. R = ∼hp,

inductive case. if r, rw, r′ ∈ R & r ∼I r
′ then r′w ∈ R.

It is easy to check that R is a hp bisimulation. Since ∼hp is the largest hp

bisimulation and ∼hp ⊆ R by definition of R we clearly have R = ∼hp. R

obviously satisfies the cont-property, and so does ∼hp.
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(1.(b)) follows by a similar argument, when we base R on ∼′hp instead of ∼hp.

(2.(a)+(b)) We proceed similar as in (1.) and define a relation R that obvi-

ously satisfies the (tw, w)-clcont-property. This R will also be a hp bisimulation

and so we can argue as above.

We now exploit the interrelations to show that the 1-coh- and the (tw)-coh-

property coincide for ∼′hp, and similarly that the 1-bt- and bt-property coincide.

Proposition C.2.4.

1. ∼′hp|=I 1-coh ⇐⇒ ∼
′
hp|=I (tw)-coh.

2. ∼′hp|=I 1-bt ⇐⇒ ∼
′
hp|=I bt.

Proof. (1.) The ‘⇐’-direction is obvious. On the other hand, the ‘⇒’-direction

follows from Prop. C.2.2(2.) since we know from above that ∼′hp satisfies the

cont-property.

(2.) Again the ‘⇐’-direction is obvious, and the ‘⇒’-direction follows from a

connection between the language properties: ∼′hp satisfies the (tw, w)-clcont-

property, and so Prop. C.2.2(4.) applies.

Note how this can help us to establish coincidence of hp and hhp bisimilarity

for a system class (recalling that we can restrict our attention to prefix-closed

hp bisimulations). If we can show that the 1-bt-property holds for ∼′hp then

coincidence follows immediately, and similarly for 1-coh.

Corollary C.2.1.

1. ∼′hp|=I 1-bt =⇒ ∼′hp = ∼hhp, and

2. ∼′hp|=I 1-bt & 1-coh =⇒ ∼′hp = ∼chhp.

Proof. (1.) If ∼′hp satisfies 1-bt, and thus bt, then ∼′hp is a hhp bisimulation,

and we have ∼′hp⊆ ∼hhp. Of course we also have ∼hhp⊆ ∼
′
hp, and so ∼′hp=∼hhp.

(2.) follows from a similar argument.
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C.3 Appendix to Section 6.6

Proof of Prop. 6.6.7. Assume entities as specified above. Either we have: (a)

p′ ∈ M or (b) p′ 6∈ M . If (b) holds then we have K ′(p) ≺M K, and so clearly

K ∈ frozen(M, C).

If (a) holds then consider the following: K ′ ∈ frozen(M, C) means there must

be K ′′ ∈ Cover , p′′ ∈ PK′′ such that (W) K ′′(p′′) ≺M K ′ and either we have

K ′′ ∈ K & 6 ∃t ∈ γCK′′ . p ∈ t•, or K ′′ ∈ frozen(M, C). Note that to show K ∈

frozen(M, C) we only need K ′′(p′′) ≺M K, and this in turn will follow from p′′ ∈

SPartners(M(K)). This is clearly the case with the following three facts: (1) p′′ ∈

SPartners(p′) by (W), (2) p′′ 6= p by p ∈M and p′′ 6∈M (follows from (W)), and

(3) SPartners(M(K))\p′ = SPartners(p′)\M(K) by p′ ∈ SPartners(M(K))

347



C.4 Appendix to Section 6.14

C.4.1 Relating to Section 6.14.2

First, we formally define syass(r), and verify that it behaves as expected.

Definition C.4.1. For all r ∈ ∼hp we inductively define a map syass to obtain

a match between synchP(r1) and synchP(r2):

syass(ε) = ∅,
syass(r.t) = syass(r)\βsypre ∪ β

sy
post ,

where

βsypre =

{

∅ if t is of type switch,
{(p1, p2) ∈ syass(r) | pi ∈

•ti for i = 1, or 2} if t is of type synch,
and

βsypost =

{

∅ if t is of type A,
{(t1

◦, t2
◦)} if t is of type B.

Proposition C.4.1. Let r ∈ ∼hp.

1. syass(r) is a bijection between synchP(r1) and synchP(r2).

2. ∀p1 ∈ synchP(r1). syass(r)(p1) = (te2)
◦, where e = gen(r1, p1).

3. Let γ be such that (r, γ) ∈ ∼bp, and b1 ∈ blocks(r1), b2 ∈ blocks(r2) such

that b1 or b2 is of type synch.

γ(b1) = b2 =⇒ syass(b1) = b2.

4. Let t ∈ JT such that t1 or t2 is of type synch.

r
t
→ =⇒ syass(r)(•t1) =

•t2.

Proof. Let r ∈ ∼hp. We prove the four clauses by induction on the length of r ‘in

one go’.

Base case r ≡ ε: (1)-(4) are immediate when considering that by definition

of the buffered restriction we have synchP(M0) = ∅.

Inductive case r ≡ r′.tn: (1) easily follows by induction hypothesis of (1) and

the following considerations. With the induction hypothesis of (4) it is easy to

see that the pairs of places deleted from the assignment exactly correspond to

the synch places consumed by tn. Furthermore, the pairs of places added to the

assignment exactly cover the synch places produced by tn, and by safeness it is

clear that the assignment stays a bijection.
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(2) Assume p1 ∈ synchP(r1), and set e = gen(r1, p1). If e < |r.tn| then (2)

easily follows with the induction hypothesis of (2). If, on the other hand, e = |r.tn|

then tn must be of type B (Prop. 6.14.1(1)), and it can directly be read from the

definition that syass(r)(p1) = (te2)
◦ as required.

(3) is a consequence of (2) and Prop. 6.14.4(2), and (4) follows from (2) and

Prop. 6.14.4(1b).

We are now ready to define our map jproc, and prove that it provides a

translation as required to transform any bp bisimulation into a cp bisimulation:

Definition C.4.2. For all ρ ≡ (r, γ) ∈ ∼bp we define a map jproc to translate ρ

into a corresponding joint process:

jproc(ρ) = {(p1, p2) | ({p1}, {p2}) ∈ γ} ∪ syass(r).

Proposition C.4.2. Let ρ ≡ (r, γ) ∈ ∼bp.

1. jproc(ρ) ∈ JProc.

2. (a) For all b1 ∈ blocks(r1), b2 ∈ blocks(r2) we have:

γ(b1) = b2 =⇒ jproc(ρ)(b1) = b2.

(b) For all t ∈ JT, ρ′ ∈ BP we have:

ρ
t
→bp ρ

′ & ρ′ ∈ ∼bp =⇒ jproc(ρ)
t
→cp jproc(ρ

′).

Proof. Let ρ ≡ (r, γ) ∈ ∼bp.

(1) By Prop. C.4.1(1) the second component of jproc(ρ) gives a bijection for

places of type synch. On the other hand, the first component of jproc(ρ) provides

a bijection for places of type switch: each switch place is represented by exactly

one switch block, where switch blocks are exactly the blocks of cardinality one;

furthermore, by Prop. 6.14.3(3) γ matches switch blocks against switch blocks.

(2a) Assume b1 ∈ blocks(r1), b2 ∈ blocks(r2) such that γ(b1) = b2. Bearing in

mind the argumentation of (1) we obtain: if b1 is of type switch jproc(ρ)(b1) = b2

follows directly from the definition; if b1 is of type synch then this is immediate

with Prop. C.4.1(3).

(2b) easily follows with (2a) and the definition of syass(r.t). (cf. the definition

of →bp in Def. 6.14.2 and →cp in Def. 6.4.2).

Now, it is straightforward to prove Lemma 6.14.1:

Proof of Lemma 6.14.1. Let ρ ∈ ∼bp, and assume a bp bisimulation B such that

ρ ∈ B. With Prop C.4.2(1) and (2b) it is easy to check that jproc(B) is a cp

bisimulation. Since obviously jproc(ρ) ∈ jproc(B), this implies jproc(ρ) ∈ ∼cp.
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C.4.2 Relating to Section 6.14.3

Part (1).

Proof of Prop. 6.14.7. Let t be given as above. If t = init then we can assume r′′

such that r′′ ∈ ∼hp, and otherwise we have r′, r′′ such that r′.t.r′′ ∈ ∼hp. In the

first case set r = ε, and otherwise set r = r′.t. By prefix-closure of ∼hp it is clear

that r ∈ ∼hp.

Consider the following two statements:

1. |t1
•| = |t2

•|.

2. ∀p1 ∈ t1
•. ∃! p2 ∈ t2

•. (p1, p2) satisfies the two conditions of (∗).

With (1) and (2) it is straightforward to exhibit βpost as required: (2) estab-

lishes that there exists exactly one function leading from t1
• to t2

• such that (∗)

is satisfied. Moreover, when considering that N1 is spsd, it is easy to verify that

this function must be injective. With (1) it is then clear that the unique function

is indeed a unique bijection. We shall now prove that the statements (1) and (2)

do hold.

(1.) Choose a set T1 ⊆ (t1
•)• such that ∀p1 ∈ t1

•. ∃!tx1 ∈ T1 .
◦tx1 = p1; this

is possible due to Fact 6.2.2. Clearly, we have (A) |T1| = |t1
•|. Let w1 be a

linearization of the transitions in T1. It is easy to see that w1 is a concurrent step

at r1. Then, since r ∈ ∼hp there must be a match for w1 at r; that is we have

w such that r.w ∈ ∼hp and proj 1(w) = w1. Set T2 = set(proj 2(w)). Clearly, we

have (B) |T2| = |T1|. Furthermore, we can apply the following two insights to

obtain more information about T2: (1) from Prop. 6.14.5 we can derive that w1

must be matched against transitions of (t2
•)•; (2) by Prop. 4.3.2(1) concurrent

steps have to be matched against concurrent steps. (1) entails T2 ⊆ (t2
•)•, which

includes that each tx2 ∈ T2 must be of type switch; (2) implies ∀ta2, t
b
2 ∈ T2. t

a
2 6=

tb2 =⇒ •(ta2) ∩
•(tb2) = ∅. Together this means the preplace function gives an

injective match from T2 to t2
•; we have: (C) |•T2| = |T2|, and (?) •T2 ⊆ t2

•. On

the other hand, we can infer (‡) t2
• ⊆ •T2 because otherwise we could exhibit a

transition tx2 ∈ t2
• that is enabled at r2.w2 but cannot be matched at r.w by N1:

by Prop. 6.14.5 any tx2 ∈ t2
• has to be matched against a transition of (t1

•)•, but

by choice of T1 no such transition is available at r.w. Clearly, from (?) and (‡) we

obtain (D) |•T2| = |t2
•|. But altogether (A)-(D) proves |t2

•| = |t1
•| as required.

(2.) Let p1 ∈ t1
•. With the help of (1) we shall exhibit p2 as required. Choose

a set T1 ⊆ (t1
•\{p1})

• such that ∀p′1 ∈ (t1
•\{p1}). ∃!t

x
1 ∈ T1 .

◦tx1 = p′1; again

this is possible due to Fact 6.2.2. Clearly, we have (A) |T1| = |t1
•| − 1. Let
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w1 be a linearization of T1. Again, w1 constitutes a concurrent step at r1, and

consequently there must be a match for w1 at r in ∼hp; that is there must be w

such that r.w ∈ ∼hp and proj 1(w) = w1. Set T2 = set(proj 2(w)). Clearly, we have

(B) |T1| = |T2|. By similar argumentation as above we further obtain (C) |•T2| =

|T2|, and (?) •T2 ⊆ t2
•. From (1), (A), (B), and (C) we infer |•T2| = |t2

•| − 1.

Considering (?) we then set p2 such that t2
• = •T2 ∪ {p2}; we will show that p2

provides a place as required.

Consider the transitions of p1
•, and p2

• respectively. It is easy to see that

each of them will be enabled at r.w, and consequently each of them will have a

match at r.w in ∼hp. Since p1 is the only remaining postplace of t1 at r.w and

the analogue is valid for p2, with Prop. 6.14.5 it is clear that a transition of p1
•

must be matched by a transition of p2
•, and vice versa. But then, since matching

is label-preserving, it is immediate that the pair (p1, p2) indeed satisfies the two

conditions of (∗). Thus, it only remains to prove that p2 is unique. But this

immediately follows when considering that N2 is spsd.

Part (2). We proceed analogously to Appendix C.4.1.

Definition C.4.3. For all r ∈ ∼hp we inductively define a map swass to obtain

a match between switchP(r1) and switchP(r2):

swass(ε) = psd(init),
swass(r.t) = swass(r)\βswpre ∪ β

sw
post ,

where

βswpre =

{

{(p1, p2) ∈ swass(r) | pi ∈
•ti for i = 1, or 2} if t is of type switch,

∅ if t is of type synch,
and

βswpost =

{

psd(t) if t is of type A,
∅ if t is of type B.

Proposition C.4.3. Let r ∈ ∼hp.

1. swass(r) is a bijection between switchP(r1) and switchP(r2).

2. ∀p1 ∈ switchP(r1). swass(r)(p1) = psd(t
e)(p1), where e = gen(r1, p1).

3. Let t ∈ JT such that ti is of type switch for i = 1, or 2.

r
t
→ =⇒ swass(r)(•t1) =

•t2.

Proof. Let r ∈ ∼hp. We prove the three clauses by induction on the length of r

‘in one go’.
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Base case r ≡ ε: we have swass(r) = psd(init). (1) is trivial since by defini-

tion psd(init) is a bijection between M 1
0 = switchP 1(ε) and M 2

0 = switchP 2(ε).

To see (2) consider that by definition we have: ∀p1 ∈M
1
0 . gen(ε, p1) = init , and

tinit = init . (3) follows from the same facts and Prop. 6.14.9 when considering

that •t1 ⊆M1
0 .

Inductive case r ≡ r′.tn: By prefix-closure of ∼hp we have r′ ∈ ∼hp; hence,

by induction hypothesis we obtain that the clauses (1) to (3) hold for r′. (1) is

similar to the corresponding part in the proof of Prop. C.4.1; e.g. one employs

the induction hypothesis of (3). In addition, here we consider that if tn is of type

A then psd(tn) will be defined and provide a bijection between (tn1 )
• and (tn2 )

•.

(2): again, this is analogous to Prop. C.4.1. Finally, (3) follows from (2) and

Prop. 6.14.9.

Definition C.4.4. For all r ∈ ∼hp we define a map jproc to translate r into a

corresponding joint process: jproc(r) = swass(r) ∪ syass(r).

Proposition C.4.4. Let r ∈ ∼hp.

1. jproc(r) ∈ JProc.

2. For all t ∈ JT we have:

(a) r
t
→ =⇒ jproc(r)(•t1) =

•t2.

(b) r
t
→ r.t & r.t ∈ ∼hp =⇒ jproc(r)

t
→cp jproc(r.t).

Proof. (1) follows from Prop. C.4.1(1) and Prop. C.4.3(1). In turn, (2a) is a

consequence of Prop. C.4.1(4) and Prop. C.4.3(3). Finally, (2b) is immediate

with (2a) and the definition of swass(r.t) and syass(r.t) (cf. the definition of →cp

in Def. 6.4.2).

Proof of Lemma 6.14.2. Analogously to Lemma 6.14.1 this is straightforward with

Prop. C.4.4.
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