
Coalgebraic Modelling of Timed Processes

Marco Kick
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2003

Abstract

This thesis presents an abstract mathematical account of timed processes and their

operational semantics, where time is modelled by a special kind of monoids, so-called

time domains, and (the operational behaviour of) timed processes is represented by

special labelled transition systems, so-called timed transition systems (TTSs), together

with time bisimulation as an appropriate notion of equivalence of such processes.

The importance of monoid-related notions for describing timed phenomena is then

illustrated by showing that TTSs are the same as the (partial) actions of the monoid of

time; moreover, total monoid actions are also shown to arise naturally in this approach

in the form of delay operators. The two kinds of monoid actions are suitably combined

in a new notion of biaction which captures the interplay of two very important features

of timed processes: letting time pass and delaying.

The TTSs are then characterised as coalgebras of a novel evolution comonad,

which is inspired by well-known categorical descriptions of total monoid actions; in

doing so, a coalgebraic description of time bisimulation is also provided. Additionally,

biactions are characterised as bialgebras of a distributive law of a monad (for total

monoid actions) over a comonad (the evolution comonad for partial monoid actions).

Building on these results, it is possible to obtain an abstract categorical treatment

of operational rules for timed processes. The approach taken here is based on the

framework by Turi and Plotkin [TP97], using distributive laws and bialgebras (similar

to the treatment of biactions), and which, subsequently, is extended to accommodate

behaviour comonads, as required for the coalgebraic description of TTSs.

These abstract rules then form the basis for the development of several new syn-

tactic rule formats for timed processes which describe classes of particularly ‘well-

behaved’ languages for specifying timed processes.

iii

Acknowledgements

It is hard to express my enormous gratitude towards my two supervisors, Gordon

Plotkin and Daniele Turi: the combination of Gordon’s vast experience and (some-

times almost frightening) quickness in recognising the right mathematical structures

(often while—or despite?—discussing some half-baked ideas of mine with him), and

Daniele’s enthusiam, immediacy and patience, together with their shared appreciation

of beautiful and elegant mathematical solutions (not to speak of Gordon’s generosity

in financial matters!), provided me with an almost ideal working environment; I hope

that I have not failed completely to meet their expectations.

I would also like to thank John Power for many valuable suggestions and discus-

sions, in particular for his help with the material on heterogeneous timed processes in

Chapter 7, effectively taking on the job of third supervisor during the last stages of

writing up; I would also like to acknowledge helpful discussions with Alexander Kurz

and Alex Simpson; further thanks go to Terry Stroup for his help with the application

for the PhD place.

I am also grateful to Margaret Davis, Dyane Goodchild, Monika Lekuse, and Bill

Orrok for efficiently handling administrative tasks, and to EPSRC for financial support

under grant GR/M56333.

Furthermore, I would like to thank the following people for their friendship and/or

making Edinburgh a great place to stay: Tom Chotia, Markus Frick, Carsten Führmann,

Martin and Berit Grohe, Jan Jürjens, Martin and Becky Lange, Bruce McAdam, Conor

McBride, and those I forgot to mention.

Last, but certainly not least, I would like to thank my parents, my brother, and my

girlfriend Andrea for their continuing support, who helped me through the sometimes

difficult period of more than three years in a foreign country, where people think that

having two water taps is an act of genius—which it definitely is not!

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Preliminary versions of (parts of) chapters 3–6 have appeared in the papers [Kic02a,

Kic02b].

(Marco Kick)

vii

Table of Contents

1 Introduction 1

1.1 Distributed Real-Time Systems . 2

1.2 Semantics of Programming Languages 4

1.2.1 Operational Semantics . 4

1.2.2 Denotational Semantics . 5

1.2.3 Adequacy Results . 7

1.3 Aspects of Categorical Methods in Semantics 8

1.3.1 Initial Algebra Semantics . 8

1.3.2 Final Coalgebra Semantics 9

1.4 Challenges . 10

1.5 Our Approach . 11

1.6 Contributions . 13

1.7 Layout of this Thesis . 13

2 Background 17

2.1 General Preliminaries . 17

2.2 Transition Systems, Bisimulation, and Operational Semantics 18

2.3 Timed Process Algebras . 20

2.3.1 A Taxonomy of Design Decisions 20

2.3.2 Some Languages . 23

2.4 Category Theoretic Preliminaries . 29

3 A Mathematical Model of Timed Processes 37

3.1 Notions of Time as Monoids . 38

ix

3.1.1 The Commutative Case . 44

3.1.2 The Non-Commutative Case 52

3.1.3 Comparison with Other Models 55

3.2 Transition Systems for Timed Processes 56

3.2.1 Timed Transition Systems and Time Bisimulation 56

3.2.2 TTSs as Partial Monoid Actions 67

3.3 Delay Operators and Total Monoid Actions 75

3.4 Biactions . 80

4 Timed Processes Categorically 85

4.1 Categorical Descriptions of Total Monoid Actions 86

4.1.1 Total Monoid Actions as Algebras 86

4.1.2 Total Monoid Actions as Coalgebras 88

4.2 Partial Monoid Actions, Categorically 89

4.2.1 The Evolution Comonad . 89

4.2.2 Partial Actions as Coalgebras 102

4.2.3 Coalgebraic E-Bisimulation 108

4.3 Partial Actions of Discrete Time . 110

4.4 Distributing Total over Partial Monoid Actions 114

5 Abstract Rules for Timed Processes 125

5.1 Bialgebraic Semantics . 126

5.2 Discrete Time . 134

5.3 Abstract SOS Rules for Behaviour Comonads 136

5.3.1 Comonadic SOS . 138

5.3.2 Abstract Temporal Rules . 148

6 Rule Formats for Timed Processes 153

6.1 A Format for Discrete Time . 154

6.1.1 Single-step TeCCS . 166

6.2 The General Case . 170

6.2.1 An Elementary Format . 170

6.2.2 The Complete Characterisation 191

x

7 Heterogeneous Processes 209

7.1 Heterogeneous Transition Systems 211

7.2 Heterogeneous Behaviours . 213

7.2.1 Discrete Time . 214

7.2.2 The General Case . 218

7.3 Heterogeneous Abstract Rules . 237

7.3.1 Discrete Time . 237

7.3.2 The General Case . 241

7.4 Towards Heterogeneous Rule Formats 247

7.4.1 Discrete Time . 247

7.4.2 The General Case . 250

8 Conclusion 251

8.1 Summary of Results . 251

8.2 Future Work . 255

A Total Monoid Actions Revisited 257

A.1 Total Monoid Actions as Presheaves 257

A.2 Varying the Monoid of Time . 259

A.3 Coalgebras from Geometric Morphisms 262

Bibliography 263

xi

Chapter 1

Introduction

We aim at presenting a mathematical theory of timed processes, and their operational

behaviour. In applications, such timed processes are usually used to model distributed

real-time systems, e.g., in traffic control, or embedded systems.

Our approach to providing such a theory is based on the use of categorical methods,

some of which have been present in the field of programming language semantics

for quite some time—to some extent since at least the 1970’s, i.e., almost since the

inception of the whole field.

In this introduction, we want to briefly survey the different aspects mentioned

above, in order to give a brief outline of what is to come in later chapters. We will

start with a brief motivation as to why time plays an important role in the domain of

distributed systems, in particular such ones that deal with safety-critical applications.

Following this, we will give some hints at the wide field of programming language

semantics, focusing on operational and denotational semantics, and their mutual rela-

tionship, as established in so-called adequacy results.

At that point, we want to spell out some of the apparent challenges involved in our

goal, followed by a brief outline of our approach how to overcome these challenges,

and the contributions of this thesis.

We conclude the chapter with a brief summary of all remaining chapters of the

thesis.

1

2 Chapter 1. Introduction

1.1 Distributed Real-Time Systems

Computer systems have become pervasively used in daily life, in particular to carry out

complex tasks with precision and speed often beyond human abilities, e.g., systems for

traffic control must govern switching of lights in a whole city, or coordinate starting and

landing of air planes; another example would be an operating system that, by providing

a layer of abstraction above the actual hardware, forms the basis for other programs to

be run on top of it. What such systems have in common is that they are usually not

started once, calculate some results and then terminate, but that they should (at least

ideally) keep on running continuously, all the while interacting with their environment.

Because of this, systems like the above have been called reactive systems [Pnu85]:

rather then carrying out monolithic tasks, such programs usually react appropriately

to stimuli from outside, e.g., if a pedestrian presses a button on a traffic light, the

traffic control system should eventually change the lights in such a way such that the

pedestrian can cross the street; in the operating system example, if a program requests

more memory or demands access to some particular piece of hardware, the operating

system has to react to such a request.

Reactive systems are usually also distributed systems, in general consisting of sev-

eral components in different locations which communicate via different means. As an

example, again consider the traffic control system: it could have little control units,

spread all over a city at all the traffic lights, which exchange signals with a central

coordination facility. Analogously, an operating system consists of several different

parts interacting with each other: a kernel, a scheduler, hardware drivers and so forth,

in addition to the programs, also known as ‘processes,’ which are running on top of it.

Applications like such traffic control systems are furthermore referred to as real-

time since (software or hardware) components involved are required to satisfy (often

tight) timing constraints whose violation could have dire consequences: we already

said that the pedestrian should be allowed eventually to cross, for example, inside some

reasonable interval of time like two minutes. The same applies to operating systems:

allocation of memory, or access to hardware must be dealt with swiftly as not to affect

the execution of the actual programs.

Usually, these systems are also safety-critical: they need to work correctly and

1.1. Distributed Real-Time Systems 3

robustly because failure to do so could have catastrophic effects. Just imagine the

traffic control allowing cars from all sides of a crossing to drive at the same time due

to a system failure! Or consider the domain of embedded systems as, e.g., used in

cars for controlling the engine and other parts: breakdown or malfunctioning of such

systems can have drastic consequences, e.g., imagine the brakes failing in a car. In

addition to the potentially catastrophic outcome of system failure, since such systems

are usually at least partially realised in hardware, it could also be extremely costly

to correct mistakes once they have occurred, thereby also posing a serious economic

threat.

In general, reactive systems like the above have been successfully modelled using

processes and process calculi, e.g., CCS [Mil80, Mil89], CSP [BHR84, Hoa85], and

ACP [BK84, BW90], to only name the most well-known ones: these are small formal

languages representing abstractions of concrete systems, focusing on specific aspects

of the systems, in particular the synchronisation and communication taking place in

distributed systems. Such calculi usually have a formal semantics, i.e., the behaviour of

programs is specified in precise, mathematical terms. Because of this, process calculi

are very well-suited for applications of formal verification techniques, i.e., determining

(as far as possible) whether a program will behave correctly before it is actually run,

e.g., by means of model checking [CE82]. As a result of this, they have also been

used to model safety-critical reactive systems. There are also other approaches to

specifying and modelling concurrent systems, in particular automata-theoretic ones,

see, e.g., [Var91].

Furthermore, in order to cope with real-time requirements, programming or specifi-

cation languages for reactive systems also have to include features to specify timing be-

haviour of programs, in addition to describing functionality as in traditional program-

ming languages. Consequently, over the past decade and a half, various attempts have

been made to extend processes and process calculi, as well as automata-theoretic ap-

proaches to specifying concurrent systems, with some notion of time in order to model

(abstractions of) real-time systems—see, e.g., [RR88, MT90, Wan90, Wan91, BB91,

Sch95, SDJ�91, HNSY92, NS94, AD94, WPD94, HR95, DB96, LW00b, LW00a,

BM01]. Many of the resulting models and calculi feel quite ad-hoc: some of the

4 Chapter 1. Introduction

underlying assumptions and design decisions seem at least questionable, in particular

as far as the mathematical foundation for such timed processes and their behaviour is

concerned. One design decision that is essentially uniformly present in the literature,

and one that we will also adopt, is to separate timing behaviour from computation by

means of using two distinct kinds of transitions: action transitions modelling instanta-

neous computations, and time transitions, modelling the passage of time without any

external interactions1.

1.2 Semantics of Programming Languages

1.2.1 Operational Semantics

Operational semantics focuses on the description of programs in terms of their (step-

by-step) execution on an (abstract) machine, the main concern being the behaviour of

programs. This can be regarded as describing an interpreter for the language, hence

the operational semantics provides a basis for implementations by a machine-oriented

view of the language. A program’s meaning is defined by operational rules which

determine sequences of transitions, i.e., atomic steps the program can perform. In this

way, one obtains a (labelled) transition system ((L)TS) [Plo81, WN95] on the set of

programs.

The most common way to present such rules is Plotkin’s structural operational

semantics (SOS) [Plo81] where transitions are defined by induction on the structure of

programs: starting from the basic constructs of the language, i.e., the simplest possible

programs, the transitions of compound programs are defined from the transitions of its

components, together with the intended meaning of program constructors. In this way,

one ends up with some form of transition system for the programs which is called the

intended operational model of the language.

Taking the operational point of view, two programs should be considered equal

when they exhibit the same behaviour. Hence, we want a notion of operational or be-

1The mentioned exception to this is the operational semantics for Timed CSP reported in [Sch95]
which also uses two kinds of transitions, yet action transitions also have a duration attached to them, i.e.,
are, in some sense, not necessarily instantaneous; this will be discussed at a later point, cf. Chapter 7.

1.2. Semantics of Programming Languages 5

havioural equivalence of programs. For an operational semantics to be ‘well-behaved,’

its operational equivalence should be a congruence with respect to the constructs of the

language: if two programs P1 and P2 are behaviourally equivalent, it should be possi-

ble to exchange P1 and P2 inside a bigger program P without affecting the operational

behaviour of P; this property is also known as substitutivity.

In order to obtain definitions of operational semantics for which the associated

behavioural equivalences are indeed congruences, substantial amount of work has, in

particular, been done in order to identify syntactical restrictions on SOS rules, so-called

rule formats, which ensure such a crucial property. Drawbacks of such formats are

that, firstly, finding a suitable format is not really explaining the deeper reason for the

congruence result to hold as a format is intrinsically syntactic. Secondly, they cannot

easily be extended to cope with extra information needed to incorporate additional

features.

Rule formats have (mostly) been developed and explored for languages without

variable binding, so-called first-order languages, which have been extensively used

in the study of non-determinism, concurrency, and distributed systems. In particular,

the formal (operational) semantics of process calculi, as mentioned before, is usually

specified by SOS rules. The behavioural equivalence, then often called process equiv-

alence, is usually some variant of (strong) bisimulation [Par81, Mil89]; see [Gla01]

for an overview of behavioural equivalences for processes.

A very well-studied and expressive format for such languages is GSOS [BIM95],

which is known to verify the property that strong bisimulation is a congruence if the

rules are of a specific shape; obtaining such result by hand can be quite difficult, even

for simple languages. Other formats include the tyft/tyxt format [GV92], and its exten-

sion to allow negative premises, the ntyft/ntyxt format [FvG96]; see also the handbook

article [AFV01] for more details on SOS and rule formats.

1.2.2 Denotational Semantics

The machine-oriented view of operational semantics is traditionally contrasted with

denotational semantics [Sco70, SS71, Ten91]. Denotational semantics corresponds to

a more human-oriented point of view (in the sense that a machine can hardly deal

6 Chapter 1. Introduction

with the involved methods), maybe less elementary but more appropriate for abstract

reasoning (as humans are capable of). It is based on a more mathematical view of pro-

grams, describing the semantics of a language by an interpretation (function), mapping

a program to its ‘meaning,’ also known as the denotation, in some abstract semantic

domain. Always, such interpretations are compositional: the denotation of a com-

pound program is given as a function of the denotations of its components, and how

those are assembled.

The semantic domain of an interpretation is typically a final (i.e., greatest) solution

to a domain equation of the form X �� BX for a suitable endofunctor B on a category

C , usually some kind of complete partial orders (cpo’s) to account for undefinedness,

recursion, and approximation. In this way, a domain for interpreting for all the con-

structs of the language is provided; the greatest solution is taken to obtain denotations

for ‘infinite,’ i.e., recursive, and hence potentially non-terminating, computations. This

aspect of denotational semantics has been thoroughly studied in field of domain the-

ory [Sco82, Plo83, Plo85, GS90, AJ94, FJM�96].

In the classical setting of general programming languages, the denotation of a pro-

gram is usually given as a function mapping inputs to outputs: see [Win93] for a

textbook on the subject. Since one is commonly working with cpo’s, such functions

have to satisfy the requirement of being continuous in the sense of preserving certain

least upper bounds in the partial order. Intuitively, these upper bounds correspond to

the limits of approximations, and consequently, the denotation of such a limit should

be obtained as the limit of the denotations of its approximations; this is also related to

issues about computability (see [Plo83]).

Unfortunately, denotational semantics for non-deterministic, and/or concurrent,

languages is not nearly as well developed as for deterministic (functional or impera-

tive) languages. A very common approach, also for operational semantics, is to model

concurrency by non-determinism, e.g., consider languages like CCS which satisfy the

so-called expansion law [Mil89]. Based on this, one then models non-deterministic

computations by functions which, for any given input, do not necessarily return a sin-

gle result, but a set of results, each element of the set corresponding to a different,

non-deterministic execution of the program.

1.2. Semantics of Programming Languages 7

This approach was advocated by Plotkin [Plo76, HP79, Plo82a], for finite or count-

able non-determinism, i.e., allowing at most finitely many, or also countably many

different executions of the same program. It is based on so-called power domains,

which are essentially suitable adaptations of the power-set functor on Set to partially

ordered sets; this is possible by observing that the power-set functor on Set is actu-

ally the free semi lattice monad, which can then be transferred to other categories,

cf. [HP79]. Later, powerdomains have also been applied to account for probabilistic

non-determinism [Plo82b, JP89, Jon90], i.e., non-determinism arising from probabilis-

tic computations, e.g., to model unreliable systems which fail with a certain probability.

1.2.3 Adequacy Results

For a sufficiently complete description of a language, both operational and denota-

tional semantics are required as the two complement each other. Therefore, it has to be

ensured that operational and denotational semantics agree. Taking operational seman-

tics as the more primitive notion to measure the ‘quality’ of a denotational semantics

against, this means that, if two programs have the same denotations, they should also

be operationally equivalent, usually defined by saying that the two programs cannot be

distinguished in any program context, see [Mil77]. A denotational semantics with this

property is called adequate—see, e.g., [Win93]. There is also a notion of computa-

tional adequacy [Pit94]: a denotational semantics is adequate in this sense, again with

respect to an operational one, if operational evaluation terminates only if the denota-

tion of a program is defined, i.e., again, the denotational semantics must coincide with

the operational semantics.

Conversely, one would also like to have that, if two programs are equivalent op-

erationally, they also have the same denotation. If this is the case, the denotational

semantics is called fully abstract [Mil77] with respect to the operational equivalence:

one semantics completely determines the other one. Adequacy can usually be ensured

by appropriately defining the denotational semantics, while full abstraction fails in a lot

of cases because the semantic domain for a given denotational semantics contains ‘too

many’ denotations, what was called ‘over-generous’ in [Mil77], i.e., there are elements

in the semantic domain which cannot be denoted by any program.

8 Chapter 1. Introduction

Full abstraction has mainly been studied in connection with pure functional lan-

guages, in particular the full-abstraction problem for the language PCF [Plo77], a

simply typed λ-calculus [Bar84] based on Scott’s LCF [Sco93, Mil72], was a long-

standing open problem since the 1970s, when Plotkin [Plo77] showed that the stan-

dard model, using cpo’s and continuous functions, was not fully-abstract, because the

model contained a parallel-or construct which could not be specified in what is es-

sentially a sequential programming language. Finally, in 1994, independently in two

papers by Abramsky et al. and Hyland and Ong (see [AJM00, HO00] for extended

journal versions), a non-syntactic fully-abstract model for PCF was constructed (al-

ready as early as [Mil77], Milner introduced a term model and showed that this was,

up to isomorphism, unique).

1.3 Aspects of Categorical Methods in Semantics

The intuitive duality between operational and denotational semantics becomes even

more apparent when considering categorical formulations of the two styles of pro-

gramming language semantics.

1.3.1 Initial Algebra Semantics

In the case of a first-order language, the constructs of the language are usually de-

scribed by a signature Σ in the sense of universal algebra, see [BS81]. To each such

signature, we can associate a so-called polynomial functor [RB85, Tur96] also denoted

by Σ. Assuming that a category C has enough structure to interpret Σ, a Σ-algebra,

cf. [Mac97], is then a denotational model for the language, the semantic domain being

one particular such model. Such models are usually called Σ-interpretations [BJ89,

EFT96]. It turns out that the set of programs is the initial Σ-algebra, and so, there ex-

ists a unique homomorphism of Σ-algebras mapping programs to the semantic domain.

This unique map is called initial algebra semantics [GTW78] and, being a homomor-

phism of Σ-algebras, is automatically compositional.

1.3. Aspects of Categorical Methods in Semantics 9

1.3.2 Final Coalgebra Semantics

Final coalgebra semantics uses a canonical semantic domain starting from a behaviour.

Therefore, it provides a link between operational and denotational semantics. As ex-

plained previously, operational semantics is essentially based on labelled transition

systems [Plo81]. Such transition systems can be viewed as B-coalgebras [Acz88] for

an appropriate behaviour functor B on the category of sets and functions (of course,

this can be generalised to an arbitrary category C). In this way, one obtains a category

of B-coalgebras, defined dually to the category of algebras, corresponding to a class of

transition systems, ‘transition systems of type B,’ which can be regarded as operational

models. For example, the coalgebras for the functor2

(1.1) BAX
��
�P��X�A

correspond to the class of all image-finite transition systems with labels from the set A,

where P��X� denotes the set of all finite subsets of X : given a state x � X and a label

a � A, there are only finitely many successor states in X .

The intended operational model of the language, defined by the SOS, is an example

of a B-coalgebra on the set of programs. The final B-coalgebra—if it exists—is then

a canonical operational model, viz., the collection of abstract or global behaviours:

by finality, there is a unique morphism of B-coalgebras from the intended operational

model to the final B-coalgebra, mapping a program to its ‘abstract’ behaviour. This

map is called final coalgebra semantics [RT94, TR98]. There is also a coalgebraic

notion of bisimulation, due to Aczel and Mendler [AM89], and the final coalgebra

satisfies the property that its internal equality corresponds to this notion of bisimula-

tion (this is also known as ‘internal full abstraction’ [Abr91] or ‘strong extensional-

ity’ [TP97]). In the example of image-finite transition systems, i.e., the BA-coalgebras,

the final coalgebra exists, see, e.g., [Bar93, RT94, Tur96, JPT�01], and is the set of all

image-finite synchronisation trees [Mil80, WN95] quotiented by strong bisimulation,

which is coalgebraic BA-bisimulation, so bisimilar elements are indeed equal.

As the semantic domain for initial algebra semantics is typically a final solution

to a domain equation X �� BX , it is the carrier of the final B-coalgebra. Furthermore,

2The notation BA is chosen to indicate the action behaviour of a process, as opposed to the timing
behaviour; the subscript is not connected to the set A of labels.

10 Chapter 1. Introduction

if the intended operational model can also be expressed as a B-coalgebra on the pro-

grams, both initial algebra semantics and final coalgebra semantics define maps from

the set of programs to the semantic domain, a compositional one stemming from initial

algebra semantics, the other stemming from final coalgebra semantics, respecting coal-

gebraic B-bisimulation. If these two maps coincide, one has an adequate denotational

semantics with respect to the operational one [RT94, Tur96]: the compositional deno-

tational semantics stemming from initial algebra semantics inherits the property from

final coalgebra semantics that observationally equivalent (here: B-bisimilar) programs

have the same denotation.

1.4 Challenges

In order to arrive at a satisfactory mathematical account of timed processes and their

operational semantics, several challenges have to be overcome. Firstly, it is not at all

easy to determine what ‘timed process’ should actually mean: which models do we

want to consider when trying to work out a mathematical basis for them? There are a

plethora of models in the literature, some based on transition systems, some automata-

theoretic. As for calculi, the situation is even worse, there are many languages with

slightly different assumptions: which of those should be taken into account when try-

ing to give a foundational account?

A second challenge is the required mathematics: what are the principal notions

needed to describe timing behaviour? Timed processes have a very rich structure, e.g.,

how should time itself be modelled? How should an account of communication taking

place over time be given since reactive systems usually have components distributed

over a network that are communicating with each other? What is the right mathe-

matics for describing the timed operational behaviour of such communicating timed

processes?

Finally, once the questions about timed processes and the required mathematics

have been settled, how can the two things be combined to give a satisfactory mathe-

matical account of the (structural) operational semantics which is generally based on

rules of inference? What framework is there to be able to really bring to light the right

1.5. Our Approach 11

mathematical notions without becoming too static in the sense that the focus on inter-

active and reactive systems is lost (consider, e.g., methods for denotational semantics

which are mathematical yet, necessarily, un-operational)?

1.5 Our Approach

To address the above challenges we plan to proceed as follows. As far as models

of timed processes are concerned, we will present one of the most frequently used

models, viz., timed transition systems as, e.g., occurring in [MT90, Wan90, NS94,

HR95], explaining the main concepts underlying this model. As for calculi based on

this model, we will try to exhibit some of the more common design decisions and

present the calculi according to a taxonomy based on these design decisions.

As far as the required mathematics goes, we take the view that the domain of time

should be modelled as a (partially ordered) monoid. An important role will be played

by the actions of this monoid of time: such monoid actions describe a way of “trans-

forming” or “changing” elements of a set in a way that conforms with the monoid op-

erations. When the monoid represents time an action of that monoid therefore means

a transformation by, or over, time.

It will turn out that we will need both total and also partial actions of monoids to

give good accounts of various features of timed processes. The typical example of a

total action is given by delaying, modelled using the addition of the monoid: delaying

a process simply “adds” to its delay potential in the sense that it can wait or run longer;

it also means that the process starts doing its actual work later.

The main example of a partial action is, somewhat dually, the way a process con-

sumes time, utilising a partial subtraction function on the monoid of time: the longer

a process operates the shorter the amount of time it has left to consume during the

calculations to be carried out. Partiality comes into play since some processes may

only have a certain limited amount of time to consume for their calculations, e.g., due

to some timing constraints placing deadlines upon them, so these processes must not

exceed their time limits and hence sometimes may not be able to consume any more

time. Hence, partial actions play a central role in describing the way a process evolves

12 Chapter 1. Introduction

through time.

To combine consuming time and delaying, we need structures endowed with both

partial and total monoid actions of the time domain and with the two actions suitably

related in order to represent the intuitive connection between waiting and delaying:

only as much time can be consumed as was previously added by delaying, but in gen-

eral not more. Such structures will be introduced in the form of biactions, and they

will essentially describe a primitive algebra of timed processes.

In order to be able to give an account of the operational semantics of timed pro-

cesses incorporating the outlined mathematical notions, we will use the categorical

approach of [TP97], which is based on the notions of distributive law [Bec69, PW99]

and the bialgebras [TP97] for such a law; in particular, we will describe the models of

timed processes in a coalgebraic fashion.

To be able to do this, we will give categorical descriptions of both total and partial

actions of a monoid. For total actions, there are several well-known categorical charac-

terisations in the literature, e.g., they can be considered as presheaves over a category

with one object representing the monoid, leading to both algebraic and coalgebraic de-

scriptions of such total actions. For partial actions, the situation is a bit more complex

since we want the actions to be partial but their morphisms to be total maps respecting

the actions (up to being defined). We will give a categorical description of such partial

actions as coalgebras for a new evolution comonad on the category of sets and total

functions: essentially, this comonad enables us to “curry” partial actions.

In order to model timed processes based on timed transition systems as structures

which can both delay and consume time, we have previously mentioned the biactions

of a time domain. We will also provide a categorical characterisation of these biac-

tions by defining a specific distributive law, which distributes total over partial monoid

actions, whose bialgebras turn out to be biactions.

Since partial actions are defined as coalgebras for a comonad, we need to slightly

extend the framework of [TP97] to give abstract operational rules for timed processes.

Building on that, we will present concrete rule formats obtained by instantiating the

abstract format to capture existing calculi from the literature.

1.6. Contributions 13

1.6 Contributions

We provide the mathematical basis for an operational understanding of timed pro-

cesses. To be able to use categorical methods makes it necessary to identify deeper

structure due to the abstract nature of category theory (which is sometimes cited as

its disadvantage). In our case, the abstract framework forces us to go to the heart of

how timed processes behave and therefore, we hope to present a clear and thorough

picture, unravelling the mathematics lying at the core of the operational semantics of

timed processes as a first contribution.

As far as the categorical framework from [TP97] is concerned we hope to document

its utility and flexibility by accommodating timed processes in pretty much the same

way, after the already mentioned technical extension to behaviour comonads, as was

done in [TP97, Tur97] for standard process calculi. In particular, substantiating the

claim of [TP97] that abstract categorical rules can lead to concrete rule formats, we

present such formats for timed processes, derived from our abstract rules, which ensure

“nice” properties for calculi that fit them and we show that some existing calculi do

indeed fit these formats. To our knowledge, no general rule formats for timed processes

have been proposed before, so this is our second contribution.

A third contribution, related to the first one, is a partial unification of the field of

timed processes: due to our abstract categorical approach, similar structures through-

out the field are identified and highlighted by the coalgebraic treatment. Many calculi

are seen to fit the same basic format for operational semantics, distinctions arising

from different design decisions. Hence, the design decisions can also be classified by

how ‘naturally’ they fit the categorical framework, i.e., whether they introduce any ob-

stacles for a conceptual treatment. We believe that this form of naturality gives some

justification as to which design decisions should be considered more canonical than

others, which should also further a unified view of the field.

1.7 Layout of this Thesis

We will now briefly present the layout of the thesis, giving short summaries of all

chapters. We present the background to our work in Chapter 2, including some general

14 Chapter 1. Introduction

mathematical preliminaries mostly to do with notation, some information on process

calculi and their timed extensions, as well as a brief summary of the necessary notions

from category theory.

Chapter 3 is then going to present the mathematical model we will use for timed

processes: time domains to model time, and timed transition systems and bisimula-

tions, and their reformulations in terms of partial monoid actions of a time domain, to

model the behaviour of processes themselves; this is complemented by the introduc-

tion of delay operators, which are simply total monoid actions, and biactions, in order

to model the interplay between idling and delaying.

The following Chapter 4 then presents categorical characterisations of the notions

introduced in the preceding chapter. In order to be able to describe partial monoid

actions, which are not as well studied in the literature as their total counterparts, we

introduce the new comonad of evolutions, whose coalgebras are precisely the partial

monoid actions introduced in Chapter 3. Furthermore, we show that over discrete time,

corresponding to taking the natural numbers as the model for time, the partial actions

can be described in a much less complicated way as the coalgebras for a simple functor.

Finally, we give a categorical formulation of the previously introduced biactions as

bialgebras for a distributive law.

This then puts us in a position to describe abstract operational rules for timed pro-

cesses in Chapter 5 by means of adapting the bialgebraic approach presented by Turi

and Plotkin in [TP97], which we are first going to explain in some detail. In the case

of discrete time, we can immediately apply that framework, due to the previously es-

tablished simpler characterisation of TTSs in that particular case. To deal with the

general case, we need to extend the bialgebraic framework to deal with constrained

operational models which are given by the coalgebras of a comonad. We present two

different types of abstract rules, one in the most general fashion (which will also be

shown to be as general as possible), and another one which is less general yet will turn

out to still be powerful enough to deal with languages for timed processes.

Having given abstract operational rules for timed processes, we can then turn our

attention to syntactic rule formats for that case. Again, for discrete time, things are

a lot simpler due to the more primitive categorical characterisation; we present a for-

1.7. Layout of this Thesis 15

mat, which we call deterministic single-label GSOS, which is closely related to the

well-established GSOS format. In the general case, reflecting the two kinds of abstract

rules, we will present two kinds of syntactic characterisations. The first one, based on

the less general abstract rules, uses schematic rules involving variables ranging over

time; this ‘format’ is constrained to the extent that we even hesitate to call it a for-

mat: we really only specify a bunch of operator formats, which might be regarded

as ‘blueprints’ for concrete operators, and that these operator formats induce abstract

categorical rules matching the ones given in Chapter 5. Despite the obvious shortcom-

ings in terms of generality, this restricted ‘format’ is still expressive enough to include

most of the operators found in the literature. We conclude the chapter with a complete

characterisation of the more general abstract rules from Chapter 5: for this, we use

meta rules which are convenient abbreviations for infinite sets of infinitary rules. Even

so, it will turn out that, in order to completely capture all possible rules, we still need

infinite sets of such meta rules, thereby showcasing the generality of the abstract rules,

yet also more than hinting at shortcomings in the abstract model.

Up to this point of the thesis, the focus has exclusively been on modelling the

timing behaviour without any attention paid to the actual computational behaviour of

timed processes. To this end, Chapter 7 presents ways to combine letting time pass

with performing computations in the way that this is done in the standard calculi for

timed processes. For discrete time this is not very hard: one simply uses the product

of the appropriate behaviours for both action and time transitions. We wish to use

the same idea for arbitrary time domains, yet we encounter the problem that the time

transitions are defined by coalgebras for the evolution comonad; hence we need to

form the product in the category of comonads, which is vastly different from simply

taking the point-wise product as in the case of functors. As it turns out, the required

product comonad is defined as a composite comonad induced by a distributive law and

so, we can also use that law in a two-level approach, exploiting the equivalence be-

tween distributive laws and liftings of functors/comonads. Based on the thus obtained

behaviours for combining the two kinds of transitions, we can then describe abstract

rules for that case, as well as present work towards syntactic rule formats.

We conclude the thesis with Chapter 8, containing a summary of the thesis, some

discussion of the results, including comparison with related work, and directions for

future research.

Chapter 2

Background

2.1 General Preliminaries

We mark the ends of proofs, definitions, and examples (and related things) with �, �,

and �, respectively. For dealing with partial mathematical expressions, we introduce

the following notations:

Definition 2.1

For a partial expression e, e� (e�) denotes that e is defined (resp. undefined). Define

Kleene implication �� of two partial expressions e and e� as

e �� e�
��
� �e� � �e� � � e � e���

(where � is the standard equality predicate). Kleene equality � is defined as

e � e�
��
� �e �� e�� e� �� e�

Given a partial order �, define Kleene inequality � as

e� e�
��
� �e� � �e� � � e � e���

extending � to partial expressions. �

More concretely, we have that e � e� � �e � � e� ��� �e � � e � e��. Note

that � is an ‘ordered version’ of �� and the two notions coincide if � is the dis-

crete order, i.e., � is the identity relation. In any case, e � e� is always equivalent

to e � e� � e� � e.

18 Chapter 2. Background

When defining functions, we write f : X 	 Y to mean that f , X , and Y are, re-

spectively, name, domain, and codomain of the function. Such a function is well-

defined if x � X implies f �x� � Y . Sometimes, λ-notation is used (inspired by the

λ-calculus [Bar84]):

f � λx�e�x�

to state that the value f �x� is equal to e�x�, where e is any mathematical expression

(which might, or might not, contain occurrences of x).

When defining partial functions, we use the notation f : X � Y with the same

interpretation as above, except that f �x� need not always be defined; λ-notation is used

in the following way

f � λx�

��
�

e�x� if e�x��

undef if e�x��

expressing that the (potentially partially defined) expression e describes the values of f ,

i.e., f is the partial function such that f �x�� e�x�. Well-definedness is suitably adapted

for partial functions: f �x�� implies f �x� � Y (much like the distinction between total

and partial correctness of programs, see [AO97]).

We denote the set of all natural (rational, real) numbers by � (resp. � , �), and we

denote the cardinality of a set X by
X
.

2.2 Transition Systems, Bisimulation, and Operational

Semantics

The definitions of an operational semantics for many programming languages, in par-

ticular in the area of distributed and concurrent processes, is usually based on labelled

transition systems [Plo81]: (the meaning of) a program is described by a series of

atomic steps, so-called transitions, intuitively corresponding to individual instructions

being executed when running the program on an (abstract) machine.

Definition 2.2

A labelled transition system (LTS) is a tuple �S�L�	� where

 S is a set of states,

2.2. Transition Systems, Bisimulation, and Operational Semantics 19

 L is a set of labels, and

 	� S�L�S is the transition relation

Instead of writing �s� l�s�� �	, one commonly uses the transition notation s
l
	 s�,

where s and s� are called the source and the target, respectively, of the transition. �

Describing (in particular distributed) systems by such LTSs, an important ques-

tion is when two LTSs should be considered equal. There are many different such

notions of equivalence amongst which (strong) bisimulation [Mil80, Par81] is a stan-

dard one because it intuitively captures the idea that two equivalent systems should be

able to perform ‘the same steps’ in an ‘interactive’ manner, i.e., during the respective

executions; states in LTSs represent different stages of a program’s execution, so the

following definition formalises the described intuition:

Definition 2.3

Relative to two LTSs �Si�L��i�, i � �1�2�, with the same labels L, an (action) bisim-

ulation is a relation R � S1 �S2 such that �s1�s2� � R implies for all l � L

��s�1 � S1�� s1
l
	 s�1 � ��s�2 � S2�� s2

l
	 s�2 � �s�1�s

�
2� � R

��s�2 � S2�� s2
l
	 s�2 � ��s�1 � S1�� s1

l
	 s�1 � �s�1�s

�
2� � R

Then the relation s1 �a s2 holds if there is an action bisimulation containing the pair

�s1�s2�. �

We should point out that Definition 2.3 is slightly more general than the one usually

used, e.g., in [Mil89], because it allows for two different sets of states: bisimulation

is usually defined relative to only one LTS. Furthermore, the notation �a for strong

bisimulation is non-standard; we need to introduce the extra subscript to distinguish

later on bisimulations with respect to two disjoint sets of labels.

Coming back to the operational semantics of programming languages, one uses

operational rules

(2.1)
Hypotheses
Conclusion

Side conditions

20 Chapter 2. Background

where both the hypothesis and the conclusion are, respectively, sets of transitions and

single transitions, while the side conditions usually involve labels of transitions; note

that quite frequently, also negative premises are used, i.e., expressions of the form

s �	 or s �
l
	

which, respectively, denote the absence of any transitions of with source s � S, or of

transitions with label l � L from s; however, one has to be careful whether a set of

operational rules with negative premises actually makes sense—see [vG96].

Structural operational semantics (SOS) [Plo81] is the most common way of spec-

ifying the operational behaviour of programming languages: ‘structural’ refers to the

fact that, based on the behaviour of components described in the hypotheses, the con-

clusion then inductively defines the semantics of compound terms; for example, con-

sider the following (standard) rule for parallel composition:

x
α
	 x�

x
y
α
	 x�
y

Note how the transitions of x
y are defined inductively with respect to those of x.

2.3 Timed Process Algebras

Our work aims at a theory of well-behaved operational rules for timed processes;

hence, we have to consider languages for such timed systems. We do so in two steps:

first, we present a taxonomy of design decisions for such languages, and second, we

describe some examples of languages to be used later on and classify them according

to the taxonomy.

2.3.1 A Taxonomy of Design Decisions

This taxonomy presents a (by no means exhaustive) overview of common design prin-

ciples for timed process calculi; we shall keep the classification rather abstract since

the different decisions will be revisited, and explained in more detail, in the subsequent

section on specific languages.

2.3. Timed Process Algebras 21

The most common design decision is to separate the computational and time-

passing (without external interaction, sometimes also referred to as idling) aspects

of real-time behaviour. More concretely, two kinds of transitions are used: action tran-

sitions (like in standard process algebras [Hoa85, Mil89]) modelling computations, or

interactions with the environment, and time transitions with their labels denoting du-

rations of idling periods. As a consequence of this separation, action transitions are

usually assumed to be instantaneous, i.e., they take no time1.

After adopting the separation in some form, the next decision is the choice of labels

for time transitions; more abstractly, this corresponds to choosing a suitable represen-

tation of (a model of) time. Obvious choices are concrete sets of numbers, like � (the

set of natural numbers), ��0 (the set of non-negative rational numbers), or ��0 (the

set of non-negative real numbers). If such a set is chosen, this is called quantitative

time because the resulting model contains explicit absolute timing information about

durations, delays, and so on2.

A different possibility is to use symbolic durations, obtaining a qualitative notion

of time: a time transition labelled with such a symbolic duration denotes the passage of

some unspecified amount of time; consequently, the resulting models then can only ex-

press relative timing information, e.g., one computation occurs after another because a

time transition was performed in between them. A convenient intuitive interpretation is

to think of these symbolic durations as clocks, as used in connection with synchronous

hardware. This interpretation is, e.g., advocated in [AM94, NS94, CLM97]: thus, time

transitions can be thought of as ticks of such clocks signalling the start of a new clock

cycle.

Subsequently, according to which view of time is chosen, there are more decisions

to be taken. When using quantitative time, the most common choice is between dis-

crete and continuous time, i.e., using either � or ��0 , respectively, as the set of labels

1In some languages, in particular the operational semantics of Timed CSP presented in [Sch95],
while still keeping separate time transitions, action transitions are also adorned with durations; such
transitions can intuitively be interpreted as non-instantaneous computations. However, since these ‘pro-
longed’ transitions can simply be regarded as abbreviations, viz., as a (now instantaneous) action fol-
lowed, or preceded, by a time transition of the appropriate duration (see Section 7.2.2.3), we do not
know of any other calculus where this design decision used.

2Note that many calculi only use sets of numbers, while others axiomatise sets with appropriate
structure, usually viewing time as a partial order or a monoid.

22 Chapter 2. Background

for time transitions. For qualitative time, the choice is between either using one single

clock or multiple of them, corresponding to having one single label for time transi-

tions or more. These two possibilities are known as global and local qualitative time,

respectively, the terminology referring to the clock-intuition: global qualitative time

represents having a single (and hence global) clock, while local qualitative time allows

for multiple clocks in a more distributed system.

During the course of this thesis, in a sense to be made precise, it will become clear

that discrete quantitative time and global qualitative time are essentially the same.

There are also design decisions on the level of models and languages, once a rep-

resentation of time is chosen. A standard operator, in some form or other, in process

calculi is the action prefix as used, e.g., in [Hoa85, Mil89], written as α�p for an action

α and a process p; the intuitive semantics of such a prefixed process is that it has the

capability of performing the action α and then behaves as p does. However, should

the process α�p be able to let time pass or not? After all, the syntax only contains

information about action behaviour. If not, i.e., if α�p cannot idle at all, one speaks

of insistent prefixes; alternatively, the prefix can let an arbitrary3 amount of time pass,

leading to so-called relaxed prefixes.

More abstractly, this last choice is concerned with time stop mechanisms, i.e., pro-

hibiting the passage of time by means of not allowing any time transitions. It is cer-

tainly debatable whether such time stops are realistic; however, they can be used effec-

tively for detecting mistakes in system specifications: it is very desirable that systems

always allow progress of time—how could a specification with time stops ever be im-

plemented? The previously described insistent prefixes allow control over such time

stops on a very fine level of granularity: unless specified otherwise, all action prefixes

will cause time to stop.

When using relaxed prefixes, a different means of stopping time is required. This

is usually given in the form of the maximal progress assumption [HdR89], sometimes

also known as urgency [NS91], or the synchrony hypothesis [BG92a]: this assumption

states that communications have to be performed as soon as they are possible, with-

out any delays; we shall give a more concrete description when describing individual

3We are not aware of any languages where a choice different from these two extremes is taken.

2.3. Timed Process Algebras 23

languages. The most important point about this assumption is that it provides another

means of prohibiting the passage of time, complementing the use of relaxed prefixes.

2.3.2 Some Languages

There are three main non-timed process calculi: CCS [Mil89], CSP [Hoa85], and

ACP [BK84]. Based on these three main strands, there are then a number of timed

extensions, some of which we are now going to describe in some more detail.

As for timed extensions of CCS, an important specimen is Temporal CCS [MT90]

(abbreviated here as TeCCS). Some of its SOS rules are presented in Figure 2.1 (the

operators we omitted, renaming and restriction, behave in the evident way; we also

slightly adapted the rules of weak choice, replacing the maximum delay predicate

of [MT90] with negative premises); note that we follow [MT90] in using slightly dif-

fering notations for the two kinds of transitions. Time is modelled by natural numbers,

i.e., discrete quantitative time (actually, only non-zero times are allowed), insistent pre-

fixes are deployed, and the maximal progress assumption is not adopted. The action

rules on the right-hand side of Figure 2.1 are completely standard; we also adopt, from

CCS, that standard notational convention of denoting a general action �� τ, a so-called

observable, or controllable [Wan90], action, by a and its co-action by ā, while an ar-

bitrary action, which could as well be the silent action τ of CCS, is denoted by α (i.e.,

Roman vs. Greek letters).

In addition to the usual action prefix α�p, there is the delay prefix δ�p: intuitively,

δ�p can idle forever in its initial state, while still being able to perform any action

transition that p can perform. Hence, δ�α�p is a relaxed prefix; however, since delay

prefixes are dynamic with respect to action transitions, any consecutive action prefixes

will again be insistent. Furthermore, the time prefix �t��p, where t � � ��0�, delays

all actions of p by t units of time, and during this enforced initial waiting period, no

action transitions can be performed (the operator has no action rules).

Moreover, on top of the standard non-deterministic choice �, there is a second,

so-called weak choice � present. The action rules of the two choices are identical, the

difference lies solely in their time transitions: where � demands synchronous progress

through time (both components must be able to participate), � allows to discard one

24 Chapter 2. Background

α�p α
	 p δ�p t

� δ�p
p

α
	 p�

δ�p α
	 p� �s� t��p

s
� �t��p

p
α
	 p�

p�q
α
	 p� �t��p

t
� p

q
α
	 q�

p�q
α
	 q�

p
s
� p�

�t��p
s�t
� p�

p
α
	 p�

p�q
α
	 p�

p
t
� p�� q

t
� q�

p�q
t
� p��q�

q
α
	 q�

p�q
α
	 q�

p
t
� p�� q

t
� q�

p�q
t
� p��q�

p
α
	 p�

p
q
α
	 p�
q

p
t
� p�� q �

t
�

p�q
t
� p�

q
α
	 q�

p
q
α
	 p
q�

q
t
� q�� p �

t
�

p�q
t
� q�

p
a
	 p�� q

ā
	 q�

p
q
τ
	 p�
q�

p
t
� p�� q

t
� q�

p
q
t
� p�
q�

Figure 2.1: The SOS rules of TeCCS.

2.3. Timed Process Algebras 25

of the components if it cannot let time pass (intuitively, if it cannot wait long enough);

in case both processes can let time pass, the two operators behave in the same way.

Finally, parallel composition is again standard with respect to action transitions,

allowing asynchronous behaviour as well as handshake synchronisation resulting in

τ-actions; however, it enforces synchronous behaviour with respect to time transitions,

exactly like �. In the remainder of this thesis, TeCCS will be our principle example of

a timed process calculus.

Another, also CCS-based, language is Timed CCS [Wan90], which will be referred

to as TiCCS in order to distinguish it from TeCCS, is quite different, as can be seen

when inspecting (the part of) the time rules4 depicted in Figure 2.2.

nil
t
� nil

a�p
t
� a�p

p
t
� p�� q

t
� q�

p
q
t
� p�
q�

sortt�p�� sortt�q� � /0

Figure 2.2: Some time rules of TiCCS.

Firstly, a more abstract view of time is used, allowing both discrete and continuous

quantitative time. Secondly, the maximal progress assumption is adopted, in combi-

nation with relaxed prefixes (as far as possible). The assumption states that communi-

cations cannot be delayed; since, in CCS-derivatives, communication is modelled by
τ
	-transitions, this means that the following axiom must hold:

(Maximal Progress) ��p�� �p
τ
	� ��t�� p �

t
��

where p ranges over all processes and t over all non-zero5 times. This has two con-

sequences, corresponding to the two possibilities how
τ
	-transitions can occur: the

4The action rules are completely standard. Note that we changed the original notation for time
transitions in [Wan90] in order to use the same as for TeCCS, as well as using nil, instead of 0, to denote
the inactive, or deadlocked, process from CCS.

5Non-zero because
0
�-transitions are not always permitted, and (if present) treated in a somewhat

special way—see Section 3.2.1.

26 Chapter 2. Background

action prefix τ�p has no time transitions, as opposed to the other relaxed prefixes (con-

sequently, only for prefixes of the form a�p is it possible to derive time transitions from

the above rules); secondly, and more importantly, the time rule of parallel composition

has a side condition. This side condition uses the timed sort of p within t units of time,

written as sortt�p�. Omitting its formal definition (by structural induction), sortt�p�

intuitively contains all the observable (i.e., �� τ) actions that p can perform within the

next t units of time; hence, the side condition simply expresses that p and q cannot

synchronise within the next t time units. Moreover, since the premises of that rule

imply that neither p nor q on their own can perform a τ-transitions, all of this together

states that p
q cannot perform a
τ
	-transition within the next t units of time: hence, it

is possible to allow a
t
�-transition without violating (Maximal Progress).

The language TPL [HR95] is very similar to TiCCS: it is also based on CCS and

uses relaxed prefixes in combination with maximal progress. However, time is mod-

elled by a global qualitative notion, using special
σ
�-transitions (again slightly chang-

ing the original notation). Since, in this approach, just the next clock cycle needs to be

considered, the rule for parallel composition becomes the following rule

p
σ
� p�� q

σ
� q�

p
q
σ
� p�
q�

p
q �
τ
	

which makes the intuition behind the previous side condition very explicit: p and

q, when running in parallel, must not be able to perform a
τ
	-transition, no matter

whether it stems from a communication or is simply an internal action of one of the two

components. The most interesting feature of TPL, as far as the language is concerned,

is its time-out operator, as illustrated by the following rule.

p �
τ
	

�p��q�
σ
� q

Here, control switches from p to q by means of a tick of the global clock (represented

by) σ, in case p cannot perform a
τ
	-transition: according to the suitable adaptation

of (Maximal Progress) for qualitative time, this communication would have to be per-

formed immediately and, consequently, could not be preempted by the time-out.

The time-out operator of TPL was actually adapted from the language ATP [NS94]

2.3. Timed Process Algebras 27

where the semantics of time-out was defined without reference to
τ
	-transitions of p:

(2.2)
�p��q�

σ
� q

Since ATP is based on ACP with its different synchronisation mechanism, in particular

without using τ’s to denote the outcome of (handshake) communications, ATP does not

adopt the maximal progress assumption (hence also the different semantics of the time-

out) and uses insistent prefixes. Therefore, it is closer in spirit to TeCCS than to TiCCS

or TPL; however, in contrast to TeCCS, ATP, as presented in [NS94] is based on global

qualitative time, modelling the tick of the global clock by
χ
�-transitions, much like in

TPL.

The paper [NSY93] presents a generalisation of ATP called ATPD, where D is a

time domain, i.e., a special kind of monoid which models time. Thus, a step towards

using quantitative time is taken, without forcing a choice between discrete or continu-

ous time. Again, the maximal progress assumption is not adopted, while both insistent

and relaxed prefixes are used (incorporated by actions with different decorations); con-

sequently, also two nil-prefixes are used: one as in TeCCS (which cannot let time pass),

the other one as in TiCCS (which can wait arbitrarily long).

The last language we would like to describe in some detail is PMC [AM94] because

it is one of two languages we are aware of (the other being CSA [CLM97]) which

deal with local qualitative time. The language extends CCS, and the basic setting

additionally consists of a finite set C of (abstract) clocks, which denote the different

local ‘time lines,’ but also can be interpreted as actual clocks in hardware systems;

maximal progress is not adopted, and insistent prefixes are used. In addition to that,

suitably generalised version of the time-out operators of ATP and TPL are used. Since

more than one clock can tick, the time rules for this operator now look as follows:

�p�σ�q� σ
� q

p
σ�
� p�

�p�σ�q� σ�
� p�

σ �� σ�

i.e., clocks different from the time-out clock σ do not cause switching control. Addi-

28 Chapter 2. Background

tionally, PMC introduces the clock ignore operator p � σ with operational semantics6

p � σ σ
� p � σ

p
σ�
� p�

p � σ σ�
� p� � σ

σ �� σ�

Intuitively, the ignore operator adds a σ-loop to every state reachable from p, overrid-

ing any previous
σ
�-transitions. This is interpreted as p no longer being in the scope

of σ: ignoring clocks localises them, although actually by means of disconnecting7

processes from clocks; in this pristine setting, every process is assumed to be con-

nected to every clock. Disregarding the differences due to the different base languages,

PMC could be considered a multidimensional8 version of ATP.

Other calculi worth mentioning are:

 The operational semantics for TiCSP [SDJ�91, DS95] presented in [Sch95],

which uses continuous quantitative time in combination with relaxed prefixes;

also the maximal progress assumption is adopted; due to the chosen base alge-

bra CSP, also a denotational semantics (using timed failures) is presented. The

semantics also adopts the separation approach, however in a somewhat ‘exotic’

fashion: in addition to time transitions, the calculus uses action transitions la-

belled with pairs �α� t� consisting of an action α and a time t; as already briefly

remarked before, this corresponds to dropping the instantaneous requirement for

computations.

 Other timed extensions of ACP as described, e.g., in [BB91, BM01]: the for-

mer uses continuous quantitative time, albeit in an absolute way: processes are

paired up with points in time, and action prefixes are decorated with time stamps

denoting the exact instant when they have to be performed; this is very different

from the relative approaches encountered so far where time transitions denote

durations. The later version presents both discrete and continuous quantitative

6Its action transitions are simply the ones of p, however, the ignore is static, i.e., it is propagated to
the successor states.

7This might seem rather unintuitive; however, replacing the ignore by its dual, the intuitively more
appealing (clock) attach operator in [Kic99] (carried out for the calculus CSA which is very much
influenced by PMC) made the whole theory much more complicated, so, at least for technical reasons,
the ignore operators seems the more reasonable choice.

8This will be made more precise by later results.

2.4. Category Theoretic Preliminaries 29

time, in both absolute and relative settings, of ACP; the absolute version is simi-

lar to the one presented in [BB91], while the relative variant is similar to TeCCS

(insistent prefixes, no maximal progress).

Note that we only treat calculi without binding, so-called first-order languages,

so we cannot deal with timed variants of the π-calculus [MPW92], e.g., as presented

in [RS02], or timed process calculi with binding like [Wan91, Che93]. Since our ap-

proach to operational semantics is based on categorical methods, in particular on the

framework developed in [TP97], treating such calculi would necessitate combining

the treatment of (first-order) timed processes developed in the following with previous

work on categorical versions of both (abstract) syntax and operational semantics for

languages with binding—see [FPT99, FT01, GP02].

2.4 Category Theoretic Preliminaries

Apart from the basic notions like categories, functors, and natural transformations, as

well as standard algebras and coalgebras for functors, we assume familiarity with the

following categorical notions (unless stated otherwise, see [Mac97] for definitions).

We denote the category of sets and (total) functions by Set.

(Co)limits. In addition to the standard definitions, we also assume knowledge about

weak (co)limits, and the specific cases of products, (weak) pullbacks, and coproducts,

initial and terminal objects, as well as preservation of such (weak) (co)limits. The

notion of filtered colimit might be less familiar, so here is a quick reminder. A category

is filtered if any finite diagram in it has at least one cocone over it; a filtered colimit is

the colimit of a functor F : C 	 D where C is a filtered category. These two notions

can then be generalised, from finite diagrams to diagrams of size strictly less then a

cardinal κ, leading to κ-filtered categories and colimits; the original definitions are

obtained by setting κ � ℵ0 �
�
.

Adjunctions. Given two functors F and G in opposite directions, we denote the fact

that F is the left adjoint of G (as usual) by F � G. Furthermore, from [Tur96], we

30 Chapter 2. Background

adopt the notation ���� and ���� for the natural bijection of hom-sets ([Mac97] uses the

notation ϕ and ϕ�1, respectively). Concretely, F � G holds if and only if we have two

assignments

� f : FX 	 Y �
����

��	 � f � : X 	 GY � and �g : X 	 GY �
����

��	 �g� : FX 	 Y �

which are mutually inverse and natural in X and Y (in the sense that the bijection is

compatible with pre- and post-composition of arrows).

(Co)monads. We assume some familiarity with the definitions of (co)monads and

the corresponding Eilenberg-Moore constructions, also that every adjunction F � G

gives rise to a both monad GF and a comonad FG. Even so, as a reference point for

later on, we now briefly state some of the basic definitions.

A comonad D � �D�ε�δ� is an endofunctor D : C 	 C , together with natural trans-

formations ε : D � Id and δ : D � D2, its counit and comultiplication, respectively,

such that the following diagrams commute:

D

δ
��

Id

��
��

��
��

�

��
��

��
�

Id

�� ��
��
��
�

��
��
��
�

D D2
εD

��
Dε

�� D

D
δ ��

δ
��

D2

δD
��

D2
Dδ

�� D3

(2.3)

Given two comonads D � �D�ε�δ� and D� � �D��ε��δ�� on the same category C ,

a comonad morphism from D to D� is a natural transformation ϕ : D � D� such that

following diagrams commute:

D
ϕ ��

ε ��
��

��
��

�

��
��

��
� D�

ε��� ��
��
��
�

��
��
��
�

Id

D
ϕ ��

δ
��

D�

δ�
��

DD
ϕϕ �� D�D�

(2.4)

where the map ϕϕ is given by one of the equal (because of naturality!) composites

DD
Dϕ
�� DD� ϕD��� D�D� or DD

ϕD
�� D�D

D�ϕ
�� D�D�. With such comonad morphisms as

arrows, the comonads on C form a category, denoted by Cmd�C �.

Given a comonad D on C , an Eilenberg-Moore coalgebra for D on an object X of

2.4. Category Theoretic Preliminaries 31

C is a morphism X 	 DX in C such that the following diagrams commute:

X
idX

����
��
��
��

k
��

k 		 DX

Dk
��

X DXεX

δX

		 D2X

(2.5)

Homomorphisms of Eilenberg-Moore coalgebras for D are the same as used for

coalgebras of functors, viz., morphisms f : X1 	 X2 between the carriers of two coal-

gebras k1 and k2 satisfying

X1

k1
��

f 		 X2

k2
��

DX1 D f
		 DX2

(2.6)

There is the evident category of Eilenberg-Moore coalgebras of D which, fol-

lowing [JPT�01], we shall denote by D–Coalg, in order to distinguish it from the

category D–coalg of ‘mere’ coalgebras for D (regarded simply as an endofunctor);

analogously, given a monad T , its category of Eilenberg-Moore algebras is denoted

by T–Alg, as opposed to T–alg for the unconstrained algebras. We also use the dis-

tinctions algebra/Algebra and coalgebra/Coalgebra in plain text: e.g., a D-Coalgebra

k : X 	 DX in fact denotes an Eilenberg-Moore coalgebra for the comonad D.

Transition systems and bisimulations, coalgebraically. As seen in Section 2.2, an

LTS is a tuple �S�L�	� such that 	� S�L�S. Aczel [Acz88] showed that LTSs are

also the same as coalgebras for P �L� �, where P � � denotes the power set functor

on Set. This has since been generalised: given an endofunctor B on some category C ,

the B-coalgebras intuitively correspond to transition systems of type B; in particular,

for BA as defined in (1.1), the BA-coalgebras are the same as image finite LTSs with

labels in A.

There is an accompanying coalgebraic notion of bisimulation [AM89], which was

slightly generalised in [TP97]. Let B be an endofunctor on a category C , and let

ki : Xi 	 BXi be two B-coalgebras. Then a coalgebraic B-bisimulation is a B-coalgebra

32 Chapter 2. Background

r : R 	 BR such that there is a span of B-coalgebras

X1
k1 		 BX1

R
r 		

p
���������

q ���
��

��
��

BR
Bp

��������

Bq

���
��

��
��

�

X1 k2

		 BX1

Note that R and r are, in general, by no means uniquely determined; instantiating this

for BA as in (1.1) precisely yields strong bisimulation (see, e.g., [TP97]). This notion

can be adapted to Coalgebras, demanding that k1, k2, and also r are Coalgebras.

(Co)free (co)monads. Given an endofunctor H on some category C , there is the

obvious forgetful functor U : H–coalg 	 C , sending an H-coalgebra X 	 HX to its

carrier X . If U has a right adjoint R : C 	 H–coalg, the induced comonad UR is

called the cofree comonad on H, denoted by H∞; dually, if the analogous forgetful

functor U : H–alg 	 C has a left adjoint L, the induced monad UL is called the free

monad on H, denoted by H�.

The most important property of cofree comonads is that H ∞–Coalg �� H–coalg;

consequently, any H-coalgebra k : X 	 HX corresponds to a unique H∞-Coalgebra

k∞: X 	 H∞X , its so-called coinductive extension; dually, H �–Alg �� H–alg, and for

an H-algebra h : HX 	 X , there is its unique inductive extension h�: H�X 	 X to an

H�-Algebra.

Provided H∞ exists and C has products, there is a more concrete description of the

cofree comonad: H∞X is the final coalgebra of the functor X �H. Consequently, by

Lambek’s Lemma [SP82], we obtain H∞X �� X �HH∞X , yielding the two projections

X
fstX�� H∞X

sndX�	 HH∞X . The comonad structure on H∞ is derived by extending the

map X �	 H∞X first to a functor and then to a comonad H∞ in Cmd�C �. Explicitly

(for proofs, see, e.g., [Tur96, §7]), given f : X 	 Y , define H∞ f as the map making

the following diagram commute:

X

f
��

H∞X
fstX

 sndX 		

H∞ f
��	
	
	 HH∞X

HH∞ f
��

Y H∞Y
fstY

 sndY 		 HH∞Y

(2.7)

2.4. Category Theoretic Preliminaries 33

This is well-defined by finality of H∞Y , which also implies functoriality. The counit εX

is given by fstX : H∞X 	 X , and the components of the comultiplication δ are obtained

by using the universal property of �H∞�2X :

H∞X
idH∞X

��

sndX 		

δX
��	
	
	 HH∞X

HδX
��

H∞X �H∞�2X
fstH∞X

sndH∞X

		 H�H∞�2X

(2.8)

Dually, if C has coproducts and H� exists, H�X is the initial �X � H�-algebra.

Such free monads arise, for instance, in universal algebra [BS81]: given a signature

Σ, there is a polynomial functor [RB85] (of the same name) such that the Σ-algebras

(in the categorical sense) are precisely the Σ-interpretations from universal algebra.

Writing T
��
� Σ�, TX is simply the set of all Σ-terms with variables in X ; in particular,

if X is the empty set /0 (the initial object in Set), T /0 is the set of all closed, i.e., variable-

free, terms, which is thus established as the initial Σ-algebra (since /0�Σ �� Σ); these

considerations form the basis of initial algebra semantics [GTW78].

Accessibility. Given a regular cardinal κ (i.e., a cardinal such that the cardinality of

any union of less than κ many sets of cardinality less than κ is still less than κ, e.g.,

ℵ0), recall from [AR94, MP89] the notion of a κ-accessible category C : essentially,

this means that C has all κ-filtered colimits, and that these special colimits are, in a

precise sense, ‘enough’ to construct all other objects of C ; C is locally presentable if

and only if it is cocomplete and accessible, see [JPT�01]; for instance, Set is locally

presentable.

Let C be an accessible category, F be an endofunctor on C , and let κ be a regular

cardinal. Then F has rank κ, or is κ-accessible, if it preserves λ-filtered colimits for

any λ � κ; if a functor F preserves ℵ0-filtered colimits, i.e., all finite filtered colimits,

F is usually called finitary [Lin66, JPT�98, Rob02].

If κ�λ are two cardinals such that λ � κ, then, by definition, any λ-filtered category

C is automatically also κ-filtered. Hence, if a functor F : C 	 C preserves κ-filtered

colimits (i.e., has rank κ), F in particular preserves λ-filtered colimits (thus also has

rank λ). Moreover, endofunctors of a certain rank form a category: the composition of

two functors with rank κ also has rank κ.

34 Chapter 2. Background

On the structure of categories of coalgebras. The following results are either

taken directly from [JPT�01] or are (easy!) consequences of these results:

 Any accessible endofunctor on a locally presentable category generates a cofree

comonad; in particular, the cofree comonad B∞
A on BA exists.

 If the category C has pullbacks and the endofunctor H : C 	 C preserves weak

pullbacks, the forgetful functor U : H–coalg 	 C also preserves weak pullbacks.

 If B preserves weak pullbacks and generates a cofree comonad, B∞ also preserves

weak pullbacks.

Distributive laws. Given endofunctors F and G on a category C , a distributive law

of F over G is a natural transformation � : FG � GF; note that in [TP97], the letter λ
is used to denote distributive laws, however, since we are frequently using λ-notation

for describing functions, we use this slightly non-standard notation. This notion can

be adapted appropriately for a suitable combination of functor(s) and (co)monad(s),

simply demanding that � satisfies the evident diagrams relating it to the respective

(co)monad structure(s); for a systematic approach to distributive laws, see [PW99,

LPW00].

For instance, a distributive law of a monad �T�η�µ� over a comonad �D�ε�δ� is a

natural transformation � : TD � DT satisfying the following diagrams:

D
ηD

�� ��
��
��
�

��
��
��
�

Dη

��
��

��
��

�

��
��

��
�

TD
� ��

Tε ��
��

��
��

�

��
��

��
� DT

εT�� ��
��
��
�

��
��
��
�

T

T 2D
T� ��

µD

��

TDT
�T �� DT 2

Dµ
��

TD
� ��

Tδ
��

DT

δT
��

TD2
�D

�� DTD
D�

�� D2T

(2.9)

Following [TP97, Bar02], �-bialgebras for a distributive law � : FG � GF are

structures FX
h
	 X

k
	 GX such that the following diagram commutes:

FX
h 		

Fk
��

X
k 		 GX

FGX
�X

		 GFX

Gh

��

(2.10)

2.4. Category Theoretic Preliminaries 35

Homomorphisms of such �-bialgebras are the evident ones, allowing to form the cat-

egory �–Bialg of �-bialgebras; again, there are the obvious variations for (co)monads

and their respective (Co)Algebras.

Liftings. Given two an endofunctors B and H on a category C , a lifting of H to

B–coalg is an endofunctor H̃ on B–coalg such that the following diagram commutes:

B–coalg H̃ 		

U
��

B–coalg

U
��

C H
		 C

where U denotes the forgetful functor. More concretely, the square demands that H̃

transforms a B-coalgebra with carrier X into a B-coalgebra with carrier HX ; adapting

this to liftings of a comonad to B–coalg yields a comonad D̃ on B–coalg such that both

ε and δ are also homomorphisms of B-coalgebras, i.e., the comonad structure of D also

lifts to B–coalg, cf. [TP97, Rem. 5.1]; both concepts can be dualised in order to obtain

liftings to algebras/Algebras.

Distributive laws induce liftings. For a distributive law � : FG � GF , one obtains

 a lifting G̃ of G to F–alg: given FX
h
	 X , we get FGX

�X	 GFX
Gh
	 GX

 a lifting F̃ of F to G–coalg: given X
k
	 GX , we get FX

Fk
	 FGX

�X	 GFX

Again, there are suitable variations: liftings of functors to (Co)Algebras, or liftings

of (co)monads to (co)algebras, requiring that either the distributive law respects the

additional structure, or that the operations of the (co)monad lift, respectively.

In general, the existence of a lifting does not guarantee the existence of a dis-

tributive law. However, when lifting to categories of (Co)Algebras, the converse also

holds [BW85, Jac94]; in particular, there is an equivalence between distributive laws

TD � DT of a monad T over a comonad D, liftings of the monad to D–Coalg, and

liftings of the comonad to T–Alg—see [TP97, Thm. 7.1].

36 Chapter 2. Background

Distributive laws induce composite (co)monads. Given two comonads D and D �

on a category C , the composite functor DD� does, in general, not carry a comonad

structure. However, if we have a distributive law of comonads � : DD� � D�D, there is

a canonical comonad structure on DD� with counit εε� and comultiplication defined as

DD� δδ�
�� DDD�D� D�D��� DD�DD�

Simultaneously, the distributive law � also induces a lifting D̃ of D to D�–Coalg,

as sketched above. In this situation, we have DD�–Coalg �� D̃–Coalg; the dual result

holds for monads—see [Jac94].

Chapter 3

A Mathematical Model of Timed

Processes

This chapter presents the semantic basis underlying the languages for timed processes

presented in the previous chapter: timed processes are described by timed transition

systems (TTSs), i.e., restricted LTSs where transitions are labelled by elements of a

time domain [JSV93], a special kind of monoid representing time. The restrictions

imposed on the transition relations of TTSs express (widely accepted) properties of

time passing related to the monoid structure of time. We also present time bisimulation,

which is strong bisimulation between TTSs, as an appropriate notion of equivalence

between TTSs. After exhibiting elementary descriptions of these notions, we show

that partial actions of the monoid of time are the same as TTSs, which also results in

a new characterisation of time bisimulation.

Note that this chapter exclusively focuses on time transitions; action transitions are

not considered for the moment. However, one should keep in mind that there is the

‘equation’

processes � LTS � TTS

where the LTS describes the action transitions modelling (instantaneous) computations

while the TTS, as introduced in the following, represents the passage of time without

external interactions by time transitions.

Further stressing the importance of the monoid structure on time, total monoid

38 Chapter 3. A Mathematical Model of Timed Processes

actions also play an important role in the form of delay operators, used to model post-

poning computations of timed processes. Moreover, the two concepts of time transi-

tions and delay operators are combined in biactions: a set of processes endowed with

a partial monoid action describing the idling capabilities of processes, together with

a total monoid action representing a delay operator, and with the two actions suitably

related. As such, these biactions could be considered as a very primitive algebra of

timed processes, incorporating two of the most important concepts associated with

such processes. Note that this, again, only takes into account the timing behaviour of

such processes; action transitions are not (yet) considered.

Parts of this chapter have, in condensed and less general form, previously appeared

in [Kic02a].

3.1 Notions of Time as Monoids

In this section, we are going to present a suitable formalisation of time itself in the form

of time domains: special monoids which can be partially ordered in a way compatible

with monoid composition. The notion presented here, taken from [JSV93], is general

enough to encompass all important examples used later on. It is also more general than

other similar notions found in the literature on timed processes, as demonstrated by a

brief discussion concluding this section.

Definition 3.1 ([JSV93])

A (commutative) time domain is a (resp. commutative) monoid T � �T ���0� which

is anti-symmetric

(AS) ��t�u � T �� t �u � 0 � t � u � 0

and left-cancellative

(LC) ��s� t�u � T �� s� t � s�u � t � u

A homomorphism of time domains is simply a standard monoid homomorphism. �

It is immediate to see that the (small) time domains form a category, which is a full

subcategory of the category of (small) monoids. Homomorphisms may be thought of

3.1. Notions of Time as Monoids 39

as ‘time transformations,’ i.e., switching from one ‘time line’ (in the widest sense) to

another one. Note that we use the additive notation with � and 0, yet time domains are

not necessarily assumed to be commutative: the notation merely yields a better match

with the naive understanding of time and its properties. It is easily seen that the two

axioms (LC) and (AS) are independent, i.e., one does not imply the other (e.g., any

non-trivial group satisfies (LC) but not (AS), and in the other direction, consider any

non-trivial finite-join semilattice where (AS) but not (LC) holds).

Despite adopting the notion from [JSV93], we are still going to give a detailed

presentation of the motivation underlying, and also of the technicalities involved in,

time domains since the literature on the subject is rather sparse, as regards intuition.

After all, time is at the very heart of our considerations, and so its model should be

presented with all due care.

There are at least two interpretations of the elements of a time domain T , corre-

sponding to different aspects of time. The first one is that t � T represents an absolute

point in time, e.g., 12:13 on July 31st 2002. Alternatively, from the point of view of

durations, t � T describes the amount of time it takes for an event to occur, relative to

the current position in time. These two interpretations are closely related: being at a

point t � T in time, the new position in time after an event with duration u � T should

be t � u � T obtained by combining t with u according to a binary composition func-

tion � on T . Additionally, for t�u � T , the composition t � u intuitively corresponds

to the duration of two consecutive events with the respective durations t and u.

These considerations already motivate the presence of a composition function, or

addition, � on T . Furthermore, recall the common assumption in the previously pre-

sented calculi to separate instantaneous computations from pure time passing. In order

to be able to also associate a duration to such instantaneous calculations, there should

be a distinguished ‘zero’ duration in T , written as 0, expressing precisely the absence

of duration that characterises an action as being instantaneous.

Furthermore, the addition � should at least be associative in order to provide a

sensible way of repeatedly combining durations. This is in accordance with intuition:

when three (or more) events occur in sequence, the same total duration should be

obtained regardless of how the intermediate durations were added up. Moreover, the

40 Chapter 3. A Mathematical Model of Timed Processes

zero duration 0 should act as the neutral element for �, capturing the intuition about

representing no duration at all: the duration of an event is not affected by performing

an instantaneous action immediately before or after it.

These considerations justify a monoid structure on T . However, that alone would

allow too many instances not easily seen to represent time; additional axioms have to

be imposed to exclude such unrealistic situations. One particularly important property

is that time can only progress: it is not possible to ‘undo’ actual temporal progress,

marked by a non-zero duration. Axiom (AS) expresses this by stating that, if adding

two durations t�u � T yields 0, this is only possible in the trivial case when both t and

u are actually equal to 0. Consequently, there cannot be ‘negative’ durations: mov-

ing ‘backward’ in time is prohibited. Note that this in particular excludes all groups

as models for time. Furthermore, note that (AS) could have also been stated as an

equivalence since t � u � 0 anyway implies t �u � 0.

This rather indirect way of expressing the mentioned progress property arises from

an attempt to use as few primitives as possible. Commonly, in particular with the

absolute interpretation of time, a time domain T is also assumed to come with an

order structure, and progress is then formulated in order-theoretic terms, e.g., 0 being

the least element, and for each time t � T , there exists a time u � T which is strictly

greater. Yet, as we shall see shortly, assuming only the monoid structure as primitive

already allows to derive a very natural order on T . Moreover, in all our examples, this

derived order coincides with the corresponding standard order, and the order-theoretic

version of progress indeed follows from the axioms imposed on the monoid structure.

Another important property of naive time is that measuring durations is unaffected

by the context in which the measurement takes place. This is, in a basic fashion, ex-

pressed in (LC); the connection should become clearer when considering the following

logically equivalent formulation of the axiom:

��s� t�u � T �� t �� u � s� t �� s�u

This states that inequalities of durations are stable under translations: two different

durations t�u � T are still different after adding an initial offset s � T : the fact that t

and u are different is not altered by first waiting for the same initial period of s units of

time. Note that this expresses the fact that for each s � T , the translation by s, i.e., the

3.1. Notions of Time as Monoids 41

function �λt�s� t� on T , is injective; thus, relative to s, durations are invertible (this

will be shown formally later on).

A general property of a time domain T is whether it is commutative or not, i.e.,

whether it satisfies the familiar axiom t �u � u� t for all t�u � T . Intuitively, com-

mutativity means that first waiting for t units of time and then for u units yields the

same amount of time when waiting for those durations in the other order, first u units

and then t units. This is very a very natural property as long as one regards time as

a ‘straight line’ where there are no ‘side routes.’ When this is not the case (and, as

we shall see, this makes perfect sense), it might happen that waiting for t and u units,

respectively, leads to different such ‘side roads’ which never join again (like different

branches of a tree) and so, commutativity will not hold. Let us now consider several

examples of time domains (both commutative and non-commutative ones).

Example 3.2

1. The singleton set 1 � �0� is a commutative time domain, the trivial domain; this

embeds the un-timed case where everything happens instantaneously.

2. The natural numbers � , with � and 0 as monoid composition and neutral ele-

ment, respectively, form the commutative time domain of discrete time.

3. The non-negative real numbers ��0 , again with � and 0, form the (also com-

mutative) time domain of continuous, or dense, time; in the following, we will

frequently write � instead of the more precise ��0 when no confusion can arise.

As it will turn out, timed processes over continuous time can have very compli-

cated behaviour, the theory works better for discrete time.

4. If T1 and T2 are (commutative) time domains, their product T1 �T2 (regarded as

a monoid), with component-wise operations, is also a (resp. commutative) time

domain because (AS) and (LC) are inherited from the Ti. This generalises to

arbitrary products, so, in particular, the powers � n and �n of n-tuples of natural

and non-negative real numbers, respectively, with the component-wise opera-

tions, are commutative time domains. As an application, consider processes

consisting of several components with independent local ‘time lines,’ cf. the

42 Chapter 3. A Mathematical Model of Timed Processes

(real-valued) clocks of timed automata [AD94]; note that � n is the free com-

mutative monoid on n generators.

5. For a finite set C � �c1� � � � �cn�, recall the free monoid C� on C: C� is the set

of finite words over the alphabet C; monoid composition is given by concate-

nation; its neutral element is the empty word ε. Then C� is the (for
C
 � 1

non-commutative) time domain of local qualitative time: the ci �C correspond

to (abstract) clocks as, e.g., in PMC [AM94], and ‘local’ refers to the fact that

different clocks are independent. This is reflected by the freeness of C�: there is

no relation between the clocks (not even commutativity), a word w �C� simply

describes a sequence of ticks of clocks. Note that both the trivial domain and

discrete time are particular instances of this case, the former for C � /0, the latter

for
C
� 1 (cf. the unary representation of natural numbers). �

There is the long-standing general question concerning embeddability of monoids

into groups: a monoid M can be embedded into a group G if there exists an injective

monoid homomorphism M �	 G, making M (isomorphic to) a sub-monoid of G; in

this situation, G is also known as an extension group of M. Embeddability is important

because many calculations become much easier when being able to carry them out in

a group. For time domains, the following can be said with respect to embeddability.

Remark 3.3

Because of (AS), a non-trivial time domain can itself never be a group. However,

by [vW66, §13], any commutative monoid M can be embedded into a group if and

only if it satisfies the (left) cancellation rule

��m�m��m���� m�m� � m�m�� � m� � m��

This is exactly (LC), and so any commutative time domain can be embedded into a

group: � into the integers1 �, and ��0 into the set of all real numbers; analogous

results hold for products, in particular, the free commutative monoid � n can be em-

bedded into the free commutative group on n generators, �n.

1Taking equivalence classes of pairs of natural numbers representing the same ‘distance’; cancella-
tion is needed to obtain a well-defined extension of � to these equivalence classes.

3.1. Notions of Time as Monoids 43

Moreover, C� can also be embedded, viz., into the free group F�C� on C: with C�1

denoting the set of formal inverses of C and � the disjoint union of the two sets, F�C�

is given by the quotient of �C�C�1�� generated by the equalities cc�1 � c�1c � ε.

Hence, it is possible in F�C� to cancel out adjacent pairs of inverses, e.g., ccdd�1c�1

is actually equal to cε � c in F�C�. �

For general non-commutative monoids, embeddability is a notoriously hard prob-

lem: see [Mal37, Mal39, Mal40] for some classic results and counterexamples. For

arbitrary non-commutative time domains, right cancellation (the symmetric version

of (LC)) does not necessarily hold; this is shown in the following counterexample, due

to G. Plotkin. Consequently, because both left and right cancellation are necessary

conditions for embeddability (they actually hold in any group, so certainly also in the

extension group), an arbitrary time domain cannot be embedded into a group.

Example 3.4

Take the free monoid S� on the three-element set S
��
� �a�b�c� and consider its quotient

M induced by the equivalence relation generated by the equation

(3.1) ac � bc

The quotient M carries a monoid structure inherited from the free monoid, and (AS)

clearly holds; also, by construction, M does not satisfy right cancellation: ac � bc, yet

a �� b. However, M satisfies (LC); for this, it is convenient to regard M as obtained

from S� by the rewrite system (see [BN98, DP01]) consisting of the following rewrite

rule, obtained by directing (3.1):

uacv 	 ubcv

where u�v � S�, i.e., any substring ac can be replaced by bc.

This rewrite system is Church-Rosser: for u�v�v� � S� such that u 	 v, u 	 v�, and

v �� v�, there is w � S� such that v 	 w and v� 	 w. This follows because there must be

(at least) two disjoint occurrences of ac in u: otherwise, v �� v� could not hold. Hence,

there is still (at least) another occurrence of ac left in both v and v�, respectively, which

can then rewritten to obtain the same w � S�.

44 Chapter 3. A Mathematical Model of Timed Processes

Strong normalisation also holds: any word that can be rewritten must be of the

form w1acw2 � � �wn�1acwn, where none of the wi � S� contains any occurrences of ac,

and its normal form then is w1bcw2 � � �wn�1bcwn. Write � v � w if v�w � S� have the

same normal form; note that � v � w is equivalent to v � w in M.

Suppose � uv � uw, i.e., uv � uw in M; without loss of generality, u�v�w are in

normal form. Moreover, if both uv and uw are also in normal form, they are identical

and so v � w; thus assume for instance that uv is not in normal form. As u and v are in

normal form, this implies that u � u1a and v � cv1 with normal form u1bcv1 � u1bv.

If uw is in normal form, we get a contradiction since uw � u1aw and u1bv cannot be

equal; so we have that w� cw1 and the normal form is u1bw. Since � uv � uw, we have

that u1bv � u1bw, and because v and w are in normal form, we get v � w, i.e., (LC)

holds in M. �

Another example where left- but not right-cancellation holds are the set of ordinals

with their (non-commutative) addition.

3.1.1 The Commutative Case

Throughout this subsection, we assume that all time domains are commutative. There

will be a special subsection following this one collecting all results that also hold for

non-commutative ones, together with counterexamples for properties that fail to hold.

According to their definition, time domains are merely special monoids. Hence,

there is not yet a way of accounting for such typical time-related statements as earlier

or later points in time, or some events having longer or shorter durations than others.

To express these properties, there must be a way of comparing elements of a time

domain. This is, as usual, formalised by postulating that each time domain should carry

a (partial) order �. Furthermore, the order should be compatible with the addition in

the following sense. It should always hold that t � t � s: after all, time t � s was

intuitively reached from time t by waiting for the, according to (AS), ‘non-negative’

duration s. Moreover, this should be the only way one can reach a later point: whenever

t � u there should be a (right) ‘witness’ s � T such that t � s � u, i.e., u can only be

reached from t by waiting for s units of time in between. This leads to the following

3.1. Notions of Time as Monoids 45

definition2:

Definition 3.5 ([JSV93])

Let T be a monoid. The precedence relation � of T is defined, for all t�u � T , as

(3.2) t � u
��
� ��s � T �� t � s � u

As usual, t � u denotes t � u� t �� u, and if I � T , I � t denotes ��u � I�� u � t, i.e.,

that t is an upper bound of I. Furthermore, write t u if neither t � u nor u � t holds,

and call t and u incomparable in this case. �

Note that incomparability is symmetric, i.e., t u � u t. The notation is derived

from partial-order semantics for concurrency (see [NPW81, Pra86]): there, incom-

parable states can be executed in parallel, so we chose to use the symbol usually

associated with parallelism.

Proposition 3.6

Let T be a monoid. Then its precedence relation � is reflexive and transitive, i.e., it is

a pre-order.

Proof: Let t � T . Since t � 0 � t, it follows that t � t. Let t�u�v � T such that t � u

and u � v. By definition, there must exist s1�s2 � T such that t� s1 � u and u� s2 � v.

Substituting the first equation in the second, we obtain

v � u� s2 � �t � s1�� s2 � t ��s1 � s2�

by associativity; hence, t � v follows. �

Since � is always a pre-order and defined in terms of �, it will also be referred to

as the induced pre-order. For commutative time domains, one can show more (the first

two items are already contained in [JSV93]):

Proposition 3.7

Let T be a commutative time domain.
2The terminology ‘precedence relation’ stems from the field of tense logics, see [vB89] for an

overview.

46 Chapter 3. A Mathematical Model of Timed Processes

1. The precedence relation � on T is a partial order.

2. The neutral element 0 � T is the least element with respect to �. Furthermore,

there are no maximal elements with respect to �, unless T is trivial.

3. The following equivalence holds for all s� t�u � T :

(3.3) t � u � s� t � s�u

In particular, � is monotone with respect to �.

Proof:

1. It remains to show that � is anti-symmetric. Therefore, let t�u � T such that

t � u and u � t. Hence, by definition, there exist s1�s2 � T such that t � s1 � u

and u� s2 � t, and calculate: t � 0 � t � u� s2 � �t � s1�� s2 � t ��s1 � s2�.

Applying (LC) yields 0 � s1 � s2, hence s1 � s2 � 0 by (AS).

2. Trivially 0� t � t, and so 0 � t for each t � T . Assume now that there is m � T
such that t � m for all t � T ; in particular m � m � m. Thus, by definition,

there must be s � T such that m��m� s� � �m�m�� s � m � m�0. Apply-

ing (LC) yields m� s � 0, so (AS) implies m � 0 and T is trivial.

3. If t � u, we have t � v � u for some v � T ; so �s� t�� v � s��t � v� � s�u,

i.e., s� t � s�u. In the other direction, assume s� t � s�u; then there exists

v� T such that s��t � v� � �s� t�� v � s�u. By (LC), t�v� u, or t � u. The

claim about monotonicity follows since the equivalence states that both functions

s� and � s are monotone, and being monotone in each argument separately

is the same as being jointly monotone in both arguments since the order on the

product is given by the component-wise order, see, e.g., [Plo83]. �

Because the induced pre-order is actually a partial order for time domains, we call

it the induced order. An immediate consequence of the preceding lemma is that any

non-trivial time domain is automatically infinite: otherwise, there would be a maxi-

mal element. Moreover, homomorphisms f : T 	 T � of time domains T and T � are

3.1. Notions of Time as Monoids 47

automatically monotone with respect to their respective induced orders � and ��: for

t � u, which is equivalent to u � t � s, we obtain

f �t��� f �t�� f �s� � f �t � s� � f �u�

Note that one direction, viz., right-to-left, of the equivalence (3.3) is an order-theoretic

version of (LC), and hence could be called (left) order-cancellation.

Remark 3.8

From the previous proposition, it follows that a commutative time domain is a monoid

object [Mac97] in the category POSets of partially ordered sets and monotone func-

tions. �

Example 3.9

Let us consider the previously given examples of time domains and describe their

precedence relations concretely.

1. For the trivial domain, the order is also trivial.

2. For discrete or continuous time, the precedence relation is precisely the standard

‘less-than-or-equal relation; in both cases, the order is actually linear: any two

elements of the respective domain are comparable with respect to �.

3. The precedence relations of �n and �n are the component-wise extensions of

the standard order � on � and �, respectively; these are true partial orders, e.g.,

�1�0� �0�1�. For a general product T � T �, one also obtains the component-

wise combination of the respective orders on T and T �; if both T and T � are

non-trivial, this is again only a partial order. �

Axiom (LC) has an important consequence:

Lemma 3.10 ([JSV93])

Let T be a commutative time domain with precedence relation �, and let t�u � T .

Then if t � u there is a unique s � T such that t � s � u.

Proof: Assume t � u; hence, by definition, there exists s � T such that t � s � u.

Now suppose that there is s� � T such that also t � s� � u, i.e., t � s � u � t � s�.

Applying (LC) immediately yields s � s�, as desired. �

48 Chapter 3. A Mathematical Model of Timed Processes

This enables us to make the following definition:

Definition 3.11

Let T be a commutative time domain with precedence relation �, and let t�u � T
be such that t � u. Then the (by Lemma 3.10) uniquely determined s � T such that

t � s � u is called the (right) relative inverse of t with respect to u, written as u� t.

These relative inverses induce a partial function T �T � T

(3.4) �u� t� �	

��
�

u� t if t � u

undef otherwise

which is called the partial subtraction function. �

By Lemma 3.10, if t � u, we obtain �u� t� � T as the unique solution to the equa-

tion

(3.5) t � x � u

taken in the time domain T . The notation u� t is chosen because in analogy to the

derived notion of (right) subtraction in the extension group G of T , u� t
��
� ��t��u.

By definition, u� t satisfies the following calculations in G:

t ��u� t� � t ����t��u� � �t ���t���u � 0�u � u

So the derived relative inverses in G are the (necessarily unique) solutions for (3.5)

when taken in G. Consequently, the relative inverses in T are simply obtained by

restricting the derived notion of subtraction in G to such pairs �t�u� in T �T ! G�G

for which t � u holds.

It would also be possible to define left relative inverses u���t� which correspond-

ingly are the unique solutions for y in the equation y� t � u. Naturally, for commuta-

tive groups, the two notions of relative inverse coincide.

Example 3.12

All our examples can be embedded into groups, so the relative inverses are just com-

puted by restricting the derived subtraction from the respective extension groups:

3.1. Notions of Time as Monoids 49

1. For discrete and continuous time, the relative inverse of t with respect to u is

u� t for the usual subtraction, which is well-defined since t � u.

2. For �n or �n , the relative inverses are obtained by component-wise subtraction:

recall that�t ��u iff each component of�t is less than or equal to the corresponding

component of �u, and so subtraction is well-defined for all components; this,

again, can be generalised to arbitrary products. �

Lemma 3.13

Let T be a commutative time domain.

1. For all t�u � T , t � t � 0 and �t �u�� t � u.

2. Let s� t�u � T . Then

(a) s � u � ��s� t��� �u� t���

(b) ��s�u�� � s�u � t� � u � s � u� t

3. For t � T , ���� t : T � T is monotone with respect to �:

��s�u � T �� s� u � s� t � u� t

4. Let s� t�u � T . Then

(a) �u� s�� t �� �u� t�� s

(b) t � �s�u� �� �u� t�� s

Proof: All claims are trivially verified when calculation in an extension group G of

T , which exists by Remark 3.3. However, we can also establish them directly.

1. Since t � 0 � t, and t � t is the unique element of T such that t ��t � t� � t,

0� t�t follows. Let now be t�u� T . The value of �t�u��t is the unique s� T
such that t � s � t �u; since trivially t �u � t �u, it follows that �t �u�� t � u,

as claimed.

2. Let s� t�u � T .

50 Chapter 3. A Mathematical Model of Timed Processes

(a) This is just the transitivity of �.

(b) Assume �s� u�� and s� u � t. Then u � s; moreover, s � u��s� u��

u� t. In the other direction, assume u � s � u� t. Then �s� u� � and

by (3.3), s�u � �u� t��u � t.

3. Assume s� u; this is equivalent to s � u. Furthermore, assume �s� t��; hence,

by the previous point, �u� t��. We then have

t ��s� t� � s � u � t ��u� t�

Applying Proposition 3.7 to cancel the t on both sides yields the claim.

4. Let s� t�u � T .

(a) Assume ��u�s��t��; this is equivalent to s� u. Then �u�s��. Moreover,

since u � u� t, certainly also ��u� t�� s��, so the equation makes sense.

Furthermore, s � u is equivalent to u � s��u� s�, and so we get

s���u� s�� t� � �s��u� s��� t � u� t

Since relative inverses are unique, we obtain �u� s�� t � �u� t�� s, as

claimed.

(b) Assume �t � �s� u���; this is equivalent to u � s � u� t and hence, the

equation makes sense. Now calculate

s���u� t�� s� � u� t � u���s�u���t� �s�u���

� �u��s�u����t� �s�u�� � s��t� �s�u��

and so, by (LC), we obtain t � �s�u� � �u� t�� s, as claimed. �

Definition 3.14

Let T be a commutative time domain with precedence relation �. Define truncated

subtraction [Law73], also called monus in [Jac96, Jac00], �� : T �T 	 T by

(3.6) u �� t �

��
�

u� t if t � u

0 otherwise

Moreover, say that a time domain T is linear if its precedence relation � is a linear

order, i.e., for all t�u � T either t � u or u � t holds. �

3.1. Notions of Time as Monoids 51

Note that, if T is not linear and t u, then t ��u � u �� t � 0. Also note that ��� �� t is

monotone with respect to the precendence relation �: this follows from the analogous

property of the partial subtraction function � from (3.4) proved in Lemma 3.13.

Both � and ��0 are examples of linear time domains, whereas products and powers

like �n and �n in general are not. Since 0 is the least element in every time domain

T and that there are no maximal elements, a linear time domain corresponds to the

familiar view of time as a time line: starting at 0, it extends in a straight line towards

‘infinity’ (cf. Proposition 3.7 where it was established that non-trivial time domains

cannot have maximal elements).

Previously, it was shown that every time domain T is a partially ordered monoid,

so it is a category with objects t � T and morphisms t 	 u if and only iff u � t holds;

in particular, 0 is an object of T . Note that regarding (pre-)orders as categories in this

way, as in [Law73], is dual to the standard approach presented in [Mac97]; the reason

for doing so will become clear in the next proposition.

We have seen that the functions t� : T 	 T are all monotone and hence functors

on T . In the linear case, the right adjoint of each of these functors exists:

Proposition 3.15

For every commutative time domain T , the following are equivalent:

(i) for all t � T , truncated subtraction ��� �� t is the right adjoint of t ����, i.e.,

(3.7) t � s " u � s " u �� t

(ii) T is linear

Proof:

(i) � (ii): Assume that (3.7) holds. Since we have to show that � is linear, assume

t �� u. By definition of ��, this implies that u �� t � 0. Now choose s � 0; trivially,

0 � s " u �� t � 0. Applying (3.7) then yields t � t �0 � t � s " u. Consequently,

t �� u implies t " u, i.e., T is linear.

(ii) � (i): Let t�u�s � T . Two cases arise since T is linear.

 t � u: Lemma 3.13 then states

��u� t�� � u� t � s� � t � u � t � s

52 Chapter 3. A Mathematical Model of Timed Processes

However, by t � u, �u� t�� and u �� t � u� t, so this is equivalent to (3.7).

 u � t: Then trivially u � t � s, u �� t � 0, and also s " 0, so (3.7) holds. �

Additionally, since we assume T to be commutative, ���� t � t ����; so also ����t

is monotone, i.e., a functor on T , making � a bifunctor on T . Moreover, the monoid

laws then make �T ���0� into a (symmetric) monoidal category. An obvious question

is whether this monoidal structure on T is closed in the sense of [EK66, Law73],

leading to closed time domains. From Proposition 3.15, we obtain:

Corollary 3.16

Every linear commutative time domain is closed. �

There is an interesting phenomenon happening for T � ��� : it is a commutative,

non-linearly ordered time domain. Moreover, it is also closed: this follows because the

product of closed categories is again closed; concretely, the closed structure on T is

given component-wise, i.e.,

�m1�n1� ���m2�n2�
��
� �m1 ��m2�n1 ��n2�

It is easy to see that this definition validates (3.7). However, this is not the truncated

partial subtraction on � �� from (3.6): according to the component-wise definition,

�1�0� ���0�1�� �1�1�, while the result for the order-induced variant is �0�0� because

�1�0� �0�1�; consequently, (3.7) does not hold for the order-induced variant.

3.1.2 The Non-Commutative Case

After presenting the properties of commutative time domains, we can do the same for

the general notion. The aim of this section is to illustrate how far properties carry over

from the commutative case; we are not going to reprove those results here that hold in

all generality, we simply note that the previous proofs did not use commutativity.

Proposition 3.17

Let T be an arbitrary time domain. Then:

3.1. Notions of Time as Monoids 53

1. Its induced pre-order �, as defined in (3.2), is a partial order with 0 as the least

element, and there are no maximal elements with respect to � unless T is trivial.

2. The equivalence (3.3) still holds as it is written:

t � u � s� t � s�u

In particular, the function s� : T 	 T is monotone. �

Example 3.18

For local qualitative time, the precedence relation is exactly the prefix relation on finite

words: let w�v � C� be two words; then w � v holds if and only if v can be written

as ww� for some word w� �C�. For
C
� 1, this only yields a partial order, while for

C
� 1, this is simply the standard order on the naturals. �

Again, homomorphisms are always monotone. Note that, in general, the function

� s : T 	 T is not monotone with respect to �: if T � C� for the three-element

set C � �a�b�c�, ‘post-fixing’ does not preserve the prefix relation, e.g., a � ab yet

ac �� abc, hence � c is not monotone.

Lemma 3.19

Any time domain has (right) relative inverses: if t � u there exists the uniquely deter-

mined u� t � T such that t ��u� t� � u. �

Note that, in contrast to the commutative case, the relative inverses u� t, for t � u,

in general only satisfy t ��u� t� � t, i.e., they are only inverses when added on the

right; analogously, if T can be embedded into a group (which is not always the case for

non-commutative T , see Example 3.4), the two notions of relative inverses in the group

are different (if T and, consequently, also its extension group are non-commutative):

for instance, consider the free group on the two-element set �c�d� where c�1d �� dc�1.

Example 3.20

For local qualitative time, w � v can only hold if w is a prefix of v, i.e., v � ww�,

and then the relative inverse v�w is given by removing the prefix w from v, i.e.,

v�w � ww��w � w�. �

54 Chapter 3. A Mathematical Model of Timed Processes

Lemma 3.13 carries over completely:

Lemma 3.21

Let T be an arbitrary time domain. Then:

1. For all t�u � T , t � t � 0 and �t �u�� t � u.

2. Let s� t�u � T . Then

(a) s � u � ��s� t��� �u� t���

(b) ��s�u�� � s�u � t� � u � s � u� t

3. For t � T , ���� t : T � T is monotone with respect to �:

��s�u � T �� s� u � s� t � u� t

4. Let s� t�u � T . Then

(a) �u� s�� t �� �u� t�� s

(b) t � �s�u� �� �u� t�� s �

The definitions of truncated subtraction �� and linearity generalise can be to arbi-

trary time domains, also the proof of Proposition 3.15 does not use commutativity:

Proposition 3.22

For an arbitrary time domain T , the following are equivalent:

(i) for all t � T , truncated subtraction ��� �� t is the right adjoint of t ����

(ii) T is linear �

As an example, consider the time domain of ordinals with their non-commutative

addition: it is linear, hence truncated subtraction is the right adjoint to �.

However, non-commutative time domains are, in general, not closed: in fact, they

are not even always monoidal categories as � s may not be monotone (e.g., for C�).

The requirement ‘ � s is monotone’ is equivalent to

(3.8) ��s� t � T �� ��s� � T �� s� s� � t � s

3.1. Notions of Time as Monoids 55

which is satisfied if T is commutative, but does not hold for C�. Consequently, closure

for non-commutative time domains only makes sense after imposing suitable condi-

tions like (3.8) which guarantee that � is a bifunctor.

For
C
� 2, for example C � �a�b�, C� is a non-commutative and non-linear time

domain. So Proposition 3.22 does not hold: the specific functor ��� �� t is not the right

adjoint of t ����. Actually, there cannot be any right adjoint for t ���� in C�: its

existence would imply that �a�b� has an upper bound in C�, which is impossible.

3.1.3 Comparison with Other Models

After presenting this formalisation of time by the time domains from [JSV93], we

want to briefly compare it with other notions from the literature. Frequently, lan-

guages for timed processes are only presented with respect to one concrete model of

time, e.g., � ��0� in [MT90], ��0 ��0� in [Sch95], and ��0 in [Wan90]; on top of

that, this model is usually simply regarded as a set, making no reference to the semi-

group/monoid and/or order structure, despite quite freely making use of both when

defining the operational semantics of processes and proving propositions related to it.

Aiming for a formal and conceptual account of timed processes, we chose to take an

axiomatic approach in an attempt to make our work as ‘generic’ as possible.

Apart from the concrete approaches, there are also a number of other axiomatic

accounts of time. These all turn out to be less general than the one from [JSV93].

Jeffrey, in [Jef91], postulates that a time domain is a left-cancellative monoid whose

precedence relation � is a linear order with greatest lower bounds infT of all non-

empty subsets T � T . Therefore, it rules out both free and product monoids since

those are only partially ordered. Finally, Nicollin and Sifakis in [NS91] (as well as in

the later paper [NSY93]), introduce time domains as commutative monoids satisfying

(3.9) t � t � � t � t � � 0

which are, additionally, linearly ordered by the precedence relation � as introduced

before. Starting from these assumptions, they are able to show that 0 is the least ele-

ment with respect to �, and that the relative inverses u� t exists for t � u (essentially

following the same arguments as above). It is obvious that their definition is strictly

56 Chapter 3. A Mathematical Model of Timed Processes

less general than the one adopted here: their condition (3.9) is a consequence of our

axioms (AS) and (LC); consequently, each of their time domains is one according

to our definition, while their definition again excludes the partially ordered or non-

commutative examples of product and free monoids given above.

All in all, we believe the presented variant of time domains strikes a reasonable

balance between modelling intuitive properties of time and still being general enough

to include many interesting examples, making it an adequate choice for providing the

basis of a mathematical treatment of timed processes.

3.2 Transition Systems for Timed Processes

Having formalised time by time domains, this section now provides a precise model of

timed processes based on a special kind of transition systems, together with a natural

and appropriate notion of equivalence. After a concrete definition of these transition

systems, a more mathematical characterisation of them as partial monoid actions is

presented.

3.2.1 Timed Transition Systems and Time Bisimulation

We are now going to describe timed transition systems (TTSs)3 as a model of the way

processes evolve over time; the notion we present is synthesised from various accounts

in the literature, viz., [Wan90, NS91, JSV93]. To distinguish these TTSs from standard

labelled transition systems as in Def. 2.2, which are also used for describing the action

transitions of timed processes, a slightly different notation, inspired by some of the

calculi for timed processes, will be used. In the following definition, recall that the

operations of the time domain T are written additively even although T need not be

commutative.

Definition 3.23

A timed transition system (TTS) is a labelled transition system �P�T ��� where P is

a set of processes, T � �T ���0� is a time domain, and the time transition relation

3Not to be confused with the typed transition systems of [Kah96]!

3.2. Transition Systems for Timed Processes 57

�� P� T �P satisfies the following axioms, writing �p� t� p�� �� as p
t
� p�, and

using p� p�� � � � and s� t�u� � � � to range over P and T , respectively:

p
t
� p�� p

t
� p�� � p� � p��(Determinacy)

p
0
� p(ZeroDelay)

p
t�u
� p� � ��p���� p

t
� p��

u
� p�(Continuity)

If T and � are clear from the context, we sometimes identify a TTS simply with its

set P of states; given a TTS �P�T ���, we sometimes call it a TTS over T when we

want to particularly emphasise which time domain T is used as the set of labels. �

Let us now try to intuitively justify the restrictions imposed by the axioms; again,

although the notion of TTS is synthesised from the literature, we still want to give

some motivation to make the underlying ideas more palatable, partly also prompted by

the lack of explanatory material in the literature. Note that the name ‘continuity’ might

seem a little odd but it is standard in the literature.

All4 models and languages from the literature, e.g., in [Jef91, JSV93, MT90, NS91,

Sch95, Wan90, BM01], assume that time passes deterministically, as is expressed

in (Determinacy): given a state p, waiting for the same amount of time invariably

results in reaching the same state p� � p��. Hence, time transitions in a TTS model

time passing without non-deterministic side-effects. The underlying intuition is that

the only way non-determinism can be introduced is by ‘real’ computations, i.e., by

action transitions, which actually ‘do something.’ Consequently, all choices arising

from non-deterministic computations should also be resolved exclusively by action

transitions; time transitions simply model ‘waiting for a prescribed period of time.’

Note that this could indeed affect the potential for action behaviour, but in a de-

terministic fashion. In particular, by only excluding non-deterministic side effects, we

have not ruled out time-out operators as are sometimes present in languages for timed

processes, e.g., [AM94, HR95, NS94]. As a mundane example, consider going to a

cinema with several screens where different films are shown at different times. When

waiting for too long, the choice of films being shown changes; more abstractly, this cor-

responds to time-outs: the possibility to see a certain film at a certain time is gone once

4With the exception of the early paper [Gro90] which has since been superseded.

58 Chapter 3. A Mathematical Model of Timed Processes

that time has passed. Yet that does not mean that time passes non-deterministically:

two people waiting together will not suddenly have different choices of films; idling

may change the potential behaviour, provided that it always does so in the same way,

producing the same results.

Furthermore, note that (Determinacy) is also different from the persistency axiom

advocated in [Wan90, Wan91, Sch95]:

(Persistency) p
α
	 � p

t
� p� � p�

α
	

In contrast to (Determinacy), (Persistency) indeed expresses that observable5 action

transitions, i.e., action transitions with labels �� τ, cannot be disabled by the passage

of time. Assuming (Maximal Progress), it prohibits time-outs which are not trig-

gered by performing an internal event, i.e., a
τ
	-transition: compare the difference

between the respective time-out operators in [NS91] and in [Sch95] (the languages

in [Wan90, Wan91] do not contain such an operator). These initial internal actions

strike us as unnecessary ([NS91] defines a time-out without internal actions), and even

unrealistic (what is their intuitive interpretation?), they seem more like a ‘hack,’ de-

signed to validate (Persistency) despite the presence of time-outs. Consequently, we

chose not to adopt this property.

More conceptually, since TTSs provide the model for time passing (and nothing

else!), their definition should not make any reference to action transitions: the two

kinds of transitions represent (abstractions of) orthogonal properties of real-life events.

Hence, they should not be mixed on the level of models, otherwise the separation

would be rather superfluous. On the level of languages for timed processes, this is a

completely different issue. There, it makes perfect sense to have the two kinds of tran-

sitions mutually interdependent, cf. calculi like TiCCS [Wan90] which adopt (any form

of) the maximal progress assumption [HdR89]: languages define processes with both

action and time transitions, it is only the two separate models which, in our opinion,

should be kept strictly apart.

However, using a model already containing two kinds of transitions (see, e.g.,

Chapter 7), we would no longer object to postulating axioms which relate the two
5Since the mentioned languages also adopt (Maximal Progress), if α � τ then only t � 0 is possible,

and then (ZeroDelay) anyway implies p � � p; consequently, (Persistency) holds anyway for internal
transitions.

3.2. Transition Systems for Timed Processes 59

kinds of transitions because the axioms then indeed stay ‘withing the model.’ It is only

when we consider the time transitions on their own, as now, that the model should be

‘closed,’ i.e., contain no ‘external references’ to other structures not formally part of it.

This is in the same vein as introducing time domains as special monoids, not just sets:

we want to use addition, the precedence relation, etc., in the operational semantics, so

we have to make it part of the model when attempting to be precise and formal.

As for (ZeroDelay), most languages and models do not consider
0
�-transitions,

exceptions being [Jef91, JSV93]. Yet, such transitions can safely be added according

to the axiom, there is nothing intrinsic to the languages that would prohibit doing so.

Regarding its intuitive content, (ZeroDelay) is very clear, in particular when recalling

the intuition that 0 represents the absence of time passing: when a process is in a

state p and then no time passes, the state p should not be affected. In other words:

no instantaneous state transitions should be possible. Note that this has no effect on

the assumption of instantaneous action transitions, they model computations which

rightly should be allowed to change the state of a process; their being instantaneous

is simply an abstraction of the real world. However, since time transitions represent

idling phases, i.e., doing nothing, instantaneous state changes, when no idling occurs,

in addition to the absence of action transitions, would seem counterintuitive. In some

sense, this axiom again expresses the deterministic nature of time passing: there are

no spontaneous transitions in the absence of idling (and computations). Furthermore

note that one of the motivations to include
0
�-transitions in our model is to also have

a measure for the duration of (instantaneous) action transitions, as already explained

during the justification of the monoid structure on a time domain.

Finally, (Continuity) is again widely accepted, e.g., [MT90, NS91, Sch95, Wan90].

There also exist variants in the literature which consider only one of the implications,

viz., the direction left-to-right in [JSV93], and the right-to-left direction in [Jef91].

Yet not only can the use of both implications be intuitively justified, it also yields a

mathematically more pleasing model. As regards the latter point, we believe that using

the equivalence, as stated above, fittingly incorporates a form of ‘homomorphism’

property with respect to the time domain for the labels: while (ZeroDelay) lifts the

neutral element 0 � T in an adequate way to the level of time transitions, (Continuity)

60 Chapter 3. A Mathematical Model of Timed Processes

expresses that the time transitions comply with the monoid composition �. Hence, the

structure of the time domain is reflected in the structure of TTSs built on top of it.

Of course, the previous ‘argument’ is mostly formalistic, or even ‘aesthetic’; nev-

ertheless, it has its virtues: one of our goals is a conceptually sound model for timed

processes, and with such an objective, criteria of a more aesthetic nature should not

be too easily dismissed. Besides, since our interpretation of ‘conceptual’ is ‘within an

abstract categorical framework,’ there are also technical considerations to support this

choice of axiomatisation, as will become clear in Chapter 4: this formulation makes

TTSs much more amenable6 to a categorical treatment.

Apart from these ‘meta’-considerations, there is also a more ‘hands-on’ intuition

for (Continuity): the idea behind the axiom, according to [Wan90], is that ‘if an agent

[= timed process] proceeds from one instant to the other, it must reach all intermediate

instants in between.’ To illustrate this, let us consider the two implications separately.

The right-to-left direction, which incorporates a form of transitivity (or additivity),

should always be valid since it precisely captures the intuition of the monoid composi-

tion: it describes the duration of consecutive events. If p first idles for t units of time,

becoming p�� in doing so, and then p�� idles for u units of time, i.e., two events with

respective durations t and u are performed consecutively, t �u precisely represents the

total duration of the two events put together and p should in this situation be able to

perform a
t�u
� -transition: starting in state p, nothing but idling for t � u units of time

is done, simply the intermediate state p�� (or the state reached after an ‘intermediate

instant’ in the terminology of [Wan90]) is made explicit.

The implication from left to right, which could be called interpolation (or density),

states that any time transition with a composite label of the form t �u can be decom-

posed according to the monoid addition. For its justification, recall that in the induced

order structure on a time domain T , the only way for t � s to hold is that s � t �u for

some (necessarily unique) u � T . Therefore, t �u is really just an arbitrary duration

greater than or equal to t. With this in mind, during an idling period of t � u units of

time, one should in particular have to wait for the shorter amount of t units of time

6Note additionally that, in our opinion, evidence from the literature suggests that categorical tech-
niques favour ‘beautiful’ solutions over ad-hoc ones.

3.2. Transition Systems for Timed Processes 61

first: time should not have ‘holes’ allowing to ‘pass by’ intermediate times7.

Consequently, if p can perform a
t�u
� -transition to p�, there should exist a state p��

such that there is a
t
�-transition from p to p��, allowing to idle for (the shorter amount

of) t units of time. Furthermore, by (Determinacy), p�� and p� are unique. So at this

point of the argument, we know that p can perform a
t
�-transition to p��, in addition

to the assumed
t�u
�-transition to p�. Suppose now, in contradiction to (Continuity), that

it is impossible to perform a
u
�-transition from p�� to p�. This would result in quite

a paradoxical situation: starting in state p, one can idle for t units of time and then

continue idling for u units of time in order to achieve the total idling time of duration

t �u, yet when starting in state p��, having been reached from p by idling for t units of

time, it would not be possible to wait for u units of time. From this point of view, it

seems completely natural that there should be a
u
�-transition from p�� to p�, allowing

to ‘close the gap’.

Let us now present some examples of TTSs.

Example 3.24

1. As a simple example, consider the case of T � � and let P � �pe� po� with the

transition relation ‘generated’ by the following
1
�-transitions:

pe
1
� po po

1
� pe

After adding
0
�-transitions according to (ZeroDelay), we can picture the transi-

tion system as follows:

��������pe0 ��

1
����������po 0��

1

��

Note that this is not yet a TTS since the LTS does not satisfy (Continuity): for

example, the following sequence of transitions

pe
1
� po

1
� pe

7Note that this is quite different from non-continuous observation of processes: it is perfectly plau-
sible that one is only interested in the state of processes at specific temporal ‘inspection points’. Yet this
should not be confused with the fact that the process has to ‘exist’, i.e., has to be in some state, at times
prior to an observation point. After all, how should any kind of inspection be performed if the process
had ‘died’ or ‘disappeared’ earlier on? Moreover, where to should it disappear?

62 Chapter 3. A Mathematical Model of Timed Processes

is derivable but the transition system does not contain a transition labelled with

1� 1 � 2 from pe to itself. To rectify this, we have to add, for each n � � , the

following transitions:

pe
2n
� pe po

2n
� po

pe
2n�1
� po po

2n�1
� pe

With these transitions added, it is now easy to show that the resulting transition

system is indeed a TTS (the names pe and po were chosen with the intuition that,

with pe considered as the start state, pe is the state reached after an even number

of time units, while po is the state corresponding to an odd number of time units

having passed).

2. To give a more interesting example of a TTS, consider the set of TeCCS agents,

i.e., all closed process expressions derivable from the grammar of the language

(cf. [MT90]). After adding transitions according to (ZeroDelay), one obtains a

TTS �TeCCS�� ��� where � is the time transition relation on agents defined

by the time rules of the language. �

Next, we are going to present an adapted version of strong bisimulation from Def-

inition 2.3 as a natural equivalence for TTSs.

Definition 3.25

Given two TTSs �Pi�T ��i�, i � �1�2�, a relation R � P1 �P2 is a (strong) time bisim-

ulation (over T) if �p1� p2� � R implies for all t � T that

p1
t
�1 p�1 � ��p�2�� p2

t
�2 p�2 ��p�1� p

�
2� � R

p2
t
�2 p�2 � ��p�1�� p1

t
�1 p�1 ��p�1� p

�
2� � R

We write p1 �t p2 if there exists a strong time bisimulation containing �p1� p2�, i.e.,

(3.10) �t
��
�
�

�R � P1 �P2
 R is a time bisimulation�

If P1 � P2 � P, we say that R is a time bisimulation on P. �

3.2. Transition Systems for Timed Processes 63

This notion of equivalence is very frequently used (usually combined with bisimu-

lation for actions, see later on), the only exceptions we are aware of are TiCSP [Sch95],

since in the CSP-tradition, (timed) failures [Hoa85] are the standard notion of equiva-

lence, and TPL [HR95], where an approach based on testing [DH83] is proposed.

Example 3.26

1. As a simple example of a time bisimulation, again consider the previous example

of a TTS with the two states pe and po. Intuitively, the two states are equivalent

since their potential for time transitions is the same: with a
2n
�-transition, i.e., a

time transition of even duration (recall that T � � in this example), both stay in

the same state, and for a
2n�1
� -transition, i.e., a time transition of odd duration,

one changes from pe to po, and vice versa. This is formalised by the fact that the

relation

R � ��pe� pe���pe� po���po� pe���po� po��

is a time bisimulation.

2. The relation � on TeCCS agents as defined in [MT90] is a time bisimulation on

the TTS obtained on the set of TeCCS agents from the previous example. Note

that this relation � is different from the relation �t introduced in Definition 3.25

since the former also takes into account action transitions. We are going to

discuss these two different notions shortly. �

If P1 � P2 � P, the relation �t� P�P introduced in Definition 3.25 enjoys analo-

gous properties to standard bisimulation, see e.g., [Mil89, Gla01]:

Proposition 3.27

Let �P�T ��� be a TTS. Then the relation �t� P�P is the largest time bisimulation

on P and additionally an equivalence relation. �

Given a TTS �P�T ���, we have seen that the largest bisimulation �t on P is

an equivalence relation. As usual, we can therefore consider the set P��t of pro-

cesses modulo time bisimulation, the set of equivalence classes of processes modulo

the equivalence relation �t . For p � P, write its equivalence class with respect to �t as

�p��t

��
� �q � P
 p �t q� �

64 Chapter 3. A Mathematical Model of Timed Processes

often dropping the subscript �t , simply writing �p�. As we will now show, the TTS on

P can be extended to the equivalence classes P��t :

Proposition 3.28

Let �P�T ��� be a TTS with largest bisimulation �t� P�P. For p� p� � P and s � T ,

define

(3.11) �p�
s
� �p��

��
� ��p�� � P�� p

s
� p�� � p�� �t p� �

In this way, one obtains a TTS over T on P��t .

Proof: To begin with, we have to show that the above notion of transition relation on

P��t is well-defined. Let therefore be p� p� � P and s � T such that �p�
s
� �p��, and

assume that there exist q�q� � P such that p �t q and p� �t q�. We have to show that

also �q�
s
� �q�� holds.

By definition, �p�
s
� �p�� means that there exists some p�� � P such that p�� �t p�

and p
s
� p�� . From this last point, by the assumption p �t q, we can deduce that there

exists q�� � P such that q
s
� q�� and p���t q��. Since we know that p���t p��t q�, and by

the transitivity of �t , we therefore obtain q�� �t q�. Hence we have shown that q
s
� q��

for some q�� � P such that q�� �t q�, in other words �q�
s
� �q��, as desired. Hence, � is

well-defined on P��t . We now have to check the axioms for TTSs.

For (Determinacy), let p� p1� p2 � P, t � T , and assume �p�
s
� �p1� and �p�

s
� �p2�.

Hence, by definition,

p
s
� p�1 � p�1 �t p1

p
s
� p�2 � p�2 �t p2

Since �P�T ��� is a TTS and in particular satisfies (Determinacy), it must hold that

p�1 � p�2 and so p1 �t p�1 � p�2 �t p2. Therefore, due to the transitivity of �t , p1 �t p2

and hence �p1� � �p2�.

As for (ZeroDelay), let p � P. By assumption, we have that p
0
� p, and by the

reflexivity of �t , we get p �t p, sufficing to establish �p�
0
� �p�.

Finally, let p� p� � P, t�u� T and assume �p�
s�u
� �p��. By definition, this means that

there exists p�� � P such that

p
s�u
� p�� � p�� �t p�

3.2. Transition Systems for Timed Processes 65

By (Continuity), this implies that there exists r � P such that p
s
� r

u
� p��. Obtaining

r �t r from the reflexivity of �t , this means that �p�
s
� �r�. Furthermore, by definition,

we obtain �r�
u
� �p��. Conversely, assume that �p�

s
� �r�

u
� �q� for p�q�r � P and s�u �

T . The definition applied twice yields

p
s
� p� �t r

r
u
� r� �t q

Since p� �t r and r
u
� r�, there exists some p�� � P such that p�

u
� p�� and p�� �t r� �t q.

Axiom (Continuity) and the transitivity of �t now yield p
s�u
� p�� �t q, which means

nothing but �p�
s�u
� �q�, concluding the proof. �

Example 3.29

1. In the example with the two states pe and po, since they are bisimilar, the quotient

modulo �t has just one state which has a
t
�-loop for each t � � .

2. Applying the last two propositions, the quotient TeCCS��t of TeCCS agents

modulo the largest time bisimulation is also a TTS �TeCCS��t
�� ���. �

Remark 3.30

When considering actual calculi like TeCCS which do not just deal with the timing

behaviour of processes but also take into account their action transitions, it is necessary

to combine time bisimulation with standard bisimulation for action transitions, as is

done, for example, in [MT90] for TeCCS (where the resulting notion of equivalence is

further shown to be a congruence). Note that this implies that processes bisimilar in the

combined sense are equivalent with respect to both standard action bisimulation and

time bisimulation. The crucial point for this combined notion of bisimulation is that

processes deemed to be equivalent not only have to have the same (action and time)

transitions but the respective successor processes must again (co-inductively) satisfy

that very same property.

For precisely this reason, it is not enough to simply have two separate bisimulations

for action transitions and for time transitions, i.e., considering processes equivalent

if they are bisimilar with respect to action transitions and if they are time bisimilar.

The coinductive properties satisfied in this case are not strong enough: after one step,

66 Chapter 3. A Mathematical Model of Timed Processes

say a time transition, one only obtains processes which are guaranteed to be again

time bisimilar but no knowledge about the capabilities for action transitions can be

derived. The analogous problem occurs after an action transition: no guarantees about

the timing behaviour can be given.

The following example will show two transition systems with both action and time

transitions which are bisimilar for the separate bisimulations but not in the combined

sense, thus establishing that the combined notion is strictly finer. Assuming T � �

(again only for simplicity), consider the processes p and q as given by the two transition

systems in Figure 3.1 whose time transitions are easily seen to form TTSs.

	
�����p0
��

1
����������p10

��

a
����������pa0

��

b

����
��
��
��
�

c

		�
��

��
��

��

��������pab

0

��������pac

0

	
�����q0
��

1
����������q10

��

a

����
��
��
��
�

a

		�
��

��
��

��

��������qa10
��

b
��

��������qa2 0
��

c
����������qab

0

��������qac

0

Figure 3.1: Two example transition systems

The states p and q are trivially action bisimilar since neither has any action tran-

sitions. Furthermore, the relation ��p�q���p1�q1�� is a time bisimulation: both p and

q have 0-loops and the
1
�-transition of p to p1 is matched by the transition from q to

q1, and vice versa, and the resulting pair is contained in the relation, both of which

again only have 0-loops as time transitions. However, it is well-known that p1 and q1

are not action bisimilar, hence they cannot be bisimilar in the combined sense. As a

consequence, p and q cannot be bisimilar in the combined sense either: any combined

bisimulation containing the tuple �p�q� would also have to contain the tuple �p1�q1�.

Hence, this shows that the combined notion is strictly finer. �

3.2. Transition Systems for Timed Processes 67

3.2.2 TTSs as Partial Monoid Actions

We can now introduce the notion of (right) partial monoid action which plays a very

prominent role in our mathematical account of timed processes: it will turn out that

such actions are the same as TTSs. Note that we again write the monoid operations

additively without assuming commutativity. Partial monoid actions are generalisations

of the notion of partial group action [Exe98, KL02] (usually presented as left actions),

and the ones we are going to introduce are a slight variation on the ones from [MS02]

(again, modulo switching from left to right actions).

Definition 3.31

Let X be a set and M � �M���0� be a monoid. Then a partial (right) monoid action

of M on X is a partial function α : X �M � X satisfying the following two axioms for

all x � X and m�n � M

α�x�0�� x(3.12)

α�α�x�m��n�� α�x�m�n�(3.13)

Usually, we write x #m instead of α�x�m�, and simply say that X is a partial (right)

M-set, when the action α is clear from the context. The set X is also known as the

carrier of the partial action α. �

Note that, in (3.12), one could replace Kleene equality� by the standard equality �

since the expression x is always defined, i.e., both sides of the equation up to � always

have to be defined anyway. In contrast, (3.13) is in general only up to Kleene equality,

allowing for ‘really partial’ partial actions. One important consequence of (3.13) is

that

(3.14) �x# �m�n��� � �x#m��

by the definition of Kleene equality. When M is only a semigroup, one can drop (3.12)

and get an appropriate notion of partial semigroup action. Demanding that M is a

group, and that α is a total function, one obtains the well-known notion of a group

action, see, e.g., [Lan93]. The difference to the partial monoid actions of [MS02]

68 Chapter 3. A Mathematical Model of Timed Processes

is that we use a stronger axiomatisation: in place of our axiom (3.13), they use the

following, weaker one, when translated to our notation of additive right actions:

(3.15) �x#m�� � �x#m�#n � x# �m�n�

This, in turn, is stronger than the corresponding axiom for partial group actions found

in [KL02], which arise by restricting total (group) actions to subsets of their carrier8:

(3.16) �x#m�#n �� x# �m�n�

We are now going to present some examples illustrating our notion of partial

monoid actions.

Example 3.32

1. The monoid addition � (from the right) is a partial action of M on M itself.

This is an immediate consequence from the monoid axioms. Moreover, � even

satisfies (3.13) up to standard equality, not just Kleene equality: it is a total

monoid action, and will be discussed later on from a different point of view.

2. Assume T � �T ���0� is a time domain. Then the partial subtraction function

from (3.4) defines a partial action of T on itself.

Proof: As was shown in Proposition 3.17, 0 is the least element with respect

to �. Hence, 0 � u always holds and therefore, u� 0 is always defined; it also

immediately follows that u�0 � u, establishing (3.12).

Let now be s� t�u � T . We have to show

�s� t��u � s� �t �u�

Since Kleene equality � is defined in terms of two Kleene implications ��, we

establish these two separately. Assume therefore ��s� t�� u��. Consequently,

we obtain �s� t��, by definition meaning that we have s � t�v for some unique

v � T , and so s� t � v. Furthermore, substituting this in ��s� t�� u� �, we

get �v�u��, which again means that v � u�w for a unique w � T , and v�u �

8We would like to thank M. Lawson for pointing out this intuition to us via email.

3.2. Transition Systems for Timed Processes 69

�s�t��u� w. Putting these results together, we obtain s� t�v � t��u�w� �

�t � u��w, in other words, �t � u�� s and s� �t � u� � w � �s� t�� u, as we

had to show.

Conversely, suppose s� �t � u��. This, by definition, means t � u � s and s �

�t � u��w for the unique w � T such that w � s� �t � u�. Using associativity,

we get s � �t � u��w � t ��u�w� and so t � s. Consequently, �s� t� � and

s� t � u�w. Analogously, one obtains u � u� w � s� t and �s� t�� u �

�u�w��u�w, showing s��t�u��w� �s�t��u; in particular ��s�t��u��,

establishing the second Kleene implication. �

3. Using the same argument as before, it can be shown that

��� 2 � � � �m��n1�n2�� �	 m� �n1�n2�

is a partial �2 -action on � . This can be generalised to any commutative time

domain T to obtain a T n-action on T . �

Note that the truncated subtraction �� from Definition 3.14 is merely a suitably

‘totalised’ version of the partial subtraction (filling in 0 in undefined places). We can

now prove the following result explaining our interest in partial monoid actions:

Theorem 3.33

Each TTS �P�T ��� is equivalent to a partial T -action on P, and vice versa, the corre-

spondence being given by

(3.17) p
t
� p� � p� � p# t

Proof: Let �P�T ��� be a TTS. Because of (Determinacy), given p � P and t � T ,

there is at most one process p� � P such that p
t
� p�. This means that we can in-

deed regard the time transition relation � as a partial function # : P�T � P, and its

value is given as in (3.17). Furthermore, (ZeroDelay) states that always p# 0 � p, for

each process p � P, i.e., it precisely corresponds to axiom (3.12) for partial actions.

Finally, (Continuity) states that p# �t �u� must be defined if and only if both p# t is

defined and �p# t�#u are defined, and moreover, they have to be equal, precisely as

expressed in (3.13) for partial actions.

70 Chapter 3. A Mathematical Model of Timed Processes

In the converse direction, (3.17) shows how to define a transition relation� on the

carrier P of a partial action # : P�T � P. From the type of #, it follows that, for each

p � P and t � T , there is at most one possible p� � P such that p� � p # t, and so �

satisfies (Determinacy). Finally, (ZeroDelay) and (Continuity) are just consequences

of (3.12) and (3.13), respectively. �

Had we taken the definition of partial monoid actions as in [MS02], we would not

have been able to prove this equivalence, or rather, we would have needed to alter the

definition of TTSs analogously: in place of (Continuity), we would have had to use

‘weak’ continuity, corresponding to (3.15):

��p���� p
t
� p�� � �p

t�u
� p� � p

t
� p��

u
� p��

which is quite unlike all axioms for timed processes. We therefore believe that our

definition of partial monoid actions, although non-standard, is more appropriate with

respect to our objective of a mathematical and conceptual study of timed processes.

Example 3.34

Since we have now obtained an alternative characterisation of TTSs as partial monoid

actions, we can regard the two standard examples of partial monoid actions, viz., the

monoid composition and the partial subtraction of a time domain, as TTSs and study

their properties with respect to time bisimulation.

1. For an arbitrary monoid �M���0� (hence including all time domains), consider

the partial M-action on M itself given by the addition �. Using (3.17), we can

translate it into a TTS with M as the set of processes, yielding

(3.18) m
m��

� m� � m� � m�m��

after replacing the Kleene equality � from (3.17) with the standard equality �

since the expression m�m�� on the right-hand side is always defined. With this

TTS on M at hand, an evident question to ask is when two elements m�m� � M

are time bisimilar. For this, consider the following relation

R�m�m��
��
� ��m�n�m��n�
 n � M�

We claim that this is always a time bisimulation.

3.2. Transition Systems for Timed Processes 71

Proof: Let �a�b� � R�m�m��. By the definition of R�m�m�� this means that there

exists n � M such that a � m� n and b � m�� n. Now assume a
m��

� a� which is

equivalent to a�� a�m�� � �m�n��m��� m��n�m���, using the associativity

of �. Now, choosing b�
��
� b�m�� � �m�� n��m�� � m���n�m���, we obtain

from (3.17), applied to this case, that b
m��

� b�, and by the definition of R�m�m��, we

also obtain �a��b�� � R�m�m�� and analogously in the symmetric case, establishing

R�m�m�� as a time bisimulation. �

Hence, for each pair �m�m��, there exists at least one time bisimulation contain-

ing it, viz., R�m�m��, meaning that �� M �M, the complete cartesian product,

the largest possible equivalence relation. Put differently, M�� � �	�� 1 in this

special case: the quotient collapses, all states are time bisimilar.

2. Let �T ���0� be a time domain. We have already explained how the relative

inverses u� t for t � u in the induced order induce a partial monoid action, the

partial subtraction action T �T � T . Using (3.17), this then defines a TTS on

T as follows, for t�u�u� � T :

(3.19) u
t
� u�

��
� u� � u# t � u� t

We can again ask what time bisimulation on this TTS on T means and, where for

� everything was equivalent, here we obtain the other extreme: no two distinct

elements of T are equivalent, for all t�u � T , t �� u implies t �� u.

Proof: It trivially holds that 0 � 0. Moreover, for t � 0, t �� 0: t
t
� 0 yet 0 �

t
�.

Therefore, �0��� �0�, i.e., 0 is only bisimilar to itself. Let now t�u� T such that

t �� u. Then t
t
� 0 but since t �� u, it cannot hold that u

t
� u� � u� t and 0 � u�:

this would imply u� � 0, and so we would obtain u� t � 0, and consequently

t � u. Hence t �� u. �

Using the contra-position t � u � t � u of the claim, this last result can also be

rephrased as �� IdT , i.e., � is the smallest possible equivalence relation. �

Considering the TTSs induced by the two standard monoid actions on the monoid

(or time domain) itself again underlines their intuitively dual nature: whereas the one,

72 Chapter 3. A Mathematical Model of Timed Processes

the composition �, induces a TTS in which all states are equivalent, the partial sub-

traction � induces a TTS where no distinct points in time are time bisimilar.

Usually, when introducing ‘objects with (algebraic) structure,’ one defines homo-

morphisms of such objects simply as functions respecting, or preserving, the extra

structure. This is exactly the case for partial monoid actions:

Definition 3.35

Let M be a monoid and let αi be partial M-actions on Xi, i � �1�2�, the αi written as

#i, respectively. A homomorphism from #1 to #2 (or, less precisely, from X1 to X2) is a

(total) function f : X1 	 X2 such that for x � X1 and m � M

(3.20) f �x#1 m�� � f x�#2 m

Alternatively, such maps are also called equivariant [MS02]. With this notion of ho-

momorphism, partial M-actions form a category M–pAct. �

When a partial action is actually a total function X �M 	 X , we call it a total

monoid action; the prototypical example is given by monoid addition �. Homomor-

phisms of total monoid actions are defined using the same equation (3.20) as in the

partial case: since all involved functions are total, � and � coincide. In the remain-

der of this thesis, whenever M is a monoid, denote by M–Act the full subcategory of

M–pAct consisting of total right M-actions and their homomorphisms.

Remark 3.36

Using the correspondence from Theorem 3.33 and the definition (3.20) of homomor-

phism of partial action in Definition 3.35, we could obtain a corresponding notion of

morphism of TTSs as follows. Given two TTSs �Pi�T ��i�, a morphism between them

is a (total!) function f : P1 	 P2 such that, after translating the TTSs into partial T -

actions P1 � T � Pi, f is a homomorphism of the corresponding partial T -actions.

In concrete terms, using the correspondence (3.17), this means that f : P1 	 P2 is a

morphism of TTSs if and only if the following holds, for all p � P1 and t � T :

��q� � P2�� ���p� � P1�� p
t
�1 p� � f p� � q�� � � f p

t
�2 q��

��q� � P2�� � f p
t
�2 q�� � ���p� � P1�� p

t
�1 p� � f p� � q��

3.2. Transition Systems for Timed Processes 73

Note that, somewhat sloppily, this could be written as

(3.21) p
t
�1 p� � f p

t
�2 f p�

The reason for our not introducing this notion of homomorphism of TTSs is be-

cause it is slightly odd, when considered on its own. Traditionally, a homomorphism

of transition systems has to satisfy only the left-to-right direction of (3.21): if there is

a transition possible in the domain of the homomorphism, then there should be a cor-

responding transition in the codomain (cf. the more general case of directed graphs).

Regardless of that, using (3.21) as it is, we could extend Theorem 3.33 to an equiva-

lence of categories. �

Note that despite using partial functions describing the actions, we homomor-

phisms are total functions. Apart from the common mathematical practise to do so,

there is also an intuitive reason for this: in (3.20), which is the natural property a ho-

momorphism from #1 to #2 should satisfy, the only ‘sources of partiality’ should be

the partial actions themselves, not the homomorphism f , which is merely a ‘trans-

formation’. Also, having the total actions as a full subcategory of M–pAct is further

mathematical evidence for the right choice. On top of that, as was the case for TTS,

it also turns out that this particular formalisation, using total functions as homomor-

phisms rather than partial ones, yields a mathematically more pleasing framework, in

particular the treatment of (bisimulation) relations becomes a good deal more natural.

Using the description (3.17) of TTSs as partial actions and the properties of their

homomorphisms, we can give the following re-formulation of what it means to be a

time bisimulation. This will play an important part when linking up the concrete defi-

nition of time bisimulation with the coalgebraic description of bisimulation introduced

in [AM89].

Proposition 3.37

Let T be a time domain and Pi, i � �1�2� be partial T -actions, i.e., TTSs with labels in

T , written as #i. A relation R�P1�P2 is a time bisimulation if and only if �p1� p2� �R

implies for all t � T :

�p1 #1 t��� �p2 #2 t��(3.22)

74 Chapter 3. A Mathematical Model of Timed Processes

�p1 #1 t��� �p1 #1 t� p2 #2 t� � R(3.23)

Furthermore, each time bisimulation R can be endowed with a canonical partial ac-

tion # which, for �p1� p2� � R and t � T , is defined as follows:

(3.24) �p1� p2� # t
��
� �p1 #1 t� p2 #2 t�

This partial action # satisfies the property that the projections πi : R 	 Xi are always

homomorphisms from # to #i.

Proof: In the one direction, let R � P1 �P2 be a relation satisfying (3.22) and (3.23),

let �p1� p2� � R, and let t � T . By (3.22), we know that �p #1 t� �� �p #2 t� �. Us-

ing the correspondence (3.17) between TTSs and partial T -actions, this means the

p1
t
�1� p2

t
�2, and furthermore, p1

t
�1 �p1 #1 t�� p2

t
�2 �p2 #2 t�. Assume there-

fore �p1 #1 t��. Then, by (3.22), also �p2 #2 t��, and moreover, by (3.23), this implies

�p1 #1 t� p2 #2 t� �R. Again using (3.17), this corresponds to the fact that, if p1
t
� p1#t,

then also p2 can perform a
t
�2-transition, and the resulting states are again related by

R, i.e., precisely as stated in the definition of a time bisimulation.

For the converse, assume that R � P1 � P2 is a time bisimulation. Since R is a

time bisimulation, we know that �p1� p2� � R implies in particular, for all t � T ,

that p1
t
�1� p2

t
�2. Under the correspondence (3.17), this is precisely equivalent

to (3.22). Furthermore, assume that p1
t
�1 p�1. Then we know that p�1 � p1 #1 t, and

the analogous property holds for p2
t
�2 p�2. Since R is a time bisimulation, we know

that then �p�1� p
�
2� � R, in other words �p1 #1 t� p2 #2 t� � R, as stated in (3.23).

Finally, if R is a time bisimulation, define the action # of t � T on �p1� p2� as

in (3.24). This is well-defined: by (3.22), either both pi #i t are defined or both are

undefined. Since R also satisfies (3.23), we moreover know that ��p1� p2� # t� � R, so

we obtain a partial function # : R�T � R. It is then routine to verify that # is indeed

a partial T -action. �

Thus, if R is a time bisimulation, Prop. 3.37 states that R is itself a partial monoid

action because it is closed with respect to the partial monoid actions #1 and #2. Again,

this is a mathematically very pleasing fact: the ‘right’ relations between ‘sets with

structure’ (the partial monoid actions) should be the ones which are closed with respect

3.3. Delay Operators and Total Monoid Actions 75

to the extra structure, and which themselves can be regarded as carrying the extra

structure, i.e., which are also objects in the corresponding category. Furthermore, note

how the rewritten definition automatically incorporates (Determinacy): p1
t
�1 p�1 can

only hold for the unique p�1 � p1 #1 t, hence the existential quantification is no longer

required.

3.3 Delay Operators and Total Monoid Actions

Up to now, we have been concerned with a model for timed processes, and we have

presented TTSs as an adequate formalisation of the properties of such processes. We

now turn our attention to a slightly more language-oriented view by considering delay

operators. What we want to model is an operation on a TTS �P�T ��� which takes

a time t � T and a process p � P, and the result should again be a state in P, which

we will write as t � p. The intuition is that t � p should denote the process which, after

an initial waiting period of t units of time, behaves like p, very similar to the standard

action prefix α�p to be found in all important process specification languages.

The concept should be reasonably clear, yet the question remains which, if any,

axioms one should impose on such a delay operator. As a very important point, in

particular to distinguish delaying from letting time pass, a delay operator should be

modelled by a total function of the type T �P 	 P: we can think of no naturally

arising case when a process, on the level of TTSs, should not be delayable. Note

that this is fundamentally different from (Maximal Progress) expressing that certain

(usually internal) computations of a process cannot be delayed.

Apart from totality, there are other properties delay operators intuitively should

satisfy, related to the monoid structure on T 9. For the first, recall that 0 � T denotes

the absence of duration, and so delaying by 0 units of time should mean adding no

initial idling phase: in other words, we want that 0 � p � p.

Moreover, delaying twice, first by t, then by u, should be the same as delaying

by u� t. The twofold delay first enforces t units of time of initial delay, on top of

which u units of, again initial, delay are then added, so to speak from the outside in:

9This should not come as a surprise to the attentive reader.

76 Chapter 3. A Mathematical Model of Timed Processes

we should get a process with an initial waiting period of u units, followed by another

idling period of t units of time, i.e., delaying operates like a stack where always the

top element is manipulated. This is depicted in Figure 3.2, where the box named p

describes (the idling capabilities of) a process p, to which subsequently an initial delay

of t units, then of u units of time are added. However, this precisely corresponds to

u

p p p

t t

Figure 3.2: The ‘delay-as-stacking’ intuition.

adding a waiting period of u� t units of time, recalling the interpretation of the monoid

addition. This leads to the following definition:

Definition 3.38

Given a TTS �P�T ���, a delay operator on P is a function of type T �P 	 P, usually

written as t � p, which is a (left) total action of the monoid T on the set P of processes,

i.e., it satisfies the following equations, for all t�u � T :

0 � p � p(3.25)

u � �t � p� � �u� t� � p(3.26)

If there is such a delay operator on P, we also speak of a TTS with delay. �

Note that the left actions used for delaying have to satisfy a different additivity

axiom, compared to the right partial actions equivalent to TTSs. This is done in order

to capture the intuition that the delays are stacked, rather than queued, as was the case

for time transitions. Furthermore, although a delay operator is defined with respect to a

TTS, its axioms make no reference to the time transitions, i.e., any total monoid action

is a delay operator.

3.3. Delay Operators and Total Monoid Actions 77

Example 3.39

We will now consider some of the previously mentioned examples of TTSs and con-

sider delay operators on them.

1. Let �M���0� be a monoid. We have seen that the addition � induces a TTS

on M. First of all, the monoid addition � on the left(!), i.e., m � n � m� n, is

a delay operator on M. Furthermore, since in the TTS, any two states are time

bisimilar, the TTS obtained by quotienting with respect to bisimulation has only

one state, i.e., M�� � 1. This implies that the unique (constant) function of the

type M�1 �� M 	 1 (because 1 is terminal in Set) is a delay operator.

2. In contrast, the partial subtraction � induces a TTS on T such that no two dis-

tinct elements of T are time bisimilar. Consequently, a delay operator on T��

is still nothing but a total monoid action of T on itself, nothing is gained by

quotienting. This makes addition � an example also in this case.

3. As a further specialisation, consider the time domain � 2 , and recall that we can

obtain a partial �2-action on � , using the partial subtraction (cf. Section 3.2.2).

In this situation, we obtain a delay operator on � , i.e., a total � 2-action, on � by

defining

��n�m��k� �	 n�m� k

as is easily checked.

4. Given a time domain T , t � T , and �u
��
� �u1� � � � �un� � T n, defining

t ��u
��
� �t �u1� � � � � t �un�

yields a delay operator on T n. �

Another ‘example’ of a delay operator should be the time prefixing �t��p of TeCCS:

its intended meaning is exactly that of delaying processes by an amount t of time. Yet,

unfortunately, it is not a delay operator on the set of TeCCS terms, for two reasons.

First of all, (3.25) does not hold because �0��p is not even a term of the language. More-

over, (3.26) does not hold either: on the level of syntax, the two processes �s���t��p and

�s� t��p, corresponding to both sides of the equation, are not equal. However, as

78 Chapter 3. A Mathematical Model of Timed Processes

�s���t��p�t �s� t��p, after augmenting TeCCS with �0��p time prefixes, time prefix-

ing is a delay operator on the set TeCCS��t of TeCCS terms quotiented by the largest

time bisimulation; since this would also identify a lot more processes than simply the

ones needed to validate (3.26), we will now show how to obtain a delay operator on

TeCCS which is almost equal to time prefixing and requires less identifications.

To do so, recall the semantics of time prefixing from [MT90], cf. Figure 2.1. Stress-

ing once more that the syntax of TeCCS does not allow �0��p as a process, we can

slightly sharpen the SOS rules for time prefixing compared to [MT90], one difference

being the previously implicit additional side condition in the leftmost of the following

three rules:

(3.27)
�s� t��p

s
� �t��p

�t � 0�
�t��p

t
� p

p
s
� p�

�t��p
t�s
� p�

Furthermore, while the original version of the rightmost rule had an
s�t
�-transition in the

conclusion, we have changed this to a
t�s
�-transition. According to our interpretation of

addition, t � s corresponds to first waiting for t units of time followed by waiting for s

units of time, and so the
t�s
�-transition more accurately reflects the intuitive behaviour

of time prefixing: in order for �t��p to ‘reach’ the
s
�-transition from p to p�, it first

has to ‘consume’ the t units of added initial delay expressed in the time prefix, cf.

Figure 3.2.

The problem that �0��p is not even a term of TeCCS can be overcome very easily:

simply define a delay operator on TeCCS which maps �0� p� to p, for any term p. As

for (3.26), the we take the set TeCCS and simply identify, via quotienting, terms of the

form �s���t��p with �s� t��p. Note that, in this way, a term of the form �s���t���u��p is

identified with the term �s� t�u��p: nested time prefixes as the topmost operators are

‘flattened’ by adding from the outside in.

The quotient TeCCS� obtained in this way then still carries a TTS, which is very

easy to see: the construction is similar to the one in Proposition 3.28. Moreover, the

map on equivalence classes

�t� �p�� �	

��
�
�p� if t � 0

��t��p� if t � 0

3.3. Delay Operators and Total Monoid Actions 79

is well-defined and a delay operator on TeCCS�.

If we wanted to extend the language itself to allow �0��p as a process and obtain

delay operator simply via �t� �p�� �	 ��t��p� for all t � T , leaving the rules (3.27) as

they are would not work because it would then be possible to derive the transitions

�0��p
0
� �0��p, enforced by (ZeroDelay), yet also �0��p

0
� p, by the second rule for

time prefixing, and consequently invalidate (Determinacy): we would also have to

identify �0��p and p, leading to a more complex quotient of the TeCCS terms.

Avoiding the above quotient construction, we can alternatively rearrange the gram-

mar for the syntax of the language: distinguishing whether the topmost operator al-

ready is time prefixing or not, we only allow time prefixing when this is not the case.

Concretely, (part of) the grammar for TeCCS, with only nil (instead of the 0-process, to

avoid confusion with the monoid structure), time prefixing, and � looks as follows, d

being the start non-terminal, and t still ranging over non-zero times in T � � T ��0�:

d ::� u
 �t��u

u ::� nil
 d�d

or equivalently, substituting the right-hand side of u in d:

p ::� nil
 p� p
 �t��nil
 �t���p� p�

It should be clear that, identifying multiple time prefixes with the ‘added up’ one, the

same terms as in the original grammar are derivable, the only difference being that, in

this fashion, one can never have nested time prefixings, thus precisely removing what

destroys validity of (3.26). Furthermore, one still obtains a TTS, using the same rules

as before. Using this approach, we get a delay operator as follows:

�t� p� �	

�����
����

p if t � 0
���
�
�t��p if p �� �u��q

�u� t��q if p � �u��q
if t � 0

�

This is well-defined, since each derivable term either has a time prefix as its topmost

operator or not, and also (3.26) holds. Moreover, it should be reasonably clear that the

two approaches, using a quotient of the original language, or rearranging the grammar,

80 Chapter 3. A Mathematical Model of Timed Processes

yield essentially the same result: both prohibit nesting of time prefixing10, and both

simply return p as the value of 0 � p.

Note that this use of total monoid actions to model delaying, as opposed to the par-

tial actions equivalent to TTSs, further stresses the obvious duality between addition

and subtraction. On the one hand, � describes delaying, adding more idling poten-

tial, in some sense corresponding to a form of ‘production’. On the other hand, the

(partial) subtraction � describes the effect of time transitions, ‘consuming’ the idling

capabilities of timed processes. Once again, exploiting the monoid structure on the

time domain T allows to derive a way of mathematically expressing properties of an

important construct, time-prefixing, which occurs pervasively in the literature on timed

processes.

3.4 Biactions

In the last two sections, two distinct notions of monoid actions of a time domain T

have been introduced: firstly, the partial actions of T on a set P of processes were

shown to be the same as TTSs on P; secondly, relative to such a TTS, total monoid

actions on the set P of states were used to introduce the concept of a delay operator,

yet no restrictions were imposed as to the interplay between the two kinds of actions.

Conceptually, a TTS with delay describes a structure consisting of a set (of states)

carrying both a partial and a total T -action (the time transition relation and the delay

operator, respectively). This suggests to combine the two notions of monoid actions

into one, which we shall call T -biaction. These T -biactions provide a minimal account

of timed processes which can be delayed and perform time transitions, as defined by

the two actions. In order to ensure that the actions really correspond to delaying and

idling, we have to impose an axiom on their interplay, which simply expresses the

duality between delaying and time transitions, adding and removing idling potential.

10The first approach only removes such nestings on the outside of a term, while the second removes
them anywhere in a term. In order to obtain a complete equivalence, one would have to close the quotient
under substitutions, i.e., say that one identifies �s���t��p with �s� t��p in all contexts of the language,
thus identifying, e.g., the terms nil��s���t��p and nil��s� t��p.

3.4. Biactions 81

Definition 3.40

Let T be a time domain. A T -biaction consists of a set P which is the carrier of both a

(right) partial action, written as p# t, and a (left) total action, written as t � p, such that,

for all t�u � T and p � P,

(3.28) �t � p�# t � p

As usual, we confuse biaction and carrier, simply saying that P is the biaction. The

homomorphisms of T -biactions are the evident ones: maps which are equivariant with

respect to both actions. Thus, we obtain a category T –BiAct. �

Observe that (3.28) could also be written as a traditional equality since p on the

right-hand side is always defined. Note how (3.28) finally formalises the duality be-

tween delaying and idling mentioned on several occasions: an initial delay of t units

of time is ‘consumed’ by idling for t units of time. Also note the asymmetry of this

property: nothing is stated regarding first letting time pass and then adding delay; this

is hardly a surprise: after all, idling might change the state from p to some q and there

need not be any connection between the transitions of p and q.

Axiom (3.28) has two important consequences, showing that the single equation

indeed captures how delaying and time passing should interact intuitively:

Proposition 3.41

Let T be a time domain, and let P be a T -biaction. Then, for all t�u � T and p � P:

1. u � t � �t � p�#u � �t�u� � p

2. t � u � �t � p�#u � p# �u� t�

Proof:

1. Let t�u � T and p � P, and assume u � t. This is equivalent to �t � u� � and

also implies that t � u��t�u�, by definition of the relative inverses. Thus, we

calculate

�t �u� � p � �u � ��t�u� � p��#u � ��u��t�u�� � p�#u � �t � p�#u

using the fact that � is a total monoid action, and (3.28).

82 Chapter 3. A Mathematical Model of Timed Processes

2. Let t�u � T be such that t � u, or equivalently, �u� t� �. This implies, by the

definition of the relative inverses, that u � t ��u� t� and so:

p# �u� t�� ��t � p�# t�# �u� t�� �t � p�# �t��u� t��� �t � p�#u

using the fact that # is a partial monoid action, and (3.28). �

Note that, if T is linear, the two mentioned cases in Proposition 3.41 are the only

ones, i.e., (3.28) can then equivalently be expressed as

(3.29) �t � p�#u �

��
�
�t �u� � p if u � t

p# �u� t� if t � u

Observe that, if t � u, both results are equal to p, hence the overlapping case distinc-

tion causes no trouble. Using linearity, we can simplify (3.29) even further, obtaining

exactly the equation that was used in [Kic02a] to define biactions:

(3.30) �t � p�#u � �t ��u� � �p# �u �� t��

To see that (3.30) and (3.29) are equivalent, we simply note that always at least one of

the two expressions t �� u and u �� t is equal to 0; if both are, t � u must hold with result

p, precisely as stated in (3.28).

Furthermore, note that (3.28) does not specify what happens to �t � p�#u in case

t u holds. Since both t �� u and u �� t are then equal to 0, (3.30) might suggest to use

p as the value in that case, yet this violates (Continuity): let t�u � T such that t u;

additionally, assume t u� t (this is necessarily true for C�); then we would obtain

p � �t � p�# �u� t� � ��t � p�#u�# t � p# t

where the last expression need not even be defined. Essentially the same argument

prohibits the value being t � p, i.e., the state cannot simply be left unchanged.

The only reasonable solution seems to leave the value unconstrained, since nothing

is prescribed by (3.28), and none of the obvious choices result in good definitions.

Intuitively, we can also justify it: the expression t � p denotes the process p with and

initial idling period attached to it, cf. Figure 3.2; the effect of the partial action of

3.4. Biactions 83

u should be to let time pass, yet from the way t � p is constructed, this means that

(at least part of) the initial delay of p has to pass. However, this would imply that

the idling duration has to be related to t. Since t u, the process t � p simply cannot

perform a
u
�-transition. This problem will become important for giving a categorical

characterisation of biactions. We will now give examples of biactions.

Example 3.42

1. Any time domain T is itself a T -biaction with respect to partial subtraction (on

the right) and addition (on the left).

Proof: Instantiating (3.28) in this concrete case, we have to show, for all t�u� T

�t �u�� t � t

yet that was already proved in Lemma 3.21. �

2. Recall the total and partial �2 -actions on � obtained by suitable adapting the

addition and the partial subtraction of � 2 . It is trivially verified that these two

actions also satisfy (3.28). Thus, we get an � 2-biaction on � .

3. Any of the two ways of how to obtain a delay operator for (variants of) TeCCS,

as described in Section 3.3, induces a biaction, the time transitions defining the

partial action, and the delay operator as the total action. This follows very easily,

because both approaches essentially state that t � p � �t��p, modulo the necessary

technicalities. Furthermore, the semantics of time prefixing stays pretty much

the same, and so we get

t � p � �t��p
t
� p

yet that is precisely what (3.28) looks like in this case. �

Remark 3.43

Translating from the partial action notation to the TTS notation, and simply treating

the delay operator t � p as a syntactic construct �t�p (the similarity with the TeCCS

notation for time prefixing is deliberate!), (3.28) states that

�t�p
t
� p

84 Chapter 3. A Mathematical Model of Timed Processes

i.e., the middle rule of (3.27). Similarly, the two consequences of (3.28) stated in

Proposition 3.41, exploiting the fact that u � t is equivalent to t � s� u for u � t � s

and the symmetric result, viz., t � u is equivalent to u � t � s for s � u� t, translate to

�s�u�p
s
� �u�p

p
s
� p�

�t�p
t�s
� p�

also expressing �p # s�� as ��p� � P�� p
s
� p� for the second ‘rule’ and so, we obtain

that the operator � � has precisely the same ‘operational semantics’ as the TeCCS

delay operator. In this way, we can treat a biaction like a (mini-)calculus of timed

processes with a single operator and fixed operational semantics, and all states in P as

constants, their semantics given by the TTS.

Although it is possible to derive �0�p � p from (Determinacy), (ZeroDelay), and

�0�p
0
� p, we do, however, not believe that the two views are equivalent: the biaction-

view also demands that � satisfies the other axiom (3.26) of a total monoid action which,

as far as we can see, is not a consequence of (3.28) and so not necessarily built into

the calculus-view. To obtain an equivalence, one would have to consider a quotient

of the syntax, quite similar to what was done in the previous section to make time

prefixing into a delay operator, only ‘the other way round,’ starting from an operator

with a certain semantics and trying to obtain a biaction. �

Chapter 4

Timed Processes Categorically

In this chapter, we present categorical formulations of all the important concepts re-

lated to timed processes that were introduced concretely in the previous chapter. At

first, we present several categorical characterisations of total monoid actions, thereby

obtaining an abstract description of delay operators, one of the ‘ingredients’ of biac-

tions.

Although we merely recall two of the well-known characterisations from the liter-

ature (some more material is contained in Appendix A), they still serve the purpose of

preparing the ground for a categorical description of partial monoid actions which, to

our knowledge, is new: to this end, we introduce a comonad of evolutions and show

that its Coalgebras are precisely the partial monoid actions from Section 3.2.2.

We then establish some properties of this evolution comonad, in particular that the

associated notion of coalgebraic bisimulation [AM89] is precisely time bisimulation

from Section 3.2.1, yielding a pleasing match between the concrete and the categorical

formulations.

Furthermore, we show how to obtain a simpler description of this comonad in the

case of discrete time (where it actually is cofreely generated), substantiating the claim

that discrete quantitative and global qualitative time are essentially the same.

Combining the coalgebraic characterisation of partial actions with an algebraic de-

scription of total monoid actions by a distributive law (see Section 2.4), we obtain that

the bialgebras of this distributive law are the biactions introduced in Section 3.4.

85

86 Chapter 4. Timed Processes Categorically

4.1 Categorical Descriptions of Total Monoid Actions

In this section, we review several well-known categorical formulations of total monoid

actions. Our reasons for doing so are twofold. First of all, total actions are in them-

selves (part of) the mathematical structure underlying delay operators and biactions:

if we wish to treat these important concepts within a categorical framework, we have

to have a suitable way of expressing them in categorical terms. Furthermore, the char-

acterisations for the well-established total case guide our search for a corresponding

characterisation of partial actions, which, to our knowledge, did not previously exist.

Note that we only present two characterisations here, some more material can be found

in Appendix A.

4.1.1 Total Monoid Actions as Algebras

The following characterisation of monoid actions as (Eilenberg-Moore) algebras for a

monad is well known: for groups, the same construction is contained in [Mac97].

Proposition 4.1

Let M � �M���0� be a monoid. Then the mapping X �	 TX
��
� M�X extends to a

monad �T�η�µ�, its unit η and multiplication µ defined as follows:

ηX : X 	 TX � x �	 �0�x�

µX : T �TX�	 TX � �n��m�x�� �	 �n�m�x�

Furthermore, T–Alg �� M–Act. �

More abstractly, the monad T from Proposition 4.1 is the monad associated to the

adjunction Set ��
�	 M–Act induced by the forgetful functor M–Act 	 Set (there are

additional remarks on the forgetful functor and its adjoint(s) in Appendix A).

Naively adapting this result for partial actions, the same construction on the cat-

egory pSet of sets and partial functions indeed still induces a monad, with the same

operations as before; moreover, its Algebras1 are partial functions of type M�X � X .

Thus, it seems as if we found the desired characterisation:

1Note that this yields left actions; for right actions, we would have to use the symmteric variant of
the multiplication µ.

4.1. Categorical Descriptions of Total Monoid Actions 87

Proposition 4.2

The mapping X �	 M �X extends to a monad on pSet whose Algebras are partial

M-actions. �

However, in Section 3.2.2, we argued that equivariant maps should be total func-

tions and not introduce additional partiality. Yet, the morphisms of Algebras on pSet

are necessarily partial functions: hence, �M� �–Alg is not equivalent to the category

M–pAct. Although one could argue that the definition of homomorphisms as total

functions is simply wrong, since that is the only point which makes the characterisa-

tion as Algebras fail, there are good reasons why this characterisation should not be

the correct one, and why our definition should stand as it is. For one, as already men-

tioned, homomorphisms should not introduce additional partiality, in accordance with

common mathematical practise: also the papers [Exe98, KL02, MS02] use total func-

tions as homomorphisms. Furthermore, the category M–Act of total M-actions would

no longer be a full subcategory.

As a technical point, using Algebras on pSet requires that both syntax and se-

mantics of timed processes ‘live’ in pSet, and that category does not have very ‘nice’

structure2, when compared to the standard category Set of sets and total functions.

Very importantly, limits are very different, e.g., the cartesian product of two sets X and

Y in Set is simply X �Y , while in pSet, it is X �Y �X �Y . As relations, and in par-

ticular bisimulations, are regarded as subsets of the cartesian product in the currently

known approaches, this would result in strange phenomena.

That very same point also applies to modelling syntax in the initial algebra style

of [GTW78] where binary products model (the arguments of) binary function symbols;

hence, either of the arguments could be potentially undefined, resulting in a curious

mix of syntax and semantics: the formal expression (e.g., 0�1) should always exist

(assuming it is well-formed), while only its interpretation might very well be undefined

(e.g., the multiplicative inverse of 0 in �).

Finally, describing processes categorically is based on representing LTSs as coal-

gebras, rather than algebras/Algebras. Therefore, even if the above characterisation

2There is no lack of structure on pSet—in fact, it is very rich—but it has the ‘wrong’ concrete
properties.

88 Chapter 4. Timed Processes Categorically

as Algebras were to work, the question would still remain how to combine it with

the relatively well-established framework of modelling (the operational semantics of)

processes and bisimulations as coalgebras. Consequently, we believe that it would be

preferable to find a different, coalgebraic characterisation of partial monoid actions.

4.1.2 Total Monoid Actions as Coalgebras

Previously, we have seen that the algebras for the monad T � M� ��� are precisely the

total monoid actions; we shall now see how to obtain a coalgebraic characterisation

of total actions. As is well known, the category Set is cartesian closed: exponentials

are given by function spaces; concretely, any function f : M�X 	 X , via currying

corresponds to a unique function g : X 	 X M: where f takes its two arguments at

once, g takes them one after the other. Defining DX
��
� XM yields an endofunctor D

on Set with T � D which, using the operations of T and the adjunction, is even a

comonad—see [MM92, §V.8, Theorem 1].

Furthermore, by [MM92, §V.8, Theorem 2], D–Coalg �� T–Alg; hence, since we

have T–Alg �� M–Act, we obtain D–Coalg �� M–Act, yielding a Coalgebraic charac-

terisation of M-actions:

Proposition 4.3

For a monoid M, the endofunctor D on Set mapping X to X M is actually a comonad

�D�ε�δ�, when defining

εX : DX 	 X � g �	 g�0�

δX : DX 	 D2X � g �	 λm�g� �m�

Moreover, D–Coalg �� M–Act. �

Note a subtlety involved in the definition of δ: the action of m on g is given by

adding to the argument of g on the right; the symmetric variant would not work in a

non-commutative setting: the square in (2.3) would not commute. The important point

about this coalgebraic characterisation of M–Act is that, by using the cartesian closed

structure on Set, it provides the necessary freedom to also be able to deal with partial

monoid actions.

4.2. Partial Monoid Actions, Categorically 89

4.2 Partial Monoid Actions, Categorically

In this section, building on the preceding Coalgebraic description of total monoid ac-

tions, we present our novel, also Coalgebraic, characterisation of partial actions of a

time domain3 T � �T ���0�, and hence, by Theorem 3.33, also of TTSs over T . It is

based on our notion of evolution: specific partial functions T �X satisfying properties

which mimic the axioms (3.12) and (3.13) of partial actions as far as possible, obtained

by ‘currying’ partial actions X �T � X , yielding maps of type X 	 EX where EX

is a suitable set of partial functions of type T � X . The following subsections are, in

that order, devoted to introducing the comonad of evolutions, establishing the corre-

spondence between its Coalgebras and partial actions, and showing that Coalgebraic

bisimulation (the adapted notion from [AM89], see Chapter 2) is equivalent to time

bisimulation, providing a nice match between concrete and categorical formulations.

4.2.1 The Evolution Comonad

Definition 4.4

A T -evolution (on X) is a partial function e : T � X with the following two properties:

e�0��(4.1)

��t�u � T �� e�t �u�� � e�t��(4.2)

The domain of an evolution is defined as usual, viz.,

dom�e�
��
� �t � T
 e�t���

The set all T -evolutions on X is denoted by ET X , or, if T is clear from the context,

simply by EX . �

Example 4.5

Consider T -evolutions for the trivial time domain T � 1. For any set X , because

of (4.1), an evolution e � E1X must be defined at the only element 0 � 1, so it is simply

a total function 1 	 X . Therefore E1X � X1 �� X , i.e., E1 is the identity functor. �

3Although the following construction also works for an arbitrary monoid M, since we aim at a
coalgebraic model of TTSs, we restrict our attention to time domains.

90 Chapter 4. Timed Processes Categorically

We would like to draw the reader’s attention to the (so far only syntactic) similarity

between (4.2) and (3.14). Furthermore, recalling the definition of the induced order �

on T from Definition 3.5, t �u simply denotes an arbitrary element s � T such that

t � s; hence, (4.2) is equivalent to

s � dom�e�� t � s � t � dom�e�

making dom�e� a downward-closed4 subset of T .

An (order) ideal [Plo83] in T is a downward-closed subset of T which additionally

contains the least element 0, so �0� and T are always examples of ideals (cf. the

definitions for rings [Lan93] and lattices [Joh82]). In analogy to the terminology for

rings, we call the set of ideals of T the spectrum5 of T , written as spec�T �; an ideal

I � spec�T � is proper if I �� T . By (4.1), dom�e� must be an ideal, therefore spec�T �

contains all possible domains of T -evolutions. The principal ideal on, or the ideal

generated by t � T is the set �u � T
 u � t� of all elements of T below t.

Dually, upward-closed (or upper closed) subsets of T are called filters, i.e., a filter

F � T satisfies t � F � t � u � u � F for all t�u � T ; the principal filter on t � T
is the set �u � T
 t � u�. Complements of ideals are always filters; hence, given an

evolution e in EX , the set T �dom�e� is a filter. This can also be obtained directly, via

the contraposition of (4.2):

(4.3) ��t�u � T �� e�t�� � e�t �u��

or, again observing that t � u simply denotes an element of s � T such that t � s,

e�t�� � t � s � e�s��.

The concrete time domains � and � are both linear and complete in the sense

that every non-empty, bounded subset T (i.e., T �� /0 and there exists t � T such that

T � t) has a least upper bound, supT . In such a situation, there is a more specific

characterisation of ideals by intervals in the partial order �, which are defined as usual,

i.e., �0� t�
��
� �u � T
 0 � u � t�, and �0� t�

��
� �u � T
 0 � u � t�. Note that �0� t� �� /0

if and only if t � 0.

4Also known as lower closed [Vic89] or left closed [Plo83].
5The spectrum of a ring only consists of prime ideals; since primeness does not make sense in the

order-theoretic framework, we drop this condition.

4.2. Partial Monoid Actions, Categorically 91

Proposition 4.6

Let T be a linear and complete time domain with respect to the induced order �. Then

spec�T � only contains T , and intervals of the form �0� t� or �0�u�, for t � T and u � 0.

Proof: Since we already know that T and all intervals of the given form are always

contained in spec�T �, we merely have to prove the ‘only’ part, i.e., that, under the

described assumptions on T , there are no other ones. Let therefore I ! T be a proper

ideal, and choose u � T such that u �� I. By (4.2) and linearity, it must hold that I � u

(otherwise, since I is downward-closed, u � I would follow), and by (4.1), I is non-

empty. Hence, by the assumption of completeness, we know that t
��
� sup I exists. We

get two cases:

1. Assume t � I. Then, since t � sup I, we definitely know that I � t, and so I �

�0� t�. Yet, since I is downward closed and t � I, also �0� t�� I, hence I � �0� t�.

2. Assume t �� I. Note that, since 0 � I by (4.1), t � 0 holds. Then again, since

t � sup I, I � t and consequently, I � �0� t�. Suppose that there exists u � �0� t�,

i.e., 0� u� t, such that u �� I. As above, this would imply I � u� t, contradicting

the fact that t � sup I is the least upper bound of I. Therefore, �0� t�� I, and so

I � �0� t�.

Hence any proper I must be an interval, as claimed. �

For T � � , u� 0 is equivalent to ��t � T �� u � t�1, and �0� t�1� � �0� t�. There-

fore, writing �∞
��
� � $�∞�, we obtain the following a consequence:

Corollary 4.7 spec��� �� �∞

Proof: As remarked above, all non-empty right-open intervals in � can be expressed

as closed intervals, i.e., the spectrum of � contains only the intervals �0� t�, for all t � � ,

and � itself. One obtains the desired isomorphism by identifying �0� t� with t, and �

with ∞, (their respective ‘upper bounds,’ ∞ denoting unboundedness). �

In particular, when considering T -evolutions for a linear and complete time domain

T , the domains of such an evolution can only be T , i.e., the evolution is total, or an

interval, since its domain has to be an ideal. Note that in the commutative case, these

92 Chapter 4. Timed Processes Categorically

complete, linear time domains are equivalent to the ones proposed in [Jef91], where it

is postulated that 0 is the least element with respect to the linear precedence relation �,

and that there exist greatest lower bounds infT for non-empty subsets T � T : under

the additional conditions, sup and inf are interdefinable, viz., supT is the inf of the set

of all upper bounds of T , and infT is the sup of all lower bounds of T .

For Proposition 4.6 to hold, the linear order on T is essential: if T is complete

but not linear, e.g., for T �C�, it holds, for e � EX and t � T such that e�t� �, that

�0� t�� dom�e� but in general, the inclusion is proper. For example, let C � �a�b�

and let e be any C�-evolution with domain �ε�a�b�; this is clearly well-defined. Then

there is no w �C� such that dom�e� � �ε�w� (nor �ε�w�, for that matter), for any such

w must satisfy a � w and b � w which, since �is the prefix-order, is not possible.

In this particular example, dom�e� is the union of the intervals defined by its (finitely

many) maximal elements a�b, dom�e� � �ε�a�$ �ε�b�, yet in general, maximal elements

might not even exist: consider the domain a� � �an
 n � � � !C� which can only be

described by the infinite union of intervals
�∞

n�0�ε�an�.

Intuitively, an evolution e � EX represents (the time transitions) of some (anony-

mous) timed process with states in X : e�t�, provided that it is defined, denotes the state

in X the process has evolved to after t � T units of time, hence the name evolution; in

other words, an evolution e contains a complete description of all time transitions of a

process. Because of this, we simply regard the evolution itself as the process:

(4.4) e
t
� x

��
� e�t�� x

Note that only one step is defined: we know the transitions of ‘the process’ e, yet we

do not know anything about the transitions of the successor states e�t� if e�t��.

As usual, we abbreviate ��x � X�� e
t
� x by e

t
�, but by definition, e

t
� implies

e
t
� e�t�: for each t � T , there is at most one state e can reach by a

t
�-transition, the

‘transition relation’ induced by e satisfies (Determinacy). With these notations, (4.1)

and (4.2) can be rewritten as follows:

e
0
� ��t�u � T �� e

t�u
� � e

t
�

Hence, (4.1) simply expresses e can at least idle for 0 units of time. Since 0 de-

notes the absence of duration, this means that the process e must be in some initial

4.2. Partial Monoid Actions, Categorically 93

state: (4.1) describes a basic version of (ZeroDelay) but there are no constraints ex-

pressed as to the choice of this initial state. Analogously, (4.2) describes a simplified

variant of (Continuity); the states e�t� and e�t � u� exist but, unlike to what is postu-

lated by (Continuity), no relation between the two is imposed. However, it should be

obvious that evolutions incorporate (rudimentary versions of) all the axioms of TTSs.

We intend to model timed processes as coalgebras X 	 EX , associating an evolu-

tion to each state x � X ; for this, we first have to make E into a functor:

Lemma 4.8

Given a function f : X 	 Y , defining E f : EX 	 EY by e �	 f Æ e makes E an endo-

functor on Set. Moreover, dom�e� � dom�E f �e��.

Proof: Since post-composition by a total function does not add any undefinedness, the

claim about the domains follows trivially. Also, the property of e being an evolution

immediately carries over to E f �e� � f Æ e. �

Given an arbitrary E-coalgebra k : X 	 EX , we would like to define

x
t
� x�

��
� k�x��t�� x�

but this does not always yield a TTS on X : e.g., (4.1) implies x
0
� x� but there is no

guarantee that x � x� holds. Consequently, we need to impose additional restrictions

on how evolutions are assigned to states, allowing only special coalgebras; as already

stated, E is not only a functor:

Proposition 4.9

E is a comonad, with counit ε and comultiplication δ given by

εX : EX 	 X � e �	 e�0�

δX : EX 	 E2X � e �	 λt�

�����
����

e� t
��
�

�
λu�

��
�

e�t �u� if e�t �u��

undef if e�t �u��

�
if e�t��

undef if e�t��

Proof: It is obvious that εX is a total map: evolutions are always defined at 0; checking

naturality is routine. To show that δ is well-defined, we note firstly that δX�e� maps

94 Chapter 4. Timed Processes Categorically

t � T to the function e� t � λu�e�t�u� if and only if e�t� is defined, hence the partial

map t �	 e� t is an evolution. Secondly, we only obtain e� t as a value in the case

that e�t��, therefore e� t�0��; furthermore, as e is an evolution, the property (4.2) also

holds for e� t showing that e� t is itself an evolution and thus we actually obtain a

map of the desired type EX 	 E�EX�. Naturality is again easy to prove.

To show that E is a comonad, we have to check that the diagrams in (2.3) commute.

Let us first check the two triangles. For the left hand one, e � EX is sent to δX�e� and

applying εEX to that we obtain, as e�0� is defined, λu�e�0� u� � λu�e�u� and so this

triangle commutes. For the right hand one, δX�e� is mapped by applying EεX (ie post-

composition with εX where δX�e� is defined) to the following function

λt�

��
�

εX�λu�e�t�u�� if e�t��

undef otherwise
� λt�

��
�

e�t� if e�t��

undef if e�t��

using the fact that 0 is the neutral element for �. The result is equal to e and hence

also the second triangle commutes.

As for the square in (2.3), first applying to δX and then EδX results in the following

calculations

e
δX��	 λt�

��
�

δX�e��t� if e�t��

undef otherwise

EδX��	 λt�

��
�

δX�e� t� if e�t��

undef otherwise

� λt�

�����
����

λu�

��
�

λs�e� t�u� s� if e� t�u��

undef otherwise
if e�t��

undef otherwise

� λt�

�����
����

λu�

��
�

λs�e�t ��u� s�� if e�t �u��

undef otherwise
if e�t��

undef otherwise

4.2. Partial Monoid Actions, Categorically 95

The other path, first applying δX and then δEX yields

e
δX��	

h� �� 	
λt�

��
�

λu�e�t �u� if e�t��

undef otherwise

δEX��	 λt�

��
�

λu�h�t �u� if h�t��

undef otherwise

� λt�

�����
����

λu�

��
�

λs�e��t�u�� s� if e�t �u��

undef otherwise
if e�t��

undef otherwise

and because of the associativity of � the two results are equal and the square com-

mutes, concluding the proof that �E�ε�δ� is a comonad on Set. �

Note that, since our partial actions are right actions, the definition of δ is symmetric

to the one used in the Comonadic description of total action in Proposition 4.3.

Definition 4.10

We call �E�ε�δ� the evolution comonad on Set. �

Considering the intuitive meanings of the comonad operations, ε could be called the

naming function, based on the following considerations. Given an evolution e � EX ,

εX�e� � e�0� is the state that the ‘process’ e has reached after no time has passed, since

precisely that was the intuition of 0. In other words, the process e after no units of time

is in state e�0�, hence we call e�0� the name of e. Furthermore, note that δ transforms

an evolution e on X into an evolution δ�e� on EX by acting as a parameterised shift or

lookahead, as is illustrated in Figure 4.1 for an evolution e � ET : δ�e��t0� is equal

0 0

T

δ�e��t0�

t0

T

e

T T

Figure 4.1: The shift-intuition of the comultiplication δ.

96 Chapter 4. Timed Processes Categorically

to e� t0, i.e., the evolution e after t0 � T units of time have passed; the (rather com-

plicated) case distinction only takes care of undefinedness that might arise. With this

interpretation, the comonad law εE Æδ � idE states �δ�e���0� � e�0 � e, i.e., shifting

by 0 is the same as not shifting at all, or the name of the (un-shifted) shifted evolution

e�0 is the evolution e itself.

Remark 4.11

Consider the two natural transformations of type Id � E defined as follows:

γ�1�X : X 	 EX � x �	 λt�

��
�

x if t � 0

undef if t � 0

γ�2�X : X 	 EX � x �	 λt� x

Both ‘transform’ elements of X , i.e., states, into evolutions on X , i.e., timed processes

with states in X . The first, γ�1�X , takes a state and produces an evolution which is un-

defined except at 0, where the value is x. This corresponds to interpreting a state as

a ‘dead’ process which only has a
0
�-transition, to itself; cf. (ZeroDelay) and (4.4);

this is the ‘minimal’ (with respect to the size of the domain) evolution a state can be

associated to. The second transformation, γ�2�X , corresponds to the ‘maximal’ way of

including states among evolutions: a single state x with a
t
�-loop for all t � T .

Both γ�i� for i � �1�2� satisfy the following two equations

(4.5) εÆ γ�i� � id δÆ γ�i� � γ�i�E Æ γ�i�

yielding two distinct ways of making E a computational comonad [BG92b]. �

We will now prove several technical results about E which will be needed later.

Proposition 4.12

The final E-Coalgebra exists.

Proof: By dualising [Mac97, §VI.2, Theorem 1], it follows that the forgetful functor

U : E–Coalg 	 Set has a right adjoint R : Set 	 E–Coalg mapping a set X to the

cofree Coalgebra on X , δX : EX 	 E�EX�. Since R preserves all limits, its image of

the final object 1 in Set, viz., δ1 : E1 	 E�E1�, is the final E-Coalgebra. �

4.2. Partial Monoid Actions, Categorically 97

Since 1 is a singleton set, an evolution e � E1 is completely determined by its do-

main dom�e�� spec�T �, i.e., E1 �� spec�T �. Later, we explicitly describe the structure

map δ1; for now, we just give an example for a particular case.

Example 4.13

Consider T � � ; we have already seen that spec��� � �∞ , i.e., the carrier of the

final E� -Coalgebra is �∞ . Moreover, the structure map δ1 is nothing but the partial

subtraction (3.4) extended with the clause ∞�n � ∞. �

Proposition 4.14

The evolution comonad E preserves pullbacks, i.e., if

P
p
��

q 		 Y
g
��

X
f 		 Z

(4.6)

is a pullback square in Set, then

EP

E p
��

Eq 		 EY

Eg
��

EX
E f 		 EZ

(4.7)

is also a pullback square in Set.

Proof: Assume that we have a pullback diagram as given in (4.6). It is well-known,

see, e.g., [Mac97], that the pullback P can concretely be described as

(4.8) P � ��x�y� � X �Y
 f x � gy� � X �Y

while p and q are just the restrictions of the projections π1 and π2 from the cartesian

product, i.e., they make the following diagram commute

P
p

��

q

���
��

��
��

��
�
�

X X �Yπ1

π2
		 Y

(4.9)

98 Chapter 4. Timed Processes Categorically

Applying these concrete data to the ‘lifted’ pullback square (4.7), we obtain

EP � �e : T � P
 e�0�� �e�t �u��� e�t���

� �e : T � X �Y
 e�0�� �e�t �u��� e�t�� � f �π1�e�t��� � g�π2�e�t����

The maps E p and Eq are, by the definition of E on maps, simply post-composition

with the restricted projections, and since E is a functor, the square (4.7) commutes.

In contrast to that, using (4.8) and the definition of E on maps,, the actual pullback

Q of E f and Eg is given as

Q � ��e�e�� � EX �EY
 E f �e� � Eg�e���

� ��e�e�� � EX �EY
 f Æ e � gÆ e��

We show EP �� Q, defining mutually inverse maps in both directions.

To define a map from Q to EP, note that, if �e�e�� � Q we must have f Æ e � gÆ e�,

and since both f and g are total functions, this implies dom�e� � dom�e ��. Hence, the

following map is well-defined:

e� e� : T � X �Y� t �	

��
�
�e�t��e��t�� if e�t�� �e��t��

undef if e�t�� %e��t��

By definition of Q, we have f �e�t�� � g�e��t�� and for t � dom�e� � dom�e�� and so,

by definition of P, we obtain that �e� e���t� � �e�t��e��t�� � P. Since (4.1) and (4.2)

carry over from e and e�, we obtain �e� e�� � EP.

In the other direction, let e � EP, i.e., for each t � dom�e�, e�t� � P, and so there

exist x � X and y � Y such that f x � gy and e�t� � �x�y�; hence, we get two maps

ei
��
� �πi Æ e� � Eπi�e� : T � X � t �	

��
�

πi�e�t�� if e�t��

undef if e�t��

Clearly, e1 � EX and e2 � EY and, moreover, we can calculate

� f Æ e1��t� � f �e1�t�� � f �π1�e�t���
(4.9)
� f �E p�e��t�� � ��E f ÆE p��e���t�

(4.7)
� ��EgÆEq��e���t� � g�E p�e��t��

(4.9)
� g�π2�e�t��� � g�e2�t�� � �gÆ e2��t�

and so �e�e�� � Q, i.e., we obtain the function of type EP 	 Q.

4.2. Partial Monoid Actions, Categorically 99

The remaining proof obligation is to show that the two maps are inverse to each

other, i.e., the two possible composite maps are the respective identities. For one of

the composites, EP 	 Q 	 EP, let e � EP. This is first mapped to

�Eπ1�e��Eπ2�e��� �E p�e��Eq�e��

which then gets mapped to E p�e��Eq�e� whose values are, for t � T :

�E p�e��t��Eq�e��t�� � �π1�e�t���π2�e�t��� � e�t�

and so this composite is the identity on EP. The other composite is equally easily seen

to be the identity on Q, so we have established EP �� Q, concluding the proof. �

By [JPT�01, Corollary 3.2], it then follows that E–Coalg is a topos [MM92].

Weak pullbacks (like all weak limits, cf. [Mac97]) are obtained by dropping the

uniqueness requirement of pullbacks. If a functor F transforms a weak pullback di-

agram into a weak pullback diagram, analogously to Propositon 4.14, one says that

F preserves weak pullbacks6. Preservation of pullbacks implies preservation of weak

pullbacks [Rut00], hence:

Corollary 4.15 E preserves weak pullbacks.

Recall that, by Proposition 3.17, if T is non-trivial, it must be infinite; moreover,

if T is trivial, i.e., T � 1, the first regular cardinal greater than
T
 is ℵ0.

Proposition 4.16

Let T be a time domain. Then E � ET has a rank, in particular E has rank κ where κ
is an infinite regular cardinal with κ �
T
.

Proof: If T is trivial, we have already seen in Example 4.5 that E � E1 is the identity

functor, which trivially preserves all colimits, hence E is in particular finitary. Let

now T be a non-trivial time domain, and let κ be a regular cardinal such that κ �
T
.

We have to show that E preserves κ-filtered colimits. Let therefore I be a κ-filtered

6Note that there is the slightly different notion of a functor F weakly preserving pullbacks [JPT�01,
Gum01]: this expresses that F transforms pullback squares into weak pullback squares; however, in
categories where all pullbacks exist (e.g., in Set), the two properties are equivalent—see [Gum01].

100 Chapter 4. Timed Processes Categorically

(index) category, i.e., every diagram in I of size less than κ has a cocone over it in

I ; we will write the objects of I as �Iλ
 λ �
I
�. Let now F : I 	 Set be a functor,

i.e., a diagram F of ‘shape’ I in Set. Since Set is cocomplete [Mac97], we know that

its colimit ColimF , together with its colimiting cocone ϕ : F � ∆ColimF , exists; we

will write the object FIλ simply as Fλ, and the component Fλ 	 ColimF of ϕ at the

object Fλ as ϕλ. Our concrete task is then to show that E ColimF �� ColimEF .

As E is a functor, it transforms commuting diagrams into commuting diagrams;

therefore, applying it to the cocone ϕ : F � ∆ColimF yields another cocone, viz.,

Eϕ : EF � ∆E ColimF , for the functor EF : I 	 Set. Again, this time for the functor

EF , we get the colimiting cocone τ : EF � ∆ColimEF , i.e., the universal cocone over

EF . Thus, there exists a unique mediating map i : ColimEF 	 E ColimF such that

(4.10) �Eϕ�λ � iÆ τλ

for each λ such that Iλ is an object in I . To obtain the desired isomorphisms, we have

to define a map j : E ColimF 	 ColimEF such that both iÆ j and jÆ i are the identities

on E ColimF and ColimEF , respectively.

To define j, let e � E ColimF , i.e., e : T � ColimF such that e�0�� and e�t �u��

implies e�t��. For each t � dom�e�, we get a value vt
��
� e�t�� ColimF , and by the uni-

versal property of the colimit, for each such vt , there exists some kt and ft � Fkt in the

diagram F , for some object Ikt in I , such that ϕkt � ft� � vt . Now
dom�e�
 �
T
� κ,

so we get less than κ many objects Iλ in I in this way and by κ-filteredness, there ex-

ists a cocone over them in I , i.e., a cocone which has all these Ikt as its base and some

object IG as its vertex. Therefore, applying F to this cocone, we obtain a set G � FIG,

which is therefore contained among the Fλ, and a cocone σ such that the base of σ is

given by the Fkt , i.e., we have maps, for all t � dom�e�

σt : Fkt 	 G

Now, since ϕ : F � ColimF is in particular a (super-)cocone of σ, there must be a

component ϕG : G 	 ColimF , and it must holds, for all t � dom�e�, that

(4.11) ϕkt � ϕG Æσt

4.2. Partial Monoid Actions, Categorically 101

hence, vt � ϕkt � ft� � ϕG�σt� ft��, and, in particular, σt� ft� � G. Therefore, we obtain

a T -evolution over G by defining

e� : T � G� t �	

��
�

σt� ft� if t � dom�e�

undef if t �� dom�e�

which has the same domain as e. Moreover, by (4.11), we obtain for all t � dom�e�,

ϕG�e
��t�� � ϕG�σt� ft�� � ϕkt � ft� � vt � e�t�

In other words, EϕG�e�� � ϕG Æ e� � e, and EϕG : EG 	 E ColimF is part of the

cocone Eϕ : EF 	 E ColimF , which therefore uniquely factors through the colimit-

ing cocone τ : EF � ∆ColimEF , i.e., we have EϕG � i Æ τG for the mediating map

i : ColimEF 	 E ColimF .

We can now finally define the map j : E ColimF 	 ColimEF as follows, bearing

in mind that e � E ColimF , and e� � EG:

(4.12) j�e� � τG�e
�� � ColimEF

Note that this is well-defined: the value of j does not depend on the choice of G since

τ is a cocone.

By (4.12), we know that j�e� � τG�e��, and so, applying i to both sides, we obtain

i� j�e�� � i�τG�e
��� � EϕG�e

�� � e

in other words, iÆ j � idE ColimF .

For the other composite, j Æ i, let x � ColimEF . By a similar argument as above,

there must exists a set G and an e � EG such that x � τG�e�, otherwise the uniqueness

of the mediating map i could not hold. We then calculate:

j�i�x�� � j�i�τG�e���
(4.10)
� j�EϕG�e��

(4.12)
� τG�e� � x

Hence, also j Æ i � idColimEF holds, and we have shown E ColimF �� ColimEF . �

102 Chapter 4. Timed Processes Categorically

4.2.2 Partial Actions as Coalgebras

Standard (image-finite) LTSs are coalgebras for BA; in contrast, TTSs need the more

powerful Coalgebras, as already hinted at: the Coalgebra laws constrain ‘mere’ E-

coalgebras such that they become equivalent to TTSs. The formulation of the next

proposition is a bit clumsy: we have not defined morphisms of TTSs explicitly, and

we have not introduced a corresponding category, only the objects, so to speak—see

Remark 3.36. Therefore, we can only compare the categories of partial T -actions and

the E-Coalgebras:

Theorem 4.17

The ET -Coalgebras are the same as the partial T -actions, i.e., the TTSs over T , and

the passage from an E-Coalgebra k : P 	 EP to a partial action P�T � P, to a TTS

�P�T ���, and vice versa, is given by

(4.13) p
t
� p� � p# t � p� � k�p��t�� p�

Moreover, there is an isomorphism of categories T -pAct �� E–Coalg.

Proof: Since one half of the correspondence, viz., between TTSs and partial actions,

was already shown in Theorem 3.33, we are here only going to establish the equiv-

alence between E-Coalgebras and partial monoid actions. Assume therefore, that

k : X 	 EX is an E-Coalgebra, i.e., it verifies the diagrams in (2.5). We have to show

that k defines a partial T -action on X , and vice versa, as given in (4.13). Let us now

show (3.12) for the ‘action’ induced by k, i.e., we have to show that

x#0 � k�x��0�� x

Since εX�e� � e�0� and k�x� � EX , this is equivalent to

x � εX�k�x��� �εX Æ k��x�

Now notice that the triangle in (2.5) precisely states εX Æ k � idX , and so (3.12) holds.

We now have to show that also (3.13) holds for the defined notion, i.e., we have to

show that

x# �t �u�� k�x��t �u�� k�k�x��t���u�� �x# t�#u

4.2. Partial Monoid Actions, Categorically 103

It is obvious that we must use the square in (2.5) to prove this property. The square

states that δX Æ k � Ek Æ k. Let us calculate the concrete descriptions of the two func-

tions as follows:

δX Æ k : X 	 E2X � x �	 t�

��
�

λu�k�x��t�u� if k�x��t��

undef if k�x��t��

� λt�

�����
����

λu�

��
�

k�x��t �u� if k�x��t �u��

undef if k�x��t �u��
if k�x��t��

undef if k�x��t��

and

Ek Æ k : X 	 E2X � x �	 λt�

��
�

λu�k�k�x��t���u� if k�x��t��

undef if k�x��t��

� λt�

�����
����

λu�

��
�

k�k�x��t���u� if k�k�x��t���u��

undef if k�k�x��t���u��
if k�x��t��

undef if k�x��t��

Let us break down the desired Kleene equality into two Kleene implications. For

�
�, assume �x# �t �u���. Since x# �t �u�� k�x��t �u�, and k�x� � EX , this implies,

by (4.2), that k�x��t� �. Moreover, if k�x��t� �, we have �δX Æ k��t��u�� k�x��t �u�.

Using the above equality of the functions δX Æ k � Ek Æ k, we obtain that k�k�x��t���u��

and moreover, is equal to k�x��t �u�.

For the converse Kleene implication, assume ��x # t� # u� �, i.e., k�k�x��t���u��,

and in particular, k�x��t� �. Since ��Ek Æ k��t���u�� k�k�x��t���u�, k�x��t� � and, by

assumption, Ek Æ k being equal to δX Æ k, we know that

k�k�x��t���u�� ��Ek Æ k��t���u�� ��δX Æ k��t���u�� k�x��t �u�

Converting this into the action notation, as described in (4.13), we precisely obtain

axiom (3.13), concluding the proof that k induces a partial T -action.

104 Chapter 4. Timed Processes Categorically

As for the other direction, define the map

x �	 ex
��
� λt�

��
�

x# t if �x# t��

undef if �x# t��

We have to show that ex is an evolution in EX . Since x#0 � x, we have that ex�0� � x,

in particular ex�0��, establishing (4.1). Assume now that ex�t �u��. By its definition,

ex�t � u� � x # �t � u�. Since this last expression, by (3.13), is equal to �x # t� # u,

and so in particular, by (3.14), �x # t� �, but that exactly means ex�t� �, i.e., we have

shown (4.2).

Next, we have to show that the map k : x �	 ex is not only an E-coalgebra, but an E-

Coalgebra, i.e., that it satisfies the diagrams in (2.5). For the triangle, we have to show

ex�0� � x but that is an immediate consequence of (3.12). For the square, we have

to show that ex�t �u�� eex�t��u�, but this means nothing but x# �t �u�� �x# t�#u,

which is exactly (3.13). Finally, it is easy to see that the two possible compositions

of the two constructions, taking a partial T -action to another partial T -action, and an

E-Coalgebra to another E-Coalgebra, are mutually inverse to each other and therefore,

we have established the desired correspondence.

In order to show the categories isomorphic we also need to consider the respective

morphisms of T -pAct and E–Coalg. In T -pAct, the morphisms are homomorphisms

of partial T -actions, i.e., maps f : X 	 Y for two partial T -actions with respective

carriers X and Y , such that equation (3.20) holds, the morphisms in E–Coalg are ho-

momorphisms of E-Coalgebras as defined in (2.6). The square in (2.6) commuting

states that two functions X 	 EY , viz k2 Æ f and E f Æ k1, have to be equal whose

values we compute as follows.

E f Æ k1 : X 	 EY� x �	 λt�

��
�

f �k1�x��t�� if k1�x��t��

undef if k1�x��t��

k2 Æ f : X 	 EY� x �	 λt�

��
�

k2� f x��t� if k2� f x��t��

undef if k2� f x��t��

These two functions being equal means that

f �k1�x��t��� k2� f x��t�

4.2. Partial Monoid Actions, Categorically 105

or in the action notation, writing x#i t for ki�x��t�,

f �x#1 t�� � f x�#2 t�

i.e., precisely the property of a homomorphism of partial T -actions as stated in (3.20)

and hence, the categories T -pAct and E–Coalg also have the same morphisms, con-

cluding the proof. �

Note that, when proving the ��-direction of (3.13) for an E-Coalgebra k, it is ab-

solutely vital that evolutions satisfy (4.2): one has to be able to deduce �x # t�� when

knowing that �x # �t � u���. The reason for this is that the property of E-Coalgebras

expressed in the square in (2.5), is almost, but not quite, equivalent to (3.13), as seen

from the concrete descriptions of the two functions δX Æk and EkÆk given in the proof:

their being equal can be translated into

(4.14) ��x � X�� ��t � T �� k�x��t��� ��u � T �� k�x��t �u�� k�k�x��t���u�

Hence, only under the assumption k�x��t� � we get the Kleene equality from (3.13),

and (4.2) allows us to drop even that. Therefore, removing (4.2) from the definition

of evolutions will result in destroying the correspondence between E-Coalgebras and

partial monoid actions.

This prompts the question what kinds of structures we get when we do weaken

the definition of evolution. There are several ways to do so. Dropping (4.2) from the

definition of an evolution, one still obtains a comonad E � yet E �-Coalgebras are not

the same as partial T -actions, as already sketched above: in an E �-Coalgebra, it may

well be the case that k�x��t �u�� despite k�x��t��, which is in conflict with the conse-

quence (3.14) of axiom (3.13) for partial actions. Interestingly, we precisely obtain the

right-equivalent of the weaker notion of partial monoid actions from [MS02], satisfy-

ing (3.15), which is the outcome of translating (4.14) from the coalgebraic formulation

to the partial action notation.

It is not clear to us how to obtain a categorical description of partial group actions

satisfying the axiom (3.16) from [KL02] since only a Kleene implication is used: our

approach invariably results in Kleene equalities (= equality of partial functions). The

use of implications, however, seems to point to an (order-)enriched framework with lax

106 Chapter 4. Timed Processes Categorically

Coalgebra homomorphisms and (order-)enriched (categorical) bisimulations [Fio96],

dually to the use of lax algebra morphisms as, e.g., in [KL97].

Alternatively, one could also regard E � merely as a co-pointed functor [LPW00],

i.e., forget about the comultiplication δ, and consider its corresponding coalgebras

which only have to satisfy the triangle in (2.5). The resulting partial ‘actions’ then

have to satisfy (3.12), yet no connection between the monoid addition and the action

is imposed.

Dropping (4.1), ε cannot be defined, i.e., one no longer has a comonad, only a

functor E �� with an ‘associative’ comultiplication, as expressed by the square of (2.3);

one can define Coalgebras for such a ‘semi-comonad’ which only have to satisfy the

square in (2.5). Concretely, E ��-Coalgebras are partial semigroup actions: the corre-

spondence from Theorem 4.17 works after leaving out axiom (3.12); from the point of

view of TTSs, this means dropping axiom (ZeroDelay) while keeping the other two.

Finally, removing both axioms for evolutions results simply in a functor, and its coal-

gebras correspond to deterministic transition systems; this is equivalent to dropping

both (ZeroDelay) and (Continuity) from the definition of TTSs.

The final E-Coalgebra, i.e., the final partial T -action, plays an important rôle in the

general semantic framework as the collection of abstract behaviours, the ‘archetypical’

partial action: for any other action, there is a unique equivariant map into the final

action. We already know that its carrier is spec�T � but we still need to describe its

Coalgebra map δ1 which, by Theorem 4.17, is a partial T -action on spec�T �.

Definition 4.18

For a time domain T , define

I� t
��
� �s � T
 t � s � I�

for I � spec�T � and t � T . �

Lemma 4.19

Let T be a time domain, I � spec�T �. Then the partial function defined as

(4.15) �I� t� �	

��
�

I� t if t � I

undef if t �� I

4.2. Partial Monoid Actions, Categorically 107

is a partial T -action on spec�T �.

Proof: The map clearly is well-defined: t � I implies 0 � I � t, so it suffices to prove

that I�t is downward closed, which follows since ���� t, by Proposition 3.17, is mono-

tone. Note that s � I� t if and only if there exists u � I such that s � u� t. Therefore,

we can rewrite I� t as follows:

I � t � �s � T
 ��u � I�� s � u� t�� �s� t
 s � I�

The claim then follows from the uniqueness of the relative inverses, i.e., injectivity of

���� t, and since � is a partial T -action on T itself. �

Proposition 4.20

The partial T -action δ1 on the final E-Coalgebra spec�T � is given by (4.15).

Proof: An evolution e � E1 is a partial function T � 1

e � λt�

��
�
	 if e�t��

undef if e�t��

By the definition of δ, and writing Ie for dom�e�, we obtain

δ1�e� � λt�

�����
����

�
λu�

��
�
	 if e�t �u��

undef if e�t �u��

�
if e�t��

undef if e�t��

� λt�

�����
����

�
λu�

��
�
	 if t �u � Ie

undef if t �u �� Ii

�
if t � Ie

undef if t � Ie

Thus, one has dom�δ1�e�� � dom�e� � Ie, and for t � Ie, we get

dom�δ1�e��t�� � �u � T
 t �u � Ie�� �u � T
 ��s � Ie�� t �u � s�

Using the action notation for δ1, and identifying e with Ie, this becomes

Ie # t � �u � T
 ��s � Ie�� s � t �u�� Ie � t

and so we are done. �

108 Chapter 4. Timed Processes Categorically

For T � � , we have spec��� �� �∞ . The structure map δ1 then works as follows:

for I �� , ��u �� , and so ∞�t �∞; for I � �0� t�, �0� t��u� �0� t�u�, corresponding

to t�u. All in all, the partial �-action on the final E� -Coalgebra is simply given by the

(extended) partial subtraction on �∞ , as already claimed in Example 4.13. In this way,

the concrete description of the final E-Coalgebra once again highlights the importance

of ideals and the partial subtraction.

4.2.3 Coalgebraic E-Bisimulation

We will now show that Coalgebraic bisimulation for the evolution comonad (see Chap-

ter 2) is (in a restricted sense) equivalent to the previously introduced notion of time

bisimulation (see Definition 3.25). For this, recall from [Tur96] that a span

X
r1�� R

r2�	 Y

is jointly monic if, given two arrows g�h : S 	 R, ri Æg � ri Æh implies g � h. Note that

in Set, this is implies that R � X �Y .

Proposition 4.21

Let T be a time domain, and write E � ET . Then:

(i) Any time bisimulation for TTSs over T is a Coalgebraic E-bisimulation.

(ii) Any jointly monic Coalgebraic E-bisimulation is a time bisimulation for TTSs

over T .

Proof:

(i) It was shown in Prop. 3.37 that any time bisimulation can be regarded as a partial

T -action such that the projections are homomorphisms of partial actions. Fur-

thermore, by the characterisation of partial T -actions and their homomorphisms

as E-Coalgebras and homomorphisms of E-Coalgebras, resp., in Thm. 4.17, this

means that each time bisimulation induces a Coalgebraic bisimulation.

(ii) Consider a jointly monic Coalgebraic E-Coalgebras bisimulation, so in particular

4.2. Partial Monoid Actions, Categorically 109

the following diagram commutes

R
π1

����
��
��
��
�
r
��

π2

���
��

��
��

��

X

k1
��

ER

Eπ1����
��
��
��

Eπ2 ���
��

��
��

� Y

k2
��

EX EY

(4.16)

Since the span is jointly monic, we have R � X �Y and π1 and π2 are the two

projections. Let �x�y� � R. Then r�x�y� : T � R must satisfy

�Eπ1 Æ r��x�y�� π1 Æ r�x�y�
(4.16)
� �k1 Æπ1��x�y�� k1�x�

�Eπ2 Æ r��x�y�� π2 Æ r�x�y�
(4.16)
� �k2 Æπ2��x�y�� k2�y�

Furthermore since r�x�y� has codomain R � X �Y , we know that

r�x�y��t��� ���x��y�� � X �Y �� r�x�y��t� � �x��y��� �x��y�� � R

Therefore, again using equation (4.16), we must have that

r�x�y��t�� � k1�x��t�� �k2�y��t��

and, putting together the above equations and equivalences, we obtain

r�x�y��t� � �x��y�� � k1�x��t� � x�� k2�y��t� � y���x��y�� � R

When writing x
t
�
k1

x� for k1�x��t� � x� and analogously for y and k2, we get that

�x�y� � R implies for all t � T

x
t
�
k1

x� � ��y� � Y �� y
t
�
k2

y���x��y�� � R

y
t
�
k2

y� � ��x� � X�� x
t
�
k1

x���x��y�� � R

which is precisely the definition of time bisimulation from Definition 3.25. �

Note that, since E preserves (weak) pullbacks, it holds that

x �t y � ν�x� � ν�y�

where ν is the unique map to the final E-Coalgebra (see [Tur96, Ch. 12]).

110 Chapter 4. Timed Processes Categorically

4.3 Partial Actions of Discrete Time

Having introduced the evolution comonad E for a time domain �T ���0� and proved

that its Coalgebras are the same as partial T -actions, we will now show, for the

case T � � � 1� that E� is cofreely generated from a functor B� ; in particular,

E�–Coalg �� B�–coalg, and hence TTSs over � can be described by the simpler coal-

gebras of the endofunctor B� . This generalises7 results from [Jac95a, Jac95b].

Definition 4.22

The endofunctor B� on Set is given by

(4.17) X �	 �1�X�

For a fixed set X , define the endofunctor BX
�

by

(4.18) BX
�

��
� X �B� � Y �	 BX

�
�Y � � X � �1�Y �

Moreover, define X� ��
� X� ��ε� to be the set of all finite, non-empty words over X ,

and let Xω be the set of all infinite words over X . �

The main result of the section is the following:

Theorem 4.23 E� is cofreely generated from the functor B� .

To prove it, we first have to show the cofree comonad on B� exists:

Proposition 4.24

For any set X , the final BX
�

-coalgebra exists: its carrier is X��Xω, and the structure

map is given by the following chain of isomorphisms

X��Xω �� X � �X��Xω��� X � ��1�X���Xω�

�� X � �1��X��Xω�� � BX
��X

��Xω�
(4.19)

Proof: The constant functor X and B� are ω-bicontinuous [Bar93], and so is BX
�

be-

cause ω-bicontinuous functors are closed under finite limits. For such ω-bicontinuous

7Note that an unpublished version of [Jac95b] contains a more general result than ours.

4.3. Partial Actions of Discrete Time 111

functors F , the final F-coalgebras exists and can be computed by applying the (dual of

the) Basic Lemma from [SP82], viz., by computing the limit of the ωop-chain

1
!

�� F1
F!
�� F21

F2!
�� �� �

Fn!
�� Fn�11 �� �� �

where 1 is the final object and ! : F1 	 1 is the unique morphism given by finality; the

concrete result then just follows by applying this in the case of F � BX
�

. �

Since X��Xω �� X � �1��X��Xω��, we obtain the two projections

X
hdX�� X��Xω tlX�	 1��X��Xω�

where hd stands for head, and tl for tail: a z � X��Xω is a word over X which is

either finite and non-empty, or (countably) infinite. The structure map then divides z

into the pair consisting of its head, i.e., the first letter (which always exists), and its

tail of z which may be the empty word ε, or another finite and non-empty word, or the

infinite remainder of an infinite word, i.e., the summands of 1�X��Xω.

Example 4.25

For X � 1, we obtain BX
�
�Y ��� B��Y �. Therefore, instantiating Proposition 4.24 yields

that the final B� -coalgebra exists: its carrier is 1��1ω �� 1��1 �� �� 1 �� �∞ , and

the structure map is given by the (partial) predecessor function

pred∞ : �∞ 	 1��∞ � n �	

�����
����
	 if n � 0

m if n � m�1

∞ if n � ∞

obtained by instantiating the tail-function for this particular case. �

Definition 4.26

For a set X , write D�X for the carrier X��Xω of the final BX
�

-coalgebra.

We know from Section 2.4 that D� is the cofree comonad on B� ; we write e and d

for counit and comultiplication, respectively, of D� . In order to prove Theorem 4.23,

we have to show that E� � D� . To do so, we first show that the two comonads agree

on objects by establishing an isomorphism E�X �� D�X . Then, we prove that, up to

this isomorphism, the comonads also act equally on morphisms. Finally, we show that

the comonad structures agree, again up to the isomorphism obtained in the first lemma.

112 Chapter 4. Timed Processes Categorically

Lemma 4.27 E�X �� X��Xω � D�X

Proof: By Corollary 4.7, spec��� �� �∞ ; therefore, each e � E�X is either a function

of type �0�n�	 X , or of type � 	 X , as dom�e�� spec���. Define a map into X��Xω

sending the first kind of function to the finite and non-empty word f �0� f �1� � � � f �n�,

and the second kind to the infinite word f �0� f �1� � � � f �n� f �n�1� � � � ; in the opposite

direction, a word w � x0 � � �xn defines the evolution e � E�X such that e�i� � xi for

i � �0�n�, or for w � x0x1 � � �xnxn�1 � � � , define e � E�X by e�i� � xi, i � � . These two

constructions are easily seen to be mutually inverse. �

Lemma 4.28 Given f : X 	Y , D� f �E� f , up to the isomorphism from Lemma 4.27.

Proof: Given f : X 	 Y , we will show that E� f makes the defining diagram (2.7)

of D� f commute, and since D� f was unique with that property, the desired equality

follows. Let therefore w � D�X � X� � Xω. For the sake of brevity, we assume

w � x0 � � �xn � X� for some n � � , and leave the analogous case w � Xω to the reader.

Under the isomorphism of Lemma 4.27, w corresponds to e : �0�n� 	 X such that

i �	 wi, for 0 � i � n. Applying E� f to e results in the function f Æe � �0�n�	Y� i �	

f �xi�. So if we translate this back to D�Y , we obtain the word v
��
� � f x0� � � �� f xn� � Y�.

Let us now check that this assignment makes (2.7) commute.

The left-hand square commutes: first taking the head of w, i.e., x0, and then ap-

plying f , resulting in f x0, is the same as mapping w to v by f , and then taking v’s

head, also leading to f x0. As for the right-hand square, taking the tail of w results in

either the empty word ε or x1 � � �xn, according to whether n � 0 or n " 1. If n � 0,

then v � D� f �w� � f x0 and so tlY �v� � ε, just as for w, and if n " 1, we obtain

tlY �v� � � f x1� � � �� f xn�. This shows that also the second square commutes as applying

D� f to the two possible cases for tlX�w� is equal to first applying D� f , mapping w to

v, and then taking the tail of v. �

Lemma 4.29 The comonad structures for E� and D� are the same.

Proof: As for the counits, eX � hdX : D�X 	 X was the counit of D� . Concretely,

it is given by taking the first letter of any element of D�X . Under the isomorphism

from Lemma 4.27, the first letter of a word in D�X is simply the value at 0 of the

corresponding evolution in E�X , exactly as εX was defined for E� .

4.3. Partial Actions of Discrete Time 113

For the comultiplications d and δ, use the fact that δ for E� was defined as the

unique function making the diagram (2.8) commute. For this, we first characterise

δX : E�X 	 E2
�

X in terms of D�X : given w � D�X , translate it into e : � � X ; this

time, consider an infinite word w
��
� x0x1 � � �xnxn�1 � � � ; then e is actually total. Applying

δX to it results in following partial (actually total) function

λt�

��
�

λu�e�t �u� if e�t��

undef if e�t��

e total
� λt��λu�e�t�u��

Translating this back to D�X , the function λu�e�t � u� results in the infinite word

wt
��
� wtwt�1wt�2 � � � , and so the whole function λt��λu�e�t � u�� corresponds to the

infinite word w0w1 � � � over D�X , i.e., the word of words wi, where wi is w with the

first i letters taken away. All that is now left to check is that this candidate of a function

D�X 	D2
�

X makes (2.8) commute. The triangle says applying the candidate function

to w and taking the head should leave w unchanged; in our case, the head of w0w1 � � �

is w0 � w, i.e., the triangle commutes. As for the square, the right-down path takes w

to w1 and finally to �wi�i�1. The down-right path sends w first to �wi�i	� and then to

�wi�i�1, hence the square also commutes. As dX was the unique function making (2.8)

commute, δX � dX , i.e., also the comultiplications coincide. �

This concludes the proof of Theorem 4.23. As a consequence, we obtain:

Corollary 4.30 E�–Coalg �� B�–coalg.

Hence, TTSs over � are the same as B� -coalgebras. The correspondence identifies
1
�-transitions in a TTS over � with the (deterministic) ‘next-step’ relation defined by

a B� -coalgebra, and the
1
�-transitions determine all

n
�-transitions because each n � �

can be written as 1� � � ��1, and the TTS must satisfy (Continuity). In this sense, the

last result shows that discrete quantitative time is the same as global qualitative time.

Remark 4.31

Corollary 4.30 also implies that, if �R�r� is a B� -bisimulation between �X1�k1� and

�X2�k2�, then the corresponding span k1 � r 	 k2 of B� -coalgebras uniquely corre-

sponds to a span of E� -Coalgebras, viz., via the isomorphism, we obtain the span

114 Chapter 4. Timed Processes Categorically

of E� -Coalgebras k1
∞ � r∞ 	 k2

∞ of the respective coinductive extensions, in other

words: an E� -bisimulation �R�r∞� between �X1�k1
∞� and �X2�k2

∞�. The converse also

holds, using the isomorphism from the corollary in the other direction. So we also

obtain a one-to-one correspondence between E� - and B� -bisimulations. �

Remark 4.32

It is possible to show a more general result then Theorem 4.23. Let C be a finite set.

Then

(4.20) EC
��
� EC� is cofreely generated from BC

��
� �1�X�C

Theorem 4.23 is obtained by instantiating (4.20) for C � 1 since � � 1�. Again, one

can look at the two categories of coalgebras and obtain the consequence that

(4.21) EC–Coalg �� BC–coalg

This means that, in the case of local qualitative time, we can use coalgebras for a

functor, rather than a comonad, to describe TTSs over C�, i.e., partial C�-actions. This

nicely matches the way calculi like PMC are described in the literature: they only

use transitions of the form p
c
� p� for c � C, rather than p

w
� p� for w �C�. Note

that BC � �B��C, the C-fold power of B� , and in this sense local qualitative time is a

C-dimensional version of global qualitative time, or discrete quantitative time. �

4.4 Distributing Total over Partial Monoid Actions

Now that we have categorical characterisations of both partial and total monoid actions,

we are finally in a position to combine these in order to present a characterisation of the

biactions we introduced in Section 3.4. Recall that an antichain in a partially ordered

set �P��� is a set A � P such that, for all p�q � A, p �� q implies p q; obviously, if �

is linear, all antichains are of cardinality � 1.

Definition 4.33

A time domain T is antichain monotone if

(4.22) t u� u � u� � t u�

for all t�u�u� � T . �

4.4. Distributing Total over Partial Monoid Actions 115

Note that (4.22) could equivalently be formulated as ‘if, for t�u � T such that

t �� u, �t�u� is an antichain and u � u�, then also �t�u�� is an antichain such that t �� u�,’

hence the name of the property. Alternatively, one could describe it by postulating

that ‘the principal filters on incomparable elements are disjoint,’ or ‘the relation t

is monotone with respect to �.’ Yet another equivalent characterisation would be to

say that, whenever t u holds, also t#u holds, meaning that t and u have no common

upper bound. A final equivalent formulation is to say that ‘principal ideals are linearly

ordered’; this is particularly nice because, regarding the principal ideal of a t � T as

the ‘history’ of t, then antichain monotonicity postulates a unique history (the linear

order on the principal ideal allows only one ‘path’ to reach t). We will now first present

some examples of antichain monotone time domains.

Example 4.34

1. Obviously, any linear time domain is antichain monotone since there are no two-

element antichains, hence � and � are antichain monotone.

2. The free monoid C� is also antichain monotone. Without loss of generality, we

can assume that
C
� 1 since 1� � � is linear anyway. Suppose now w1�w2 �C�

such that w1 �� w2 and �w1�w2� is an antichain. This implies that there is a

(potentially empty) shared prefix ws � C� followed by different letters c1 �� c2

in w1 and w2 and some (possibly empty) remainders v1 and v2, respectively,

i.e., wi � wscivi for i � �1�2�. Let now be w � C� such that w2 � w. This, by

definition of �, means that w2 is a prefix of w, in other words, there must be

v �C� such that w � w2v � �wsc2v2�v and it follows that w is incomparable with

w1, i.e., �w1�w� is also an antichain. �

Note that the time domain � �� is not antichain monotone: despite �1�0� �0�1�,

we have �0�1� � �2�1� and also �1�0� � �2�1�, in other words, �1�0� � �2�1�. Con-

sequently, the property is not preserved by products, as � , being linear, is antichain

monotone.

116 Chapter 4. Timed Processes Categorically

Theorem 4.35

Let T be an antichain monotone time domain. The map

(4.23) �X : T �EX 	 E�T �X�� �t�e� �	 λu�

���������
��������

�t�u�e�0�� if u � t

�0�e�0�� if u � t

�0�e�u� t�� if t � u� e�u� t��

undef otherwise

induces a distributive law of the monad �T � ����η�µ� for total T -actions (as described

in Proposition 4.1) over the evolution comonad �E�ε�δ�.

Note that we use the strict case distinction to facilitate the calculations, it would

of course be possible to combine the first and second case, or only use non-strict in-

equalities since the cases yield the same results when overlapping. The strict case

distinctions also mean that we get two disjoint cases for being undefined:

(4.24) �X�t�e��u�� � �t � u� e�u� t���% �t u�

We will split the proof into several lemmas.

Lemma 4.36

The map �X from (4.23) is well-defined and natural.

Proof: As for well-definedness, given t � T and e � EX , we have to show that �X�t�e�

is an evolution on T �X , i.e., we have to establish (4.1) and (4.2). As for the first

axiom, if t � 0, �x�t�e��0� � �0�e�0��, in particular it is defined; if t � 0, we obtain

the value �t�e�0��, and so we are done. In order to show (4.2), we are going to show

its equivalent contra-position (4.3). Therefore, let u � T such that �X�t�e��u��, and

assume u � u�. According to (4.24), two possible cases arise:

1. Assume t � u � e�u � t� �. Then, because � is transitive, also t � u�, i.e.,

�u�� t��, and since ���� t is monotone, we get u� t � u�� t; furthermore, be-

cause e satisfies (4.3), it follows that e�u�� t��, implying �X�t�e��u���.

2. Assume t u. By antichain monotonicity of T , this implies t u �, and so also

�X�t�e��u���.

4.4. Distributing Total over Partial Monoid Actions 117

The proof of naturality (which is trivial) is left to the reader. �

Lemma 4.37 �X respects η.

Proof: For e � EX , we calculate:

�X�ηEX�0�� �λu�

���������
��������

�0�u�e�0�� if u � 0

�0�e�0�� if u � 0

�0�e�u�0�� if 0 � u� e�u�0��

undef otherwise

�λu�

��
�
�0�e�u�� if e�u��

undef if e�u��
� λu�

��
�

ηX�e�u�� if e�u��

undef if e�u��
� EηX�e�

and so the η-diagram from (2.9) commutes. �

Lemma 4.38 �X respects ε.

Proof: Let t � T and e � EX . Then calculate:

εT
X��X�t�e�� �

��
�
�t�0�e�0�� if t � 0

�0�e�0�� if t � 0

� �t�e�0��� �t�εX�e��� �T � εX��t�e�

Hence, also the ε-diagram from (2.9) commutes. �

Lemma 4.39 �X respects µ.

Proof: Let t�u � T and e � EX , and set ht
��
� �Xt�e � E�T �X�. We then have to

chase �u��t�e�� around the two possible paths of the µ-diagram in (2.9). The first path,

given by �X ÆµEX , yields, omitting the intermediate results:

���
��
� λs�

���������
��������

��t �u�� s�e�0�� if s � t �u

�0�e�0�� if s � t �u

�0�e�s� �t�u��� if t �u � s� e�s� �t �u���

undef otherwise

118 Chapter 4. Timed Processes Categorically

For the other path, EµX Æ �T
X ÆT � �X , omitting the intermediate steps, we obtain

the following result:

���
��
� λs�

���������������
��������������

��u� s�� t�e�0�� if s � u

�t�e�0�� if s � u

�t� �s�u��e�0�� if u � s� s�u � t

�0�e�0�� if u � s� s�u � t

�0�e��s�u�� t�� if u � s� t � s�u�u� e��s�u�� t��

undef otherwise

We now have to show that ����s������s�. To do so, we split the Kleene equality

into two implications, and prove them both separately. In several places, we will use

Proposition 3.17 and Lemma 3.21, the fact that � is a partial T -action, as well as

the assumption of antichain monotonicity, always without reference. Let s � T . We

will first show ����s�������s�. Assume therefore that ����s��. This results in the

following case distinction.

1. s � u� t. This prohibits s u, and so we get the following three sub-cases:

(a) s � u. This implies ����s��. Moreover, we get

����s� � ��u� t�� s�e�0��� ��u� s�� t�e�0��� ����s�

(b) s � u. Again, ����s��, and

����s� � ��u� t�� s�e�0��� ��u� t��u�e�0��� �t�e�0��� ����s�

(c) u � s. Since s � u� t implies s�u � t, ����s��. Then:

����s� � ��u� t�� s�e�0��� �t � �s�u��e�0��� ����s�

2. s � u� t. Again, s u is impossible, leading to three sub-cases:

(a) s � u. Then ����s�� and

����s� � �0�e�0��� ��u� t�� s�e�0��� ��u� s�� t�e�0��� ����s�

4.4. Distributing Total over Partial Monoid Actions 119

(b) s � u. Hence t � 0 and ����s��, and

����s� � �0�e�0��� �t�e�0��� ����s�

(c) u � s. Since s � u� t implies s�u � t, we get ����s�� and

����s� � �0�e�0��� ����s�

3. u�t � s� e�s��u�t���. As before, s u is impossible, and of the three resulting

cases, both s � u and s � u are as well impossible. Hence, it must holds that

u � s. From u� t � s, we obtain t � s�u and �s�u�� t � s� �u� t�, hence

����s��. Moreover,

����s� � �0�e�s� �u� t���� �0�e��s�u�� t��� ����s�

Hence, ����s�������s�. We leave the converse to the reader, and merely remark that a

similar case distinction has to be used, this time into five different cases, corresponding

to the five different cases when ����s�� can hold; the proof requires essentially the

same equalities as for the other direction. Hence we have shown ����s� � ����s�,

i.e., that the µ-diagram in (2.9) commutes. �

Lemma 4.40 �X respects δ.

Proof: Let t � T and e � EX . We again have to show that chasing �t�e� around the

two different paths of the δ-diagram in (2.9) yields the same result. The first path,

δT
X Æ �X , produces the following result, omitting intermediate steps:

���
��
� λu�

������������
�����������

�
λs�

���������
��������

�t� �p� s��e�0�� if p� s � t

�0�e�0�� if p� s � t

�0�e��u� s�� t�� if t � u� s� e��u� s�� t��

undef otherwise

�

undef

where ����u�� � �u � t�% �u � t�% �t � u� e�u� t���.

120 Chapter 4. Timed Processes Categorically

The other path, E�X Æ �EX Æ �T �δX�, yields the following result, again dropping

the intermediate calculations:

���
��
� λu�

�������������������������
������������������������

�
λs�

���������
��������

��t �u�� s�e�0�� if s � t�u

�0�e�0�� if s � t�u

�0�e�s� �t�u��� ift �u � s� e�s� �t�u���

undef otherwise

�

�
λs�

��
�
�0�e�s�� ife�s��

undef otherwise

�

�
λs�

��
�
�0�e��u� t�� s�� ife��u� t�� s��

undef otherwise

�

undef

where the three cases for ����u� being defined are, from the top down u � t, u � t, and

t � u� e�u� t��. It should be entirely obvious that ����u��� ����u��. It remains

to show that ����u��s�� ����u��s�, we which will again separate into the two Kleene

implications.

To show ����u��s�������u��s�, assume ����u��s� �. This leads to three cases,

arising from ����u��. Using antichain monotonicity, Proposition 3.17, Lemma 3.21,

and the fact the � is a partial T -action, all cases and subcases can be dealt with very

similarly to the proof of Lemma 4.39. The Kleene implicatiion ����u��s�������u��s�

can be shown in an analogous fashion, concluding the proof of the lemma. �

The last five lemmas correspond to the proof of Theorem 4.35. The T biactions

are obtained as bialgebras by distributing total over partial T -actions given by the

distributive law � from the last theorem:

Theorem 4.41

Let T be an antichain monotone time domain. Then �-bialgebras are T -biactions.

Moreover, the morphisms of �-bialgebras are homomorphisms of T -biactions.

Proof: Consider an �-bialgebra on a set X . By definition, this implies that we get

a �T � �-Algebra h : T �X 	 X and an E-Coalgebra k : X 	 EX which, moreover,

4.4. Distributing Total over Partial Monoid Actions 121

satisfy (2.10). By Proposition 4.1, h corresponds to a total T -action on X , and by

Theorem 4.17, k corresponds to a partial T -action on X . We thus only have to show

that (2.10) implies the axiom (3.28) of biactions. The diagram (2.10) states that two

functions are equal: k Æh, and EhÆ �X Æ �T � k�. Let us therefore calculate the values

of these two functions, first for k Æh.

�t�x�
h
�	 h�t�x�

k
�	 k�h�t�x��� λu� k�h�t�x���u�

Using the notations for partial and total actions, this result becomes:

�k Æh��t�x��u�� �t � x�#u

The other path around the diagram results in the following computations:

�t�x�
T
k
��	 �t�k�x��

�X�	 λu�

���������
��������

�t �u�k�x��0�� if u � t

�0�k�x��0�� if u � t

�0�k�x��u� t�� if t � u� k�x��u� t��

undef otherwise

� λu�

���������
��������

�t �u�x� if u � t

�0�x� if u � t

�0�x# �u� t�� if t � u� k�x��u� t��

undef otherwise

Eh
�	 λu�

���������
��������

�t �u� � x if u � t

x if u � t

x# �u� t� if t � u� x# �u� t��

undef otherwise

During these calculations, we have used that, because k is a Coalgebra, k�x��0� � x,

and because h is an Algebra, h�0�x� � x.

The equality of the two functions means that, when evaluating them both at u � t,

we must get the same result, i.e.,

�t � x�# t � �k Æh��t�x��t�� �EhÆ �X Æ �T � k���t�x��t� � x

122 Chapter 4. Timed Processes Categorically

In other words, k and h precisely satisfy (3.28) for biactions. The claim about the

morphisms follows trivially from the fact that the morphisms in �–Bialg are simply

such maps of the carrier which are both an Algebra and a Coalgebra homomorphism,

in other words: such maps which are both a homomorphism of total and of partial

T -actions. �

For the converse, viz., describing T -biactions as �-bialgebras, we only obtain:

Theorem 4.42

Let T be an antichain monotonic time domain. Then a T -biaction on X defines an

�-bialgebra with the same values of �t � p�#u for t � u and u � t.

Proof: If X carries a T -biaction, it in particular carries a total and a partial T -action.

By Proposition 4.1 and Theorem 4.17, these are equivalent to a �T � �-Algebra h

and an E-Coalgebra k, respectively. Furthermore, applying Proposition 3.41, the value

of �t � p�#u, for comparable t and u, is completely determined by either the total or

the partial action, i.e., by h or k. Furthermore, inspecting the definition of � and the

meaning of (2.10) as explained in the previous proof, one obtains precisely the same

value for the �-bialgebra. �

For linear time domains, t u never holds, hence:

Corollary 4.43 For T a linear time domain, T –BiAct �� �–Bialg. �

We do not obtain an exact correspondence between bialgebras and biactions be-

cause it is possible that a biaction still can let �t � p� # u be defined for t u, while any

�-bialgebra necessarily is undefined, cf. the definition of � and the remarks following

Proposition 3.41. As a simple example consider the (completely total!) biaction of

T ��
��a�b�� on the singleton set X � �1�. Then �a �1�#b � 1 although a b. Conse-

quently, this biaction cannot be described as a �-bialgebra.

Combining the last two theorems, we obtain that, for antichain monotone time

domains T , there is a retraction �–Bialg
 T –BiAct between the categories of �-

bialgebras and T -biactions: we get functors in both directions such that one composite

is the identity on �–Bialg.

4.4. Distributing Total over Partial Monoid Actions 123

Note that, in order for the bialgebraic characterisation to work, we need T to be

antichain monotone, otherwise � is not even well-defined. This raises the question,

since the single axiom (3.28) for biactions makes sense for an arbitrary time domain,

why the additional axiom is necessary. At present, our best guess is that this must be

imposed by trying to use bialgebras.

As for an alternative characterisation of biactions, recall that total T -actions can

alternatively be described as Coalgebras for the comonad D � � �T (see Proposi-

tion 4.3 in Section 4.1.2); moreover, the distributive law � induces a lifting Ẽ of E

to M–Act �� D–Coalg such that Ẽ–Coalg �� �–Bialg (by [TP97, Rem. 7.1]). Such lift-

ings of a comonad to a category of Coalgebras is, by the dual of results from [Bec69,

BW85], equivalent to a distributive law of comonads ED � DE, which then allows to

form the composite comonad ED such that ED–Coalg �� Ẽ–Coalg, dualising results

from [Jac94]. As a consequence, we get

ED–Coalg �� Ẽ–Coalg �� �–Bialg

yielding a purely comonadic characterisation of the �-bialgebras; we do currently not

have concrete descriptions of the involved data, but perhaps subtly changing little bits

of them might result in a more precise characterisation of biactions.

Chapter 5

Abstract Rules for Timed Processes

In this chapter, we present an abstract categorical framework for defining the oper-

ational semantics of timed processes. This is obtained by generalising the abstract,

categorical approach of [TP97] from behaviour functors to behaviour comonads, in

order to accommodate our categorical description of timed processes as Coalgebras

for the evolution comonad, as presented in the previous chapter.

The chapter is structured as follows. First, we recall the bialgebraic approach to

operational semantics introduced in [TP97]. There, abstract operational rules were

given by a special kind of natural transformation, parameterised by functorial notions

of signature and behaviour; the naturality of such rules (in the categorical sense) essen-

tially ensures the ‘good’ properties of the corresponding concrete rules derived from

the abstract ones. It was also shown that some of the most well-known concrete for-

mats, in particular GSOS [BIM95], can be derived from abstract rules.

In Section 4.3, we have seen that the evolution comonad E� over the naturals is

cofreely generated by the behaviour functor B� ; more specifically, this implies that the

E� -Coalgebras are the same as the standard B� -coalgebras. Hence, we can directly

apply the abstract framework, as it is, to the case of timed processes over discrete time

(and, more generally, over arbitrary free monoids, see Remark 4.32).

In the general case, i.e., for an arbitrary time domain, the evolution comonad is not

cofreely generated (consider, e.g., T � �), and our operational models, the TTSs, are

necessarily Coalgebras for a comonad, rather than just for an endofunctor. Although

much of the work of [TP97] is stated in terms of distributive laws, it cannot fully deal

126 Chapter 5. Abstract Rules for Timed Processes

with this more general case, only certain aspects of the general theory carry over, viz.,

the treatment of bisimulation (as the definition does not change for comonads) and

final models.

Most importantly, specifying the operational semantics by (operational rules corre-

sponding to) a simpler kind of natural transformation, which then induces a distributive

law and subsequently forms the basis for syntactic rule formats, is only possible for

cofree comonads and coalgebras for a functor. After some motivation how the abstract

framework could be generalised to include our more general case, we present a gen-

eral theory of ‘well-behaved’ rules for behaviour comonads, which we call comonadic

SOS (CSOS). Such abstract CSOS rules are more expressive than the ones presented

in [TP97].

These CSOS rules are very general: in fact, when instantiated for the evolution

comonad, they are more general than actually needed to model languages for timed

processes (as they exist in the literature). Therefore, in the last section, we present

slightly less powerful operational rules for timed processes, which we call abstract

temporal rules. As will be shown in the next chapter, such rules are still sufficiently

powerful to include all important instances of timed process calculi, while being at

least easier to approximate (if not to capture completely) by syntactic means.

5.1 Bialgebraic Semantics

This section provides a summary of the necessary background from [TP97]. Essen-

tially, the paper presents a theory of ‘well-behaved’ (structural) operational semantics,

using categorical methods. Here, ‘well-behaved’ means that the semantics satisfies

such important properties as ‘(an appropriate notion of) bisimulation is a congruence,’

or ‘there is an adequate denotational semantics with respect to the operational seman-

tics.’ Concrete instantiations were shown to include well-known syntactic rule formats

whose good properties are, in this fashion, conceptually explained, rather than merely

established.

Note that this last remark is by no means aimed at invalidating or depreciating

previously obtained results on rule formats, e.g., [dS85, Fok94, BIM95, FvG96]: we

5.1. Bialgebraic Semantics 127

wholeheartedly acknowledge that they constitute an important scientific contribution.

However, they are unsatisfactory with respect to issues like modularity: they cannot be

extended easily, and it is also hard (if not impossible) to transfer results once the op-

erational model is different from standard LTSs, e.g., when using more specific kinds

of transition systems like probabilistic LTSs [vGSS95], or TTSs as presented in Sec-

tion 3.2.1. Consequently, one ends up proving similar results at the (meta) level of

formats, while one wanted to avoid precisely that, on the lower level of languages, by

using rule formats in the first place.

Coming back to [TP97], the motivating, and arguably the most important, example

of such syntactic rule formats is GSOS [BIM95]. Consider the following kind of op-

erational rules, over a given (first-order) signature Σ, a finite(!) set A of labels, and a

countable set X of ‘meta variables’ (representing processes):

(5.1)
�xi

a
	 ya

i j�
1�i�n�a	Ai
1� j�ma

i
�xi �

b
	�1�i�n

b	Bi

σ�x1� � � � �xn�
c
	 θ

where σ � Σ is an n-ary function symbol, all the xi and ya
i j are variables in X , a�b�c� A,

Ai�Bi � A, and θ is a term over Σ and X . Then say that such a rule (5.1) is in GSOS

format, or simply is a GSOS rule, if all the xi and the ya
i j are distinct, and, moreover,

these are also the only variables occurring in the result term θ. Say that a set of GSOS

rules is image finite if, for each operator symbol σ � Σ and each action c � A, there are

only finitely many rules (5.1) with matching σ and c in the conclusion; so in particular,

any finite set of GSOS rules is image finite.

Next, recall from (1.1) the endofunctor BA on Set given by BAX � P��X�A, i.e.,

BAX contains all functions from labels A to finite subsets of X . We have already seen

that the BA-coalgebras are precisely (image finite) LTSs. The following was shown

in [TP97, Theorem 1.1], where Σ is the functor associated to the signature of the same

name, and T � Σ� is the free (term) monad on Σ, cf. Section 2.4:

Theorem 5.1

There is a correspondence between natural transformations of type

(5.2) ρ : Σ�Id�BA�� BAT

128 Chapter 5. Abstract Rules for Timed Processes

and image finite sets of GSOS rules (5.1) (over a fixed denumerable set X of variables).

Moreover, this correspondence is one-to-one up to equivalence of sets of rules. �

Note the fact that certain natural transformations using the behaviour functor for

image finite LTSs correspond to image finite sets of GSOS rules (as we shall see this is

not coincidental). To illustrate this correspondence, we can translate (5.2) into concrete

rules as follows. Recalling the definition of the functor Σ, for each set X of variables

and each n-ary operator σ in the signature Σ, ρ ‘contains’ a map of the following type,

which is natural in X :

��σ�� : �X �P��X�A�n 	 P��TX�A

Its arguments intuitively correspond to the premises of a rule like (5.1): they are n

pairs of variables xi � X and ‘behaviours’ βi � P��X�A, interpreted as the names and

transitions of the argument processes, respectively, the latter being described by map-

ping labels to targets of transitions with that label, i.e., we encode xi
a
	 x�i by saying

that x�i � βi�a�. Its result, corresponding to the conclusion of GSOS rules (5.1), is a

behaviour which, for a given input, encodes the transitions of the composite process

σ�x1� � � � �xn� under the assumption that the xi behave as specified by the βi.

Note that the (transitions specified by the) βi only have ‘simple’ targets in the sense

that the targets can only be ‘variables’ contained in X , while the conclusion can have

arbitrary terms in TX as targets; this is the counterpart of the fact that a rule like (5.1)

has the same restrictions on what kinds of transitions are allowed in the premises and

in the conclusion, respectively. Furthermore, at this point also the reason for the re-

striction to image finite sets of GSOS rules becomes clear: otherwise, ��σ�� as above

might not even be well-defined.

The fact that the rules have to be natural precisely accounts for the GSOS con-

ditions on occurrences of variables and their being distinct, and vice versa. To see

this, consider what it means for ρ to be natural, viz., given a function f : X 	Y the

following diagram has to commute:

Σ�X �BAX�

Σ� f
BA f �
��

ρX 		 BATX

BAT f
��

Σ�Y �BAY � ρY
		 BATY

(5.3)

5.1. Bialgebraic Semantics 129

Intuitively, this expresses that first applying ρ for X and then renaming the variables in

the resulting terms according to f is equal to first renaming in the argument processes,

followed by applying ρ for Y : application of the rules ρ is invariant under variable

renamings.

Thinking about this from a different perspective, if rules of the form (5.1) are sup-

posed to make (5.3) commute, it simply must not be possible to derive a transition

under any assumption about variables being equal or distinct: otherwise, after deploy-

ing an appropriate renaming, the rule would not longer be applicable, and so the square

would not commute. Similarly, if the target θ of a rule (5.1) were to contain a variable,

say x, which would not occur anywhere among the arguments or the variables in the

premises, it would be easy to construct a renaming f (even on X itself) such that the

above square (5.3) would no longer commute, viz., by leaving the premises unchanged

by f and renaming x to some x� �� x (possible because X was assumed to be infinite!).

Note that it is vital to include the Id-component, representing the names of argu-

ments, in the type of the natural transformation. Consider, e.g., the following standard

rule for parallel composition:
x

a
	 x�

x
y
a
	 x�
y

When using abstract operational rules of the type (5.2), it becomes very easy to model

the rule by the following map, which is indeed natural in X :

��
����x�βx���y�βy��� λa� �x�
y
 x� � βx�a��

If, on the other hand, one uses only rules given by a natural transformation ΣBA � BAT ,

as in [Tur96], one has to resort to some ‘tricks’ to model the rules for such operators

where only a subset of the argument processes perform transitions while others remain

untouched (see [Tur96] for the details).

Natural transformations ρ of type (5.2) also make sense for behaviours other than

BA, and on different categories, provided they have ‘enough’ structure to interpret the

rules ρ, so [TP97] introduced abstract operational rules as a natural transformation

(5.4) Σ�Id�B�� BT

for arbitrary functorial notions of signature Σ (which is simply a polynomial functor

in the usual first-order case) with freely generated monad T , and of behaviour B. The

130 Chapter 5. Abstract Rules for Timed Processes

functor Σ describes the syntax of the language, while B gives the ‘type’ of compu-

tation under consideration, respectively: the Σ-algebras should be interpretations of

language constructs and the B-coalgebras should correspond to the considered notion

of ‘transition systems’ (in the widest possible sense).

Abstract rules (5.4) induce a lifting T̃ of the monad T to the category B–coalg

of B-coalgebras (see Section 2.4), viz., via structural recursion (with ‘accumulators,’

cf. [TP97, Theorem 5.1]). Concretely, given abstract rules ρ : Σ�Id�B� � BT and a

B-coalgebra k : X 	 BX , we obtain T̃ �k� as follows, using the universal property of

TX as being the initial �X �Σ�-algebra:

X
ηX 		

k
��

TX

T̃ �k�
��	
	
	 ΣTX

γX

Σ�idTX �T̃ �k��
��

BX BηX

		 BTX BT 2XBµX

 Σ�TX �BTX�ρTX

(5.5)

writing η, µX , and γX for the unit and multiplication of T , and the free Σ-algebra struc-

ture on TX , respectively. The naturality of ρ is essential for the proof to go through.

Instantiating this construction with the trivial initial B-coalgebra 0 	 B0, one ob-

tains a B-coalgebra structure on T0, the set of closed terms. This precisely is the in-

tended operational model, i.e., the transition system of type B induced on the programs

in T0 by the operational rules ρ.

Assuming that D � B∞ exists, we get that D–Coalg �� B–coalg, and so the monad

T̃ is also a lifting of T to the D-Coalgebras. Such liftings are, by [TP97, Theorem 7.1],

in one-to-one correspondence with distributive laws TD � DT of the monad T over

the comonad D, i.e., distributing free syntax over cofree behaviour. Hence:

Theorem 5.2

Abstract operational rules of type (5.4) induce a distributive law TD � DT of the free

monad T on Σ over the cofree comonad D on B. �

As it will turn out, this particular property will explain the good behaviour of the

GSOS format. Additionally, it was shown in [LPW00] that already abstract rules (5.4)

themselves arise canonically: natural transformations (5.4) are in one-to-one corre-

spondence with distributive laws of T over the cofree co-pointed endofunctor Id�B

on B. Spelled out, this means that abstract rules as in (5.4) are equivalent to a natural

5.1. Bialgebraic Semantics 131

transformation of type T �Id�B�� �Id�B�T satisfying the evident diagrams which

relate it to both the monad structure of T and the structure of the co-pointed endofunc-

tor ε : Id�B � Id, which is simply the first projection π1. Theorem 5.2 then states that

such a distributive law can be extended to one of T over the cofree comonad D � B∞

on B.

In general, a distributive law � : TD � DT of the free monad T over the cofree

comonad D, which need not necessarily be induced by abstract rules (5.4), can be

interpreted as describing the most general kind of abstract rules, and lie at the core of

the approach of [TP97]. We have already introduced the notion of bialgebras for such

a distributive law � in Section 2.4. Intuitively, a bialgebra corresponds to a combination

of a denotational model (a T -Algebra) with an operational model (a D-Coalgebra) in

such a way that (2.10) holds. This law expresses that only such combined models are

allowed which behave ‘nicely’ with respect to (the rules corresponding to) �.

In case that � was in fact obtained from a natural transformation ρ of type (5.4),

the �-bialgebras can alternatively described in the following way. Recall that, since

T is the free monad on Σ, we obtain an isomorphism T–Alg �� Σ–alg: thus, given a

Σ-algebra h : ΣX 	 X , we obtain its corresponding inductive extension h� : TX 	 X .

Using this, �-bialgebras are equivalent to pairs ΣX
h
	 X

k
	 BX such that the following

simplified version of (2.10) holds:

ΣX

h
��

Σ�idX �k� 		 Σ�X �BX�

ρX

��
X

k
		 BX BTX

Bh�

(5.6)

As already explained, the Σ-algebra structure h gives a Σ-interpretation, i.e., a deno-

tational model, and the B-coalgebra k defines a transition system of type B, i.e., an op-

erational model. The diagram (5.6) then expresses that �-bialgebras are all those com-

binations of denotational and operational models which, intuitively, ‘satisfy’ the rules

ρ. Hence, such bialgebras were called ρ-models in [TP97]. If ρ, in turn, was induced

by a finite set of (concrete) GSOS rules (5.1), the ρ-models, or equivalently, the �-

bialgebras for the induced distributive law �, are exactly the GSOS models of [Sim95].

Going back to the general case, using the properties of the category �–Bialg of bial-

gebras of a distributive law � : TD � DT allows us to derive the following adequacy

132 Chapter 5. Abstract Rules for Timed Processes

meta results:

Theorem 5.3

1. The forgetful functor U � : �–Bialg 	 D–Coalg, which forgets the Algebra-part

of a bialgebra, has a left adjoint, in particular, there is an initial �-bialgebra,

induced by the trivial initial D-Coalgebra 0 	 D0.

2. The forgetful functor U� : �–Bialg	 T–Alg, which forgets the Coalgebra-part of

a bialgebra, has a right adjoint, in particular, there is a final �-bialgebra, induced

by the trivial final T -Algebra T1 	 1.

Therefore, there is a (super-)unique homomorphism of �-bialgebras from the initial

to the final such bialgebra. �

The theorem can in particular be applied to the case where � is induced by abstract

rules ρ of type (5.4), and hence �–Bialg is the category of ρ-models. The initial ρ-

model is the intended operational model (giving the B-coalgebra structure) on the set of

programs (the (initial) Σ-algebra structure). Dually, the final ρ-model can be regarded

as the canonical denotational model [TP97] for ρ: its coalgebra-part is given by the

final B-coalgebra (which is also the final D-coalgebra), i.e., the collection of abstract

behaviours, and the Σ-algebra structure on it describes a compositional denotational

semantics for the language.

This leads to universal semantics: the unique (both by initiality and finality) ho-

momorphism from the initial to the final ρ-model. This universal semantics is then

both initial algebra and final coalgebra semantics—see [TP97, Corollary 7.3]. Conse-

quently, it is a compositional interpretation (inherited from initial algebra semantics)

which also preserves behavioural distinctions (from final coalgebra semantics).

Combining B-bisimulation with the dual notion of Σ-congruence, one can define a

notion of �-bicongruence and a corresponding category of such bicongruences between

any pair of �-bialgebras—see [TP97] for more details. One can then ask whether there

is a final (intuitively: a largest) such bicongruence on a given �-bialgebra, and the

following result is obtained:

Corollary 5.4

If B preserves weak pullbacks, then every �-bialgebra has a final bicongruence. �

5.1. Bialgebraic Semantics 133

In particular, BA preserves weak pullbacks (for a proof see, e.g., [Tur96]). There-

fore, the above corollary specialises to the (well-known) fact that strong bisimulation,

which is precisely BA-bisimulation, is a congruence for GSOS languages.

Finally, rather than just explaining the good properties of already existing rule for-

mats like GSOS (or, by ‘dualising’ (5.4), certain classes of tree rules [Fok94, FvG96]),

the bialgebraic approach can also be used to derive new rule formats. For one, it is pos-

sible to interpret (5.4) in categories other than Set to treat, e.g., languages with variable

binding (e.g., the π-calculus [MPW92]) and their operational semantics: see [FPT99]

for a treatment of abstract syntax with binding, including initial algebra semantics

for this case (see also [GP02] for an alternative approach to syntax and initial alge-

bra semantics for languages with binding), and [FT01] for a categorical account of

operational semantics for such languages, extending [TP97]; however, at present, no

concrete rule format has been developed. With the same ideas in mind, however, aim-

ing for a general treatment of recursion (currently, only guarded recursion can be dealt

with—see [Tur97]), one might want to consider operational semantics in some cate-

gories of domains, i.e., certain classes of cpo’s (cf. Section 1.2.2); preliminary results

have been reported in [Plo01].

Furthermore, one can model different kinds of transition systems by appropri-

ately instantiating B, e.g., one might consider (discrete) probabilistic transition sys-

tems [LS91a, vGSS95], for the appropriate choice of behaviour. This can then be used

to obtain a syntactic format for languages for probabilistic processes, similar to GSOS,

as was recently achieved in [Bar02] for the discrete case, by analysing the constraints

expressed in (5.4) for this case (see also [dV98, dVR99] for some results in a continu-

ous setting).

Note that a different, yet essentially equivalent, approach to a categorical treat-

ment of (operational) semantics was developed by Corradini and others in [CGRH98,

CHM99, CHM02], where so-called structured transition systems are modelled as coal-

gebras in a category of Algebras for a monad: the monad specifies some algebraic

structure, and the coalgebras define transition systems as usual. Hence, in this ap-

proach, the states of transition systems are endowed with algebraic structure.

134 Chapter 5. Abstract Rules for Timed Processes

5.2 Discrete Time

We can now briefly show how to define abstract rules for timed processes over dis-

crete time, i.e., in the case that T � � . As was shown in Theorem 4.23, the evolu-

tion comonad E� for discrete time is cofreely generated from the behaviour functor

B�X � 1�X . Consequently, as stated in Corollary 4.30, the Coalgebras for E� , i.e.,

TTSs over � , are the same as the B� -coalgebras: a B� -coalgebra X 	 1�X is simply

a partial function from X to itself which describes the ‘next’ step; in an E� -Coalgebra,

this precisely amounts to the
1
�-transitions.

The upshot of all this is that, in order to define the operational semantics of timed

processes over discrete time, we can simply use the previously presented framework

from [TP97], instantiated with B� as the behaviour functor. Thus, we get abstract rules

of type

(5.7) Σ�Id�B� �� B�T

Such abstract rules then induce a distributive law of T over B∞
�

, and since B∞
�
�E� , this

is a distributive law TE� � E�T . Applying the adequacy results from [TP97], we in

particular obtain that B� -bisimulation is a congruence for languages whose operational

rules fit the type (5.7). Yet, keeping in mind that B� -bisimulation is (modulo the

isomorphism of the coalgebras) the same as E� -bisimulation, as already mentioned in

Remark 4.31, we obtain that E� -bisimulation, i.e., time bisimulation over the naturals,

is a congruence for the language.

Concretely, for a set X of ‘meta variables’ as before, this means that the operational

semantics of an n-ary operator σ � Σ must be given by a function

(5.8) ��σ�� : �X � �1�X��n 	 1�TX

where, as before, an n-tuple ��x1�β1�� � � � ��xn�βn�� in the domain of ��σ�� describes the

names and behaviours of the argument processes. In this particularly simple case, the

latter boils down to either no step or the unique successor process. The codomain of

��σ�� describes the potential successor process of the composite term σ�x1� � � � �xn�.

Note that this already imposes (implicit) conditions on concrete rules which cor-

respond to (5.8): in order for ��σ�� to be well-defined, there can only be at most one

5.2. Discrete Time 135

successor process of σ�x1� � � � �xn� for each argument tuple, i.e., the rules have to be de-

terministic. This constitutes what could be called a behaviour-inherent, or behaviour-

dependent condition. Similarly, we have already seen that all sets of GSOS rules cor-

responding to abstract rules (5.2) must be image finite, as was shown in Theorem 5.1.

This again is an example of such behaviour-inherent conditions. Another example is

given by probabilistic LTSs, where the probabilities of outgoing transitions of each

state must add up to 1, and consequently, this has to be ensured by the rules and a

corresponding concrete rule format; we refer the reader to [Bar02] for the details.

As an application of (5.7), the time rules of ATP fit the corresponding abstract

format. Note that this refers to ATP as presented in [NS94], rather than the more

general ATPD of [NSY93]: the former uses one-step (qualitative)
χ
�-transitions to

denote the progress of time, whereas the latter is parameterised over a time domain

D, using
d
�-transitions, which can essentially be dealt with along the same lines as

TeCCS over an arbitrary time domain, which will be dealt with later on.

We can also define a one-step version of TeCCS, using �-transitions (intuitively

corresponding to the
1
�-transitions of the original calculus) which fits the constraints

expressed in (5.7) and then prove, exploiting the isomorphism from Corollary 4.30,

that we actually define the same TTS on the set T0 of closed TeCCS terms.

We will, at this point, not go into the details of these two constructions since we

are going to present a completely syntactic characterisation of (5.7) anyway in the next

chapter, based on the correspondence between GSOS and abstract rules (5.4) explained

in the previous section. This format will then be shown to contain both ATP and the

one-step variant of TeCCS, as well as the proof that the latter actually induces the same

TTS on terms as the original semantics from [MT90].

Remark 5.5

In Remark 4.32, we have seen that, for T �C�, the evolution comonad is cofreely gen-

erated from the endofunctor BC � BC
�
� �1�X�C. Hence, the same as above applies:

the operational semantics for timed processes over arbitrary free monoids can be dealt

with in the usual fashion of [TP97]. In this way, it should be possible to also treat the

rules of the calculus PMC [AM94]. �

136 Chapter 5. Abstract Rules for Timed Processes

5.3 Abstract SOS Rules for Behaviour Comonads

We have seen that, for timed processes, the ‘right’ notion of transition systems, viz.,

TTSs, actually corresponds to Coalgebras for the evolution comonad E, rather than

for a functor. Moreover, in general, E is not cofreely generated, as was the case for

TTSs over the naturals: in particular for T � �, we do not have any hope of finding

a simpler coalgebraic characterisation of the corresponding TTSs. Because of this, we

cannot directly apply the theory of [TP97] to obtain well-behaved operational rules

for timed processes, except for the case of discrete time or other free monoids, as was

shown in the previous section.

Therefore, if we want to be able to deal with timed processes in a similar way, we

have to generalise the bialgebraic approach to deal with behaviour comonads. Intu-

itively, such behaviour comonads describe complete, or global computations, rather

than just the ‘next step,’ as is being described by behaviour functors like BA. This

can be illustrated as follows. A ‘behaviour’ in BAX describes the labels of transitions,

and the successor states of such transitions, of a process. In contrast, consider the

cofree comonad D on BA, which exists by [Bar93], and whose value DX at a set X is,

by [Tur96, §13], the set of rooted, image finite trees quotiented by strong bisimulation

whose nodes are labelled in X and whose branches are labelled in A. So the elements of

DX essentially describe finite or infinite series of computational steps, each of which is,

co-inductively, given by a behaviour in BAX (this is actually the characteristic property

of cofree comonads).

The core of the bialgebraic approach was given by using abstract rules like (5.4), or

similar ones, in order to obtain a distributive law TD � DT of (free) syntax described

by the monad T over (cofree) behaviour given by the comonad D, generated by a

signature Σ and a behaviour functor B, respectively. With that as a starting point,

using the bialgebras of this law, the whole theory could be developed, in particular the

abstract adequacy results from Theorem 5.3 and Corollary 5.4 could be obtained.

In the following, let D � �D�ε�δ� be an arbitrary comonad on some category C . On

the level of distributive laws, it is very easy to generalise to not necessarily cofreely

generated comonads: we can simply use the same kind of distributive law TD � DT

as before. Unfortunately, it would be by far too complicated to specify operational

5.3. Abstract SOS Rules for Behaviour Comonads 137

rules in this way: one would have to define the behaviour of arbitrary terms, rather

than, as in the inductive approach of SOS rules, simple terms with one constructor

applied to variables. Consequently, we aim for abstract rules of similar type as (5.4)

which still induce a distributive law, yet for an arbitrary comonad D.

The fact that we want to obtain abstract rules for a general comonad, and conse-

quently a distributive law, should make it obvious that we need to impose additional

restrictions on abstract rules: we need to relate them to the operations of D. Other-

wise, the rules might just as well induce a natural transformation of the correct type

which respects the monad operations of T , e.g., if the law was induced by induction

as before, yet, in general, it will not respect the comonad structure of D. In the orig-

inal case of [TP97], these conditions were vacuously true because the comonad was

cofreely generated, and so it was sufficient to use the equivalent but unconstrained

B-coalgebras.

Note that this introduces a second kind of restriction imposed on concrete rules:

apart from the previously mentioned behaviour-dependent ones, we now also have

proof-theoretic ones, arising from the extra restrictions needed to relate the rules to

the comonad structure of D. Intuitively, the latter type of conditions is to do with

derivability from the rules and, in a way, with lifting the conditions imposed on the

D-Coalgebras by the comonad operations to the level of derivations from the rules: as

we shall see for the case of timed processes, the conditions needed are very similar

to the axioms (ZeroDelay) and (Continuity), while (Determinacy) will turn out to be

a behaviour-inherent one. This corresponds to how these axioms are reflected on the

level of E-Coalgebras: while (Determinacy) is guaranteed by the type X 	 EX , the

other two essentially correspond to the conditions imposed on E-Coalgebras by the

comonad operations, cf. the proof of Theorem 4.17.

In order to find an appropriate type for abstract rules, let us begin with (5.4), except

that we replace the behaviour functor B with the behaviour comonad D. This results in

abstract rules of the type

Σ�Id�D�� DT

Recall that, in the domain of the natural transformation, the Id-component was used to

have names available for the component processes, not only their behaviour. However,

138 Chapter 5. Abstract Rules for Timed Processes

since D is a comonad, it comes with a counit ε : D � Id, which we can use to obtain a

natural transformation D � Id�D: simply apply �ε� IdD� to D. In other words: using

a comonad D, we already have access in a, moreover, canonical way, to names of

‘argument processes’ by using the counit of D (cf. calling the counit of the evolution

comonad the naming function!). This suggests to simplify the type of abstract rules to

ΣD � DT

and in fact, we will now show that using such rules, upon imposing certain conditions,

indeed allow to derive a distributive law TD � DT of the (still freely generated) monad

T over the (general) comonad D. Note that, since D is only a retract of Id�D, using

the simplified type of natural transformations (with domain ΣD) might seem like a

loss of generality; however, as will be shown later on, there is in fact no such loss of

generality.

5.3.1 Comonadic SOS

This section presents a general account of abstract rules for a behaviour comonad

D � �D�ε�δ�. In the following, whenever Σ is a functor for which the free monad

Σ� exists, we will write it as T � �T�η�µ�.

Definition 5.6

Let Σ�F be endofunctors on the same category C , and assume that Σ freely generates

the monad T with free Σ-algebra structure γ : ΣT � T . Given a natural transforma-

tion ρ : ΣF � FT , define the natural transformation � : TF � FT as the unique map

making the following diagram commute (obtained by the freeness of T):

F
ηF ��

Fη ��
��

��
��

��

��
��

��
��

TF

�
��
	
	
	

	
	
	 ΣTF

γF��

Σ�
��

FT FT 2
Fµ

�� ΣFTρT
��

(5.9)

In this situation, we call � the distributive law induced by ρ, sometimes writing it as �ρ

to stress that � is defined with respect to ρ. �

The next proposition shows that the terminology ‘distributive law’ for �, as in (5.9),

is justified:

5.3. Abstract SOS Rules for Behaviour Comonads 139

Proposition 5.7

Let Σ�F�T and � be as in Definition 5.6. Then � : TF � FT is a distributive law of the

monad T over the endofunctor F .

Proof: We have to show that the following two diagrams commute

F
ηF

�� ��
��
��
�

��
��
��
�

Fη

��
��

��
��

�

��
��

��
�

TF
�

�� FT

T 2F
µF

��

T� �� TFT
�T �� FT 2

Fµ
��

TF
�

�� FT

(5.10)

i.e., ‘one half’ of (2.9).

The triangle in (5.10) commutes by definition of �. Therefore, it suffices to show

that also the square commutes, for which we will again use the freeness of T : we will

show that both �ÆµF and FµÆ�T ÆT � fit as the unique map τ in the commuting diagram

TF
ηTF ��

� ��
��

��
��

��

��
��

��
��

T 2F

τ
��
	
	
	

	
	
	 ΣT 2F

γTF��

Στ
��

FT FT 2
Fµ

�� ΣFTρT
��

For �ÆµF , we can fill in the diagram as follows:

TF
ηTF ��

idTF
��

T 2F
µF

��

ΣT 2F
γTF��

ΣµF
��

TF
idTF ��

� ��
��

��
��

��

��
��

��
��

TF

�
��

ΣTF
γF��

Σ�
��

FT FT 2
Fµ

�� ΣFTρT
��

In the top row, the left square commutes because η and µ are unit and multipli-

cation, respectively, of the monad T , the right square commutes because µ is defined

as the inductive extension of idT (see, e.g., [Tur96]), dually to the way that δ, for a

cofree comonad, is defined as the coinductive extension of the identity—see (2.8). In

the bottom row, the triangle trivially commutes, and the square on the right commutes

140 Chapter 5. Abstract Rules for Timed Processes

by definition of �. The diagram for FµÆ �T ÆT � looks as follows:

TF
ηTF ��

�
��

T 2F

T�
��

ΣT 2F
γTF��

ΣT�
��

FT
ηFT ��

idFT
��

TFT

�T
��

ΣTFT
γFT��

Σ�T
��

FT FηT

��

idFT
��

FT 2

Fµ
��

FT 3
FµT��

FTµ
��

ΣFT 2
ρT 2��

ΣFµ
��

FT
idFT

�� FT FT 2
Fµ

�� ΣFTρT
��

In the top row, the left square commutes because η is natural, the right square

because of the naturality of γ. The middle row commutes because of the definition

of � (precomposed with T). Finally, in the bottom row, both the left and the middle

square commute because of the monad laws, and the right square commutes because ρ
is natural. Thus we have shown that �ÆµF � FµÆ �T ÆT �, making � into a distributive

law of the monad T over the endofunctor F . �

Using �� �ρ, it is now possible to formulate conditions under which abstract rules

as in (5.12) are ‘well-behaved’ with respect to D:

Definition 5.8

Let Σ be a functor with freely generated monad T , let D � �D�ε�δ� be a comonad. Let

ρ : ΣD � DT be a natural transformation with induced distributive law � : TD � DT

of T over D (viewed as an endofunctor). Then say that ρ respects the structure of

the comonad D if the following two diagrams, referred to as the ε- and δ-diagram,

respectively, commute:

ΣD
ρ ��

Σε
��

DT

εT
��

Σ ξ
�� T

ΣD
ρ ��

Σδ
��

DT

δT
��

ΣD2
ρD

�� DTD
D�

�� D2T

(5.11)

where ξ : Σ � T is defined as ξ ��
� γÆΣη. Abstract comonadic SOS (CSOS) rules for

D are then given by a natural transformation

(5.12) ρ : ΣD � DT

which respects the structure of D in the sense of (5.11). �

5.3. Abstract SOS Rules for Behaviour Comonads 141

Our aim is now to show that abstract CSOS rules indeed induce a distributive law

TD � DT of the monad over the comonad. We first provide two technical lemmas

concerning ξ which will be needed later on.

Lemma 5.9

We have

(5.13) γ � µÆξT : ΣT � T

Proof: Consider the following diagram:

ΣT
γ ��

ΣηT
��

idΣT

��
��

��
��

��

��
��

��
��

T

idT

��

ΣT 2

γT
��

Σµ
�� ΣT

γ
���������

�������

γ
��
��

��
��

��

��
��

��
��

T 2
µ

�� T

The diagram commutes because of the monad law µÆηT � idT , the definition of ξ (the

composite map on the left-hand side, γT ÆΣηT , is equal to ξT), and the definition of µ

as an inductive extension. �

Lemma 5.10

The following diagram commutes:

Σ
Ση ��

ξ ��
��

��
��

��

��
��

��
��

ΣT
ξT �� T 2

µ
�� ��
��
��
�

��
��
��
�

T

(5.14)

Proof: To show the commutativity of (5.14), we fill in the diagram as follows:

Σ
Ση ��

Ση

��

ξ

���
���

���
���

���
���

���
���

���
���

�

���
���

���
���

���
���

���
���

���
�� ΣT

ΣηT ��

idΣT

��
��

��
��

��

��
��

��
��

ΣT 2
γT ��

Σµ
��

T 2

µ

��

ΣT
γ

��
��

��
��

��

��
��

��
��

ΣT γ
�� T

This diagram commutes because of the monad laws, the definition of ξ, and the defini-

tion of µ as an inductive extension of γ along idT . �

142 Chapter 5. Abstract Rules for Timed Processes

Abstract rules of type ρ : ΣD � DT , regardless whether they do or do not respect

the structure of the comonad D, induce a distributive law �� �ρ of the monad T over

(the endofunctor) D, as was shown in Proposition 5.7. If ρ are actually CSOS rules,

i.e., additionally respect the structure of D, then � also respects the structure of D, and

so we obtain:

Theorem 5.11

Let ρ : ΣD � DT be a natural transformation with induced distributive law �� �ρ. If,

additionally, ρ respects the structure of the comonad D � �D�ε�δ�, then � : TD � DT

is a distributive law of the monad T over the comonad D.

Proof: From Proposition 5.7, we already know that � is a distributive law of the monad

T over the functor D, so it remains to show that the following two diagrams commute,

relating � to the operations ε and δ of the comonad D, i.e., the ‘other half’ of (2.9):

TD
� ��

Tε ��
��

��
��

�

��
��

��
� DT

εT�� ��
��
��
�

��
��
��
�

T

TD
� ��

Tδ
��

DT

δT
��

TD2
�D

�� DTD
D�

�� D2T

(5.15)

For the triangle, we show that both Tε and εT Æ � fit as the unique inductive exten-

sion τ of γ along εT ÆDη; diagrammatically this means

D
ηD ��

Dη
��

TD

τ
��
	
	
	

	
	
	 ΣTD

γD��

Στ
��

DT εT
�� T ΣTγ

��

(5.16)

Once we manage to show that, we know that they must be equal. First, we fill in the

diagram for εT Æ �.

D
ηD ��

Dη ��
��

��
��

��

��
��

��
��

Dη

��

TD

�
��

ΣTD
γD��

Σ�
��

DT

εT

��

DT 2

εT2

��

Dµ
�� ΣDT

ΣεT
��

ρT
��

DT εT
�� T T 2

µ
�� ΣTξT

��

γ

��

5.3. Abstract SOS Rules for Behaviour Comonads 143

In this diagram, the upper half commutes by definition of �. In the lower half, the

right-hand square commutes because of the ε-diagram in (5.11), the left-hand square

commutes trivially, and the middle square commutes because of naturality of ε. Note

that γ � µÆξT by Lemma 5.9, hence the map at the bottom from ΣT to T is equal to γ.

Now we consider the same diagram for the other map, Tε:

D
ηD ��

ε

��
��

��
��

�

��
��

��
�

Dη

��

TD

Tε

��

ΣTD
γD��

ΣTε

��

Id
η

��
��

��
��

��

��
��

��
��

DT εT
�� T ΣTγ

��

In this diagram, the right half commutes because of naturality of γ. The two squares

in the left half commute because of naturality of η and ε, respectively. Hence, the

triangle in (5.15) commutes.

We now have to show that � also respects the comultiplication δ, i.e., that the rect-

angle in (5.15) commutes. We again show that both maps, δÆ�T and D�Æ�DÆTδ, make

the same universal diagram commute, hence they must be equal. For the first map, the

diagram looks as follows:

D
ηD ��

Dη ���
��

��
��

�

��
��

��
��

Dη

��

TD

�
��

ΣTD
γD��

Σ�
��

DT

δT
��

DT 2

δT 2
��

Dµ
�� ΣDTρT

��

ΣδT
��

DT δT

�� D2T D2T 2
D2µ

�� DTDT
D�T

�� ΣD2TρDT
��

In this diagram, the upper half commutes by definition of �; the square below the

triangle commutes trivially; the rightmost square in the lower half commutes because

of the δ-diagram in (5.11), and the square to the left of it commutes because δ is natural.

144 Chapter 5. Abstract Rules for Timed Processes

For the other map, we fill diagram in as follows:

D

Dη

��

D
ηD ��

δ
��

TD

Tδ
��

ΣTD
γD��

ΣT δ
��

D2
ηD2 ��

DηD

���
��

��
��

�

��
��

��
��

D2η

��
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
� TD2

�D
��

ΣTD2
γD2��

Σ�D
��

DTD

D�
��

DT 2DDµD

��

DT�
��

ΣDTD

ΣD�
��

ρTD��

DT DT δT

�� D2T D2T 2
D2µ

�� DTDT
D�T

�� ΣD2TρDT
��

Here, the square given by the bent arrow on the left composed with δT , and D2ηÆδ
commutes because of naturality of δ; the first row commutes because of naturality of η
and γ; the second row commutes because of the definition of �; the triangle with sides

D2η, D�, and DηD commutes because � is a distributive law respecting the operations

of the monad T ; for the same reason, the square in the middle of the bottom row

commutes; finally, the right square in the bottom row commutes because ρ is natural.

Hence we have shown that � is a distributive law of T over D. �

Theorem 5.11 states that abstract CSOS rules induce a distributive law of free syn-

tax over the (arbitrary) behaviour comonad D. Using the bialgebras of the induced

distributive law �, given CSOS rules ρ, the same results follow as in [TP97], in partic-

ular:

Corollary 5.12

If D preserves weak pullbacks, then any �-bialgebra has a final bicongruence. �

Further specialising this to the evolution comonad E, which, by Proposition 4.14,

preserves pullbacks and so in particular weak pullbacks (Corollary 4.15), we obtain:

Corollary 5.13

If the operational rules of a language for timed processes induce CSOS rules for E,

time bisimulation is a congruence for the language. �

In the following, the generality of abstract CSOS rules is made even more precise:

such rules are in fact already equivalent to distributive laws of a free monad over a

5.3. Abstract SOS Rules for Behaviour Comonads 145

comonad, providing the converse of Theorem 5.11. First an auxiliary result, which is

very similar to results in [LPW00, Wat02]:

Proposition 5.14

Let Σ�F be endofunctors, and let T be the free monad on Σ. Then natural transfor-

mations of type ρ : ΣF � FT are in one-to-one correspondence with distributive laws

� : TF � FT of the monad T over the endofunctor F .

Proof: We first describe the correspondence. Given ρ, define � : TF � FT as the

unique map making (5.9) commute, and Proposition 5.7 then shows that � respects the

operations of the monad T . In the converse direction, given � : TF � FT respecting

the monad structure, we define ρ� � �ÆξF : ΣF � FT .

We now have to show that these two assignments ρ �	 � and � �	 ρ� are mutually

inverse. Hence we have to show that �Æ ξF � ρ and ��ÆξF
� �. For the first equation,

consider the following diagram:

ΣF

ξF
��

ΣF

ΣηF
��

F
ηF ��

Fη ��
��

��
��

��

��
��

��
��

TF

�
��
	
	
	

	
	
	

TηF

�� T 2FµF

�

ΣTFξTF

��

Σ�
��

FT FT 2
Fµ

�� ΣFTρT
��

(5.17)

In (5.17), the lower half commutes by definition of � (using Lemma 5.9), and the

composite on the right-hand edge, Σ� ÆσηF is, by definition of �, equal to ΣFη; the

upper half commutes by applying Lemma 5.10, and by naturality of ξ. Furthermore,

we obtain ρT ÆΣFη � FTηÆρ, by naturality of ρ, and thus, using the monad laws,

FµÆρT ÆΣ�ÆσηF � FµÆρT ÆΣFη � FµÆFTηÆρ � ρ

which shows �Æ ξF � ρ. So we have shown that the mapping ρ �	 �� �ρ �	 ρ� is the

identity, establishing one half of the correspondence.

In the other direction, starting with a distributive law � : TF � FT , we have to

show that we also obtain the identity mapping via � �	 ρ� �	 �ρ�
. To this end, since the

distributive law �ρ�
induced by the rules ρ�, which, in turn, are induced by �, is defined

146 Chapter 5. Abstract Rules for Timed Processes

using a universal property, we show that � makes the defining diagram of �ρ�
commute.

The defining diagram is given as follows:

F
ηF ��

Fη ��
��

��
��

��

��
��

��
��

TF
�ρ�
��

ΣTF
γF��

Σ�ρ�
��

FT FT 2
Fµ

�� ΣFT
�ρ��T
��

We will now show that � fits in place of �ρ�
in the above diagram:

F
ηF ��

Fη ��
��

��
��

��

��
��

��
��

TF

�
��

T 2F

T�
��

µF�� ΣTF

Σ�
��

ξTF��

FT FT 2
Fµ

�� TFT
�T

�� ΣFT
ξFT

��

This diagram commutes because �, by assumption, respects η (for the triangle on the

left), respects µ (for the middle square), and because ξ is natural (for the square on the

right). Hence, bearing in mind that ρ� � �ÆξF and µÆξT � γ by Lemma 5.9, � makes

the same diagram commute as �ρ�
, and so �� �ρ�

, as desired, proving that the mapping

� �	 ρ� �	 �ρ�
is also the identity, concluding the proof. �

Substituting D for F , and adding the requirement that ρ respects the structure of

D, the one-to-one correspondence from Proposition 5.14 extends to distributing free

monads over comonads:

Theorem 5.15

Let Σ be a functor with freely generated monad T , and let D be a comonad. Then

there is a one-to-one correspondence between abstract CSOS rules ρ : ΣD � DT and

distributive laws � : TD � DT of the freely generated monad T over the comonad D.

Proof: We have already seen in Proposition 5.14 that abstract rules ρ are in one-to-

one correspondence with distributive laws of the monad T over the endofunctor D.

If we show that it is equivalent for � to respect the comonad operations and to sat-

isfy (5.11), we are done. This boils down to proving that the correspondence given in

Proposition 5.14 preserves the comonad operations, under the given assumptions.

We have already shown in Theorem 5.11 that for abstract rules ρ, together with the

two conditions (5.11), the induced distributive law � : TD�DT respects the operations

5.3. Abstract SOS Rules for Behaviour Comonads 147

of comonad D; this is also the same law as used in the one-to-one correspondence. So

the only thing left to prove is that the abstract rules obtained from a distributive law of

the monad over the comonad respect the structure of the comonad.

So let � : TD � DT be a distributive law of the monad T over the comonad D. We

want to show that for the induced rules ρ � ρ� : ΣD � DT , defined as

ρ � ΣD
ξD
�� TD

�
�� DT �

the two diagrams (5.11) commute. For the ε-diagram, consider the following diagram:

ΣD
ξD

��

ρ
��

Σε
��

TD

Tε
��

�
�� DT

εT
��

Σ ξ
�� T T

The above diagram commutes: the left square commutes because of naturality of ξ,

the right square commutes because � respects ε. For the δ-diagram, we consider a very

similar calculation:

ΣD
ρ �� DT

ΣD ξD

��

Σδ
��

TD

Tδ
��

�
�� DT

δT
��

ΣD2
ξD2 �� TD2

�D �� DTD
D�

�� D2T

ΣD2
��ÆξD�D�ρD

�� DTD

This diagram commutes as well: the left square in the middle row again by naturality

of ξ; the rectangle to its right because � respects δ; the topmost square commutes

by definition of ρ; finally, ρD � ��ÆξD�D � �D ÆξD2 because D and (pre-)composition

with D are functors, therefore the square in the bottom row commutes as well. �

Intuitively, Theorem 5.15 states that, in the case of T being freely generated, (5.11)

provides precisely the necessary and sufficient conditions on abstract rules of type

ΣD�DT such that the bialgebraic approach of [TP97] can be applied; in other words:

148 Chapter 5. Abstract Rules for Timed Processes

there is no way to use strictly more expressive abstract rules and still obtain a distribu-

tive law TD � DT (for T being freely generated).

Note that this implies that the main result of [TP97], viz., that abstract operational

rules (5.4) induce a distributive law of free syntax over cofree behaviour, is also in-

cluded in Theorem 5.11. Assume that D � B∞ is cofreely generated from a behaviour

functor B, e.g., consider timed processes over discrete time, in which case the evolution

comonad is cofreely generated from B� . Then, any natural transformation ρ as in (5.4)

gives rise to CSOS rules for D, i.e., a natural transformation of type ΣD � DT which

respects the structure of D: as was shown in [TP97], the rules ρ induce a distributive

law TD � DT of the monad over the comonad D; yet, in Theorem 5.15, we have

shown that such distributive laws are in one-to-one correspondence with CSOS rules

for D, so in particular there are CSOS rules which correspond to the abstract GSOS

rules ρ. We are currently not aware of a more direct proof of this fact which does not

use the correspondence from Theorem 5.15, although intuitively, the claim is obvious.

5.3.2 Abstract Temporal Rules

Consider the special case of timed processes, with the evolution comonad as the ap-

propriate behaviour comonad. We could now use CSOS rules for E to describe the

operational semantics of timed processes. Yet, as inspection of the literature on timed

process calculi shows, this amount of generality is not even needed: operational rules

corresponding to (5.12) could use arbitrary terms as targets of rule conclusions, while

the rules for TeCCS, and all other calculi we are aware of, only use targets which con-

tain at most one constructor, i.e., targets of rule conclusions are either a single variable

or a composite term of the form σ�x1� � � � �xn� where σ is an n-ary function symbol in

Σ, and the xi are variables.

To reflect this, we are going to show in this section that we can use a less general

kind of natural transformation, together with correspondingly simpler conditions relat-

ing it to the comonad structure of a general comonad D, which will still induce a dis-

tributive law TD � DT ; hence, we will still be able to apply the bialgebraic approach

of [TP97]. Note that the present development is motivated by, and tailored towards,

languages for timed processes, so when reading D for the comonad, one should really

5.3. Abstract SOS Rules for Behaviour Comonads 149

think of E, the evolution comonad.

One advantage of this simpler approach is that the conditions imposed on the op-

erational rules, in order to ensure that we obtain a distributive law respecting the op-

erations of D, will become easier. This will certainly become clear in the next chapter

when we will derive syntactic characterisations of abstract CSOS rules. However, in-

tuitively, this should already become clear here: in the light of Theorem 5.15, which

states that CSOS rules are essentially the same as a distributive law, using rules which

merely imply the existence of such a law, but not the converse, must necessarily be

more restrictive. In order to force such consequently less expressive rules to respect

the structure of D, it should be obvious that weaker conditions will suffice.

In the following, let C be an appropriate category with all the required structures

(products, coproducts, distributivity etc.).

Definition 5.16

Let Σ be an endofunctor on C which freely generates a monad T , and let D be a

comonad on C . Moreover, let

(5.18) ρ : ΣE � E�Id�Σ�

be a natural transformation. We then call ρ abstract temporal rules, or say that ρ
respects the structure of D, if ρ makes the following two diagrams commute:

ΣD
ρ ��

Σε
��

D�Id�Σ�
εId�Σ
��

Σ
inr

�� Id�Σ

ΣD
ρ ��

Σδ
��

D�Id�Σ�

δId�Σ
��

ΣD2
ρD

�� D�D�ΣD�
D�Dinl�ρ�

�� D2�Id�Σ�

(5.19)

The two maps inl and inr in the diagrams denote the left and right injections, respec-

tively, into the coproduct. We will again refer to the two diagrams in (5.19) as the ε-

and the δ-diagram, respectively, since, due to the type of ρ, no confusion can arise with

the corresponding diagrams for CSOS rules. �

Given abstract temporal rules ρ, we can again show that they induce a distributive

law:

150 Chapter 5. Abstract Rules for Timed Processes

Proposition 5.17

Let Σ�F be endofunctors on Set such that Σ freely generates the monad T , and let

ρ : ΣF � F�Id�Σ� be a natural transformation. Then ρ induces a distributive law

� : TF � FT of the monad T over the endofunctor F .

Proof: Let ρ be a natural transformation of the given type. Then define � as the unique

map making the following diagram commute:

F
ηF ��

Fη ��
��

��
��

��

��
��

��
��

TF

�
��
	
	
	

	
	
	 ΣTF

γF��

Σ�
��

FT F�T �ΣT �
F�idT �γ�

�� ΣFTρT
��

(5.20)

Using this definition, calculations very similar to Proposition 5.7 show that � indeed

respects the monad structure. �

Like in the situation for CSOS rules, we now know that from the natural trans-

formation alone, we get a distributive law � that respects the monad structure of T .

Further, if ρ respects D, � also respects the comonad structure, and so we obtain our

desired distributive law:

Theorem 5.18

Let Σ be a functor freely generating a monad T . Furthermore, suppose ρ is a natural

transformation of type (5.18) respecting the structure of D. Then ρ induces a distribu-

tive law � : TD � DT of the monad T over the comonad D.

Proof: We have already seen, in Proposition 5.17, that we get a distributive law � of

the monad T over the endofunctor D. Under the additional assumptions, similarly to

Theorem 5.11, we can further deduce that � also respects the comonad operations. In

fact, in order to prove that � respects the counit ε of D, we can use exactly the same

diagram as before, viz., again showing that both εT Æ � and Tε fit as the unique map τ
making (5.16) commute: in fact, the proof for Tε stays exactly the same; for the other

map, we merely apply the modified ε-diagram instead of the previous ε-diagram. The

same holds for showing that � respects the comultiplication δ: the same diagram can be

used, the ‘new’ δ-diagram is applied in place of the previous one, but the calculations

essentially stay the same. �

5.3. Abstract SOS Rules for Behaviour Comonads 151

So we gain another, weaker congruence result for D � E:

Corollary 5.19

Time bisimulation is a congruence for any language whose operational rules induce

abstract temporal rules. �

In the next chapter, we are going to show that in particular the time rules of TeCCS

induce abstract temporal rules. Therefore, we obtain:

Corollary 5.20

Time bisimulation is a congruence for TeCCS. �

Note that this is a weaker congruence result than what was shown in [MT90]:

there, the bisimulation obtained by combining action and time bisimulation was a con-

gruence; here, we only obtain that each of the two on its own is a congruence: for the

time-part, this follows from the preceding corollary, and for the action rules, since they

are GSOS, from [TP97]. We will, in Chapter 7, show how to combine action and time

transitions in such a way that the categorical framework automatically establishes the

stronger congruence result.

Remark 5.21

As already hinted at in [Kic02a], the two kinds of abstract rules introduced so far, viz.,

abstract CSOS rules (5.12) and abstract temporal rules (5.18), with their corresponding

conditions, only form the extreme points of suitable types of natural transformations to

model the operational semantics of a language: abstract temporal rules only allow ei-

ther a variable or one single constructor (applied to variables) as targets of conclusions,

while CSOS allows arbitrary terms with any nesting of constructors, just like GSOS—

cf. the use of rules like (5.1). In between, there is a whole hierarchy of increasingly

expressive types of natural transformations.

This higher expressivity is traded off against the fact that the conditions to be sat-

isfied by the rules (in order to respect the comonad structure) also become harder. For

example, in the next chapter, we shall see that the δ-diagram in (5.19) directly corre-

sponds to a derivation-based version of axiom (Continuity), i.e., being able to derive

a
t�u
� -transition, applying the rules once, must be equivalent to being able to derive

152 Chapter 5. Abstract Rules for Timed Processes

consecutive
t
�- and

u
�-transitions, again by a single application of the rules, with the

same resulting process; for CSOS rules, this has to be generalised to allow derivations

of the
u
�-transition by an arbitrary number of rule applications, and so, the ‘coherence

conditions’ imposed on the rules become very difficult indeed to check. �

Chapter 6

Rule Formats for Timed Processes

In this chapter, based on the previously developed framework of abstract rules for be-

haviour comonads and hence also for timed processes, we are going to present syntactic

formats for operational rules for timed processes. All of these are derived systemat-

ically from the corresponding abstract rules. Note that all of these formats still deal

with the specific case that the time rules are independent from the action rules, i.e., that

there are two disjoint sets of rules for the two kinds of transitions.

Since we presented three different kinds of abstract rules, there are also three rule

formats. The first, which we call the dsl-format (abbreviating deterministic single-

label), deals with the case of discrete time, where the evolution comonad is cofreely

generated from a simple behaviour functor. Hence, similar techniques as in the treat-

ment of GSOS in [TP97] can be applied; as a consequence, the format will be based

on specialised GSOS rules. The dsl-format is general enough to include all the rules

we managed to find in the literature on process algebras with discrete time.

The two other formats both deal with the case of an arbitrary time domain, and

hence the case where the evolution comonad is no longer cofreely generated. The

first, and simpler, format is based on schematic rules which, by using time variables,

allows to uniformly derive time transitions of process expressions over a signature.

There are several shapes of schematic rules, and only specific combinations of those

shapes are allowed to form admissible operators; effectively, the schematic ‘format’

only specifies a bunch of timing behaviours, and as such is not quite on a par with

‘proper’ rule formats like GSOS or tyft/tyxt. It should therefore not come as a surprise

154 Chapter 6. Rule Formats for Timed Processes

that admissible operators are sound, in the sense of inducing abstract temporal rules

and thus allowing to infer the corresponding congruence results, yet are not complete:

there are (in fact very simple) concrete rules which cannot be described by admissible

operators while still inducing abstract temporal rules. Despite all their shortcomings,

admissible operators are still expressive enough to capture all ‘well-behaved’ operators

we found in the literature.

Finally, we present a complete characterisation of CSOS rules for timed processes.

This format is based on special meta rules which are somewhat in between syntax

and semantics, providing a finitary notation for behaviours of an inherently infinitary

flavour. Despite this first level of infinity, viz., using certain ‘abbreviations’ for infi-

nite sets of time rules, the format still needs to use infinitely many such meta rules,

otherwise no complete characterisation could be obtained. Rather than providing a

real basis for specification languages for timed processes, this format, regarded real-

istically, serves as a clear demonstration of the intricacies involved in ‘pinning down’

syntactically the behaviour of timed processes over an arbitrary time domain. Con-

sequently, it goes to show that there is still so much we do not really understand, in

particular how to cut down, let alone remove completely, the various ‘levels’ of infinity

involved.

6.1 A Format for Discrete Time

Let us now consider the special case T � � . As shown in Theorem 4.23, E� is cofreely

generated by the functor B� � 1� Id, and consequently, E�–Coalg �� B�–coalg, i.e.,

TTSs over the naturals are the same as B� -coalgebras. Any of the latter is given by

a function k : X 	 1�X which induces a transition system (without labels or, equiva-

lently, with a single label) by defining

(6.1) x� x�
��
� k�x� � inr�x��

with inr again denoting the (right) injection into the coproduct 1�X ; note that we will

usually suppress mentioning either injection, writing 	 for the single element of the

1-component.

6.1. A Format for Discrete Time 155

Using (6.1), we obtain the TTS over � on X by the following two rules, for all

n � � :

x
0
� x

x
n
� x�� x��� x�

x
n�1
� x�

Hence, the �-transitions, as defined by the B� -coalgebra, precisely correspond to the
1
�-transitions in the TTS, as was already remarked before.

These considerations mean that we can directly apply the framework of [TP97] to

describe abstract operational rules for timed processes over discrete time, i.e., use a

natural transformation like (5.7):

Σ�Id�B��� B�T

Since, in our case, Σ is simply a polynomial functor associated with a first-order sig-

nature, this means that for each n-ary operator σ � Σ, we must describe a function as

in (5.8), i.e.,

��σ�� : �X � �1�X��n 	 1�TX

which must be natural in X , i.e., invariant under variable renamings. The question is

now how to translate maps like ��σ�� into concrete rules.

For this, let V be a fixed countable set of ‘meta’ variables with a fixed enumeration

(without repetitions), i.e., we have

V � �vk
 k � � � k " 1�

In the following, we will sometimes refer to such a set V as an enumerated set. We

will use the enumeration to make sure that the rules induce a deterministic transition

relation which, evidently, is the behaviour-inherent condition associated with B� .

Definition 6.1

Let V be an enumerated set of variables and Σ a (first-order) signature. Then say that

a deterministic single-label prerule, in short dsl-prerule or even only prerule, over Σ is

an operational rule of the form

(6.2)
�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ

156 Chapter 6. Rule Formats for Timed Processes

where: σ is an n-ary operator symbol in Σ; vk � V ; I�J � �1� � � � �n�; θ is a term over

Σ and V such that all variables occurring in θ are contained in the set

�vk
 1 � k � n�$�vn�i
 i � I�

(this union is actually disjoint since the enumeration on V was assumed to be without

repetitions). �

Note the following subtlety in the definition of a dsl-prerule: it is not—as falsely

claimed in [Kic02a]—equivalent to say that θ is allowed to contain all variables in

the set �vk
 1 � k � n�
I
�, at least not with the current definition. As an example,

consider the following example for n " 3:

v1 � vn�1 v3 � vn�3

σ�v1� � � � �vn�� vn�2

According to the alternative ‘definition,’ since I � �1�3�, the above rule would be a

dsl-prerule since θ � vn�2 only contains variables in the set �v1� � � � �vn�2� although it

allows θ to contain variables not occurring anywhere else in the rules (showing that

such a rule need not necessarily adhere to the GSOS conditions). However, according

to our (correct) definition, it is not a dsl-prerule since vn�2 does not occur among either

the argument variables nor the targets of positive premises.

Note that this allows for ‘holes’ in the sequence of variables occurring in θ: using

the same premises as in the above example rule, θ could contain both vn�1 and vn�3 yet

not vn�2. It would be possible to adapt the alternative definition to really be equivalent

to the one above, yet that would lead into too much unnecessary bookkeeping con-

cerning indices; hence we chose the above definition as it is. Furthermore, note that

according to the definition of a dsl-prerule, each prerule can have at most one positive

and one negative premise for any of the argument variables: I and J are sets, hence

only at most once contain an index. We can now prove the following proposition:

Proposition 6.2

Every dsl-prerule is a GSOS rule.

Proof: By our use of the enumeration V , it automatically follows that all the argument

variables v1� � � � �vn of a dsl-prerule must be distinct, the same applies to the variables

6.1. A Format for Discrete Time 157

vn�i for i � I. Moreover, by restricting θ in such a way that it can only contain either

argument variables or targets of positive premises, also the second GSOS condition is

satisfied: any variable occurring in θ must occur somewhere else in the rule. �

Definition 6.3

Given a dsl-prerule (6.2) for an n-ary operator symbol σ � Σ, its type is the tuple

�I�J� � P ��1� � � � �n��2. Such a prerule is consistent if I � J � /0, and it is complete if

I$ J � �1� � � � �n�. A dsl-rule is a consistent and complete dsl-prerule. �

If a prerule is consistent, no argument variable vk, 1 � k � n, can appear in both

a positive and a negative premise which, intuitively, makes perfect sense: a prerule

containing both of the premises vi � vn�i and vi �� for some i � I � �1� � � � �n� would

never be applicable because always one of the premises must be false. In the context

of GSOS rules, such rules are also known as ‘junk rules’ because they do not contain

any information; hence no dsl-rule can be a junk rule: it must always allow to derive a

step, when instantiated with suitable arguments.

In contrast to that, a dsl-prerule is complete if each of the argument variables vk,

1 � k � n, occurs as the source of at least one premise, be it positive or negative (we

have already remarked that there cannot be more than one positive or negative premise

for the same variable in a dsl-prerule). Intuitively, this means that a complete prerule

does not allow for the behaviour of any argument process to be unspecified: all ar-

guments have to be ‘inspected,’ so to speak, in order to determine whether the rule is

applicable or not.

Combining consistency and completeness, the characteristic feature of a dsl-rule,

on top of the GSOS conditions on variable occurrences which are satisfied because a

dsl-rule is in particular a prerule, cf. Proposition 6.2, is that each argument variable

occurs as the source of exactly one premise, either a positive or a negative one, as

illustrated in the following example of a dsl-rule (with no particular intuitive meaning):

v1 � v3 v2 ��

σ�v1�v2�� σ�v1�v3�

Note that the following is not a dsl-rule since it is only consistent but not complete:

(6.3)
σ�v1�� σ�v1�

158 Chapter 6. Rule Formats for Timed Processes

However, the same semantics for σ can be specified by using the following pair of

dsl-rules:
v1 � v2

σ�v1�� σ�v1�

v1 ��

σ�v1�� σ�v1�

This indicates the basis of an algorithm which transforms a given set of consistent

prerules into a set of dsl-rules by this kind of completion process: if a rule is not

complete, introduce the case distinction in the premises as above. For the extreme

case, consider the following n-ary variant of (6.3):

σ�v1� � � � �vn�� σ�v1� � � �vn�

This behaviour needs just a single incomplete rule, yet to describe it using only com-

plete rules one actually needs 2n many rules, one rule for each possible value of an

n-ary bit vector describing which of the arguments can or cannot perform a step.

Even though this might suggest to drop the completeness requirement on dsl-rules,

keeping it makes the theory a lot simpler. When using incomplete rules, redundancies

can arise, e.g., consider the following two rules, both of which are consistent, the

second is even a dsl-rule:

σ�v1�� σ�v1�

v1 � v2

σ�v1�� σ�v1�

Clearly, the second rule is subsumed by the first in the sense that whenever the second

is applicable, also the first is applicable and allows to derive the same step, while the

converse is not true; effectively, it would be possible to drop the second rule without

changing the possible derivations. Since our goal is to obtain a correspondence be-

tween natural transformations (5.7) and certain sets of concrete rules similar to (6.2),

such redundancies create problems for obtaining a one-to-one correspondence between

abstract and concrete rules: allowing incomplete rules, we would only be able to prove

that, starting from a minimal set of rules in the sense that no rule is subsumed by an-

other, one would get the very same set of rules back after translating concrete into

abstract rules and back. The problematic step is to derive concrete rules from abstract

ones: in order to obtain a deterministic algorithm, this necessitates to derive either min-

imal or maximal (i.e., with the maximal amount of redundancy) sets of rules; hence,

when one starts with an intermediate amount of redundancy, the translation back into

6.1. A Format for Discrete Time 159

concrete rules will only be equivalent up to proving the same steps, as was the case for

GSOS in [TP97].

So far, using arbitrary sets of dsl-rules, we cannot yet guarantee to really describe

a deterministic transition system on the terms of the language under consideration:

consider, e.g., the following two dsl-rules

v1 � v3 v2 � v4

σ�v1�v2�� v1

v1 � v3 v2 � v4

σ�v1�v2�� v2

Using these two rules, the process σ�v1�v2� could have two distinct�-successors, viz.,

v1 or v2, and thus the rules are not deterministic. The problem with the two rules is

that both are applicable at the same time. This leads to the following definition:

Definition 6.4

Two dsl-prerules for the same n-ary operator symbol σ � Σ with respective types

�Ik�Jk�, 1 � k � 2, are mutually exclusive if

(6.4) �I1 � J2�$ �I2� J1� �� /0

A set of dsl-rules is in dsl-format if any two distinct rules for the same operator are

mutually exclusive. �

Let us analyse the intuitive meaning of (6.4). If satisfied, we know that I1 � J2 �� /0
or I2 � J1 �� /0; without loss of generality, assume the first case, i.e., I1 � J2 �� /0. There-

fore, there exists i � �1� � � � �n� such that i � I1 and i � J2. By the definition of what

it means to be prerule of type �Ik�Jk�, this states that there is a positive premise in the

first rule of the form vi � vn�i, and a negative premise of the form vi �� in the second

one. For any instantiation pi of vi with any concrete process, we have that either pi �

or pi ��, in other words: exactly one of the two rules is applicable. Hence, mutually

exclusive rules are never applicable at the same time. Thus, given a set of dsl-prerules

which are pairwise mutually exclusive, always at most one rule is applicable in any

given situation. Note that for dsl-rules, (6.4) is equivalent to simply I1 �� I2, since in

this specific case, Jk � �1� � � � �n�� Ik.

So what does it mean for a set of dsl-rules to be in dsl-format? First of all, each

rule must be consistent, thereby excluding junk rules which do not allow to derive any

160 Chapter 6. Rule Formats for Timed Processes

steps anyway. Next, all rules must be complete, i.e., there must be a (either positive

or negative, but not both because of consistency) premise for each argument variable,

thereby prohibiting the possibility that rules subsume each other: one easily shows that

a complete prerule for some operator σ subsumes another complete prerule for σ if and

only if they are identical. Hence, using complete rules makes redundancy impossible.

Finally, mutual exclusion enforces a deterministic transition relation, as just discussed.

Note that the behaviour-inherent condition associated with B� , viz., determinacy, can

only be enforced at the level of sets of rules, not on a per-rule basis, similar to the

restriction to image finite sets of GSOS rules in [TP97]. These three properties enable

us to prove the following proposition:

Proposition 6.5

If Σ is an arbitrary signature and σ � Σ, then any rules over Σ in dsl-format can have

only finitely many rules for σ. Consequently, if Σ is finite (as is usually the case), all

sets of rules in dsl-format are automatically finite.

Proof: Let σ � Σ be an n-ary operator symbol. By the definition of prerules, any dsl-

rule for σ must always use the argument variables v1� � � � �vn � V . Moreover, there are

only 2n many different possibilities of those arguments being able or unable to perform

a step. Hence, since any two rules for σ must be mutually exclusive, there can only be

at most 2n many rules without violating mutual exclusion. �

Now we can prove the following important result, relative to a fixed enumerated

set V of variables:

Theorem 6.6

There is a one-to-one correspondence between operational rules in dsl-format of V
and natural transformations of type Σ�Id�B��� B�T

We will split the proof of Theorem 6.6 into several results, but first we need to

introduce some definitions.

Definition 6.7

Given a set X , and an n-tuple ��x��β� ��
� ��x1�β1�� � � � ��xn�βn�� � �X�B�X�n, we say that

its type is �I�J� for I�J � �1� � � � �n� if I � �1 � i � n
 βi �� 	� and J � �1� � � � �n�� I;

6.1. A Format for Discrete Time 161

for a function f : X 	 Y , we denote the tuple � f �B� f �n��x��β� � �Y �B�Y �n simply

by �
�	
f x�

�	
f β�. Given a (first-order) signature Σ with term monad T , a set X , and a

term θ � TX , we denote the usual substitution of x1� � � � �xn � X by y1� � � � �yn � X by

θ�y1�x1� � � � �yn�xn�. �

We now prove that to each set R of rules in dsl-format, we can associate a natural

transformation ��R�� of type (5.7), and from such a natural transformation ρ, we can

derive a set ��ρ�� of rules in dsl-format such that the two constructions are additionally

mutually inverse.

Lemma 6.8

Let Σ be a signature with term monad T , and let R be a set of operational rules in

dsl-format. Then this induces a natural transformation ��R�� : Σ�Id�B��� B�T .

Proof: For any set X , and any n-ary operator symbol σ � Σ, we have to define a map

��σ��X : �X �B�X�n 	 B�TX � 1�TX

So let ��x��β� � �X �B�X�n with type �I�J�. If R does not contain any rule of this very

type, define ��σ��X��x��β�� 	.

Assume then that there is a rule in R of type �I�J�. Since R is in dsl-format, this

rule is necessarily unique: otherwise, mutual exclusion would be violated. This unique

matching rule is then necessarily of the form

r �
�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ

where θ only contains variables from the set S
��
� �v1� � � � �vn�$�vn�i
 i � I�. Since the

rule r and the tuple ��x��β� have the same type, we have that, for all i � I, βi �� 	. Hence,

��σ��X is well-defined (all v j in the substitution are distinct!):

��σ��X��x��β�� θ�x1�v1� � � � �xn�vn���i � I�� βi�vn�i� � TX

We now have to prove that this defines the components of a natural transformation

��σ�� : �Id�B��n � B�T . For this, let X �Y be sets and f : X 	 Y be a function; we

162 Chapter 6. Rule Formats for Timed Processes

have to show that the following square commutes:

�X �B�X�n ��σ��X 		

� f
B� f �n

��

1�TX

1�T f
��

�Y �B�Y �n ��σ��Y 		 1�TY

Let therefore ��x��β� � �X �B�X�n be a tuple of type �I�J�. The important point to

note is that �
�	
f x�

�	
f β� also has type �I�J�, simply by the definition of 1� f : if βk � 	,

then �1� f ��βk� � 	, and if βk � x, for some x � X , �1� f ��βk� � f x. An analogous

property holds for 1�T f : if ��σ��X��x��β�� 	, then also 1�T f applied to 	 is also 	.

Now assume that ��σ��X��x��β�� 	, by definition of ��σ�� meaning that R contains no

matching rule of type �I�J�. This implies that also ��σ��Y�
�	
f x�

�	
f β�� 	, since the type is

not changed; hence the diagram commutes in this case.

Now suppose there is a matching rule in R, i.e., a rule r in R of the form

�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ

for some term θ � TX subject to the conditions on dsl-(pre-)rules. Then we know that

��σ��X��x��β�� θ�x1�v1� � � � �xn�vn���i � I�� βi�vn�i�

and that substitution really captures all variables occurring in θ. Analogously, since

the type remains the same, the same rule r matches with �
�	
f x�

�	
f β�, and thus, we obtain

��σ��Y �
�	
f x�

�	
f β�� θ� f x1�v1� � � � � f xn�vn���i � I�� f βi�vn�i�

Applying T f to the term θ�x1�v1� � � � �xn�vn���i � I�� βi�vn�i� results in precisely this

very same result in TY , which is easily seen. Note that it is essential that θ only

contains variables in S: otherwise, the naturality square might fail to commute. �

Hence we know that, starting from a set of operational rules in dsl-format, we can

derive a natural transformation. The converse holds as well:

Lemma 6.9

Given a first-order signature Σ, a natural transformation ρ : Σ�Id�B��� B�T induces

a set ��ρ�� of operational rules over V in dsl-format.

6.1. A Format for Discrete Time 163

Proof: We derive ��ρ�� from the component

ρV : Σ�V �B�V �	 B�TV

Let therefore σ � Σ be an n-ary operator symbol; the procedure for obtaining ��ρ��
works as follows:

1. Initialise ��ρ��� /0

2. Let I � �1� � � � �n� and take J � �1� � � � �n�� I.

3. ‘Build’ a tuple in �V �B�V �n as follows: ��v��β� ��
� ��v1�β1�� � � � ��vn�βn�� by

setting βk
��
� vn�k if k � I; otherwise, set βk � 	.

4. Compute ρV ��v��β�� z.

5. (a) If z � 	, go back to second step with a different I; go through all 2n possi-

bilities; if there is no other choice left for I, terminate.

(b) If z � θ � TV , add the following rule to ��ρ��:

�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ
and then also go back the the second step for different choice of I; if there

is no other choice left for I, terminate.

Since this algorithm performs exactly 2n tests of the function ρV , termination is clear.

We now have to show that all rules in ��ρ�� are dsl-rules and that ��ρ�� as a whole is in

dsl-format.

For the first proof obligation, it is obvious, by construction, that each rule added

to ��ρ�� by the procedure is consistent and complete. The only thing left to prove

is that the variables occurring in a resulting term θ � TV are contained in the set

S
��
� �v1� � � � �vn�$�vn�i
 i � I�.

Assume for a contradiction that there is a variable v � V � S which occurs in θ;

since V is countably infinite, we can furthermore find another v� � V � S such that

v �� v�. Define the function f : V 	 V by setting

vk �	

��
�

vk if vk �� v

v� if vk � v

164 Chapter 6. Rule Formats for Timed Processes

Intuitively, f simply maps v to v� and leaves any other variable unchanged. We know

that ρ is natural, and � f � B� f �n��v��β� � ��v��β�, by definition of f . Furthermore,

ρV �σ��v��β�� � θ � V contains an occurrence of v �� S. Yet, B�T f �θ�, which by natu-

rality should be equal to θ, does no longer contain any occurrence of v since f replaces

any such occurrence by v�, hence contradicting the naturality of ρ. Therefore, θ can

only contain variables in S, showing that ��ρ�� contains only dsl-rules.

As for mutual exclusion, we merely remark that the procedure for constructing ��ρ��
adds at most one rule for any given type, so mutual exclusion is trivially guaranteed.

Consequently, ��ρ�� is indeed in dsl-format. �

Note that ��ρ�� effectively only depends on the component ρV . Thus, we now have

two constructions, ����� and �����, mapping rules to natural transformations and vice versa.

We now have to show that the two are mutually inverse, with respect to a fixed enu-

merated set V of variables.

Lemma 6.10

If R is a set of operational rules in dsl-format, R � ����R����.

Proof: Assume we have a rule

�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ

in R. By definition of ��R��, this implies in particular that ��R��V �σ��v��β�� � θ, where βk

is given by vn�k, if k � I, and equal to 	 otherwise. But then ����R���� precisely contains

the rule we started from, showing that R � ����R����.

Assume now we are given a rule in ����R���� of the form

�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ

By definition, this means that ��R��V �σ��v��β�� � θ for appropriate choice of�β. This, in

turn, can only be the case if there is a rule in R of matching type, and by the use of the

enumeration in dsl-rules, this means that it must be equal to the rule we started from,

showing also ����R���� � R. �

Also the other composite is the identity:

6.1. A Format for Discrete Time 165

Lemma 6.11

For a natural transformation ρ : Σ�Id�B��� B�T , we have ρ � ����ρ����.

Proof: Let X be an arbitrary set; we will show that the two components ρX and ����ρ����X
are equal. Assume that σ � Σ is an n-ary operator symbol, and let ��x��β� � �X �B�X�n

a tuple with type �I�J�. If ����ρ����X�σ��x��β�� � 	, then ��ρ�� does not contain a matching

rule of the same type. This, in turn, implies that ρV , applied to a suitable tuple of the

same type, also yields 	. Using the naturality of ρ to construct an appropriate renaming

V 	X , we obtain ρX�σ��x��β��� 	, and the argument also goes through in the converse

direction: if ρX�σ��x��β�� � 	, then also ����ρ����X�σ��x��β�� � 	.

Assume now that ����ρ����X�σ��x��β�� � θ̄ � TX . By definition of �����, this means that

��ρ�� must contain a dsl-rule with matching type of the form

�vi � vn�i�i	I �v j ��� j	J

σ�v1� � � � �vn�� θ

such that θ̄ � θ�x1�v1� � � � �xn�vn���i � I�� βi�vn�i�. In turn, by definition of �����, this

means that ρV �σ��v��γ�� � θ, where γk is defined as vn�k if k � I, and as 	 otherwise.

Consider then the function f : V 	 X defined by

vk �	

�����
����

xk if 1 � k � n

βi if k � n� i for some i � I

v otherwise

where v � V � S, for S
��
� �v1� � � � �vn�$�vn�i
 i � I�, is arbitrarily chosen. Then the

following two properties hold:

1. �
�	
f v�

�	
f γ�� ��x��β�

2. T f �θ� � θ̄

The first property follows immediately from the definition of f , while the second one

is obtained from the characterisation of θ̄ as the result of applying a substitution to θ.

Then, using the naturality of ρ, we get that

ρX�σ��x��β�� � ρX�σ�
�	
f v�

�	
f γ�� � T f �ρV �σ��v��γ��� � T f �θ� � θ̄ � ����ρ����X��x��β�

concluding the proof. �

166 Chapter 6. Rule Formats for Timed Processes

This last lemma concludes the proof of Theorem 6.6, showing that there is a precise

one-to-one correspondence between operational rules in dsl-format and natural trans-

formations of type (5.7), and consequently giving an elementary syntactic format for

well-behaved rules for timed processes over discrete time: any language whose time

rules fit the dsl-format satisfies the property that time bisimulation is a congruence.

Example 6.12

An example of rules in the above format is given by the time rules of the language

ATP [NS94], for example, we can write down the rules for non-deterministic choice,

written � in ATP, and the time-out operator as dsl-rules:

v1 � v3� v2 � v4

v1 � v2 � v3 � v4
v1 � v3� v2 � v4

�v1��v2�� v2

v1 � v3� v2 ��

�v1��v2�� v2

v1 ��� v2 � v4

�v1��v2�� v2

v1 ��� v2 ��

�v1��v2�� v2

The type of the rule for � is ��1�2�� /0�; for time-out, note that the single rule (2.2)

of the original calculus was turned into a set of four dsl-rules in order to satisfy the

completeness requirement; this is precisely as indicated by the completion procedure

of a set of consistent but not complete rules sketched before; also note that the third

rule, of type ��2���1��, is an example of a rule where v4, but not v3, is used in the

premises. �

6.1.1 Single-step TeCCS

We can now finally define a new single-step version of the time rules of TeCCS fitting

the dsl-format. In the next section, we will present a format which contains the general

case of TeCCS over an arbitrary time domain. Using Theorem 6.6 and the isomorphism

of E� -Coalgebras and B� -coalgebras, we will then prove categorically that the one-

step rules induce the same TTS on the set of TeCCS terms as the original rules.

The syntax of the simplified version stays the same, only the operational semantics

changes from using
t
�-transitions (for t � T) to�-transitions, capturing their intuitive

meaning as being equal to
1
�-transitions (in particular when considering the rules for

time prefixing), as shown in Figure 6.1.

6.1. A Format for Discrete Time 167

δ�p� δ�p

�t �1��p� �t��p �1��p� p

p� p� q� q�

p�q� p��q�

p� p� q� q�

p�q� p��q�

p� p� q ��

p�q� p�
p �� q� q�

p�q� q�

p� p� q� q�

p
q� p�
q�

Figure 6.1: The operational rules of Single-step TeCCS.

As in the original paper [MT90], there are no rules for the Nil-process 0 and action

prefixing α� ; in contrast, there are only two rules for time prefixing �t�� because the

third rule from the original calculus

p
s
� p�

�t��p
t�s
� p�

(already written down in the slightly corrected way, cf. Section 3.3) does not make

sense in the context of single-step transitions as defined by a B� -coalgebra.

The above set of single-step rules for TeCCS is not yet in dsl-format: they do not

use variables from an enumerated set, and additionally, the rules for both the δ-prefix

and for time prefixing are not complete rules. But as sketched above, since all rules are

consistent and satisfy the conditions on variable occurrences, they can easily be turned

into a set of dsl-rules in dsl-format; in particular, we know that time bisimulation over

the naturals is a congruence for this simplified version of TeCCS.

Additionally, we know that the simplified rules induce a natural transformation of

the type

Σ�Id�B��� B�T

168 Chapter 6. Rule Formats for Timed Processes

which induces a distributive law of T over the cofree comonad B∞
�
� E� over B� . The

rules also induce a lifting T̃B of T to the B� -coalgebras and so in particular, we obtain

a B� -coalgebra on the set T0 of closed TeCCS terms, derived from the trivial initial

B� -coalgebra ! : 0 	 B�0. This is then the intended operational model described by

the rules above:

0
η0 		

!
��

T0

T̃B�!�
��	
	
	 ΣT0

γT0

Σ�idT 0�T̃B�!��
��

B�0
B�η0 		 B�T0 B�T 20

B�µ0

 Σ�T0�B�T0�
ρT0

(6.5)

writing η, µ, and γ for the operations of the syntax monad T freely generated from the

signature Σ, and its free Σ-algebra structure, respectively.

Let us quickly describe the B� -coalgebra T̃B�!� : T0 	 B�T0 � 1�T0 in concrete

terms; we will do this by case analysis on the structure of the argument term θ � T0

(for some of the operators):

1. θ � nil or θ � α�θ�: T̃B�!��θ� � 	

2. θ � δ�θ�: T̃B�!��θ� � θ

3. θ � �t��θ�: T̃B�!��θ� �

��
�
�t�1��θ� if t � 1

θ� if t � 1

4. θ � θ1 �θ2:

T̃B�!��θ� �

��
�

T̃B�!��θ1�� T̃B�!��θ2� if T̃B�!��θ1� �� 	� T̃B�!��θ2� �� 	

	 if T̃B�!��θ1� � 	% T̃B�!��θ2� � 	

The analogous definition applies to parallel composition.

5. θ � θ1 �θ2:

T̃B�!��θ� �

���������
��������

T̃B�!��θ1�� T̃B�!��θ2� if T̃B�!��θ1� �� 	� T̃B�!��θ2� �� 	

T̃B�!��θ1� if T̃B�!��θ1� �� 	� T̃B�!��θ2� � 	

T̃B�!��θ2� if T̃B�!��θ1� � 	� T̃B�!��θ2� �� 	

	 if T̃B�!��θ1� � 	� T̃B�!��θ2� � 	

6.1. A Format for Discrete Time 169

Since B�–coalg �� E�–Coalg, T̃B�!� corresponds to a unique E� -Coalgebra on T0,

i.e., a TTS on the set of closed TeCCS terms, just like the intended operational model

for the original calculus. We will, in the next section, show how to obtain a categorical

formulation of the latter, and we will also show that it is (modulo the isomorphism of

the two categories of coalgebras) equal to the simpler model just defined.

Remark 6.13

We have seen (in Remark 4.32) that also for local qualitative time, i.e., for T � C�,

the evolution comonad is cofreely generated from the functor BC � �B��C � �1� Id�C.

Hence, the framework of [TP97] can again be applied directly: abstract rules are ob-

tained by instantiating (5.4), as was already mentioned in the previous chapter, and

a syntactic rule format can, at least in principle, be derived using similar methods as

shown in this section. This was not done due to lack of time during the later stages of

writing the thesis but at least some ideas shall be briefly presented here.

The rules in a format for local qualitative time would be of the form

x1
c1
� x�1 � � �xn

cn
� x�n

σ�x1� � � � �xn�
c
� θ

where c�c1� � � � �cn �C. We do not expect any restrictions on the relation between these

different clocks to be necessary, in particular on them being equal or not. One has again

to guarantee that the rules are deterministic, which needs C-dimensional extensions of

the above constraints of consistency, completeness, and mutual exclusivity.

It should then follow easily that the format includes the clock rules of PMC—

after also including time-parameterised, or rather, clock-parameterised operators, cf.

the rules for time-out and ignore presented in Section 2.3; such operators might give

rise to some additional constraints which relate clocks occurring as parameters to the

ones occurring as labels of transitions in premises and conclusions of rules. Note that

one only obtains finite sets of finitary rules in the case that C is finite. Otherwise, the

rules may have infinitely many premises, allowing to ‘test’ for potential successors in

all C different dimensions, as is definitely the case when using complete rules. More-

over, sets adhering to the format can then also be infinite: over infinitary rules, mutual

exclusion does not guarantee finiteness. �

170 Chapter 6. Rule Formats for Timed Processes

6.2 The General Case

6.2.1 An Elementary Format

This section presents a simple way of specifying a well-behaved operational semantics

of timed processes over an arbitrary time domain. In the previous section, we have seen

how to deal with the case of the specific free monoid � and, in principle at least, with

arbitrary free monoids C�. In the remainder of this section, we assume that the time

domain T over which we will define the operational semantics, is antichain-monotone

(if t u holds, then also t � u for any t � " t in the induced order, cf. Definition 4.33),

which does not say anything about commutativity or linearity. However, the principal

example is of course � since for � (or other free monoids), one would certainly use

the simpler dsl-format (or its multidimensional variant, cf. the preceding section); note

that this excludes time domains like � n and �n .

As for the rule format itself, we use schematic operational rules: the rules only

contain time transitions labelled by time variables, rather than concrete time values.

Then, in order to derive concrete time transitions, the time variables in such a rule

have to be instantiated with actual values, subject to applicability of the rule. Based on

such schematic rules, certain rule shapes for defining time transitions are introduced,

and only certain combinations of these shapes are allowed as admissible operators:

instead of a ‘format,’ the present approach really just yields a collection of ‘operator

blueprints.’

In order to describe timed processes, admissible operators have to include time-

parameterised operators, i.e., operators which have time(s) as parameters, in addition

to the usual parameters for processes. It should be fairly clear that such operators have

to be treated in a special way: after all, using the operations of the time domain, time

parameters and the labels of time transitions could potentially be combined in various

ways, in particular using the monoid addition (as we shall do).

In deriving the schematic rules, the time rules of TeCCS served as the guiding ex-

ample. In particular, time prefixing �t��p of TeCCS, for a time t �� 0 and a process p,

is the prototype of a time-parameterised operator. For simplicity, the set of admissible

operators therefore only allows at most one time parameter. Consequently (and not

6.2. The General Case 171

surprisingly), the admissible operators encompass the time rules of TeCCS, but also

additional rules from [NS91]. Soundness of the admissible operators is established by

showing that admissible operators indeed induce natural transformations as in Theo-

rem 5.18. However, the failure of completeness is then demonstrated by presenting a

simple example of abstract rules not expressible by an admissible operator.

This is followed by a proof that the intended operational model of TeCCS (over �)

is the same as the one induced by the simplified version of the previous section, which

only uses �-transitions. Finally, a way to make the schematic shapes (a little bit)

more permissive is discussed by considering them relative to a specific time domain,

rather than describing operators regardless of the chosen time domain. In this way, at

least a little more freedom is gained, and a class of intuitively natural operators can be

additionally accommodated.

In the remainder of this section, let V be a countable set of variables with an

enumeration (without repetitions) as in the previous section, and let T be an antichain-

monotone time domain, again writing T ���
� T � �0�. Note that all time variables in

the following rule shapes only range over T �: it is therefore impossible to derive
0
�-

transitions. The reason for this restriction is that the ε-diagram in (5.19): it already

determines the targets such transitions, as will become clear in the proof of Prop. 6.17.

Furthermore, potential time parameters of time parameterised operators cannot have

value 0 either, cf. that �t��p is only a TeCCS process for t �� 0 (see also Section 3.3).

Definition 6.14

For n � � and vi � V , write �v
��
� �v1� � � � �vn�, and write �v�

��
� �vn�1� � � � �v2n� for the

next n variables in the enumeration. Then, let: Σ be a signature and σ � Σ be a function

symbol of arity n� � ; s� t time variables ranging over T �; I ��1� � � � �n� and 1� j � n

such that j �� I. Then allowed rule shapes are operational rules of the following kinds:

1. Standard operators defined by rules of the shapes

�

σ��v� t
� σ��v�

(A)

v1
t
� vn�1 � � � vn

t
� v2n

σ��v� t
� σ��v��

(B)

172 Chapter 6. Rule Formats for Timed Processes

v j
t
� vn� j���1 � k � n�� k �� j � vk �

t
�

σ��v� t
� vn� j

(C j)

2. Time-parameterised operators defined by rules of the shapes

�vi
t
� vn�i�i	I� ��1 � k � n�� wk �

��
�

vn�k if k � I

vk if k �� I

σ�t � s��v�
t
� σ�s��w�

(tAI)

�vi
t
� vn�i�i	I

σ�t��v� t
� v j

(tBI� j)

�vi
t
� vn�i�i	I� v j

s
� vn� j

σ�t��v� t�s
� vn� j

�(tCI� j)

Note that for a constant c, i.e., a function symbol c of arity 0, the two shapes (A)

and (B) become equal, and there can be no rule of shape (C j). Furthermore, note that

the use of the enumeration, as already in the previous section, again guarantees that all

possible rule shapes are special GSOS rules. Note in particular rule shape (tCI� j): we

can use the variable vn� j because, by assumption, j �� I, and so vn� j does not appear

among the other premises, which only contain vn�i for i � I; hence, vn� j occurs as the

target of only one premise.

One quite striking restriction in these rule shapes is that the same t � T is always

used in both the premises and the conclusions of rules, i.e., in some sense, the rules

define time transitions uniformly over T , the sole exception being shape (tCI� j) where

also an additional
s
�-transition is tested in the premises. We will, in Section 6.2.1.2,

show how to make the rule shapes a little bit more permissive in that respect, by allow-

ing certain ‘well-behaved’ (partial) time transformations f : T � T n which specify by

f �t�, if defined, what transitions the n premises have to perform in order to be able to

derive a
t
�-transition in the conclusion of a rule.

Another important restriction is the fact that in all rule shapes, the target of a rule

conclusion is either of the form σ��v� for some operator symbol σ and variables vi � V
(suitably adapted for time-parameterised operators), or simply a variable as, e.g., in

shape (C j). This general restriction arises because we only want to describe abstract

6.2. The General Case 173

temporal rules, i.e., a natural transformation of type ΣE � E�Id� Σ�, which so to

speak have this restriction ‘built-in’, cf. Remark 5.21.

What makes the rule shapes even more restrictive than that is the fact that it is

always the case that each rule shape for some operator symbol σ has precisely the

same operator symbol σ in the target of the conclusion, unless it is simply a variable:

using the above rule shapes, we can only define operators with transitions σ��v� t
�σ��v��

or σ��v� t
� v�. This is not induced by the type of the natural transformation but a

restriction imposed by ourselves and (amongst others) definitely one of the restrictions

that make completeness fail, as shall be illustrated later. To avoid this problem, one

could consider a more restrictive kind of natural transformation than abstract temporal

rules, with the ‘same top-most operator’ condition built-in; but even then, we doubt

that that one could achieve completeness: one obvious restriction is that admissible

operators only use finitary rules, while, as we shall see in the next section, evolutions

allow to derive infinitary rules.

Definition 6.15

Let Σ be a signature and let σ � Σ be a function symbol with arity n � � . Then, in

addition to the trivial case of no rules at all, the admissible operators are given as

follows. For standard operators:

1. for arity n � 1

(a) one rule of shape (A), or

(b) one rule of shape (B), or

(c) one rule of shape (C j) for j � 1

2. for arity n � 1

(a) one rule of shape (A), or

(b) one rule of shape (B), or

3. Additionally for arity n � 2, one rule of shape (B), two rules of shape (C j), one

each for j � 1 and j � 2

174 Chapter 6. Rule Formats for Timed Processes

For time-parameterised operators of arbitrary arity, the following operators are admis-

sible:

1. one rule of shape (tAI) for some I � �1� � � � �n�, or

2. one rule for each of the shapes (tAI), (tBI� j), and (tCI� j), all with matching

I � �1� � � � �n� and 1 � j � n such that j �� I �

Again for the case of a constant c, note that the only non-trivial (i.e., consisting of at

least one rule shape) admissible operator is given by the case of one rule of shape (A),

or equivalently, by shape (B), as was discussed in a previous remark. It should be noted

that shape (C j) can only be used for arities n � 1 or n � 2; this shall be explained later

on.

Example 6.16

All the operators of TeCCS can be modelled using the above admissible operators, e.g.:

1. Nil process 0 and action prefix α� : no rules;

2. Delay prefix δ� : the unary case of one rule of shape (A);

3. Strong choice � and parallel composition
: the binary case of one rule of

shape (B)

4. Weak choice �: the binary case of one rule of shape (B) and two rules of

shape (C j), one each for j � 1 and j � 2;

5. Time-prefixing �t�� for t � T �: the unary case of one rule each of the shapes

(tAI), (tBI� j), and (tCI� j) for I � /0 and j � 1; note the subtle difference, using

a
t�s
�- instead of a

s�t
�- transition in the conclusion, between the original rules

in [MT90] and the shape (tCI� j); this has no effect when assuming T to be com-

mutative (see also Section 3.3), but in our case it is a slight change. �

The main result of this section is showing that the admissible operators of Defini-

tion 6.15 provide a sound operational semantics for timed processes. For this result,

6.2. The General Case 175

note the restriction that the topmost operator in rules of admissible operators either van-

ishes or stays the same, as was remarked above. This restriction means that, in order

to verify whether the rules respect the structure of E, and in particular the δ-diagram,

we can do that for each operator separately: the δ-diagram essentially (as will become

clear intuitively in the proof of the following proposition, and also formally in the next

section on CSOS rules for timed processes) states that applying the rules ρ twice after

applying the comultiplication δ is the same as first applying ρ followed by δ; since

the topmost operator in the target of conclusions, if at all present, does not change

for admissible operators, applying ρ is the same as applying the individual map ��σ��
describing the meaning of an operator symbol σ.

Proposition 6.17

Let Σ be a signature and σ � Σ an n-ary function symbol. If the time rules for σ can be

described by any of the above admissible operators they induce a map, for each set X ,

��σ��X : �EX�n 	 E�X �ΣX� or ��σ��X : T �� �EX�n 	 E�X �ΣX� �

depending on whether σ is a standard or a time-parameterised operator. Moreover, the

corresponding map is natural in X and respects the structure of E.

Proof: We have to show several things here: to begin with, we need to translate the

rule shapes for a given operator σ into a map ��σ��X of the appropriate type, for each set

X ; once that is achieved, we have to show naturality of ��σ��X ; finally, we have to show

that the natural transformation ��σ�� respects the structure of E.

There are eight possible admissible operators, so we would have to describe all of

them as maps ��σ��X ; since most of the calculations are quite routine and simply slightly

different instances of the same problem, we will only present the two most complex

cases, viz., a standard operator σ of arity n � 2 defined by the two shapes (B) and (C j),

and a time-parameterised operator σ� defined by all three rule shapes (tAI), (tBI� j)

and (tCI� j); the other cases are analogous, but simpler.

As for translating the rules for σ and σ� into maps ��σ��X : �EX�n 	 E�X �ΣX�

and ��σ���X : T �� �EX�n 	 E�X �ΣX�, respectively, one thing to note is that the rule

shapes themselves do not define
0
�-transitions for either operator: we only assumed

the time variables to range over T �. So the first problem is how to define the value

176 Chapter 6. Rule Formats for Timed Processes

of ��σ��X��e� � E�X �ΣX� and ��σ���X�t��e� at 0 � T . For this, consider the ε-diagram

in (5.19). For �e1� � � � �en���e � �EX�n, it states

(6.6) ��σ��X��e��0� � εX�ΣX���σ��X��e�� � inr��ε�n��e�� � σ�e1�0�� � � � �en�0��

and analogously for σ�. Using (4.4) for translating the evolution-based view to a

process- or transition-based view, (6.6) states that

��σ��X��e�
0
� σ�e1�0�� � � ��en�0��

When we use variables �v � V as names of (processes whose behaviours are de-

scribed by) the evolutions �e, thereby identifying an evolution ei with the name vi, as

well as not distinguishing between syntax σ��v� and application of rules manifested by

a function ��σ����e�, we obtain

σ��v� 0
� σ��v�

In other words, the ε-diagram imposes a rule-based version of axiom (ZeroDelay) of

TTSs on well-behaved operational rules. Using this constraint in the definition of ��σ��,
we obtain two things: a sensible definition of ��σ����e� at 0, plus automatic satisfaction

of the ε-diagram.

We can now present the translations of the two admissible operators into functions.

For ��σ��X : �EX�2 	 E�X �ΣX�, we obtain:

�e1�e2� �	 λt�

���������
��������

σ�e1�t��e2�t�� if e1�t�� �e2�t��

e1�t� if e1�t�� �e2�t��

e2�t� if e1�t�� �e2�t��

undef if e1�t�� �e2�t��

The first clause is prompted by the shape (B), while the other 2 defined clauses corre-

spond to the two rules of shape (C j) for j � 1 or j � 2. Note that ��σ���e1�e2��t�� if at

least one ei�t��; consequently, ��σ���e1�e2��t�� if both ei�t��. It is easy to verify that the

above map is well-defined, i.e., that, for each tuple �e1�e2� of arguments, ��σ��X�e1�e2�

is indeed an evolution on X �ΣX .

For ��σ���X , we use the following abbreviation

A�e
I �t� &

�

i	I

ei�t�� �

6.2. The General Case 177

i.e., A�e
I �t� holds if and only if all ei such that i� I are defined at t � T , corresponding to

the premises �vi
t
� vn�i�i	I in the rule shapes. We then obtain the following definition

of the function ��σ���X : T �� �EX�n 	 E�X �ΣX�:

�t��e� �	 h�et
��
� λs�

���������
��������

σ��t� s�e�1�s�� � � � �e
�
n�s�� if s � t �A�e

I �s�

e j�0� if s � t �A�e
I �t�

e j�s� t� if s � t �A�e
I �t�� e j�s� t��

undef otherwise

where e�k�s� � ek�s� if k � I, and e�k�s� � ek�0� if k �� I. The first clause of this definition

corresponds to shape (tAI), with the e�k representing the v�k. The second clause corre-

sponds to shape (tBI� j), and the third to shape (tCI� j). It follows that ��σ����t��e��s�� if s

and t are comparable, i.e., '�s t�, A�e
I �min�s� t�� holds, and, in the case s� t, e j�s�t��,

i.e., e j must be able to ‘continue’ the time transition begun by using up the t units of

time we started with; equivalently, this can be expressed as e j�s �� t��: if s � t, then

s �� t � 0 and e j�0�� by (4.1); if s � t then s �� t � s� t, as wanted.

Note that the restriction to antichain-monotone time domains is needed for estab-

lishing the well-definedness of ��σ���: for each argument tuple �t��e�, the resulting func-

tion h�et needs to be an evolution over X �ΣX , i.e., h�et needs to satisfy the two condi-

tions (4.1) and (4.2) of evolutions. The former is no problem since the arguments are

evolutions and 0 � t for all t � T �. However, for the latter, assuming h�et �s� u��, we

need to be able to deduce that h�et �s��. If s�u � t or s�u � t, this is no problem since

in both cases, we obtain s � t; furthermore, A�e
I �s� u�� A�e

I �s�, hence h�et �s�� follows.

In the case s�u � t, it is, a priori, not clear whether s t or not. Under the assumption

of antichain-monotonicity, however, it follows that s� t, hence either s � t, s � t or

s � t; moreover, in each case, using (4.2) for the ei, and also Lemma 3.21 for s � t, we

obtain h�et �s��.

Now that we know how to translate the rules into the functions ��σ��X and ��σ���X ,

we have to show that they are natural. And indeed, naturality holds: all rule shapes

are in fact GSOS rules, as remarked above, so similar arguments as in [TP97] and

the previous section on the dsl-format apply, together with the fact that any renaming

function is total and so does not affect the domain of definition of an evolution, hence

178 Chapter 6. Rule Formats for Timed Processes

the naturality square commutes.

So we know that both ��σ�� and ��σ��� are indeed natural transformations of the ap-

propriate type. We now have to verify that also both satisfy the diagrams in (5.19). As

for the ε-diagram, inspection of the two function definitions shows that they both sat-

isfy (6.6) since, by (4.1), evolutions are always defined at 0; moreover, in the definition

of ��σ���, t only ranges over T �, i.e., automatically t � 0 holds. Hence, the ε-diagram

commutes for both.

So the only thing left to verify is the δ-diagram from (5.19) and, as remarked above,

we can simply verify that by diagram chasing, replacing ρ with ��σ�� and ��σ���, re-

spectively. So let us perform the necessary calculations for ��σ��. The two resulting

functions, δX�ΣX Æ ��σ��X and E�EinlX ���σ��X�Æ ��σ��EX ÆΣδX , are shown in Figure 6.2

and 6.3. Careful case analysis shows that the functions are equal, hence the diagram

commutes; for this, one uses axiom (4.2) of evolutions, viz., ei�t�� implies ei�t �u��.

λt�

������������
�����������

λu�

���������
��������

σ�e1�t �u��e2�t �u�� if e1�t �u�� �e2�t �u��

e1�t �u� if e1�t �u�� �e2�t �u��

e2�t �u� if e1�t �u�� �e2�t �u��

undef otherwise

if e1�t�� %e2�t��

undef if e1�t�� �e2�t��

Figure 6.2: The function δX�ΣX Æ ��σ��

For ��σ���, we have to carry out the same verifications. The resulting functions are

shown in Figure 6.4 and 6.5.

Careful inspection again yields that the two functions are equal; this time, some

of the inequalities about the relative inverses have to be recalled from Section 3.1, in

particular the ones from Lemma 3.21. Hence, both ��σ�� and ��σ��� respect the structure

of E, and the claim follows. �

It is quite interesting that, for showing that ��σ��� is well-defined, the property of

antichain-monotonicity once again plays a decisive role, much like it did in Section 4.4,

6.2. The General Case 179

λt�

�������������������������
������������������������

λu�

���������
��������

σ�e1�t �u��e2�t �u�� if e1�t �u�� �e2�t �u��

e1�t �u� if e1�t �u�� �e2�t �u��

e2�t �u� if e1�t �u�� �e2�t �u��

undef if e1�t �u�� �e2�t �u��

if e1�t�� �e2�t��

λu�

��
�

e1�t �u� if e1�t �u��

undef if e1�t �u��
if e1�t�� �e2�t��

λu�

��
�

e2�t �u� if e2�t �u��

undef if e2�t �u��
if e1�t�� �e2�t��

undef if e1�t�� �e2�t��

Figure 6.3: The function E�EinlX ���σ��X�Æ ��σ��EX ÆΣδX

λs�

������������
�����������

λu�

���������
��������

σ��t� �s�u��e�

1�s�u�� � � � �e�

n�s�u�� if s�u � t �A�eI�s�u�

e j�0� if s�u � t �A�eI�s�u�

e j��s�u�� t� if s�u � t �A�eI�t�� e j��s�u�� t��

undef otherwise

undef

The two cases are distinguished by ��σ����t��e��s� being defined or not, i.e., the de-

fined clause is chosen if '�s t��A�e
I�min�s� t��� e j�s �� t��, and the undefined clause

otherwise.

Figure 6.4: The function δX�ΣX Æ ��σ���

180 Chapter 6. Rule Formats for Timed Processes

λs�

�������������������������
������������������������

λu�

���������
��������

σ���t� s��u�e�

1�s�u�� � � � �e�

n�s�u�� if u � t� s�A�eI�s�u�

e j�0� if u � t� s�A�eI�s�u�

e j�u� �t� s�� if u � t� s�A�eI�t�� e j�u� �t� s���

undef otherwise

λu�

��
�

e j�u� if ej�u��

undef if ej�u��

λu�

��
�

e j��s� t��u� if ej��s� t��u��

undef if ej��s� t��u��

undef

The four outer cases are given as in the definition of ��σ���: from the top down, they

are s � t �A�e
I �s�, s � t�A�e

I �s�, s � t �A�e
I �t�� e j�s� t��, and finally, otherwise for the

undefined clause.

Figure 6.5: The function E�EinlX ���σ���X�Æ ��σ���EX ÆΣδX

when trying to define a distributive law whose bialgebras are exactly the biactions of a

time domain. It seems that the property has some deeper connection with time domains

and timed processes than is currently clear to us.

Remark 6.18

If the time-parameterised operator σ� is time prefixing from TeCCS, as described in

Example 6.16, then the induced map ��σ��� is (almost) equal to the distributive law �

in (4.23) used in Section 4.4 for obtaining biactions (of an antichain-monotone time

domain) as bialgebras: the only difference is the fact that ��σ��� can only have non-zero

time parameters. Moreover, since

X ��T ��X��� ��0��X���T ��X��� ��0��T ���X �� T �X

we have that ��σ���X : T ��EX 	 E�T �X�, while �X : T �EX 	 E�T �X�. Thus,

we simply obtain

��σ���X � �X
�T �
EX�

6.2. The General Case 181

i.e., the semantics of σ� is obtained by appropriately restricting the distributive law

�. This match should not come as a surprise since biactions, as already remarked in

Section 3.4, can alternatively be viewed as a TTS together with a syntactic (delay)

operator which comes with a prescribed ‘operational semantics,’ i.e., natural axioms

derived from axiom (3.28). �

Note that the restriction to binary operators for use with rule shape (C j) is neces-

sary. Using that shape with arities n � 2, and then using one rule for each 1 � j � n,

would not result in well-defined functions

�EX�n 	 E�X �ΣX�

This can be seen as follows. Consider the case n � 3, hence we have one rule of

shape (B), and three rules of shape (C j); this results in the following function:

�e1�e2�e3� �	 h
��
� λt�

������������
�����������

σ�e1�t��e2�t��e3�t�� if
�3

i�1 ei�t��

e1�t� if e1�t�� �e2�t�� �e3�t��

e2�t� if e2�t�� �e1�t�� �e3�t��

e3�t� if e3�t�� �e1�t�� �e2�t��

undef otherwise

The problem with this ‘definition’ of a function �EX�n 	 E�X � ΣX� is that it in

fact is not a proper definition, h is not an evolution on X �ΣX because it might not

satisfy axiom (4.2) of evolutions: ��σ���e1�e2�e3��t � u� � does, in general, not imply

��σ���e1�e2�e3��t��. For h�t� to be defined, either all arguments need to be defined, or

exactly one. Yet, it is possible that precisely one, say e1, is defined at t�u, while there

is an additional one, say e2, also defined at t (e1, by (4.2), must be defined at t). Thus,

h�t � u� would be defined but h�t� would be undefined, consequently violating (4.2).

Note that, apart from well-definedness, all other calculations would actually go through

for this ‘definition,’ in particular the δ-diagram commutes1. We do unfortunately not

know how this can be salvaged in order to obtain a working definition for arities � 2.

1Since the δ-diagram is quite a restrictive condition which usually does the dirty work, i.e., excludes
concrete operators, the fact that it commutes for a function like the above led us to the (now falsified)
claim that such operators were also admissible for arities n � 2 in [Kic02b].

182 Chapter 6. Rule Formats for Timed Processes

Furthermore, the condition j �� I is necessary for the rule shapes: otherwise, sim-

ply instantiating with n � 1, I � �1�, and j � 1, would result in a map ��σ�� of the

appropriate type, yet which does not respect the structure of E: the δ-diagram does not

commute in that case.

Note that the intuitive meaning of the δ-diagram is illustrated in this proof: apply-

ing the rules once to derive a
t�u
�-transition (expressed in the right-down path in the

diagram) must lead to the same process as applying the rules twice, first deriving a
t
�-transition to an intermediate state, and then deriving a

u
�-transition from there (the

other path). In other words, the diagram represents a rule-, or derivation-based, version

of time continuity.

Soundness now follows by combining the maps ��σ�� for all operators σ � Σ:

Theorem 6.19

If the time rules of a language only use the admissible operators as described above,

they induce a natural transformation ΣE � E�Id�Σ� respecting the structure of E. �

In addition to the time rules of TeCCS, there are other operators in the literature

that can be described using admissible operators. For example, consider the time-out

operator p
t
�q from [NS91], with time rules

p
t �
� p�� t � � t

p
t
�q

t �
� p�

t�t �
� q

p
t
� p�

p
t
�q

t
� q

p
t
� p�� q

t �
� q�

p
t
�q

t�t �
� q�

Intuitively, p
t
�q behaves like p strictly before time t; then at time t the control switches

to q, simply discarding p: if p waits too long, viz., does not perform its intended task

within t units of time, it gets preempted by the ‘time-out handler’ q. However, note that

p really must wait until the point of preemption for the time-out to become effective:

if p, for some reason, cannot idle at least for t units of time, q never gets activated.

The fact that t � � t implies there is a t �� � T � such that t � t �� � t (see Section 3.1),

so the first rule can be rewritten as

p
t �
� p�

p
t ��t ��
� q

t �
� p�

t ��
� q

Then it fits the rule shapes as the binary case of shape (tAI) with I � �1�; so do the

other two rules, fitting shape (tBI� j) and shape (tCI� j), respectively, both with I � �1�

6.2. The General Case 183

and j � 2. Since this is one of the allowed combinations for admissible operators in

Definition 6.15, the time-out operator induces a map which respects the structure of E.

In contrast to that, the rules of the start-delay operator �p�t�q� from [NS91] do not

fit any operator format:

p
u
� p�� u � t

�p�tq
u
� �p��t�uq

��s � t�� p �
s
�� u � t

�p�tq
u
� �p�t�uq

p
t
� p�

�p�tq
t
� q

p
t
� p�� q

u
� q�

�p�tq
t�u
� q

Intuitively, �p�tq is very similar to p
t
�q, if p can idle for at least t units of time the

two processes even behave in exactly the same way (as expressed in the first, third, and

fourth rule). Yet, if p cannot idle long enough, there is a subtle difference: where the

time-out p
t
�q simply cannot idle either, the start-delay �p�tq, as stated in the second

rule, allows further progress, provided p cannot perform any time transition whatso-

ever. Consequently, p’s potential for transitions is preserved for longer than it would

have been present originally.

Intuitively, this is essentially the reason why the operator violates time continuity

which is at the very heart of the TTS-based approach: for T � � and any q, the rules

allow the derivation ��1��0�3q
1
��0�2q

1
��0�1q; yet ��1��0�3q �

2
�, since �1��0�

2
� but

�1��0
1
� 0, and so neither the first nor the second rule applies. Hence this particular

operator is not compatible with our abstract model of timed processes, and its exclusion

is actually desirable rather than problematic. On the level of abstract rules, the failure

of time continuity is mirrored by the δ-diagram failing for the induced map ��� �t ��

which consequently does not respect the structure of E, conceptually underpinning the

decision not to include the operator.

Although the admissible operators exclude at least one undesirable operator, they

do not provide a complete description of all possible well-behaved rules—actually,

quite far from that. A simple counter-example is given by the following function

(6.7) ��σ�e��� � λt�

��
�

σ�e�0�� if t � 0

σ��e�0�� if t � 0

or, spelled out as a schematic time rule, again with t ranging only over T �:

�

σ�x� t
� σ��x�

184 Chapter 6. Rule Formats for Timed Processes

It is trivial to check that ��σ�� is natural and respects the structure of E, yet, for σ �� σ�,

the rule does not fit any of the rule shapes since the top-most operator is changed in

the conclusion of the rule (from σ to σ�).
The reason for this restriction on admissible operators is the δ-diagram. Intuitively

demanding that the rules satisfy continuity, changes in the topmost operator would

cause problems, especially in the case of cyclic dependencies between operators. As-

sume, for instance, that there is a time transition from a term with σ as its topmost

operator to a term with σ� on top, and vice versa; once allowing such instances, it

seems almost impossible to syntactically guarantee continuity. Besides, all relevant

operators from the literature fit the format anyway, so it seems general enough as it is.

Furthermore, after repeated attempts, it seems that more permissive rule shapes or

admissible operators invariably invalidate well-definedness or the δ-diagram. A (to us)

particularly convincing point in this direction is that we could not find an obvious n-

ary version of the weak choice � from TeCCS, using shape (C j) for any arity strictly

greater than 2.

6.2.1.1 TeCCS revisited

We have already seen, in Example 6.16, that all operators of TeCCS can be mod-

elled by admissible operators, weak choice � actually being one such admissible

operator. Hence, we know that the rules of TeCCS induce abstract temporal rules

ρ : ΣE � E�Id�Σ� respecting the structure of E. Consequently, ρ induces a distribu-

tive law TE � ET of the term monad T over the evolution comonad E.

This distributive law is equivalent to a lifting T̃ of the monad T to the E-Coalgebras

(cf. Section 2.4), which, instantiated with the trivial initial E-Coalgebra ! : 0 � � �E0

(given by initiality of the empty set 0), induces an E-Coalgebra T̃E�!� : T0 	 ET0 on

the set T0 of closed TeCCS terms by induction:

0
η0 		

!
��

T0

T̃E�!�
��	
	
	 ΣT0

γT 0

ΣT̃E�!�
��

E0 Eη0

		 ET0 E�T0�ΣT0�
E�idT0�γ0�

 ΣET0ρT0

(6.8)

We can again concretely describe the resulting E-Coalgebra T̃E�!� on T0, by induction

6.2. The General Case 185

on the term structure of θ � T0:

1. θ � nil or θ � α�θ�: T̃E�!��θ� � λt�

��
�

θ if t � 0

undef if t � 0

2. θ � δ�θ�: T̃B�!��θ� � λt� θ

3. θ � �t��θ�: T̃B�!��θ� � λs�

���������
��������

�t� s��θ� if s � t

θ� if s � t

θ�� if s � t � T̃E�!��θ���s� t� � θ��

undef otherwise

4. θ � θ1 �θ2:

T̃E�!��θ� � λt�

��
�

T̃E�!��θ1��t�� T̃E�!��θ2��t� if T̃E�!��θ1��t�� �T̃E�!��θ2��

undef if T̃E�!��θ1��t�� %T̃E�!��θ2��

The analogous definition applies to parallel composition.

5. θ � θ1 �θ2:

T̃E�!��θ� �

���������
��������

T̃E�!��θ1��t�� T̃E�!��θ2��t� if T̃E�!��θ1��t�� �T̃E�!��θ2��t��

T̃E�!��θ1��t� if T̃E�!��θ1��t�� �T̃E�!��θ2��t��

T̃E�!��θ2��t� if T̃E�!��θ1��t�� �T̃E�!��θ2��t��

undef if T̃E�!��θ1��t�� �T̃E�!��θ2��t��

In the case T � � , E�–Coalg �� B�–coalg, by Proposition 4.30, and so T̃E�!�

corresponds to one unique B� -coalgebra T0	B�T0� 1�T0. We now prove that this

B� -coalgebra is actually equal to T̃B�!�, the (B� -coalgebra obtained as the) intended

operational model of the single-step semantics of TeCCS from Section 6.1.1. For this,

we are going to show that the image of T̃E�!� under the isomorphism of the categories

of coalgebras is equal to T̃B�!�; this suffices by the isomorphism property: applying the

inverse map then necessarily maps T̃B�!� to T̃E�!�. Let us therefore illustrate how this

direction of the isomorphism works.

186 Chapter 6. Rule Formats for Timed Processes

Since E� is cofreely generated from B� , we know that E�X ��X�B�E�X , yielding

the two projections

X
fstX�� E�X

sndX�	 B�E�X

as presented in Section 2.4. Let k : X 	 E�X be an E� -Coalgebra. The isomorphism

then sends k to the following composite

(6.9) X
k

�	 E�X
sndX�	 B�E�X

B�εX�	 B�X

which we now have to decode in terms of
t
�- and �-transitions.

By Proposition 4.24, the set E�X is isomorphic to X��Xω, and the B� -coalgebra

sndX is given by the tail function tlX : X��Xω 	 1�X��Xω. Rephrased in terms

of
t
�-transitions, for t � � , the coalgebra k : X 	 E�X maps some x � X to a (finite

and non-empty, or infinite) string over X , i.e., k�x� � x1 � � �xn for n " 1, or k�x� �

x1x2 � � �xn � � �; we obtain k�x��t� � xt if the string k�x� has at least length t, and k�x��t��

otherwise. However, all the tail function tlX does is to remove the first element of

the string k�x�, resulting in either the empty string ε, another non-empty but finite

string, or an infinite stream. The counit εX , being equal to fstX , simply returns the first

element of a string in E�X . So the composite (6.9) returns, if possible, the targets of
1
�-transitions, as defined in the TTS on X induced by k.

Therefore, in order to show that the two operational models correspond to each

other under the isomorphism of coalgebras, we have to prove that

��θ�θ� � T0�� �θ 1
� θ��� �θ� θ��

or more precisely:

T̃E�!��θ��1��� T̃B�!��θ� � 	(6.10)

T̃E�!��θ��1� � θ� � T̃B�!��θ� � θ�(6.11)

Proof: We will prove the two properties by induction on the structure of θ, although

only for some of the operators.

1. θ � nil: By the definitions of T̃E�!� and T̃B�!�, the two conditions follow be-

cause T̃E�!��nil��1�� and also T̃B�!��nil� � 	, establishing (6.10), while (6.11) is

vacuously satisfied.

6.2. The General Case 187

2. θ � �t��θ�: By the definition of the syntax, t � 0, hence t " 1 and (6.10) never

applies. Now assume that t � 1; then T̃E�!��θ��1� � �t�1��θ� � T̃B�!��θ�. In the

case t � 1, we obtain T̃E�!��θ��1� � θ� � T̃B�!��θ�. Hence, (6.11) holds for time

prefixing.

3. θ � θ1 �θ2: We only prove (6.11) in this case, and assume that T̃E�!��θ��1� �
θ�. By definition of T̃E�!�, there are three distinct cases; we will only deal

with the first one, the remaining two cases are analogous. So assume that both

T̃E�!��θi��1��, say T̃E�!��θi��1� � θ�i, and θ�� θ�1�θ�2. We can thus apply the in-

duction hypothesis for (6.11), and obtain that T̃B�!��θi� � θ�i �� 	. Consequently,

by definition of T̃B�!�, this means that T̃B�!��θ� � T̃B�!��θ1 � θ2� � θ�1 � θ�2 �

θ� � T̃E�!��θ��1�, and we are done. The converse direction works in the analo-

gous way.

The remaining cases for � and
 are similar. �

Hence, we obtain:

Proposition 6.20

Up to the isomorphism B�–coalg �� E�–Coalg, the intended operational model T̃B�!�

is the same as the original model T̃E�!� induced by the time rules from [MT90], i.e., the

operational semantics of single-step TeCCS is essentially the same as for the original

language. �

6.2.1.2 Refining the Rule Shapes

Coming back to the rule shapes, even though arguably expressive enough, the admissi-

ble operators are by no means as general as they could be. As an illustrative example,

consider the following ‘speed-halving’ operator2:

(6.12)
p

t
� p�

σ�p� t�t
� σ�p��

2Suggested to us by an anonymous referee.

188 Chapter 6. Rule Formats for Timed Processes

This operator can be described by the function

��σ�� : ΣEX 	 E�X �ΣX�

e �	 λt�

��
�

σ�e�t�� if �u� u�u � t � e�u��

undef otherwise

which, in general, is not well-defined: for T � � , ��σ�� potentially allows the derivation

of a
2
�-transition (in case e�1��), yet never of a

1
�-transition (there is no u � � such

that u�u � 1) and therefore, axiom (4.2) of evolutions would not hold for ��σ���e�.
However, when considered over the specific time domain ��0 , ��σ�� is natural, it

fits the type (5.18), and it respects the structure of E. Thus, for the time domain ��0

and the specific time transformation t �	 t � t on it, (6.12) results in a well-behaved

operator. This can be generalised as sketched in the following tentative development,

allowing rule shapes parameterised by a time domain T and ‘well-behaved’ transfor-

mations, although we are going to turn the rule (6.12) ‘upside down’ in the following

presentation.

Definition 6.21

Given two monoids M � �M���0� and M � � �M�����0��, a partial monoid homomor-

phism from M to M� is a partial function f : M � M � which satisfies the following two

Kleene equalities

f �0�� 0�(6.13)

f �m�m��� � f m��� � f m��(6.14)

Note that in the first equation, we could also use �. �

In what follows, it is not possible to use a weaker notion of partial homomorphism,

e.g., obtained by replacing � with ��, because the following calculations are aimed at

establishing equalities between partial functions, and as such need both halves of �.

Given an enumerated set V of variables, a time domain T , and a partial monoid

homomorphism f : T � T n, we can allow the following rule shape, writing ti instead

of πi� f �t��, provided that f �t��:

(6.15)
v1

t1� vn�1 � � � vn
tn
� v2n

σ��v� t
� σ��v��

f �t��

6.2. The General Case 189

again writing �v� � �vn�1� � � � �v2n�. Compared to (6.12), we apply f in the premises

rather than the conclusion of the rule shape. With this, we obtain:

Proposition 6.22

If the semantics of an operator symbol σ are defined by a single operational rule (6.15),

for a time domain T and a partial monoid homomorphism f : T � T n, we obtain a

map, for each set X ,

��σ��X : �EX�n 	 E�X �ΣX�

which is natural in X and also respects the structure of E.

Proof: Using similar reasoning as above in the proof of Proposition 6.17, we can

translate the rule (6.15) into the function

��σ��X : �EX�n 	 E�X �ΣX�

��e� �	 λt�

��
�

σ�e1�t1�� � � � �en�tn�� if f �t�� �
�n

i�1 ei�ti��

undef if f �t�� %
�n

i�1 ei�ti��

Since f �0� ��0 � �0� � � � �0�, certainly ��σ����e��0��, i.e., axiom (4.1) of evolutions holds

for ��σ��X . Assuming ��σ��X��e��t � u� � means that f �t � u� � and ei�t � u� �, for all

1� i� n. As f is a partial homomorphism, f �t �u�� f �t�� f �u�, and so in particular

f �t� �; additionally, since the ei are evolutions and consequently satisfy (4.2), also

ei�t�� for all 1 � i � n, i.e., ��σ����e��t��, showing that ��σ��X is indeed well-defined.

For the ε-diagram, we have already stated that f �0� � �0�, and so we obtain

��σ����e��0� � σ�e1�0�� � � � �en�0��

which is exactly the meaning of the ε-diagram, cf. (6.6).

For the δ-diagram, the first path around the diagram, δX�ΣX Æ ��σ��, results in the

following function:

λt�

�����
����

λu�

��
�

σ�e1�t1�u1�� � � � �en�tn �un�� if f �t �u�� �
�n

i�1 ei�ti �ui��

undef if f �t �u�� %
�n

i�1 ei�ti �ui��

undef

190 Chapter 6. Rule Formats for Timed Processes

where the defined clause has the condition f �t�� �
�n

i�1 ei�ti��, and the undefined one

f �t�� %
�n

i�1 ei�ti��. Note that these computations use the homomorphism property of

f , in particular additivity (6.14). The other path, E�Einl� ��σ��X �Æ ��σ��EX Æ �δX�
n, results

in exactly the same function (as is routinely checked), concluding the proof that (6.15)

constitutes an admissible operator. �

The question is now what we gain by using these rule shapes which are parametric

over the considered time domain. First of all, using these partial homomorphisms, we

obtain the following simplification of the rule shapes: the cases of no rule, one rule

of shape (A), and one rule of shape (B) are all subsumed by (6.15), for appropriate

choices of f : T � T n—regardless of the arity n � � :

1. Considering the function

undef0 : T � T n� t �	

��
�
�0 if t � 0

undef if t � 0

we obtain the same effect as having no rules.

2. Considering the function const0 : T 	 T n� t �	 �0, one obtains the same function

��σ�� as when using one rule of shape (A).

3. Finally, by considering the function �idT � � � � � idT � : T 	 T n� t �	 �t � �t� � � � � t�,

the same function ��σ��X is induced as by one rule of shape (B).

Note the suspicious absence of the rule shape (C j), and time-parameterised op-

erators: there does not seem to be a reasonable way to account for those using such

homomorphisms. Since shape (C j), to our current knowledge, can only appear in con-

nection with binary operators, this should not come as a surprise since homomorphisms

are in some sense uniform, i.e., independent of the arity n.

Further examples of partial homomorphisms are all functions of the form t �	 c# t,

for c � � (where c # t is an abbreviation for the c-fold sum t � � � �� t). In the special

case T � � , these are, moreover, the only such homomorphisms f : � � � which

are different from undef0; this can easily seen by considering the value f �1�: if it is

6.2. The General Case 191

undefined, by additivity (6.14), f cannot be defined at any t �� 0, while if f �1�� with

value f �1� � c, it follows that f � c# id� .

For T � ��0 , the situation is a lot more complex: certainly all the (total!) func-

tions c# id��0 , now for c � ��0 , are partial homomorphisms ��0 � ��0 , however,

it would seem surprising if the homomorphism property is so strong as to only allow

total functions. One way to obtain a ‘really partial’ partial homomorphism is to find a

non-empty, proper subset S ! ��0 such that both S and ��0 �S are closed under addi-

tion, and then simply consider the injection of such a subset into ��0; as it happens,

using the axiom of choice, one can construct such a set, showing indeed that the simple

characterisation from above for the naturals does not carry over to ��0 .

Compared to the original attempt (6.12), as sketched in [Kic02b], using homomor-

phisms ‘in the other direction’ as shown in (6.15), gives us some extra power: previ-

ously, the only acceptable transformation on � was id� while now, at least all constant

speed-up operators are possible, as witnessed by the characterisation of partial homo-

morphisms on � . All in all, at least a little more flexibility is gained, and some very

natural operators now fit within the framework of admissible operators, allowing such

partial homomorphisms. Even so, a lot of open questions remain, in particular whether

there is a way to include time-parameterised operators.

6.2.2 The Complete Characterisation

As an application of CSOS rules, this section presents a syntactic characterisation of

CSOS rules for the evolution comonad E. The format is based on the notion of a

meta rule, which will serve as a convenient notational shorthand for infinite sets of

infinitary rules. These meta rules will contain evolutions in places where variables are

placed in conventional rules, hence they are a somewhat mixed notation in between

pure syntax and the categorical operational semantics for timed processes presented in

terms of abstract rules in Chapter 5. Even so, the format will still consist of infinitely

many such meta rules to completely capture natural transformations ρ : ΣE � ET for

a signature Σ with freely generated term monad T .

In the following, fix a non-trivial time domain T —hence T has infinite cardinal-

ity, see Proposition 3.17; note in particular that antichain monotonicity is not assumed.

192 Chapter 6. Rule Formats for Timed Processes

Furthermore, let V be a set of variables such that
V
 �
T
, and fix n-ary enumer-

ations (without repetitions) of V for each n � � ; by this, we mean disjoint subsets

Vi � �vt
i
 t � T � � V for each 1 � i � n such that
Vi
�
T
 and that the maps t �	 vt

i

are all injective. If V is a set with such n-ary enumerations, we call V an n-enumerated

set. These n-ary enumerations will play a similar rôle as the enumerations before have

played, viz., determine which variables will be used in certain places. In the following,

we need several technical definitions:

Definition 6.23

Let X be a set, and e � EX be an evolution on X . Since e is a special partial function

T � X , its domain and codomain are, respectively,

dom�e�
��
� �t � T
 e�t��� � T

cod�e�
��
� e�T � � �x � X
 ��t � T �� x � e�t�� � X

whereas for�e � �e1� � � � �en� � �EX�n, define domain and range of�e by

dom��e�
��
� �dom�e1�� � � � �dom�en��

rng��e�
��
�

n�

i�1

cod�ei�

If e � ET X , i.e., an evolution on terms, the variables vars�e� of e are all the variables

occurring in the terms θ � cod�e�� TX (a potentially infinite set!):

vars�e� �
�

θ	cod�e�

vars�θ�

For tuples�e � �ETX�n, define

vars��e�
��
�

n�

i�1

vars�ei�

Finally, for n � � , an n-ary domain is a tuple �d � spec�T �n. �

These notions are all pretty much self-explanatory, and simply will be needed to

be able to introduce more complicated notions based on them. For e � ETX , it is

equivalent to define

vars�e� �
�

t	dom�e�

vars�e�t��

6.2. The General Case 193

since each θ � cod�e� is of the form e�t� for some t � dom�e� � T . Note that, for

�e� �EX�n, it is possible to restrict each ei to the range rng��e�, i.e., the function ei

rng��e�

is well-defined. Next, we need to generalise the conditions on GSOS rules that certain

variables have to be distinct:

Definition 6.24

Call a tuple�e � �EX�n of evolutions generic if all the ei have disjoint codomains, and

each ei is injective. Furthermore, for n � � and an n-ary domain �d � spec�T �n, the

n-ary canonical tuple with domain �d is given by the n evolutions εi, 1 � i � n, defined

by

��t � di�� εi�t� � vt
i � Vi � V

In the following,�ε will denote a canonical tuple of some n-ary domain �d � spec�T �n.

For �e � �EX�n with �d � dom��e�, the corresponding canonical tuple �ε is a canonical

n-tuple�ε � �EV �n with domain �d. �

Note that, relative to an n-enumerated set V , and a specific n-ary domain �d, there

is a unique canonical tuple with domain �d. Since the n-ary enumerations on V do

not contain repetitions, canonical tuples are trivially generic. Moreover, given a tuple

�e � �EX�n, its corresponding canonical tuple�ε is also unique with that property: for

any t � dom�ei�, the value of εi�t� must necessarily be vt
i � Vi. The tuple�ε is some

kind of ‘normal form,’ which shall later be used to derive meta rules from a natural

transformation.

Generic tuples are completely unassuming as far as the identities of successor pro-

cesses are concerned. This, amongst other things, is illustrated by the lemma below:

each element of the range of a generic tuple can be uniquely ‘traced back’ to an evo-

lution in the tuple. Intuitively, generic tuples play the same rôle in the rule format

as the condition on GSOS rules that all variables must be distinct, i.e., the rules must

treat argument processes ‘anonymously’: although a rule can be instantiated with the

same processes in different places, it cannot demand such identifications. Canonical

tuples are thus simply generic tuples which, by utilising the n-ary enumeration on V ,

completely determine which variable is to be used where while still remaining ‘unas-

suming’ in the above sense.

194 Chapter 6. Rule Formats for Timed Processes

Lemma 6.25

1. If �e � �EX�n is a generic tuple and x � rng��e� then there exist unique 1 � i � n

and t � T such that x � ei�t�.

2. Each tuple �e � �EX�n, with corresponding canonical tuple�ε, induces a unique,

and moreover surjective, map ϕ�e : rng��ε�	 rng��e�� X such that

(6.16) Eϕ�e�εi

rng��ε�� � ϕ�e Æ εi

rng��ε�� ei

Proof:

1. By assumption, the range of �e is a disjoint union of the codomains of the ei,

hence each x � rng��e� must belong to the codomain of a unique ei; since this ei

is additionally injective, there exists the desired unique t � dom�ei� � T such

that ei�t� � x.

2. For vt
i � rng��ε�, define the map ϕ�e by ϕ�e�v

t
i�

��
� ei�t�. Since dom��ε� � dom��e�,

it follows that ϕ�e is surjective and also satisfies the desired property (6.16).

Now suppose that f : rng��ε� 	 rng��e� satisfies (6.16), and let 1 � i � n and

t � dom�εi� � dom�ei�. By (6.16), we then know that ei�t� � f �εi�t�� � f �vt
i�,

by definition of canonical tuples, and so f must be identical to ϕ�e, proving the

uniqueness claim. �

Later on, ϕ�e will sometimes be used as a (total) function of type V 	 X ; this is

achieved by arbitrarily assigning values in X to variables in V � rng��ε�; we can also

use ϕ�e as a partial function V � X . Because the function ϕ�e is uniquely determined

on rng��ε�, which is really the essential part of�ε, we call it essentially unique. Next,

we introduce the main ingredient of the complete characterisation of CSOS rules for

timed processes:

Definition 6.26

Let Σ be a signature, σ � Σ be an n-ary function symbol, �e � �EX�n, and ϑ � ET X .

Then an expression of the form

(6.17) σ�e1� � � � �en��� ϑ

6.2. The General Case 195

is a meta rule for σ. In the following, we write θt
��
� ϑ�t� � TX for t � dom�ϑ�. The

domain of a meta rule such as (6.17) is defined to be dom��e�; the meta rule is generic

(canonical) if�e is a generic (resp. canonical) tuple of evolutions. �

Each meta rule (6.17) is an abbreviation of the (infinite) set of infinitary time rules,

ranging over t � dom�ϑ�, of the form

(6.18)
�ei�0�

ti
� ei�ti�
 ti � T � ei�ti���1�i�n �ei�0� �

ti
�
 ti � T � ei�ti���1�i�n

σ�e1�0�� � � � �en�0��
t
� θt

�

occasionally abbreviated as σ��e� t
� θt , blurring the distinction between rule and rule

conclusions. Note that each meta rule contains a complete (or global) description of

the arguments’ behaviour, not just local tests for the presence or absence of specific

time transitions as, e.g., in the schematic format. This is in line with the interpretation

of behaviour comonads as modelling global behaviour. The following development

will be based entirely on meta rules to make it more concise; of course, all of it could

also be carried out using standard time rules, via the correspondence (6.18).

It is worthwhile noting that, in a meta rule (6.17), ϑ has to be an evolution, and

so in particular has to be defined at 0, there is always at least a rule (6.18) with the

conclusion

σ�e1�0�� � � � �en�0��
0
� θ0

no matter whether is ϑ defined at any other points t � T �.

A meta rule σ��e� �� ϑ is a somewhat mixed notation, halfway between syntax

and semantics: it uses elements of the signature, σ � Σ, together with evolutions,�e and

ϑ, which stem from the realm of the semantics of timed processes. In doing so, we

hope to obtain a suggestive and (reasonably) concise notation for describing what is

essentially a huge set of time rules like (6.18): a time rule potentially for each t � T is

described by only a single such meta rule.

However, it should be clear already at this point that we are going to need a lot of

meta rules to describe CSOS rules for timed processes, in other words: an infinite set

of (finite representations of) infinite sets of infinitary rules. We want to stress this in

order to clarify the point that the rule format obtained in this section should be treated

as an additional illustration of the complexities involved in the operational semantics of

196 Chapter 6. Rule Formats for Timed Processes

timed processes, rather than as a proper contender of formats like GSOS, tyft/tyxt, or

even our dsl-format for discrete time, all of which are finite objects using only finitary

operational rules.

Definition 6.27

A meta rule σ��e��� ϑ is a GSOS meta rule if it is canonical and if vars�ϑ�� rng��e�.

A set of meta rules over a signature Σ is complete (deterministic) if, for each n-ary

operator symbol σ � Σ and each n-ary domain �d, there is at least (resp. at most) one

meta rule for σ with domain �d. A set of deterministic, complete GSOS meta rules is

called admissible.

It follows immediately from the definitions that an admissible set of meta rules

contains exactly one meta rule for each operator symbol σ and each appropriate do-

main. The terminology ‘GSOS meta rule’ is justified since in this case the induced

time transitions (6.18) are indeed (infinitary) GSOS rules: all the ei have disjoint

ranges, i.e., all variables in the premises are distinct—in particular the ei�0�—and

since vars�ϑ� � rng��e�, each variable occurring in some θt must occur somewhere

in the premises.

Note that, strictly speaking, it is not necessary that GSOS meta rules are canonical:

the induced rules would still be GSOS rules if we would use generic tuples such that

vars�ϑ�� rng��e�. However, the enumeration, together with the deterministic behaviour

modelled by evolutions, shall allow us to derive an exact one-to-one correspondence,

rather than up to provability as in [TP97]. The following results will show that ad-

missible sets of meta rules are the correct characterisation of natural transformations

ΣE � ET . First, we need some definitions to do with substitutions:

Definition 6.28

Let Σ be a signature and let θ � TX be a term over Σ and some set X ; let f : X � Y

be partial function such that vars�θ� � dom� f �. It is then possible to define the si-

multaneous substitution of f �xi� � Y for xi � vars�θ� in θ, and denote it by θ� f �, or

explicitly by θ� f �xi��xi�. Extending this notion to evolutions ϑ � ETX on terms, sub-

ject to the condition vars�ϑ�� dom� f � for f : X � Y , we write ϑ� f � or ϑ� f �xi��xi� to

denote the evolution in ETY whose value at each time t � dom�ϑ� � T is the term

θt � f � � θt � f �xi��xi�, for all variables xi � vars�θt�. �

6.2. The General Case 197

Proposition 6.29

Each admissible set R of meta rules induces a natural transformation ��R�� :ΣE�ET .

Proof: Based on the information in R, we need to define a map

��R��X : ΣEX 	 ETX

for any set X . By the definition of admissible sets of meta rules, we will start with

one particular such component and then use this as the ‘canonical blueprint’ for all

other components, and obviously, the component to start with is ��R��V . As we will see,

once ��R��V is defined for canonical tuples only, the other values can then be inferred by

applying suitable substitutions. Therefore, let σ � Σ be an n-ary operator symbol, and

let�ε be a canonical n-tuple of some n-ary domain. Since R is admissible, there must be

meta rule contained in R which is of the form σ��ε� �� ϑ, for some ϑ � ETV . Then

simply define ��R��V �σ��ε�� � ϑ. This defines ��R��V for all canonical argument tuples.

Let now X be an arbitrary set, and�e � �EX�n be an arbitrary n-tuple of evolutions

on X , and let�ε be its corresponding canonical tuple. By the previous step, we know

that we have already define ��R��V �σ��ε�� � ϑ for some ϑ � ETV with R containing

the appropriate meta rule. By Lemma 6.25(2), there is a map ϕ ��
� ϕ�e : V � X which

satisfies the property (6.16), i.e., Eϕ�εi� � ei; consequently, �Eϕ�n��ε���e. Using this,

define

��R��X�σ��e��
��
� ϑ�ϕ� � ETϕ�ϑ� � ϑ�ei�t��vt

i�

Since R is an admissible set of meta rules, vars�ϑ�� rng��ε� � dom�ϕ�; consequently,

the substitution ϑ�ϕ� makes sense and, by the definition of ϕ, is equal to the more

concrete description ϑ�ei�t��vt
i�. So this is a good definition.

This assignment then completely defines ��R��X , for any argument, also the so far

missing values of ��R��V are ‘filled in.’ We now have to show that this induces a natural

transformation of the desired type. Let therefore X �Y be two arbitrary sets, and let

f : X 	 Y be a function. We have to show that the following diagram commutes:

ΣEX

ΣE f
��

��R��X 		 ET X

ET f
��

ΣEY
��R��Y

		 ETY

198 Chapter 6. Rule Formats for Timed Processes

Let therefore σ � Σ be an n-ary operator symbol, and �e � �EX�n an n-tuple of

evolutions on X , abbreviating �E f �n��e� � � f Æ e1� � � � � f Æ en� as
�	
f e. By definition of

the evolution comonad, we know that dom��e� � dom�
�	
f e�. Let �ε � �EV �n be their

unique corresponding canonical tuple, and ϕe : V �X be the essentially unique partial

function such that (6.16) holds for�e, i.e., ϕe�vt
i� � ei�t� for all t � dom�ei�; we denote

the analogously obtained (also essentially unique) function for
�	
f e by ϕ f , which then

satisfies ϕ f �vt
i� � � f Æei��t� � f �ei�t�� for all t � dom�ei�. We then have the following

situation:

ΣEV
��R��V 		

ΣEϕe

���
��

���
��

�

ΣEϕ f

���
��

��
��

��
��

��
��

� ETV
ET ϕe

�����
��
��
��

ETϕ f

����
��
��
��
��
��
��
��

ΣEX
��R��X 		

ΣE f
��

ETX

ET f
��

ΣEY
��R��Y 		 ETY

(6.19)

where we know that in the left triangle, we get

σ��ε� ΣEϕe
��	σ��e�

σ��ε�
ΣEϕ f
��	σ�

�	
f e�� ΣE f �σ��e��

i.e., the triangle commutes for the specific element σ��ε� � ΣEV . Similarly, if it is the

case that ��R��V �σ��ε�� � ϑ � ETV , then, by definition of ��R��X and ��R��Y , we obtain

��R��X�σ��e�� � ϑ�ϕe�

��R��Y �σ�
�	
f e�� � ϑ�ϕ f �

It now remains to show that ϑ�ϕ f � � ET f �ϑ�ϕe��. One thing that is certain is

that the term structure of ϑ�ϕe� and ϑ�ϕ f � is the same: by that, we mean the tree

structure in terms of operator symbols, and the claim holds because both are obtained

by applying two different substitutions to the very same evolution ϑ � ETV . The

only question is what happens to the variables which are at the leaves of the term tree

of ϑ. For this, let vt
i � vars�ϑ� which, by definition, means that there exists some

t � dom�ϑ� such that vt
i � vars�θt�, for θt � ϑ�t�. We have that ϑ�ϕe��t� � θt �ϕe�, and

so, by definition of ϕe, vt
i gets renamed to ei�t� which, be ET f gets further renamed to

6.2. The General Case 199

f �ei�t��. Finally, ϑ�ϕ f ��t� � θt �ϕ f �, and by definition, we obtain that vt
i gets renamed

to � f Æ ei��t� � f �ei�t��, i.e., to the same element of Y as on the other possible path.

Thus, the naturality square commutes, and we are done. �

Also the converse of Proposition 6.29 holds:

Proposition 6.30

Let ρ : ΣE � ET be a natural transformation. Then ρ induces an admissible set ��ρ��
of meta rules.

Proof: Let σ � Σ be an n-ary operator symbol, and let�ε � �EV �n be a canonical tuple

with some n-ary domain. The set ��ρ�� is then defined to contain the meta rule

σ��ε��� ϑ ��
� ρV �σ��ε��

This is then repeated for all possible n-ary domains, in this way making sure that the

set ��ρ�� contains precisely one meta rule per domain. The only thing left to prove is

that any meta rule in ��ρ�� adheres to the GSOS conditions, i.e., in the situation above,

that vars�ϑ�� rng��ε�.
Now suppose there exists a variable v � V which is contained in vars�ϑ� but not

in rng��ε�. By definition, this means that v � vt
i for some unique 1 � i � n and t � T ;

moreover, εi�t��, otherwise vt
i would be contained in rng��ε�.

Since T has no maximal elements with respect to the induced order �—see Sec-

tion 3.1— there exists u � T such that t � u. Consequently, since εi is an evolution,

also εi�u��, and consequently, also vu
i �� rng��ε�. Consider now the renaming function

f : V 	 V , defined as

v �	

��
�

vu
i if v � vt

i

v otherwise

All that f does, is rename vt
i to vu

i and leave every other variable in V untouched, so in

particular E f �εi� � f Æ εi � εi since u �� dom�εi�. By naturality of ρ, we know that the

following square must commute:

ΣEV
ΣE f

��

ρV 		 ETV
ET f
��

ΣEV ρV
		 ETV

200 Chapter 6. Rule Formats for Timed Processes

Let us see what happens for σ��ε� � ΣEV . First going down, applying ΣE f , still

yields σ��ε�, by definition of f . Then, applying ρV , results in ϑ which, in particular,

contains the variable vt
i �� rng��ε�. Chasing σ��ε� around the other path of the diagram,

first applying ρV , yields ϑ, as before, and then, applying ET f , produces the result

ϑ� f �. However, ϑ� f � does not, by definition of f , contain any occurrence of vt
i: all of

those have been substituted by vu
i . Hence, the square does not commute, yielding a

contradiction to the assumption that ρ is natural. Therefore, we obtain that all meta

rules in ��ρ�� are indeed GSOS meta rules, concluding the proof of admissibility. �

Using canonical tuples to describe admissible sets of meta rules, we even obtain.

Theorem 6.31

The two constructions R �	 ��R�� and ρ �	 ��ρ�� are mutually inverse. Hence, there is a

one-to-one correspondence between admissible sets of meta rules and natural transfor-

mations of type ΣE � ET .

Proof: It should be obvious that one of the two composites, viz., R �	 ��R�� �	 ����R����,

is the identity: given a meta rule σ��ε� �� ϑ in R, ��R�� is defined in such a way that

��R��V �σ��ε�� � ϑ, and consequently, ����R���� contains the meta rule σ��ε� �� ϑ; the

converse direction, starting with a meta rule from ����R����, also works since all of the

used steps are logical equivalences.

Given a natural transformation ρ : ΣE � ET such that ρV �σ��ε�� � ϑ, the set ��ρ��
contains the meta rule σ��ε� �� ϑ; consequently, ����ρ����V �σ��ε�� � ϑ, i.e., ρV and

����ρ����V coincide for arguments with canonical tuples�ε.

However, this is enough to conclude that the complete natural transformations are

identical. This follows by essentially the same argument as when showing that ��R�� is

natural: the ‘unassuming’ nature of canonical tuples (their genericity), together with

naturality, imply that the values of all components for arbitrary arguments are deter-

mined by the values of the V -component at canonical tuples, using renamings obtained

from Lemma 6.25(2). �

Note that under the correspondence, �σ��ε� �� ϑ� � R iff ��R��V �σ��ε�� � ϑ, and

ρV �σ��ε�� � ϑ iff �σ��ε� �� ϑ� � ��ρ��, for an admissible set R of meta rules and a

natural transformation ρ : ΣE � ET , respectively, so the important part of ρ is really

6.2. The General Case 201

just the component at V , which we could therefore call the reference component. This

is, unsurprisingly, very reminiscent of what was going on in the dsl-format and its

corresponding type of natural transformations.

The next goal for the format is a (meta) rule-based characterisation of the ε-diagram

for which we introduce a notion of co-pointedness; the terminology stems from the fact

that �E�ε� is a co-pointed endofunctor.

Definition 6.32

Call a meta rule σ��e��� ϑ co-pointed if θ0 � σ�e1�0�� � � � �en�0��, and call a set R of

meta rules co-pointed if each meta rule in R is.

Analogous reasoning as for (6.6) immediately yields:

Theorem 6.33

Admissible co-pointed sets of meta rules are in one-to-one correspondence with natural

transformations ρ : ΣE � ET satisfying the ε-diagram. �

Finally, in order to produce a similar characterisation of the δ-diagram, which uses

the maps ρE and the induced distributive law �� �ρ, which in turn uses ρT , one char-

acterises the values of ρEV and ρTV in terms of ρV (which, as seen above, essentially

describes the correspondence from Theorem 6.31) for specific arguments, viz., the

ones that appear in the diagrams.

Lemma 6.34

Let:�ε be a canonical n-ary tuple;�ϑ � �ETV �n with dom��ϑ� � dom��ε�; ρ : ΣE � ET

be a natural transformation; σ � Σ be an n-ary function symbol. Then:

1. ρEV �σ�
�	
δε�� � ϑ�εi � t�vt

i� if and only if ρV �σ��ε�� � ϑ.

2. ρTV �σ��ϑ�� � ϑ�ϑi�t��vt
i� if and only if ρV �σ��ε�� � ϑ.

Proof:

1. Since�ε is canonical, and dom�
�	
δε� � dom��ε�,�ε is the corresponding canonical

tuple of
�	
δε. Thus, applying Lemma 6.25(2), we obtain the function

ϕE
��
� ϕ��δε : V 	 EV

202 Chapter 6. Rule Formats for Timed Processes

which satisfies the property that EϕE�εi� � δεi, and which maps vt
i � dom�εi� to

δεi�t� � εi � t. Then, since ρ was assumed to be natural, the following square

must commute:

ΣEV
ρV 		

ΣEϕE
��

ETV
ETϕE
��

ΣE�EV � ρEV
		 ETEV

Say that ρV �σ��ε���ϑ�ETV . Then, chasing it around the two equivalent paths

of the square yields that ρEV �σ�
�	
δε�� � ETϕE�ϑ� � ϑ�ϕE�; spelled out in more

detail, this is precisely the claim.

2. Since dom��ϑ� � dom��ε�, again�ε is the corresponding canonical tuple for �ϑ and

so, by Lemma 6.25(2), we obtain the map

ϕT
��
� ϕ�ϑ : V 	 TV

which maps vt
i � dom�εi� to ϑi�t� � TX , hence the claim follows. �

Now that we have obtained characterisations of both ρEV and ρTV at specific ar-

guments, we can now proceed to present a meta rule-based characterisation of the

induced distributive law � for a natural transformation ρ : ΣE � ET in the form of

R-derivations, R being a set of canonical meta rules. It is important that all meta rules

in R are canonical since we want to use the renaming function obtained by applying

Lemma 6.25(2). Note that, for the sake of simplicity, we omit any reference to unit η
and multiplication µ of T in the following definition.

Definition 6.35

Given a set R of canonical meta rules, define the notion of R-derivation as follows. For

ζ � TEV and ϑ � ETV , say that ϑ is R-derived by ζ, writing R � ζ �� ϑ, if there is

a finite proof using only the two following rules:

1. If ζ � e for some e � EV then R � e �� e

2. If σ � Σ is an n-ary function symbol and ζ1� � � � �ζn � TEV then

�R � ζi �� ϑi� dom�ϑi� � dom�εi��1�i�n �σ��ε��� ϑ� � R

R � σ��ζ��� ϑ�ϕ�ϑ�
�

6.2. The General Case 203

In particular, if �σ��ε� �� ϑ� � R, then R � σ��ε� �� ϑ, so one could call the ex-

pression R � σ��ε� �� ϑ an axiom. Note that it is not necessary that R is admissible

for R-derivations to make sense. However, if it is, the proof system is deterministic: if

R � ζ �� ϑ, then there exists a unique derivation, and also ϑ is unique (in the general

case, this need not be true as R is not assumed to be deterministic, i.e., there might be

several meta rules in R applicable at the same time). Moreover, if R is admissible, it

induces the natural transformation ��R�� which, in turn, induces the distributive law �,

cf. Definition 5.6:

Lemma 6.36

Let R be an admissible set of meta rules, and let ρ � ��R�� be the induced natural trans-

formation with induced distributive law �� �ρ : TE � ET . Then the following equiv-

alence holds for ζ � TEV and ϑ � ETV :

�V �ζ� � ϑ � R � ζ �� ϑ

Proof: We proceed by induction on the structure of ζ � TEV , based on the isomor-

phism TEV �� EV �ΣTEV ; consequently, we get two cases.

1. Suppose ζ � e � EV . For this case, the defining diagram (5.9) states that �V �e�,

or, being completely precise, �V �ηe�, is equal to Eη�e� � ηÆ e, which we iden-

tify with simply e � ϑ � ETV . Hence this case is taken care of by the first rule

of R-derivations, stating that R � e �� e.

2. Suppose σ � Σ is an n-ary operator symbol, and ζi � TEV , for 1 � i � n, and

ζ � σ��ζ�. By (5.9), we have that

�V �σ��ζ�� � EµV �ρTV �σ��V �ζ1�� � � � � �V �ζn����

Applying the induction hypothesis to �V �ζi�, we obtain that, for all 1 � i � n,

�V �ζi� � ϑi if and only if R � ζi �� ϑi. In Lemma 6.34, we have seen that, for

�ε � �EV �n being the corresponding canonical tuple to �ϑ, it holds that

ρTV �σ��ϑ�� � ϑ�ϑi�t��vt
i� � ϑ�ϕ�ϑ�

if and only if ρV �σ��ε�� � ϑ, where ϕ�ϑ : V 	 TX is the map obtained from

Lemma 6.25(2) such that �ϕ�ϑ Æ ε1� � � � �ϕ�ϑ Æ εn� � �ϑ. By the definition of ρ �

204 Chapter 6. Rule Formats for Timed Processes

��R��, cf. Proposition 6.29, ρV �σ��ε�� � ϑ if and only if R contains the meta rule

σ��ε� �� ϑ, which is the case because R is admissible. Putting all these things

together, omitting reference to µ, we obtain precisely that R � σ��ζ��� ϑ�ϕ�ϑ�;

the converse direction also holds as all steps involved are equivalences. �

Intuitively, R-derivations capture the notion of provability from a set of rules: meta

rules only apply to ‘simple’ terms with exactly one function symbol; the inductive

extension given by the R-derivations then determines the action of the rules on complex

terms, iterating applications of the rules (subject to necessary substitutions). Moreover,

for admissible R, R-derivations describe a natural transformation (viz. �), so whenever

R � ζ �� ϑ, it holds that vars�ϑ� � vars�ζ� (taking vars�ζ� to be vars��e� if �e are all

the evolutions occurring as variables in ζ � TEX); otherwise, following from the same

argument as showing that GSOS (meta) rules induce a natural transformation, � could

not be natural.

Now we have all the ingredients to obtain a (meta) rule-based description of the

δ-diagram:

Definition 6.37

Let R be a set of canonical meta rules, Σ a signature, σ � Σ an n-ary function symbol,

σ��ε��� ϑ a meta rule in R, and t�u � T . Then R is called continuous if the following

two statements are equivalent:

1. σ��ε� t�u
� θt�u, and

2. σ��ε� t
� θt � R � θt �ϕ��δε

� �� ϑ�� ϑ��u� � θt�u �

The terminology ‘continuous’ is used since the equivalence is a generalised, rule-

based version of time continuity: if one single application of the rules allows to derive

a
t�u
�-transition, it must be possible to first derive a

t
�-transition in one step, followed

by a derivation (of arbitrary finite length) of a
u
�-transition: the latter holds because,

by the notation used in (4.4), we can rewrite ϑ��u� � θt�u as ϑ� u
� θt�u.

This use of derivations also precisely marks the difference between the two δ-

diagrams in (5.19) and (5.11): the former specifies that the
u
�-transition must be

derivable at once, whereas the latter, as just stated, allows several steps to derive the

6.2. The General Case 205

transition; this is due to the fact that the abstract rules in (5.18) only allow terms in rule

conclusions with at most one function symbol, so at most one rule application is nec-

essary/possible, whereas in (5.12), arbitrary terms are allowed. Note that continuous

sets of meta rules need not be admissible, yet using Lemmas 6.34 and 6.36, we get:

Theorem 6.38

There is a one-to-one correspondence between admissible, continuous sets of meta

rules and natural transformations ΣE � ET satisfying the δ-diagram.

Proof: The only thing left to prove is that, if R is an admissible set of meta rules,

continuity of R is equivalent to satisfaction of the δ-diagram for ρ � ��R��, which really

is a natural transformation because R is admissible. So assume that R is continuous,

and let σ�ε��� ϑ be a meta rule in R. By the definition of continuity, we have to show

that σ��ε� t�u
� θt�u if and only if σ��ε� t

� θt and R � θt �ϕ��δε� �� ϑ� and ϑ� u
� θt�u. So

assume σ��ε� t�u
� θt�u which, by definition, is equal to δTV �ρV �σ��ε����t��u�.

Because of continuity, we also know that σ��ε� t
� θt � ϑ�t�. Consequently, apply-

ing Lemma 6.34 and Lemma 6.25(2), we obtain that ρEV �σ�
�	
δε���t�� θt �ϕ��δε�� TEV .

As shown in Lemma 6.36, �V �θt �ϕ��δε�� � ϑ� � ETX if and only if R � θt �ϕ��δε� �� ϑ�,
and thus, ϑ��u� is exactly the value of E�V �ρEV �σ�

�	
δε����t��u�. Since, by continuity,

ϑ��u�� θt�u, this means that the δ-diagram commutes when chasing round σ��ε�. Since

all involved maps are natural in V , and ρ in particular is completely determined by the

values of exactly such tuples, this implies that continuity implies the commutation of

the δ-diagram in general.

In the converse direction, assuming the the δ-diagram commutes, one simply has to

chase round terms σ��ε� � ΣEV because they are all that continuity is concerned with.

Since both Lemma 6.34 and Lemma 6.36 are equivalences, and the diagram asserts the

equality of partial functions, i.e., a Kleene equality, which also is an equivalence, we

obtain the defining equivalence of continuity. �

Corollary 6.39

There is a one-to-one correspondence between abstract CSOS for timed processes and

admissible, co-pointed, and continuous sets of meta rules. �

206 Chapter 6. Rule Formats for Timed Processes

As already shown, the schematic format from Section 6.2.1 induces CSOS rules

for E, hence:

Corollary 6.40

The schematic format induces an admissible, co-pointed and continuous set of meta

rules. �

There is also a concrete way to derive the set of meta rules corresponding to an

operator defined by some admissible operator from the schematic format. Consider

the case of TeCCS’s strong choice � operator with associated map

����� : �EV �2 	 E�V �ΣV �� ETV

which was already shown to respect the structure of E in Prop. 6.17. Let �ε1�ε2� be an

arbitrary canonical tuple. Then ����� induces the following meta rule:

σ�ε1�ε2��� ϑ ��
� λt�

��
�

σ�vt
1�v

t
2� if ε1�t�� � ε2�t��

undef if ε1�t�� % ε2�t��

In this manner, going through all possible canonical tuples, ����� and similarly, any

admissible operator necessarily results in an admissible set of meta rules.

Remark 6.41

We would like to stress once more the fact that the characterisation of CSOS rules for

timed processes obtained in Corollary 6.39 by suitable admissible sets of meta rules is

by no means an effective description of a rule format for timed processes: after all, the

characterisation uses infinite sets of meta rules, each of which already represents an

infinite set of operational rules, as shown in (6.18). Actually, quite the contrary is true:

we believe that this particular characterisation simply serves the purpose to illustrate

the expressivity of abstract CSOS rules for timed processes.

Due to its complexity and ineffectiveness, the characterisation also raises the ques-

tion whether the model we are using, viz., timed processes described by evolutions—or

equivalently, by TTSs—is adequate in the sense that the model has the infinite aspect,

which becomes apparent in the meta rule-based characterisation, built into its very

6.2. The General Case 207

foundation: evolutions (or TTSs) almost by design induce infinitely branching struc-

tures, and in order to completely capture such structures, infinitary rules (and infinite

sets thereof) are required. To sum up, the previously presented ‘rule format’ should

be taken with a (quite big) pinch of salt: although it is certainly a demonstration of

the complexity of the situation, it is also very clearly a call to arms for finding a more

appropriate and realistic model for timed processes. �

Remark 6.42

Bartels [Bar02], when deriving his rule format PGSOS (GSOS for probablistic tra-

sition systems), uses a decomposition approach: instead of trying to find immediately

a syntactic characterisation of abstract GSOS rules instantiated with the behaviour for

probabilistic transition systems, he first develops, in a top-down way, a ‘toolkit’ of de-

composition results allowing to equivalently express the original natural transforma-

tion in terms of increasingly simpler ones; next, having reached an appropriate level

of simplicity, he provides a syntactic characterisation for the particular type of natural

transformation; finally, reversing the decomposition results on the level of syntax, in a

bottom-up way, he provides characterisations of the more complex natural transforma-

tions, in the end obtaining the complete rule format.

Despite his success, we would not expect to be able to benefit from applying a

similar approach in our case: the final syntactic characterisation still has to capture

the infinitary nature of the evolution comonad; hence, even if we could limit ourselves

to finitary objects during the decomposition, at some point the transition to infinite

objects must occur, and we expect to run into similar difficulties then as we did while

obtaining the presented results in our more direct way. �

Chapter 7

Heterogeneous Processes

In this chapter, finally, we deal with the long-postponed problem of combining action

and time transitions in one model. To do so, we will pass through all the stages we have

previously passed through for time transitions alone, and adapt them appropriately in

order to also incorporate action transitions. Up to this point, we represented timed

processes by transition systems with only one type of transitions, viz., TTSs; therefore,

we could call such timed processes homogeneous. The ones to be dealt with now are

consequently heterogeneous because they contain two kinds of transitions1.

The first task, since our whole approach is based on coalgebraically describing the

‘right’ kind of transition systems, is to formally introduce transition systems with the

two kinds of transitions, together with an appropriate notion of bisimulation. This

leads us to heterogeneous transition systems (HTSs) and heterogeneous bisimulation,

obtained by independently combining an LTS and a TTSs on the same set of states.

In order to then find a suitable coalgebraic characterisation of such transition sys-

tems, it is a crucial point whether the considered time domain is a free monoid or

equivalently, whether the corresponding evolution comonad E is cofreely generated,

cf. Section 4.3. Since HTSs merely consist of the interference-free juxtaposition of

an LTS and a TTS on the same set of states, the appropriate behaviour is obtained by

using a suitable notion of product of the corresponding behaviours for the two types of

1Note that, generalising this approach, one could consider processes performing several different
types of steps, according to different notions of ‘computations,’ as long as these do not interfere with,
or depend on, each other.

209

210 Chapter 7. Heterogeneous Processes

transition systems.

In the special case of discrete time, E� is cofreely generated from the functor B�

(see Theorem 4.23). Hence, TTSs over � are completely described by coalgebras for

the functor B� , exactly like (image finite) LTSs are the coalgebras for the functor BA

from (1.1). So we simply use the (point-wise) product of the behaviour functors BA

and B� to model HTSs over discrete time.

However, if E is not cofreely generated, the situation becomes quite a bit more

complex: this is due to fact that TTSs, in general, can only be described as Coalge-

bras, i.e., the coalgebras have to satisfy additional constraints, unlike the coalgebras

corresponding to LTSs. Since there is no way to pass from an E-Coalgebra to a sim-

ple coalgebra, as in the discrete case, we proceed in the opposite direction: the cofree

comonad B∞
A on BA exists (as was shown, e.g., in [Bar93]) and, in particular, it satisfies

the property that the Coalgebras for B∞
A are the same as the standard coalgebras for BA,

i.e., as image finite LTSs.

Consequently, our solution for this case of HTSs is to again use the product, only

this time that of comonads, viz., B∞
A �E. One has to be a bit careful, though, since this

product turns out to be vastly different from the simple point-wise product of functors;

it is, a priori, not even clear whether it exists. Fortunately, by exploiting recent results

by Hyland, Plotkin, and Power on the dual case of sums of monads in [HPP], we can

show that the product indeed exists in the case under consideration, and also give a

(reasonably) concrete description of it as a composite comonad.

Following these two different tracks for the definition of appropriate behaviours,

we can then investigate corresponding abstract operational rules: for discrete time,

the theory from [TP97] can be used, as was already the case for TTSs over discrete

time, while for arbitrary time domains, we have to apply the framework for behaviour

comonads developed in Chapter 5.

Building on this, we can, furthermore, present some results concerning syntactic

rule formats for the heterogeneous case, again based on what was shown previously

in [TP97] and Chapter 6. Unfortunately, at the moment, these results are far from

complete, much must be left for further research, in particular, the case that action

and time rules are no longer independent (as, e.g., in TiCCS [Wan90]). Despite this

7.1. Heterogeneous Transition Systems 211

unfinished and unpolished state of the development presented here, we still manage to

give a complete and conceptual explanation of the congruence result for TeCCS.

However, the success of the coalgebraic approach should not be measured purely

by the fact that we are able to give abstract proofs which imply the well-established

congruence results for concrete languages like TeCCS: proving these results directly is

not very hard. What is more important is that the coalgebraic approach provides ‘for-

mats’ for rule formats (via abstract rules) and semantic explanations beyond specific

syntax.

7.1 Heterogeneous Transition Systems

In order to talk about processes which do not only perform time but also action tran-

sitions, we have to deal with transition systems like the ones in Figure 3.1 which we

now introduce formally:

Definition 7.1

Let A be a finite set of actions, let T be a time domain, and let P be a set. A heteroge-

neous transition system (HTS) on P is a tuple �P�A�T �	��� such that

 �P�A�	� is an image finite LTS

 �P�T ��� is a TTS

and sometimes simply say that P is an HTS over �A�T � when the two transition re-

lations are clear from the context. The same notational conventions about transitions

apply as before, e.g., instead of �p�α� p�� �	, we write p
α
	 p�. �

This definition simply formalises the intuition that ‘proper’ processes can perform

both computations and let time pass, with the two kinds of transitions completely in-

dependent of each other, unlike, e.g., the model presented in [Wan90, Wan91]: this

uses the axiom (Persistency), in addition to (Maximal Progress), both of which re-

late action and time transitions. This has very clear effects on the coalgebraic de-

scription of HTSs, and also on abstract and concrete rules for such processes. Even

though HTSs are general enough to also include such models, complications eventually

212 Chapter 7. Heterogeneous Processes

arise when treating such languages within the categorical framework due to the mis-

match between model (no relating axioms) and languages (using axioms like (Maximal

Progress) and (Persistency)). For such languages, one should really already impose the

relevant conditions on the models, in order to be as precise as possible.

If we restrict attention to a finite the set of actions2 A, the operational semantics of

TeCCS, as presented in [MT90], defines an HTS on the set of all closed terms of the

language over �A�� �.

There is an appropriate heterogeneous version of bisimulation for such HTSs:

Definition 7.2

Let �Pi�A�T �	i��i�, for 1 � i� 2, be two HTSs over �A�T �. A heterogeneous bisim-

ulation between P1 and P2 is a relation R � P1 �P2 such that �p1� p2� � R implies, for

all α � A and t � T , that

p1
α
	1 p�1 � ��p�2�� p2

α
	2 p�2 ��p�1� p

�
2� � R

p2
α
	2 p�2 � ��p�1�� p1

α
	1 p�1 ��p�1� p

�
2� � R

p1
t
�1 p�1 � ��p�2�� p2

t
�2 p�2 ��p�1� p

�
2� � R

p2
t
�2 p�2 � ��p�1�� p1

t
�1 p�1 ��p�1� p

�
2� � R

We write p � q if there exists a heterogeneous bisimulation R such that �p�q� � R. �

From the same standard principles as in Proposition 3.27, it follows that � is the

largest heterogeneous bisimulation between P1 and P2 and, in case P1 � P2, it is ad-

ditionally an equivalence relation. Clearly, any heterogeneous bisimulation is both an

action and a time bisimulation, establishing �� ��a � �t�. Conversely, Remark 3.30

shows that ��a � �t���: there are processes which are both action bisimilar and time

bisimilar, yet not bisimilar in the heterogeneous sense, viz., the two transition systems

in Figure 3.1. Therefore, we obtain �� ��a � �t�, i.e., the inclusion is strict. Also

note that heterogeneous bisimulation is precisely the one used for TeCCS in [MT90].

2Any system specification in the language can use only finitely many labels anyway, so this restric-
tion is not very strong.

7.2. Heterogeneous Behaviours 213

7.2 Heterogeneous Behaviours

In this section, we present coalgebraic characterisations of HTSs in the same vein as

the characterisation of image finite LTSs as BA-coalgebras, or how TTSs were charac-

terised as E-Coalgebras. We first present a general result which we then refine in the

following two subsections, depending on whether E is cofreely generated or not.

Definition 7.3

Let C be a category, let H be an endofunctor on C , and let D be a comonad on C .

Define the category �H�D�–Coalg as the pullback category in the following diagram

�H�D�–Coalg

��

		 D–Coalg

UD

��
H–coalg

UH

		 C

(7.1)

where UD and UH denote the respective forgetful functors from Coalgebras and coal-

gebras, respectively, to their carriers. The description of the pullback category is es-

sentially the same as for sets, viz., its collection of objects is the ‘sub-collection’ of

the product category given by those pairs of objects which have the same value af-

ter applying the two maps UD and UH ; this boils down to pairs consisting of both an

H-coalgebra and a D-Coalgebra which have the same carrier:

X
kH

����
��
��
�� kD

���
��

��
��

�

HX DX

(7.2)

where kD is a D-Coalgebra. The morphisms of �H�D�–Coalg are maps in C between

the carriers which are homomorphisms of both H-coalgebras and D-Coalgebras. �

The notation �H�D�–Coalg, suggesting a ‘pairing’ of behaviours, is chosen to point

in the direction of products, as will indeed be the case, although in not necessarily the

most straightforward fashion. Instantiating the definition for C � Set, H � BA, and

D � E , we obtain the category �BA�E�–Coalg and the following characterisation:

Proposition 7.4

Let A be a finite set of labels, let and T be a time domain. Then an HTS over �A�T �

on X is the same as an object in �BA�E�–Coalg.

214 Chapter 7. Heterogeneous Processes

Proof: This follows immediately from the correspondence between image finite LTSs

(TTSs over T) and BA-coalgebras (resp. E-Coalgebras), and the fact that, according to

the definition of HTSs, no connection between the two different transition relations is

assumed. �

Note that �H�D�–Coalg is not the same as the coalgebras for the (point-wise) prod-

uct of H and D, the latter being regarded only as a functor, since then we would only

get a D-coalgebra, rather than a D-Coalgebra, in the resulting structures; for the special

case of BA and E, this would result in not necessarily obtaining a TTS, only a deter-

ministic LTS with labels in T for which axioms (ZeroDelay) and (Continuity) might

not hold, cf. Section 4.2.2.

Next, we shall derive ‘proper’ coalgebraic characterisations of �BA�E�–Coalg, in

the sense of finding a functor (comonad) such that its coalgebras (resp. Coalgebras) are

equivalent to ‘mixed’ pairs of coalgebras in �BA�E�–Coalg, which we need in order to

define abstract operational rules for (languages for) HTSs.

7.2.1 Discrete Time

For T � � , we have seen that the evolution comonad E � E� is the cofree comonad

on the functor B� � 1� Id (see Theorem 4.23). Consequently, for any E� -Coalgebra

kE : X 	 E�X , there is a unique B� -coalgebra k� : X 	 B�X � 1�X which induces

the same TTS on X as kE , i.e., k� is the unique B� -coalgebra such that kE � �k��
∞.

Hence, an object �X �kB�kE� of �BA�E�–Coalg can equivalently be described as

X
kB

����
��
��
�� k�

���
��

��
��

�

BAX B�X

(7.3)

i.e., a pair of coalgebras on the same carrier, rather than a ‘mixed’ coalgebra/Coalgebra

pair as in the original definition of �BA�E�–Coalg. By the universal property of the

product, the two maps kB and k� are equivalent to one single, moreover unique, map

k : X 	 BAX �B�X , viz., the pairing of kB and k� ; since the product of functors is

simply taken point-wise, we have BAX �B�X � �BA�B��X , and so:

7.2. Heterogeneous Behaviours 215

Proposition 7.5

HTSs over �A�� � are in one-to-one correspondence with �BA�B��-coalgebras. �

Note that this characterisation only works because there is no interference between

the two transition systems on X , otherwise one could not simply use the product functor

as the appropriate behaviour.

Remark 7.6

To coalgebraically model HTSs where action and time transitions have to satisfy some

conditions relating them to each other, e.g., (Maximal Progress) or (Persistency), one

might not want to use the product functor (also in the general case, the product of

comonads is too ‘generous,’ see the next section) because it does not account for such

dependencies. In such a case, one would rather use some kind of (monoidal?) tensor

BA(B� such that the coalgebras for BA (B� then correspond to HTSs where the de-

sired axioms relating the two kinds of transitions are satisfied, or a subfunctor of the

product. A similar remark applies, as we shall see, to the case of an arbitrary time

domain: there, the resulting behaviour will turn out to be exactly the product comonad

of B∞
A and E, i.e., apart from the more complex technicalities, essentially the same

solution as in the discrete case and consequently, the above still remains valid in the

generalised setting (generalised to either a tensor comonad or a subcomonad). �

As a corollary, because morphisms in �BA�B��–coalg are exactly the morphisms

in �BA�E�–Coalg (modulo the isomorphism B�–coalg �� E–Coalg), we obtain:

Corollary 7.7

Coalgebraic bisimulation for BA �B� is the same as heterogeneous bisimulation be-

tween HTSs over �A�� �. �

Thus, BA �B� is the appropriate behaviour functor to describe the operational se-

mantics of heterogeneous timed processes over discrete time. Next, we are going to

prove two easy results on the preservation of (weak) pullbacks. For this, given a pull-

back square

P
p
��

q 		 Y
g
��

X
f

		 Z

(7.4)

216 Chapter 7. Heterogeneous Processes

recall that we have the following concrete description of P:

(7.5) P � ��x�y� � X �Y
 f x � gy� � X �Y

Using this, we can show:

Proposition 7.8

1. B� preserves pullbacks.

2. In Set, the pullback of a product is the product of the pullbacks, i.e., given two

pullback squares for i � �1�2�,

Pi

pi
��

qi 		 Yi

gi
��

Xi fi
		 Zi

and the pullback square

P

p1
p2
��

q1
q2 		 Y1 �Y2

g1
g2
��

X1 �X2 f1
 f2
		 Z1 �Z2

then P �� P1 �P2.

Proof: 1. Given a pullback square (7.4), we have to show that B�P � 1�P �� Q

where Q is the pullback of

Q

r
��

s 		 1�Y

1�g
��

1�X
1� f

		 1�Z

For this, calculate

Q � ��α�β� � �1�X�� �1�Y�
 �1� f ��α� � �1�g��β��

By definition, �1� f ��α� � 1�Z is in the 1-component if and only if the same

holds for �1�g��β� � 1�Z, so Q �� 1�P � B�P.

7.2. Heterogeneous Behaviours 217

2. Using the concrete description (7.5), we calculate

P � ��α�β� � �X1�X2�� �Y1 �Y2�
 � f1 � f2��α� � �g1 �g2��β��

� ���x1�x2���y1�y2�� � �X1�X2�� �Y1 �Y2�
 � f1x1� f2x2�� �g1y1�g2y2��

�� ��x1�x2�y1�y2� � X1 �X2 �Y1 �Y2
 � f1x1 � g1y1�� � f2x2 � g2y2��

�� P1 �P2

�

Moreover, by [Tur96, TR98], we know that in Set, weak pullbacks embed pull-

backs: in the situation of (7.4), a set W , together with a pair of maps W 	 X , W 	 Y

such that the resulting square commutes, constitutes a weak pullback if and only if

there is an injection P �	W . Using this, we obtain:

Corollary 7.9

1. B� preserves weak pullbacks.

2. BA�B� preserves weak pullbacks.

Proof:

1. Follows from the previous proposition and [Rut00].

2. By, e.g., [Tur96, TR98], we know that BA preserves weak pullbacks; by the

previous point, we also know it for B� . Consider now the commuting square

BAP�B�P
BAq
B�q 		

BAp
B�p
��

BAY �B�Y

BAg
B�g
��

BAX �B�X
BA f
B� f

		 BAZ�B�Z

obtained by applying BA�B� to the pullback square (7.4). By the previous

proposition, its ‘real’ pullback Q is isomorphic to QA �Q� , where QA and Q�

are the ‘real’ pullbacks of the square (7.4) with BA and B� , respectively, applied

to it. Since both BA and B� preserve weak pullbacks, we know that there are

injections QA �	 BAP and Q� �	 B�P and so, we get an injection

Q �� QA �Q� �	 BAP�B�P

establishing BAP�B�P as a weak pullback. �

218 Chapter 7. Heterogeneous Processes

7.2.2 The General Case

Now consider a general time domain T such that E may not be cofreely generated, the

main example being �. Due to Theorem 4.17, we still obtain that the Coalgebras for

E are the same as TTSs over T , but no further simplification is possible. However,

since BA is accessible, there exists the cofree comonad B∞
A on it—see, e.g., [JPT�01].

As a consequence, we get BA–coalg �� B∞
A –Coalg and hence, any structure �X �kB�kE�

in �BA�E�–Coalg can equivalently be regarded as a pair of Coalgebras

X
k∞

B

����
��
��
�� kE

� �
��

��
��

�

B∞
A X EX

(7.6)

where k∞
B is the coinductive extension of kB. Hence, we now have a pair of Coalgebras

describing HTSs over �A�T �:

Proposition 7.10

There is a one-to-one correspondence between HTSs over�A�T � and pairs of Coalge-

bras as in (7.6). �

Again more abstractly, we can consider the case of a category C and two comonads

D and D� on C . The last characterisation of HTSs as pairs of Coalgebras means that it

is an instance of a pullback category

�D�D��–Coalg

��

		 D–Coalg

UD

��
D�–Coalg

UD�
		 C

(7.7)

again with UD and UD� denoting the respective forgetful functors. Note that, in case

D� � H∞, this is equivalent to the pullback category �H�D�–Coalg in (7.1), since

H∞–Coalg �� H–coalg; thus, �BA�E�–Coalg �� �B∞
A �E�–Coalg.

The question is now how to obtain a coalgebraic characterisation of �BA�E�–Coalg

or, more generally of �H�D�–Coalg. For this, we will use a canonical distributive law

of the comonad D over the functor HD which, under the assumption that the cofree

comonad �HD�∞ on HD exists, yields a comonad structure on the composite comonad

D�HD�∞ with the property that �H�D�–Coalg �� D�HD�∞–Coalg.

7.2. Heterogeneous Behaviours 219

On a seemingly different trajectory, we shall then show that �D�D��–Coalg is

equal to the category �D�D��–Coalg, provided the product D� D� exists. How-

ever, instantiated for the special case D� � H∞, the two categories �D�D��–Coalg

and �H�D�–Coalg are isomorphic, and we have just obtained a Coalgebraic char-

acterisation of the latter. Consequently, under suitable assumptions, we obtain that

�H�D�–Coalg �� �H∞�D�–Coalg because comonads are determined by their Coalge-

bras (dually to the case of monads and their Algebras contained in [Mac97]). So, as

in the discrete case, the product, though of this time of behaviour comonads, provides

the appropriate behaviour for modelling HTSs over arbitrary time.

In addition to that, as explained in Section 2.4, the distributive law used in the

construction of the comonad D�HD�∞ induces a lifting D̃ of the comonad D to the

category HD–coalg. For general reasons—also see Section 2.4—its category of Coal-

gebras D̃–Coalg is isomorphic to �H�D�–Coalg and so, we obtain a second, equiva-

lent characterisation of �H�D�–Coalg in terms of a ‘two-level’ approach. We will just

briefly describe it in a third subsection since it gives a different way to obtain abstract

rules for heterogeneous timed processes.

7.2.2.1 A Coalgebraic Characterisation of �BA�E�–Coalg

We now turn our attention to constructing a comonad whose category of Coalgebras is

isomorphic to �BA�E�–Coalg. In the following, we will use an arbitrary category C ,

an endofunctor H and a comonad D � �D�ε�δ�, both on C , in place of Set, BA, and E,

respectively, in accordance with the abstract view of �BA�E�–Coalg as an instance of

the pullback category �H�D�–Coalg defined in (7.1).

Proposition 7.11

The natural transformation

(7.8) � � D�HD�
εHD�� HD

Hδ
�� �HD�D

is a distributive law of the comonad D over the endofunctor HD.

Proof: We have to show that � respects the structure of D. For the counit ε, we com-

220 Chapter 7. Heterogeneous Processes

pute

D�HD�
εHD ��

εHD

��

HD

���
���

���
�

���
���

���
�

Hδ �� �HD�D

HDε
��

HD

����������

����������
HD

and the diagram commutes trivially except for the upper-right triangle, which com-

mutes because of the comonad laws (2.3). For the comultiplication δ, consider the

following diagram:

D�HD�

δHD
��

εHD ��

���
���

���
�

���
���

���
�

DHδ

�!��
����

����
����

����
�

����
����

����
����

���
HD

Hδ ��

Hδ

�"�
���

���
���

���
���

���
� �HD�D

HDδ
��

D2�HD�
DεHD

�� D�HD�
DHδ

�� D�HD�Dε�HD�D

�� �HD�D
HδD

�� �HD2�D �� �HD�D2

where the smaller diagrams commute trivially, by naturality of ε, or the comonad

laws (2.3). �

As a consequence of the distributive law, we obtain:

Corollary 7.12

Defining D̃�X �h : X 	 HDX� � �DX �DX
Dh
�	 DHDX

�X�	 HDDX� yields a lifting D̃

of the comonad D to HD–coalg. �

Having obtained the comonad D̃ on HD–coalg, consider the category of its Coal-

gebras D̃–Coalg where a D̃-Coalgebra consists of

 an object X of C as its carrier

 an HD-coalgebra h : X 	 HDX , making it an object in HD–coalg

 a D-Coalgebra k : X 	 DX with the additional property that the following dia-

gram commutes:

X

h

��

k 		 DX

Dh
��

DHDX

�X

��

εHDX

 #
HDX

HδX
!$HDX

HDk
		 HDDX

(7.9)

7.2. Heterogeneous Behaviours 221

Thus, D̃-Coalgebras are special pairs of coalgebras satisfying a coherence condition

with respect to �. Dualising a result from [HPP], we can then prove the following,

obtaining a coalgebraic description of �H�D�–Coalg:

Proposition 7.13

The functor F : D̃–Coalg 	 �H�D�–Coalg defined by

�X �X
h

�	 HDX �X
k

�	 DX� �	 �X �X
h

�	 HDX
HεX�	 HX �X

k
�	 DX�

is an isomorphism of categories D̃–Coalg �� �H�D�–Coalg: we claim that the functor

G : �H�D�–Coalg 	 D̃–Coalg, defined as

�X �X
h

�	 HX �X
k

�	 DX� �	 �X �X
h

�	 HX
Hk
�	 HDX �X

k
�	 DX�

is its inverse.

Proof: It is clear that F is well-defined and a functor since ε is natural. Moreover,

functoriality of G is also obvious, for well-definedness we have to check that this

assignment verifies (7.9). For this, consider the following diagram:

X

h

��

k
�%
DX

Dh
��

εX

"&

D�HkÆh�

#'

DHX

DHk
��

εHX

�(���
���

���
�

HX

Hk

��

DHDX

εHDX
��εHDX

$���
��
��
��
��
��
��
��

�X

#'

HDX

HδX
��

HDX
HDk

%) HDDX
HDεX&*

where the squares in the interior commute because ε is natural and is respected by �.

Based on it, we can compute as follows, using functoriality of D, naturality of ε, the

fact that k is a Coalgebra, and that � respects ε:

HDk Æ �Hk Æh� � HDk ÆHk ÆhÆ idX

222 Chapter 7. Heterogeneous Processes

� HDk ÆHk ÆhÆ εX Æ k

� HDk ÆHk Æ εHX ÆDhÆ k

� HDk Æ εHDX ÆDHk ÆDhÆ k

� HDk ÆHDεX ÆHδX Æ εHDX ÆDHk ÆDhÆ k

� idHDX ÆHδX Æ εHDX ÆDHk ÆDhÆ k

� �X ÆDHk ÆDhÆ k

� �X ÆD�Hk Æh�Æ k

i.e., precisely the equality demanded by (7.9). Consequently, G is well-defined. It

remains to show that F and G are mutually inverse.

For this, take a D̃-Coalgebra �X �X
h

�	 HDX �X
k

�	 DX�. Its image under F is

�X �X
h

�	 HDX
HεX�	 HX �X

k
�	 DX�

which, by G, gets sent to

�X �X
h

�	 HDX
HεX�	 HX

Hk
�	 HDX �X

k
�	 DX�

In order to show GÆF � Id : D̃–Coalg 	 D̃–Coalg, we need to prove that the two

HD-coalgebras are equal, i.e., we need to show h � Hk ÆHεX Æh. This is taken care of

in the following diagram:

X

k
��

h 		

idX

'�

HDX
HεX 		

HDk
��

HX

Hk

��

DX
Dh 		

εX
��

DHDX

εHDX ����
���

���
��

HDDX
HεDX

����
���

���
��

X
h

		 HDX

HδX

��

HDX

(7.10)

where the various diagrams commute either because of the comonad laws (2.3), or

because ε is natural, or by the defining property (7.9) of D̃-Coalgebras.

In the other direction, let �X �X
h

�	 HX �X
k

�	 DX� be an object in �H�D�–Coalg.

By G, it gets mapped to

�X �X
h

�	 HX
Hk
�	 HDX �X

k
�	 DX�

7.2. Heterogeneous Behaviours 223

which then, applying F , results in

�X �X
h

�	 HX
Hk
�	 HDX

HεX�	 HX �X
k

�	 DX�

Since k satisfies the properties (2.5) of a Coalgebra for the comonad D and H is a func-

tor, we have HεX ÆHk � idHX and so, F ÆG � Id : �H�D�–Coalg 	 �H�D�–Coalg. �

Thus, we have obtained a first Coalgebraic characterisation of �H�D�–Coalg, al-

beit for a comonad on HD–coalg, not on C . This characterisation forms the basis of

the two-level approach described later. It also enables us to finally prove the desired

theorem, exploiting the connection between liftings, distributive laws, and composite

(co)monads sketched in Section 2.4:

Theorem 7.14

Assume that the cofree comonad �HD�∞ exists. Then there exists a canonically given

comonad structure on the composite comonad D�HD�∞ such that

�H�D�–Coalg �� D�HD�∞–Coalg

Proof: We know that �HD�∞–Coalg �� HD–coalg. Hence, the comonad D̃, as ob-

tained in Corollary 7.12 from the distributive law � in (7.8), is also a lifting of D to

�HD�∞–Coalg. Consequently, as shown in Section 2.4, it induces a distributive law

of comonads D�HD�∞ � �HD�∞D. Finally, the distributive law yields a canonical

comonad structure on the composite D�HD�∞ which, by Proposition 7.13, in addi-

tion to general results on composite comonads (see Section 2.4 and [Jac94]), satisfies

D�HD�∞–Coalg �� D̃–Coalg �� �H�D�–Coalg. �

Remark 7.15

Following [HPP], we could now proceed by giving an explicit description of counit

and comultiplication of the comonad D�HD�∞; however, since we will never actually

use these data, we omit them here. �

Because composition of accessible functors is still accessible, and both BA and E

are accessible (for the former, see [JPT�01], for latter, see Proposition 4.16), we obtain

from [JPT�01, Prop.2.3] that �BAE�∞ exists, thus appropriate instantiation yields:

Corollary 7.16 �BA�E�–Coalg �� E�BAE�∞–Coalg �

Hence, we have indeed obtained a comonad on Set whose Coalgebras are HTSs.

224 Chapter 7. Heterogeneous Processes

7.2.2.2 Product Comonads

In this section, based on dualising recent results by Hyland, Plotkin, and Power [HPP],

and (the duals of) well-known general results about Kan extensions [Dub74, KL97,

Mac97], we show that the pullback category �D�D��–Coalg from (7.7) is equivalent to

the category of Coalgebras for the comonad D�D�, provided that the product exists.

Combining this with the results from the previous section for the case that D � � H∞,

we actually obtain that �H∞ �D�–Coalg �� �H�D�–Coalg, if that product exists.

Definition 7.17

Let A �B�C be categories, and let F : C 	 A and G : C 	 B be functors. Then the

left Kan extension of F along G is a functor LanG�F� : B 	 A together with a natural

transformation α : F � LanG�F�G satisfying the universal property that, given a func-

tor H : B 	 A and a natural transformation ϕ : F 	 HG, ϕ uniquely factors through

α, meaning that there is a unique natural transformation ϕ� : LanG�F�� H such that

ϕ � ϕ�
G Æα. �

Diagrammatically, the situation of the previous definition can be pictured as fol-

lows, abbreviating LanG�F� by L:

C

F

���
��

��
��

��
��

��
��

��
��

��
G 		 B

L

��

H

(+

ϕ
�������

α
��

ϕ�
G��

A

(7.11)

Equivalently, the universal property of LanG�F� states that there is the following

one-to-one correspondence

(7.12)
F � HG

LanG�F�� H

Given ϕ : F � HG, its corresponding natural transformation is ϕ� : LanG�F�� H as

depicted in (7.11) and obtained by the universal property; in the other direction, given

7.2. Heterogeneous Behaviours 225

ψ : LanG�F�� H, its corresponding ψ� : F � HG is obtained as

ψ� � F
α

�� LanG�F�G
ψG
�� HG

Then ���� and ���� are mutually inverse and natural.

Note that α � id� : F � LanG�F�G for id : LanG�F�� LanG�F�, and the two sets

of data are equivalent—see [Dub74] for the dual result for right Kan extensions. More

abstractly, the bijection (7.12) states that LanG� � is left adjoint to the ‘pre-composition

with G’-functor ���ÆG. We will use this quite heavily in the following proofs.

Kan extensions are a very powerful concept, aptly illustrated by the section titled

‘All concepts are Kan extensions’ in [Mac97]: for instance, it is possible to express the

existence of a right adjoint by the existence and preservation of a canonical left Kan

extension, similar results hold for colimits, and so on; we refer the reader to [Mac97].

We are only interested in very special left Kan extensions, as will be illustrated

now. Given a category C , there is a one-to-one correspondence between objects and

arrows in C , and functors 1 	 C with their natural transformations, where 1 denotes

the category with exactly one object and its identity arrow. Thus, regarding an object

X of C as such a functor 1 	 C , it makes sense to consider the left Kan extension

L
��
� LanX�X� of X along itself; if it exists, it is consequently an endofunctor C 	 C .

When expanding the definitions, L comes with its associated natural transformation

α : X � LX , as shown in the following diagram:

1

X

���
��

��
��

��
��

��
��

�
X 		 C

L

��

α
�

C

Since α is a natural transformation between functors with domain 1, it is simply an

arrow in C of type X 	 LX , i.e., an L-coalgebra. Accordingly, the universal prop-

erty of L boils down to the fact that, given an endofunctor H : C 	 C and an H-

coalgebra ϕ : X 	 HX , there exists a unique natural transformation ψ : L � H such

226 Chapter 7. Heterogeneous Processes

that ϕ � ψX Æα, i.e., the following diagram commutes:

X

α ���
��

��
��

�
ϕ 		 HX

LX
ψX

��������

Assuming that L exists, we can show that it carries a canonical comonad structure:

Definition 7.18

Let B�C be a categories, let X : B 	 C be a functor such that its left Kan extension

L
��
� LanX�X� : C 	 C along itself exists, with natural transformation α : X � LX .

Define natural transformations εL : L � Id and δL : L � L2 as follows, using the bi-

jection from (7.12):

X
id

�� X

L
εL

�� Id
(7.13)

i.e., ε � id�
X , and

X
α

�� LX
Lα

��� LLX

L
δL

���� LL
(7.14)

i.e, δ � �LαÆα��. �

It is worthwhile to expand the definitions of εL and δL in terms of commuting

diagrams. Since εL � id�, as stated in (7.13), we get:

id � X α ��LX
εL

X ��X(7.15)

Analogously, from (7.14), we obtain that the following diagram commutes:

X
α ��

α
��

LX

δL
X

��
LX Lα

�� LLX

(7.16)

With this, we can prove:

7.2. Heterogeneous Behaviours 227

Theorem 7.19

Under the same assumptions as in the preceding definition, �L�εL�δL� is a comonad.

Proof: To ease notation, we drop the superscripts and simply write ε and δ throughout

this proof. We have to show that the comonad laws in (2.3) are satisfied. First, let us

show the two triangles. One states that εL Æδ � id. Consider the following diagram:

X
α ��

id ��
��

��
��

�

��
��

��
� LX

Lα ��

εX
��

LLX

εLX
��

X α
�� LX

This diagram commutes: the triangle on the left because of (7.15), the square because

ε is natural. Hence, we obtain two equal maps of type X � LX . The first, α, is equal

to id� for id : LX � LX . For the second, consider the following diagram:

X
α ��

α ��
��

��
��

�

��
��

��
� LX

Lα �� LLX
εLX �� LX

LX

δX
)�

 �εLÆδ�X

%,����������������

����������������

This commutes because of (7.16) and functoriality of ��� ÆX and so, the second map

is equal to �εL Æδ��. Since (7.12) is a bijection, id� � �εL Æδ�� implies id � εL Æδ as

desired.

For the other triangle in (2.3), stating that id � LεÆδ, consider the following dia-

gram:

X
α ��

α
��

LX

LX Lα
��

id
)�

LLX

LεX

*-

The upper triangle commutes trivially, the lower one because of (7.15). So again,

we get two equal maps X � LX , one of which is α � id�. The second can again be

rewritten, using (7.16) and functoriality of ���ÆX :

X
α ��

α ��
��

��
��

�

��
��

��
� LX

Lα �� LLX
LεX �� LX

LX

δX
)�

 �LεÆδ�X

%,����������������

����������������

228 Chapter 7. Heterogeneous Processes

i.e., we obtain the map �LεÆδ��. Consequently, we get id � LεÆδ, showing that also

the second triangle commutes.

Finally, for the square in (2.3), consider the following diagram:

X
α ��

α
��

LX
Lα ��

Lα
��

LLX

LδX

��

LX
δX ��

Lα
��

LLX
LLα

�.�
���

���
��

���
���

���

LLX δLX

�� LLLX

where the square in the upper left commutes because of (7.16), the square below the

diagonal map because δ is natural, and the square above the diagonal map because it

is exactly (7.16) with L applied to it.

Using the same kind of argument as above, it follows that the two equal maps of

type X � LLLX formed by the exterior of the above square correspond, via (7.12), to

the two maps of type L � LLL from the square in (2.3), which therefore commutes. �

Definition 7.20

If LanX�X� exists, we also say that C admits the comonad LanX�X�. �

We will now show that, for any set X , Set admits LanX�X�. Consider the product

X �A for two sets X and A. Its universal property is that it it is equivalent to give a map

X �A
τ

�	 B and to give a map of type X
τ�

�	 A�B, where A�B denotes the set of all

functions from A to B; since this is obtained by the cartesian closed structure on Set,

this bijection is also natural. More conceptually, we actually use the X -fold copower
�

X A of an object A which, in Set, happens to be isomorphic to the product X�A; note

that such a copower is a special case of the concept of tensor from enriched category

theory [Kel82]. Using this, we can show the following:

Proposition 7.21

For any set X , the functor Λ ��
� �X� ��X is equal to LanX�X�.

Proof: It is obvious that the above assignment makes Λ a functor Set 	 Set. We have

to show that it satisfies the universal property of the left Kan extension, viz., given an

7.2. Heterogeneous Behaviours 229

endofunctor H : Set 	 Set, that there is a natural bijection

(7.17)
X � HX

Λ � H

So assume there is a natural transformation ϕ : Λ � H. By definition, this is the

same as, for any sets A�B and a function f : A 	 B, to give a maps ϕA : ΛA 	 HA and

ϕB : ΛB 	 HB which satisfy

�X�A��X
τA 		

�Xf �
��

HA

H f
��

�X�B��X τB
		 HB

By using the cartesian closed structure, we get the diagram

X�A
τ�A 		

Xf
��

X�HA

XH f
��

X�B
τ�B

		 X�HB

which commutes because the involved bijection is natural, as remarked above. Con-

sequently, we obtain a natural transformation τ� : �X� �� �X�H � or equivalently,

using the hom-set notation instead of function spaces,

τ� : Set�X � �� Set�X �H �

However, applying the Yoneda Lemma [Mac97], such natural transformations are in

one-to-one correspondence with elements of the set Set�X �HX�, i.e., the set of all

H-coalgebras with carrier X . Finally, these are equivalent to natural transformations

X � HX , regarding X as a functor of type 1 	 Set. Thus, since all the bijections

involved are natural, we precisely obtain the desired bijection (7.17), showing that Λ
is indeed equal to LanX�X�. �

Consequently, all the comonads LanX�X� exist in Set; again, we omit an explicit

description of the comonad structure since only its existence is important to us. In

order to continue our path towards establishing the aforementioned product comonad

230 Chapter 7. Heterogeneous Processes

as the appropriate behaviour comonad for HTSs, we need to introduce the following

notion of co-action of a comonad which, as we shall see, generalises the notion of

Coalgebra for a comonad:

Definition 7.22

A natural transformation σ : H � DH verifying the following diagram

H

σ
����

��
��
��

��
��
��
��

σ �� DH

Dσ
��

H DHεH
��

δH

�� D2H

(7.18)

is called a co-action of the comonad D on the endofunctor H. �

Instantiating the last definition for functors X : 1 	 C , we obtain:

Proposition 7.23

Given a comonad D on C and and object X of C , there is a one-to-one correspondence

between D-Coalgebras X 	 DX and co-actions X � DX of D on X : 1 	 C .

Proof: As previously remarked, a natural transformation σ : X � DX has precisely

one component, viz., a map k : X 	 DX , and vice versa. The conditions on σ imposed

by (7.18) correspond exactly to the fact that k verifies the two diagrams in (2.5). �

The use of these co-actions will become clear in the next theorem, which refines

the bijection (7.12), stating that the comonads LanX�X� have a universal property:

Theorem 7.24

Let C be a category and, given an object X of C , assume that L � LanX�X� exists;

write α : X � LX for its associated natural transformation, and denote its comonad

structure by εL and δL. Let, furthermore, D � �D�ε�δ� be a comonad on C . Then there

is a one-to-one correspondence between co-actions X � DX of D on X and comonad

morphisms L � D.

Proof: Following the proof of [Dub74, Prop. II.1.4], let ϕ : L � D be natural transfor-

mation. That the corresponding map ϕ� : X � DX is a co-action of D on X is expressed

7.2. Heterogeneous Behaviours 231

in the following two diagrams:

X
id ��

ϕ� ��
��

��
��

�

��
��

��
� X

DX
εX

+/�������

�������
(7.19)

X
ϕ�

��

ϕ�

��

α ��
��

��
��

��

��
��

��
�� �δL�

�

��

 DX

δX

��

LX Lα
��

ϕX

,0 !
!!
!!
!!
!!
!!
!!
!!

!!
!!
!!
!!
!!
!!
!!
!���

LLX
ϕLX

�� �ϕϕ�X

-�
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
�

���

DLX

DϕX �.�
��

��
��

�

��
��

��
��

���

DX
Dα

%,"""""""""""""""

"""""""""""""""

Dϕ�
��

���

DDX

(7.20)

In (7.20), the triangles marked with �#� commute because of the definition of ����; the

square marked with ��� and the triangle on its right commute because ϕ is natural,

and the triangle above it because of the definition of δL as �LαÆα��, and the fact that

���� and ���� are mutually inverse. Consequently, (7.20) commutes if and only if the

following diagram, above marked with �)�, commutes:

X
ϕ�

��

�δL�
�

��

DX

δX
��

LLX
�ϕϕ�X

�� DDX

(7.21)

In order for ϕ to be comonad morphism, it has to satisfy the diagrams

L
εL

��

ϕ ��
��

��
��

�

��
��

��
� Id

D
ε

���������

�������

L
ϕ ��

δL

��

D

δ
��

LL ϕϕ
�� DD

(7.22)

By the adjunction LanX� � � ���ÆX , it follows:

εX Æϕ� � �εÆϕ��

δX Æϕ� � �δÆϕ��

�ϕϕ�X Æ �δL�� � ��ϕϕ�ÆδL��

232 Chapter 7. Heterogeneous Processes

Together with the fact that �εL�� � �id��� � id, it now follows that (7.19) commutes if

and only if the triangle in (7.22) commutes and analogously, (7.21) commutes if and

only if the square in (7.22) commutes. In other words: ϕ is a comonad morphism if

and only if ϕ� is a co-action, concluding the proof. �

Theorem 7.25

Let C be a category and assume that the product D�D� of the comonads D and D� in

Cmd�C � exists. Then, for an object X of C , if LanX�X� exists, it is equivalent to give

a �D�D��-Coalgebra on X , and a pair of Coalgebras DX � X 	 D�X .

Proof: Let k : X 	 �D�D��X be a �D�D��-Coalgebra. By Proposition 7.23, it is the

same as a co-action X � �D�D��X of �D�D�� on X : 1 	 C . By Theorem 7.24, such

a co-action is equivalent to a comonad morphism LanX�X�� D�D�. Since D�D�

is the product of D and D� in Cmd�C �, its universal property states that any map

into it can equivalently be regarded as two comonad morphisms with respective types

LanX�X�� D and LanX�X�� D�. Reversing the previous steps, this is first equivalent

to two co-actions of D and D�, respectively, on X , and then to two Coalgebras X 	 DX

and X 	 D�X . �

Moreover, since all the involved constructions are functorial, and by the definition

of �D�D��–Coalg, we obtain:

Corollary 7.26

There is an isomorphism of categories

D�D�–Coalg �� �D�D��–Coalg

provided that D�D� exists, and that C admits all the comonads LanX�X�. �

Combining the last theorem with the results of the previous section, we obtain:

Corollary 7.27 E�BAE�∞ �� B∞
A �E in Cmd�Set�, and consequently

�B∞
A �E�–Coalg �� �BA�E�–Coalg

stating that HTSs over �A�T � are Coalgebras for the product comonad B∞
A �E. More-

over, coalgebraic bisimulation for B∞
A �E is exactly heterogeneous bisimulation.

7.2. Heterogeneous Behaviours 233

Proof: By Proposition 7.21, all the comonads LanX�X� exist in Set, hence, applying

Corollary 7.26, we obtain

�BA�E�–Coalg �� �B∞
A �E�–Coalg �� �B∞

A �E�–Coalg

under the assumption that this product exists. However, Corollary 7.16 states that

�BA�E�–Coalg �� E�BAE�∞–Coalg

so there already exists a comonad whose Coalgebras are isomorphic to �BA�E�–Coalg

and, since comonads are determined by their Coalgebras (see [Mac97] for the dual

case of monads), it must therefore be the case that

E�BAE�∞ �� B∞
A �E

in Cmd�Set�, implying the isomorphism between the Coalgebras. The statement about

coalgebraic bisimulation then follows trivially. �

Remark 7.28

1. It should be obvious that, under the appropriate assumptions, the last result can

be generalised to obtain a characterisation of the product of H∞ and D for an

endofunctor H and a comonad D on some category C , for instance, assuming

that C admits all the comonads LanX�X� and that both H and D are accessible.

For the case of two arbitrary comonads, it is not clear what the right assumptions

are such that their product always exists. However, if it exists, and additionally

also all the comonads LanX�X�, the characterisation from Theorem 7.25 is valid,

and so the category of Coalgebras for the product comonad is isomorphic to the

pullback category �D�D��–Coalg introduced in (7.7).

2. When also D � B∞ holds, e.g., in the case of discrete time (for C � Set, H � BA

and B � B� , i.e., B∞
�
� E�), it follows that

H∞ �B∞ �� �H �B�∞

with � on the left denoting the product of comonads, and on the right the product

of functors, provided that C admits all the comonads LanX�X�, and that both

H∞ �B∞ and �H �B�∞ exist. In particular, by Proposition 7.21, we get that

B∞
A �E� �� B∞

A �B∞
�
�� �BA�B��

∞

234 Chapter 7. Heterogeneous Processes

and hence, for discrete time, the two approaches—using either the product func-

tor, or the product comonad—coincide since their categories of coalgebras are

isomorphic. �

Corollary 7.29

The comonad B∞
A �E preserves weak pullbacks.

Proof: By the preceding corollary, B∞
A �E �� E�BAE�∞. Furthermore, it is well-known

that BA preserves weak pullbacks (see, e.g., [Tur96]), so does E (see Corollary 4.15).

Moreover, by [JPT�01, Lemma 2.8], the forgetful functor U from BAE–coalg to Set

preserves weak pullbacks; hence, so does �BAE�∞: the right adjoint to U automatically

preserves all limits, and the composition with the forgetful functor is necessarily equal

to the cofree comonad �BAE�∞. Hence, B∞
A � E is isomorphic to a composition of

functors, all of which preserve weak pullbacks, and so the claim follows. �

7.2.2.3 A Two-Level Approach

In this section, we briefly show the details of a different, but equivalent approach to

obtain an appropriate behaviour for HTSs. Given a category C , an endofunctor H

and a comonad D, both on C , Section 7.2.2.1 presented the distributive law (7.8) of

the comonad D over the functor HD. Consequently, we obtained a lifting D̃ of the

comonad D to HD–coalg such that, by Proposition 7.13, D̃–Coalg �� �H�D�–Coalg.

Instantiating this with BA and E in place of H and D, respectively, the distributive

law lifts E to the comonad Ẽ on BAE–coalg and we obtain:

Corollary 7.30 Ẽ–Coalg �� �BA�E�–Coalg �

Consequently, by Proposition 7.4, Ẽ-Coalgebras are the same as HTSs. Recall the

definition of an Ẽ-Coalgebra; it consists of three parts:

 a set X as the carrier,

 a BAE-coalgebra h : X 	 BAEX , and

 an E-Coalgebra k : X 	 EX , i.e., a TTS on X

7.2. Heterogeneous Behaviours 235

which additionally satisfy the following ‘coherence condition’:

X

h

��

k 		 EX

Eh
��

EBAEX

�X

��

εBAEX

 #
BAEX

BAδX
!$BAEX

BAEk
		 BAEEX

(7.23)

Thus, any Ẽ-Coalgebra ‘contains’ a BAE-coalgebra h and as such, for x � X , h�x�

is equivalent to a map of type A 	 P��EX� such that additionally the two axioms of

evolutions (4.1) and (4.2) hold for each evolution e in h�x��α�. This means that h

defines combined transitions with two labels on X as follows:

x
α
	
t

x�
��
� ��e � h�x��α��� e

t
� x�

for t � T and α � A. Looking at the definition, a slightly different notation for the

combined transitions could be x
α
	

t
� x�, putting more emphasis on the fact that first,

the BA-coalgebra is evaluated, and only then the E-coalgebra, as specified by the com-

posite functor BAE.

Since a Ẽ-Coalgebra additionally ‘contains’ an E-Coalgebra, which defines pure

time transitions, one would like the two notions of transitions to be related in a sensible

way which is exactly the purpose of the diagram (7.23). In order to ‘decode’ the

diagram, note the identity

h � εBAEX ÆEhÆ k

obtained from (7.10), and so (7.23) really just states

X
h 		

h
��

BAEX

BAδx
��

BAEX
BAEk

		 BAEEX

Translating this into the transition-view, we obtain

(7.24) x
α
	
t

x�� x�
u
� x�� � x

α
	
t�u

x��

236 Chapter 7. Heterogeneous Processes

where the left-hand side of the equivalence corresponds to the composite BAEk Æh, the

right-hand side to BAδX Æh. We call the equivalence (7.24) action continuity because it

is essentially an ‘action-decorated’ version of axiom (Continuity). Moreover, we can

define

x
α
	 x�

��
� x

α
	
0

x�

Note that this is exactly the action of the functor F from Proposition 7.13 which, in

this particular case, maps an Ẽ-Coalgebra to an object in �BA�E�–Coalg, by turning

the BAE-coalgebra part into a BA-coalgebra.

Then, instantiating (7.24) with the trivial identity 0� t � t in T , we obtain that

(7.25) x
α
	
t

x� � x
α
	 x��� x��

t
� x�

i.e., the combined transitions really capture the intuition of describing actions which

are no longer necessarily instantaneous, but may take some time t � T .

Remark 7.31

It is interesting to note that the operational semantics of TiCSP described in [Sch95]

uses precisely the two kinds of transitions described by a Ẽ-Coalgebra. The transi-

tion system obtained by the pure time transitions
t
�, incidentally called evolutions, is

shown to be a TTS, i.e., an E-Coalgebra on the set of terms. However, no result corre-

sponding to (7.24) is obtained. This is, in our opinion, due to the fact that a combined

transition
α
	
t

is interpreted as
t
�

α
	, i.e., the time transition is performed before the

action transition, rather than the other way around, which ideally should validate the

symmetric property to (7.25). In order to account for this ‘inverted’ interpretation, one

would have to switch to using EBA-coalgebras, rather than the BAE-coalgebras we use

here; however, we do not see how to obtain a distributive law of E over EBA, or a lifting

of E to EBA–coalg. The only connection between combined and pure transitions that

is established in the article is an equivalent formulation of (Persistency):

�p
a
	
0
���p��� p

t
� p��� p

a
	
t

which, due to the inverted interpretation, is not equivalent to (7.25), despite the su-

perficial similarities: in fact, it cannot be equivalent, since the two-level approach is

equivalent to using HTSs, and so definitely does not validate (Persistency). �

7.3. Heterogeneous Abstract Rules 237

Having established this very pleasing and intuitive connection between combined
α
	
t

-transitions and pure
u
�-transitions in the two-level approach, we would still like

to stress that the comonad Ẽ ‘lives’ on the category BAE–coalg. This will become

important when defining abstract operational rules, as we shall do in the next section.

7.3 Heterogeneous Abstract Rules

We have found different coalgebraic characterisations of HTSs, one given by the prod-

uct functor BA �B� in the case T � � , where E is cofreely generated, the other given

by the product comonad B∞
A �E, in the general case, which can additionally be char-

acterised by the two-level approach. Accordingly, we can use different approaches to

obtaining abstract operational rules: the previous approach of [TP97] for discrete time,

and our approach as described in Chapter 5 for the general case.

7.3.1 Discrete Time

Since we have seen in Proposition 7.5 that HTSs over �A�� � are the same as coalgebras

for the product functor BA�B� , we can simply instantiate the theory of [TP97] for

describing abstract rules for heterogeneous timed processes over discrete time, i.e., by

using natural transformations

(7.26) ρ : Σ�Id� �BA�B� ��� �BA�B��T

where Σ is a signature (functor) with freely generated term monad T on Set. Further-

more, we have that �BA �B��T � BAT �B�T and so, using the universal property of

the product, we can decompose (7.26) into two maps:

ρA : Σ�Id� �BA �B���� BAT and ρ� : Σ�Id� �BA�B���� B�T

where ρA describes the action transitions, and ρ� describes the time transitions (in the

form of single-step�-transitions).

Note that, in this fashion, both ρA and ρ� contain a description of the complete

behaviour of argument processes in the premises, in the sense that the action and time

238 Chapter 7. Heterogeneous Processes

transitions, respectively, of compound processes can depend on both the action and the

time transitions of their components. However, we immediately obtain:

Proposition 7.32

Given two natural transformations, one of type ϕ : Σ�Id�BA�� BAT and another one

of type ψ : Σ�Id�B��� B�T , we obtain a natural transformation (7.26).

Proof: With the given ϕ and ψ, define natural transformations

ρA
��
� Σ�Id� �BA�B���

Σ�Id
π1�
�� Σ�Id�BA�

ϕ
� BAT

ρ�
��
� Σ�Id� �BA�B���

Σ�Id
π2�
�� Σ�Id�B��

ψ
� B�T

where π1 and π2 denote the first and second projections, respectively. Since pairs of

natural transformations like ρA and ρ� are in one-to-one correspondence with natural

transformation (7.26), the claim follows. �

Proposition 7.32 corresponds to the case that action and time rules of a language

are independent: this becomes clear by the fact that ϕ and ψ only take into account the

same kind of behaviour of arguments that is defined for compound terms. However,

this need not be the case, the types of ρA and ρ� are general enough to accommo-

date languages where the two sets of rules are defined mutually depending on each

other. In fact, we can model the complete calculi (discrete-time) TiCCS [Wan90], and

TPL [HR95].

As a consequence of the general theory from [TP97], also using that coalgebraic

bisimulation for BA�B� is heterogeneous bisimulation (see Corollary 7.7), and that

BA�B� preserves weak pullbacks (see Corollary 7.9), we obtain:

Proposition 7.33

If the action and time rules of a language can be described by a natural transformation

as in (7.26), heterogeneous bisimulation is congruence for the language. �

Example 7.34

1. The action and time rules of the language ATP are covered by Proposition 7.32

(the action rules are GSOS, the time rules is dsl-format, cf. Chapter 6), hence

they induce a natural transformation of type (7.26). Consequently, heteroge-

neous bisimulation is a congruence for ATP.

7.3. Heterogeneous Abstract Rules 239

2. The same holds for the single-step version of TeCCS from Section 6.1.1: the

action rules are all GSOS rules, the time rules are in dsl-format. Hence, hetero-

geneous bisimulation is a congruence. Since, furthermore, by Proposition 6.20,

the single-step rules induce the same TTS on the terms of the language, and

coalgebraic bisimulation for BA �B� is—see Corollary 7.7—the same as het-

erogeneous bisimulation, we also obtain the corresponding result for the original

version of TeCCS over discrete time. �

Both the above examples are languages where the two sets of rules are independent.

We now consider the languages where this is no longer the case, viz., TPL [HR95], and

TiCCS [Wan90] over discrete time (for which it is again possible to define a single-step

version, very similar to the one for TeCCS). In both calculi, the only operator whose

definition actually requires using both action and time transitions in the premises is the

parallel operator; its (only) time rule looks as follows:

(7.27)
p� p� q� q� p
q �

τ
	

p
q� p�
q�

Note that for TiCCS, the condition on timed sorts also degenerates to the statement

that p and q, when running in parallel, cannot produce a
τ
	-transition; this is in line

with both languages adopting (Maximal Progress), expressing that
τ
	-transitions and

time transitions cannot occur together in the same state. Also note that the rule (7.27)

only tests for the absence of certain action transitions in the premises, i.e., it does not

even exploit the full potential given by the combined approach, viz., define the targets

of the conclusion by using targets of both action and time transitions.

By the definition of the operational semantics of parallel composition, there are

three cases in which a
τ
	-transition of the process p
q can arise: p or, symmetrically, q

can themselves already produce such a transition, or there exists an action a� �A��τ��
such that p can perform an

a
	-transition and q can perform a

ā
	-transition. Hence, for

a set X of (rule) variables, define the predicate ntauX , for β�β� � BAX , by

ntauX�β�β��� ��
��
� β�τ� � β��τ� � /0� ��a � �A$ Ā���τ��� β�a� � /0%β��ā� � /0

The predicate ntau�β�β�� consequently holds if and only if the parallel composition

of (processes with their action transitions specified by) β and β� cannot perform any
τ
	-transition.

240 Chapter 7. Heterogeneous Processes

Using ntauX , (7.27) translates into a map ��
��X : �X �BAX �B�X�2 	 B�TX as

follows

(7.28) ��x1�βA
1 �β

�

1 ���x2�βA
2 �β

�

2 �� ��

��
�

β�1 �β�2 if β�1 	� ��β�2 	� ��ntauX �βA
1 �βA

2 �

� otherwise

We then obtain:

Proposition 7.35 The map ��
��X is natural in X .

Proof: This follows since any renaming function f : X 	Y does not affect the ‘type’

of the arguments, i.e., if, say, β�1 �� 	 then also B� f �β�1 � �� 	; the analogous statement

applies in particular to the BA-components of the arguments and so, the value of ntau

is not affected by the renaming, and the appropriate naturality square commutes. �

Since the other operators can be treated pretty much like in the cases of ATP and

TeCCS, we obtain:

Corollary 7.36

Heterogeneous bisimulation is a congruence for TPL and (single-step) TiCCS. �

Remark 7.37

Despite these encouraging positive results for languages with non-independent rules,

the problem remains that, in our opinion, a different model already on the level of

transition systems should be used for such languages which adopt, e.g., (Maximal

Progress) or (Persistency), cf. Remark 7.6. The current solution, somewhat artificially,

forces the resulting HTS on programs to satisfy (Maximal Progress) by appropriately

defining the operational semantics, whereas the underlying HTSs, a priori, do not

have to satisfy this property (although not explicitly prohibiting such models either).

While we can reluctantly tolerate this discrepancy for discrete time (after all, it works,

because of only using one-step behaviours given by behaviour functors), we shall see

that, for a general time domain, we do not know how to define appropriate abstract

rules as to account for non-independent rules. �

7.3. Heterogeneous Abstract Rules 241

7.3.2 The General Case

After presenting abstract rules for HTSs over discrete time, we now consider the gen-

eral case of an arbitrary time domain. More abstractly, we consider the case of C being

an arbitrary category which admits all the comonads LanX�X�, and two comonads D

and D� in Cmd�C � such that their product comonad D�D� exists. Consequently, as

was shown in Section 7.2.2.2, D�D�–Coalg is isomorphic to �D�D��–Coalg, i.e., a

D�D�-Coalgebra is the same as a pair consisting of a Coalgebra for D and one for D�,

respectively, with the same carrier (cf. the definition of �D�D��–Coalg).

This might be considered very (in fact, too) general: actually, we are only interested

in the equivalence between HTSs and E�BAE�∞-Coalgebras, based on the characterisa-

tion of B∞
A �E as E�BAE�∞. However, arguably, nothing can be gained from using the

concrete description: what we were able to prove, we proved in all generality; where

we did not succeed, we do not see any benefit arising from considering the specific

case3. This should become more palpable when running into concrete difficulties in

the course of this (and later) section(s).

Following the general theory from [TP97], given a monad T (for syntax, usually

freely generated by a signature Σ), we want to derive a distributive law

(7.29) T �D�D��� �D�D��T

induced by (a) ‘simpler’ natural transformation(s). Instantiating the results from Sec-

tion 5.3 with the behaviour comonad D�D�, we can use abstract temporal rules for

D�D�, i.e., a natural transformation of type

Σ�D�D��� �D�D���Id�Σ�

which induces a distributive law like in (7.29) if it respects the structure of D�D�.

Alternatively, one could use CSOS rules for D�D�, i.e., a natural transformation

Σ�D�D��� �D�D��T

which, again, has to respect the structure of D�D�.

3Sure, there might ways to use properties of E and BA, exploiting the existence of maps of specific
types to close diagrams, but all to no avail: such maps might syntactically make diagrams commute but
semantically, they do not seem to make sense.

242 Chapter 7. Heterogeneous Processes

The drawback of this approach is that the comonad structure on D�D� is rather

complex and so, despite the deceptively easy categorical formulation, showing that

already existing languages induce such abstract rules, let alone deriving concrete syn-

tactic rule formats, becomes essentially infeasible. In particular, consider instantiating

the situation with D � E and D� � B∞
A : by Corollary 7.27, the product comonad B∞

A �E

is isomorphic to E�BAE�∞. This is not exactly easy to handle: an element of E�BAE�∞X

is an evolution over �BAE�∞X , which in turn corresponds to a (potentially infinite) se-

quence of combined transitions between states in X . Moreover, inspecting the proof of

Theorem 7.14 to see how the comonad structure on E�BAE�∞ is derived, the respective

δ-diagram for either type of abstract rules becomes very hard to check.

Therefore, rather than instantiating the abstract framework with the complex prod-

uct comonad, one would rather deal with abstract rules for D and for D� separately, in

accordance with languages for timed processes: there, one commonly has two sets of

rules, one for action transitions, another one for time transitions. Analogously to the

situation for discrete time, if these two sets of rules are independent, one can derive

rules for the product comonad as follows, for the sake of simplicity formulated in terms

of liftings:

Theorem 7.38

Given liftings T̃ and T̃ � of T to D–Coalg and D�–Coalg, respectively, one obtains a

lifting of T to �D�D��–Coalg �� �D�D��–Coalg.

Proof: Take an object �X �k : X 	 DX �k� : X 	 D�X� in �D�D��–Coalg. The liftings

T̃ and T̃ � provide a way to lift both Coalgebras separately, and so we obtain that

�TX � T̃ �k� : TX 	 DTX � T̃ ��k�� : TX 	 D�TX�

is, in fact, an object in �D�D��–Coalg: the liftings map Coalgebras to Coalgebras. The

operations of T also lift since they lift separately in each component, concluding the

proof. �

Since liftings of a monad T to a category of Coalgebras are equivalent to distribu-

tive laws of monads over comonads (see Section 2.4), we obtain:

7.3. Heterogeneous Abstract Rules 243

Corollary 7.39

Given distributive laws � : TD � DT and �� : TD� � D�T , we obtain a distributive law

of T over D�D� as in (7.29). �

Remark 7.40

In principle, it should be possible to derive this result directly by using left Kan exten-

sions and their relation to (maps of) comonads (as exemplified in Theorem 7.24), being

careful about the necessary conditions guaranteeing existence of the relevant Kan ex-

tensions. However, as the proof becomes almost completely trivial when using liftings,

we prefer the formulation in terms of liftings, making up in simplicity for what might

be lost in terms of elegance and abstraction. �

So, as in the case of discrete time, independent rules can simply be combined to

obtain well-behaved abstract rules; for this, note that the product comonad B∞
A �E, by

Corollary 7.29, preserves weak pullbacks:

Corollary 7.41

If the action rules of a language are given by abstract operational rules as in (5.4),

and the times rules independently by either abstract temporal rules or CSOS rules,

heterogeneous bisimulation is a congruence. �

These conditions hold for TeCCS (now considered over an arbitrary time domain),

so finally, we obtain the congruence result from [MT90], analogously for the more

general version ATPD of ATP presented in [NSY93], where D is a time domain ac-

cording to their definition, which then also makes it a time domain in our sense (see

Section 3.1.3):

Corollary 7.42

Heterogeneous bisimulation is a congruence for TeCCS and for ATPD. �

However, when trying to obtain abstract rules for non-independent sets of rules,

the following problem arises. Inspired by calculi for time processes, consider the case

that one set of rules is completely self-contained, while the other set depends in its

premises on the first one. More abstractly, we have a distributive law � : TD � DT for

244 Chapter 7. Heterogeneous Processes

the self-contained part of the rules, and we would like to use a natural transformation

of type

(7.30) �� : T �D�D��� D�T

defining the second kind of transitions specified by D�-Coalgebras, in the premises

depending on the complete behaviour as specified by the product comonad. If there

should be any hope of deriving a distributive law like (7.30) by combining � and � �,

we have to impose conditions on �� to make it ‘almost’ a distributive law, i.e., it should

respect the structures of the monad and the involved comonads. However, this turns

out to cause problems, although in a slightly unexpected way. For counit and comulti-

plication, use

T �D�D�� �� ��

Tε
��

D�T

ε�T
��

T T

T �D�D�� �� ��

Tδ
��

D�T

δ�T
��

T �D�D���D�D��
��
�D�D��

�� D�T �D�D��
D���

�� D�D�T

where ε and ε� denote the counit of D�D� and D�, respectively, analogously for the

comultiplications δ and δ�. These two conditions are the evident variations on the

standard conditions for distributive laws.

Additionally, �� also has to respect the monad structure of T . For the unit η, we

obtain

�D�D��

η�D�D��
��

π2 �� D�

D�η
��

T �D�D��
��

�� D�T

However, for the multiplication µ, we cannot close the resulting diagram

T T �D�D��

µ�D�D��
��

T�� �� TD�T
??? �� D�TT

D�µ
��

T �D�D��
��

�� D�T

because we do not have a map of type TD�T � D�T T at hand. So what is causing

problems is, surprisingly, that we do not have enough data to properly relate the non-

independent part of the rules with the monad structure: we would have expected any

problem to arise from the direction of the comonad operations involved.

7.3. Heterogeneous Abstract Rules 245

Remark 7.43

The above approach seems flawed since it does not use the fact that �BA�E�–Coalg,

or more abstractly �H�D�–Coalg, is defined as a pullback category, indicated in (7.1).

Using its universal property, and given a distributive law TH ∞ � H∞T , applying these

data to obtain a lifting of T to an endofunctor (and then a monad) on �H�D�–Coalg, we

should be able to derive the appropriate conditions such that we indeed get a distribu-

tive law of type (7.29). However, due to the lack of time, we cannot investigate this

approach more thoroughly, although preliminary considerations (with the assistance of

G. Plotkin and J. Power) show that this approach might lead to a, at least formal, solu-

tion (it is not at all clear whether the resulting conditions are ‘natural’ when instantiated

for timed processes). �

From a different perspective, starting from existing languages like TiCCS, one

would like to use a natural transformation of type

ρ : ΣE�Id�BA�� ET

for defining the time transitions: in order to be able to model the side condition for

parallel composition, similar to the one in (7.27) enforcing (Maximal Progress), we

need to know not only the targets of time transitions but also potential action transitions

after a time transition. However, this time, it is now impossible to close the diagram

expressing that ρ respects the comultiplication δ; intuitively, this is not surprising: after

applying Σδ�Id
BA� to the premises, we are stuck at ΣEE�Id�BA�, i.e., we cannot even

apply the rules once!

Regardless of that, suppose we were able to apply the rules, one is left with only

time transitions in ETX , for some set X , while a second application of the rules would

also require knowledge of the action behaviour of processes in X which simply is not

there.

Remark 7.44

It seems that something fundamental is missing in the present approaches. This might

either be to do with (not yet) exploiting the universal property of the pullback cate-

gory �H�D�–Coalg, or be rooted in the previously mentioned mismatch between the

level of models, where the relation between action and time transitions is completely

246 Chapter 7. Heterogeneous Processes

unspecified, and the level of languages, where the transitions suddenly should be no

longer independent. Similarly to Remark 7.6 for discrete time, it might be worthwhile

investigating whether we can, under the right circumstances, obtain a form of tensor

comonad B∞
A (E such that its Coalgebras can be regarded as a variant of HTSs where

the two kinds of transitions are suitably related. However, at this point, we have to

leave this for further research. A reasonable starting point might be to consider replac-

ing the product comonad by an arbitrary comonad C such that there is a comonad map

from C to D (the projection of the product case) and then proceed from there. �

Finally, the last possibility for defining abstract rules for HTSs is by using their

characterisation as the Ẽ-Coalgebras, where Ẽ is the lifting of E to BAE–coalg de-

fined by the distributive law (7.8). The problem there, however, is that Ẽ ‘lives’ on

BAE–coalg and so, in order to use it as a behaviour comonad, we also have to consider

syntax on BAE–coalg. For this, we would need a distributive law (of functors, so it is

simply a natural transformation)

� : Σ�BAE�� �BAE�Σ

which would allow to lift a standard signature on Set to BAE–coalg. We are at the

moment not sure how to define such a natural transformations, and also leave that for

further research. Once such a distributive law is obtained, we would get a functor Σ̃ on

BAE–coalg which (ideally) still freely generates a monad T̃ . Then this would enable us

to instantiate the results from Section 5.3, defining the operational semantics as natural

transformations

Σ̃Ẽ � Ẽ�Id� Σ̃� or Σ̃Ẽ � ẼT̃ �

each of which is then required to respect the structure of Ẽ in the appropriate way.

By Corollary 7.30, the Ẽ-Coalgebras are isomorphic to the �B∞
A �E�-Coalgebras,

so we would not really expect to obtain any new insights by this re-formulation as

regards the problem with incorporating non-independent rules either: even though an

Ẽ-Coalgebra consists not only of an E-Coalgebra but also of a suitably related BAE-

coalgebra (cf. Section 7.2.2.3), the additional information in the BAE-coalgebra is ‘in

the wrong order,’ we would really need an EBA-coalgebra, telling about actions follow-

7.4. Towards Heterogeneous Rule Formats 247

ing a time transition, not the other way round; unfortunately, as already remarked in

Section 7.2.2.3, we do not know how to obtain a lifting of E to EBA–coalg.

7.4 Towards Heterogeneous Rule Formats

To conclude this chapter, we are going to present some results and remarks concerning

syntactic ways of obtaining well-behaved abstract operational rules for HTSs. This is

very tentative work; presently, the only, and consequently rather trivial, results pertain

to the case that action and time rules are independent. Even so, these results at least

account for all the previously described congruence results, exceptions being the ones

for TPL and discrete TiCCS, for which we can at least present a conjecture.

7.4.1 Discrete Time

We can now combine previous results from this thesis and elsewhere, yielding an ef-

fective characterisation of a large class of languages for timed processes with inde-

pendent rules over discrete time, together with some preliminary thoughts concerning

extensions to the non-independent case. For a fixed countable enumerated set V of

variables (in the sense of Section 6.1), the main result is as follows:

Theorem 7.45

Languages whose action rules are defined by GSOS rules, and whose time rules fit the

dsl-format over V , satisfy the property that heterogeneous bisimulation is a congru-

ence.

Proof: From Theorem 5.1, we obtain that the GSOS rules induce (are, in fact, equiv-

alent to) a natural transformation

Σ�Id�BA�� BAT

Furthermore, in Theorem 6.6, we showed that sets of rules in dsl-format are in one-to-

one correspondence with natural transformations

Σ�Id�B��� B�T

248 Chapter 7. Heterogeneous Processes

Finally, by Proposition 7.32, we thus obtain a natural transformation

Σ�Id� �BA�B���� �BA�B��T

and consequently, from Proposition 7.33, we obtain that heterogeneous bisimulation is

a congruence for the languages. �

This result also gives a proper proof of the congruence results for the languages

ATP [NS94] and TeCCS [MT90], which were previously merely stated.

The analogous results for TPL [HR95] and TiCCS [Wan90] do not follow since

neither of them has independent rules. Regarding the kind of dependencies we wish to

allow, we argue that, to our knowledge, no language proposed in the literature features

an operator whose action transitions depends on time transitions in any way, while

the converse case at least exists, e.g., in the mentioned languages which adopt (Max-

imal Progress). Therefore, we propose to focus on such languages where the action

transitions are independent of the time transitions, but not necessarily vice versa.

As an example, consider TiCCS and its parallel operator4. In Proposition 7.35,

we showed that it is possible to use time rules which only allow time transitions after

a successful test for the absence of certain initial actions of its component processes.

Inspection of the proof yields that there is nothing special about the fact only τ is tested

for being absent, we could equally have used an arbitrary other action in the set A of

labels, and still have obtained a natural transformation. The reason for this genericity

is the fact that the set of initial actions is not changed by applying renamings, because

of the action of P����
A on maps: the A-component is untouched.

Conceptually, since the action successors are not used at all, this corresponds to

manipulating the BA-component of the premises by applying the unique map X 	 1

for each set X , i.e., define the semantics as a map

Σ�X � �BAX �B�X��	 Σ�X � �BA1�B�X���� Σ�X � �P �A��B�X��	 B�TX

4Which is actually the only ‘real’ operator where both action and time transitions are present in the
time rules: the treatment of τ-prefixes as different from the other action prefixes does not really count
since there are no premises.

7.4. Towards Heterogeneous Rule Formats 249

the isomorphism holding because P��1� � 2, and 2A �� P �A�. Since 1 is terminal, this

results in a natural transformation if and only if the last part of the map

Σ�X � �P �A��B�X��	 B�TX

is natural: that is exactly what is used in the rule for parallel composition. This leads

us to the following conjecture:

Conjecture 7.46

If the action rules of a language are independent of the time rules, and the time rules

are in dsl-format but featuring side conditions with predicates on initial actions, then

heterogeneous bisimulation is a congruence for the language.

Of course, due to the nature of a conjecture, this is quite vague, in particular it would

be interesting to formally define what we mean by ‘predicate over initial actions,’ but

the previous remarks should give at least some intuition as to what we have in mind.

Collapsing the successor states to the one element of 1 also clearly suggests that

rules like the above, which only test for action transitions without using the potential

successor states, are only sound but not complete: there might be rules which actually

use the successors of action transitions, while still inducing a well-defined map which

is also natural.

Certainly not arbitrary combinations of action and time transitions in the premises

can be allowed: we have to guarantee that the transition relation � is deterministic.

Ignoring the formalities involved with the dsl-format, take the following example of a

‘bad’ rule for an operator �α�� for α � A which, intuitively, allows to substitute a time

step for any α-transition:
p

α
	 p��

�α��p� p��

This operator does not induce a natural transformation of the appropriate kind because

it is not even well-defined: the rule potentially introduces non-determinism for �, as

there might be several distinct α-successors of p. Using a predicate detα�p�, which

holds if and only if there is precisely one α-successor of p, as a side condition to the

above rule, then the rule would indeed induce a well-defined map: the predicate can be

defined using only the set BAX . However, then map would then no longer be natural: if

250 Chapter 7. Heterogeneous Processes

there are two distinct α-successors in BAX the rule would not be applicable, while after

applying a renaming which identifies the two, it would. This seems to substantiate the

claim that tests for action transitions are only allowed if the potential successor states

are not used in the conclusion.

Regardless of concrete languages, it is still an interesting open question to obtain a

syntactic completeness result, i.e., to give a syntactic characterisation of natural trans-

formations of type

Σ�Id� �BA�B���� �BA�B��T

which would subsume all the previously mentioned rule formats.

7.4.2 The General Case

Since we have not been able to find abstract rules for non-independent sets of rules, we

consequently cannot even begin to think about syntactic representation of such natural

transformations. However, as shown in Corollary 7.41, independent sets of rules can

be treated. Building on the results of [TP97] and Chapter 6, we obtain the following:

Theorem 7.47

Given a language, if its action rules fit within the GSOS format, and its time rules are

given by either admissible operators as in Section 6.2.1 or admissible, co-pointed, and

continuous sets of meta rules as in Section 6.2.2, then heterogeneous bisimulation is a

congruence for the language.

Proof: This follows from Corollary 7.41, together with [TP97, Prop. 5.1] (for the

action rules), Theorem 6.19 (for schematic time rules), and Corollary 6.39 (for the

mentioned sets of meta rules). �

We can consequently obtain a new proof of the following results:

Corollary 7.48

Heterogeneous bisimulation is a congruence for TeCCS and ATPD. �

Chapter 8

Conclusion

In this chapter, we wrap up the thesis with some concluding remarks. To this end, we

present a summary of our key developments and results, followed by some directions

for further research.

8.1 Summary of Results

This thesis presented a formal, abstract model of timed processes. Modelling time itself

by time domains (Definition 3.1), a special kind of monoid, pure timed processes (i.e.,

only considering the timing but not the computational behaviour) were described by

means of TTSs (Definition 3.23), special labelled transition systems with restrictions

on the transition relation which account for some of the intuitive properties of the

passage of time; time bisimulation (Definition 3.25) was used as a standard notion of

equivalences for TTSs.

The adequacy and importance of the monoid structure on the time domain was then

illustrated by the additional, more conventionally ‘mathematical’ (or ‘algebraic’) char-

acterisation of TTSs as partial monoid actions of the time domain (Theorem 3.33), and

further underlined by the new notion of delay operator (Definition 3.38): intuitively,

it models how actions of processes can be postponed and formally, it corresponds to

considering total monoid actions of the time domain; this also (to some extent) for-

malised the informal duality between consuming time in the form of time transitions,

251

252 Chapter 8. Conclusion

and ‘stacking up’ delaying potential. Moreover, these two notions of monoid actions

were combined in the novel notion of biaction (Definition 3.40) which, despite em-

ploying only one axiom relating total and partial monoid action, still captured the es-

sential part of the interplay between the two concepts of delaying and time passing

(Proposition 3.41).

Following these concrete descriptions, also categorical characterisations of all the

relevant abstract notions were presented. For total monoid actions, i.e., delay opera-

tors, well-known characterisations as both Algebras and Coalgebras for a monad and

a comonad, respectively, were recalled (Section 4.1). Taking inspiration from the lat-

ter, a new comonad E of evolutions was introduced (Definitions 4.4 and 4.10), and

some of its properties were discussed, in particular that it preserves (weak) pullbacks

(Proposition 4.14 and Corollary 4.15) and that is has a rank (Proposition 4.16). As

the most important application of this evolution comonad, it was shown that the E-

Coalgebras are the same as partial monoid actions (Theorem 4.17), which have already

been shown equivalent to TTSs, resulting in a Coalgebraic description of TTSs. Fur-

thermore, coalgebraic E-bisimulation was shown to coincide with time bisimulation

(Proposition 4.21), yielding a complete match between the transition system-based

view and the categorical account.

In the case of discrete time (and more generally for arbitrary free monoids), it was

then shown that E � E� is actually cofreely generated (Theorem 4.23) which means

that, rather than using E� -Coalgebras, one can instead use the simpler, completely un-

constrained coalgebras for the functor B� . Finally, a distributive law of the monad for

total actions over the evolution comonad was introduced and shown that its bialgebras

were biactions of the time domain under consideration (Theorem 4.35); for linear time

domains, it was furthermore shown that also the converse holds, i.e., that any biaction

can be described as a bialgebra (Corollary 4.43).

With these results, the scene was set for obtaining an abstract theory of well-

behaved operational rules for behaviour comonads by suitably adapting, and in the

process extending, the framework of bialgebraic semantics developed in [TP97]; the

extension allows the extra degree of freedom that behaviours no longer have to be func-

tors (cofreely generating comonads) but that arbitrary comonads and their Coalgebras

8.1. Summary of Results 253

can be used for describing the appropriate kind of operational models (i.e., transition

systems). Since, in particular, TTSs were Coalgebras for the evolution comonad, this

approach applied to timed processes.

For discrete time, where the evolution comonad was cofreely generated, the results

from [TP97] could be applied directly, cf. Section 5.2. In the general case, natural

transformations of slightly more general kinds were used which, additionally, had to

respect the structure of the behaviour comonad under consideration, cf. Definitions 5.8

and 5.16. In either case, both abstract and concrete congruence results were obtained,

covering (the time rules of) all relevant existing languages (Corollaries 5.13, 5.19

and 5.20).

Careful analysis of the constraints expressed in abstract operational rules for the

evolution comonad then allowed to derive several syntactic rule formats for timed pro-

cesses. For discrete time, the dsl-format was introduced (Theorem 6.6) which com-

pletely captured the relevant abstract rules. It was shown to include all operators from

the literature we are aware of. Furthermore, it was sketched how to extend the dsl-

format to deal with multiple labels, thus allowing to treat local qualitative time, as

used in languages like PMC [AM94].

For a general time domain, a ‘format’ based on schematic rules was presented,

which was heavily constrained since it only allowed to draw the operational semantics

of concrete operators from a small and fixed number of admissible operators (Defini-

tion 6.15); despite their lack of generality, the admissible operators still covered most

important operators from the literature we know of, even excluding a non-desirable one

that had previously been proposed. Even so, and not surprisingly, such rules were only

sound in that, although they allowed to deduce a congruence result (Theorem 6.19),

the converse did not hold: (6.7) presented a simple example of well-behaved rules not

expressible by admissible operators.

To obtain a format which satisfies also this completeness property, a convenient

way of specifying infinite sets of operational rules with an infinite number of premises,

somewhat in between syntax and (abstract categorical) operational semantics, was in-

troduced in the concept of meta rules (Definition 6.26). Using special, in general

infinite, sets of such meta rules, a complete characterisation of very expressive abstract

254 Chapter 8. Conclusion

rules for timed processes was obtained (Corollary 6.39). However, due to the two lev-

els of infinity involved (infinite sets of infinitary rules), this was a rather non-effective

result.

Up to this point, all the results and developments so far were solely concerned

with time transitions only, i.e., action transitions modelling (instantaneous) computa-

tions were not considered at all. To remedy this, Chapter 7 therefore presented the

first steps towards a theory for heterogeneous timed processes, based on HTSs (Defi-

nition 7.1) which disjointly combine the two kinds of transitions. This was mirrored

in the categorical characterisation as ‘mixed’ coalgebra/Coalgebra-pairs on the same

carrier, obtained by considering the pullback category in (7.1). For discrete time, such

mixed pairs could immediately be further simplified to pairs of coalgebras, since the

evolution comonad was cofreely generated and hence, the product functor could be

used as the appropriate behaviour functor (Proposition 7.5).

In the general case, no such easy simplification was possible. However, dualising

results from [HPP], a Coalgebraic characterisation of HTSs was obtained as Coalge-

bras for a composite comonad (Corollary 7.16). Moreover, using general results on

(left) Kan extensions from [Dub74], this composite comonad in fact turned out to be

the product comonad (which is vastly different from the product functor!) of B∞
A , the

cofree comonad on the behaviour BA for action transitions, and the evolution comonad

E (Corollary 7.27), yielding a very pleasing conceptual match between the two cases

of discrete and general time domains.

For discrete time, the above results already yielded an abstract theory of well-

behaved heterogeneous operational rules, by using pairs of natural transformations;

these admit all possible kinds of dependencies between the two kinds of transitions in

operational rules. Considering the simple case of independent (abstract) rules (Propo-

sition 7.32), the previously obtained results on syntactic rule formats simply carried

over, leading to the very beginning of a theory of rule formats for heterogeneous timed

processes (Theorem 7.45). Beyond independent rules, it was currently only possible to

present (with some justification for its validity) a conjecture allowing the time transi-

tions to depend on the action transitions (which, despite being rather restrictive, is the

common practise in existing languages).

8.2. Future Work 255

As for the general case of an arbitrary time domain, the situation is even more com-

plex. However, independent rules were shown to also work in this case (Corollary 7.41)

and thus, it was possible to conceptually retrace the congruence results obtained for ex-

isting languages like TeCCS [MT90] (Theorem 7.47).

8.2 Future Work

As always in research, there are many problems left open. We only highlight some of

the more interesting and complex ones.

A first question is how to obtain a categorical characterisation of all the relevant

examples of time domains. Linear and commutative domains would suggest to use

such monoids which are closed when (pre-)ordered by the precedence relation. How-

ever, free monoids are not closed (though recall the connection between linearity and

truncated subtraction being a right adjoint, cf. Proposition 3.22), and since we con-

sider them to be important examples (accounting for qualitative time), closure is not

the correct abstract characterisation.

Furthermore, antichain monotonicity seems to play an important rôle both in ex-

cluding unwanted models, in particular all the problems arising from products of time

domains, and in making some technical results go through: it would therefore be inter-

esting to see how it translates into the categorical view. Maybe this would also clear up

why it pops up at two seemingly unrelated points of our development (the distributive

law for biactions, and the syntactic approximation of abstract temporal rules).

In a different direction, it would be beneficial to also find an algebraic or monadic

(in some sense) characterisation of partial monoid actions since in this way, it might be

possible to obtain a more complete categorical description of biactions which, unlike

the current one, does not depend on antichain monotonicity.

In addition to that, there are many obvious questions concerned with the syntactic

rule formats for a general time domain. If at all, how far can the schematic rules be

extended to obtain become more expressive, in particular, is there some leeway to be

gained by trying to use the more parametric approach of Section 6.2.1.2? Is there a

more finitary way of characterising abstract rules? When using the current model of

256 Chapter 8. Conclusion

TTSs, we are rather pessimistic in this respect: there is at least one level of infinity

automatically ‘built-in’ because TTSs are usually infinitely branching. Consequently,

one has to allow infinitely many tests in the premises of rules (this only applies to a

complete characterisation!). Even so, it would already constitute a drastic improvement

to only require finite sets of (infinitary) rules.

On the other hand, another very common model for timed processes are timed au-

tomata [AD94], and a specific variant called timed safety automata [HNSY92]: both

are extensions of traditional finite state machines1 with real-valued clocks in order to

include timing information. Based on these timed automata, there are furthermore

several timed process algebras, e.g., [WPD94, DB96, LW00b, LW00a]. It might be

beneficial to try and fit this model and these languages into the bialgebraic framework;

preliminary results, employing a kind of (timed) powerdomain, suggest that this is

indeed possible and could lead to very different syntactic characterisations (of a poten-

tially more finitary nature).

Similarly, it might also be worthwhile investigating Fiore’s approach to hybrid sys-

tems introduced in [Fio00]: perhaps this approach could be adjusted so as to fit within

the bialgebraic approach, while removing the need to deal with infinite structures. In

this way, ‘proper’ formats might be obtained.

Finally, there are many open questions to do with heterogeneous timed processes,

most importantly how to properly deal with non-independent (abstract and concrete)

rules. In principle, particularly in the simpler case of discrete time, it should be possible

to deal with all kinds of dependencies, resulting in completely new opportunities for

specifying the operational semantics of complex operators (in comparison to existing

languages which only use minimal dependencies of time transitions on the presence or

absence of specific action transitions). A related issue is the sketched idea of using a

tensor product, rather than a cartesian product, as the appropriate way of combining

the respective behaviours for action and time transitions.

1This continues a long-standing dispute in the verification and distributed systems community
whether process-algebraic or automata-theoretic techniques should be used.

Appendix A

Total Monoid Actions Revisited

In this appendix, we present some more material on categorical formulations of total

monoid actions. The reason we did not include it in Chapter 4 is that it is only recalling

well-known results which are not really the main focus of the work described in the

thesis. However, we consider the material to be sufficiently interesting to justify its

inclusion in an appendix.

A.1 Total Monoid Actions as Presheaves

Apart from the characterisations as Algebras and Coalgebras, there is another well-

known presentation of monoid actions, contained, e.g., in [MM92] which, as we shall

see, actually subsumes the two mentioned descriptions. For this, recall that any monoid

M � �M���0� can regarded as a category M with precisely one object, commonly

written as 	, and the elements m � M correspond to morphisms m : 		 	 in M . Then

the addition � of M becomes composition of morphisms in M , e.g., for m�n � M,

m� n becomes the composite n Æm; note how this captures the intuitive functionality

of addition: we start with m and then add n to it; correspondingly, we apply (the

function) n after (the function) m. The neutral element 0, in particular, corresponds to

the identity function on 	.

The (contravariant) presheaves over a category C are given as the functor category

SetC
op

, i.e., the category whose objects are all functors C op 	 Set, and whose mor-

257

258 Appendix A. Total Monoid Actions Revisited

phisms are all natural transformations between such functors. Categories of presheaves

have very rich structure, in particular, they are elementary topoi, i.e., categories which,

intuitively, are models of set theory (for the precise definition, and a lot of applica-

tions, see [MM92]). When instantiating the presheaf construction with C � M , a very

simple description of the resulting category can be obtained.

Any functor F : M op 	 Set assigns: to the only object 	 of M a set X
��
� F	; to

each morphism m : 		 	 of M , corresponding to m � M, a function Fm : F		 F	,

i.e., a function Fm : X 	 X . Intuitively, Fm : X 	 X describes how m acts on elements

of X ; we will write its values Fm�x� as m � x. Furthermore, since F is a contravariant

functor, the following laws have to hold:

F�id�� � idF� � idX

F�mÆn� � �Fn�Æ �Fm�

Rewriting them in the action-notation from above, and keeping in mind that id� and

mÆn, respectively, represent 0 and n�m, we obtain, for all x � X

0 � x � x

�n�m� � x � n � �m � x�

i.e., precisely the axioms (3.25) and (3.26) of (left) total M-actions.

Moreover, natural transformations σ between functors F�F � : M op 	 Set exactly

correspond to homomorphisms of M-actions: since M op, like M , has only one object,

σ consists of precisely one component σ� : F		 F �	, i.e., between the carriers of

the two actions, and it is easily verified that naturality precisely corresponds to the

homomorphism property for σ�. Therefore:

Proposition A.1

Let M be a monoid, and M its corresponding one-object category. Then the presheaf

category SetM
op

is equivalent to the category M–Act of total M-actions. �

In particular, this shows that M–Act is an elementary topos [MM92]. As for gener-

alising this characterisation to partial actions, the same problems as in the algebraic ap-

proach occur. The obvious thing to do would be to switch to functors F : M op 	 pSet,

A.2. Varying the Monoid of Time 259

i.e., ‘presheaves’ over pSet. Again, natural transformations between such ‘partial

presheaves’ would only describe partial homomorphisms: σ�, as in the above consid-

erations, would ‘live’ in the base category pSet. Finally, the remark about the lacking

match between characterisation and established framework, as in the case of algebras

for a monad, still applies. Yet, as we shall see next, the above characterisation of total

actions as presheaves provides an alternative way to find the coalgebraic characterisa-

tion of total actions as presented in Section 4.1.2.

A.2 Varying the Monoid of Time

In this section, we will show how monoid homomorphisms induce especially well-

behaved transformations between the actions of the monoids involved. We will then

apply this general result in two very special cases in order to, in the next section, finally

obtain our desired coalgebraic characterisation of total monoid actions.

Given two monoids M and N and a monoid homomorphism f : N 	 M, when re-

garding the monoids as one-object categories M and N , f precisely corresponds to

a functor N 	 M . By pre-composition, f induces a functor f � : SetM
op
	 SetN

op
;

note the change in direction. Using the equivalence of categories between SetM
op

and

M–Act, this means that f � is a ‘transformation’ of M-actions into N-actions. Con-

cretely, given an M-action M�X 	 X , one can define an N-action on X by using f

to ‘pull back’ (not in the categorical sense!) the N-action to the given M-action, viz.,

n � x
��
� � f n� � x.

Recall now that all presheaf categories are topoi for which there is the following no-

tion of maps between them. Given two topoi E and F , a geometric morphism [MM92]

f : F 	 E consists a pair of adjoint functors f � � f�

E
f �

..
� F
f�

/1

such that f � additionally is left-exact, i.e. preserves finite limits. The functors f �

and f� are called the inverse image part, and the direct image part, respectively, of

the geometric morphism f ; note that the direction of the geometric morphism is the

260 Appendix A. Total Monoid Actions Revisited

same as that of the direct image part f�. Further note, since f � has a right adjoint, it

automatically preserves all colimits (see e.g., [Mac97]).

In the special situation that f � also has a left adjoint f! : F 	 E , i.e.,

E
f � 		F

f!
��

f�02 such that f! � f � � f� �

it follows that f � automatically preserves both all limits and all colimits. So in partic-

ular, it is left-exact, hence f � � f� is a geometric morphism f : F 	 E which is then

called an essential geometric morphism. Coming back to the case of monoid actions,

the following result holds:

Proposition A.2

Let M�N be monoids with corresponding one-object categories M �N ; let f : N 	 M

be a monoid homomorphism. Then the induced presheaf functor f � : SetM
op
	 SetN

op

is the inverse-image part of an essential geometric morphism f : SetN op
	 SetM

op
, i.e.,

f : N–Act 	 M–Act.

Proof: The proposition is a special instance of [MM92, §VII.2, Theorem 2]. �

We will now give concrete descriptions of the adjoint functors implicit in Propo-

sition A.2 in two particularly simple, yet interesting and well-known, cases, the first

one of which shall be shown to provide the basis of the coalgebraic description of total

monoid actions described in Chapter 4.

Example A.3

1. Recall that the trivial monoid 1 � �0� is the initial object in the category Mon

of monoids and monoid homomorphisms. Therefore, taking N to be 1 and f

to be the (by initiality unique) homomorphism i : 1 	 M, which maps 0 � 1

to 0 � M, and observing that 1-Act is equivalent to Set, we obtain a functor

i� : M–Act 	 Set. Calculating i�, starting from an M-action M�X 	 X , yields

a 1-action, i.e., a set, given by

(A.1) X �� 1�X 	 X � �0�x� �	 0 � x � x

In other words, the 1-action on X is simply given by the identity function, and

so the result is simply the carrier X of the given M-action: i� simply forgets the

A.2. Varying the Monoid of Time 261

fact that X carries an M-action, hence it is commonly referred to as the forgetful

functor.

By Proposition A.2, we know that this forgetful functor i� has both a left and a

right adjoint, respectively denoted by i! and i�, both of which take a set X and

construct an M-action M�FX 	 FX , where FX denotes the respective result-

ing carrier. Here are elementary descriptions:

 For the left adjoint, we get that i!X � M�X , the M-action given by

M� �M�X�
µX
�	 M�X

The map µX is the multiplication of the monad T from Proposition 4.1,

therefore, this means m� � �m�x�
��
� �m��m�x�. Effectively, this action on

M�X is simply an extension of the monoid addition, being an M-action on

M itself, the X -component is completely ignored. Since it is the left adjoint

to the forgetful functor, and because it does not impose any constraints on

X , this is called the free M-action on X .

 For the right adjoint, one obtains that i�X � XM, the set of all functions

from M to X . The M-action on XM, for m � M and g : M 	 X , is given by

m �g � g� �m�
��
� λn�g�n�m�

Since this construction yields a right adjoint to the forgetful functor, this

action is called the cofree M-action on X .

Using these definitions, it is easy to check well-definedness, and that the adjunc-

tions hold as stated, i.e., i! � i� � i�.

2. Dually, one can apply Proposition A.2 by exploiting that 1 is also the terminal

object in Mon (hence it is a null object, see [Mac97]), and one obtains a functor

d� : Set 	 M–Act. It induces the discrete action [Law89] on a set: the action is

simply given by projection, viz., m �x � x. Of its two adjoints, the right is some-

times called the points [Law89, Law94], and the left the components [Law86],

respectively. In the case of group actions, the points of the group action are more

262 Appendix A. Total Monoid Actions Revisited

commonly known as the fixed points, or the kernel, of the action, while the com-

ponents are the orbits. In particular, a group action is called transitive if there is

only one orbit, i.e., if the set of components is a singleton set; see [Lan93] for

more details and applications. �

A.3 Coalgebras from Geometric Morphisms

In Example A.3, we have seen that the forgetful functor i� : M–Act 	 Set has both a

left and a right adjoint, i.e., we are in the following situation, i� being the unlabelled

middle arrow:

M–Act

� �
��

Set

i�

13

i!

24

For general reasons (see [Mac97, §VI.1]), this means that we get both a monad T and a

comonad D on Set, viz., by composing the adjoints to obtain T
��
� i� Æ i! and D

��
� i� Æ i�.

When we concretely calculate T and D, we obtain that TX � M�X , i.e., precisely

the monad from Proposition 4.1, and DX � X M, i.e., the one described in Proposi-

tion 4.3. Consequently, using the same results from [MM92] as in Section 4.1.2, the

same coalgebraic characterisation of total monoid actions as before is obtained.

Bibliography

[Abr91] S. Abramsky. A domain equation for bisimulation. Information and Com-

putation, 92:161–218, 191.

[Acz88] P. Aczel. Non-Well-Founded Sets. Center for the Study of Language and

Information, Stanford University, 1988. CSLI Lecture Notes, Volume 14.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183–235, 25 April 1994. Fundamental Study.

[AFV01] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics.

In Bergstra et al. [BPS01], chapter 3, pages 197–292.

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. Gabbay,

and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

volume 3, pages 1–168. Clarendon Press, 1994.

[AJM00] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full Abstraction for PCF.

Information and Computation, 163:409–470, 2000.

[AM89] P. Aczel and P. F. Mendler. A final coalgebra theorem. In D. H. Pitt, D. E.

Rydeheard, P. Dybjer, A. M. Pitts, and A. Poigné, editors, Proceedings of

the Conference on Category Theory and Computer Science, volume 389

of LNCS, pages 357–365, Berlin, September 1989. Springer-Verlag.

[AM94] H.R. Andersen and M. Mendler. An asynchronous process algebra with

multiple clocks. In D. Sannella, editor, Proceedings of the 5th European

Symposium on Programming (ESOP ’94), volume 788 of Lecture Notes

263

264 Bibliography

in Computer Science, pages 58–73, Edinburgh, UK, April 1994. Springer-

Verlag.

[AO97] K. R. Apt and E.-R. Olderog. Verification of sequential and concurrent

programs. Graduate Texts in Computer Science. Springer-Verlag, 2nd

edition, 1997.

[AR94] J. Adamek and J. Rosicky. Locally Presentable and Accessible Cate-

gories, volume 189 of London Mathematical Society Lecture Notes Series.

Camebridge University Press, Cambridge, 1994.

[Bar84] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic

and the Foundations of Mathematics. North-Holland, Amsterdam, 1984.

[Bar93] M. Barr. Terminal coalgebras in well-founded set theory. Theoretical

Computer Science, 144(2):299–315, 1993.

[Bar02] F. Bartels. GSOS for probabilistic transition systems (extended abstract).

In Moss [Mos02].

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal As-

pects of Computing, 3(2):142–188, 1991.

[Bec69] J. Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and

Categorical Homology Theory, volume 80 of Lecture Notes in Mathemat-

ics, pages 119–140. Springer-Verlag, 1969.

[BG92a] G. Berry and G. Gonthier. The ESTEREL synchronous programming

language: design, semantics, implementation. Science of Computer Pro-

gramming, 19:87–152, 1992.

[BG92b] S. Brookes and S. Geva. Computational comonads and intensional se-

mantics. In M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors,

Applications of Categories in Computer Science: Proceedings of the Lon-

don Mathematical Society Symposium, Durham, UK, 1991, volume 177

of London Mathematical Society Lecture Notes Series, Cambridge, 1992.

Camebridge University Press.

Bibliography 265

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communi-

cating sequential processes. Journal of the Association for Computing

Machinery, 31(3):560–599, July 1984.

[BIM95] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Jour-

nal of the ACM, 42(1):232–268, January 1995.

[BJ89] G. S. Boolos and R. C. Jeffrey. Computability and logic. Camebridge

University Press, third edition, 1989.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communi-

cation. Information and Computation, 60:109–137, 1984.

[BK90] J.C.M. Baeten and J.W. Klop, editors. CONCUR ’90 (Concurrency The-

ory), volume 458 of Lecture Notes in Computer Science, Amsterdam, The

Netherlands, August 1990. Springer-Verlag.

[BM01] J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: real

time and discrete time. In Bergstra et al. [BPS01], chapter 10.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Camebridge

University Press, New York, 1998.

[BPS01] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process

Algebra. North-Holland, 2001.

[BS81] S. Burris and H. P. Sankappanavar. A Course in Uni-

versal Algebra, volume 78 of Graduate Texts in Math-

ematics. Springer-Verlag, 1981. Available online at

http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.

[BW85] M. Barr and C. F. Wells. Toposes, Triples, and Theories. Springer-Verlag,

Berlin, 1985.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cam-

bridge Tracts in Theoretical Computer Science. Cambridge University

Press, Cambridge, UK, 1990.

266 Bibliography

[CE82] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons

from branching time temporal logic. Lecture Notes in Computer Science,

131:52–71, 1982.

[CGRH98] A. Corradini, M. Groß-Rhode, and R. Heckel. Structured Transition Sys-

tems as Lax Coalgebras. In B. Jacobs, L. Moss, H. Reichel, and J. Rutten,

editors, Coalgebraic Methods in Computer Science (CMCS’1999), vol-

ume 11 of Electronic Notes in Theoretical Computer Science, 1998.

[Che93] L. Chen. Timed Processes: Models, Axioms and Decidability. PhD thesis,

Department of Computer Science, Edinburgh University, 1993.

[CHM99] A. Corradini, R. Heckel, and U. Montanari. From SOS Specifications

to Structured Coalgebras: How to Make Bisimulation a Congruence. In

Jacobs and Rutten [JR99].

[CHM02] A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and be-

yond: a coalgebraic view of open systems. Theoretical Computer Sci-

ence, 280(1–2):163–192, May 2002. Special issue with selected papers

from [JR99]. This is an extended version of [CHM99].

[CLM97] R. Cleaveland, G. Lüttgen, and M. Mendler. An algebraic theory of multi-

ple clocks. In A. Mazurkiewicz and J. Winkowski, editors, CONCUR ’97

(Concurrency Theory), volume 1243 of Lecture Notes in Computer Sci-

ence, pages 166–180, Warsaw, Poland, July 1997. Springer-Verlag.

[DB96] P.R. D’Argenio and E. Brinksma. A calculus for timed automata (Ex-

tended abstract). In B. Jonsson and J. Parrow, editors, Proceedings of the

4th International School and Symposium on Formal Techniques in Real

Time and Fault Tolerant Systems, Uppsala, Sweden, volume 1135 of Lec-

ture Notes in Computer Science, pages 110–129. Springer-Verlag, 1996.

[DH83] R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes.

Theoretical Computer Science, 34:83–133, 1983.

Bibliography 267

[DP01] N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chap-

ter 9, pages 535–610. Elsevier Science, 2001.

[dS85] R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. The-

oretical Computer Science, 37(3):245–267, December 1985.

[DS95] J. Davies and S. Schneider. A brief history of Timed CSP. Theoretical

Computer Science, 138(2):243–271, 20 February 1995.

[Dub74] E. J. Dubuc. Kan Extensions in Enriched Category Theory, volume 145

of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1974.

[dV98] E.P. de Vink. On a functor for probabilistic bisimulation and preservation

of weak pullbacks. Technical Report IR–444, Vrije Universiteit, 1998.

Paper presented at the ETAPS’98 Workshop on Coalgebraic Methods in

Computer Science.

[dVR99] E. de Vink and J. Rutten. Bisimulation for probabilistic transition systems:

A coalgebraic approach. Theoretical Computer Science, 221, 1999.

[EFT96] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathema-

tische Logik. Spektrum, Akademischer Verlag, Heidelberg, 1996. Vierte

Auflage.

[EHMR66] S. Eilenberg, D. K. Harrison, S. MacLane, and H. Röhrl, editors. Proceed-

ings of the Conference on Categorical Algebra, La Jolla, 1965. Springer-

Verlag, 1966.

[EK66] S. Eilenberg and G. M. Kelly. Closed categories. In Eilenberg et al.

[EHMR66], pages 421–562.

[Exe98] R. Exel. Partial actions of groups and actions of inverse semigroups. Proc.

AMS, 126(12), December 1998.

[Fio96] M. Fiore. A coinduction principle for recursive data types based on bisim-

ulation. Information and Computation, 127(2):186–198, 1996.

268 Bibliography

[Fio00] M. Fiore. Fibred models of processes: Discrete, continuous, and hybrid

systems. In IFIP International Conference on Theoretical Computer Sci-

ence, volume 1872 of Lecture Notes in Computer Science, pages 457–473,

2000.

[FJM�96] M. P. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini, and

I. Stark. Domains and denotational semantics: History, accomplishments

and open problems. Bulletin of the EATCS, 59:227–256, June 1996.

Also published as Technical Report CSR-96-2, University of Birmingham

School of Computer Science.

[Fok94] W. J. Fokkink. The tyft/tyxt format reduces to tree rules. Lecture Notes in

Computer Science, 789:440–453, 1994.

[FPT99] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In

Fourteenth Annual Symposium on Logic in Computer Science (LICS ’99),

pages 193–202, Trento, Italy, 29 June–2 July 1999. IEEE Computer Soci-

ety Press.

[FT01] M. Fiore and D. Turi. Semantics of name and value passing. In Sixteenth

Annual Symposium on Logic in Computer Science (LICS ’01), pages 93–

104, Boston, MA, USA, June 2001. IEEE Computer Society Press.

[FvG96] W. Fokkink and R. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.

Information and Computation, 126(1):1–10, 10 April 1996.

[Gla01] R.J. van Glabbeek. The linear time – branching time spectrum I; the se-

mantics of concrete, sequential processes. In Bergstra et al. [BPS01],

chapter 1, pages 3–99.

[GP02] M. Gabbay and A. Pitts. A New Approach to Abstract Syntax with Vari-

able Binding. Formal Aspects of Computing, 13(3–5):341–363, 2002.

[Gro90] J. F. Groote. Specification and verification of real time systems in ACP. In

Protocol Specification, Testing and Verification, X, Ottawa, Canada, June

1990.

Bibliography 269

[GS90] C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B: Formal

Models and Semantics, chapter 8, pages 633–674. North-Holland, New

York, NY, 1990.

[GTW78] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra ap-

proach to the specification, correctness and implementation of abstract

data types. In Raymond T. Yeh, editor, Current Trends in Programming

Methodology, volume 4, pages 80–149. Prentice-Hall, Inc., Englewood

Cliffs, N.J., 1978.

[Gum01] H. P. Gumm. Functors for coalgebras. Algebra Universalis, 45(2–3):135–

147, 2001.

[GV92] J. F. Groote and F. Vaandrager. Structured Operational Semantics and

Bisimulation as a Congruence. Information and Computation, 100:202–

260, 1992.

[HdR89] J.J.M. Hooman and W.P. de Roever. Design and verification in real-time

distributed computing: an introduction to compositional methods. In Pro-

ceedings of the Ninth International Conference on Protocol Specification,

Testing and Verification, Amsterdam, 1989. North-Holland.

[HNSY92] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for real-time systems. In Proceedings, Seventh Annual IEEE

Symposium on Logic in Computer Science, pages 394–406, Santa Cruz,

California, 22–25 June 1992. IEEE Computer Society Press.

[HO00] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF. Informa-

tion and Computation, 163:285–407, 2000.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Lon-

don, UK, 1985.

[HP79] M. Hennessy and G. Plotkin. Full abstraction for a simple parallel pro-

gramming language. In Eighth Symposium on Mathematical Foundations

270 Bibliography

of Computer Science, volume 74 of Lecture Notes in Computer Science,

pages 108–120, Berlin, 1979. Springer-Verlag.

[HPP] M. Hyland, G. Plotkin, and J. Power. Combining effects: sum and tensor.

Submitted. Available from http://www.dcs.ed.ac.uk/home/gdp.

[HR95] M. Hennessy and T. Regan. A process algebra for timed systems. Infor-

mation and Computation, 117:221–239, 1995.

[Jac94] B. Jacobs. Semantics of weakening and contraction. Annals of Pure and

Applied Logic, 69(1):73–106, 6 September 1994.

[Jac95a] B. Jacobs. Bisimulation and Apartness in Coalgebraic Specifications.

Notes of lectures given in January1995 at the joint TYPES/CLICS work-

shop in Gothenburg and at a BRICS seminar in Aarhus, version of

24 February, 1995.

[Jac95b] B. Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Ni-

vat, editors, Fourth International Conference on Algebraic Methodology

and Software Technology, AMAST’95, volume 936 of Lecture Notes in

Computer Science, pages 245–260, Montreal, Canada, 3–7 July 1995.

Springer-Verlag.

[Jac96] B. Jacobs. Coalgebraic specifications and models of deterministic hybrid

systems. In M. Wirsing and M. Nivat, editors, Algebraic Methodology and

Software Technology, volume 1101 of Lecture Notes in Computer Science,

pages 520–535, Munich, Germany, 1–5 July 1996. Springer-Verlag.

[Jac00] B. Jacobs. Object-oriented hybrid systems of coalgebras plus monoid

actions. Theoretical Computer Science, 239(1):41–95, May 2000.

[Jef91] A. Jeffrey. A linear time process algebra. In Larsen and Skou [LS91b],

pages 432–442.

[Joh82] P. T. Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Ad-

vanced Mathematics. Camebridge University Press, Cambridge, 1982.

Bibliography 271

[Jon90] C. Jones. Probabilistic Non-Determinism. PhD thesis, LFCS, Edinburgh

University, 1990.

[JP89] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations.

In Proceedings, Fourth Annual Symposium on Logic in Computer Science,

pages 186–195, Asilomar Conference Center, Pacific Grove, California,

5–8 June 1989. IEEE Computer Society Press.

[JPT�98] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, and J. Worrel. An

Axiomatics for Categories of Transition Systems as Coalgebras. In Thir-

teenth Annual Symposium on Logic in Computer Science (LICS ’98), Indi-

anapolis, Indiana, USA, 21–24 June 1998. IEEE Computer Society Press.

[JPT�01] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, and J. Worrel. On

the structure of categories of coalgebras. Theoretical Computer Science,

260:87–117, 2001. Preliminary version appeared as [JPT�98].

[JR99] B. Jacobs and J. Rutten, editors. Coalgebraic Methods in Computer Sci-

ence (CMCS’1999), volume 19 of Electronic Notes in Theoretical Com-

puter Science, 1999.

[JSV93] A. S. A. Jeffrey, S. A. Schneider, and F. W. Vaandrager. A comparison

of additivity axioms in timed transition systems. Technical Report CS-

R9366, CWI - Centrum voor Wiskunde en Informatica, December 31,

1993.

[Kah96] S. Kahrs. Limits of ML-definability. In Proceedings of PLILP’96, vol-

ume 1140 of Lecture Notes in Computer Science, pages 17–31. Springer-

Verlag, September 1996.

[Kel82] G. M. Kelly. Basic concepts of enriched category theory, volume 64 of

London Mathematical Society lecture note series. Camebridge University

Press, 1982.

[Kic99] M. Kick. Modeling synchrony and asynchrony with multiple clocks. Mas-

ter’s thesis, University of Passau, Passau, Germany, August 1999.

272 Bibliography

[Kic02a] M. Kick. Bialgebraic modelling of timed processes. In P. Wid-

mayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, and

R. Conejo, editors, Proceedings ICALP’02, volume 2380 of Lecture

Notes in Computer Science. Springer-Verlag, 2002. Available from

http://www.dcs.ed.ac.uk/home/mk.

[Kic02b] M. Kick. Rule formats for timed processes. In Proceedings CMCIM’02,

volume 68 of Electronic Notes in Theoretical Computer Science. Elsevier,

2002. Available from http://www.dcs.ed.ac.uk/home/mk.

[KL97] G. M. Kelly and S. Lack. On property-like structures. Theory and Appli-

cation of Categories, 3:213–250, 1997.

[KL02] J. Kellendonk and M. Lawson. Partial actions of groups. Accepted by

International Journal of Algebra and Computation, 2002.

[Lan93] S. Lang. Algebra. Addison-Wesley, Reading, MA, USA, third edition,

1993.

[Law73] F. W. Lawvere. Metric spaces, generalized logic, and closed categories.

In Rendiconti del Seminario Matematico e Fisico di Milano, XLIII. Ti-

pografia Fusi, Pavia, 1973.

[Law86] F. W. Lawvere. Taking categories seriously. Revista Columbiana de

Matematicas, 20(3–4):147–178, 1986.

[Law89] F. W. Lawvere. Qualitative distinctions between some toposes of gen-

eralized graphs. In J. W. Gray and A. Scedrov, editors, Categories in

Computer Science and Logic, volume 92 of Contemporary Mathematics.

American Mathematical Society, 1989.

[Law94] F. W. Lawvere. Cohesive toposes and Cantor’s ‘lauter Einsen’.

Philisophia Mathematica, 2:5–15, 1994.

[Lin66] F. E. J. Linton. Some aspects of equational categories. In Eilenberg et al.

[EHMR66], pages 84–94.

Bibliography 273

[LPW00] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors,

pointed and co-pointed endofunctors, monads and comonads. In H. Re-

ichel, editor, Coalgebraic Methods in Computer Science (CMCS’2000),

volume 33 of Electronic Notes in Theoretical Computer Science, pages

233–263, 2000.

[LS91a] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In-

formation and Computation, 94(1):1–28, September 1991.

[LS91b] K.G. Larsen and A. Skou, editors. Computer Aided Verification (CAV ’91),

volume 575 of Lecture Notes in Computer Science, Aalborg, Denmark,

July 1991. Springer-Verlag.

[LW00a] H. Lin and Y. Wang. A complete axiomatisation for timed automata.

In Proccedings of Foundations of Software Technology and Theoretical

Computer Science, volume 1974 of Lecture Notes in Computer Science.

Springer-Verlag, 2000.

[LW00b] H. Lin and Y. Wang. A proof system for timed automata. In Proccedings

of Foundations of Software Science and Computation Structures, volume

1784 of Lecture Notes in Computer Science. Springer-Verlag, 2000.

[Mac97] S. Mac Lane. Categories for the Working Mathematician, volume 5 of

Graduate Texts in Mathematics. Springer-Verlag, Berlin, 2nd edition,

1997. (1st ed., 1971).

[Mal37] A. Malcev. On the immersion of an algebraic ring into a field. Mathema-

tische Annalen, 113:686–691, 1937.

[Mal39] A. Malcev. On the immersion of associative systems in groups. Mat.

Sbornik, 6(48):331–336, 1939. In Russian.

[Mal40] A. Malcev. On the immersion of associative systems in groups. Mat.

Sbornik, 8(50):251–264, 1940. In Russian.

274 Bibliography

[Mil72] R. Milner. Logic for computable functions: description of a machine

implementation. Technical Report STAN-CS-72-288, Computer Science

Department, Stanford University, May 1972.

[Mil77] R. Milner. Fully abstract models of typed lambda-calculus. Theoretical

Computer Science, 4:1–22, 1977.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, London, UK,

1989.

[MM92] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First

Introduction to Topos Theory. Universitext. Springer-Verlag, New York,

1992.

[Mos02] L. Moss, editor. Proc. Coalgebraic Methods in Computer Science (CMCS

2002), volume 65 of Electronic Notes in Theoretical Computer Science,

2002.

[MP89] M. Makkai and R. Pare. Accessible categories: The Foundations of Cat-

egorical Model Theory. American Mathematical Society, Providence,

1989.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I

and II. Information and Computation, 100(1):1–77, September 1992.

[MS02] M. Megrelishvili and L. Schröder. Globalization of Confluent Partial Ac-

tions on Topological and Metric Spaces. Preprint submitted to Elsevier

Science, 23 August 2002.

[MT90] F. Moller and C. Tofts. A temporal calculus of communicating systems.

In Baeten and Klop [BK90], pages 401–415.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and

domains, Part 1. Theoretical Computer Science, 13:85–108, 1981.

Bibliography 275

[NS91] X. Nicollin and J. Sifakis. An overview and synthesis on timed process

algebras. In Larsen and Skou [LS91b], pages 376–398.

[NS94] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory

and application. Information and Computation, 114:131–178, 1994.

[NSY93] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and

hybrid systems. Acta Informatica, 30:181–202, 1993.

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,

editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe, vol-

ume 104 of Lecture Notes in Computer Science, pages 167–183, Berlin,

Heidelberg, and New York, March 1981. Springer-Verlag.

[Pit94] A. M. Pitts. Computational Adequacy via ‘Mixed’ Inductive Definitions.

In Mathematical Foundations of Programming Semantics, Proc. 9th Int.

Conf., New Orleans, LA, USA, April 1993, volume 802 of Lecture Notes

in Computer Science, pages 72–82. Springer-Verlag, Berlin, 1994.

[Plo76] G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing,

5(3):452–487, 1976.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical

Computer Science, 5(3):223–255, 1977.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical

Report DAIMI FN-19, Computer Science Department, Aarhus University,

Aarhus, Denmark, September 1981.

[Plo82a] G. Plotkin. A powerdomain for countable non-determinism. In M. Nielsen

and E. M. Schmidt, editors, Automata, Languages and programming,

pages 412–428, Berlin, 1982. EATCS, Springer-Verlag. Lecture Notes

in Computer Science Vol. 140.

[Plo82b] G. Plotkin. Probabilistic powerdomains. In Proceedings CAAP, 1982.

276 Bibliography

[Plo83] G. Plotkin. Post-graduate lecture notes in advanced domain theory

(incorporating the “Pisa Notes”). LATEX’ed version available from

http://www.dcs.ed.ac.uk/home/gdp, 1983.

[Plo85] G. D. Plotkin. Denotational semantics with partial functions. Notes for

a course given at the Center for the Study of Language and Information,

Stanford, 1985.

[Plo01] G. Plotkin. Bialgebraic Semantics and Recursion (Extended Abstract). In

A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Methods

in Computer Science (CMCS’2001), volume 44 of Electronic Notes in

Theoretical Computer Science, pages 284–287, 2001.

[Pnu85] A. Pnueli. Linear and branching structures in the semantics and log-

ics of reactive systems. In W. Brauer, editor, Proceedings of the 12th

Colloquium on Automata, Languages and Programming, volume 194 of

Lecture Notes in Computer Science, pages 15–32, Nafplion, Greece, July

1985. Springer.

[Pra86] V. R. Pratt. Modelling Concurrency with Partial Orders. International

Journal of Parallel Programming, 15(1):33–71, February 1986.

[PW99] J. Power and H. Watanabe. Distributivity for a monad and a comonad. In

Jacobs and Rutten [JR99].

[RB85] D. E. Rydeheard and R. M. Burstall. Monads and theories: a survey for

computation. In M. Nivat and J. C Reynolds, editors, Algebraic methods in

semantics, pages 575–605. Camebridge University Press, 1985. Articles

stemming from the seminar on ‘The Application of Algebra to Language

Definition and Compilation,’ Fountainebleau, France, June, 1982.

[Rob02] E. Robinson. Variations on Algebra: Monadicity and Generalisations of

Equational Theories. Formal Aspects of Computing, 13(3–5):308–326,

2002.

Bibliography 277

[RR88] G.M. Reed and A.W. Roscoe. A timed model for communicating sequen-

tial processes. Theoretical Computer Science, 58:249–261, 1988.

[RS02] W. Rounds and H. Song. The phi-calculus - a hybrid extension of the

pi-calculus to embedded systems. In Eighteenth Workshop on the Mathe-

matical Foundations of Programming Semantics, New Orleans, LA, USA,

23–26 March 2002.

[RT94] J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for

concurrency. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,

editors, A Decade of Concurrency (REX Workshop 1993), volume 803

of Lecture Notes in Computer Science, pages 530–582. Springer-Verlag,

1994.

[Rut00] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical

Computer Science, 249(1):3–80, 2000.

[Sch95] S. Schneider. An Operational Semantics for Timed CSP. Information and

Computation, 116(2):193–213, 1 February 1995.

[Sco70] D. S. Scott. Outline of a mathematical theory of computation. In Proceed-

ings, Fourth Annual Princeton Conference on Information Sciences and

Systems, pages 169–176. Princeton University, 1970. Also, Programming

Research Group Technical Monograph PRG–2, Oxford University.

[Sco82] D. S. Scott. Domains for Denotational Semantics. In M. Nielson and E. M.

Schmidt, editors, Automata, Languages and Programming: Proceedings

1982, volume 140 of Lecture Notes in Computer Science. Springer-Verlag,

1982.

[Sco93] D. S Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.

Theoretical Computer Science, 121:411–440, 1993. First written in 1969

and circulated privately.

[SDJ�91] S. Schneider, J. Davies, D.M. Jackson, G.M. Reed, J.N. Reed, and A.W.

Roscoe. Timed CSP: Theory and practice. In J.W. de Bakker, C. Huizing,

278 Bibliography

W.P. de Roever, and G. Rozenberg, editors, Real-Time: Theory in Prac-

tice, volume 600 of Lecture Notes in Computer Science, pages 526–548.

Springer-Verlag, 1991.

[Sim95] A. K. Simpson. Compositionality via cut-elimination: Hennessy-Milner

logic for an arbitrary GSOS. In Proceedings, Tenth Annual IEEE Sympo-

sium on Logic in Computer Science, pages 420–430, San Diego, Califor-

nia, 26–29 June 1995. IEEE Computer Society Press.

[SP82] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of re-

cursive domain equations. SIAM Journal on Computing, 11(4):761–783,

November 1982. Also Report D.A.I. 60, University of Edinburgh, Depart-

ment of Artificial Intelligence, December 1978.

[SS71] D. S. Scott and C. Strachey. Toward a mathematical semantics for com-

puter languages. In Proceedings Symposium on Computers and Automata,

volume 21 of Microwave Institute Symposia Series, pages 19–46. Poly-

technic Institute of Brooklyn, 1971.

[Ten91] R. D. Tennent. Semantics of Programming Languages. Prentice Hall,

New York, 1991.

[TP97] D. Turi and G. Plotkin. Towards a mathematical operational semantics.

In Twelfth Annual Symposium on Logic in Computer Science (LICS ’97),

pages 280–291, Warsaw, Poland, 29 June–2 July 1997. IEEE Computer

Society Press.

[TR98] D. Turi and J. Rutten. On the foundations of final coalgebra semantics:

non-well-founded sets, partial orders, metric spaces. Mathematical Struc-

tures in Computer Science, 8(5):481–540, 1998.

[Tur96] D. Turi. Functorial Operational Semantics and its Denotational Dual.

PhD thesis, Free University, Amsterdam, June 1996. Available from

http://www.dcs.ed.ac.uk/home/dt/.

Bibliography 279

[Tur97] D. Turi. Categorical modelling of structural operational rules: Case stud-

ies. In Proc. 7th CTCS Conf., volume 1290 of Lecture Notes in Computer

Science, pages 127–146, 1997.

[Var91] M. Y. Vardi. Verification of concurrent programs: The automata-theoretic

framework. Annals of Pure and Applied Logic, 51(1–2):79–98, 1991.

[vB89] J. van Benthem. Time, logic and computation. In J. W. de Bakker,

W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the

School/Workshop on Linear Time, Branching Time and Partial Order in

Logics and Models for Concurrency, volume 354 of LNCS, pages 1–49,

Berlin, May 30–June 3 1989. Springer.

[vG96] R.J. van Glabbeek. The meaning of negative premises in transition

system specifications II (extended abstract). In F. Meyer auf der

Heide and B. Monien, editors, Automata, Languages and Programming

(ICALP ’96), volume 1099 of Lecture Notes in Computer Science, pages

502–513, Paderborn, Germany, July 1996. Springer-Verlag.

[vGSS95] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative

and stratified models of probabilistic processes. Information and Compu-

tation, 121(1):59–80, 15 August 1995.

[Vic89] S. Vickers. Topology via Logic. Camebridge University Press, 1989.

[vW66] B. L. v.d. Waerden. Modern Algebra, volume 1 and 2. Frederick Ungar

Publishing Co., New York, 1966.

[Wan90] Y. Wang. Real-time behaviour of asynchronous agents. In Baeten and

Klop [BK90], pages 502–520.

[Wan91] Y. Wang. CCS + time = an interleaving model for real time systems.

In J. Leach Albert, B. Monien, and M. Rodríguez Artalejo, editors, Au-

tomata, Languages and Programming (ICALP ’91), volume 510 of Lec-

ture Notes in Computer Science, pages 217–228, Madrid, Spain, July

1991. Springer-Verlag.

280 Bibliography

[Wat02] H. Watanabe. Well-behaved Translations between Structural Operational

Semantics. In Moss [Mos02].

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An

Introduction. Foundations of Computing series. MIT Press, February

1993.

[WN95] G. Winskel and M. Nielsen. Models for Concurrency. In S. Abramsky,

D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-

puter Science, volume 4, pages 1–148. Clarendon Press, 1995.

[WPD94] Y. Wang, P. Pettersson, and M. Daniels. Automatic Verification of Real-

Time Communicating Systems By Constraint-Solving. In Dieter Hogrefe

and Stefan Leue, editors, Proc. of the 7th Int. Conf. on Formal Description

Techniques, pages 223–238. North–Holland, 1994.

List of Symbols

F�C�, 43

X�, 110

Xω, 110

ACP, 23

ATP, 26

BA, 9

�BA�E�–Coalg, 213

BC, 114

B� , 110

BX
�

, 110

�–Bialg, 35

CCS, 23

C�, 42

CSP, 23

�D�D��–Coalg, 218

D� , 111

EC, 114

ET X (or EX), 89

�H�D�–Coalg, 213

�, 17

�
�, 17

�, 17

M–Act, 72

M–pAct, 72

��0 , 21

��0 , 21

T �, 79

� , 18, 21

�∞ , 91

��R��, 197

PMC, 27

P��t , 63

P, 56

� , 18

�, 18

��ρ��, 199

SetC
op

, 257

TPL, 26

TeCCS, 23

TiCCS, 25

TiCSP, 28

�a, 19

X
, 18

M , 257

cod�e�, 192

H∞, 32

k∞, 32

dom��e�, 192

dom�e�, 89

��, 50

�p�, 64

�p��t , 63

281

282 LIST OF SYMBOLS

H�, 32

h�, 32

fstX , 32

hd, 111

inl, 149

inr, 149

�, 34

�, 45

pSet, 86

rng��e�, 192

sndX , 32

spec�T �, 90

�, 57

�t , 62

tl, 111

	, 19

vars��e�, 192

vars�e�, 192

f �, 259

f!, 260

f�, 259

t � u, 45

t � p, 75

t u, 45

u� t, 48

x#m, 67

�, 212

R � ζ �� ϑ, 202

Index

R-derivation, 202

e
t
�, 92

n-enumerated set, 192

abstract temporal rules, 149

admissible operators, 173

antichain, 114

behavioural equivalence, 4

biaction, 81

bialgebras, 34

homomorphisms of —, 35

bicongruence, 132

bisimulation

action —, 19

coalgebraic, 31

coalgebraic —, 9

heterogeneous —, 212

time —, 62

cancellation rule, 42

category

κ-accessible —, 33

κ-filtered —, 100

(κ-)filtered —, 29

locally presentable —, 33

pullback —, 213

choice, 23

weak —, 23

co-action

— of a comonad on a functor, 230

coalgebra

— homomorphism, 31

carrier of —, 32

Eilenberg-Moore —, 30

colimit

(κ-)filtered —, 29

comonad

— morphism, 30

behaviour, 136

cofree — on a functor, 32

computational —, 96

comonadic SOS, 140

congruence, 5

continuity, 57

continuous time, 41

CSOS, see comonadic SOS

delay operator, 76

denotational model

canonical —, 132

dense time, see continuous time

determinacy, 57

diagram

283

284 INDEX

δ-, 140

ε-, 140

discrete time, 41

distributive law, 34

— of a monad over a comonad, 34

downward-closed, 90

dsl-format, 159

dsl-prerule, 155

complete —, 157

consistent —, 157

mutually exclusive —, 159

type of —, 157

dsl-rule, 157

enumerated set, 155

equivariant map, see homomorphism of

partial monoid action

evolution, 89

codomain of —, 192

domain of —, 89

name of —, 95

extension

coinductive —, 32

inductive —, 32

filter, 90

principal —, 90

free group, 43

free monoid, 42

commutative —, 42

functor

κ-accessible —, 33

behaviour —, 129

finitary —, 33

polynomial —, 33

rank of a —, 33

signature —, 129

geometric morphism, 259

essential —, 260

ideal, 90

generated —, 90

principal —, 90

proper —-, 90

idling, 21

incomparable, 45

induced order, 46

induced pre-order, see precedence rela-

tion

interpolation, 60

Kleene equality, 17

Kleene implication, 17

Kleene inequality, 17

labelled transition system, 18

left Kan extension, 224

lifting, 35

local qualitative time, 42

LTS, see labelled transition system

maximal progress assumption, 22

meta rule, 195

admissible set of —s, 196

canonical —, 195

co-pointed (set of) —(s), 201

INDEX 285

complete set of —s, 196

continuous set of —s, 204

deterministic set of —s, 196

generic —, 195

GSOS —, 196

time transitions induced by —, 195

monad

free — on a functor, 32

monoid, 38

— as one-object category, 257

anti-symmetric —, 38

left-cancellative —, 38

monus, see truncated subtraction

naming function, 95

operational model

intended —, 4, 130

operational rules, 19

abstract —, 129

schematic —, 170

order-cancellation, 47

partial M-set, see partial monoid action

partial monoid action, 67

carrier of —, 67

category of —, 72

homomorphism of —, 72

precedence relation, 45

prefix

action —, 22

delay —, 23

insistent —, 22

relaxed —, 22

time —, 23

prerule, see prerule

presheaves, 257

processes, 56

— modulo time bisimulation, 63

timed —, 4

pullback, 97

weak —, 99

weak — embedding —, 217

relative inverse, 48

rule format, 5

syntactic —, 126

rule shapes, 171

semantic domain, 6

semantics

bialgebraic —, 125

compositional —, 6

final coalgebra —, 9

initial algebra —, 8

operational —, 4

structural operational —, 4

SOS, see structural operational seman-

tics

substitutivity, see congruence

subtraction

partial —, 48

truncated —, 50

synchrony hypothesis, 22

term

286 INDEX

closed —, 33

time

continuous quantitative —, 21

discrete quantitative —, 21

global qualitative —, 22

local qualitative —, 22

qualitative —, 21

quantitative —, 21

time domain, 38

antichain monotone, 114

closed —, 52

commutative —, 38

complete —, 90

linear —, 50

spectrum of, 90

time transition relation, 56

transitivity of —, 60

time variables, 170

timed automata, 42

timed transition system, 56

— with delay, 76

total monoid action, 72

cofree —, 261

free —, 261

transition, 19

source of —, 19

target of —, 19

transition relation, 19

trivial domain, 41

TTS, see timed transition system

tuple of evolutions

canonical —, 193

corresponding canonical —, 193

generic —, 193

upper bound, 45

urgency, 22

zero-delay, 57

