
Observational Models of Requirements

Evolution

Massimo Felici

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2004

Abstract

Requirements Evolution is one of the main issues that affect development activities as

well as system features (e.g., system dependability). Although researchers and prac-

titioners recognise the importance of requirements evolution, research results and ex-

perience are still patchy. This points out a lack of methodologies that address require-

ments evolution. This thesis investigates the current understanding of requirements

evolution and explores new directions in requirements evolution research. The em-

pirical analysis of industrial case studies highlights software requirements evolution

as an important issue. Unfortunately, traditional requirements engineering method-

ologies provide limited support to capture requirements evolution. Heterogeneous en-

gineering provides a comprehensive account of system requirements. Heterogeneous

engineering stresses a holistic viewpoint that allows us to understand the underlying

mechanisms of evolution of socio-technical systems. Requirements, as mappings be-

tween socio-technical solutions and problems, represent an account of the history of

socio-technical issues arising and being solved within industrial settings. The for-

mal extension of a heterogeneous account of requirements provides a framework to

model and capture requirements evolution. The application of the proposed frame-

work provides further evidence that it is possible to capture and model evolutionary

information about requirements. The discussion of scenarios of use stresses practical

necessities for methodologies addressing requirements evolution. Finally, the identifi-

cation of a broad spectrum of evolutions in socio-technical systems points out strong

contingencies between system evolution and dependability. This thesis argues that the

better our understanding of socio-technical evolution, the better system dependability.

In summary, this thesis is concerned with software requirements evolution in indus-

trial settings. This thesis develops methodologies to empirically investigate and model

requirements evolution, hence Observational Models of Requirements Evolution. The

results provide new insights in requirements engineering and identify the foundations

for Requirements Evolution Engineering. This thesis addresses the problem of empir-

ically understanding and modelling requirements evolution.

i

Acknowledgements

I would like to thank my supervisors, Stuart Anderson and Perdita Stevens. Spe-

cial thanks go to Stuart Anderson, my principal supervisor, who has challenged me

throughout my studies by supporting my research interest and vision on a novel and

risky subject. Tracking back where all this started, I have to acknowledge the EU

OLOS network for supporting my visit to Edinburgh prior to these studies. The per-

sons responsible for that Scottish visit were Alberto Pasquini, my former supervisor at

the Italian National Agency for New Technologies, Energy and Environment (ENEA),

who sent me to Edinburgh and, again, Stuart Anderson, who hosted me in Edinburgh

since then.

Finally, but not the least, I would like to thank my parents, Gaetano Felici and

Adelina Caruso, and my brother Marco Felici for their support throughout my studies.

I would like also to thank Friends, Colleagues and Others who were unnoticeably

supportive. Thanks to you all.

This thesis, like any project, would have been impossible without any financial

support. I am grateful to the following grants and organisations:

� The Laboratory for Foundations of Computer Science, LFCS, at the University

of Edinburgh for funding the fees of the first year of my studies

� The University of Catania, Italy, for supporting the first year of my studies by a

one-year grant for attending abroad post-graduate courses in foreign universities

� The Interdisciplinary Research Collaboration in Dependability of Computer-

based Systems, DIRC, UK EPSRC grant GR/N13999, for supporting my work

on Requirements Evolution for Design for Dependability

� The Italian National Research Council, CNR, for supporting my research project

“Requirements Evolution: Understanding Formally Software Engineering Pro-

cesses within Industrial Contexts”, Bando n. 203.15.11

� The Italian National Research Council, CNR, for supporting my research project

“A Formal Framework for Requirements Evolution”, Bando n. 203.01.72, Codice

n. 03.01.04.

ii

The following publications contain early parts of this thesis:

[Anderson and Felici, 2000a] Stuart Anderson and Massimo Felici. Controlling Re-

quirements Evolution: An Avionics Case Study. In Koornneef, F. and van der

Meulen, M., editors, Proceedings of the 19th International Conference on Com-

puter Safety, Reliability and Security, SAFECOMP 2000, LNCS 1943, pages

361-370, Rotterdam, The Netherlands. Springer-Verlag.

[Anderson and Felici, 2000b] Stuart Anderson and Massimo Felici. Requirements

changes risk/cost analyses: An avionics case study. In Cottam, M., Harvey, D.,

Pape, R., and Tait, J., editors, Foresight and Precaution, Proceedings of ESREL

2000, SARS and SRA-EUROPE Annual Conference, volume 2, pages 921-925,

Edinburgh, Scotland, United Kingdom. A.A.Balkema.

[Anderson and Felici, 2001] Stuart Anderson and Massimo Felici. Requirements Evo-

lution: From Process to Product Oriented Management. In Bomarius, F. and

Komi-Sirviö, S., editors, Proceedings of the Third International Conference on

Product Focused Software Process Improvement, PROFES 2001, LNCS 2188,

pages 27-41, Kaiserslautern, Germany. Springer-Verlag.

[Anderson and Felici, 2002] Stuart Anderson and Massimo Felici. Quantitative As-

pects of Requirements Evolution. In Proceedings of the Twenty-Sixth Annual In-

ternational Computer Software and Applications Conference, COMPSAC 2002,

pages 27-32, Oxford, England. IEEE Computer Society.

[Felici, 2000] Massimo Felici. Dependability Perspectives in Requirements Engi-

neering. In Student Forum, Workshops and Abstracts Proccedings of The Inter-

national Conference on Dependable Systems and Networks, DSN 2000, pages

A43-A45, New York, New York, USA. IEEE Computer Society.

[Felici, 2003] Massimo Felici. Taxonomy of Evolution and Dependability. In Pro-

ceedings of the Second International Workshop on Unanticipated Software Evo-

lution, USE 2003, pages 95-104, Warsaw, Poland.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Massimo Felici)

iv

Table of Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Synopsis . 3

2 Related Work 6

2.1 On Requirements Engineering . 6

2.1.1 Software and Requirements Processes 8

2.1.2 Empirical Requirements Evolution 14

2.1.3 Modelling in Requirements Engineering 19

2.1.4 Modelling Requirements Evolution 24

2.2 Towards Requirements Evolution Engineering 28

3 An Avionics Case Study 30

3.1 Description of the Case Study . 30

3.1.1 System Requirements . 31

3.1.2 Development Process . 31

3.2 Empirical Investigation . 35

3.2.1 Requirements Evolution . 35

3.2.2 A Taxonomy of Requirements Changes 37

3.2.3 Requirements Maturity Index 39

3.2.4 Ageing Requirements Maturity 40

3.2.5 Ageing Requirements Maturity: Empirical Evidence 43

3.2.6 Functional Requirements Evolution 46

3.2.7 Requirements Dependencies 51

v

3.2.8 Visualising Requirements Evolution 53

3.2.9 Sequence Analysis . 56

3.3 Lessons Learned . 63

3.3.1 Requirements Evolution Practice 63

3.3.2 Requirements Evolution Features 65

4 A Smart Card Case Study 68

4.1 Description of the Case Study . 68

4.2 Empirical Investigation . 69

4.2.1 Requirements Evolution Viewpoints 70

4.2.2 Viewpoint Analysis . 79

4.3 Lessons Learned . 82

5 Modelling Requirements Evolution 84

5.1 Heterogeneous Requirements Engineering 84

5.2 Heterogeneous Requirements Modelling 86

5.2.1 Solution Space . 89

5.2.2 Problem Space . 92

5.2.3 Problem Contextualisation 94

5.2.4 Solution Space Transformation 95

5.2.5 Requirements Specification 99

5.3 Requirements Changes . 100

5.4 Requirements Evolution . 103

5.5 Heterogeneous Requirements Evolution 106

6 Capturing Evolutionary Requirements Dependencies 110

6.1 Requirements Traceability and Dependency 110

6.1.1 Traceability Limitations . 111

6.1.2 Classification of Traceability 112

6.1.3 Requirements Dependency 115

6.2 Capturing Evolutionary Dependency 117

6.2.1 Basic Dependencies . 118

6.2.2 Modelling Dependencies . 120

vi

6.2.3 Capturing Emergent Dependencies 123

6.2.4 Engineering Inferences . 126

6.3 Towards Requirements Evolution . 128

7 Towards Requirements Evolution Engineering 130

7.1 REE Rationale . 130

7.2 Observing Requirements Evolution 131

7.3 Scenarios of Use . 136

7.4 Evolutionary Design Observations 140

7.5 Towards Requirements Evolution Engineering 143

8 Taxonomy of Evolution and Dependability 145

8.1 On Evolution and Dependability . 145

8.2 Taxonomy of Evolution . 148

8.2.1 Software Evolution . 151

8.2.2 Architecture (Design) Evolution 153

8.2.3 Requirements Evolution . 154

8.2.4 Socio-technical System Evolution 156

8.2.5 Organisation Evolution . 158

8.3 On Dependability and Evolution . 160

8.4 Evolution as Dependability . 162

9 Conclusions 165

9.1 Case Studies - Lessons Learned . 167

9.1.1 Avionics Case Study . 167

9.1.2 Smart Card Case Study . 170

9.2 Heterogeneous Requirements Engineering 172

9.2.1 Heterogeneous Modelling of Requirements Evolution 173

9.2.2 Capturing Evolutionary Requirements Dependencies 176

9.2.3 Towards Requirements Evolution Engineering 177

9.3 Evolution as Dependability . 179

9.4 Postscript . 180

vii

A Requirements Engineering Questionnaire 181

A.1 Business Requirements Engineering 182

A.2 Process Requirements Engineering 185

A.3 Product Requirements Engineering 191

B Modal Logic 200

B.1 Propositional Modal Logic . 200

B.1.1 Syntax . 200

B.1.2 Semantics . 201

B.1.3 Examples . 203

B.1.4 Some Important Logics . 204

B.1.5 Logical Consequence . 206

B.2 Tableau Proof Systems . 206

B.2.1 Logical Consequence and Tableaus 208

B.2.2 Soundness and Completeness 209

Bibliography 213

viii

List of Figures

2.1 The Waterfall Model. 9

2.2 The Spiral Model. 10

2.3 The V Model. 11

2.4 The Capability Maturity Model (CMM). 12

2.5 The requirements engineering process maturity levels. 13

2.6 Functional ecology solution space transformation. 24

2.7 Modelling requirements evolution. 28

3.1 The safety-critical software development process of the case study. . . 32

3.2 Development activities and deliverables. 34

3.3 Number of requirements changes per software release. 36

3.4 Total number of requirements per software release. 37

3.5 Requirements Maturity Index for each software release. 40

3.6 Comparison of the three indexes by simulation on a sample scenario. . 42

3.7 Average number of requirements changes (ARC). 43

3.8 Requirements Stability Index (RSI). 44

3.9 Historical Requirements Maturity Index (HRMI). 45

3.10 Requirements evolution from a functional viewpoint. 46

3.11 Cumulative number of requirements changes for each function. 47

3.12 Number of requirements versus cumulative number of requirements

changes. 48

3.13 Requirements Stability Index for each function at the 22nd software

release. 49

3.14 Classified requirements changes per software release. 50

ix

3.15 Histograms of the size of the sets of requirements changes allocated to

a single software release. 51

3.16 Graphical workflow of the three basic requirements changes. 54

3.17 Graphical workflow of requirements evolution for F1. 55

3.18 Graphical workflow of requirements evolution for F4. 56

3.19 Phase map for all requirements changes. 59

3.20 Phase maps of the requirements changes of three system functions. . . 60

3.21 The gamma maps for three functions. 63

4.1 A schematic representation of the gap between the two opposing pro-

cesses existing at the product level. 71

4.2 The high-level smart card requirements process. 73

4.3 The change management process. 76

4.4 An example extracted from a change request form. 77

4.5 An example extracted from a software change request form. 77

4.6 The V model adopted by the smart card organisation. 78

4.7 The groups of requirements engineering questions. 79

4.8 Three profiles captured by the requirements engineering questionnaire. 80

4.9 A different representation of the three profiles. 81

5.1 The solution space transformation. 87

5.2 A Kripke model for a clock. 91

5.3 The Modal Square of Opposition. 93

5.4 A problem contextualised by a solution. 96

5.5 Two possible solutions that include the reconciliation of St with Pt . . . 98

5.6 A solution space transformation. 99

5.7 Another solution space transformation. 105

5.8 The entire sequence of solution space transformations. 105

5.9 How the two different paradigms capture the relationships between re-

quirements, design solutions and observed system problems. 107

6.1 A taxonomy of requirements traceability. 114

6.2 A taxonomy of evolutionary dependency. 117

x

6.3 Evolutionary dependency graph for F1 and F2. 119

6.4 Evolutionary dependency graph for F5. 119

6.5 Evolutionary dependency graph for F2 and F8. 120

6.6 A Kripke model of the evolutionary dependency between F1 and F2. . 121

6.7 A Kripke model of the self-loop dependency for F5. 123

6.8 A Kripke model of the refinement-loop dependency between F2 and F8. 123

6.9 Examples of complex evolutionary dependencies. 124

6.10 A solution space transformation for F1 and F2. 125

6.11 A Kripke frame that captures the dependency between F1, F2 and F8. 126

6.12 An example of evolutionary dependency graph. 127

6.13 A weighted model of evolutionary dependencies. 128

7.1 Evolutionary enhanced requirements information. 133

7.2 Modelling requirements evolution. 137

7.3 Process calibration. 138

7.4 Requirements evolution regression. 139

7.5 Design workflow as an activity diagram. 142

7.6 Extended design work flow using the solution space transformation. . 143

8.1 The dependability tree. 147

8.2 Evolutionary space for socio-technical systems. 150

8.3 The SHEL model. 156

8.4 A simple socio-technical system model. 159

B.1 Inclusions among logics. 205

xi

List of Tables

2.1 The PROTEUS classification of types and origins of changing require-

ments. 17

2.2 Types of volatile requirements. 18

2.3 Factors leading to requirements changes. 19

2.4 The basic components of the PROTEUS goal-structures framework. . 25

2.5 Information framework for sensitivity and impact analyses. 26

3.1 Types of changes identified by inspection of the history of changes. . . 38

3.2 Requirements dependencies matrix. 52

3.3 Description of Phase Mapping, Gamma Analysis and Gamma Mapping. 57

3.4 Gamma analysis for F2. 61

3.5 Gamma analysis for F4. 61

3.6 Gamma analysis for F8. 62

4.1 Examples of issues that required changes. 74

4.2 Examples of change progress reports. 75

6.1 Examples of requirements pre-traceability. 113

6.2 Examples of requirements post-traceability. 114

7.1 Evolutionary enhanced requirements information. 134

7.2 Examples of relationships between evolutionary requirements infor-

mation. 135

8.1 A taxonomy of software architecture transformations. 153

8.2 Dependability perspectives of Evolution. 161

xii

B.1 Some standard modal logics. 205

B.2 Tableau extension rules. 207

B.3 Special necessity rules and tableau system for each logic. 207

xiii

Chapter 1

Introduction

Requirements Evolution is an emerging phenomenon of any software related project.

The cost and risk associated with requirements changes inevitably increase with the

progress of software projects [Boehm, 1981, Boehm, 1984]. Requirements change can

prevent projects from ending successfully. They can also affect the main system func-

tionalities by giving rise to uncertainties of critical system features (e.g., dependability,

safety, reliability, security, etc.). These issues motivate the steadily growing interest in

requirements engineering1.

Any software production involves diverse stakeholders, who interact each other

by means of development deliverables (e.g., requirements specification, system de-

sign, software code, etc.), processes (e.g., change management, software develop-

ment, etc.) and activities (e.g., requirements elicitation, software testing, etc.). Ef-

fective cooperation needs stakeholders to understand their different viewpoints on

software projects [Sommerville and Sawyer, 1997a]. On one hand viewpoints iden-

tify different system perspectives (usually associated with different stakeholders). On

the other hand viewpoints support the focused analysis of system requirements. Un-

fortunately, poor coordination and understanding of viewpoints inhibit the elicita-

tion of requirements and affect requirements consistency [Jirotka and Goguen, 1994,

Sommerville and Sawyer, 1997a]. Software is therefore the result of engineering tech-

1Various books, conferences and journals, e.g., [Davis and Hsia, 1994, Siddiqi and Shekaran, 1996,
Berry and Lawrence, 1998], give an account of the debates on research and practice in requirements
engineering.

1

Chapter 1. Introduction 2

nical solutions through stakeholder interactions2. These interactions influence how

stakeholders acquire their knowledge as well as system design [Bijker et al., 1989,

Jirotka and Goguen, 1994, Vincenti, 1990]. The way interactions capture and shape

stakeholder knowledge and system design manifests over software projects as require-

ments changes, hence requirements evolution. Stakeholder interactions, cooperations

and negotiations result in shifts in the grounds for agreement. These shifts drive re-

quirements evolution. The problem is how to model requirements evolution in order to

capture stakeholder interactions through requirements. Although understanding stake-

holder interactions highlights requirements evolution, poor understanding of the mech-

anisms of requirements evolution affects stakeholder interactions. This often results in

poor requirements baselines that affect software production as well as system features.

1.1 Thesis Contribution

This thesis considers requirements evolution as an unavoidable feature of software pro-

duction. Classically, requirements evolution is seen as an error in the engineering pro-

cess. In contrast, this thesis takes into account requirements evolution as an essential

feature of good design processes [Petroski, 1992, Petroski, 1994]. Diverse production

aspects may trigger requirements evolution, which propagates through requirements

changes that affect development activities and processes. In any development process

the definition of requirements is the first phase and it is always crucial for the success

of software projects.

This thesis considers software requirements evolution within industrial production

environments. In contrast to the process-centred approach taken in current require-

ments engineering practice, this thesis takes a product-centred approach based on em-

pirical analysis and modelling. Process issues are captured in the product as it is devel-

oped. Our approach originates in the empirical investigation of industrial case studies

of evolving products and their requirements. These case studies provide a detailed

account of the cooperative processes adopted by stakeholders. The underlying hypoth-

2The mechanisms underlying the social design and implementation of technology sys-
tems are referred to as the Social Shaping of Technology (SST) [Williams and Edge, 1996,
MacKenzie and Wajcman, 1999].

Chapter 1. Introduction 3

esis of this thesis is that stakeholder interaction in cooperative processes is a powerful

driver of requirements evolution. This thesis addresses the lack of understanding about

requirements evolution. It enhances our ability to understand and model requirements

evolution.

1.2 Thesis Synopsis

This thesis is structured as follows. Chapter 2 reviews related work in requirements en-

gineering. Although requirements evolution is a recognised phenomenon of software

systems, requirements engineering research and practice mainly focus on management

aspects. Management methodologies advocate process-oriented approaches in order to

tackle requirements changes. On one hand these methodologies allow standardisation

and organise work practice, although they provide limited support to tailor processes in

order to capture system features. On the other hand system features pervade processes

as well as organisations. Requirements evolution therefore becomes an emergent phe-

nomenon as well as an intrinsic feature of software systems. The review points out a

rationale for a framework that supports the analysis, control and monitor of require-

ments evolution, hence requirements evolution. Related research and the existence of

few empirical studies motivated the investigation of case studies drawn from industry.

Chapter 3 contains an empirical investigation of an avionics safety-critical case

study drawn from industry with respect to requirements evolution. The investigation

of an industrial case study allows us to acquire input from practice in requirements

engineering. This is to take a realistic account of requirements evolution. Moreover,

a case study provides domain knowledge that characterises the specific industrial con-

text. Case studies drawn from industry stress the crucial aspect of domain knowledge.

Most of requirements engineering methodologies have serious practical limitations,

because they lack of domain knowledge. The empirical analysis points out evolu-

tionary aspects of requirements as well as practical issues (e.g., poor support for the

analysis of requirements evolution in live production environments). The case study

furthermore stresses the need to enhance our understanding of requirements evolution.

Chapter 4 describes a case study drawn from smart card industry. Despite less data

Chapter 1. Introduction 4

than the avionics case study, the analysis of requirements viewpoints allows us further

to understand how different system perspectives may result in different requirements

changes. The analysis relies on interviews and questionnaires. In spite of sparse data,

the analysis points out many issues that characterise live production environments.

Although changes affect several viewpoints and increase project risk, they are part of

learning and understanding processes in software production. The analysis highlights

how even a single change affects many different socio-technical aspects.

Chapter 5 introduces a formal framework to model and capture requirements evo-

lution. The framework relies on a heterogeneous account of requirements. Hetero-

geneous engineering provides a comprehensive account of system requirements. Het-

erogeneous engineering stresses a holistic viewpoint that allows us to understand the

underlying mechanisms of evolution of socio-technical systems. Requirements, as

mappings between socio-technical solutions and problems, represent an account of the

history of socio-technical issues arising and being solved within industrial settings.

The formal extension of solution space transformation defines a framework to model

and capture requirements evolution. The resulting framework is sufficient to interpret

requirements changes, hence requirements evolution. The formal framework captures

how requirements evolve through subsequent releases. Hence, it is possible to define

requirements evolution in terms of sequential solution space transformations. Intu-

itively, requirements evolution identifies a path that browses solution spaces.

Requirements management methodologies and practices rely on requirements trace-

ability. Although requirements traceability provides useful information about require-

ments, traceability manifests emergent evolutionary aspects just as requirements do. It

is also important to understand requirements dependencies that constrain software pro-

duction. Requirements dependencies, as an instance of traceability, identify relation-

ships between requirements. Moreover, requirements dependencies constrain require-

ments evolution. Thus, it is important to capture these dependencies in order further

to understand requirements evolution. Chapter 6 shows how the formally augmented

solution space transformation captures evolutionary requirements dependencies. Ex-

amples drawn from the avionics case study provide a realistic instance of requirements

dependencies. These examples show how the heterogeneous framework captures evo-

Chapter 1. Introduction 5

lutionary features of requirements, hence requirements evolution.

Empirical analysis and requirements evolution modelling capture evolutionary as-

pects of system production. Chapter 7 develops three main scenarios of practice: Mod-

elling Requirements Evolution, Process Calibration, Requirements Evolution Regres-

sion. Moreover, it describes how heterogeneous requirements evolution supports the

refinement of design models. Although these scenarios are descriptive, they provide an

overall understanding how modelling requirements evolution enhances system produc-

tion. The scenarios therefore further develop a rationale for Requirements Evolution

Engineering (REE).

Requirements, however, represent only one aspect of socio-technical evolution. Al-

though evolution is a necessary feature of socio-technical systems, it often increases

the risk of failures. Chapter 8 reviews a taxonomy of evolution, as a conceptual frame-

work for the analysis of socio-technical system evolution with respect to dependability.

The identification of a broad spectrum of evolutions in socio-technical systems points

out strong contingencies between system evolution and dependability. This thesis ar-

gues that the better our understanding of socio-technical evolution, the better system

dependability. Finally, Chapter 9 draws the conclusions of this thesis.

Chapter 2

Related Work

This chapter reviews research and practice relevant to requirements evolution. De-

spite requirements evolution being a recognised phenomenon of software systems, re-

quirements engineering research and practice mainly focuses on management aspects.

Management methodologies advocate process-oriented approaches in order to tackle

requirements changes. On one hand these methodologies allow standardisation and

organise work practice, although they provide limited support to tailor processes in

order to capture system features. On the other hand system features pervade processes

as well as organisations. This chapter constructs a rationale for requirements evolu-

tion. Requirements evolution therefore becomes an emergent phenomenon as well as

an intrinsic feature of software systems.

2.1 On Requirements Engineering

Requirements engineering has emerged as a novel discipline within software engineer-

ing. Like most research that is close to exploitation in practice, economic factors have

driven the development of requirements engineering. Early research [Boehm, 1981,

Boehm, 1984] in software engineering shows that it is economically convenient and

effective to fix faults as early as possible in the development process. Jointly, the

awareness that most software projects fail due to customer dissatisfaction triggered an

increasing interest in system requirements. Since the early stages of the development

6

Chapter 2. Related Work 7

of requirements engineering researchers and practitioners have been engaged in discus-

sions about what system requirements are. The main propaganda is that requirements

are concerned with “what the system should do”, whereas design is concerned with

“how the system should do it”. In practice the distinction between “what” and “how” is

often unclear [Sommerville and Sawyer, 1997a]. Moreover, experience points out that

misunderstandings and disagreements about “what” and “how” are just fertile ground

for system failures [Leveson, 1995, Perrow, 1999, Storey, 1996].

System failures and flawed designs have been often traced back to poor require-

ments. The diverse concerns about requirements led to the development of various

methodologies, which tackle the requirements problem at different stages in the sys-

tem production. The goal of fixing requirements has driven most early research effort

[Weinberg, 1997]. Many methodologies aim to enhance requirements correctness and

completeness. On the other hand many others stress the importance of effective de-

velopment processes, like in the manufacturing industry. The deceptive similarities

between software production and manufacturing stimulated the blossoming of many

software development processes. All of them give great credit to the organisation of

software processes in terms of development phases and activities. The process com-

plexity reflects to some extent the account given to each development phase. The un-

derstandings of requirements and requirements processes differ in each development

process. Although, regardless product features, they advocate that quality processes

produce quality products.

Requirements engineering nowadays comprises a broad range of diverse disci-

plines. Most recent methodologies take into account human factors in software sys-

tems. On one hand requirements should also capture user needs. On the other hand

requirements are a means of communication between stakeholders (e.g., project man-

agers, software engineers, system users, regulators, etc.). Thus, requirements have a

pivotal role for stakeholder interactions. Requirements need to integrate and embrace

different viewpoints, hence requirements viewpoints [Kotonya and Sommerville, 1996,

Sommerville and Sawyer, 1997b]. Multidisciplinary aspects therefore pervade and sur-

round requirements. Studies on socio-technical systems [Coakes et al., 2000] further

recognise this multidisciplinarity. The foundations of system design are grounded in

Chapter 2. Related Work 8

heterogeneous engineering [Bijker et al., 1989]. Requirements engineering captures

the social shaping [MacKenzie and Wajcman, 1999] of software systems.

The remainder of this section reviews relevant literature in requirements engineer-

ing. The review stresses those aspect mostly relevant to requirements evolution: soft-

ware and requirements processes, empirical requirements engineering, modelling in

requirements engineering and modelling requirements evolution.

2.1.1 Software and Requirements Processes

Software production relies on different processes defined in terms of phases and ac-

tivities. Each phase and activity contribute towards different project deliverables (e.g.,

system design, software code, etc.). Among the different deliverables requirements

have distinguished themselves within any software production. It is actually possi-

ble to identify two main distinct processes: the software process and the requirements

process, also called the Twin Processes [Weinberg, 1997]. The software process is to

deliver software systems. Whereas, the requirements process is to deliver software

requirements. Thus, the two processes are mutually controlling twin processes. In

mutually controlling processes, the requirement process is to narrow the discrepancy

between what is wanted and what is documented. On the other hand discrepancies give

information needed for control. They may differently run in the life cycle, but they are

always present, exercising feedback control over the other. Empirical evidence should

mutually control each process. Empirical evidence, drawn from mutually controlling

the two processes, furthermore provides a basis for changing requirements processes

[Weinberg, 1997]. Each Development context differently and diversely interprets re-

lationships between software processes and requirements processes. Although it is

possible to identify these two processes, the requirement process is often a phase or

activity of the software development process. As in manufacturing, software and re-

quirements engineering acknowledge various processes, usually, defined in terms of

development phases and activities. Each development process1 differently takes into

account the relationships among phases and activities. In the effort to standardise soft-

1Any textbook in software engineering (e.g., [Pfleeger, 1998, Sommerville, 2001]) extensively intro-
duces the most popular software development processes.

Chapter 2. Related Work 9

ware development few processes rose to popularity.

Figure 2.1 shows, one of the first software development processes, the Waterfall

Model. It consists of five main phases: requirements, design, coding and unit test-

ing, system integration, Operation and maintenance. The waterfall model implies that

development phases follow each other sequentially. Thus, according to the waterfall

model, the software development starts with the requirements phase and finishes with

the operation and maintenance phase. The underlying hypothesis is that it is possible

to discover (and freeze) all software requirements at the beginning of each project.

Unfortunately, this hypothesis is unrealistic [Weinberg, 1997].

Figure 2.1: The Waterfall Model.

Many software development processes arose in order to fix the frozen-requirement

assumption. The iterated Waterfall Model was an attempt to improve the linear cas-

cade waterfall model. The iterated waterfall model repeats each phase, if faults are

discovered in successive phases. For instance, the requirements phase is repeated ev-

ery time faults are discovered during the design phase. This creates a two-flow chain

development process, which traces faults back in order to fix them. Although this

Chapter 2. Related Work 10

model is an improvement, it is still inflexible and the cost of accommodating changes

is high. Figure 2.2 shows the Boehm’s Spiral Model [Boehm, 1998], which merges

risk management with software development. The spiral model consists of successive

risk-driven iterations of incremental phases. The underlying hypothesis is that risk

considerations can drive software production. Although, this is generally true, risk

considerations drive the spiral model to behave like other models (e.g., waterfall, evo-

lutionary development [Arthur, 1992], etc.) in particular (unfortunate) conditions (e.g.,

stable requirements, volatile user requirements, high-risk stringent requirements, etc.)

[Boehm, 1998]. These cases diminish the benefit of the risk-driven spiral model.

Figure 2.2: The Spiral Model.

Figure 2.3 shows another model, the V model. It relates testing activities with re-

quirements and design activities. In particular, unit testing and system testing will be

used to verify system design. The testing activities should guarantee that system de-

sign has been implemented correctly. Similarly, before going into operation acceptance

testing should guarantee that the system complies with its high level requirements. The

relationships in the V model imply that if anomalies arise during testing and verifica-

Chapter 2. Related Work 11

tion, the requirements, design and implementation phases are repeated in order to fix

any fault. The V model has been widely used in safety-critical contexts. One of the

reasons is that it stresses the deliverables of each development phase [Storey, 1996].

This allows the planning of software development in terms of specific deliverables.

Figure 2.3: The V Model.

After the early software development processes, many other models (e.g., Uni-

fied Process [Hunt, 2000], Xtreme Programming, etc.) arose in order to adapt soft-

ware production to specific design paradigms (e.g., Object-Oriented) or markets (e.g.,

[Levine et al., 2000]). Although they differently interpret software production, all mod-

els rely on specific development phases and activities (e.g., requirements, coding, test-

ing, verification, etc.). They differ each other on how development phases, activities

and deliverables relate each other. For instance, the Unified Process supports Object-

Oriented design. The Unified Process is a framework which guides the tasks, people

and products of the design process [Hunt, 2000]. It is a framework because it provides

the inputs and the outputs of each activity, without giving any restriction how each ac-

tivity must be performed. On the other hand it is called a process because its primary

Chapter 2. Related Work 12

aim is to define: who is doing what, when they do it, how to reach a certain goal (i.e.,

each activity), and the inputs and outputs of each activity [Hunt, 2000]. Each phase

and activity contribute towards specific deliverables (e.g., use cases, class diagrams,

etc.) that capture specific information about the software system. The use cases, for

instance, should capture most of the high-level system requirements. The requirements

change management process is therefore tailored to the specific design methodology

[Leffingwell and Widrig, 2003].

As many organisations adopted software processes, it was needed to be able to

assess whether organisations were effectively adopting and improving development

processes. Many standards and process improvement models (e.g., CMM, SPICE and

ISO 9000) assess the extent to which organisations are able to standardise and improve

their developments processes. Figure 2.4 shows the Capability Maturity Model (CMM)

[Paulk et al., 1993]. The CMM consists of five incremental levels. Each level relies

on key process areas (e.g., requirements management, software product engineering,

etc.). Notice that each level introduces new key process areas and relies on the key

process areas of the previous level(s). The CMM puts great emphasis on requirements,

quality and change managements [Wiegers, 1999]. The incremental levels represent

a progressive enhancement of software processes. Regardless the adopted software

process, requirements and change management are key areas across all CMM levels.

CMM Level Key Process Areas

Level 1 None

Level 2 Requirements management

Software project planning

Software project tracking and oversight

Software subcontract management

Software quality assurance

Software configuration management

Level 3 Organization process focus

Organization process definition

Training program

Integrated software management

Software product engineering

Intergroup coordination

Peer reviews

Level 4 Quality process management

Software quality management

Level 5 Fault prevention

Technology change management

Process change management

Figure 2.4: The Capability Maturity Model (CMM).

Chapter 2. Related Work 13

Just as new software processes arose, new requirements processes arose. Any re-

quirement process has emerged as a very critical part affecting the whole software

process. Despite their criticality, requirements processes are usually less structured

than software processes. This is probably because the software and requirements pro-

cesses are diverse and they deal with different problems. In general, any require-

ment process involves specific activities (e.g., requirements elicitation, requirements

negotiation, etc.) that contribute to identify and verify software requirements. Some

requirements processes may enhance particular activities (e.g., ethnographic studies,

task analysis, etc.) in order to take into account various types of requirements. Som-

merville and Sawyer identify guidelines of best practice in requirements engineering

[Sommerville and Sawyer, 1997a]. A requirements process can therefore implement

some of those guidelines. Similarly to the CMM, they also propose a requirements

engineering maturity model [Sommerville and Sawyer, 1997a]. Figure 2.5 shows the

requirements engineering process maturity levels.

Figure 2.5: The requirements engineering process maturity levels.

The requirements engineering maturity model assesses the maturity of the require-

Chapter 2. Related Work 14

ments process adopted by an organisation. Differently from the CMM, the require-

ments engineering process maturity model consists of three levels. The first two levels

are comparable to the first two level in the CMM. The last level, Level 3 - Defined, is

comparable to the other three remaining levels (from Level 3 to Level 5) in the CMM.

With respect to the CMM, the requirements engineering maturity model further defines

the maturity of requirements engineering practice. Although the CMM involves several

requirements engineering activities, it provides limited support to define requirements

engineering maturity based on industry standards and practice [Linscomb, 2003].

Unfortunately, any software process tends to concentrate effort on requirements at

the start of any project. This limits any understanding of requirements evolution and

makes it hard to recover good quality data on requirements evolution.

2.1.2 Empirical Requirements Evolution

Empirical analyses of requirements evolution (generally speaking, of requirements en-

gineering methodologies and practices) are still too patchy. Even the empirical val-

idation of requirements engineering methodologies is still a fertile and challenging

research as well as practice field. The comparison between related requirements en-

gineering methodologies lacks of any prominent analysis. On one hand it is difficult

to collect and analyse long-term data about requirements evolution. The life cycles of

many software systems span several years or even decades. On the other hand require-

ments engineering methodologies currently provide limited support in order to analyse

requirements evolution [Jarke and Pohl, 1994, van Lamsweerde, 2000]. Practitioners

perceive that analysis and collection of long-term data just overload their requirements

practices. In spite of this set of circumstances, recent empirical analyses of require-

ments evolution provided encouraging results.

Measuring requirements (quality) [Hooks and Farry, 2001] represents the basis for

improvement. Most of the time managers believe that measuring requirements is too

expensive (in terms of resources) and time consuming, despite requirements engineer-

ing being the systems development activity with the highest return on investment pay-

off [Van Buren and Cook, 1998]. Others think that it is possible to measure require-

ments only after project completions. The main motivation of measuring requirements

Chapter 2. Related Work 15

is to identify opportunities for improvement. It is possible to measure the quality of

requirements on data drawn from Change Requests (CRs) and Discrepancy Reports

(DRs) [Hooks and Farry, 2001]. These are mainly different names for stimulus for

changes into requirements. Simple measures of requirements (e.g., statistics derived

from the analysis of requirements counting, trends, percentages, as well as classifi-

cations) can be very effective. These metrics represent a basis for Changes Analysis.

Moreover, they represent a means for comparing projects. A systematic account of

requirements measures provides input for improving and changing organisation re-

quirements processes. Many issues in changing requirements processes are due to the

lack in requirements culture within organisations, lack of empirical evidences, as well

as difficulties in identifying stable (or volatile) requirements. Engineering tools and

analysis models have to support any shift in requirements processes.

New requirements can arise from operational anomalies [Lutz and Mikulski, 2003].

Although the resulting requirements may be incomplete, requirements evolution can

capture rare environmental events. On one hand very rare events may raise anomalies.

On the other hand requirements evolution can be a strategy for dealing with unforeseen

critical events. New requirements can enhance system features (e.g., fault tolerance) in

order to tackle corelated failures (e.g., hardware failures) [Lutz and Mikulski, 2003].

For instance, software requirements may evolve in order to compensate hardware

degradation [Lutz and Mikulski, 2003]. Requirements changes may therefore prop-

agate through holistic (or systemic) dependencies. Monitoring these dependencies

may provide further information about requirements evolution. Requirements evolu-

tion may therefore provide diverse strategies dealing with environmental changes (e.g.,

frequent policy changes, rare events, hardware degradations, etc.). Release manage-

ment and cost assessment may further benefit from analyses of requirements evolution

[Stark et al., 1998]. These empirical results point out that current requirements engi-

neering or maintenance analyses provide limited support to understand requirements

evolution. This is because maintenance methodologies tend to focus on classifying and

managing requirements changes, rather that on analysing or anticipating the changes

[Lutz and Mikulski, 2003]. Note that evolution is different than reuse. Requirements

reuse should take into account a trade off between process and product viewpoints

Chapter 2. Related Work 16

[Lam, 1997, Lam et al., 1997]. Reusing requirements has to be carefully adapted to

specific software contexts [Lam, 1997, Lam et al., 1997].

Other studies [Hammer et al., 1998] identify poor requirements baselines as ma-

jor causes for requirements evolution. Although poor requirements baselines trigger

only specific types of requirements changes, it justifies the up front effort in writ-

ing quality requirements specifications. Guidelines [Sommerville and Sawyer, 1997a]

and quality requirements specifications [Alexander and Stevens, 2002, Lauesen, 2002]

may reduce changes that increase rework on requirements [Hammer et al., 1998].

Despite the complex nature of requirements evolution, the reported results have

effectively used very simple empirical analyses. One common practice across the dif-

ferent case studies is the classification of requirements changes. On one hand clas-

sifications represent the basis of software measurement [Fenton and Pfleeger, 1996].

They are very simple tools that support analyses throughout the software life cycle.

On the other hand classifications evolve themselves due to work practice. Moreover it

is difficult to compare classifications across different and diverse contexts. Thus, it is

easy to construct classifications within specific domains. Although classifications are

strongly related to their origins [Bowker and Star, 1999].

It is possible to analyse requirements evolution by looking at simple classifications

of requirements and requirements changes. The PROTEUS project [Harker et al., 1993,

PROTEUS, 1996] classifies requirements as stable or changing. Table 2.1 shows the

PROTEUS classification that consists of six types of requirements, i.e., STABLE,

CHANGING: Mutable, Emergent, Consequential, Adaptive and Migration. This sim-

ple classification stresses two important aspects of requirements evolution. The first is

that stable requirements do exist. The second is that each type of requirement origi-

nates from different sources within software environments (e.g., business core, envi-

ronmental turbulence, etc.). The PROTEUS project moreover identifies other dimen-

sions of change2. Each dimension describes a different aspect relevant to requirements

evolution. The PROTEUS project further elaborates the analysis of requirements evo-

lution by identifying the major problem areas associated with changes. The PROTEUS

2Source of change; chronology and rate of change; impact of change; risk of change; implementation
of change: representation of change, communication regarding change, recording change, validation of
change, methodology of change, cost of change; speed of implementing change; organisational culture.

Chapter 2. Related Work 17

Table 2.1: The PROTEUS classification of types and origins of changing requirements.

Type of requirement Origins

STABLE Technical core of the business

CHANGING

Mutable

Emergent

Consequential

Adaptive

Migration

Environmental turbulence

Stakeholder engagement in requirements elicitation

System use and user development

Situated action and task variation

Constraints of planned organisational development

project identifies ten problem areas (i.e., requirements engineering process, project

management, contractual boundaries, change process, standards, assessment of im-

pact, communication, levels of specification, traceability and documentation) associ-

ated with changing requirements. The analysis of these problems points out two things.

The first is that changes occur for diverse reasons, which are unrelated to “errors” in

the specification process. Thus, any sound specification process may experience re-

quirements changes. The second is that changes may themselves be unproblematic,

but the consequences of changes may cause problems.

Table 2.2 shows another classification (very similar to the PROTEUS classifica-

tion) of volatile requirements [Sommerville and Sawyer, 1997a]. The requirements

classification provides a strategy in order to simplify requirements change manage-

ment. Moreover, system design should take into account information about volatile

requirements. For instance, loosely coupled modules may easily accommodate re-

quirements changes. Requirements classifications help to identify volatile require-

ments and to plan for likely changes [Sommerville and Sawyer, 1997a]. Knowing the

likelihood of requirements changes supports change management. General system re-

quirements are very expensive to change (e.g., architecture changes) and may involve

different stakeholders. Change management policies and strategies may help to isolate

volatile requirements from stable ones . The definition of change management policies

is important in order to have a formal mechanism to deal with changes in require-

ments. Empirical analyses have to support change management policies. A systematic

Chapter 2. Related Work 18

Table 2.2: Types of volatile requirements.

Type of requirement Description

Mutable

requirements

These requirements change because of changes to the environment

in which the system is operating.

Emergent

requirements

These requirements cannot be completely defined when the system

is specified but which emerge as the system is designed and imple-

mented.

Consequential

requirements

These requirements are based on assumptions about how the system

will be used. When the system is put to use, some of these assump-

tions will be wrong. Users will adapt the system and find new ways

of use its functionalities. This will result in demands from users for

system changes and modifications.

Compatibility

requirements

These requirements depend on other equipment or processes. As

these change, these requirements also evolve.

methodology to analyse requirements evolution helps to trace requirements changes

and to assess the impact of change. Unfortunately, the volume of information related

to requirements evolution represent a major issue in any change management policy.

Simple instruments like maintaining the history of change may become impractical

[Lauesen, 2002, Robertson and Robertson, 1999]. After a while, the list of changes is

so huge that it is difficult to realise what is going on without a systematic method to

shape angles for analysing evolutionary information. For instance, The classification

of requirements changes or the allocation of requirements to system functions effec-

tively support the analysis of evolutionary data. It is therefore possible to narrow the

focus of the analysis in order to identify evolutionary properties.

The analysis of the origins of changes may produce other classifications relevant

to requirements evolution. Table 2.3 shows a classification of change factors for re-

quirements [Kotonya and Sommerville, 1996]. It is important to note that all these

classifications capture diverse socio-technical relationships. That is, socio-technical

interactions drive system evolution, hence, requirements evolution.

Chapter 2. Related Work 19

Table 2.3: Factors leading to requirements changes.

Change factor Description

Requirements errors,

conflicts and

inconsistencies

As requirements are analysed and implemented, errors and incon-

sistencies emerge and must be corrected. These problems may be

discovered during requirements analysis and validation or later in

the development process.

Evolving

customer/end-user

knowledge of the system

As requirements are developed, customers and end-users develop a

better understanding of what they really require from a system.

Technical, schedule or

cost problems

Problems may be encountered in implementing a requirement. It

may be too expensive or take too long to implement certain require-

ments.

Changing customer

priorities

Customer priorities change during system development as a result

of a changing business environment, the emergence of new com-

petitors, staff changes, etc.

Environmental changes The environment in which the system is to be installed may change

so that the system requirements have to change to maintain compat-

ibility.

Organisation changes The organisation which intends to use the system may change its

structure and processes resulting in new system requirements.

2.1.3 Modelling in Requirements Engineering

Modelling has attracted a substantial effort from research and practice in require-

ments engineering. In spite of quality and effective development processes, many

faults in software systems are traced back to high level requirements. This has mo-

tivated the increasing use of modelling in requirements engineering. The aim of re-

quirements modelling is twofold. On one hand modelling contributes towards cor-

rectness and completeness of requirements. On the other hand modelling supports

validation and verification of requirements. The overall goal of modelling is mainly

to reduce the gap between system requirements and design. Modelling tackles two

main requirements issues. The first is that translations from requirements to design

are error-prone. The second is that stakeholders (e.g., system users, system engineers,

Chapter 2. Related Work 20

etc.) have often contradicting understandings about requirements. These problems

have motivated the blossom of many modelling methodologies and languages (e.g.,

UML [Rumbaugh et al., 1999]) used in practice. The requirements-design gap has

been believed to be the major source of requirements changes. Although this gap is

one of the sources of requirements changes, research on requirements evolution (e.g.,

[PROTEUS, 1996]) clearly points out other origins of changes.

Modelling3 incorporates design concepts and formalities into requirements speci-

fications. This enhances our ability to assess requirements correctness and complete-

ness. For instance, Software Cost Reduction4 (SCR) consists of a set of techniques

for designing software systems [Heitmeyer, 2002]. The SCR techniques support the

construction and evaluation of requirements [Heitmeyer et al., 1998]. The SCR tech-

niques use formal design techniques, like tabular notation and information hiding, in

order to specify and verify requirements. According to information hiding princi-

ples, separate system modules have to implement those system features that are likely

to change. Although module decomposition reduces the cost of software develop-

ment and maintenance, it provides limited support for requirements evolution. SCR

therefore provides limited mechanisms to deal with requests of requirements changes

[Wiels and Easterbrook, 1999], hence requirements evolution.

Intent Specifications [Leveson, 2000] further support the analysis and design of

evolving systems. The Intent Specifications consist of five different hierarchical lev-

els5. Each level provides rationale (i.e., the intent or “why”) about the level below.

Each level has mappings that relate the appropriate parts to the levels above and below

it. These mappings provide traceability of high-level system requirements and con-

3Recent research is pursuing further results in model-driven software development. Model-driven
software development supports the automation of development activities (e.g., verification and vali-
dation) by techniques like model-checking or theorem proving. Among relevant research subjects
are, for instance, model-driven development (e.g., [Weiss et al., 2003]), model-driven testing (e.g.,
[Gargantini and Heitmeyer, 1999]) and human factors modelling (e.g., [Rushby, 2002]).

4David L. Parnas developed some of the SCR underlying techniques. A collection book contains the
most relevant work by Parnas [Hoffman and Weiss, 2001].

5Level 1, system purpose; Level 2, system principles; Level 3, blackbox behavior; Level 4, design
representation; Level 5, physical representation or code. Note that a recent version of Intent Specifi-
cations [Weiss et al., 2003] introduces two additional levels: Level 0 and Level 6. Level 0, the man-
agement level, provides a bridge from the contractual obligations and the management planning needs
to the high-level engineering design plans. Level 6, the system operations level, includes information
produced during the actual operation of the system.

Chapter 2. Related Work 21

straints down to physical representation level (or code) and vice versa. In general, the

mappings between Intent levels are many-to-many relationships. In accordance with

the notion of semantic coupling, Intent Specifications support strategies6 to reduce

the cascade effect of changes [Weiss et al., 2003]. Although these strategies support

the analysis and design of evolving systems, they provide limited support to under-

stand the evolution of high-level system requirements7. The better our understanding

of requirements evolution, the more effective design strategies. That is, understand-

ing requirements evolution enhances our ability to inform and drive design strategies.

Hence, evolution-informed strategies enhance our ability to design evolving systems.

Modelling methodologies and languages advocate different design strategies. Al-

though these strategies support different aspects of software development, they orig-

inate in a common Systems Approach8 to solving complex problems and managing

complex systems. In spite of common grounds, modelling methodologies and lan-

guages usually differ in the way they interpret the relationships among heterogeneous

system parts (e.g., hardware components, software components, organisational compo-

nents, etc.). For instance, the SCR requirements method [Heitmeyer et al., 1998] relies

on the Four Variable Model [Parnas and Madey, 1995]. The Four Variable Model de-

scribes the system requirements in terms of mathematical relations over environmental

quantities. Environmental quantities can be either monitored or controlled. The sys-

tem measure the monitored quantities, whereas it control the controlled ones. Sets of

6Possible strategies are: (1) eliminating tightly coupled (i.e., many-to-many) mappings (2) minimis-
ing loosely coupled (i.e., one-to-many) mappings.

7Leveson reports the problem caused by “Reversals” in TCAS (Traffic Alert and Collision Avoidance
System) [Leveson, 2000]: “About four years later the original TCAS specification was written, experts
discovered that it did not adequately cover requirements involving the case where the pilot of an intruder
aircraft does not follow his or her TCAS advisory and thus TCAS must change the advisory to its own
pilot. This change in basic requirements caused extensive changes in the TCAS design, some of which
introduced additional subtle problems and errors that took years to discover and rectify.”

8The essays collected in [Hughes and Hughes, 2000] give an historical account of the Systems Ap-
proach: “Practitioners and proponents embrace a holistic vision. They focus on the interconnections
among subsystems and components, taking special note of the interfaces among various parts. What
is significant is that system builders include heterogeneous components, such as mechanical, electrical,
and organizational parts, in a single system. Organizational parts might be managerial structures, such
as a military command, or political entities, such as a government bureau. Organizational components
not only interact with technical ones but often reflect their characteristics. For instance, a management
organization for presiding over the development of an intercontinental missile system might be divided
into divisions that mirror the parts of the missile being designed.”, INTRODUCTION, p. 3.

Chapter 2. Related Work 22

measured and controlled quantities define the basic relations: NAT, REQ, IN, OUT, and

SOF. The relation NAT defines environmental constraints on the system behaviour. The

relation REQ defines system constraints on the environmental quantities. Whereas, the

relations IN and OUT define the mappings between the monitored variables and the in-

put devices, and between the output devices and the controlled variables respectively.

Finally, the relation SOF defines the behaviour of the software system. These relations

describe the software system behaviour as a whole, hence the software requirements

specification (SOFTREQ) [Heitmeyer et al., 1998].

Similarly, a reference model for requirements and specifications defines system

and environment in terms of basic artifacts [Gunter et al., 2000]. The reference model,

called the WRSPM model, consists of five artifacts: World (W), Requirements (R),

Specification (S), Program (P) and Machine (M). The World artifact identifies the do-

main knowledge that provides presumed environment facts. The Requirements artifact

indicates what the customer needs from the system, described in terms of its effect

on the environment. The Specification artifact provides enough information for a pro-

grammer to build a system that satisfies the given requirements. The Program im-

plements the specification using the specific programming platform in the Machine

artifact. The Machine artifact provides the basis for programming a system that sat-

isfies the requirements and specification. The Word, Requirements and Specification

artifacts pertain mostly to the environment. Whereas, The Specification, Program and

Machine artifacts pertain mostly to the system. In the WRSPM model, the Specifica-

tion artifact has a central position between the environment and the system. Whereas,

the Requirements artifact stands between the World and the Specification artifacts.

The Intent Specifications extend over three dimensions [Leveson, 2000]. The ver-

tical dimension consists of five (or seven [Weiss et al., 2003]) hierarchical levels that

represent the intent. Along the horizontal dimension, the Intent Specifications decom-

pose the whole system in heterogeneous parts: Environment, Operator, System and

Components. The third dimension, Refinement, further breaks down both the Intent

and Decomposition dimensions into details.

This type of model (e.g., Four Variable Model, WRSPM model and Intent Specifi-

cations) represents software systems in terms of basic parts (e.g., environmental quan-

Chapter 2. Related Work 23

tities, artifacts, intents, etc.). Although these models give different representations,

the Systems Approach represents a common origin for all of them. A common as-

pect is that models identify the relations between the different system parts. On one

hand these relations constrain the system behaviour (e.g., by defining environmental

dependencies). On the other hand they are very important for system management

and design. Among the different relations over heterogeneous system parts and hi-

erarchical levels is Traceability. Requirements traceability consists of emergent het-

erogeneous system information providing a basis for management throughout soft-

ware development. Traceability identifies a multidimensional [Jarke, 1998] structure

that enhances requirements management. Among the dimensions of traceability are

pre-traceability and post-traceability [Gotel and Finkelstein, 1994]. Pre-traceability

points to requirements sources, whereas post-traceability points to those artifacts (e.g.,

other deliverables) that are related to requirements [Gotel and Finkelstein, 1994]. Al-

though traceability supports management, traceability often faces many issues in prac-

tice [Gotel and Finkelstein, 1994, Ramesh, 1998]. In particular, traceability faces evo-

lution [De Michelis et al., 1998]. With respect to traceability, requirements evolution

therefore identifies another system dimension.

Looking at requirements from a heterogeneous engineering [Bijker et al., 1989]

perspective further explains the complex interaction between system (specification)

and environment. The most common understanding in requirements engineering con-

siders requirements as goals to be discovered and (design) solutions as separate tech-

nical elements. Hence requirements engineering is reduced to be an activity where

technical solutions are documented for given goals or problems. Differently according

to heterogeneous engineering, requirements specify mappings between problem and

solution spaces [Bergman et al., 2002a]. Both spaces are socially constructed and ne-

gotiated through sequences of mappings between solution spaces and problem spaces.

Figure 2.6 shows a representation of the Functional Ecology model, which implies

that requirements emerge as a set of consecutive solution spaces justified by a problem

space of concerns to stakeholders [Bergman et al., 2002b]. This view defines evolu-

tionary cycles of iterations in the form:

solution � problem � solution �

Chapter 2. Related Work 24

This implies that requirements engineering processes consist of solutions searching for

problems, rather than the other way around (that is, problems searching for solutions).

Space Description

S - Local

Solution Space

A Local Solution Space is the current solution

space, and all locally accessible solution spaces that

can be reached from the current solution space using

available skills and resources offered by the princi-

pals.

GS - Global

Solution Space

A Global Solution Space is the space of all feasi-

ble solution spaces, including those not currently

accessible from the local space, that require mobil-

isation of all principals and technologies to be ac-

complished. All local solution spaces exists within

relevant global solution space. That is, S is a sub-

space of GS.

St - Current

Solution Space

The Current Solution Space embodies the history of

solved social, technical, economical and procedu-

ral problems that constitute the legacy of previously

solved problems at current time t. The current solu-

tion space exists within a local solution space. That

is, St is a subspace of S.

Pt - Proposed

System Problem

Space

A Proposed System Problem Space is the space that

contains all the recognised problem chosen by the

principals at time t that justify the proposed system.

St � 1 - Proposed

Solution Space

A Proposed Solution Space, or simply a Proposed

Solution, is a subspace of the future solution space

St � 1 that includes the reconciliation of St to Pt , i.e.,

St � Pt � St � 1 .

Figure 2.6: Functional ecology solution space transformation.

The main difference between the solution space transformation and other require-

ments engineering models is its emphasis on stakeholder interactions. Requirements,

as mappings between solutions and problems, represent an historical account of solved

socio-technical problems within industrial settings. Requirements therefore capture

the social shaping [MacKenzie and Wajcman, 1999] of systems. This heterogeneous

account of requirements is convenient to capture requirements evolution.

2.1.4 Modelling Requirements Evolution

Despite the existence of many modelling methodologies and languages, very few ad-

dress requirements evolution. The PROTEUS Project [PROTEUS, 1996] proposes a

formal framework for representing and reasoning about requirements changes. The

formal representation consists of a goal-structures framework. Table 2.4 describes the

Chapter 2. Related Work 25

fundamental components of the goal-structures framework: goals, effects, facts and

conditions.

Table 2.4: The basic components of the PROTEUS goal-structures framework.

Component Description

Goal A goal is a statement, or assertion, identifying a property that the system has

to comply with. Each goal has an associated strategy that describes how that

goal may be achieved.

Effect An effect is similar to a goal that may need further decomposition or explana-

tion. Effects may be goals, which may be unachieved (or unnecessary).

Fact A fact is a true statement (or assumption about property of the system).

Condition A condition, like facts, are basic undecomposable statements. Differently than

facts, conditions may be false. Consistent sets of conditions represent scenar-

ios to analyse the behaviour of the system (under different sets of conditions).

The facts in some scenario should support or satisfy the decomposition of goals. In

this way, the set of facts represents a model of the system being developed, a scenario

represents the input to that model, and the goals represent requirements on the output,

or behaviour, of that system. The specification of strategy for a goal, along with other

goals and facts expressed in the model, means that the goal would be satisfied. This

is a local support for the goal, because there is an assumption that any other goal

referred to can be achieved through further decomposition. The decomposition of

goals continue until all goals are reduced to facts (or conditions). The model alone

will provide a global support for every goal in the structure. In practice a strategy will

need to provide a solution to multiple goals.

The PROTEUS goal-structures framework represents requirements and their inter-

actions with respect to requirements changes. Most importantly, the framework cap-

tures the interactions between system and the environment in which it operates. These

interactions (i.e., between requirements, and between system and environment) form a

basis for sensitivity and impact analyses. In order to be effective, these analyses have

to take into account information about requirements volatility and rationale for design

decisions. The formal representation furthermore supports reasoning on requirements

Chapter 2. Related Work 26

changes. It supports sensitivity analysis and impact analysis of requirements changes.

In order to assess the risk associated with requirements changes it is necessary to assess

the likelihood of requirements changes together with the impact of changes. The com-

bination of sensitivity and impact then provides a measure of risk [PROTEUS, 1996].

Table 2.5 shows the information framework required to perform sensitivity and impact

analyses [PROTEUS, 1996]. The information framework identifies the input to the

analyses, how to acquire evolutionary information and the output of the analyses.

Table 2.5: Information framework for sensitivity and impact analyses.

Sensitivity Analysis

Input Information Gathering Output

Knowledge of external fac-

tors that could cause require-

ments to changes. Past his-

tory of changes. Experience of

change. Requirements classi-

fications. Experience of past

history of design sensitivity to

changing requirements.

From: documentation, worst

case scenarios, brainstorming,

reviews and checklists.

List of requirements most

likely to change, with like-

lihood in what way, by how

much and when in life cycle.

List of design areas most

susceptible to changes.

Impact Analysis

Input Information Gathering Output

In what way and by how much

the requirements changes.

Where the change impacts.

Design rationale based on

requirements. What other re-

quirements are affected. When

change is likely to occur.

From sensitivity analysis.

Traceability between re-

quirements and design area.

Recording and traceability of

design rationale. Traceability

between requirements.

Estimation of impact on de-

sign. Indication of conflict and

ripple effects. Estimation of

impact on cost and other objec-

tives.

Finally, the framework represents a means of communication in the development

environment. The formal and informal representations of requirements allow easy

communication and translation of requirements as well as requirements changes. Al-

though the goal-structures framework provides an alternative representation of require-

Chapter 2. Related Work 27

ments, it has many similarities to other requirements models (e.g., the Four Variable

Model).

Modelling requirements evolution can unfold according to two general strategies.

The first is to model requirements in such a way that they can easily evolve. The second

is to model evolution itself into requirements models. The latter is the underlying

idea of modelling the evolution of artifacts [Rolland, 1994]. The Evolutionary Object

Model [Rolland, 1994] captures design history. Thus, each evolutionary object is a

representation of its own historical evolution9.

Another strategy is directly to model requirements evolution. One way of mod-

elling requirements evolution is by ordered sequences of requirements releases. Re-

quirements therefore evolve by changes from one release to the successive one. This is

the intuitive explanation of the idea behind the logical framework [Zowghi et al., 1996,

Zowghi and Offen, 1997] for modelling and reasoning about requirements evolution.

The logical framework relies on two basic operations: a nonmonotonic inference,
���

,

and a belief revision, � . Figure 2.7 shows how these operations combined capture re-

quirements evolution. The nonmonotonic inference,
���

, completes the requirements

model by assuming defaults within the specific domain model. The initial incomplete

set of requirements is completed by applying relevant defaults or tentative assump-

tions about the problem domain. There could be possibly multiple, mutually con-

tradictory ways of completing the requirements model10. Stakeholders (e.g., system

users, requirements engineers, etc.) will choose how to complete the requirements

model. Whereas, the belief revision, � , maps (nonmonotonic) requirements models

in order to obtain a revised nonmonotonic theory representing the new requirements

model. The underlying theory of belief change provides a semantic basis for rational

belief revision11. Thus, requirements evolution consists of completing requirements

9The classification of object evolution consists of three categories: transformation, expansion and
mutation. A transformation affects the object definitions (e.g., renaming the object). An expansion
changes the object spatial environment that results from the relationships with other objects (e.g., in-
troducing new relationships with other objects). A mutation introduces links between different types of
objects.

10Sets of nonmonotonic consequences or extensions complete the nonmonotonic requirements model.
11The underlying theory formalise the process of revising beliefs. The principle of minimal change

(or criterion of information economy) would retain as much as possible old beliefs in future time (or
state). The belief framework provides three operations: Expansion, Contraction and Revision.

Chapter 2. Related Work 28

(by nonmonotonic inferences) and refining them (by belief revisions).

Figure 2.7: Modelling requirements evolution.

There is little coherence among the different models that address requirements evo-

lution. On one hand this is due to the complexity of requirements evolution. On the

other hand requirements evolution has received little attention. Although the evolution-

ary models capture diverse aspects, it is possible to identify stakeholder interactions as

an important driver of evolution.

2.2 Towards Requirements Evolution Engineering

Requirements engineering research and practice highlight evolution as an important as-

pect of software production. Although research results and experience are still patchy,

requirements evolution emerges as a comprehensive viewpoint that allows us to fur-

ther understand the mechanisms of socio-technical system evolution. On the other

hand requirements evolution provides new insights in research and practice in soft-

ware production.

Chapter 2. Related Work 29

Iterative development processes emphasise evolutionary aspects of software pro-

duction. Although management and development processes provide overall organisa-

tion in terms of development activities and phases, they require to be tailored for spe-

cific software systems and design contexts. Empirical analyses allow us to understand

evolutionary aspects of software production. Requirements evolution provides new

grounds for understanding the mechanisms of socio-technical system evolution. Mod-

elling requirements (evolution) captures the understanding of software system evolu-

tion. Although requirements evolution emerges as an important aspect of software pro-

duction, requirements engineering tools12 provide limited support for the analysis of

requirements evolution. Requirements management tools mainly support requirements

(change) management based on traceability. For instance, requirements management

tools (e.g., Telelogic DOORS � and IBM Rational � RequisitePro �) rely on trace-

ability in order to assess the impact of requirements changes. Most requirements tools

fall dawn into two categories: requirements and changes management tools. Other

tools support specific requirement analyses (e.g., The NASA Automated Requirements

Measurement, ARM, Tool provides measures that can be used to assess the quality of

requirements specification documents).

By contrast, this thesis takes requirements evolution as inherent in software produc-

tion. It investigates the current understanding of requirements evolution and explores

new directions in requirements evolution research. The empirical analysis of industrial

case studies highlights software requirements evolution as an important issue. Unfor-

tunately, traditional requirements engineering methodologies provide limited support

to capture requirements evolution. This thesis highlights a set of methodologies to-

wards Requirements Evolution Engineering (REE). This thesis addresses the problem

of empirically understanding and modelling requirements evolution.

12The INCOSE (International Council on Systems Engineering) Tools Database Working Group con-
ducted a survey on Requirements Management Tools. The questionnaire used for the survey takes into
account different aspects (e.g., capturing system element structure, traceability analysis, etc.) of require-
ments tools. The Atlantic Systems Guild Inc. provides another review of Requirements Tools.

Chapter 3

An Avionics Case Study

This chapter describes the investigation of an avionics safety-critical industrial case

study with respect to requirements evolution. The investigation of an industrial case

study allows us to acquire input from practice in requirements engineering. This is to

take realistic account of requirements evolution. Moreover, a case study provides do-

main knowledge that characterises the specific industrial context. Case studies drawn

from industry stress the crucial aspect of domain knowledge. Most of requirements

engineering methodologies have serious practical limitations, because they lack of do-

main knowledge.

3.1 Description of the Case Study

The case study consists of software that satisfies the most stringent level of the standard

DO178B [RTCA, 1992]. Two main business stakeholders cooperate in the definition

of the system requirements. The customer, who provides the general system require-

ments, and the supplier, who produces the software. The remainder of this section

describes features of the case study that are relevant to requirements evolution. The

description is twofold: the system requirements and the development process.

30

Chapter 3. An Avionics Case Study 31

3.1.1 System Requirements

The investigation of the case study takes into account the system software require-

ments. They have been drawn from the general system requirements provided by the

customer. The definition of the software requirements involves both the customer and

the supplier in elicitation, specification and negotiation. The supplier is responsible

for producing the system software and its compliance with the specified software re-

quirements. The system software requirements fall into two main categories: Safety

Requirements; Functional and Operational Requirements.

Safety Requirements. A system safety assessment analyses the system architecture

to identify and classify the failure conditions. Safety related requirements are then

identified and allocated to the software or hardware requirements. The allocation of

requirements to software or hardware can be unclear at some stage of the develop-

ment life cycle. Thus there are cases in which the allocation is delayed until further

information is available correctly to allocate requirements.

Functional and Operational Requirements. The customer provides the system re-

quirements that contain information needed to describe the functional and operational

software requirements. These include timing and memory constraints and accuracy

requirements where applicable. Requirements also contain details of inputs and out-

puts the software has to handle with special emphasis to those using non-standard data

formats. As for the safety requirements if the allocation of requirements to software or

hardware is unclear any decision is delayed until further notice.

3.1.2 Development Process

The software development process of the case study is an instance of the V model1,

which emphasises relations between the design and coding phases with that of (inte-

1The V model is one of the many models (e.g., Waterfall, V model, Spiral, etc.) that have been
proposed in software engineering. The most common software development processes are introduced
in any general software engineering textbook, e.g., [Pfleeger, 1998, Sommerville, 2001]. Most of them
agree that software development is iterative. Hence software as well as software requirements can only
be specified in subsequent releases, which emphasise the evolutionary nature of software as well as
software requirements.

Chapter 3. An Avionics Case Study 32

gration as well as system) testing, verification and validation. The V model implies

that if problems arise during verification and validation, they are reported and even-

tually fixed by refinements and corrections in the requirements and design as well as

in the implementation. Then the verification and validation phases are repeated again

to reassess the software system. The development process points out the iterative na-

ture of designing and implementing software systems. The remainder of this section

describes the software development process and its iterative aspects.

Software Development Process. Figure 3.1 shows the development process of the

case study. The bulk of the software development task can be split into two broad

areas, that of software design and code and the other of verification.

Requirements
Elicitation

System
Process

Software
Design

Coding
Testing
Review

Requirements Error Bus

Software Error Bus

Figure 3.1: The safety-critical software development process of the case study.

The subsequent development phases, from Requirement Elicitation to Testing and

Review, point out issues and changes, which give rise to feedback loops in the devel-

opment process. Reported issues fall into two main categories, depending on whether

or not they affect the requirements or just the design and implementation of the sys-

tem. Figure 3.1 shows them as two different error busses: Software Error Bus and

Chapter 3. An Avionics Case Study 33

Requirements Error Bus. Notice that as the software development progresses from

requirements to design and code, problems require to modify deliverables of the previ-

ous phases (in other words, changes move backwards in the development process). The

supplier has defined only general guidelines dealing with changes, because the size and

scope of these changes differ for each modification and for each project. For example,

while coding a part of the software detailed design a problem may be found with the

design or an easier implementation may be constructed which requires to modify the

original design. Moreover, issues, hardware changes or even stakeholder changes may

give rise to requirements changes at any stage of the software project.

As design progresses the partition and refinement of software requirements cause

an expansion of information, which extend through subsequent activities (e.g., testing)

and across deliverables (e.g., code). Activities as well as deliverables reflect the result-

ing fragmentation. For example, the coding phase consists of a collection of interre-

lated implementing phases. The boundaries between these phases may overlap due to

unclear process definitions or implementation’s dependencies. Thus the integration of

some code items may begin before the implementation of the remainder is completed.

This is often the case, even in small simple projects. It is therefore very difficult to

identify and define the limits of any phase and the transitions between phases. Thus

elements within each phase may be at different progress stages. A strict configuration

management policy requires to maintain traceability in order to ensure that the final

code is verified and it is complete and consistent with its high level requirements.

Software verification mainly consists of testing and review analysis. Specific doc-

uments, produced at the beginning of the project, identify to which extent software

verification is required at each phase of the development process. Changes affecting

certified software require to repeat the entire software verification. Whereas require-

ments changes require to iterate the entire development process. The extent to which

all phases comply with the required changes depend on the time elapsed since certifica-

tion. If changes occur during the period between flight trials and certification, project

documents are required to be consistent with the implemented software. Hence, re-

views need to comply with occurring changes depending on the size of the modifica-

tions.

Chapter 3. An Avionics Case Study 34

Requirements Documentation. Figure 3.2 shows a representation of the phases of

the development process and its deliverables (i.e., system requirements, software func-

tional requirements, etc.). The System Requirements consist of the requirements iden-

tified for the whole systems without distinguishing between software and hardware

requirements. The System Process translates the System Requirements in the Software

Functional Requirements. The Software Functional Requirements consist of a set of

documents that specify the requirements for each software function identified for the

system. These software functions will then be designed, implemented and integrated

by subsequent activities in the development process.

Figure 3.2: Development activities and deliverables.

Anomalies (e.g., faults, failures, misbehaviours, etc.) encountered during devel-

opment are reported by Anomaly Reports. Anomaly Reports contain all information

that may be useful to the development team in order to assess possible faults. For each

recognised fault, needed changes are allocated to specific software releases in order to

fix it. The scope of these changes ranges from requirements to software code. Thus,

Anomaly Reports continuously provide feedback. Notice that certification requires to

Chapter 3. An Avionics Case Study 35

trace all changes.

Product Line Aspects and Standards. Hardware dependent software requirements

arise not directly from the system requirements, but from the implementation of those

system requirements. This is normally due to the way hardware has been designed to

meet its requirements as well as an indirect result of safety related requirements. The

hardware dependent software requirements characterise the specific product-line in

terms of hardware constraints and safety requirements. Certification authorities assess

mainly by a certification plan whether the proposed software development process is

commensurate with the proposed software level. The plan of the case study complies

with the specific guidelines in the standard DO-178B [RTCA, 1992].

3.2 Empirical Investigation

The case study consists of software for an avionics system. The supplier maintained

a data repository in order to trace requirements changes. Requirements changes oc-

curred due to the Anomaly Reports during the projected. This section describes the

empirical investigation of the case study. The investigation consists of diverse em-

pirical analyses of the data repository. The empirical analyses aim to identify re-

quirements properties that may enhance our understanding of requirements evolution

[Anderson and Felici, 2000a, Anderson and Felici, 2000b]. The investigation moves

from a general viewpoint towards a product-oriented viewpoint. The lack of any well

established methodology to analyse requirements evolution denies us any preferred

analysis to commence our investigation. Hence we adopt an incremental strategy in

order to effectively conduct our investigation. The incremental strategy furthermore

allows us to refine our investigation into subsequent empirical analyses. The remain-

der of this section describes all the empirical analyses conducted on the case study.

3.2.1 Requirements Evolution

The initial empirical analysis of the avionics case study looks at simple requirements

trends, which are extrapolated from the data repository of requirements changes. There

Chapter 3. An Avionics Case Study 36

are 22 successive releases of the software requirements specification, each one corre-

sponding to a software release2. Figure 3.3 shows the total number of requirements

changes, i.e., Added, Deleted and Modified Requirements, over the 22 software re-

leases. We have been able to draw Figure 3.3, because each requirements change was

uniquely identified in the data repository. Furthermore, the configuration management

policy within the project required to uniquely identify the releases of the software re-

quirements specification as well as the software code. The data repository consists

of the allocation of specific requirements changes to specific software requirements

specification releases.

Figure 3.3: Number of requirements changes per software release.

The trend of requirements changes provides little information about evolutionary

features of requirements, but it emphasises requirements evolution. Figure 3.4 shows

that the size (in terms of number of requirements) of the requirements specification

2There is a correspondence one-to-one between the versions of the requirements specification and
the software releases.

Chapter 3. An Avionics Case Study 37

rises over the software releases. The increasing trend points out that there is a predom-

inance of new added requirements into requirements changes. This is also confirmed

by looking at the requirements changes repository.

Figure 3.4: Total number of requirements per software release.

The increasing number of requirements is due to stakeholders who better under-

stand system requirements and refine them into smaller and more precisely stated re-

quirements. Another reason is that stakeholders discover new requirements that were

missing at the beginning due to lack of information and requirements dependencies.

Finally, design, implementation and testing activities provide further feedback into the

requirements.

3.2.2 A Taxonomy of Requirements Changes

Changes affect requirements attributes like variables, functionality, explanation, trace-

ability and dependency. These attributes are usually embedded within paragraphs spec-

ifying requirements. The use of requirements templates can effectively be a way to

Chapter 3. An Avionics Case Study 38

collect and represent requirements (e.g., [Robertson and Robertson, 1999]). A struc-

tured way of representing, collecting and organising requirements attributes may be

useful to identify information for controlling and monitoring requirements evolution.

The inspection of the history of changes points out the types of changes that have

occurred in the requirements. Table 3.1 shows a taxonomy of requirements changes in

the case study.

Table 3.1: Types of changes identified by inspection of the history of changes.

Type of Change Description

Add, Delete and

Modify requirements

Each requirements change can be traced to the basic activities, i.e.,

adding, deleting and modifying requirements, of changing the re-

quirements documents.

Explanation Some requirements may need further explanation in order to min-

imise misunderstandings. The explanation paragraphs of require-

ments are changed for clarity.

Rewording Requirements remain unchanged, but they are rephrased for clarity.

Traceability Traceability links to other deliverables are changed.

Non-compliance Requirements are changed, because they do not apply any more

to the forthcoming software package. This is the case when the

requirements specification is based on that one of a previous project.

Partial compliance Requirements are changed, because they partially apply to the forth-

coming software package. This is the case when the requirements

specification is based on that one of a previous project.

Hardware modification Requirements changes are due to hardware modifications. This type

of change usually applies to hardware dependent software require-

ments.

Add, Delete, Rename

variables or parameters

The variables or parameters to which requirements refer change.

Range modification The range of variables or parameters to which requirements refer

changes.

A taxonomy of requirements changes, like the one of Table 3.1, may be used in

several ways. It may help to identify requirements issues. For instance, if changes

overlap two categories, the affected requirements may need subsequent refinements.

This may be the case of too complex or unclear requirements. This is the case when

Chapter 3. An Avionics Case Study 39

there are requirements that apply both to system software and hardware. The deci-

sion whether to allocate requirements to software or hardware may be delayed until

further information are available. A side effect of prioritising requirements changes is

that usually there exist different evolving paths in terms of requirements changes (e.g.,

splitting requirements in smaller and more detailed requirements or modify and clarify

their specifications). On the other hand constructing a stable taxonomy of requirements

change is very difficult. This is because a taxonomy of changes reflects work practice

within the specific development environment. For instance, let us assume that an in-

ternal policy requires always to delete requirements and to add “new” requirements in

stead of modify requirements. The analysis of requirements changes will point out a

predominance of added and deleted requirements. Hence any taxonomy of changes

should be constructed by taking into account engineering aspects (e.g., specific type of

changes) as well as organisational ones (e.g., change policy). Hence on the one hand

a taxonomy is a design tool, which may serve to classify as well as monitor require-

ments changes. On the other hand a taxonomy reflects the work practice within the

development organisation.

3.2.3 Requirements Maturity Index

Metrics [Fenton and Pfleeger, 1996] may quantify software properties. The standard

IEEE 982 [IEEE, 1988a, IEEE, 1988b] suggests a Software Maturity Index to quantify

the readiness of a software product. Changes from a previous baseline to the current

baseline are an indication of the current product stability. This section applies the

Software Maturity Index to software requirements, hence the Requirements Maturity

Index (RMI) quantifies the readiness of software requirements. The RMI is an indirect

measure that relies on two primitives (or direct measures): RT and RC. RT is the

total number of software requirements in the current release. RC is the number of

requirements changes, i.e., added, deleted or modified requirements, allocated to the

current release. Equation 3.1 defines the RMI.

RMI �
RT

� RC

RT
� (3.1)

Figure 3.5 shows the RMI calculated for each software release. The RMI results

Chapter 3. An Avionics Case Study 40

sensitive to requirements changes occurring release after release. It fails to capture his-

torical information (e.g., number of releases, cumulative number of changes, average

number of changes, elapsed time since introduction of changes, etc.) about require-

ments changes. Thus every time a substantial subset of requirements changes, the

RMI decreases because it just reflects the introduction of these changes without cap-

turing any historical evolutionary information. The RMI therefore captures stepwise

(release-by-release) changes, hence it is too sensitive to changes introduced in a single

release over-degrading its assessment about the readiness of requirements.

Figure 3.5: Requirements Maturity Index for each software release.

3.2.4 Ageing Requirements Maturity

The behavioural analysis (or performance) of the RMI on the case study (see Figure

3.5) points out that the RMI lacks to capture the history of changes. It fails to take into

account evolutionary information about changes. This is because the RMI captures

stepwise (release-by-release) changes. Further evolutionary historical information may

Chapter 3. An Avionics Case Study 41

be obtained by answering questions like: How long have changes been introduced?

How many releases were there without changes? How many changes have occurred

since the first release? Most of this information can be obtained by indirect measures

of requirements features.

We propose to refine the RMI by taking into account historical evolutionary infor-

mation [Anderson and Felici, 2002]. The simplest historical information consists of

the Cumulative Number of Requirements Changes (CRC), which measures the number

of changes occurred since the first releases. Equation 3.2 based on the CRC and the

number of software releases, n, defines the Average Number of Requirements Changes

(ARC).

ARC �
CRC

n
� (3.2)

Combining the CRC and the ARC together with the RMI, we propose two refine-

ments of the RMI: Requirements Stability Index (RSI) and Historical Requirements

Maturity Index (HRMI).

Equation 3.3 defines the Requirements Stability Index (RSI). The RSI, in contrast

to the RMI, takes into account the cumulative number of requirements changes, CRC.

Hence RSI is sensitive not just to the total number of requirements, RT , but also to the

cumulative number of changes, CRC. If requirements have never changed since the

first releases, the SRI assumes its maximum value, 1. This is quite unlikely in practice.

The RSI will usually assume values below 1 and above 0. But if the cumulative number

of changes, CRC, is greater than the total number of requirements, RT , the RSI will be

negative. This is the case of very volatile requirements.

RSI �
RT

� CRC

RT
� (3.3)

Equation 3.4 defines the Historical Requirements Maturity Index (HRMI), which

relies on the total number of requirements, RT , and the average number of requirements

changes, ARC. Taking the average number of changes spreads the cumulative number

of changes over the number of releases. The result is that the HRMI is smoother that

the RMI. Hence the HRMI is les sensitive than the RMI to changes over consecutive

releases.

HRMI �
RT

� ARC

RT
� (3.4)

Chapter 3. An Avionics Case Study 42

The definitions of RMI, RSI and HRMI are quite similar. All them imply that either

the maturity or stability of requirements is a function of the sizes of requirements and

changes. The intuition behind the two refinements, i.e., RSI and HRMI, is twofold.

Changes affect the stability of the requirements. But the maturity of the requirements

depends on the elapsed time (in terms of releases) since the introduction of changes.

Hence if requirements stabilise (e.g., the average number of changes decreases), their

maturity gradually increases with the delivery of subsequent releases. Figure 3.6 shows

the simulation of the above metrics on a sample scenario.

500

600

700

800

900

R
eq

uir
em

en
ts

0 2 4 6 8 10 12 14 16 18 20

Software Releases

a. Total Number of Requirements.

30

40

50

60

70

R
eq

uir
em

en
ts

Ch
an

ge
s

0 2 4 6 8 10 12 14 16 18 20

Software Releases

b. Number of Requirements Changes.

c. The three indexes: RMI, RSI, and HRMI.

Figure 3.6: Comparison of the three indexes by simulation on a sample scenario.

Chapter 3. An Avionics Case Study 43

Figure 3.6(a) and 3.6(b) respectively show the basic samples of total number of

requirements and number of changes. Figure 3.6(c) shows the three indexes: RMI, RSI

and HRMI. The comparison of the three indexes shows clearly the different behaviours

with respect to the sample scenario. The HRMI is less sensitive and more stable than

the RMI with respect to changes occurring in consecutive releases.

3.2.5 Ageing Requirements Maturity: Empirical Evidence

This section assesses the proposed quantitative models, i.e., RSI and HRMI, by ap-

plying them on the case study. Figure 3.7 shows the average number of requirements

changes, ARC, over the software releases. The increasing trend of ARC characterises

the case study. This is probably because many requirements were unclear or roughly

defined at the start of the project. Feedback from design, implementation and (integra-

tion) testing provides further information to refine the requirements.

Figure 3.7: Average number of requirements changes (ARC).

Chapter 3. An Avionics Case Study 44

Other case studies may manifest different distributions. Any distribution depends

on the specified system, the adopted design process and policy, and the system life

cycle.

As shown by the simulation in the previous section, the RSI has a decreasing trend.

Figure 3.8 shows the RSI for each software release. The RSI decreases linearly. The

RSI measures the stability of a set of requirements. A positive RSI (i.e., 1
�

RSI �

0) means that the Cumulative Number of Requirements Changes (CRC) is less than

the Total Number of Requirements (RT), hence some requirements were unchanged.

A stable set of requirements would have a RSI close to 1, whereas a volatile set of

requirements would have a RSI close to 0 or negative. Similarly, a null or negative

RMI means that the CRC equalises or is greater than the RT . In this unfortunate cases

it is quite likely that most of the requirements changed, although there could still be

unchanged requirements. This would identify stable requirements in a very volatile set

of requirements. As for the ARC, the linear decreasing trend of the RSI characterises

the case study. Other case studies may manifest different trends of stabilities.

Figure 3.8: Requirements Stability Index (RSI).

Chapter 3. An Avionics Case Study 45

Figure 3.9 shows the HRMI calculated over the 22 successive releases of the case

study. The HRMI smoothly follows the iterations of the development process. That is,

decreasing trends are associated with the introduction of major changes (establishing

new major releases). The introduction of major changes triggers a stabilisation pro-

cess over the subsequent releases. During the stabilisation phases the HRMI increases

again. HRMI is less sensitive than the RMI to changes over consecutive releases. It

captures the requirements process and its stabilisation.

Figure 3.9: Historical Requirements Maturity Index (HRMI).

In conclusion this section assesses the proposed metrics, i.e., RSI and HRMI. The

analysis supports the intuition behind the two metrics. The RSI evaluates the over-

all stability of a set of requirements. The HRMI evaluates the requirements maturity

with respect to the requirements evolution process. The empirical results stress that

the distribution of requirements changes is an important driver for the RSI and the

HRMI. This empirical result relates the requirements evolution process to the develop-

ment process. The better the development process controls the distribution of changes,

Chapter 3. An Avionics Case Study 46

the better is the control over the maturity of requirements. Hence the distribution of

changes allows us to control the maturity of requirements. Different distributions im-

ply different trends of RSI and HRMI.

3.2.6 Functional Requirements Evolution

The previous analyses point out the trends of requirements evolution, but they pro-

vide us little information about the volatile and stable part of requirements. In order

to provide a more detailed analysis our focus [Anderson and Felici, 2002] moves from

requirements evolution as a whole towards functional-oriented analyses of require-

ments evolution. The software functional requirements of the case study fall into eight

different functions for which separate documents are maintained. Figure 3.10 shows

the number of requirements changes over the software releases for each function, i.e.,

F1-F8, forming the whole software requirements specification.

Figure 3.10: Requirements evolution from a functional viewpoint.

Chapter 3. An Avionics Case Study 47

The picture in the top-left corner of Figure 3.10 shows the total number of changes

for the whole requirements specification. All the other pictures show the percentage

of requirements changes occurred in the corresponding release for each function. The

functional perspective of Figure 3.10 clearly points out that functions change differ-

ently. Some functions are more stable (volatile) than others. For instance, the function

F1 changes very little in one of the early releases. F1 therefore is a stable part of the

software requirements. The stability of F1 is interesting, because the specific function

describes the hardware architecture of the system onto which the software architec-

ture is mapped. Hence the software architecture of the system is stable. This type

of information can be useful in future similar projects. The identification of the sta-

ble (volatile) parts of requirements is very important in order to establish software

product-lines characterised by specific variability points [Bosch, 2000].

The different distributions of changes moreover point out that each function has its

own stability, which may change over subsequent software releases. Stable require-

ments may become volatile, and vice versa. Figure 3.11 shows the cumulative number

of requirements changes for each function.

Figure 3.11: Cumulative number of requirements changes for each function.

Chapter 3. An Avionics Case Study 48

Figure 3.11 points out that the likelihood that changes can occur into specific func-

tions is inconstant over the software releases. It seems that functions that are likely

to change in early software releases change less in late releases, and vice versa. This

aspect helps to relate requirements changes to the development process. The different

occurrences of requirements changes throughout the development process point out

some dependencies among functional requirements [Anderson and Felici, 2001]. De-

pendencies may be used to effectively assess the impact of changes into requirements

and to plan evolution. Understanding these dependencies may improve the require-

ments process.

The proportion between the number of requirements and the cumulative number of

changes for each function provides an intuitive notion of stability. Figure 3.12 shows

the scatter plot of requirements size, in terms of number of requirements, versus re-

quirements evolution, in terms of cumulative number of requirements changes at the

22nd software release.

Figure 3.12: Number of requirements versus cumulative number of requirements

changes.

The scatter plot investigates the relationship between the cumulative number of re-

quirements changes versus the number of requirements at the 22nd software release.

Chapter 3. An Avionics Case Study 49

The aim is to identify whether there is any relationship between sizes of requirements

and changes. Intuitively, the functions below the mid line (i.e., the number of re-

quirements equalises the cumulative number of changes) are more stable than the ones

above the line. Figure 3.12 shows that there exist a linear relationship between the

number of changes occurring into a requirements specification and its size. But there

are outliers such as, e.g., F2, F5 and F8. Figure 3.12 provides further confirmation that

the function F1, i.e. the software architecture, is a stable part of the system.

The RSI similarly provides equivalent stability results. Figure 3.13 shows the RSI

calculated for each function at the 22nd software release. The functions with negative

RSI, i.e., F5 and F6, are the most unstable of the system.

Figure 3.13: Requirements Stability Index for each function at the 22nd software re-

lease.

Both figures, i.e., Figure 3.12 and Figure 3.13, rely on the comparison of the sizes

of requirements and changes. They provide measurement tools that can be easily ap-

plied to any dataset at any stage of the development process.

The functional perspective allows us to acquire further information about require-

Chapter 3. An Avionics Case Study 50

ments evolution. Refinements may provide another way to obtain further understand-

ings. Figure 3.14, for instance, shows the number of requirements changes per soft-

ware release. Figure 3.14 shows the same requirements evolution trend of Figure 3.3.

Figure 3.14 refines Figure 3.3 by taking into account a classification of requirements

changes. Requirements changes fall into two major categories: changes that have the

authority to modify delivered software, changes that are unauthorised to modify deliv-

ered software. The latter consists of changes that affect associated functionalities, but

only documentation, traceability or non-delivered code. Implementation may trigger

this type of change that usually adapts the documentation to the delivered code.

Figure 3.14: Classified requirements changes per software release.

It is furthermore interesting to look at the size of the sets of requirements changes

allocated for each software releases. Figure 3.15(a) and Figure 3.15(b) respectively

show the histogram for the set of changes affecting delivered code and the one non

affecting delivered code. The histograms provide information about the probability of

the number of changes allocated to a single release.

Chapter 3. An Avionics Case Study 51

a. Changes having permission to mod-

ify delivered code.

b. Changes not having permission to

modify delivered code.

Figure 3.15: Histograms of the size of the sets of requirements changes allocated to a

single software release.

3.2.7 Requirements Dependencies

The functional analysis of requirements evolution points out dependencies between

functions. The rationale behind requirements changes may assess the extent to which

two functions depend on each other. We evaluate the dependencies between two func-

tions by counting the number of common anomaly reports arose during the software

development process. The underlying hypothesis is that the rationale behind require-

ments changes reflects the dependencies between functions. Thus if requirements

changes are due to the same anomaly report, then the affected functions depend on

each other. The number of common anomaly reports defines a Dependency Index be-

tween sets of requirements. Table 3.2 shows the dependencies matrix between the

functions forming the software requirements specification. For example, the Depen-

dency Index between the functions F4 and F8 is 5. This means that F4 and F8 have

5 anomaly reports in common. The blank entries in Table 3.2 indicate that the two

Chapter 3. An Avionics Case Study 52

functions (that identify each blank entry) miss any common anomaly report.

Table 3.2: Requirements dependencies matrix.

F1 F1

F2 2 F2

F3 3 F3

F4 3 1 1 F4

F5 1 4 2 6 F5

F6 1 1 F6

F7 1 1 1 F7

F8 1 4 3 5 9 2 F8

The requirements dependencies matrix provides us a practical tool to assess to

which extent software requirements depend on each other. Moreover, it identifies those

anomaly reports that trigger changes into different functions. Further analyses of these

anomaly reports may point out important information about requirements. The depen-

dencies matrix can be used in several ways. For instance, if similar systems are part

of product-lines [Bosch, 2000, Weiss and Lai, 1999], the matrix can monitor depen-

dencies over sequences of successive software products. The dependencies between

software functions may decrease over successive software products. Any dependency

reduction (e.g., erasing dependencies equal to 1) depends on our ability effectively

to identify high modular and low coupling system functions. Thus the dependencies

matrix may support the identification of functions forming product-lines within any

software organisation.

The assessment of the impact of changes relies on requirements traceability. The

dependencies matrix may further refine impact analyses. A single change request may

trigger a cascade of potential changes. The number of requirements that may poten-

tially be change peaks every time that requests of changes propagate across traceability

links. Further information when available will discard most of these latent changes

[Hull et al., 2002]. The combination of the dependencies matrix with traceability in-

formation may allow us effectively to refine requests of changes by discarding those

Chapter 3. An Avionics Case Study 53

requests of changes that violate established dependencies. On the other hand the de-

pendencies matrix may highlight those changes that update the dependencies matrix.

Despite their usefulness both traceability information and the dependencies matrix fail

to capture any temporal dimension of requirements changes. For instance, require-

ments changes may depend on each other, but they are allocated to different releases.

Requirements prioritisation depends on several factors (e.g., costs, stakeholders, de-

velopment activities, etc.) that constrain the entire development process. Taking into

account temporal information about requirements changes may allow us to further re-

fine impact analyses.

3.2.8 Visualising Requirements Evolution

The empirical analyses in the previous sections point out diverse aspects of require-

ments evolution. This section investigates whether it would be possible to capture

some of the evolutionary aspects of requirements by visual modelling. Visual mod-

elling should take account of arising evolutionary aspects of requirements. The visual

model should combine a process viewpoint together with an activity one. The aim is to

classify, structure and quantify evolutionary features of requirements. Using a graph-

ical model is effective at representing the overall picture of requirements evolution.

A diagrammatic representation may furthermore embed more intuitive structures than

any text-based representation. The underlying structures should reflect how require-

ments are engineered throughout the entire development process. Finally a graphical

representation may allow us easily to identify similarities over functions and product-

lines.

In order to understand work practice we have analysed the requirements specifica-

tion by inspections [Gilb and Graham, 1993]. The requirements specification consists

of eight different documents, one per each software function identified for the sys-

tem. A unique alphanumerical string identifies each requirement. The format of the

alphanumeric string is: “Document / Section / Requirements id”. Thus each require-

ments document represents a collection (or set) of uniquely identified requirements.

Each requirements document has therefore a partial order over the alphanumerical id.

Browsing through this order relationship, requirements changes have been traced back-

Chapter 3. An Avionics Case Study 54

wards in order to reconstruct the history of the requirements documents. That is, re-

quirements changes in the history of changes have been unfolded backwards. This

allows us to analyse the history of the requirements documents throughout the entire

development process. The backward reconstruction of the history of changes identi-

fies a structured workflow of requirements evolution. This structure is the basis of our

graphical model for requirements evolution.

Our graphical model represents requirements evolution in terms of requirements

changes, i.e., added, deleted and modified requirements. For each type of require-

ment change there is a corresponding representation. Figure 3.16 shows a graphical

workflow representation of the three operations3.

a. Operation workflow.

Add: Add � n � introduces a subset of

n new contiguous requirements

ordered according to their in-

dex into the current requirements

document.

Delete: Del � n � deletes a subset of

n contiguous requirements from

the current requirements docu-

ment.

Modify: Mod � n � modifies a subset of

n contiguous requirements into

the current requirements docu-

ment.

b. Operation description.

Figure 3.16: Graphical workflow of the three basic requirements changes.

The subset in the middle of the three identifies the subset of changed requirements.

In case of modified requirements the set of requirements is unchanged, because the

structure of the requirements documents is unchanged by Mod operations. Notice that

3Here n represents the size of the subset of changed requirements.

Chapter 3. An Avionics Case Study 55

although the graphical representation in Figure 3.16 is informal, the different trees (in

terms of different edges and the order of the leafs) imply rough syntax and semantics.

Sequences of requirements changes intuitively capture the requirements evolution

process and its complexity. Figure 3.17 shows the requirements evolution workflow

for the function F1. The shape (even without detailed information) of the three cap-

tures the complexity of the requirement evolution process. The order of the operations

is left to right. The most left node (i.e., the root of the three) is the initial set of re-

quirements. The requirements evolution workflow for F1 (see Figure 3.17) is simple

and linear. A sequence of basic operations (i.e., Add, Del, Mod) changes the initial set

of requirements.

Figure 3.17: Graphical workflow of requirements evolution for F1.

The graphical representation of requirement evolution for the other functions in the

case study is more complex than that one of F1. This emphasises how the structured

workflow can easily capture the requirements evolution process. Figure 3.18 shows

the requirements evolution workflow for the function F4. The requirements evolution

workflow of F4 (see Figure 3.18) is more complex than the one of F1 (see Figure 3.17).

Requirements changes are allocated over different software releases. This explains the

Chapter 3. An Avionics Case Study 56

graphical order (left to right) of some operations.

Figure 3.18: Graphical workflow of requirements evolution for F4.

The two workflows show that the graphical representation can capture requirements

evolution processes. The graphical representation gives rise to further questions: Is

it possible to identify evolutionary processes in terms of requirements changes? Is

there any relation between the complexity of requirements evolution workflows and

the cost and risk of changing requirements? Is there any relation between requirements

evolution paths and system dependability [Felici, 2000, Felici, 2003]? We will further

analyse these questions in the remainder of this thesis.

3.2.9 Sequence Analysis

Previous sections point out that it is possible to identify trends and processes of require-

ments evolution for each function. This section aims to assess whether it is system-

atically possible to identify requirements evolution processes. Kemerer and Slaughter

[Kemerer and Slaughter, 1999] show how Sequence Analysis may identify phases in

the development process of software systems. They apply Sequence Analysis in order

Chapter 3. An Avionics Case Study 57

to identify phases of software changes. They show the empirical methodology on two

large software systems.

Our goal here is to extend the previous empirical results by Sequence Analysis.

The underlying hypothesis is twofold. The basic assumption is that there exist different

processes of requirements evolution in terms of requirements change. Moreover, it is

possible to identify requirements evolution processes by Sequence Analysis. This anal-

ysis differs from the work of Kemerer and Slaughter [Kemerer and Slaughter, 1999] in

two main aspects. We are applying Sequence Analysis to requirements changes. We

are applying Sequence Analysis in order to identify subprocesses that contribute to the

evolution of requirements as a whole.

3.2.9.1 Sequence Analysis: Definition

Sequence Analysis consists of three main steps: Phase Mapping, Gamma Analysis and

Gamma Mapping. Table 3.3 describes the three steps that are applied sequentially.

Table 3.3: Description of Phase Mapping, Gamma Analysis and Gamma Mapping.

Analysis Description

Phase Mapping

(Step 1)

Phase mapping identifies phases in sequentially ordered events.

Phases consist of consecutive occurrence of events of the same type.

Gamma Analysis

(Step 2)

Gamma analysis calculates the Goodman-Kruskal gamma score

that assesses the proportion of A phases that precede or follow B

phases in a sequence. A pairwise gamma score is calculated by

Gamma � A � B ��� P � Q
P � Q

where P is the number of A phases preceding B phases, and Q is the

number of B phases preceding A phases.

Gamma Mapping

(Step 3)

Gamma Mapping orders the phases according to their precedence

and separation scores. The precedence score for a phase ranges

from � 1 to 1 and is the average of its gamma scores. The separation

score between a pair of phases ranges from 0 to 1 and consists of

the absolute value of the pairwise gamma scores.

Chapter 3. An Avionics Case Study 58

3.2.9.2 Sequence Analysis: Empirical Results

The three-step sequence analysis has been performed by WinPhaser4. We have used

the tool with the default settings (e.g., the minimum phase length is three, that is,

three events of the same type occurring in a sequence identify a phase). Requirements

changes fall into six types: NEW, MOD, DEL, NDO, MDO and DDO. The first three

types5 (i.e., NEW, MOD and DEL) are requirements changes that affect the require-

ments and may also affect delivered software. The latest three types of changes6 (i.e.,

NDO, MDO, and DDO) are requirements changes that cannot affect delivered soft-

ware, that is, they can affect just documentation or non-delivered code. Notice that

this classification is very general and independent from any domain specific classifi-

cation (e.g., classification according to the type of change: logical error, compliance,

hardware modification, etc.). The remainder of this section shows the results for each

step of the Sequence Analysis: Phase Mapping, Gamma Analysis and Gamma Map-

ping.

Phase Mapping

We first applied Phase Mapping to the entire sequence of requirements changes. Fig-

ure 3.19 shows the phase map7 for all the requirements changes. The map identifies

four main phases corresponding to four major releases of the requirements specifica-

tion. The first phase occurs in the period between 0 and 20. The other phases occur

respectively in the periods: 40-50, 70-80 and 90-100. All the phases consist mostly of

new requirements. Notice that the map labels some of the phases by Pending. Pend-

ing phases point out that it is impossible to identify any coherent phase, because the

corresponding subsequences consist of collections of different requirements changes.

Pending phases may be collapsed with other phases by manual refinements.

As with previous analyses we then perform the Phase Mapping analysis on the

4WinPhaser: Sequence Analysis and Comparison, Version 1.1, Copyright c
�

1989-1995, Michael E.
Holmes.

5NEW, MODifiy, and DELete requirements.
6New (NDO), Modify (MDO) and Delete (DDO) requirements.
7All phase maps have been normalised. Thus the scale of the phase length ranges from 0 to 100. The

normalisation is useful in order to compare different phases.

Chapter 3. An Avionics Case Study 59

Figure 3.19: Phase map for all requirements changes.

requirements evolution of each software function. Figure 3.20 shows the phase maps

for three system functions: F2, F4 and F8.

The three maps point out different evolutionary phases for each function. The

map for F2, Figure 3.20(a), and the map for F4, Figure 3.20(b), still exhibit Pending

phases. These may be due to issues in the requirements process as well as requirements

dependencies. The results of Phase Mapping point out different phases of requirements

evolution for each function.

Gamma Analysis

This section shows the Gamma Analysis for three functions: F2, F4 and F8. The

Gamma Analysis calculates the gamma score (see Table 3.3) for each pair of types

of changes. Two other metrics rely on the gamma score: precedence and separation

scores. The precedence score indicates the order of each phase and can range from
� 1 to 1. A precedence score that approaches � 1 (1) indicates that the phase occurs

towards the end (beginning) of the sequence. The separation score quantifies the extent

to which two phases are relatively distinct (or overlap) and can range from 0 to 1. Table

3.4, 3.5 and 3.6 respectively show the Gamma Analysis for the function F2, F4 and F8.

Chapter 3. An Avionics Case Study 60

a. Phase map for F2.

b. Phase map for F4.

c. Phase map for F8.

Figure 3.20: Phase maps of the requirements changes of three system functions.

Gamma Mapping

Gamma Mapping is the final step of Sequence Analysis. The phases are sequentially

ordered from 1 to � 1 according to the precedence score. Then phases are grouped

together according to their separation scores. A single box identifies the phases with

separation scores higher that � 50. Phases with separation scores lower that � 50 are

Chapter 3. An Avionics Case Study 61

Table 3.4: Gamma analysis for F2.

Pairwise Gamma Scores

MDO NDO NEW Pending

MDO .000 .143 -.626 -.905

NDO -.143 .000 -.622 -.905

NEW .626 .622 .000 -.418

Pending .905 .905 .418 .000

Separation Scores

MDO NDO NEW Pending

0.558 0.557 0.555 0.742

Precedence Scores

MDO NDO NEW Pending

0.463 0.557 -0.277 -0.742

Table 3.5: Gamma analysis for F4.

Pairwise Gamma Scores

MOD NDO NEW Pending

MOD .000 -1.000 -1.000 -1.000

NDO 1.000 .000 -.329 1.000

NEW 1.000 .329 .000 .650

Pending 1.000 -1.000 -.650 .000

Separation Scores

MOD NDO NEW Pending

1.000 0.776 0.660 0.883

Precedence Scores

MOD NDO NEW Pending

1.000 -0.557 -0.660 0.217

grouped together into a single box. This is to stress overlaps between phases. The

phases with the separation scores in the same range are finally grouped together into a

oval box. Notice that this way of grouping phases is slightly different than that adopted

by Kemerer and Slaughter [Kemerer and Slaughter, 1999]. We think that this way is

Chapter 3. An Avionics Case Study 62

Table 3.6: Gamma analysis for F8.

Pairwise Gamma Scores

DDO DEL NDO NEW

DDO .000 -1.000 .905 1.000

DEL 1.000 .000 1.000 1.000

NDO -.905 -1.000 .000 .127

NEW -1.000 -1.000 -.127 .000

Separation Scores

DDO DEL NDO NEW

0.968 1.000 0.677 0.709

Precedence Scores

DDO DEL NDO NEW

-0.302 -1.000 0.593 0.709

suitable in order to group phases that consist of few type of changes. The analysis of

Kemerer and Slaughter relies on a richer taxonomy of changes, which implies more

phases that overlap each other.

Figure 3.21 shows the gamma maps for the function F2, F4 and F8. The gamma

maps clearly show different processes of requirements evolution. In spite of the visual

effect of Figure 3.21, the gamma maps fail to capture any temporal relation between

(phases of) maps. The gamma map for F8 consists of two major distinct phases. The

first one in which new requirements are introduced. The second one in which (incor-

rect) requirements are deleted. While F8 evolves according to a two-phase evolution

process, F2 and F4 evolve according to different processes. They both have “Pend-

ing” phases, but occurring in different periods (towards the end for F5 and towards the

beginning for F4). They do not have clear periods in which requirements are deleted.

Despite this there might be deleted requirements in the Pending phases. The Pending

phases may be due to requirements dependencies or issues in the requirement process.

This may provide useful information in order to focus the analysis of requirements

processes. Furthermore, the phases for F2 appear to be closely related each other. This

may be due to the fact that F2 evolves through most of the software releases.

Chapter 3. An Avionics Case Study 63

Figure 3.21: The gamma maps for three functions.

3.3 Lessons Learned

The case study enhances our understanding of requirements evolution drawn from in-

dustry. In summary, our experience is twofold. On the one hand we faced the practical

problem of collecting evolutionary information. On the other hand we analysed the

evolutionary features of requirements. These two main points are discussed in what

follows.

3.3.1 Requirements Evolution Practice

The case study drawn from industry provides us some practical challenges. Similar

challenges may arise in other industrial contexts. Behind any challenge there is actu-

ally an issue to deal with. The remainder of this section discusses the main practical

challenges: Data Collection, Data Organisations and Goals, and Enhanced Visibility.

Chapter 3. An Avionics Case Study 64

Data Collection. Building a data repository of evolutionary data is a difficult task.

There are various critical aspects that affect data collections under evolutionary sce-

narios. The collection of data should be well integrated into the development process.

Poorly integrated data collection will result in increased workload and frustration for

people who are supposed to collect data. Moreover, people will drop any data collec-

tion activity under the pressure of forthcoming deadlines. This will result in out of date

data repositories. Substantial effort will be required in order to update these reposito-

ries during final stages of the development process. In the worst case the repositories

will become unusable and ineffective. They will moreover fail to provide any evolu-

tionary feedback in the development process.

Data Organisations and Goals. The organisation of evolutionary data is another

aspect concerning an effective collection of evolutionary data. Data organisation af-

fects our ability to analyse and identify evolutionary features. Unsuitable organisation

will provide limited support to identify any emergent information. Data organisations

should fulfil specific goals and address specific issues. Why are data collected? Is any

data analysis foreseen? What are the expected outcomes? Who will review/read/use

any (emergent) information? Answering these questions will help to organise an ef-

fective data repository. For instance, assume that a simple history of changes is the

main record of requirements changes. The history of requirements changes easily pro-

vides evidence of tracking changes for certification purpose. But it fails to provide any

feedback in the development process. This is because it lacks any support to identify

evolutionary relationships.

Enhanced Visibility. Issues relevant to requirements evolution affect project visibil-

ity. Poor coordination between different organisational layers may reduce the overall

visibility within the project. Moreover, it affects our ability to assess the impact of

changes (or to perform any sensitivity analysis). A trade-off between process and

product management may tackle visibility issues. On the one hand process manage-

ment is useful to standardise system developments, but it limits our visibility over

software products. On the other hand product management enhances product features

in development processes, but it affects process repeatability across different systems.

Chapter 3. An Avionics Case Study 65

3.3.2 Requirements Evolution Features

This section summarises the outcomes of the empirical analysis of the case study with

respect to requirements evolution. The requirements evolution features emphasise the

specific case study, but it is possible to identify similar features in other case studies

across different industrial contexts. The generality of the empirical investigation allows

us easily to replicate the analyses. We summarise the main requirements evolution

features in what follows.

Quantitative Requirements Evolution. The measurement of requirements evolu-

tion requires a well-defined standard policy to classify requirements changes. Even

a simple classification of requirements changes implies specific work practice and pol-

icy. For instance, the three-type classification of Added, Deleted and Modified re-

quirements identifies the activities of: adding new requirements into the requirements

specification, deleting requirements from the requirements specification and modi-

fying requirements in the requirements specification. A management policy based

on traceability information should support requirements management with respect to

types of changes. For instance, requirements should be uniquely identified by an al-

phanumeric identification, which furthermore allows us uniquely to link changes and

requirements8. The combination of type of change together with traceability informa-

tion allows us to measure various aspects of requirements evolution. Moreover, the

combination of traceability and type of change easily supports the analysis of the im-

pact of changes. Although the impact of changes is critical for project management, it

needs subsequent refinements that take into account various requirements aspects (e.g.,

changes criticality, type of change, history of changes, etc.).

Taxonomy of Requirements Changes. The investigation of the history of changes

points out a taxonomy of requirements changes. The resulting taxonomy characterises

the specific case study as well as its industrial context. The identification of a taxonomy

of requirements changes supports the introduction of standard work practice in the

8Sommerville and Sawyer describe various guidelines for requirements engineering practice
[Sommerville and Sawyer, 1997a].

Chapter 3. An Avionics Case Study 66

development environment. On the one hand a taxonomy will help to reduce biases

due to different experiences and expertise. Moreover, a taxonomy will support the

monitoring of requirements evolution. On the other hand the identification of a stable

taxonomy may require experience across several projects.

Ageing Requirements Maturity. Any simple account of requirements maturity may

be misleading. Our experience shows that any estimation (e.g., by the Requirements

Maturity Index) of requirements maturity should be carefully evaluated in the specific

context. Any measurement of requirements maturity should be interpreted against the

specific development process (e.g., data collection activities, certification constraints,

changes classifications, etc.) and management policy (e.g., priorisation of require-

ments changes, certification constraints, allocation of requirements changes, etc.). Re-

quirements maturity should furthermore take account of ageing factors for require-

ments. For instance, the elapsed time since requirements were introduced (or modified)

may be useful to refine any assessment of requirements maturity. This type of refine-

ment allows us better to link the requirements process with the development process.

On the other hand the concept of maturity can be misleading and misunderstanding

for requirements. Future research should further investigate how to distinguish diverse

requirements maturities. Further investigations should address the relation between

stability, volatility and maturity.

Functional Requirements Evolution. The empirical investigation of the case study

points out that it is possible to identify change-prone requirements from a functional

viewpoint. The analysis identifies stable and volatile requirements. Moreover it em-

phasises different distributions of requirements changes for each function. This infor-

mation may be useful in order to identify reusable requirements (e.g., stable require-

ments of the system architecture) as well as to devise product-lines ranging around

specific variability points. The different distributions of requirements changes point

out dependencies between functional requirements. Requirements dependencies may

be useful to refine the assessment of the impact of changes. On the other hand require-

ments dependencies may be further refined through subsequent releases and similar

projects (within the same product-line).

Chapter 3. An Avionics Case Study 67

Requirements Evolution Processes. The case study points out our inability to vi-

sualise requirements evolution. Our preliminary attempts of visualising requirements

evolution stresses that any visual representation should take into account evolutionary

process features (e.g., releases, activities, etc.) as well as product features (e.g., type of

requirements changes). The representation of requirements evolution processes may

allow us to identify similarities between processes and to distinguish them with respect

to their complexity. The visualisation of requirements evolution and the identification

(by sequence analysis) of different requirements processes show that it is possible to

identify different requirements process for each function. This provides us new in-

sights to investigate requirements evolution in future research.

Chapter 4

A Smart Card Case Study

This chapter describes a viewpoint analysis of a case study drawn from the smart card

industry. The analysis relies on interviews and questionnaires. In spite of sparse data,

the analysis points out many issues that characterise live production environments.

Although changes affect several viewpoints and increase project risk, they are part of

learning and understanding processes in software production. From the analysis it is

evident how even a single change affects many different socio-technical aspects.

4.1 Description of the Case Study

Smart card systems are ubiquitous in our daily life. Credit cards, Pay-TV systems and

GSM cards are some examples of smart card systems. Smart card systems provide

interesting case studies of distributed interacting computer-based systems. Behind a

simple smart card there is a complex distributed socio-technical infrastructure. Smart

card systems are Real-time, Interactive and Security systems.

Real-time Systems. The transactions of smart card systems occur in real-time with

most of the services operating on a 24-hour basis. The availability of smart card sys-

tems is fundamental to support business (e.g., e-money) and obtain customer satisfac-

tion.

68

Chapter 4. A Smart Card Case Study 69

Interactive Systems. Most of smart card systems operate on demand. The requests

of any provided service depend on almost random human factors. Operational profiles

show that human-computer interaction is a critical factor for smart card systems.

Security Systems. Smart card systems often manage confidential information (e.g.,

bank account, personal information, phone credit, etc.) that need to be protected from

malicious attacks.

The smart card context we consider here is certified according to many quality and

security standards. Among these its management process complies with PRINCE2, a

process-based project management approach integrating a product-based project plan-

ning [CCTA, 1998]. PRINCE1 (PRojects IN Controlled Environments) is a structured

method for project management. It is used extensively by the UK Government and

is widely recognised and used in the private sector, both in the UK and internation-

ally. The investigation of the smart card context identifies general aspects of managing

requirements. Although we had access to sparse data, the analysis points out many

issues that characterise live production environments. The remainder of this chapter

describes a viewpoint analysis of the smart card case study. The analysis relies on in-

terviews and questionnaires. On one hand viewpoint discrepancies trigger changes and

increase project risk. On the other hand viewpoint discrepancies provide information

needed for control [Weinberg, 1997]. Discrepancies are part of learning and under-

standing processes in software production. From the analysis it is evident how even a

single change affects many different socio-technical aspects.

4.2 Empirical Investigation

Our analysis of the smart card context consists of stakeholder interviews in the produc-

tion environment. The interviews focus on requirements engineering practice (e.g., re-

quirements management policy) as well as product features (e.g., requirements change,

system boundaries, etc.). A Requirements Engineering Questionnaire (see Appendix

1PRINCE � is a registered trademark of CCTA (Central Computer and Telecommunications
Agency).

Chapter 4. A Smart Card Case Study 70

A) allows us to articulate and structure stakeholder interviews. The questionnaire con-

sists of 152 questions grouped in three sets that address three different viewpoints:

Business, Process and Product. In addition we inspected [Gilb and Graham, 1993]

a range of project documents (e.g., Change Request Form, Issue Log, Change Log

Progress, etc.) to allow us to identify practical examples that help to interpret the re-

sponses to the questionnaire. In this section we provide an analysis of a smart card

production environment. The analysis investigates different requirements viewpoints

[Sommerville and Sawyer, 1997a]. Each viewpoint corresponds to different stakehold-

ers (or management levels [Weinberg, 1997]). Each viewpoint has a preferred type of

requirement that is their main area of concern [PROTEUS, 1996]. Although view-

point discrepancies can trigger requirements changes, viewpoints provide different un-

derstandings of requirements changes, hence requirements evolution. The viewpoints

analysis furthermore points out both process and product aspects.

4.2.1 Requirements Evolution Viewpoints

The analysis of the smart card organisation highlights three different hierarchical view-

points named Business, Process and Product viewpoints. They identify different man-

agement levels and responsibilities within the organisation. Each level corresponds

to different processes and requirements. The three viewpoints provide a hierarchical

management structure that deals with requirements changes. All the three viewpoints

together contribute to the overall management of requirements changes.

The interviews point out how different viewpoints seek different management sup-

port. The business viewpoint would like to increase project visibility2. Although the

smart card context complies with several process standards, project managers would

like to improve their visibility on the product. On the other hand many engineers (e.g.,

programmers, designers, etc.) seem to dislike any control over their work. They hes-

itate whenever management (or anyone else) tries to exercise some control over the

product of their work. Thus, although the business viewpoint retains control over the

2“From what we know about controlling a project, and from what we know about the natural im-
perfections of human beings, the concept of private ownership of work products cannot be part of any
process model. Instead, every process model must conform to the Visibility Principle: Everything in the
project must be visible at all times.” [Weinberg, 1997], p. 226.

Chapter 4. A Smart Card Case Study 71

overall process, it can easily loose visibility over the product. This limits any ability to

modify the product by tuning the process.

Although process-oriented methodologies allow to plan project activities, they usu-

ally provide limited support to tailor processes to product features. This often requires

a shift from process to product-oriented software management. The process viewpoint

would like to enhance its management ability by measuring requirements evolution.

Although the management process keeps track of requirements changes, software met-

rics simply capture ongoing trends. The process viewpoint would like to improve its

measurement practice by taking into account product as well as environmental aspects.

The Product viewpoint would like to enhance its ability to identify reusable soft-

ware functions. It moreover would like to define repeatable processes to allocate func-

tions to smart card system requirements. At this level there are two opposing processes.

The first one (top-down) splits and refines requirements. This creates an informa-

tion flow expansion throughout the development process. The second one (bottom-up)

allocates specific functions to software requirements. This second process could be

improved and enhanced by taking into account past experience. Figure 4.1 shows a

schematic representation of the gap between the two opposing processes.

Figure 4.1: A schematic representation of the gap between the two opposing processes

existing at the product level.

Chapter 4. A Smart Card Case Study 72

The gap between these two processes represents the extent to which an organisa-

tion is able to identify an optimal and effective set of (reusable) software functions.

The smaller the gap, the better the ability in reusing software functions and identify-

ing product-line features3. Although each viewpoint deals with different production

aspects, all viewpoints would like differently to enhance their ability to deal with re-

quirements changes. The remainder of this section describes the change management

features of each viewpoint.

Business Viewpoint. It identifies a high management level within the organisation.

The business management is responsible for starting new smart card projects. At this

organisational level business stakeholders interact in order to define system require-

ments. There are three major business stakeholders: the business core, the customer

and the bureau. The business core consists of those stakeholders (e.g., project man-

agers, marketing managers, etc.) who are responsible for the spin-off of business cases

(i.e., production of smart card systems) related to the supply of smart card systems.

The customer consists of those stakeholders who acquire smart card systems in order

to support their own business (e.g., credit card suppliers, banks, pay-tv providers, etc.).

The bureau consists of those stakeholders (e.g., software engineers, testing engineers,

process managers, production line managers, etc.) who are responsible for the produc-

tion of commissioned smart card systems. Figure 4.2 shows how these stakeholders

interact each other by a high-level requirements process.

The business core provides a portfolio of (generalised) smart card systems. Each

smart card system consists of a product-line that relies on specific technological ar-

tifacts (e.g., JAVA card, card management, public key infrastructure interfaces, etc.)

that support system functionalities (e.g., digital signature, electronic identity, mobile

commerce, etc.). The customer provides further system requirements that constrain

the new smart card systems. Thus, the smart card system requirements consist of

general requirements completed by customer requirements. The bureau department is

3“Requirements ideas often emerge from the system development process and flow upward into the
requirements process. A good requirements process authorizes the participation of developers, focuses
their efforts and make them visible, yet keep them under some sort of control. Without this focus,
developers have difficulty making the very real contribution only they can make.” [Weinberg, 1997], p.
275.

Chapter 4. A Smart Card Case Study 73

Figure 4.2: The high-level smart card requirements process.

responsible for the production of smart card system projects. Notice that the produc-

tion involves the physical production of the smart cards (i.e., hardware production) as

well as the software programming of the smart cards (i.e., software production). The

bureau further constrains (e.g., by additional production requirements) and negotiates

these requirements. When the business stakeholders agree on a requirements baseline,

the project is declared LIVE and the smart card production begins. The production of

subsequent deliveries involves several management and development processes (e.g.,

change management process, software development process, etc.) tailored for the pro-

duction of the commissioned smart cards. During the production of each delivery new

requirements may arise due to smart card system usage (e.g., misbehaviours), further

customer requirements (e.g., new smart card services, additional cards, etc.) or busi-

ness constraints (e.g., production issues).

The business viewpoint therefore deals with the management of system and busi-

ness requirements. These are indirectly related to software requirements. The high-

level requirements process takes into account any relevant arising issue. A list of clas-

Chapter 4. A Smart Card Case Study 74

sified4 issues is maintained throughout any smart card project. Table 4.1 shows some

examples of issues. It is evident that issues involve many socio-technical aspects (e.g.,

work practice, organisational responsibilities, hardware, software, etc.) of smart card

systems.

Table 4.1: Examples of issues that required changes.

Issue Type Description

Change The current version of the Intranet site does not suit Customer Services’ way

of working, there are also issues with printing and viewing through different

browsers.

Change Who will be responsible for supporting the system once it has gone live?

Change Support of the Linux Server:

1. Only 2 members of staff are experienced with Linux and they are not

on call, what happens if a problem occurs when they are unavailable?

2. Can the system sustain downtime from Friday evening until Monday

morning?

3. What is the impact of major hardware failures as it could take 2-3 days

to rectify?

4. Is spare hardware in place / required?

Change X does not currently have visibility of batches processed by the new Z system.

Change X does not currently store Operator details.

General There is a conflict with the software if both X and Y are run simultaneously on

a PC, this results in an error. Action: The decision has been made to accept

this issue and to write additional exception handling into the software to trap

the error.

Most of these issues are concerned with high-level system requirements and may

trigger changes. Both the bureau and the customer report issues encountered with the

commissioned smart cards. Thus the issues can be relevant to the smart cards as well

as to their production. A unique request of change corresponds to each issue classified

as Change. All requests of changes require further investigation in order to establish

4Types of issues are, e.g., Risk, General, Concern, Change.

Chapter 4. A Smart Card Case Study 75

what modifications are needed and to which extent. The change management process

takes into account all the change requests. Although the Change issues may trigger

changes, other issues (e.g., General) may also trigger changes that are easily accepted

and accommodated. The other types of issues (e.g., Risk) are usually concerns that

may eventually trigger changes. But any definitive action (e.g., change) has been de-

layed until further information are available. Any type of issue is monitored from the

business viewpoint, then the process viewpoint deals and manages all needed changes.

Process Viewpoint. It consists of all the management processes adopted within the

organisation [CCTA, 1998]. The process management level takes into account all

change requests. Changes requests are due to issues encountered in the smart card

production as well as usage. Change requests can be traced backwards to the bureau

as well as to the customer. The process management maintains a list of all request

of changes and the related actions. Table 4.2 shows examples extracted from a list of

changes together with the relevant needed actions. Note that the associated actions can

imply software changes as well as procedural or organisational changes.

Table 4.2: Examples of change progress reports.

Change Description Action

A new interface to X is re-

quired to allow visibility

of batches downloaded in

the new Z system.

A Software Request has been issued. This change is

to be handled as a second phase to the project as it

falls outside of the initial scope. It should not have

any detrimental effect on the system delivery date.

Operator details to be

stored in the MySQL at

point of progress scan.

This change is to be handled as part of phase 2, it

should not have any detrimental effect on the system

delivery date.

24x7 IT support for X IT

systems.

A defined procedure is required within IT to log and

progress support calls out of normal working hours,

a detailing procedure on Linux sever support re-

quired.

Chapter 4. A Smart Card Case Study 76

Figure 4.3 shows the change management process that deals with all requests for

change. The initial part of the change management process is a macro-process of the

negotiation activity. If changes require some software development the process starts

a set of subsystem analyses. Each analysis corresponds to a different subsystem of the

whole smart card system. The analyses assess the impact of change on each subsystem.

The impact of change estimates the cost of changes in terms of man-power (e.g., man-

day). The set of impact reports serves as basis for the negotiation of changes. The

negotiation activity will produce a software change request for each agreed change.

Figure 4.3: The change management process.

Figure 4.4 shows an example extracted from a change request form. The change re-

quest form identifies the change description, the suggested modification and the change

rationale. The software development process finally takes into account the software

requests of changes. The software development process corresponds to a software

product viewpoint.

Product Viewpoint. This identifies the software production level in the smart card

organisation. The software management level deals with all software requests of

Chapter 4. A Smart Card Case Study 77

Change Description: The operator identification should be saved

when asked for in the scanning applications.

Suggestion for Modification: Recording Operator Identification -

the following 2 tables should be added to the MySQL database to

record which operator updated a batch status.
...

Change Rationale: Operator ID will be a useful piece of data for

historical analysis by bureau management.

Figure 4.4: An example extracted from a change request form.

changes. Figure 4.5 shows an example extracted from a software change request form.

Required Functionality: A new interface needs to be added to X to

allow visibility batches downloaded in the new Z system. The inter-

face will work similarly to the one between B and X. . . . The current

development and implementation of X should be unaffected. An addi-

tional development and implementation phase should deliver the new

interface by early December, to coincide with the launch of Z.

Testing Scenarios:

� Check to ensure that interface software picks up jobs from new

Z and correctly populates the MySQL tables and new Z tables.
...

� The new functionality should be fully tested and accepted on

the test server before being migrated onto the main X server.

Figure 4.5: An example extracted from a software change request form.

The software development process takes into account all software changes. Figure

4.6 shows the V model tailored to the smart card organisation. Each software request

of change triggers the entire development process (i.e., from Requirements Analy-

Chapter 4. A Smart Card Case Study 78

sis to Production Integration Maintenance). The development process elaborates the

software requirements with respect to the change requests. It moreover allocates re-

quirements changes to subsequent releases of the smart cards. That is, requirements

and software changes are allocated and prioritised according to the production release

schedule of the smart cards. Differently from the process viewpoint that estimates

changes in terms of man-power [Brooks, 1995], the product viewpoint estimates the

cost of software changes in terms of development activities (e.g., coding and testing).

Notice that the different type of change estimation may cause discrepancies and dis-

agreements between the business viewpoint (e.g., project managers) and the product

viewpoint (e.g., software engineers)5.

Figure 4.6: The V model adopted by the smart card organisation.

5“The second fallacious thought mode is expressed in the very unit of effort used in estimating and
scheduling: the man-month. Cost does indeed vary as the product of the number of men and the number
of months. Progress does not. Hence the man-month as a unit for measuring the size of a job is a
dangerous and deceptive myth. It implies that men and months are interchangeable.” [Brooks, 1995], p.
16.

Chapter 4. A Smart Card Case Study 79

4.2.2 Viewpoint Analysis

A requirements engineering questionnaire (Appendix A) allows us to structure the in-

terviews. The questionnaire assesses the general understanding of the requirements

engineering practice within an organisation. The questionnaire consists of 152 ques-

tions organised into three main sets, i.e., Business, Process and Product requirements

engineering. Figure 4.7 shows the 18 different groups of questions6 that form the

questionnaire.

1. Requirements Management Compliance

2. Business Tolerance Requirements

3. Business Performance Requirements

4. Requirements Elicitation

5. Requirements Analysis Negotiation

6. Requirements Validation

7. Requirements Management

8. Requirements Evolution & Maintenance

9. Requirements Process Deliverables

10. Requirements Description

11. System Modelling

12. Functional Requirements

13. Non Functional Requirements

14. Portability Requirements

15. System Interface

16. Requirements Viewpoints

17. Product-Line Requirements

18. Failure Impact Requirements

Figure 4.7: The groups of requirements engineering questions.

Figure 4.8 shows the (average) profiles7 of three persons with similar experience

and with different responsibilities within the smart card organisation. The three per-

sons, who filled in the questionnaire, correspond to different management levels within

the organisation. The two project managers, associated to the process viewpoint, are

responsible for the change management processes and resources. The software de-

velopment manager, associated to the product viewpoint, is responsible for the entire

software development process. The questionnaire captures how people perceive the re-

quirements engineering practice within the organisation. Figure 4.8 clearly shows that

6Each question allows a multiple-choice answer: N/A, Not Applicable, if the person is unconcerned
with the addressed question; UN, Unknown, if the person is unable to answer according to her/his
knowledge, skills or position within the organisation; the other answers consist of five different levels,
namely, VL (Very Low), L (Low), A Average, H (High) and VH (Very High). If the person is able to judge
according to her/his knowledge, skills or position within the organisation. Note that the questionnaire
only subjectively assesses the requirements engineering practice within the organisation.

7Each answer corresponds to the following numerical values: 0 (N/A), 0 (UN), 1 (VL), 2 (L), 3 (A),
4 (H) and 5 (VH).

Chapter 4. A Smart Card Case Study 80

the software development manager has a lower confidence than the project managers

on the requirements engineering practice within the organisation. On one hand man-

agement processes easily deal with high-level smart card requirements. Thus, project

managers trust the requirements engineering practice. On the other hand management

processes provide limited support for software requirements. Therefore, the software

development manager struggles with requirements engineering practice.

Figure 4.8: Three profiles captured by the requirements engineering questionnaire.

Figure 4.9 shows a different representation of the three profiles. This represen-

tation is convenient to identify major divergences. It is interesting to notice that the

two similar viewpoints (i.e., the viewpoint associated to the project managers) have

similar trends. Whereas the third viewpoint diverges in particular points. The largest

divergences correspond to the groups of questions 2, 3, 8, 15, 16 and 17. The group 2

and 3 identify business aspects of the requirements engineering practice. Interestingly,

they also disagree on the group 8, which consists of questions related to requirements

evolution and maintenance. This is probably due to the process-oriented management

of requirements changes. Although it could be due to communication issues within the

Chapter 4. A Smart Card Case Study 81

organisation. Management hierarchies8 have properly to communicate requirements

changes through each level in the organisation [Reason, 1997, Weinberg, 1997]. On

the other hand requirements engineering practice can also provide limited support to

communicate specific types of requirements changes (e.g., requirements changes that

affect software).

Figure 4.9: A different representation of the three profiles.

Finally, the other major divergencies correspond to the group 15, 16 and 17 (see

Figure 4.9), which identify product-oriented questions. These point out different un-

derstandings of smart card systems. The project managers, who deal with high-level

system requirements, easily identify system boundaries. Whereas, the software de-

velopment manager exhibits a low confidence in the system interface. This is due to

8“Software engineering management is concerned with choices about technology in a broad sense of
that term, and those choices are made at many levels. If control is not in place at one level, it becomes
more difficult to control at another. For a software engineering organization to be well managed, all lev-
els have to be well managed. But, in addition, they have to be coordinated with one another. Therefore,
software engineering managers have to decide on what level to place various control responsibilities.
We know that decisions at the higher levels act to control decisions as lower levels, but decisions at low
levels can also control decisions at the higher levels. We need to be aware of why we put which control
decision on which level.” [Weinberg, 1997], pp. 190-191.

Chapter 4. A Smart Card Case Study 82

the fact that low-level software interfaces often interact with other (external) systems.

Software is a subtle part of smart card systems. Project managers have often a lim-

ited visibility of the software issues. All these divergences identify concerns for the

requirements engineering practice.

4.3 Lessons Learned

The viewpoint analysis highlights issues in the requirement engineering practice drawn

from the smart card case study. In spite of sparse data, the analysis effectively points

out many requirements evolution aspects that characterise live software production

environments. Although changes affect several viewpoints (or management levels) and

increase project risk, they are part of learning and understanding processes in software

production. From the analysis it is evident how even a single change affects many

different socio-technical aspects.

Requirements Evolution Viewpoints. The analysis identifies three different hierar-

chical viewpoints named Business, Process and Product viewpoints. Each viewpoint

corresponds to different processes and requirements within the organisation. For in-

stance, management processes easily deal with high-level system requirements, al-

though they provide limited support for low-level software requirements. This points

out struggles with requirements engineering practice. Although viewpoint discrepan-

cies often cause requirements issues (e.g., inconsistent, incorrect, etc.), all viewpoints

provide as a whole a hierarchical management structure that deals with requirements

changes. Interestingly, each viewpoint differently perceives requirements evolution.

Thus, on one hand viewpoint interactions (hence, stakeholder interactions) give rise to

requirements evolution. On the other hand viewpoint interactions represent a mecha-

nism to capture and take into account requirements changes.

Viewpoint Management Support. Each viewpoint seeks different management sup-

port. Although process-oriented methodologies allow the planning of project activities,

they usually provide limited support to tailor processes to product features. This often

requires a shift from process to product-oriented software management. On one hand

Chapter 4. A Smart Card Case Study 83

management processes keep track of requirements changes. On the other hand quanti-

tative approaches (e.g., software metrics) should take into account product as well as

environmental aspects. This allows us to identify reusable (product-line) functions.

It moreover would be possible to define repeatable processes to allocate low-level

software functions to high-level system requirements. There are usually two oppos-

ing processes. The first one (top-down) splits and refines requirements. This creates

an information flow expansion throughout the development process. The second one

(bottom-up) allocates (according to past experience) specific low-level software func-

tions to high-level system requirements. The gap between these two processes repre-

sents the extent to which an organisation is able to identify an optimal and effective set

of (reusable) software functions. The smaller the gap, the better the ability in reusing

low-level software functions and identifying high-level system requirements. Although

each viewpoint deals with different requirements, all viewpoints seek support dealing

with requirements change.

Requirements Issues. The structured interviews, using the requirements engineer-

ing questionnaire, effectively highlight common requirements issues in live software

production environment. Viewpoint divergences clearly point out the different under-

standing of the requirements engineering practice within the organisation. Unsurpris-

ingly, requirements evolution finds little agreement among the different viewpoints.

Although process-oriented management properly capture requirements changes, it pro-

vides limited support to development activities. Moreover hierarchical organisations

often struggle to communicate requirement changes through each management level

(or viewpoint). On the other hand requirements engineering practice provides limited

support to communicate specific types of requirements changes. Another major is-

sue is the identification of system boundaries. Although a holistic viewpoint captures

many aspects of socio-technical systems, viewpoints provide different understandings

of (software) systems. Each viewpoint captures different system boundaries. For in-

stance, a project management level easily identifies high-level system requirements,

although these under-specify low-level software interfaces. Software, as a subtle part

of socio-technical systems, has limited visibility from high-level holistic viewpoints.

All these issues highlight concerns for the requirements engineering practice.

Chapter 5

Modelling Requirements Evolution

This chapter introduces a formal framework to model and capture requirements evo-

lution. The framework relies on a heterogeneous account of requirements. Hetero-

geneous engineering provides a comprehensive account of system requirements. Het-

erogeneous engineering stresses a holistic viewpoint that allows us to understand the

underlying mechanisms of evolution of socio-technical systems. Requirements, as

mappings between socio-technical solutions and problems, represent an account of

the history of socio-technical issues arising and being solved within industrial set-

tings [Bergman et al., 2002a, Bergman et al., 2002b]. The formal extension of solution

space transformation defines a framework to model and capture requirements evolu-

tion. The resulting framework is sufficient to interpret requirements changes. The for-

mal framework captures how requirements evolve through subsequent releases. Hence,

it is possible to define requirements evolution in terms of sequential solution space

transformations. Intuitively, requirements evolution identifies a path that browses so-

lution spaces.

5.1 Heterogeneous Requirements Engineering

Research and practice in requirements engineering highlight critical software issues.

Among these issues requirements evolution affects many aspects of software produc-

tion. In spite of the increasing interest in requirements issues most methodologies

84

Chapter 5. Modelling Requirements Evolution 85

provide limited support to capture and understand requirements evolution. Unfortu-

nately, the underlying hypotheses are often unable to capture requirements evolution

[Weinberg, 1997]. Although requirements serve as basis for system production, de-

velopment activities (e.g., system design, testing, deployment, etc.) and system usage

feed back system requirements. Thus system production as a whole consists of cy-

cles of discoveries and exploitations. The different development processes (e.g., V

model, Spiral model, etc.) diversely capture these discover-exploitation cycles, al-

though development processes constrain any exploratory approach that investigates re-

quirements evolution. Thus requirements engineering methodologies mainly support

strategies that consider requirements changes from a management viewpoint. In con-

trast, requirements changes are emerging behaviours of combinations of development

processes, products and organisational aspects.

Heterogeneous engineering considers system production as a whole. It provides

a comprehensive account that stresses a holistic viewpoint, which allows us to un-

derstand the underlying mechanisms of evolution of socio-technical systems. Hetero-

geneous engineering1 involves both the system approach [Hughes and Hughes, 2000]

as well as the social shaping of technology [MacKenzie and Wajcman, 1999]. On

one hand system engineering devises systems in terms of components and structures.

On the other hand engineering processes involve social interactions that shape socio-

technical systems. Hence, stakeholder interactions shape socio-technical systems. Het-

erogeneous engineering is therefore convenient further to understand requirements pro-

cesses. Requirements, as mappings between socio-technical solutions and problems,

represent an account of the history of socio-technical issues arising and being solved

within industrial settings [Bergman et al., 2002a, Bergman et al., 2002b].

This chapter describes a formal extension of solution space transformation, hence

heterogeneous requirements engineering, in order to capture requirements evolution.

The underlying hypothesis is that heterogenous requirements engineering is sufficient

to capture requirements evolution. The formal extension of solution space transfor-

1“People had to be engineered, too - persuaded to suspend their doubts, induced to provide resources,
trained and motivated to play their parts in a production process unprecedented in its demands. Suc-
cessfully inventing the technology, turned out to be heterogeneous engineering, the engineering of the
social as well as the physical world.”, [MacKenzie, 1990], p. 28.

Chapter 5. Modelling Requirements Evolution 86

mation defines a framework to model and capture requirements evolution. The result-

ing framework is sufficient to capture and model requirements evolution. The formal

framework captures how requirements evolve through subsequent releases. Hence, it

is possible to define requirements evolution in terms of sequential solution space trans-

formations. Intuitively, requirements evolution identifies a path that traverses solution

spaces. The remainder of this chapter introduces the formal extension of solution space

transformation.

5.2 Heterogeneous Requirements Modelling

Requirements engineering commonly considers requirements as goals to be discovered

and (design) solutions as separate technical elements. Hence requirements engineering

is reduced to be an activity where technical solutions are documented for given goals

or problems. Heterogeneous engineering [Bijker et al., 1989] further explains the com-

plex socio-technical interactions that occur during system production. Requirements,

as mappings between socio-technical solutions and problems, represent an account of

the history of socio-technical issues arising and being solved within industrial settings

[Bergman et al., 2002a, Bergman et al., 2002b].

Requirements therefore are socially shaped (that is, constructed and negotiated)

[MacKenzie and Wajcman, 1999] through sequences of mappings between solution

spaces and problem spaces [Bergman et al., 2002a, Bergman et al., 2002b]. These map-

pings identify a Functional Ecology model that defines requirements as emerging from

solution space transformations. The Functional Ecology model describes solution-

problem iterations of the form:

solution � problem � solution �

This implies that requirements engineering processes consist of solutions searching for

problems, rather than the other way around (that is, problems searching for solutions).

Figure 5.1 shows how the Solution Space Transformation2 unfolds. A solution space

2GS , Global Solution Space; S , Local Solution Space; St , Current Solution Space; AS , Anomaly
Space; P , Problem Space; Pt , Proposed Problem Space; S � , Future Local Solution Space; St � 1, Pro-
posed Solution Space; Rt

o, objective or functional requirements; Rt
c, constraining or non functional

requirements.

Chapter 5. Modelling Requirements Evolution 87

(i.e., a current solution space St) solves some highlighted problems (i.e., proposed sys-

tem problem space Pt). The contextualisation of the selected problems into the initial

solution space identifies the system requirements (i.e., objective or functional require-

ments Rt
o) as mappings between solution and problem spaces. The resolution of these

problems identifies a future solution (i.e., a proposed solution space St � 1). The map-

pings between the solved problems and the future solution define further system re-

quirements (i.e., constraining or non functional requirements Rt
c). This heterogeneous

account of requirements is convenient to capture requirements evolution.

St

GS

S P

Pt

AS

S �

St � 1

GS

Rt
o Rt

c

Figure 5.1: The solution space transformation.

This section introduces a formal extension of the solution space transformation.

The basic idea is to provide a formal representation of solutions and problems. The

aim of a formal representation is twofold. On one hand the formalisation of solutions

and problems supports model-driven development. On the other hand it allows us to

formally capture the solution space transformation, hence requirements evolution. The

formalisation represents solutions and problems in terms of modal logic3.

Intuitively, a solution space is just a collection of solutions, which represent the or-

ganisational knowledge acquired by the social shaping of technical systems. Solutions

3Appendix B briefly introduces propositional modal logic [Chagrov and Zakharyaschev, 1997,
Fitting and Mendelsohn, 1998]. Propositional modal logic provides enough expressiveness in order to
formalise aspects of the solution space transformation. The formal extension of the solution space
transformation relies on logic bases: syntax, semantics and proof systems. All definitions can be nat-
urally extended in terms of other logics (e.g., [Stirling, 2001]) bases (i.e., syntax, semantics and proof
systems). The definitions still remain sound and valid due to construction arguments.

Chapter 5. Modelling Requirements Evolution 88

therefore are accessible possibilities or possible worlds in solution spaces available in

the production environment. This intentionally recalls the notion of possible world

underlying Kripke models. Thus, solutions are Kripke models. Whereas problems

are formulas of (propositional) modal logic. Collection of problems (i.e., problem

spaces) are issues (or believed so) arising during system production. Kripke models

(i.e., solutions) provide the semantics in order to interpret the validity of (proposi-

tional) modalities (i.e., problems). Note that it is possible to adopt different semantics

of the accessibility relations in Kripke models. For instance, the accessibility relation

can capture design information like state transitions. Therefore, the accessibility be-

tween two possible worlds or system states would mean that it is possible to access

one state from another one through the accessibility relation. This semantics is used

throughout this chapter to show the development of a design of a simple clock, as

explanatory example. Another semantics of the accessibility allows the gathering of

evolutionary information about requirements (i.e., evolutionary requirements depen-

dency) in the next chapter. This accessibility relation identifies dependencies between

(set of) requirements (or functional requirements). This semantics captures evolution-

ary information at an higher level of granularity (or abstraction) than design. Using

different semantics for interpreting the accessibility relation highlights and captures

diverse evolutionary information. Although the examples use two different semantics

(i.e., temporal state transition and evolutionary dependency), it is beyond the scope of

this work to decide which semantics should be used in any specific case. On the one

hand, the use of different semantics highlights the flexibility of the given framework.

On the other hand, it requires careful considerations when used in practise to capture

diverse evolutionary aspects of requirements. Based on the syntax of Kripke models,

proof systems (e.g., Tableau systems) consist of procedural rules4 (i.e., inference rules)

that allow us to prove formulas validity or to find counterexamples (or countermodels).

The remainder of this section introduces the formal definitions that extend the solution

space transformation.

4Note that there exist different logics (e.g., K, D, K4, etc.) that correspond to different proof systems.
Appendix B briefly introduces different logics and the corresponding proof systems and inference rules.
Any specific proof system implies particular features to the models that can be proved. The examples
use the different logics as convenient to explaining. It is beyond the scope of this work to decide which
proof system should be used in any specific case.

Chapter 5. Modelling Requirements Evolution 89

5.2.1 Solution Space

Technical solutions represent organisational knowledge that may be available or un-

available at a particular time according to environmental constraints. A Local Solution

Space is the collection of available (or believed available) solutions in an organisation.

Definition 5.1 (Local Solution Space) A Local Solution Space, S , is the current so-

lution space and all locally accessible solution spaces that can be reached from the

current solution space using available skills and resources offered by the principals

(or business stakeholders).

The definition of Local Solution Space relies on the notion of reachability between

solution spaces. The notion of reachability (between solution spaces) is similar to

the notion of accessibility in Kripke structures. In spite of this similarity, the use of

Kripke structures as underlying models was initially discarded due to organisational

learning [Bergman et al., 2002a]. Although Kripke structures fail to capture organisa-

tional learning, they can model solutions. Each solution therefore consists of a Kripke

model (or Kripke structure or frame) within the proposed formal framework. Thus, a

Local Solution Space is a collection of Kripke models, i.e., solutions. A sequence of

solution space transformations then captures organisational learning. Although solu-

tion spaces depend on several volatile environmental constraints (e.g., budget, human

skills, technical resources, etc.), solution space transformation captures organisational

learning by subsequent transformations. Hence, a sequence of solution space transfor-

mation captures organisational learning. Hence, requirements evolution (in terms of

sequences of solution space transformations) is a process of organisational learning.

The feasibility of solution spaces identifies a hierarchy of solution spaces.

Definition 5.2 (Global Solution Space) A Global Solution Space, GS , is the space of

all feasible solution spaces, including those not currently accessible from the Local

Solution Space. The feasible solution spaces require mobilisation of all principals and

technologies to be accomplished. All local solution spaces exist within relevant global

solution spaces. That is, S is a subspace of GS .

Feasible solutions are those available within an organisation (e.g., previous simi-

lar projects) or that can be reached by committing further resources (e.g., technology

outsource or investment). In terms of Kripke models, a Global Solution Space, is the

Chapter 5. Modelling Requirements Evolution 90

space of all possible Kripke models. Some of these models represent solutions that are

available (if principals commit enough resources) within an organisation. Whereas,

others would be unavailable or unaccessible. Finally, the notion of Current Solution

Space captures the specific situation of an organisation at a particular stage.

Definition 5.3 (Current Solution Space) The Current Solution Space, denoted as St ,

embodies the history of solved social, technical, economic and procedural problems

(i.e., socio-technical problems) that constitute the legacy of previously solved organi-

sational problems at current time t. The Current Solution Space exists within a Local

Solution Space. That is, St is a subspace of S .

The Current Solution Space therefore captures the knowledge acquired by organi-

sational learning (i.e., the previously solved organisational problems). In other words,

the Current Solution Space consists of the adopted solutions due to organisational

learning. This definition further supports the assumption that solution space transfor-

mations capture organisational learning, hence requirements evolution. It is moreover

possible to model the Current Solution Space in terms of Kripke models. St is a col-

lection of Kripke models. Let briefly recall the notion of Kripke model. A Kripke

model, M , consists of a collection G of possible worlds, an accessibility relation R on

possible worlds and a mapping
�

between possible worlds and propositional letters.

The
�

relation defines which propositional letters are true at which possible worlds.

Thus, St is a collection of countable elements of the form

M t
i ��� Gt

i � Rt
i � � t

i � � (5.1)

Each Kripke model then represents an available solution. Thus, a Kripke model is

a system of worlds in which each world has some (possibly empty) set of alterna-

tives. The accessibility relation (or alternativeness relation), denoted by R, so that

ΓR∆ means that ∆ is an alternative (or possible) world for Γ. For every world Γ, an

atomic proposition is either true or false in it and the truth-values of compound non-

modal propositions are determined by the usual truth-tables. A modal proposition � ϕ
is regarded to be true in a world Γ, if ϕ is true in all the worlds accessible from Γ.

Whereas, � ϕ is true in Γ, if ϕ is true at least in one world ∆ such that ΓR∆. In general,

many solutions may solve a given problem. The resolution of various problems, hence

Chapter 5. Modelling Requirements Evolution 91

the acquisition of further knowledge, narrows the solution space by refining the avail-

able solutions. An example clarifies all the given definitions throughout this chapter.

The example is the design of a simple clock.

Example 5.1 (A Clock) A Kripke model easily captures a (design) solution for a sim-

ple clock. Figure 5.2 shows a graphical representation of the Kripke model M t
i (i.e.,

clock design solution).

Tick

Break

Cl

BCl

�
T � �

B

Figure 5.2: A Kripke model for a clock.

Let M t
i � � Gt

i � Rt
i � � t

i � be defined as follows. The set of possible worlds is G ��
Cl � BCl � , where Cl stands for “Clock” and BCl stands for “Broken Clock”. As any

normal clock, the world Clock can reach itself by ticking, that is, by the accessibility

relation Cl Rt
i Cl. Otherwise if it breaks, it can reach the world Broken Clock by the

reachability relation Cl Rt
i BCl. The truth assignments Cl

�
T and Cl

�
B take into

account the different accessibility relations, which respectively mean that Clock can

tick or can break. Of course, there are many other (design) solutions that model a

ticking system. The Current Solution Space simply contains all available solutions at

time t.

The further development of the clock example shows how the (formally augmented)

solution space transformation captures the evolutionary requirements process that iden-

tifies the solution solving the arising problems.

Chapter 5. Modelling Requirements Evolution 92

5.2.2 Problem Space

The Functional Ecology model defines the role of requirements with respect to so-

lutions and problems. Requirements are mappings between solutions and problems,

as opposed to being solutions to problems. Problems then assume an important po-

sition in order to define requirements. Likewise the case studies, any observation is

initially an anomaly. According to environmental constraints (e.g., business goals,

budget constraints, technical problems, etc.) stakeholders then highlight some anoma-

lies as problems to be addressed. On one hand problems identify specific requirements

with respect to solutions. On the other hand any shift in stakeholder knowledge causes

problem changes, hence requirements changes. The anomaly prioritisation identifies

an hierarchy of problem spaces.

Definition 5.4 (Anomaly) An anomaly is an inconsistency, observed by some stake-

holder, between the current solution space and a desired solution space believed by the

stakeholder to be achievable within the current solution space.

Definition 5.5 (Anomaly Space) The Anomaly Space, named AS , is the set of all

anomalies associated with the system under consideration.

An anomaly5 identifies the assumptions under which the system under considera-

tion should work. Thus, anomalies represent concerns that stakeholders may regard as

system problems to be solved eventually.

Definition 5.6 (Problem) A Problem is an anomaly that is observed and acted upon

by a principal and thereby placed into organisational agenda of need-to-solve anoma-

lies.

Definition 5.7 (Problem Space) A Problem Space, P , is the space of all problems

implied by a current solution space, St , by all its principals. A problem space (i.e.,

the space of all selected problems) is by definition always a subspace of an anomaly

space.

Definition 5.8 (Proposed System Problem Space) A Proposed System Problem Space,

Pt , is the space that contains all the recognised problems chosen by the principals at

5“The observation of an anomaly or presumptive anomaly provides the assumptions (derived from
science) under which indicate either that under some future conditions the conventional system will fail
(or function badly) or that a radical different system will do a much better job.”, [MacKenzie, 1990], p.
69.

Chapter 5. Modelling Requirements Evolution 93

time t that justify the proposed system. Pt
j is a problem (1 of at least m problems) within

Pt .

The formal representation of anomalies and problems has to comply with two main

requirements. Firstly, it has to capture our assumptions about the system under con-

sideration. Secondly, it has to capture the future conditions under which the system

should work. Modalities6 provide a logic representation of problems (or anomalies).

Note that the possible worlds model (which underlies the modal logic semantics by

Kripke structures) is the core of well-established logic frameworks for reasoning about

knowledge [Fagin et al., 2003] and uncertainty [Halpern, 2003].

Example 5.2 Propositional Modal Logic allows us to express modalities. Figure 5.3

shows the Modal Square of Opposition [Fitting and Mendelsohn, 1998] due to Aristo-

tle in his De Interpretatione.

It is necessary that P It is necessary that not P

It is not possible that not P It is not possible that P
� �

� �

It is not necessary that not P It is not necessary that P

It is possible that P It is possible that not P

Figure 5.3: The Modal Square of Opposition.

Formulas of propositional modal logic capture system properties like Safety and

Liveness. For instance, let consider the formula � P � P. The formula means that if

a property P is valid at every accessible possible worlds, then it is actually valid at

the real world. It represents a simple safety property that states “nothing bad ever

happens”.

6“A modal qualifies the truth of a judgement. Necessarily and possibly are the most impor-
tant and best known modal quantifiers. They are called alethic modalities, from the Greek word of
truth. In traditional terminology, Necessarily P is an apodeictic judgement, Possibly P a problem-
atic judgement, and P, by itself, an assertoric judgement. The most widely discussed modals apart
from the alethic modalities are the temporal modalities, which deal with past, present, and future...”,
[Fitting and Mendelsohn, 1998], p. 2.

Chapter 5. Modelling Requirements Evolution 94

Another example is the formula � P � � P. The formula means that if the property

P is valid at every accessible possible worlds, then it will be valid eventually. It repre-

sents a simple liveness property that states “something good eventually happens”.

Modalities therefore capture problems highlighted by stakeholder and allow us

to reasoning on solutions. That is, the logic representation of solutions (in terms of

Kripke models) and problems (in terms of modalities) allows us to assess whether so-

lutions address selected problems (i.e., fulfil selected properties). Moreover, the logic

framework captures mappings between solutions and problems, hence requirements

[Bergman et al., 2002a, Bergman et al., 2002b]. As opposed to solutions pointing to

problems, Problem Contextualisation is the mapping of problems to solutions.

5.2.3 Problem Contextualisation

The stakeholder selection of a Proposed System Problem Space, Pt , implies specific

mappings from the Current Solution Space, St . Problem Contextualisation is the pro-

cess of mappings problems to solutions. These mappings highlight how solutions fail

to comply with the selected problems. A problem (or an anomaly believed to be a

problem) highlights, by definition, inconsistencies with the Current Solution Space.

The formal representation (in terms of Kripke models) provides the basis to formally

define the Problem Contextualisation.

Definition 5.9 (Problem Contextualisation) Let St be the Current Solution Space (i.e.,

a collection of Kripke models). Let Pt be the Proposed System Problem Space (i.e., a

collection of modal formulas). For each problem (i.e., modal formula) Pt
j in Pt , by

definition, exists a Kripke model M t
i � � Gt

i � Rt
i � � t

i � in St such that � M t
i � Γ ���� t

i Pt
j for

some possible world Γ in Gt
i. That is, the problem Pt

j is invalid at the world Γ in the

model M t
i .

The mappings between the Current Solution Space St and the Proposed System

Problem Space Pt (i.e., the relationship that comes from solutions looking for prob-

lems) identify requirements (demands, needs or desires of stakeholders) that corre-

spond to problems as contextualised by (a part or all of) a current solution. These

mappings represent the objective requirements or functional requirements.

Chapter 5. Modelling Requirements Evolution 95

Definition 5.10 (Objective Requirements) Let St be the Current Solution Space and

Pt be the Proposed System Problem Space. The objective requirements Rt
o consists of

the mappings (i.e., pairs) that correspond to each problem Pt
j in Pt contextualised by

a solution M t
i in St . Thus, for any possible world Γ in a Kripke model M t

i � St and

for any problem Pt
j � Pt such that � M t

i � Γ � �� t
i Pt

j, the pair � Γ � Pt
j � belongs to Rt

o. In

formulae,

Rt
o �

�
� Γ � Pt

j �
� � M t

i � Γ � �� t
i Pt

j � � (5.2)

Example 5.3 (Clock continued) Let consider Pt
j a problem in Pt be the formula:

� R � � R �

The formula is one of the basic axioms that define the standard modal logic that in-

volves all Kripke frames without terminal worlds. That is, each possible world can

reach another possible world by the accessibility relation [Barwise and Moss, 1996,

Chagrov and Zakharyaschev, 1997]. Intuitively, the formula stresses that each world

should always be able to access another world by the accessibility relation that identi-

fies a repair transaction in the clock system. It is easy to see that Pt
j is true at the world

Clock (Cl), but false at the world Broken Clock (BCl). That is,

� M t
i � Cl � � t

i � R � � R

� M t
i � BCl � �� t

i � R � � R �

At the world Clock � R is false, because Cl can access itself (i.e., Cl
�

T) and BCl

(i.e., Cl
�

B). Moreover, Cl �� R and BCl �� R. Hence, it follows that Cl
� � R � � R.

Similarly, it is possible to show that BCl �� � R � � R. At the world Broken Clock � R

is true and � R is false, because BCl is unable to access any other world. Hence, BCl ��
� R � � R. Figure 5.4 shows how the problem Pt

j is contextualised by the clock solution

in St . The possible world BCl contextualises the problem Pt
j. That is, � M t

i � BCl � �� t
i Pt

j.

Hence, � BCl � Pt
j � belongs to Rt

o.

5.2.4 Solution Space Transformation

The final step of the Solution Space Transformation consists of the reconciliation of

the Solution Space St with the Proposed System Problem Space Pt into a Proposed

Chapter 5. Modelling Requirements Evolution 96

Tick

Break

Cl

BCl

�
T � � B

St Pt

Rt
o

M t
i

Pt
j :
�

R ��� R

Figure 5.4: A problem contextualised by a solution.

Solution Space St � 1 (a subspace of a Future Solution Space S �). The Proposed Solution

Space St � 1 takes into account (or solve) the selected problems. The resolution of the

selected problems identifies the proposed future solutions.

Definition 5.11 (Solution Space Transformation) Let St be a Current Solution Space

and Pt be a Proposed System Problem Space. Let S � and St � 1 be defined as follows.

1. A Future Solution Space, S � , is an alternative local solution space postulated

from the problem space analysis for the problem space Pt . Normally, there are

several alternative future solution spaces.

2. A Proposed Solution Space, St � 1, or simply a Proposed Solution, is a subspace

of a Future Solution Space S � that includes the reconciliation of St with Pt , i.e.,

St
� Pt

� St � 1.

The Solution Space Transformation is the process of creating St � 1 from St by solving

Pt .

Chapter 5. Modelling Requirements Evolution 97

The reconciliation of St with Pt involves the resolution of the problems in Pt . In

logic terms, this means that the proposed solutions should satisfy the selected problems

(or some of them). Note that the selected problems could be unsatisfiable as a whole

(that is, any model is unable to satisfy all the formulas). This requires stakeholders

to compromise (i.e., prioritise and refine) over the selected problems. The underlying

logic framework allows us to identify model schemes that satisfy the selected prob-

lems. This requires to prove the validity of formulas by a proof system7. If a formula

is satisfiable (that is, there exist a model in which the formula is valid), it would be

possible to derive by the proof system a model (or counterexample) that satisfies the

formula. The reconciliation finally forces the identified model schemes into future

solutions.

Example 5.4 (Clock continued) It is easy to show that the formula � R � � R holds
on all Kripke frames without terminal worlds. That is, each possible world can al-
ways access another possible world. A Tableau system easily proves the validity of the
formula � R � � R. If the formula is satisfiable, there exist a closed tableau for the
negated formula. The following tableau is a simple proof that the property � R � � R
holds in all serial Kripke frames.

1 � � � R ��� R � � 1 �
1

�
R � 2 � by conjunctive rule from (1)

1 ��� R � 3 � by conjunctive rule from (1)

1 � R � 4 � by D special necessity rule from (2)

1 � 1 R � 5 � By possibility rule from (4)

1 � 1 � R � 6 � By basic necessity rule from (3)

Hence, the future clock solutions should take into account the property represented by

� R � � R. Of course, there exist several solutions (devised from the initial clock) that

fulfil this property. Figure 5.5, for instance, shows two clock (design) models without

terminal worlds.

Both Kripke models reconcile the current solution space with the proposed system

problem space. Thus, the two models would belong to the future solution space. In

order to comply with the scheme � R � � R, the two models are derived from the initial

clock by adding further accessibility relations to the possible world Broken Clock,

BCl. In this case it is easy to see that one of the possible solutions has an unfortunate

7Appendix B introduces a Tableau system for propositional modal logic.

Chapter 5. Modelling Requirements Evolution 98

Repair

Break

Tick

Cl

BCl

�
T � � B

�
R

Tick

Cl

BCl

Break

Stuck Repair

�
T � � B

�
R

Figure 5.5: Two possible solutions that include the reconciliation of St with Pt .

property. If the clock breaks down, it is beyond repair. That is, it is stuck in a broken

status because BCl can only access itself. This simple case shows how design decisions

may introduce flawed or undesired requirements. Any decision at the requirements

stage affects future solutions.

Definition 5.12 (Problem Resolution) Let St be the Current Solution Space, Pt be the

Proposed System Problem Space and St � 1 be a Proposed Solution Space in a Future

Solution Space S � . Let consider � Γ � Pt
j �
	 Rt

o. Hence, � M t
i � Γ ��� t

i Pt
j for some M t

i in St .

A Kripke model M t � 1
i 	 St � 1, obtained by modifying the M t

i , solves the problem Pt
j 	

Pt (that is, reconcile St with Pt by solving Pt
j into St � 1) if and only if � M t � 1

i � Γ � � t � 1
i Pt

j.

The final step of the Solution Space Transformation identifies mappings between

the Proposed System Problem Space Pt and the Proposed Solution Space St � 1. These

mappings of problems looking for solutions represent the constraining requirements

or non-functional requirements.

Definition 5.13 (Constraining Requirements) Let St be the Current Solution Space,

Pt be the Proposed System Problem Space and St � 1 be a Proposed Solution Space in a

Future Solution Space S � . The constraining requirements Rt
c consists of the mappings

Chapter 5. Modelling Requirements Evolution 99

(i.e., pairs) that correspond to each problem Pt
j in Pt solved by a solution M t � 1

i in

St � 1. Thus, for any � Γ � Pt
j � � Rt

o, and for any Kripke model M t � 1
i � St � 1 that solves

the problem Pt
j � Pt , the pair � Pt

j � Γ � belongs to Rt
c. In formulae,

Rt
c �

�
� Pt

j � Γ � � � Γ � Pt
j � � Rt

o and � M t � 1
i � Γ � � t � 1

i Pt
j � � (5.3)

Example 5.5 (Clock continued) Figure 5.6 shows a solution space transformation

for the clock. Notice the accurate selection of a repairable clock as future solution.

The repairable clock M t � i
i resolves the problem Pt

j by adding a repair transaction to

the accessibility relation of M t
i .

Tick

Break

Cl

BCl

Repair

Break

Tick

Cl

BCl

�
T � � B � T � � B

� R

St � 1PtSt

Rt
o

Rt
c

M t
i

M t � 1
i

Pt
j : � R ��� R

Figure 5.6: A solution space transformation.

5.2.5 Requirements Specification

The solution space transformation identifies the system requirements specification in

terms of objective and constraining requirements. The system requirements specifi-

cation consists of the collections of mappings between solutions and problems. The

first part of a requirements specification consists of the objective requirements, which

capture the relationship that comes from solutions looking for problems. The second

part of a requirements specification consists of the constraining requirements, which

capture how future solutions resolve given problems.

Chapter 5. Modelling Requirements Evolution 100

Definition 5.14 (Requirements Specification) Requirements at any given time, t, can

be represented as the set of all the arcs, that reflect the contextualised connections

between the problem space and the current and future solution space. In formulae,

RSt
� � Rt

o � Rt
c � (5.4)

This definition enables us further to interpret and understand requirements changes,

hence requirements evolution.

5.3 Requirements Changes

The solution space transformation allows us the analysis of evolutionary aspects of re-

quirements. Requirements, as mappings between solutions and problems, represent an

account of the history of socio-technical issues arising and being solved during system

production within industrial settings. The underlying heterogeneous account moreover

provides a comprehensive viewpoint of system requirements. This holistic account al-

lows the analysis of requirements changes with respect to solution and problem spaces.

The analysis highlights and captures the mechanisms of requirements changes, hence

requirements evolution. The formal extension of solution space transformation allows

the modelling of requirements change, hence requirements change evolution.

There are various implications of the definition of solution space transformation.

The solution space transformation represents requirements specifications in terms of

mappings between solutions and problems. The mappings from solutions to con-

textualised problems identify objective (or functional) requirements. The mappings

from problems to solutions whereas identify constraining (or non-functional) require-

ments. Thus, each solution space transformation identifies (a relationship network of)

requirements. The mappings that represent requirements also identify requirements

dependencies. Any change in objective requirements affect related constraining re-

quirements. In general, this implies that diverse (types of) requirements affect each

other. The heterogeneous account of solution space transformation highlights how di-

verse requirements, due to heterogeneous system parts (e.g., organisational structures,

hardware and software components, procedures, etc.), may affect each other.

Chapter 5. Modelling Requirements Evolution 101

Example 5.6 (Allocation of Safety Requirements) Safety requirements highlight de-

pendencies between heterogeneous system parts (e.g., hardware and software). For

instance, in the avionics case study presented in this thesis, the risk analysis of the

hardware architecture points out safety system requirements. The system implementa-

tion constrains the allocation of these requirements. System integration usually pro-

vides further information in order to allocate some safety requirements. This results in

pending request of changes to refine software requirements.

Let imagine a scenario of hardware and software co-design. A current solution

space consists of two solutions (or Kripke models) respectively for the hardware and

software architectures. At some stage a proposed system problem space points out a

system safety property. Both the hardware and software architecture contextualise (or

fail to comply with) the safety property. There could be alternative future solutions

that solve this problem. For instance, a future solution space takes into account the

safety property by modifying the software architecture. This identifies mappings (i.e.,

constraining requirements) from the problem space to the software solution. Alterna-

tively, another future solution space addresses the problem by modifying the hardware

architecture. This identifies further hardware constraining requirements.

The requirements specification RSt (i.e., the mappings Rt
o and Rt

c) identifies many-

to-many relationships between the contextualised problem space Pt and the current St

and future St � 1 solution space. Sets of changes, as small as possible, in the problem

and solution spaces could therefore cause non-linear, potentially explosive, change in

the whole requirements specification RSt . This is the cascade effect of requirements

changes. That is, any requirement, i.e., any mapping either in Rt
o or in Rt

c, can af-

fect or depend on other requirements. The impact of changes may therefore ripple

through the requirements specification RSt (i.e., the mappings Rt
o and Rt

c) and affect

different types of requirements. Stakeholders often fear the potentially devastating im-

pact of changes. In order to avoid it, they get stuck in a requirements paralysis. That

is, stakeholders avoid to change requirements that are likely to ripple cascade effects

[Bergman et al., 2002a, Bergman et al., 2002b].

Example 5.7 (Cascade Effect) The avionics case study presents occurrences of the

cascade effect. The anomaly reports represent a rationale for requirements changes.

Chapter 5. Modelling Requirements Evolution 102

Grouping requirements changes according to their rationale (i.e., relevant anomaly

report) identifies requirements dependencies. These dependencies constrain the al-

location of requirements changes to subsequent requirements releases. System im-

plementation moreover provides further information in order to refine requirements.

Stakeholders therefore prioritise requirements changes according to various environ-

mental constraints (e.g., certification, testing, cost, etc.). Hence, change management

allocates related requirements changes to subsequent releases. This results in the cas-

cade effect. The inspection of the history of changes identifies these instances of the

cascade effect.

Another implication of the solution space transformation is due to its requirements

representation with respect to solutions, problems and stakeholders. Stakeholders

judge whether solutions are available according to committed resources. Moreover,

stakeholders select and prioritise the specific problems to be taken into account at a

particular tile during system production. The combination of solutions and problems

identifies requirements. Thus, on one hand stakeholders identify requirements. On the

other hand, requirements identify stakeholders who own requirements. That is, any

requirements shift highlights different viewpoints, hence stakeholders. It is therefore

possible that stakeholders change while system production. Requirements definition

involves different stakeholders at different project stages. For instance, the stakehold-

ers (e.g., business stakeholders) involved at the beginning of a project are different than

the ones (e.g., system users) involved at the end of it.

Example 5.8 (Processes, Stakeholders and Requirements) The avionics and smart

card case studies differently capture requirements. Although the two case studies are

incomparable, because they are drawn from different industrial contexts, they pro-

vide different instances of requirements. Both case studies use a similar development

process (i.e., the V model) tailored for the specific industrial context. The diverse

product lines differently capture requirements. Each development environment identi-

fies a unique trade-off among processes, stakeholders and system requirements. Any

trade-off change ripples further changes among processes, stakeholders and system

requirements. On one hand processes and stakeholders identify specific requirements,

on the other hand any requirements shift corresponds to changes in processes or stake-

Chapter 5. Modelling Requirements Evolution 103

holders. The better the understanding of relationships among processes, stakeholders

and requirements, the better the ability to deal with requirements changes.

Finally, the solution space transformation allows the definition of requirements

changes with respect to solutions and problems. The system requirements specification

consists of collections of mappings between solutions and problems. Thus any solu-

tion or problem shift ripples requirements changes. Requirements changes therefore

correspond to mapping changes. Hence, it is possible to capture requirements changes

in terms of collection differences8.

Definition 5.15 (Requirements Changes) Let RSt be the requirements specification

corresponding to the current solution space transformation at time t. Let RS � be the

requirements specification corresponding to a desired solution space transformation.

At any time during system production requirements changes represent the gap between

the current solution space transformation and a desired solution space transformation.

In formulae,

RCt
� RSt � RS �

� � Rt
o
� R �o � Rt

c
� R �c � � (5.5)

5.4 Requirements Evolution

The solution space transformation captures requirements as mappings between solu-

tions and problems. Requirements, as mappings between socio-technical solutions

and problems, represent an account of the history of socio-technical issues arising

and being solved within industrial settings. This representation is useful to under-

stand requirements changes. The solution space transformation describes the process

of refining solutions in order to solve specific problems. Consecutive solution space

transformations therefore describe the socio-technical evolution of solutions. Each se-

quence of solution space transformations captures how requirements have searched

8The set symmetric difference captures the differences between sets. The symmetric difference is the
set of elements exclusively belonging to one set of two given sets. In formulae, A � B � � A � B ��� � B �
A � . The difference of A and B is the set A � B ��� a � a � A and a �� B 	 . The union of A and B is the set
A � B �
� a � a � A or a � B 	 .

Chapter 5. Modelling Requirements Evolution 104

solution spaces. On the other hand each sequence of solution space transformations

identifies an instance of requirements evolution.

Definition 5.16 (Requirements Specification Evolution) Let consider a sequence of

solution space transformations. It captures the history of socio-technical problems

arising and being solved. It moreover identifies an instance of the requirements speci-

fication evolution. In formulae,

RS-EVOLUTION �

�
RS1 � RS2 � � � � � RSn �

� (5.6)

Example 5.9 (Clock continued) Let assume that the self-loop in the clock solution is
undesired. This is because, we would like to have a clock that does more than Tick. This
implies that the property � � T � � T � belongs to the problem space. Future solutions
should solve this problem by avoiding the Tick self-loop. The following closed tableau
proves that the formula � T � � T � is valid in all reflexive frames. That is, the formula
expresses a reflexive property on the accessibility of possible worlds in Kripke frames.

1 � � T � � T � � 1 � infers (2) and (3) by conjunctive rule

1 T � 2 �
1 ��� T � 3 �
1 � T � 4 � from (3) by T special necessity rule

Hence, in order to enforce the property � � T � � T � , future clock solutions would be

without accessibility self-loops. Figure 5.7 shows another solution space transforma-

tion for the clock example.

Thus, the socio-technical evolution of the clock solutions consists of two consecu-

tive solution space transformations. Figure 5.8 shows the entire sequence that repre-

sents the evolution of the clock solutions in order to solve the given problems.

Although it would have been possible to find an equivalent single solution space

transformation for the same clock solution, solving problems requires stakeholders to

commit resources within the development environment. Project risk is another reason

that often justifies the resolution of problems over sequential solution space transfor-

mations. The solution space transformations identify the following clock requirements

specification evolution

CLOCK RS-EVOLUTION �

�
RSt � RSt � 1 �

�

Chapter 5. Modelling Requirements Evolution 105

Repair

Break

Tick

Cl

BCl

Break

BCl

Break

Tick

Tock
�

T � � B

�
R

St � 1

M t � 1
i

Cl1 Cl2
�

B

�
T 1

��
T 2

Repair to Cl2

��
T 1

�
B

�
T 2

Repair to Cl1 �
R2

�
R1

St � 2

Pt � 1

Rt � 1
o Rt � 1

c M t � 2
i

Pt � 1
j : ��� T �
	 T �

Figure 5.7: Another solution space transformation.

M t
i

Rt
o

M t � 1
i

St � 1St Pt

Pt
j

Rt
c

Rt � 1
o

Pt � 1
j

St � 2Pt � 1
Rt � 1

c

M t � 2
i

RSt

RSt 1

Figure 5.8: The entire sequence of solution space transformations.

The solution space transformation moreover allows the definition of requirements

changes with respect to solutions and problems. Thus any solution or problem shift rip-

ples requirements changes. Requirements changes evolution therefore captures those

changes due to environmental evolution (e.g., changes in stakeholder knowledge or

expectation).

Definition 5.17 (Requirements Changes Evolution) Requirements Changes Evolu-

tion consists of the history of socio-technical evolution of bridging current solution

Chapter 5. Modelling Requirements Evolution 106

space transformations to desired solution space transformations. In formulae,

RC-EVOLUTION �

�
RC1 � RC2 � � � � � RCm �

� (5.7)

Definition 5.18 (Requirements Evolution) Requirements Evolution is a co-evolutio-

nary process. Requirements Evolution consists of the Requirements Specification Evo-

lution and the Requirements Changes Evolution.

5.5 Heterogeneous Requirements Evolution

Heterogeneous engineering considers system production as a whole. It provides a com-

prehensive account that stresses a holistic viewpoint, which allows us to understand

the underlying mechanisms of evolution of socio-technical systems. Heterogeneous

engineering is therefore convenient further to understand requirements processes. Re-

quirements, as mappings between socio-technical solutions and problems, represent an

account of the history of socio-technical issues arising and being solved within indus-

trial settings.

The formal extension of solution space transformation, a heterogeneous account of

requirements, provides a framework to model and capture requirements evolution. The

resulting framework is sufficient to interpret requirements changes. The formal frame-

work captures how requirements evolve through consecutive solution space transfor-

mations. Hence, it is possible to define requirements evolution in terms of sequential

solution space transformations. The characterisation of requirements and requirements

changes allows the definition of requirements evolution. Requirements evolution con-

sists of the requirements specification evolution and the requirements changes evo-

lution. Hence, requirements evolution is a co-evolutionary process. Heterogeneous

Requirements Evolution gives rise to new insights in requirements engineering.

A New Role for Requirements. Heterogeneous engineering stresses a different role

for requirements. The shift from the paradigm of problems searching for solutions (i.e.,

problem � solution) to the one of solutions searching for problems (i.e., solution �

problem � solution) points out a new role for requirements with respect to (design)

Chapter 5. Modelling Requirements Evolution 107

solutions and problems. Figure 5.9 shows how the two different paradigms capture the

relationships among requirements, design solutions and observed system problems.

a. Problems searching for solutions. b. Solutions searching for problems.

Figure 5.9: How the two different paradigms capture the relationships between require-

ments, design solutions and observed system problems.

Most software design processes and organisations rely on the first paradigm (i.e.,

problems searching for solutions). In this case, requirements represent problems to be

solved by design solutions. Thus, software production takes into account a certain re-

lationship between requirements, design and system implementation. This relationship

implies a specific order to software production phases (e.g., first the collection of sys-

tem requirements, then the design of solutions and finally the implementation, testing

and so on). Regardless the adopted development process, each software production

complies with the paradigm of problems searching for solutions. This is one of the

reasons because most software development processes start with a requirement phase.

In contrast, heterogeneous engineering takes into account the second paradigm

(i.e., solutions searching for problems). Heterogeneous engineering therefore points

out that requirements link (design) solutions and given problems observed (by coding,

testing, usage, etc.) in the system implementation. Requirements map solutions and

problems. This implies a different role for requirements with respect to solutions and

problems. On the one hand requirements map solutions to observed problems. On the

other hand requirements narrow and browse solution spaces in order to address ob-

served problems. The heterogeneous requirements role highlights new insights in the

production of software systems.

Chapter 5. Modelling Requirements Evolution 108

Moreover, heterogeneous engineering helps us further to understand the mecha-

nisms of requirements evolution. The modelling of requirements evolution highlights

how requirements evolve due to the social shaping of socio-technical systems. On one

hand the modelling supports the analysis of evolutionary phenomena (e.g., like in the

avionics case study, stability, volatility, dependencies, etc.) in requirements, on the

other hand the modelling supports the analysis of stakeholder interactions (e.g., like in

the smart card case study, requirements viewpoints) in software production.

Implications for Requirements Processes and Tools. Heterogeneous engineering

relies on a different paradigm. Heterogeneous engineering therefore highlights a new

role for requirements (engineering) with respect to design solutions and observed sys-

tem problems. This heterogeneous role has some implications for requirements pro-

cesses as well as tools, in general, for software production.

Software production usually consists of the process of searching (or designing)

solutions to given problems (or requirements). This implies that the requirements pro-

cess has to search (or elicit) all system requirements in order to find the most suitable

solution (by narrowing the solution space). System testing and verification therefore

have to provide arguments that support system implementation, design and require-

ments. Therefore, in practice, verification and testing have to validate solutions by

searching problems. In contrast, heterogeneous engineering highlights a new role for

requirements. On the one hand the requirements process consists of matching solu-

tions to observed problems. On the other hand the requirements process is to narrow

and browse the solution space in order to address observed problems. Therefore, sys-

tem testing and verification are to reveal problems that will be eventually matched to

specific solutions by requirements.

The new role of requirements, with respect to solutions and problems, points out

new scenarios of use for requirements engineering tools. Most requirements engineer-

ing tools support the maintenance of traceability between different software deliver-

ables (e.g., requirements, change requests, rationale, design, etc.). However, future re-

quirements engineering tools should also support the mapping of solutions to observed

problems. That is, requirements engineering tools should support the analysis of ob-

served problems in order to narrow the solution space. Thus, requirements engineering

Chapter 5. Modelling Requirements Evolution 109

tools assume a major role in the analysis of observed problems in live production en-

vironments.

In summary, this chapter introduces a formal framework to model and capture re-

quirements evolution. The framework relies on a heterogeneous account of require-

ments. Heterogeneous engineering stresses a holistic viewpoint that allows us to un-

derstand the underlying mechanisms of evolution of socio-technical systems. Require-

ments, as mappings between socio-technical solutions and problems, represent an ac-

count of the history of socio-technical issues arising and being solved within industrial

settings. The formal extension of solution space transformation defines a framework

to model and capture requirements evolution. The resulting framework is sufficient

to interpret requirements changes. The formal framework captures how requirements

evolve through subsequent releases. Hence, it is possible to define requirements evo-

lution in terms of sequential solution space transformations. The characterisation of

requirements changes allows the definition of requirements evolution. Requirements

evolution consists of the requirements specification evolution and the requirements

changes evolution. Hence, requirements evolution is a co-evolutionary process.

Chapter 6

Capturing Evolutionary Requirements

Dependencies

Requirements management methodologies and practices rely on requirements trace-

ability. Although requirements traceability provides useful information about require-

ments, traceability manifests emergent evolutionary aspects just as requirements do.

It is also important to understand requirements dependencies that constrain software

production. Requirements dependencies, as an instance of traceability, identify rela-

tionships between requirements. Moreover, requirements dependencies constrain re-

quirements evolution. Thus, it is important to capture these dependencies in order

further to understand requirements evolution. This chapter shows how the formally

augmented solution space transformation captures evolutionary requirements depen-

dencies. Examples drawn from the avionics case study provide a realistic instance of

requirements dependencies. These examples show how the heterogeneous framework

captures evolutionary features of requirements, hence requirements evolution.

6.1 Requirements Traceability and Dependency

Requirements management methodologies and practices rely on requirements trace-

ability [Sommerville and Sawyer, 1997a]. Although requirements traceability is cru-

cial for requirements management, it is realistically difficult to decide which traceabil-

110

Chapter 6. Capturing Evolutionary Requirements Dependencies 111

ity information should be maintained. Traceability matrixes or tables maintain relevant

requirements information. Requirements are entries matched with other elements in

these representations (e.g., row or column entries). Traceability representations often

assume that requirements are uniquely identified. Traceability practice requires that an

organisation recognises the importance of requirements. Moreover, it has to establish

well-defined policies to collect and maintain requirements. Unfortunately, traceability

provides limited support for requirements management. There are various limitations

that affect traceability practice.

6.1.1 Traceability Limitations

Practitioners often perceive that maintaining traceability increases workload. This is

because the benefit of traceability is more evident in the long term rather than in the

short term. However, maintaining traceability is expensive. Requirements changes

moreover require to update traceability in order to record new or modified requirements

dependencies. There are various limitations that affect traceability practice.

Scalability. Traceability representations (e.g., traceability matrixes or lists) are sen-

sitive to the number of requirements. The more requirements, the less effective trace-

ability. Although most requirements management tools keep traceability information,

traceability effectively provides limited support as the number of requirements in-

crease. One strategy to deal with numerous requirements is to group homogeneous

requirements (e.g., functional requirements, subsystem requirements, etc.). This re-

duces the size of traceability representations, although it requires to refine traceability

in hierarchical representations. Any grouping strategy therefore depends on suitable

classifications of requirements. Unfortunately, requirements management tools pro-

vide limited support to identify requirements classifications tailored to specific indus-

trial contexts.

Evolution. This affects requirements as well as traceability. Traceability represen-

tations need maintenance, otherwise they will become ineffective or, worst, useless.

On one hand requirements changes affect traceability. On the other hand require-

Chapter 6. Capturing Evolutionary Requirements Dependencies 112

ments changes provide further information about requirements dependencies. Al-

though traceability takes into account requirements dependencies, these may evolve

due to implementation (e.g., integration testing results) or environmental feedback

(e.g., system usage). Traceability usually takes into account direct relationships be-

tween requirements. This provides limited support to capture indirect emerging de-

pendencies1. Requirements changes may trigger subsequent changes into require-

ments. This results in a cascade effect of requirements changes. Thus, requirements

dependencies emerge due to requirements changes. Traceability has therefore to reflect

emerging dependencies.

Timeliness. Requirements traceability provides limited information about require-

ments timeliness. Although traceability identifies requirements dependencies, it fails

to capture how these dependencies evolve during system production. Thus, traceabil-

ity has a limited temporal validity. On the other hand it would be useful to know how

requirements dependencies evolve throughout the system life cycle. Traceability sup-

ports the assessment of the impact of requirements changes. Empirical information

about requirements would enhance traceability effectiveness. For instance, the likeli-

hood of requirements changes may vary as the system development progresses. This

type of information would be useful to refine any sensitivity analysis with respect to re-

quirements changes. The refinement of traceability with timeliness information allows

the gathering of emergent requirements dependencies.

6.1.2 Classification of Traceability

It is possible to classify traceability according to relationships with respect to re-

quirements. There are four basic types of traceability: Forward-to, Backward-from,

Forward-from and Backward-to [Jarke, 1998].

Forward-to requirements traceability links other documents, which may have pre-

1“Changes in goals will propagate downward through the levels while changes in the physical re-
sources (such as faults or failures) will propagate upward. In other words, states can only be described
as errors or faults with reference to their intended functional purpose. Thus reasons for proper function
are derived top-down. In contrast, causes of improper function depend upon changes in the physical
world (i.e., the implementation) and thus they are explained bottom-up.”, [Leveson, 2000].

Chapter 6. Capturing Evolutionary Requirements Dependencies 113

ceded the requirements document, to relevant requirements. Changes in stakeholder

needs, as well as in technical assumptions, may require a radical reassessment of re-

quirements relevance. Backward-from requirements traceability links requirements to

their sources in other document or people. The contribution structures underlying re-

quirements are crucial in validating requirements. These relationships identify pre-

traceability, which consists of all the relationships between requirements and what-

ever (e.g., requirements rationale, requirements elicitation, requirements stakeholders,

business contexts, etc.) precedes them. Table 6.1 shows examples of requirements

pre-traceability [Sommerville and Sawyer, 1997a].

Table 6.1: Examples of requirements pre-traceability.

Traceability Type Description

requirements-sources Links the requirements and the people or documents

which specified the requirements.

requirements-rationale Links the requirements with a description of why

that requirement has been specified.

Forward-from requirements traceability links requirements to design and imple-

mentation. This relationship allocates requirement responsibility to specific design

and implementation components. It furthermore allows to assess the impact of require-

ments changes on design and implementation. Backward-to requirements traceability

links design and implementation back to requirements. This relationship allows to as-

sess whether system design and implementation comply with high-level requirements.

It moreover allows to identify design or implementation for which requirements are

under-specified or, worst, unspecified. These relationships identify post-traceability,

which consists of all relationships between requirements and whatever (e.g., system

design, implementation, testing results, system usage, etc.) follows them. Table 6.2

shows examples of requirements post-traceability [Sommerville and Sawyer, 1997a].

Requirements dependency represents a particular instance among the traceability

types. It identifies relationships between requirements. The requirements-requirements

traceability links the requirements with other requirements which are, in some way, de-

Chapter 6. Capturing Evolutionary Requirements Dependencies 114

Table 6.2: Examples of requirements post-traceability.

Traceability Type Description

requirements-architecture Links requirements with the sub-systems that im-

plement the requirements.

requirements-design Links requirements with specific hardware or soft-

ware components in the system which implement

the requirements.

requirements-interface Links requirements with the interfaces of external

systems that provide the requirements.

pendent on them [Sommerville and Sawyer, 1997a]. Figure 6.1 shows a taxonomy of

traceability.

Figure 6.1: A taxonomy of requirements traceability.

Chapter 6. Capturing Evolutionary Requirements Dependencies 115

6.1.3 Requirements Dependency

Requirements dependency is a peculiar type of traceability (see Figure 6.1). It iden-

tifies relationships between requirements. Understanding requirements dependency is

very important in order to assess the impact of requirement changes. Among the re-

quirements relationships are Rich Traceability and Evolutionary Dependency.

Rich Traceability [Hull et al., 2002] captures a satisfaction argument for each re-

quirement. System requirements refine high-level user-requirements. Although low-

level system requirements contribute towards the fulfilment of high-level user require-

ments, it is often difficult to assess the validity of these assertions. Thus, a satisfac-

tion argument defines how overall low-level system requirements satisfy the high-level

user requirements. There are two propositional operators: conjunction and disjunc-

tion. Conjunction indicates that the contribution of all refining system requirements is

necessary for the user requirement satisfaction argument to hold. Disjunction indicates

that the contribution of any one of the refining system requirements is necessary for

the user requirement satisfaction argument to hold.

Notice that rich traceability gives rice to hierarchical refinements of requirements.

This is similar to Intent Specifications [Leveson, 2000], which consist of multi-levels

of requirement abstractions (from management level and system purpose level down-

wards to physical representation or code level and system operations level). The def-

inition of hierarchies of requirements allows the reasoning at different level of ab-

stractions2. Unfortunately, requirements changes affect high-level as well as low-level

requirements in Intent Specifications. Moreover, requirements changes often propa-

gate through different requirements levels3. Hence, it is very difficult to monitor and

control the multi-level cascade effect of requirements changes. In accordance with

2“Hierarchy theory deals with the fundamental differences between one level of complexity and an-
other. Its ultimate aim is to explain the relationships between different levels: what generates the levels,
what separates them, and what links them. Emergent properties associated with a set of components at
one level in an hierarchy are related to constraints upon the degree of freedom of those components.”,
[Leveson, 2000].

3“Mappings between levels are many-to-many: Components of the lower levels can serve several
purposes while purposes at a higher level may be realised using several components of the lower-level
model. These goal-oriented links between levels can be followed in either direction, reflecting either
the means by which a function or goal can be accomplished (a link to the level below) or the goals or
functions an object can affect (a link to the level above). So the means-ends hierarchy can be traversed in
either a top-down (from ends to means) or bottom-up (from means to ends) direction.”, [Leveson, 2000].

Chapter 6. Capturing Evolutionary Requirements Dependencies 116

the notion of semantic coupling, Intent Specifications support strategies to reduce the

cascade effect of changes [Weiss et al., 2003]. Although these strategies support the

analysis and design of evolving systems, they provide limited support to understand

the evolution of high-level system requirements. Thus the better our understanding

of requirements evolution, the more effective design strategies. That is, understand-

ing requirements evolution enhances our ability to inform and drive design strategies.

Hence, evolution-informed strategies enhance our ability to design evolving systems.

Although traceability supports requirements management, it is unclear how re-

quirements changes affect traceability. Requirements changes can affect traceability

information to record new or modified dependencies. Hence, requirements dependen-

cies (i.e., requirements-requirements traceability) may vary over time. In spite of this

traceability fails to capture complex requirements dependencies due to changes. It is

therefore useful to extend the notion of requirements dependency in order to capture

emergent evolutionary behaviours, hence Evolutionary Dependency.

Definition 6.1 (Evolutionary Dependency) Evolutionary Dependency identifies how

changes eventually propagate through emergent requirements dependencies.

Evolutionary dependency extends requirements-requirements traceability. It takes

into account that requirements change over consecutive releases. Moreover, evolu-

tionary dependency identifies how changes propagate through emergent, direct or in-

direct (e.g., testing results, implementation constraints, etc.), requirements dependen-

cies. Evolutionary dependency therefore captures the fact that if changes affect some

requirements, they will affect other requirements eventually. That is, how changes will

manifest into requirements eventually. Evolutionary dependency therefore takes into

account how requirements changes affect other requirements. Change rationale can

trigger subsequent requirements changes. Requirements responses to change rationale

refine evolutionary dependency. That is, the way changes spread over requirements

represents a classification of evolutionary dependencies. It is possible to identify two

general types: single release and multiple release. Single release changes affect a sin-

gle requirements release. Whereas, multiple release changes affect subsequent require-

ment releases. This is because changes require further refinements or information. It is

possible to further refine these two types as single or multiple requirements. It depends

Chapter 6. Capturing Evolutionary Requirements Dependencies 117

on whether requirements changes affect single or multiple (type of) requirements. This

assumes that requirements group together homogeneously (e.g., functional require-

ments, subsystem requirements, component requirements, etc.). The most complex

evolutionary dependency occurs as requirements changes affect multiple requirements

over subsequent releases. In this case it is possible to have circular cascade effects. Re-

quirements changes feedback (or refine) requirements through (circular) requirements

dependencies. Figure 6.2 shows a taxonomy of evolutionary dependency.

Figure 6.2: A taxonomy of evolutionary dependency.

6.2 Capturing Evolutionary Dependency

This section shows how the formal extension of solution space transformation cap-

tures instances of evolutionary dependencies drawn from the avionics case study. This

provides another example of use of the proposed framework. The case study points

out some basic dependencies. It is possible to represent these basic dependencies by

Chapter 6. Capturing Evolutionary Requirements Dependencies 118

simple Kripke models4. The solution space transformation then captures how depen-

dencies emerge to create complex ones. This shows how formally augmented solution

space transformations capture emergent requirements dependencies, hence evolution-

ary dependency.

6.2.1 Basic Dependencies

The empirical analysis of the avionics case study points out several instances of re-

quirements dependencies. Looking at the rationale for changes allows the grouping

of requirements changes. Moreover, it allows the identification of requirements de-

pendencies. It is possible to refine complex dependencies in terms of basic ones. The

case study highlights three basic dependencies: Cascade Dependency, Self-loop De-

pendency and Refinement-loop Dependency. These are instances of evolutionary de-

pendencies.

Cascade Dependency. This is an instance of the cascade effect of requirements

changes. It captures the fact that changes in some requirements trigger changes into

other requirements eventually.

Example 6.1 (Cascade Dependency) Let us consider the avionics case study. The

requirements of the functions F1 and F2 manifest instances of cascade effects. Two

anomaly reports required changes both in F1 and F2. The anomalies first triggered

requirements changes in F1 and then in F2. Figure 6.3 shows a dependency graph for

F1 and F2.

The graph simply represents the evolutionary dependency between F1 and F2. The

dependency relation, that is, the edge from F1 to F2, means that changes in F1 will

trigger changes into F2 eventually. The relevant requirements changes were allocated

in subsequent requirements releases. Hence, the two functions manifest a multiple-

release multiple-requirement evolutionary dependency.

4Note that the Kripke models in the examples throughout this chapter present an overloading of
names. The same names identify possible worlds as well as valid propositional letter at possible worlds.
The names that identify nodes in the Kripke models identify possible worlds. Whereas, the names that
follow the validity symbol � are propositional letters valid at possible worlds.

Chapter 6. Capturing Evolutionary Requirements Dependencies 119

F1

F2

Figure 6.3: Evolutionary dependency graph for F1 and F2.

The analysis of the entire history of requirements allows the identification of com-

plex dependencies between requirements. The self-loop and refinement-loop depen-

dencies represent instances of complex cascade effects.

Self-loop Dependency. This identifies a self-dependence, that is, some requirements

depend on themselves. This dependency implies that some changes require subsequent

related refinements of requirements. Looking at the history of changes identifies re-

lated changes (i.e., due to the same rationale) that spread over subsequent releases and

affect related requirements.

Example 6.2 (Self-loop Dependency) The function F5 presents examples of self-loop

dependencies. That is, a reported anomaly triggers requirements changes into subse-

quent releases of the requirements specification. Figure 6.4 shows a dependency graph

that represents the self-loop dependency of F5. This represents an instance of multiple-

release single-requirement evolutionary dependency.

F5

Figure 6.4: Evolutionary dependency graph for F5.

There are different reasons to allocate requirements changes over subsequent re-

leases. For instance, stakeholders prioritise requirements changes according to en-

Chapter 6. Capturing Evolutionary Requirements Dependencies 120

vironmental constraints (e.g., cost, certification, etc.). Another reason is that other

development phases (e.g., implementation, testing, etc.) provide further information to

refine some requirements.

Refinement-loop Dependency. This identifies mutual-dependencies over require-

ments. That is, changes in some requirements alternately trigger changes in other

requirements and vice versa. This creates refinement loops of requirements changes.

It looks like that stakeholders negotiate or mediate requirements through subsequent

refinements. These dependency loops may emerge due to other development phases

(e.g., system integration, system testing) that provide further information (e.g., imple-

mentation constraints) about requirements.

Example 6.3 (Refinement-loop Dependency) The refinement-loop dependency is a

combination of the cascade dependency with the self-loop dependency. Figure 6.5

shows a dependency graph that represents the refinement-loop dependency between F2

and F8. Changes, related by the same anomaly report, were alternately allocated to

F2 and F8 over subsequent releases. This represents and instance of multiple-release

multiple-requirements circular evolutionary dependency.

F2

F8

Figure 6.5: Evolutionary dependency graph for F2 and F8.

6.2.2 Modelling Dependencies

The avionics case study provides examples of requirements evolutionary dependen-

cies. Evolutionary dependencies highlight how changes propagate into requirements.

On one hand evolutionary dependencies highlight system features (e.g., dependencies

Chapter 6. Capturing Evolutionary Requirements Dependencies 121

due to the system architecture). On the other hand they point out that requirements

evolve through consecutive releases, hence requirements evolution. Thus, evolutionary

dependencies capture requirements evolution as well as system features. The formal

extension of the solution space transformation allows the modelling of emergent evo-

lutionary dependencies. Evolutionary dependencies populate solution spaces. Thus,

solution spaces contain (Kripke) models of evolutionary dependencies. Whereas, re-

quirement changes highlight emerging problems. A solution space transformation

therefore resolves arising problems in future solutions. That is, it updates evolutionary

dependencies in order to solve arising requirements changes and dependencies. The

first step is to show how Kripke models easily capture the basic evolutionary depen-

dencies.

Example 6.4 (Cascade Dependency continued) The dependency graph for F1 and

F2 simply is a Kripke structure. A function, which assigns propositional letters to

possible worlds (i.e., nodes in the graph), extends a dependency graph to a Kripke

model. This function defines a relationship between possible worlds and propositional

letters. It mainly defines the validity of propositional letters at possible worlds. Figure

6.6 shows a Kripke model of the cascade dependency between F1 and F2.

F1

F2

�
F2

Figure 6.6: A Kripke model of the evolutionary dependency between F1 and F2.

The truth assignment corresponds to the accessibility relation (i.e., the edge of the

graph). Thus, the propositional letter F2 is valid at the world (i.e., function) F1 in

the proposed model, because F2 is accessible from F1. In other words, changes in F1

may trigger changes in F2 eventually. In this case F2 is a terminal possible world.

That is, F2 in unable to access other possible worlds. This results in the fact that

Chapter 6. Capturing Evolutionary Requirements Dependencies 122

every propositional letter is false at the possible world F2. In terms of evolutionary

dependency, this means that changes in F2 are unable to affect other requirements.

Notice that the evolutionary dependency graphs (models), this chapter shows, cap-

ture requirements dependencies at the functional level. That is, the dependency mod-

els represent how requirements changes propagate through system function require-

ments. This shows that the formal extension of the solution space transformation

allows the modelling of change and evolution at different abstraction levels5. This

complies with the features that other requirements engineering models highlight (e.g.,

[Hull et al., 2002, Leveson, 2000]). Requirements dependency models therefore cap-

ture how changes (due, for instance, to coding, testing, usage, etc.) in the physical

dimension propagate upwards in the functional dimension [Leveson, 2000].

Example 6.5 (Self-loop and Refinement-loop Dependencies continued) Similarly, it

is possible to extend the dependency graphs for self-loop and refinement-loop depen-

dencies to Kripke models. Figure 6.7 shows a Kripke model that represents the self-

loop dependency of F5. Any reflexive Kripke model captures self-loop dependencies.

On the other hand in any reflexive model each possible world has a reflexive loop

[Barwise and Moss, 1996].

Figure 6.8 shows a Kripke model for the refinement-loop dependency of F2 and F8.

In this case F2 and F8 can access each other. This means that requirements changes

alternately propagate into the two functions. Notice that, from a logic viewpoint, the

two Kripke frames (see Figure 6.7 and 6.8) are bisimilar in the theory of non-well

founded sets (or Hypersets) [Barwise and Moss, 1996].

The representation of basic evolutionary dependency is therefore straightforward.

Simple conventions and notations easily capture requirements dependencies as Kripke

models. It is possible to model complex dependencies as well. The combination (or

composition) of the basic dependencies allow to capture complex ones. This results in

the combination (or composition) of the underlying models6.

5“In a means-ends abstraction, each level represents a different model of the same system. At any
point in the hierarchy, the information at one level acts as the goals (the ends) with respect to the model
at the next lower level (the means). Thus, in a means-ends abstraction, the current level specifies what,
the level below how, and the level above why.”, [Leveson, 2000].

6Generation, Reduction and Disjoint Unison, for instance, are three very important operations on
modal logic models and frames which preserve truth and validity [Chagrov and Zakharyaschev, 1997].

Chapter 6. Capturing Evolutionary Requirements Dependencies 123

F5 � F5

Figure 6.7: A Kripke model of the self-

loop dependency for F5.

F2

F8

�
F8

�
F2

Figure 6.8: A Kripke model of the

refinement-loop dependency between

F2 and F8.

Example 6.6 (Complex Dependencies) Figure 6.9 shows examples of complex de-

pendencies identified in the avionics case study. Each complex dependency consists

of a combination (or composition) of the three basic ones, i.e., cascade, self-loop and

refinement-loop dependency. The truth values assignments will constrain the accessi-

bility relationships of the Kripke frames.

6.2.3 Capturing Emergent Dependencies

The formally augmented solution space transformation captures emergent evolution-

ary dependencies. That is, it is possible to capture how evolutionary dependencies

change through solution space transformations. The idea is that solution spaces con-

tain models of evolutionary dependencies. Whereas, anomalies as propositional modal

formulas highlight dependency inconsistencies due to requirements changes. The so-

lution space transformation therefore solves the arising problems (i.e., dependency

inconsistencies) into proposed solution spaces. Hence, a sequence of solution space

transformations captures emergent requirements dependencies. That is, it is possible

to construct models of requirements dependencies using solution space transforma-

tions.

Example 6.7 (Cascade Dependency continued) Let assume that the dependency be-

tween F1 and F2 is initially unknown. The initial Kripke model consists of two possible

worlds, F1 and F2, without any accessibility relationship between them. This means

Chapter 6. Capturing Evolutionary Requirements Dependencies 124

F2

F8

F3

F5

F8

F5

F8

F8

F4

F5

Figure 6.9: Examples of complex evolutionary dependencies.

that the possible worlds F1 and F2 are disconnected in the initial Kripke model. The

dependency between F1 and F2 remains unchanged until an anomaly report triggers

requirements changes that affect both of them. Stakeholders prioritise these require-

ments changes. They first allocate to a requirement release the changes for F1 and

then to a future release the changes for F2. This results in a cascade dependency be-

tween F1 and F2. This situation highlights an anomaly (or inconsistency) with the

current dependency model (i.e., a disconnected Kripke frame). In order to resolve this

inconsistency, the proposed problem space contains the propositional modal formula

� F2 � � F1 �

This formula means that “changes in F1 trigger changes into F2”. It is easy to see
that any disconnected Kripke frames fails to satisfy this formula, because � F2 is true
in any disconnected possible world and � F1 is false in any disconnected possible
world. Notice that the given problem is similar to the axiom that characterises tran-
sitive Kripke frames (or simply frames without terminal worlds). A tableau can verify

Chapter 6. Capturing Evolutionary Requirements Dependencies 125

whether there exist a model that satisfies the given problem. This means to prove the
validity of � � � F2 � � F1 � . The following tableau provides a countermodel for the
given problem.

1 � � � F2 � � F1 � � 1 � conjunctive rule giving (2) and (3)

1
�

F2 � 2 �
1 ��� F1 � 3 �
1 F2 � 4 � from (2) by T special necessity rule

1 � F1 � 5 � from (3) by T special necessity rule

This tableau is open (i.e., it has an open branch). Thus, in this case, the only open

branch (i.e., the entire tableau) provides a countermodel for the formula � F2 � � F1.

A model for this formula can be any Kripke model that assigns the propositional truth

values:
�

F2 and �� F1. Notice that the validity of the propositional letter F2 indicates

that there is an accessibility to the possible world F2. Figure 6.10 shows a solution

space transformation that captures the resolution of the given problem. The possible

world F1 complies with the formula � F2 � � F1. Whereas, the possible world F2

fails to satisfy the same formula. This is because the proposed solution only takes into

account the observed cascade effect that anomaly reports highlight.

F2

F1

F1

F2

Pt

�
F2

St � 1St

�
F2 ��� F1

Figure 6.10: A solution space transformation for F1 and F2.

Chapter 6. Capturing Evolutionary Requirements Dependencies 126

A future solution space transformation can also capture the evolutionary depen-

dency between F2 and F8. Assume that there exist a refinement-loop dependency be-

tween F2 and F8. A solution space transformation will solve the new anomaly by

extending the current solution space to a new proposed solution space. For instance,

the propositional formulas � F2 � � F8 and � F8 � � F2 capture the given anomaly.

Figure 6.11 shows a Kripke frame modelling the dependency between F1, F2 and F8.

It represents a proposed solution.

F2

F8

F1

Figure 6.11: A Kripke frame that captures the dependency between F1, F2 and F8.

Similarly, consecutive solution space transformations can capture the evolutionary

dependency for all the system functions. Figure 6.12 shows the observed dependencies.

6.2.4 Engineering Inferences

The evolutionary dependency models allow the gathering of engineering information.

On the one hand the models capture the history of socio-technical issues arising and be-

ing solved within industrial settings. On the other hand it is possible to infer engineer-

ing information from the evolutionary dependency models. For instance, it is possible

to enrich the semantics interpretation of the accessibility relation between functional

requirements by associating weights with each pair of related possible worlds. There-

fore, it would be possible to associate a cost for each relationship between two func-

tions. Hence, it is possible to calculate the cost of propagating changes by summing

the weights for all relationships between functions involved in particular requirements

Chapter 6. Capturing Evolutionary Requirements Dependencies 127

Figure 6.12: An example of evolutionary dependency graph.

change. Moreover, information about requirements evolution and volatility would al-

low the adjustment of cost models7. This information would enable the cost-effective

management of requirements changes and the risk associated with them. However,

the absence of a relationship from one function to another one could be interpreted as

having a very expensive cost (e.g., infinite or non-affordable cost).

Example 6.8 Figure 6.13 shows the evolutionary dependency model for F1, F2 and

F8. It is possible to extend the models by labelling each transaction by the cost associ-

ated per each triggered requirements change. Thus, it is possible to calculate the cost

of any change in F1 that triggers changes in F2 and F8 eventually. The cost of cas-

cading changes is w1, w2 and w3 for changes propagating from F1 to F2, from F2 to

F8 and from F8 to F2, respectively. Therefore, if requirements exhibit the specific evo-

lutionary dependency model (empirically constructed), the cost of implementing the

associated changes would be n � w1 � i � w2 � w3 � � (where n is the number of changes

in F1 that trigger changes in F2 and F8 eventually, and i is the number of times that

changes are reiterated or negotiated between F2 and F8). Whereas, the accessibility

from F2 to F1 (represented by a dashed arrow) would be very expensive, because it

7“COCOMO II uses a factor called REVL, to adjust the effective size of the product caused by
requirements evolution and volatility caused by such factors as mission or user interface evolution,
technology upgrades, or COTS volatility.”, [Boehm et al., 2000], p. 25.

Chapter 6. Capturing Evolutionary Requirements Dependencies 128

will require changing the requirements of the software architecture (i.e., F1). Hence,

although changes in F2 could affect F1, it is undesirable due to high cost and risk

associated with changing F1.

F2

F8

F1 £w1 / per change

£w2 / per change

£∞ / per change

£w3 / per change

Figure 6.13: A weighted model of evolutionary dependencies.

6.3 Towards Requirements Evolution

This chapter shows how the formally augmented solution space transformation can

capture emergent evolutionary dependency. The empirical analysis of the avionics case

study highlights instances of evolutionary dependencies. The analysis points out three

different basic dependencies: cascade, self-loop and refinement-loop dependency. The

examples show that it is possible to capture evolutionary structures in terms of con-

secutive solution space transformations. Consecutive solution space transformations

identify the history of problems arising and being solved. The underlying formal

framework moreover allows the modelling of evolutionary dependency. This supports

model-oriented software production.

The modelling of evolutionary dependency highlights that the formal extension of

the solution space transformation enables the gathering of evolutionary information at

different abstraction levels. Hence, the solution space transformation allows the mod-

elling of different hierarchical features of requirements evolutions. This supports re-

Chapter 6. Capturing Evolutionary Requirements Dependencies 129

lated requirements engineering approaches that rely on hierarchical refinements of re-

quirements (e.g., Intent Specifications [Leveson, 2000]). The definition of hierarchies

of requirements allows the reasoning at different level of abstractions. Unfortunately,

requirements changes affect high-level as well as low-level requirements. Moreover,

requirements changes often propagate through different requirements levels. Hence,

the solution space transformation allows the reasoning of ripple effects of requirements

changes at different abstraction levels. With respect to requirements hierarchies, the

solution space transformation takes into account anomalies that relate to a lower level

of abstraction. For instance, the solution space transformations, this chapter shows,

allow the modelling of evolutionary requirements dependencies at the functional level.

Although the problem spaces take into account requirements changes due to require-

ments refinements as well as anomalies at the physical level (e.g., coding and usage

feedback).

In practice, the modelling of evolutionary requirements dependency and require-

ments evolution allows the reconciliation of solutions with observed anomalies. For

instance, it would be possible to enhance the reasoning of evolutionary features of re-

quirements, hence requirements evolution. Although most requirements engineering

tools support the gathering of requirements (e.g., requirements management tools) and

requirements changes (e.g., change management tools), they provide limited support in

order to reasoning on observed evolutionary information. Hence, it is difficult to anal-

yse and monitor emergent evolutionary features of requirements. Most requirements

methodologies assess the impact of changes using traceability information. Unfortu-

nately, changes affect traceability too. In contrast, the formal extension of solution

space transformation allows the modelling of evolutionary requirements dependency,

as mappings between dependency models and problems. This represents an account

of the history of socio-technical issues arising and being solved within requirements

hierarchies.

In summary, the formally augmented solution space transformation allows the gath-

ering of emergent evolutionary features of solutions. Hence, heterogeneous require-

ments evolution provides the basic mechanisms to capture emergent evolutionary soft-

ware production.

Chapter 7

Towards Requirements Evolution

Engineering

Requirements represent an account of the history of socio-technical issues arising and

being solved within industrial settings. Heterogeneous engineering stresses a holistic

viewpoint that allows us to understand the underlying mechanisms of requirements

evolution. Empirical analysis and requirements evolution modelling capture evolu-

tionary aspects of system production. Accordingly, this chapter develops three main

scenarios of practice: Modelling Requirements Evolution, Process Calibration, Re-

quirements Evolution Regression. Moreover, it describes how heterogeneous require-

ments evolution supports the refinement of design models. Although these scenarios

are descriptive, they provide an overall understanding how modelling requirements

evolution enhances system production. The scenarios therefore further develop a ra-

tionale for Requirements Evolution Engineering (REE).

7.1 REE Rationale

Requirements evolution is a paradox in software production. On one hand require-

ments evolution is an emergent phenomenon that manifests during software produc-

tion. On the other hand software production limitedly exploits requirements evolution.

The empirical analyses of industrial case studies highlight several aspects of require-

130

Chapter 7. Towards Requirements Evolution Engineering 131

ments evolution. For instance, it is possible to classify requirements according to their

volatility and origins [PROTEUS, 1996]. Although empirical analyses successfully

capture requirements evolution, they are context sensitive. That is, it is difficult to gen-

eralise results as well as methodologies. Requirements, as mappings between socio-

technical solutions and problems, represent an account of the history of socio-technical

issues arising and being solved within industrial settings. Heterogeneous engineering

stresses a holistic viewpoint that allows us to understand the underlying mechanisms

of evolution of socio-technical systems. Hence, it is possible to model requirements

evolution in terms of the formally augmented solution space transformation.

Empirical analysis and modelling therefore capture requirements evolution. They

are convenient to identify requirements engineering practice. Although these method-

ologies provide a comprehensive account of requirements evolution, requirements en-

gineering practice little exploits them. On the other hand requirements engineer-

ing practice needs to identify how requirements evolution supports software produc-

tion. Requirements evolution engineering involves analysis, modelling and practice

of requirements evolution. Requirements evolution therefore identifies strategies and

methodologies that support software production. This thesis argues that the better the

understanding and integration of requirements evolution, the more the support to sys-

tem production. This chapter develops scenarios of use for requirements evolution

engineering.

7.2 Observing Requirements Evolution

Rich data sources characterise software production environments. Unfortunately, it is

very difficult to analyse rough data within live production environments. Engineer-

ing practice provides limited support for exploratory approaches of rich data sources.

Although focusing on few environmental variables (e.g., maintenance cost, software

reliability, etc.) aims to effectively establish a feedback to the software production, it

inhibits the identification of emergent behaviours within software production.

Requirements, as mappings between socio-technical solutions and problems, repre-

sent an account of the history of socio-technical issues arising and being solved within

Chapter 7. Towards Requirements Evolution Engineering 132

industrial settings. Heterogeneous engineering stresses a holistic viewpoint that allows

us to understand the underlying mechanisms of evolution of socio-technical systems.

Hence, requirements evolution is an emergent aspect due to stakeholder interactions

during software production. Thus, it is necessary to shape rough data in order to un-

derstand requirements evolution within live production environments.

The observation of evolutionary features within live production environments there-

fore requires to identify strategies to shape rough data in order to identify convenient

viewpoints. These evolutionary viewpoints allow the gathering of requirements evo-

lution. Thus, requirements evolution engineering involves those methodologies and

strategies that allow the identification of convenient viewpoints for observing require-

ments evolution. Moreover, the overall goal is to establish and exploit requirements

evolution feedback to software production.

Requirements are convenient to analyse how stakeholder interactions shape soft-

ware systems throughout production. Empirical analyses highlight requirements evo-

lution. Requirements evolution therefore is an emergent phenomenon that involves

various aspects (e.g., development process, software product, etc.) of software produc-

tion. It is therefore necessary to shape rough environmental data in order to capture

evolutionary requirements features. Unfortunately, general requirements engineering

practice provides limited guidance to tailor data analyses within live production en-

vironment. On the other hand data analyses provide valuable support to many re-

quirements management activities. Among requirements engineering activities are re-

quirements and change managements. The former, i.e., requirements management,

consists of various tasks (e.g., changing requirements, editing requirements, updating

traceability, etc.) that contribute to the overall management of requirements specifica-

tions. A well defined requirements management policy implements various guidelines

[Sommerville and Sawyer, 1997a] that rely on specific requirements information (e.g.,

traceability). The latter, i.e., changes management, involves the tasks (e.g., maintain-

ing changes rationale, assessing the impact of changes, etc.) that support the coherent

organisation of the requests of changes due to arising anomalies. Most requirements

engineering tools (e.g., Telelogic DOORS � and IBM Rational � RequisitePro �) sup-

port these two main activities, i.e., requirements and changes managements.

Chapter 7. Towards Requirements Evolution Engineering 133

Requirements and changes managements constrain the interaction between require-

ments and changes. This interaction is very important to understand and shape require-

ments evolution. Requirements management policies identify strategies effectively to

support the interaction between requirements and changes. For instance, the assess-

ment of the impact of changes relies on requirements traceability. Thus, requirements

management policies often require to maintain traceability in order to enhance sensi-

tivity analyses (e.g., assessment of the impact of changes). Evolutionary requirements

information further enhances the interaction between requirements and changes. Al-

though management activities and policies identify strategies that organise the interac-

tion between requirements and changes, they provide limited support to capture evo-

lutionary information about requirements. Observing evolutionary features requires

further resource commitments in order to capture relevant environmental information

(e.g., taxonomy of changes, taxonomy of requirements, volatility, etc.). Figure 7.1

shows an example of evolutionary enhanced requirements information. It identifies

(evolutionary) requirements information in terms of data sets and their interactions.

Requirements
Management Management

Change

Figure 7.1: Evolutionary enhanced requirements information.

Table 7.1 describes the different evolutionary requirements information. For in-

stance, a classification can capture whether stakeholders accepted or not requirements

changes. A simple classification identifies three main types of changes: approved

Chapter 7. Towards Requirements Evolution Engineering 134

changes, rejected changes and pending requests of changes. Similarly, another clas-

sification describes the activities that change the requirements. Thus, maintenance

activities fall into three categories: add, delete and modify requirements. Captur-

ing this type of information supports the analysis of requirements and requirements

changes, hence requirements evolution. For instance, the analysis of the change ra-

tionale (e.g., anomaly reports) can highlight emergent information about requirements

evolution (e.g., evolutionary dependency).

Table 7.1: Evolutionary enhanced requirements information.

Data Set Description

Requirements Requirements, as mappings between socio-technical solutions and prob-

lems, represent an account of the history of socio-technical issues arising

and being solved within industrial settings.

Requirements

Specification

The specification consists of all active requirements, that is, mappings

between (current and future) solutions and problems.

Requirements

Attributes

These identify information that refines specific requirement features

(e.g., functionality, traceability, dependency, etc.).

Requirements

Viewpoints

Viewpoints identify specific perspectives (usually related to stakehold-

ers) that are convenient to analyse requirements and their evolution.

Type of

Requirement

Requirements classifications identify work practice as well as organisa-

tion features.

Requirements

Change

Anomalies give rise to potential requirements changes. Stakeholders pri-

oritise changes through a change management process that takes into

account environmental constrains (e.g., cost).

Changes Rationale Changes rationale supports requests of changes.

Type of Change The classification of changes points out work practice in managing re-

quirements changes as well as evolutionary system features.

Taxonomy of

Change

It is possible to identify a taxonomy of changes with respect to the

adopted classification of changes.

History of Change The history of change consists of all changes approved for implementa-

tion in subsequent releases of the requirements specification.

Requirements

Evolution

Requirements Evolution is a co-evolutionary process. Requirements

Evolution consists of the Requirements Specification Evolution and the

Requirements Changes Evolution.

Chapter 7. Towards Requirements Evolution Engineering 135

Notice that there exist different relationships between evolutionary requirements

information. For instance, any history of change affects several (one or more) releases

of the requirements specification. The most general (i.e., many-to-many) relationships

exist between changes rationale, requirements changes, requirements and requirements

specification. For instance, a single anomaly can trigger subsequent requirements

changes that affect multiple requirements (specifications). Therefore, capturing evo-

lutionary requirements information highlights relationships that allow the analysis of

requirements evolution. The collection of evolutionary requirements information en-

hances the systematic analysis of requirements evolution. Table 7.2 describes some

examples of binary relationships.

Table 7.2: Examples of relationships between evolutionary requirements information.

Relationship Description

Type - Size The classification of measurable features according to types can provide fur-

ther information to understand requirements evolution. For instance, the types

of changes group requirements changes. This allows to identify whether there

is a predominance of particular types of changes.

Size - Size This relationship aims to identify any correlation between different measures

of the same entity. For instance, it is possible to analyse the relationship be-

tween the number of requirements forming a functional specification and the

number of requirements changes that occurred in the same functional specifi-

cation. This points out whether there is any correlation between requirements

and changes.

Type - Type This relationship represent a combination of two Type-Size relationships. The

relationship mainly combine two relationships related to different classifica-

tions. For instance, this may allow the identification of any relationship be-

tween requirements changes and software changes. This information would

filter particular types of requirements changes in order to reduce correspond-

ing types of software changes.

These relationships combine related evolutionary requirements information in or-

der to identify any correlation between different information (or measures). Similarly,

it is possible to identify other relationships that involve more than two evolutionary

information. Although it is easy to combine evolutionary information, it is difficult to

Chapter 7. Towards Requirements Evolution Engineering 136

identify correlations that are valid across software production environments. On the

other hand the systematic collection of evolutionary information supports the under-

standing of requirements evolution.

7.3 Scenarios of Use

Different development processes (e.g., V model, Spiral model, etc.) define how de-

velopment activities (e.g., requirements elicitation, design, testing, etc.) interact each

other and contribute towards software production. The monitoring of development

activities provides feedback that supports process improvement [Bustard et al., 2000].

Different methodologies [Bustard et al., 2000] and standards (e.g., [Paulk et al., 1993])

rely on empirical analyses in order to address process improvement. On one hand pro-

cesses are data sources. On the other hand empirical analyses provide quantitative

evidence that captures system features. For instance, software reliability measures

rely on the process ability to identify software faults. Similarly, requirements changes

measures capture how changes management policies spread out changes over subse-

quent releases. Thus, capturing evolutionary requirements information provides useful

feedback in development processes. This section articulates requirements evolution

modelling in three scenarios of use: Modelling Requirements Evolution, Process Cali-

bration, Requirements Evolution Regression.

Modelling Requirements Evolution. This scenario identifies a general process for

modelling requirements evolution. Figure 7.2 shows the workflow of the scenario. Any

development process leaves valuable information that represent environmental knowl-

edge. This knowledge pervades production environments. Although production envi-

ronments are rich data sources, most of the time data appears in many different artefacts

(e.g., tools, reports, etc.) that make difficult to identify a comprehensive understanding

of software production. However, empirical analyses allow the identification of evo-

lutionary requirements features. For instance, it is possible to identify taxonomy of

requirements and changes within production environments. Moreover, it is possible to

classify requirements according to their likelihood of changing (e.g., volatile, stable,

Chapter 7. Towards Requirements Evolution Engineering 137

etc.). This information further supports requirements and change management activi-

ties. Notice that empirical analyses could also involve previous similar projects (e.g.,

product line projects) within production environments. Precious experience together

with process information effectively allows the observation of evolutionary require-

ments information, hence requirements evolution. Finally, it is therefore possible to

model requirements evolution. Requirements evolution, as defined, consists of re-

quirements specification evolution and requirements changes evolution. These models

support the monitoring of requirements evolution. Moreover, they capture evolutionary

information (e.g., requirements evolutionary dependency) that supports the planning of

iterative development phases.

Figure 7.2: Modelling requirements evolution.

Process Calibration. Development processes organise software production in terms

of development phases and activities. Although this allows the description of devel-

opment processes, development phases and activities overlap each other. Moreover, as

Chapter 7. Towards Requirements Evolution Engineering 138

the software production progresses, emergent dependencies (e.g., requirements evolu-

tionary dependencies) constrain the development process. This requires development

processes to adjust accordingly. Figure 7.3 shows another scenario of use for require-

ments evolution modelling. The observations of evolutionary enhanced information

and the requirements evolution models contribute towards the reconstruction of the

actual development process. This can therefore provide feedback that is useful to cali-

brate (or adjust) development phases or activities.

Figure 7.3: Process calibration.

This scenario supports process oriented methodologies too. Unfortunately, process

oriented methodologies provide limited support to tailor the requirements process to

specific software product (lines). This reduces the process effectiveness. Although

process oriented methodologies plan development phases and activities, they provide

limited control over the product. This limits the extent to which it is possible to adjust

processes in order to enhance emergent product features. Moreover, this scenario is

useful in product line contexts. For instance, evolutionary information and require-

Chapter 7. Towards Requirements Evolution Engineering 139

ments evolution models highlight specific processes that mirror product line practice.

Although product lines identify sets of similar projects, these projects differ each other

on specific variability points [Bosch, 2000]. Thus, evolutionary requirements informa-

tion and requirements evolution models highlight variability points that identify (new)

product lines. The classification of requirements according to their stability (or volatil-

ity) allows the identification of the requirements for a new product line. For instance,

the stable requirements identify the core of a new product line. Whereas the change-

able requirements identify the variability points. This is very important in order to

cost-effectively establish new product lines [Schmid and Verlage, 2002].

Requirements Evolution Regression. This scenario explores how evolutionary re-

quirements information and requirements evolution models support the identification

of emergent requirements features. Figure 7.4 shows the workflow of requirements

evolution regression.

Figure 7.4: Requirements evolution regression.

Chapter 7. Towards Requirements Evolution Engineering 140

Although general artefacts (e.g., classifications of requirements and changes) easily

capture evolutionary requirements features, they evolve too. For instance, classifica-

tions capture work practice as well as product features. Thus, any change in work

practice (e.g., a new change management policy) limits the applicability of classifica-

tions. This could result in misleading information. It is therefore necessary to monitor

evolutionary requirements information throughout software production. Requirements

evolution models support the monitoring of evolutionary requirements features. Obser-

vations that take into account the requirements evolution models define a requirements

evolution regression, which supports the identification of emergent features (e.g., evo-

lutionary requirements dependencies).

7.4 Evolutionary Design Observations

Requirements, as mappings between socio-technical solutions and problems, represent

an account of the history of socio-technical issues arising and being solved within in-

dustrial settings. It is therefore possible to define requirements evolution in terms of

sequential solution space transformations. The characterisation of requirements and

requirements changes allows the definition of requirements evolution. Heterogeneous

engineering stresses a different role for requirements. The shift from the paradigm

of problems searching for solutions (i.e., problem � solution) to the one of solutions

searching for problems (i.e., solution � problem � solution) points out a new role

for requirements with respect to (design) solutions and problems. Most software de-

sign processes and organisations rely on the first paradigm (i.e., problems searching

for solutions). In this case, requirements represent problems to be solved by design

solutions. Thus, software production takes into account a certain relationship between

requirements, design and system implementation. This relationship implies a specific

order to software production phases (e.g., first the collection of system requirements,

then the solutions design and finally the implementation, testing and so on). Regard-

less the adopted development process, each software production complies with the

paradigm of problems searching for solutions. This is one of the reasons because most

software development processes start with a requirement phase. In contrast, heteroge-

Chapter 7. Towards Requirements Evolution Engineering 141

neous engineering takes into account the second paradigm (i.e., solutions searching for

problems). Heterogeneous engineering therefore points out that requirements link (de-

sign) solutions and problems observed (by coding, testing, usage, etc.) in the system

under consideration. On the one hand requirements map solutions to given problems.

This implies a different role for requirements with respect to solutions and problems.

On the other hand requirements narrow and browse solution spaces in order to address

observed problems. The heterogeneous requirements role highlights new insights in

the production of software systems.

This section describes how the comprehensive account of heterogeneous require-

ments evolution supports the refinement of design models. Although design phases

intend to identify the most suitable solutions that fulfil the given requirements. In con-

trast, heterogeneous requirements engineering highlights how design models (that is,

solutions) support the observation of requirements (evolution). Moreover, the solution

space transformation allows the gathering of requirements (evolution) during design.

Consider a simple design scenario using UML [Rumbaugh et al., 1999]. UML is a

popular modelling language that consists of different design levels (or viewpoints) and

supports the implementation of (object-oriented) software systems. Use cases in UML

models capture high level system requirements. Use cases identify system boundaries

as well as system functionalities. Moreover, they identify the interactions between the

system under development with other (external) systems or actors. In other words,

“a use case describes sequences of actions a system performs that yield an observ-

able result of value to a particular actor” [Leffingwell and Widrig, 2003]. Use cases in

UML therefore represent the starting point with respect to the Rational Unified Pro-

cess (RUP) [Hunt, 2000]. The RUP is an iterative framework that consists of different

activities (e.g., requirements, design, etc.) articulated over different phases (i.e., in-

ception, elaboration, construction and transition). The analysis of use cases provides

the basis for the production of class diagrams [Bennett et al., 2001]. The class dia-

grams describe the basic building blocks of object-oriented systems. That is, the class

diagrams show the classes that form a system and the collaborations (e.g., message

passing) among those classes. Hence, class diagrams reflect an architectural view of

the system under consideration. Figure 7.5, for instance, shows a design workflow as

Chapter 7. Towards Requirements Evolution Engineering 142

an activity diagram [Bennett et al., 2001]. The collaborations required between classes

to provide the functional capability necessary to support requirements (in the form of

use cases) will be examined in more details as the design progresses. The consideration

of these collaborations will clarify the specification of the classes in the class model,

hence class diagrams. As the specification becomes more and more firm, classes can

be organised into subsystems of coherent and cohesive functional capability.

Figure 7.5: Design workflow as an activity diagram.

Thus, on one hand use cases capture system requirements, on the other hand sys-

tem design identifies use cases. It is easy to figure out how the solution space trans-

formation extends development workflows that rely on UML modelling. In this case,

system design (in terms of architecture and classes) represents solutions. As develop-

ment progresses, stakeholders highlight anomalies. According to the solution space

transformation, requirements are mappings between solutions and problems. Figure

7.6 shows how the solution space transformation extends the design workflow. So-

lutions (i.e., architectural and classes design) contextualise given problems. The so-

lution space transformation therefore resolves the given problems into the proposed

future solutions. The future solutions reconcile the initial solutions with the given

Chapter 7. Towards Requirements Evolution Engineering 143

problems. The solution space transformation highlights how design solutions evolve

in order to address observed problems. On the other hand the solution space trans-

formation identifies the requirements, as mappings between solutions and problems.

These requirements therefore highlight use cases of the system solutions. Hence, the

solution space transformation supports the identification and refinement of use cases

[Leffingwell and Widrig, 2003].

Figure 7.6: Extended design work flow using the solution space transformation.

7.5 Towards Requirements Evolution Engineering

The empirical analyses of industrial case studies highlight several aspects of require-

ments evolution. For instance, it is possible to classify requirements according to their

volatility and origins. Although empirical analyses successfully capture requirements

evolution, they are context sensitive. That is, it is difficult to generalise results as well

Chapter 7. Towards Requirements Evolution Engineering 144

as methodologies. Requirements evolution modelling allows to tailor development

processes and artefacts to development environments. The combination of empiri-

cal analyses and requirements evolution models captures environmental features (e.g.,

work practice, product characterisation, etc.). This combination identifies a convenient

requirements engineering practice that continuously provides feedback while software

production progresses. Although these methodologies provide a comprehensive ac-

count of requirements evolution, requirements engineering practice little exploits them.

On the other hand requirements engineering practice needs to identify how require-

ments evolution supports software production. Requirements evolution engineering

involves analysis, modelling and practice of requirements evolution. Requirements

evolution therefore identifies strategies and methodologies that support software pro-

duction. This chapter presents three scenarios of practice: modelling requirements

evolution, process calibration and requirements evolution regression. Moreover, it de-

scribes how the comprehensive account of heterogeneous requirements evolution sup-

ports the refinement of design models. Although design phases intend to identify the

most suitable solutions that fulfil the given requirements. In contrast, heterogeneous

requirements engineering highlights how design models (that is, solutions) support the

observation of requirements evolution. The solution space transformation allows the

gathering of requirements (evolution) during design. Although these scenarios are de-

scriptive, they provide an overall understanding how modelling requirements evolution

enhances system production. The scenarios therefore represent a contribution towards

requirements evolution engineering.

Chapter 8

Taxonomy of Evolution and

Dependability

Heterogeneous engineering stresses a holistic viewpoint that allows us to understand

the underlying mechanisms of evolution of socio-technical systems. Requirements,

as mappings between socio-technical solutions and problems, represent an account of

the history of socio-technical issues arising and being solved within industrial settings.

However, requirements represent only one aspect of socio-technical evolution. Al-

though evolution is a necessary feature of socio-technical systems, it often increases

the risk of failures. This chapter reviews a taxonomy of evolution, as a conceptual

framework for the analysis of socio-technical system evolution with respect to depend-

ability. The identification of a broad spectrum of evolutions in socio-technical systems

points out strong contingencies between system evolution and dependability. This the-

sis argues that the better our understanding of socio-technical evolution, the better sys-

tem dependability. In summary, this chapter identifies a conceptual framework for the

analysis of evolution and its influence on the dependability of socio-technical systems.

8.1 On Evolution and Dependability

Socio-technical systems [Coakes et al., 2000] are ubiquitous and pervasive in the mod-

ern electronic mediated society or information society. They support various activ-

145

Chapter 8. Taxonomy of Evolution and Dependability 146

ities in safety-critical contexts (e.g., Air Traffic Control, Medical Systems, Nuclear

Power Plants, etc.). Although new socio-technical systems continuously arise, they

mostly represent evolutions of existing systems. From an activity viewpoint, emerg-

ing socio-technical systems often support already existing activities. Thus, socio-

technical systems mainly evolve (e.g., in terms of design, configuration, deployment,

usage, etc.) in order to take into account environmental evolution. Software pro-

duction captures to some extent socio-technical evolution by iterative development

processes. On one hand evolution is inevitable and necessary for socio-technical

systems. On the other hand evolution often affects system dependability. Unfortu-

nately, a degradation in dependability, in the worst case, can cause catastrophic failures

[Leveson, 1995, Perrow, 1999, Storey, 1996].

Heterogeneous engineering [MacKenzie, 1990] stresses a holistic viewpoint that

allows us to understand the underlying mechanisms of evolution of socio-technical sys-

tems. These mechanisms highlight strong contingencies between system evolution and

dependability. Unfortunately, the relationship between evolution and dependability has

yet received limited attention. On the other hand both evolution and dependability are

complex concepts. There are diverse definitions of evolution, although they regard spe-

cific aspects (e.g., software, architecture, etc.) of socio-technical systems. Moreover,

they partially capture the evolution of socio-technical systems as a whole. Evolution

can occur at different stages in the system life cycle, from early production stages (e.g.,

requirements evolution) to deployment, use and decommission (e.g., corrective or per-

fective maintenance). The existence of diverse (definitions of) evolutions is often mis-

understanding. This gives rise to communication issues in production environments.

Whereas, dependability is defined as that property of a computer system such that re-

liance can justifiably be placed on the service it delivers. The service delivered by a

system is its behaviour as perceived by its user(s). A user is another system (human

or physical) interacting with the system considered [Laprie, 1995, Laprie et al., 1998].

Different attributes1 refine dependability according to complementary properties. The

basic impairments of dependability define how faults (i.e., the initial cause) cause er-

1The dependability attributes are: Availability, Reliability, Safety, Confidentiality, Integrity and
Maintainability. The association with Confidentiality of Integrity and Availability relative to the au-
thorised actions leads to Security [Laprie et al., 1998].

Chapter 8. Taxonomy of Evolution and Dependability 147

rors (i.e., that parts of system states) that may lead to system failures (i.e., deviances

of the system service). These identify the chain of mechanisms2 (i.e., . . . , fault, er-

ror, failure,. . .) by which system failures emerge. The means3 for dependability are

the methods or techniques that enhance the system ability to deliver the desired ser-

vice and to place trust in this ability. Figure 8.1 shows the defined dependability tree

[Laprie et al., 1998].

Figure 8.1: The dependability tree.

With respect to dependability the evolution of socio-technical systems transversely

affect attributes, means and impairments. On one hand evolution can enhance depend-

ability. On the other hand evolution can decrease system dependability. This chap-

2Note that it is possible to give slightly, but fundamental, different interpretations to these mecha-
nisms. Different interpretations of the impairments and their mutual relationships highlight that failures
emerge differently (e.g., . . . error, fault, failure, . . .) [Fenton and Pfleeger, 1996, Leveson, 1995].

3The means [Laprie et al., 1998] for dependability are: fault prevention, fault tolerance, fault re-
moval and fault forecasting.

Chapter 8. Taxonomy of Evolution and Dependability 148

ter highlights emergent relationships between evolution and dependability of socio-

technical systems. It reviews a taxonomy of evolution, as a conceptual framework for

the analysis of socio-technical system evolution with respect to dependability. The

identification of a broad spectrum of evolutions in socio-technical systems points out

strong contingencies between system evolution and dependability. The taxonomy of

evolution highlights how different evolutionary phenomena relate to dependability.

This thesis argues that the better our understanding of socio-technical evolution, the

better system dependability. In summary, this chapter identifies a conceptual frame-

work for the analysis of evolution and its influence on the dependability of socio-

technical systems.

8.2 Taxonomy of Evolution

Heterogeneous engineering stresses a holistic viewpoint that allows us to understand

the underlying mechanisms of evolution of socio-technical systems. Requirements,

as mappings between socio-technical solutions and problems, represent an account of

the history of socio-technical issues arising and being solved within industrial settings.

However, requirements represent only one aspect of socio-technical evolution. This

section reviews a taxonomy of evolution, as a conceptual framework for the analysis

of the evolution of socio-technical systems. The evolutionary framework extends over

two dimensions that define an evolutionary space for socio-technical systems. The two

dimensions of the evolutionary space are: from Evolution in Design to Evolution in

Use and from Hard Evolution to Soft Evolution.

Evolution in Design - Evolution in Use. This dimension captures the system life cy-

cle perspective (or temporal dimension). System evolution can occur at different stages

of the system life cycle. Evolution in design identifies technological evolution mainly

due to designers and engineers and driven by technology innovations and financial con-

straints. With respect to technical systems, evolution in use identifies the social evolu-

tion due to social learning [Williams et al., 2000]. Social learning involves the process

of fitting technological artefacts into existing socio-technical systems (i.e., heteroge-

Chapter 8. Taxonomy of Evolution and Dependability 149

neous networks of machines, systems, routines and culture) [Williams et al., 2000].

Hard Evolution - Soft Evolution. This dimension captures different system view-

points in which evolution takes place (or physical dimension). Each viewpoint identi-

fies different stakeholders. This dimension therefore reflects how stakeholders perceive

different aspects of socio-technical systems. Hard4 evolution identifies the evolution of

technological artefacts (e.g., hardware and software). Whereas, soft5 evolution identi-

fies the social evolution (e.g., organisational evolution) with respect to these technolog-

ical artefacts. Soft evolution therefore captures the evolution of stakeholder perception

of technical systems.

These two dimensions (i.e., evolution in design - evolution in use and hard evo-

lution - soft evolution) identify an evolutionary space for socio-technical systems. A

point within this space identifies a trade-off between different socio-technical evo-

lutions. The evolutionary space therefore captures the different evolutions that take

place during the life cycle of socio-technical systems. Hence, the system life cycle de-

scribes a path within the evolutionary space [Williams et al., 2000]. The evolutionary

space supports the analysis of evolution of socio-technical systems. The space easily

identifies different evolutionary phenomena: Software Evolution, Architecture (De-

sign) Evolution, Requirements Evolution, Socio-technical System Evolution and Or-

ganisation Evolution. These represent particular points within the evolutionary space.

A software-centric view of socio-technical systems orders these points from software

evolution to organisation evolution. Thus, software evolution is close to the origins of

the space. Hence, the space identifies software evolution, as a combination of evolution

4“Hard systems viewpoints are basically those held by designers and engineers who are trying to
create systems to meet an understood need in an effective and economic manner. Those in the soft camp
caricature the approach as head-down, concerned with optimization, obsessed with quantitative metrics
and highly pragmatic. So much so, in fact, that the term system thinking has been purloined by the
soft camp as though they alone thought! The soft camp use the term engineer’s philosophy, not too
endearingly, to describe the hard approach, in which the requirement is stated by a customer and the
engineer satisfies the requirement without question.”, [Hitchins, 1992], p. 6.

5“Soft systems viewpoints are those held by behavioural, management, social anthropology, social
psychology and other science students concerned with observing the living world, and in particular the
human world. Human activity systems (HASs) are messy, in that they do not exhibit a clear need or
purpose - if they can be said to exhibit purpose at all. Indeed, so complex is the real world of people
that the idea of driving towards optimal solutions may be a non-starter - perhaps we should see if we
can simply understand and concern ourselves with improving the situation.”, [Hitchins, 1992], p. 7.

Chapter 8. Taxonomy of Evolution and Dependability 150

in design and hard evolution. Software evolution therefore takes into account evolu-

tion from a product viewpoint. Architecture (design) evolution describes how system

design captures evolution. Requirements evolution represents an intermediate view-

point. Requirements, as a means of stakeholder interaction, represent a central point

that captures the evolution of socio-technical systems. Socio-technical system evolu-

tion takes into account evolution from a heterogeneous systemic viewpoint. Organisa-

tion evolution further emphasises the interaction between socio-technical systems and

surrounding environments. Figure 8.2 shows the evolutionary space.

Figure 8.2: Evolutionary space for socio-technical systems.

Notice that these evolutionary phenomena define a simple classification of evolu-

tions for socio-technical systems. These five different evolutionary phenomena have

some similarities with other reference models (e.g., [Gunter et al., 2000, Perry, 1994])

that categorise and structure engineering aspects of socio-technical systems. The re-

mainder of this section describes the different phenomena forming a taxonomy of evo-

lution.

Chapter 8. Taxonomy of Evolution and Dependability 151

8.2.1 Software Evolution

Software evolution, as natural phenomenon of technical systems, identifies the E-type

programs (i.e., software systems) [Lehman and Belady, 1985, Lehman et al., 1998].

According to the laws of software evolution [Lehman et al., 1998], E-type programs

continuously evolve in order to be satisfactory (for users) and (need) to accommo-

date environmental changes. E-type programs have an increasing complexity if main-

tenance is neglected. They represent multi-level, multi-loop, multi-agent feedback

systems. In spite of software engineering progress, managing evolution for such sys-

tems is still challenging [Lehman, 1998]. On the other hand management processes

take into account software evolution (and in general evolution) as management issues

[Weinberg, 1997] with a limited emphasis on evolutionary software features.

Recent research in object-oriented software [Foote and Yoder, 1996] highlights pro-

duct features that explain some mechanisms of software evolution. It is possible to

identify three main software evolution patterns: Software Tectonics, Flexible Founda-

tions and Metamorphosis.

Software Tectonics emphasises that software systems need to accommodate arising

changes. This involves fixing bugs as well as fixing flaws introduced early in

the design. Hence software implementation should support evolution, otherwise

software changes would just increase software complexity and destroy funda-

mental software structures. Moreover, in order to avoid software degradation,

software systems should take into account requirements changes by series of

small and controlled steps.

Flexible Foundations catalogues the need to construct systems out of stuff that can

evolve along with them. That is, the basics (e.g., tools, languages, frameworks,

etc.) of each system should be able to evolve themselves in order to support

the software system evolution as a whole. Notice that the Flexible Foundations

pattern focuses on the system’s infrastructure (or architecture), regardless the

specific implementation code.

Metamorphosis shows how equipping systems with mechanisms that allow them to

dynamically manipulate their environments can help them better to integrate in

Chapter 8. Taxonomy of Evolution and Dependability 152

these environments in order to fulfil evolving requirements. There exist different

mechanisms that support the Metamorphosis pattern. For instance, extendible

systems allow users to add new features. In contrast, mutable systems allow

users to change their existing features.

In order to monitor software evolution, quantitative approaches like software met-

rics [Fenton and Pfleeger, 1996] capture evolutionary aspects that relate to quality soft-

ware [IEEE, 1988a, IEEE, 1988b, ISO/IEC, 2001, Salamon and Wallace, 1994]. For

instance, metrics quantify software changes in terms of Lines Of Code (LOC). Other

metrics assess software reliability and take into account probabilistic models like Reli-

ability Growth Models [Lyu, 1996]. These allow the prediction of software reliability

trends. Reliability growth models differ each other on the basic assumptions (e.g., soft-

ware maintenance is fault-free, operational profile, fault distribution, etc.). Unfortu-

nately, these assumptions limitedly capture software production and affect the applica-

bility of reliability growth models [Felici et al., 2000, Littlewood and Strigini, 2000].

Although quantitative approaches provide limited support to understand software

evolution, recent research in empirical software engineering highlights that quanti-

tative models capture specific evolutionary software features [Antoniol et al., 1999,

Coleman et al., 1994, Graves et al., 2000, Kemerer and Slaughter, 1999]. For instance,

in particular contexts like object-oriented systems, it would be possible to estimate the

size of changes for evolving systems [Antoniol et al., 1999]. The quantitative model

takes into account the classes changed (e.g., added or modified classes). Although

software changes identify the affected parts of the software, they limitedly capture

software evolution. It is therefore useful to look at the history of software changes as

a whole. Sequence analysis allows to identify software processes in terms of changes

[Kemerer and Slaughter, 1999]. Sequence analysis takes into account the history of

changes and groups similar changes in phases. Therefore, it is possible to compare the

evolution (in terms of sequences of changes) of different software projects. Unfortu-

nately, the empirical studies of software evolution are still patchy due to the limited

availability of rich evolutionary data repositories. The history of software changes

also provides useful information for statistical models that evaluate the likelihood of

faults introduced into modules [Graves et al., 2000]. These results further highlight the

Chapter 8. Taxonomy of Evolution and Dependability 153

relationship between software changes and faults. Another experience with software

metrics shows that simple quantitative models provide adequate support for decision

making throughout the software life cycle. For instance, complexity metrics capture

software structures and allow the evaluation of the maintainability of software systems

[Coleman et al., 1994].

8.2.2 Architecture (Design) Evolution

With respect to evolution, at the design level, the role of the system architecture is

unclear. Architecture evolution is risky, even if the evolutionary process and the ar-

chitecture are well defined and understood [Kuusela, 1999, Sha et al., 1995]. On the

other hand specific variability points capture to which extent product line architectures

are able to adapt to future needs of system families [Bosch, 2000]. The ability to pre-

dict evolution is therefore crucial in the definition of product lines. The architecture

therefore represents a trade-off between generality and specificity of product families.

Architecture evolution refines in different transformations according to transforma-

tion type and scope. Table 8.1 shows a taxonomy of software architecture transforma-

tions [Bosch, 2000]. The scope of architecture transformations extends to components

as well as the architecture as a whole. The evolution of product line assets often in-

volves a combination of architecture transformations [Bosch, 2000].

Table 8.1: A taxonomy of software architecture transformations.

SCOPE OF INPUT

T
R

A
N

S
F

O
R

M
A

T
IO

N
T

Y
P

E

Component Architecture

Added

functionality, rules

and/or constraints

Convert quality

requirements to

functionality

Impose architectural

pattern

Restructuring Apply design

pattern

Impose architectural

style

Although architecture evolution enhances system flexibility and ability to capture

Chapter 8. Taxonomy of Evolution and Dependability 154

future arising requirements, it would be desirable to limit architecture evolution in par-

ticular cases. For instance, the empirical analysis of the avionics case study highlights

that the architecture is a stable part of those systems that have stringent safety re-

quirements [Anderson and Felici, 2000a]. This empirical result is in accordance with

related research in requirements engineering that identifies the origins of stable require-

ments in the business core [PROTEUS, 1996], so is safety6 for avionics contexts. The

more constrained the business, the more evident the relationship between architecture

stability and business core. On the other hand software stability highlights software

architectures7 in specific contexts (e.g, object-oriented) [Mens and Galan, 2002].

8.2.3 Requirements Evolution

Requirements evolution is a recognised phenomenon of socio-technical systems. Re-

search and practice in requirements engineering takes it into account as a management

problem, rather than a feature of socio-technical systems. On one hand empirical anal-

yses highlight that requirements do evolve. Although it is unrealistic and impossible to

freeze requirements, it is possible to analyse the extent to which requirements evolve.

This allows the classification of requirements as stable or changing [PROTEUS, 1996].

On the other hand requirements engineering registers a multi-perspective shift to-

wards model-driven software development [van Lamsweerde, 2000]. This motivates

the search of structures that support the understanding and modelling of requirements

evolution. In order to identify emergent evolutionary structures, it is necessary to be

able to classify and identify evolutionary requirements and relationships. The com-

bined process of classifying and relating entities is to some extent similar to the con-

struction of other reference structures8 (e.g., architectures, organisations, etc.) in socio-

6“The safety culture in an industry or organisation is the general attitude and approach to safety
reflected by those who participate in that industry: management, workers, and government regulators.
Major accidents often stem from flaws in this culture, expecially (1) overconfidence and complacency,
(2) a disregard or low priority for safety, or (3) flawed resolution of conflicting goals.”, [Leveson, 1995],
p. 53.

7“...A software architecture is a collection of elements that share the same likelihood of change. Each
category contains software elements that exhibit shared stability characteristics. ...A software architec-
ture always contains a core layer that represents the hardest layer of change. It Identifies those features
that cannot be changed without rebuilding the entire software system.”, [Mens and Galan, 2002].

8“Architecture at its most elemental then is clustering and linking. For artefacts, clustering and
linking are purposeful, where purposeful includes aesthetics. Entities, at this level of definition, may be

Chapter 8. Taxonomy of Evolution and Dependability 155

technical systems. It is possible to identify and relate requirements with respect to

evolution, hence requirements evolution. For instance, types of requirements and re-

quirements dependencies identify requirements information related to evolution.

Types of Requirements correspond to specific stakeholders involved in software pro-

duction. Therefore, it is possible to classify requirements as stable and changing

requirements. Each type of requirements has origin in specific entities within

software organisations [PROTEUS, 1996]. The classification of requirements

(as stable or changing) supports various strategies that deal with requirements

changes. Among the possible strategies are reducing changes, facilitating in-

corporation of changes and identifying needs for changes as early as possible

[PROTEUS, 1996]. These strategies use enabling technologies like predictive

analysis of changes, traceability of requirements, formal framework for repre-

senting and reasoning about changes, and prototyping. Guidelines and checklists

further support the strategies dealing with requirements changes.

Types of Changes capture work practice as well as requirements features with re-

spect to evolution. For instance, a simple classification of changes (e.g., adding,

deleting and modifying requirements) captures to some extent change manage-

ment policy as well as product features. On one hand types of changes represent

the implementation of a management policy defined within the production en-

vironment. On the other hand, the predominance of a particular type of change

(e.g., adding new requirements) reflects how software production discovers sys-

tem requirements. Moreover, quantitative approaches rely on the classification

of changes in order to capture requirements evolution.

Requirements Traceability [Jarke, 1998] provides useful requirements information to

assess the impact of changes. On one hand traceability supports the management

of requirements. On the other hand it is necessary to maintain traceability too.

Moreover, traceability represents a strategic policy that often involves an entire

software organisation [Ramesh, 1998, Sommerville and Sawyer, 1997a]. Trace-

physical chunks, activities, people, ideas even. Architecture can be comprised of heterogeneous entities,
so long as purposeful clustering can take place”, [Hitchins, 1992], p. 136.

Chapter 8. Taxonomy of Evolution and Dependability 156

ability maintenance involves various processes (e.g., change management pol-

icy) and tools (e.g., requirements management tools). These furthermore support

the identification of relationships between software organisations and software

products [Jarke, 1998]. Therefore, traceability identifies relationships between

heterogeneous entities within software organisations.

These evolutionary information capture to some extent requirements evolution.

The combination of evolutionary information together with modelling approaches (e.g.,

formal representation of requirements) supports the reasoning on requirements changes,

hence requirements evolution. The further integration of quantitative approaches is still

challenging for research and practice in requirements engineering. Unfortunately, the

empirical analyses that monitor long term requirements evolution are still patchy.

8.2.4 Socio-technical System Evolution

Socio-technical systems involve heterogeneous entities (e.g., hardware, software, peo-

ple, etc.) that relate each other. This type of system furthermore pervades and interacts

within the surrounding environment. An holistic viewpoint is convenient to analyse

the interactions between heterogeneous entities in socio-technical systems. These in-

teractions capture some mechanisms of evolution for socio-technical systems. Figure

8.3, for instance, shows the SHEL model [Edwards, 1972].

Figure 8.3: The SHEL model.

Chapter 8. Taxonomy of Evolution and Dependability 157

The SHEL model captures any productive process as performed by a combination

of Hardware (e.g., any material tool used in the process execution), Software (e.g.,

procedures, rules, practices, etc.) and Liveware (e.g., system users, managers, etc.)

resources embedded in a given Environment (e.g., socio-cultural, political, etc.). Thus,

any process requires some knowledge that belongs to distributed heterogeneous system

resources. Hence, a productive process consists of an instantiation of the SHEL model

for a specific process execution. The holistic viewpoint of the SHEL model emphasises

how drivers for software evolution often reside outside software artefacts. On the other

hand evolution across resources allow new artefacts to emerge as resulting behaviour

of the socio-technical system evolution.

Distributed Cognition [Norman, 1998] recognises the complex settings of socio-

technical systems and analyses how humans work, operate and create external and

internal artefacts. This approach re-elaborates the long lasting thesis that human cog-

nition is mediated by artefacts (e.g., rules, tools, representations, etc.) that are both

internal and external to the mind. The central tenet of the Distributed Cognition ap-

proach is that knowledge is distributed across people and artefacts. Cognition is not

a property of individuals but rather a property of a system of individuals and artefacts

carrying out some activity. According to these theoretical assumptions, human activi-

ties and artefacts are the two inseparable sides of the same phenomenon, that is, human

cognition.

Although holistic models (like the SHEL model) are convenient to capture het-

erogeneous resources and structures that form socio-technical systems, descriptive

models provide limited support to analyse socio-technical evolution. Understating

the relationship between socio and technical evolution is still challenging for research

and practice [Coakes et al., 2000]. Unfortunately, it is impossible to identify a single

model that comprehensively captures the evolution of socio-technical systems. Var-

ious heterogeneous models together capture to some extent the evolution of socio-

technical systems as a whole, although the combination of heterogeneous models

often present practical issues. These issues are due to the gap that often exists be-

tween heterogeneous models. Although technical models support engineering activ-

ities (e.g., design, coding, testing, etc.), socio-technical systems are socially shaped

Chapter 8. Taxonomy of Evolution and Dependability 158

[MacKenzie and Wajcman, 1999]. The social shaping of technology involves the evo-

lution of socio-technical systems. It is possible to explain the subtle mechanisms that

explain the evolution of socio-technical systems, as adoption of technical artefacts. So-

cial Learning [Williams et al., 2000], for instance, explains how human beings adopt

technical systems in order to acquire computational artefacts, which allow them to ac-

complish specific tasks. Social Learning mainly involves two processes: Innofusion

and Domestication.

Innofusion is a practical activity of learning by trying [Fleck, 1994]. In order to

meet social needs, innofusion allows the customisation of computational arte-

facts provided by socio-technical systems. The underlying hypothesis is that

system users, individually as well as collectively, develop more efficient ways

of employing machineries through their usage experience. This kind of learning

curve effect is well-known. Although it provides limited support for the initial

introduction of new equipments, learning by doing improves the efficiency of

system production over a long-term period of time.

Domestication addresses the creative role of the user in integrating new artefacts

within their everyday activities and meanings. Domestication, where people

learn by situated activity, is a practical activity of learning by interacting. This

activity stresses the complex interaction between technology supply and use. It

applies evolutionary metaphors of the generation of variations and selection of

artefacts.

8.2.5 Organisation Evolution

Heterogeneous engineering [MacKenzie, 1990] provides a comprehensive account of

system production. The system approach highlights that organisations mirror technical

systems [Hughes and Hughes, 2000]. The socio-technical system account highlights

the interaction between organisations and socio-technical systems. Figure 8.4 shows a

simple socio-technical system model [O’Hara et al., 2000]. The left part of the model

identifies the social system (or organisation). The social systems consists of (social)

structures and people. The right part of the model identifies the technical system. The

Chapter 8. Taxonomy of Evolution and Dependability 159

technical system consists of technology and tasks. The model capture to some extent

the complex interaction between technology and people in an organisation.

Figure 8.4: A simple socio-technical system model.

It is possible to use the simple socio-technical system model to analyse the im-

pact of changes with respect to organisation. The model highlights how changes affect

the technical system as well as the social system. Therefore, the model supports the

classification of changes according to the affected resources (i.e., structures, people,

technology or tasks). This points out how changes affect the interactions between re-

sources (e.g., technology-tasks and technology-tasks-people). For instance, changes

that involve only technology and tasks (e.g., technology upgrades) affect the interac-

tion between these resources, but leave unmodified the interactions between the social

system and the technical system. Although technology changes represent an hazard for

organisations, they could be easy to plan. This depends on whether technology changes

modify the way people accomplish their tasks. This is the case when changes in the

technical system force new interactions between people. For example, people need

to interact each other in order to accomplish their tasks using a new technology. The

most complex changes are those that affect all the socio-technical entities (i.e., struc-

tures, people, technology and tasks). Although the socio-technical model captures the

interactions due to changes, changes still represent an hazard for organisations. Unfor-

Chapter 8. Taxonomy of Evolution and Dependability 160

tunately, the interactions between social systems and technical systems are very subtle.

Failures to understand the dependencies within socio-technical systems are often the

cause of organisational accidents [Reason, 1997].

8.3 On Dependability and Evolution

Dependability models capture evolution in different ways. For instance, fault tol-

erance models [Laprie et al., 1998, Randel, 2000] rely on failure distributions (e.g.,

Mean Time Between Failures) of systems. Monitoring this type of measure allows

the characterisation of the evolution of system properties (e.g., reliability, availabil-

ity, etc.). Probabilistic models [Lyu, 1996] may predict how dependability measures

evolve according to the estimations of attributes and the assumptions about the oper-

ational profile of the system. In contrast, other models (e.g., [Littlewood et al., 2001,

Littlewood and Strigini, 2000]) link dependability features with system structures and

development processes. This allows the linking of failure profiles with design at-

tributes (e.g., diversity) and system structures (e.g., redundancy). Structured mod-

els (e.g., FMEA, HAZOP, FTA) therefore assess the hazard related to system fail-

ures and their risk [Storey, 1996]. These models extend the Domino model, which

assumes that an accident is the final result of a chain of events in a particular con-

text [Heinrich, 1950]. Similarly, the Cheese model consists of different safety layers

having evolving undependability holes. Hence, system failures completely arise and

become catastrophically unrecoverable when they propagate through all the safety lay-

ers in place [Reason, 1997]. Despite these models capture diverse perspectives of the

dynamics of system failures, they fail to capture evolution.

The evolutionary phenomena (e.g., software evolution, requirements evolution,

etc.) of socio-technical systems differently contribute to dependability. The relation-

ships between the evolutionary phenomena highlight a framework for the analysis of

the evolution of socio-technical systems. Poor coordination between evolutionary phe-

nomena may affect dependability. On the other hand evolutionary phenomena intro-

duce diversity and may prevent system failures. Table 8.2 summarises the different

dependability evolutionary perspectives and also proposes some engineering hints.

Chapter 8. Taxonomy of Evolution and Dependability 161

Table 8.2: Dependability perspectives of Evolution.

Evolution Dependability Perspective Engineering Hint

Software

Evolution

Software evolution can affect dependability at-

tributes. Nevertheless software evolution can

improve dependability attributes by faults re-

moval and maintenance to satisfy new arising

requirements.

Monitor software complexity;

Identify volatile software parts;

Carefully manage basic soft-

ware structures; Monitor de-

pendability metrics.

Architecture

(Design)

Evolution

Architecture evolution is usually expensive

and risky. If the evolution (process) is unclear,

it could affect dependability. On the other hand

the enhancement of system features (e.g., re-

dundancy, performance, etc.) may require ar-

chitecture evolution.

Assess the stability of software

architecture; Understand the

relationship between architec-

ture and business core; Anal-

yse any (proposed or imple-

mented) architecture change.

Requirements

Evolution

Requirements evolution could affect depend-

ability. A non-effective management of

changes may allow undesired changes that af-

fect system dependability. On the other hand

requirements evolution may enhance system

dependability across subsequent releases.

Classify requirements ac-

cording to their stabil-

ity/volatility; Classify re-

quirements changes; Monitor

and model requirements

evolution and dependencies.

Socio-

technical

System

Evolution

System evolution may give rise to undepend-

ability. This is due to incomplete evolution

of system resources. Hence, the interactions

among resources serve to effectively deploy

new system configurations. On the other hand

human can react and learn how to deal with

undependable situations. Unfortunately, con-

tinuous system changes may give rise to mis-

understandings. Hence, human-computer in-

teraction is an important aspect of system de-

pendability.

Acquire a systemic view (i.e.,

Hardware, Software, Liveware

and Environment); Monitor

the interactions between re-

sources; Understand evolution-

ary dependencies; Monitor and

analyse the (human) activities

supported by the system.

Organisation

Evolution

Organisation evolution should reflect system

evolution. Little coordination between system

evolution and organisation evolution may give

rise to undependability.

Understand environmental

constraints; Understand the

business culture; Identify

obstacles to changes.

Chapter 8. Taxonomy of Evolution and Dependability 162

Example 8.1 This example highlights how modelling requirements evolution allows

the gathering of evolutionary aspects of socio-technical systems. For instance, the

SHEL model [Edwards, 1972] points out that any system consists of diverse resources

(i.e., Software, Hardware and Liveware). The interaction between these resources is

critical for the functioning of systems. Moreover, changes occurring in some resources

can affect the others. Therefore, it is very important to capture the dependencies be-

tween heterogeneous resources. Discrepancies between different resources may cause

troublesome interactions, hence, trigger system failures. Modelling heterogeneous re-

sources allow us to detect these discrepancies. For instance, it is possible to use model

checking to discover mode confusions or automation surprises [Rushby, 2002]. These

situations occur when computer systems behave differently than expected. It is possible

to figure out how a solution space captures both system design models as well as men-

tal models. Discrepancies between these models pinpoint design changes, or revision

to training materials or procedures. On the other hand the solution space transforma-

tion captures how models need to change in order to solve arising problems or dis-

crepancies. This scenario highlights how modelling requirements evolution captures

evolutionary aspects of socio-technical systems. Moreover, it points out dependencies

between heterogeneous parts of socio-technical systems. Therefore, modelling require-

ments evolution captures the evolution of socio-technical systems. These models can

be further enriched by empirical data in order to identify the volatile or stable parts of

socio-technical systems. The systematic modelling of requirements evolution combined

with empirical analyses of evolutionary information would allow the understanding of

the evolutionary nature of socio-technical systems. Enhancing our understanding of

the evolution of socio-technical systems would provide valuable support to design.

8.4 Evolution as Dependability

Software evolution represents just one aspect of the evolution of socio-technical sys-

tems. This chapter describes a taxonomy of evolution: Software Evolution, Architec-

ture (Design) Evolution, Requirements Evolution, Socio-technical System Evolution,

Organisation Evolution. The taxonomy identifies an evolutionary space, which pro-

Chapter 8. Taxonomy of Evolution and Dependability 163

vides a holistic viewpoint in order to analyse and understand the evolution of socio-

technical systems. The taxonomy highlights the different aspects of the evolution of

socio-technical systems. The taxonomy stresses the relationship between system evo-

lution and dependability. Different models and methodologies take into account to

some extent the evolution of socio-technical systems. Unfortunately, these models and

methodologies rely on different assumptions about the evolution of socio-technical

systems. This can cause misunderstandings and issues about system dependability and

evolution, for instance:

Inconsistency. The basic assumptions of all adopted models (in order to characterise

system dependability and evolution) may be inconsistent as a whole.

Coverage. The entire spectrum of models may be insufficient to cover all evolutionary

aspects of system dependability.

Relational. The different evolutionary phenomena relate to each other. It is difficult

to understand the different relationships between the evolutionary phenomena.

Emergent. New (or unexpected) system features may emerge from the different evo-

lutionary phenomena.

In summary, the taxonomy of evolution represents a starting point for the analysis

of socio-technical systems. It identifies a framework that allows the analysis of how

socio-technical systems evolve. Moreover, the taxonomy provides a holistic view-

point that identifies future directions for research and practice on system evolution

with respect to system dependability. On one hand the resulting framework allows the

classification of evolution of socio-technical systems. On the other hand the frame-

work supports the analysis of the relationships between the different evolutionary phe-

nomena with respect to dependability. Unfortunately, the collection and analysis of

evolutionary data are very difficult activities, because evolutionary information is usu-

ally incomplete, distributed, unrelated and vaguely understood in complex industrial

settings. The taxonomy of evolution points out that methodologies often rely on differ-

ent assumptions of socio-technical system evolution. The dependability analysis with

respect to evolution identifies a framework. The engineering hints related to each evo-

lutionary phenomenon may serve as basics in order empirically to acquire a taxonomy

Chapter 8. Taxonomy of Evolution and Dependability 164

of evolution. Future work aims to acquire practical experience using the taxonomy in

industrial settings.

Chapter 9

Conclusions

Requirements Evolution is one of the main issues that affect development activities

as well as system features (e.g., system dependability). Although researchers and

practitioners recognise the importance of requirements evolution, research results and

experience are still patchy. This points out a lack of methodologies that address re-

quirements evolution. Requirements engineering research and practice mainly focus

on management aspects. Management methodologies advocate process-oriented ap-

proaches in order to tackle requirements changes. On one hand these methodologies

allow standardisation and organise work practice, although they provide limited sup-

port to tailor processes in order to capture system features. On the other hand system

features pervade processes as well as organisations.

Requirements evolution is therefore an unavoidable feature of software production.

Usually, requirements evolution is seen as an error in the engineering process. In con-

trast, this thesis takes into account requirements evolution as an essential feature of

good design processes. Requirements evolution triggers a sequence of events, which

allows changes to propagate throughout the development process. Regardless the iter-

ative nature of software production, the definition of requirements is usually the first

phase in popular development processes (e.g., V model and Spiral model). The re-

quirements phase is therefore crucial for the success of software projects. This thesis

considers software requirements evolution within industrial production environments.

In contrast to the process-centred approach taken in current requirements engineer-

ing practice, this thesis takes a product-centred approach based on empirical analysis

165

Chapter 9. Conclusions 166

and modelling. Process issues are captured in the product as it is developed. Our

approach originates in the empirical investigation of industrial case studies of evolv-

ing products and their requirements. These case studies provide a detailed account

of the cooperative processes adopted by stakeholders. The underlying hypothesis of

this thesis is that stakeholder interaction in cooperative processes is a powerful driver

of requirements evolution. This thesis addresses the lack of understanding about re-

quirements evolution. It enhances our ability to understand requirements evolution.

This thesis investigates the current understanding of requirements evolution and ex-

plores new directions in requirements evolution research. The empirical analysis of

industrial case studies highlights software requirements evolution as an important is-

sue. Unfortunately, traditional requirements engineering methodologies provide lim-

ited support to capture requirements evolution. Heterogeneous engineering provides a

comprehensive account of system requirements. Heterogeneous engineering stresses a

holistic viewpoint that allows us to understand the underlying mechanisms of evolution

of socio-technical systems. Requirements, as mappings between socio-technical solu-

tions and problems, represent an account of the history of socio-technical issues arising

and being solved within industrial settings. The formal extension of a heterogeneous

account of requirements provides a framework to model and capture requirements evo-

lution. The application of the proposed framework provides further evidence that it is

possible to capture and model evolutionary information about requirements. The dis-

cussion of scenarios of use stresses practical necessities for methodologies addressing

requirements evolution. Finally, the identification of a broad spectrum of evolutions in

socio-technical systems points out strong contingencies between system evolution and

dependability. This thesis argues that the better our understanding of socio-technical

evolution, the better system dependability. In summary, this thesis is concerned with

software requirements evolution in industrial settings. This thesis develops methodolo-

gies to empirically investigate and model requirements evolution, hence Observational

Models of Requirements Evolution. The results provide new insights in requirements

engineering and identify the foundations for requirements evolution engineering. This

thesis addresses the problem of empirically understanding and modelling requirements

evolution. The remainder of this chapter reviews the results in details.

Chapter 9. Conclusions 167

9.1 Case Studies - Lessons Learned

9.1.1 Avionics Case Study

The case study enhances our understanding of requirements evolution drawn from in-

dustry. In summary, our experience is twofold. On the one hand we faced the practical

problem of collecting evolutionary information. On the other hand we analysed the

evolutionary features of requirements. These two main points are discussed in what

follows.

9.1.1.1 Requirements Evolution Practice

The case study drawn from industry provides us some practical challenges. Similar

challenges may arise in other industrial contexts. Behind any challenge there is actu-

ally an issue to deal with. The main practical challenges are: Data Collection, Data

Organisations and Goals, and Enhanced Visibility.

Data Collection. Building a data repository of evolutionary data is a difficult task.

There are various critical aspects that affect data collections under evolutionary sce-

narios. The collection of data should be well integrated into the development process.

Poorly integrated data collection will result in increased workload and frustration for

people who are supposed to collect data. Moreover, people will drop any data collec-

tion activity under the pressure of forthcoming deadlines. This will result in out of date

data repositories. Substantial effort will be required in order to update these reposito-

ries during final stages of the development process. In the worst case the repositories

will become unusable and ineffective. They will moreover fail to provide any evolu-

tionary feedback in the development process.

Data Organisations and Goals. The organisation of evolutionary data is another

aspect concerning an effective collection of evolutionary data. Data organisation af-

fects our ability to analyse and identify evolutionary features. Unsuitable organisation

will provide limited support to identify any emergent information. Data organisations

should fulfil specific goals and address specific issues. Why are data collected? Is any

Chapter 9. Conclusions 168

data analysis foreseen? What are the expected outcomes? Who will review/read/use

any (emergent) information? Answering these questions will help to organise an ef-

fective data repository. For instance, let assume that a simple history of changes is the

main record of requirements changes. The history of requirements changes easily pro-

vides evidence of tracking changes for certification purpose, but it fails to provide any

feedback in the development process. This is because it lacks any support to identify

evolutionary relationships.

Enhanced Visibility. Issues relevant to requirements evolution affect project visibil-

ity. Poor coordination between different organisational layers may reduce the overall

visibility within the project. Moreover, it affects our ability to assess the impact of

changes (or to perform any sensitivity analysis). A trade-off between process and

product management may tackle visibility issues. On the one hand process manage-

ment is useful to standardise system developments, although it limits our visibility over

software products. On the other hand product management enhances product features

in development processes, although it affects process repeatability across different sys-

tems.

9.1.1.2 Requirements Evolution Features

The empirical analysis of the case study highlights evolutionary aspects of require-

ments. The requirements evolution features emphasise the specific case study, although

it is possible to identify similar features in other case studies across different industrial

contexts. The generality of the empirical investigation allows us easily to replicate the

analyses. We summarise the main requirements evolution features in what follows.

Quantitative Requirements Evolution. The measurement of requirements evolution

requires a well-defined standard policy to classifying requirements changes. Even a

simple classification of requirements changes implies specific work practice and pol-

icy. For instance, the three-type classification of Added, Deleted and Modified re-

quirements identifies the activities of: adding new requirements into the requirements

specification, deleting requirements from the requirements specification and modifying

Chapter 9. Conclusions 169

requirements in the requirements specification. A management policy based on trace-

ability information should support requirements management with respect to types of

changes. For instance, requirements should be uniquely identified by an alphanumeric

identification, which furthermore allows us uniquely to link changes and requirements.

The combination of type of change together with traceability information allows us

to measure various aspects of requirements evolution. Moreover, the combination of

traceability and type of change easily supports the analysis of the impact of changes.

Although the impact of changes is critical for project management, it needs subse-

quent refinements that take into account various requirements aspects (e.g., changes

criticality, type of change, history of changes, etc.).

Taxonomy of Requirements Changes. The investigation of the history of changes

points out a taxonomy of requirements changes. The resulting taxonomy characterises

the specific case study as well as its industrial context. The identification of a taxonomy

of requirements changes supports the introduction of standard work practice in the

development environment. On the one hand a taxonomy will help to reduce biases

due to different experiences and expertise. Moreover, a taxonomy will support the

monitoring of requirements evolution. On the other hand the identification of a stable

taxonomy may require experience across several projects.

Ageing Requirements Maturity. Any simple account of requirements maturity may

be misleading. Our experience shows that any estimation (e.g., by the Requirements

Maturity Index) of requirements maturity should be carefully evaluated in the specific

context. Any measurement of requirements maturity should be interpreted against the

specific development process (e.g., data collection activities, certification constraints,

changes classifications, etc.) and management policy (e.g., priorisation of require-

ments changes, certification constraints, allocation of requirements changes, etc.). Re-

quirements maturity should furthermore take account of ageing factors for require-

ments. For instance, the elapsed time since requirements were introduced (or modi-

fied) may be useful to refine any assessment of requirements maturity. This type of

refinement allows us to link the requirements process with the development process.

On the other hand the concept of maturity can be misleading and misunderstanding

Chapter 9. Conclusions 170

for requirements. Future research should further investigate how to distinguish diverse

requirements maturities. Further investigations should address the relation between

stability, volatility and maturity.

Functional Requirements Evolution. The empirical investigation of the case study

points out that it is possible to identify change-prone requirements from a functional

viewpoint. The analysis identifies stable and volatile requirements. Moreover it em-

phasises different distributions of requirements changes for each function. This infor-

mation may be useful in order to identify reusable requirements (e.g., stable require-

ments of the system architecture) as well as to devise product-lines ranging around

specific variability points. The different distributions of requirements changes high-

light dependencies between functional requirements. Requirements dependencies may

be useful to refine the assessment of the impact of changes. On the other hand require-

ments dependencies may be further refined through subsequent releases and similar

projects (within the same product-line).

Requirements Evolution Processes. The case study points out our inability to vi-

sualise requirements evolution. Our preliminary attempts of visualising requirements

evolution stresses that any visual representation should take into account evolutionary

process features (e.g., releases, activities, etc.) as well as product features (e.g., types

of requirements changes). The representation of requirements evolution processes may

allow us to identify similarities between processes and to distinguish them with respect

to their complexity. The visualisation of requirements evolution and the identification

(by sequence analysis) of different requirements processes show that it is possible to

identify different requirements process for each function. This provides us new in-

sights to investigate requirements evolution (processes) in future research.

9.1.2 Smart Card Case Study

The viewpoint analysis highlights issues in the requirement engineering practice drawn

from the smart card case study. In spite of sparse data, the analysis effectively points

out many requirements evolution aspects that characterise live software production

Chapter 9. Conclusions 171

environments. Although changes affect several viewpoints (or management levels) and

increase project risk, they are part of learning and understanding processes in software

production. From the analysis it is evident how even a single change affects many

different socio-technical aspects.

Requirements Evolution Viewpoints. The analysis identifies three different hierar-

chical viewpoints named Business, Process and Product viewpoints. Each viewpoint

corresponds to different processes and requirements within the organisation. For in-

stance, management processes easily deal with high-level system requirements, al-

though they provide limited support for low-level software requirements. This points

out struggles with requirements engineering practice. Although viewpoint discrep-

ancies often cause requirements issues (e.g., inconsistency, incorrectness, etc.), all

viewpoints provide as a whole a hierarchical management structure that deals with re-

quirements changes. Interestingly, each viewpoint differently perceives requirements

evolution. Thus, on one hand viewpoint interactions (hence, stakeholder interactions)

give rise to requirements evolution, on the other hand viewpoint interactions represent

a mechanism to capture and take into account requirements changes.

Viewpoint Management Support. Each viewpoint seeks different management sup-

port. Although process-oriented methodologies allow the planning of project activities,

they usually provide limited support to tailor processes to product features. This of-

ten requires a shift from process to product-oriented software management. On one

hand management processes keep track of requirements changes, on the other hand

quantitative approaches (e.g., software metrics) should take into account product as

well as environmental aspects. This allows the identification of reusable (product-line)

functions. It moreover would be possible to define repeatable processes to allocate

low-level software functions to high-level system requirements. There are usually two

opposing processes. The first one (top-down) splits and refines requirements. This cre-

ates an information flow expansion throughout the development process. The second

one (bottom-up) allocates (according to past experience) specific low-level software

functions to high-level system requirements. The gap between these two processes

represents the extent to which an organisation is able to identify an optimal and effec-

Chapter 9. Conclusions 172

tive set of (reusable) software functions. The smaller the gap, the better the ability in

reusing low-level software functions and identifying high-level system requirements.

Although each viewpoint deals with different requirements, all viewpoints seek sup-

port to deal with requirements changes.

Requirements Issues. The structured interviews, using the requirements engineer-

ing questionnaire, effectively highlight common requirements issues in live software

production environments. Viewpoint divergences clearly point out the different un-

derstanding of the requirements engineering practice within the organisation. Unsur-

prisingly, requirements evolution finds little agreement among the different viewpoints.

Although process-oriented management properly capture requirements changes, it pro-

vides limited support to development activities. Moreover hierarchical organisation

often struggles to communicate requirement changes through each management level

(or viewpoint). On the other hand requirements engineering practice provides lim-

ited support to communicate specific types of requirements changes. Another major

issue is the identification of system boundaries. Although a holistic viewpoint cap-

tures many aspects of socio-technical systems, viewpoints differently understand (soft-

ware) systems. Each viewpoint captures different system boundaries. For instance, a

project management level easily identifies high-level system requirements, although

these under-specify low-level software interfaces. Software, as subtle part of socio-

technical systems, has limited visibility from high-level holistic viewpoints. All these

issues highlight concerns for the requirements engineering practice.

9.2 Heterogeneous Requirements Engineering

Heterogeneous engineering provides a comprehensive account of system requirements.

Heterogeneous engineering stresses a holistic viewpoint that allows us to understand

the underlying mechanisms of evolution of socio-technical systems. Requirements,

as mappings between socio-technical solutions and problems, represent an account of

the history of socio-technical issues arising and being solved within industrial settings.

The formal extension of solution space transformation defines a framework to model

Chapter 9. Conclusions 173

and capture requirements evolution. The framework relies on a heterogeneous ac-

count of requirements. The resulting framework is sufficient to interpret requirements

changes. The formal framework captures how requirements evolve through subsequent

releases. Hence, it is possible to define requirements evolution in terms of sequential

solution space transformations. Intuitively, requirements evolution identifies a path

that browses solution spaces.

9.2.1 Heterogeneous Modelling of Requirements Evolution

Heterogeneous engineering considers system production as a whole. It provides a com-

prehensive account that stresses a holistic viewpoint, which allows us to understand

the underlying mechanisms of evolution of socio-technical systems. Heterogeneous

engineering is therefore convenient further to understand requirements processes. Re-

quirements, as mappings between socio-technical solutions and problems, represent an

account of the history of socio-technical issues arising and being solved within indus-

trial settings.

The formal extension of solution space transformation, a heterogeneous account of

requirements, provides a framework to model and capture requirements evolution. The

resulting framework is sufficient to interpret requirements changes. The formal frame-

work captures how requirements evolve through consecutive solution space transfor-

mations. Hence, it is possible to define requirements evolution in terms of sequential

solution space transformations. The characterisation of requirements and requirements

changes allows the definition of requirements evolution. Requirements evolution con-

sists of the requirements specification evolution and the requirements changes evo-

lution. Hence, requirements evolution is a co-evolutionary process. Heterogeneous

Requirements Evolution gives rise to new insights in requirements engineering.

A New Role for Requirements. Heterogeneous engineering stresses a different role

for requirements. The shift from the paradigm of problems searching for solutions (i.e.,

problem � solution) to the one of solutions searching for problems (i.e., solution �

problem � solution) points out a new role for requirements with respect to (design)

solutions and problems. Most software design processes and organisations rely on the

Chapter 9. Conclusions 174

first paradigm (i.e., problems searching for solutions). In this case, requirements rep-

resent problems to be solved by design solutions. Thus, software production takes into

account a certain relationship between requirements, design and system implementa-

tion. This relationship implies a specific order to software production phases (e.g.,

first the collection of system requirements, then the design of solutions and finally the

implementation, testing and so on). Regardless the adopted development process, each

software production complies with the paradigm of problems searching for solutions.

This is one of the reasons because most software development processes start with a

requirement phase.

In contrast, heterogeneous engineering takes into account the second paradigm

(i.e., solutions searching for problems). Heterogeneous engineering therefore points

out that requirements link (design) solutions and given problems observed (by coding,

testing, usage, etc.) in the system implementation. Requirements map solutions and

problems. This implies a different role for requirements with respect to solutions and

problems. On the one hand requirements map solutions to observed problems. On the

other hand requirements narrow and browse solution spaces in order to address ob-

served problems. The heterogeneous requirements role highlights new insights in the

production of software systems.

Moreover, heterogeneous engineering helps us further to understand the mecha-

nisms of requirements evolution. The modelling of requirements evolution highlights

how requirements evolve due to the social shaping of socio-technical systems. On one

hand the modelling supports the analysis of evolutionary phenomena (e.g., like in the

avionics case study, stability, volatility, dependencies, etc.) in requirements, on the

other hand the modelling supports the analysis of stakeholder interactions (e.g., like in

the smart card case study, requirements viewpoints) in software production.

Implications for Requirements Processes and Tools. Heterogeneous engineering

relies on a different paradigm. Heterogeneous engineering therefore highlights a new

role for requirements (engineering) with respect to design solutions and observed sys-

tem problems. This heterogeneous role has some implications for requirements pro-

cesses as well as tools, in general, for software production.

Software production usually consists of the process of searching (or designing)

Chapter 9. Conclusions 175

solutions to given problems (or requirements). This implies that the requirements pro-

cess has to search (or elicit) all system requirements in order to find the most suitable

solution (by narrowing the solution space). System testing and verification therefore

have to provide arguments that support system implementation, design and require-

ments. Therefore, in practice, verification and testing have to validate solutions by

searching problems. In contrast, heterogeneous engineering highlights a new role for

requirements. On the one hand the requirements process consists of matching solu-

tions to observed problems. On the other hand the requirements process is to narrow

and browse the solution space in order to address observed problems. Therefore, sys-

tem testing and verification are to reveal problems that will be eventually matched to

specific solutions by requirements.

The new role of requirements, with respect to design and problems, points out new

scenarios of use for requirements engineering tools. Most requirements engineering

tools support the maintenance of traceability between different software deliverables

(e.g., requirements, change requests, rationale, design, etc.). On the other hand fu-

ture requirements engineering tools should also support the mapping of solutions to

observed problems. That is, requirements engineering tools should support the anal-

ysis of observed problems in order to narrow the solution space. Thus, requirements

engineering tools assume a major role in the analysis of observed problems in live

production environments.

In summary, the formal framework allows the modelling and gathering of require-

ments evolution. The framework relies on a heterogeneous account of requirements.

Heterogeneous engineering stresses a holistic viewpoint that allows us to understand

the underlying mechanisms of evolution of socio-technical systems. Requirements,

as mappings between socio-technical solutions and problems, represent an account of

the history of socio-technical issues arising and being solved within industrial settings.

The formal extension of solution space transformation defines a framework to model

and capture requirements evolution. The resulting framework is sufficient to inter-

pret requirements changes. The formal framework captures how requirements evolve

through subsequent releases. Hence, it is possible to define requirements evolution in

terms of sequential solution space transformations. The characterisation of require-

Chapter 9. Conclusions 176

ments changes allows the definition of requirements evolution. Requirements evolu-

tion consists of the requirements specification evolution and the requirements changes

evolution. Hence, requirements evolution is a co-evolutionary process.

9.2.2 Capturing Evolutionary Requirements Dependencies

The formally augmented solution space transformation can capture emergent evolu-

tionary dependency. The empirical analysis of the avionics case study highlights in-

stances of evolutionary dependencies. The analysis points out three different basic de-

pendencies: cascade, self-loop and refinement-loop dependency. The examples show

that it is possible to capture evolutionary structures in terms of consecutive solution

space transformations. Consecutive solution space transformations identify the history

of problems arising and being solved. The underlying formal framework moreover

allows the modelling of evolutionary dependency. This supports model-oriented soft-

ware production.

The modelling of evolutionary dependency highlights that the formal extension of

the solution space transformation enables the gathering of evolutionary information

at different abstraction levels. Hence, the solution space transformation allows the

modelling of different hierarchical features of requirements evolution. This supports

related requirements engineering approaches that rely on hierarchical refinements of

requirements. The definition of hierarchies of requirements allows the reasoning at

different level of abstractions. Unfortunately, requirements changes affect high-level

as well as low-level requirements. Moreover, requirements changes often propagate

through different requirements levels. Hence, the solution space transformation allows

the reasoning of ripple effects of requirements changes at different abstraction levels.

With respect to requirements hierarchies, the solution space transformation takes into

account anomalies that relate to a lower level of abstraction. For instance, the solu-

tion space transformations, this chapter shows, allow the modelling of evolutionary

requirements dependencies at the functional level. Although the problem spaces take

into account requirements changes due to requirements refinements as well as anoma-

lies at the physical level (e.g., coding and usage feedback).

In practice, the modelling of evolutionary requirements dependency and require-

Chapter 9. Conclusions 177

ments evolution allows the reconciliation of solutions with observed anomalies. For

instance, it would be possible to enhance the reasoning of evolutionary features of re-

quirements, hence requirements evolution. Although most requirements engineering

tools support the gathering of requirements (e.g., requirements management tools) and

requirements changes (e.g., change management tools), they provide limited support in

order to reasoning on observed evolutionary information. Hence, it is difficult to anal-

yse and monitor emergent evolutionary features of requirements. Most requirements

methodologies assess the impact of changes using traceability information. Unfortu-

nately, changes affect traceability too. In contrast, the formal extension of solution

space transformation allows the modelling of evolutionary requirements dependency,

as mappings between dependency models and problems. This represents an account

of the history of socio-technical issues arising and being solved within requirements

hierarchies.

In summary, the formally augmented solution space transformation allows the gath-

ering of emergent evolutionary features of solutions. Hence, requirements evolution

provides the basic mechanisms to capture emergent evolutionary software production.

9.2.3 Towards Requirements Evolution Engineering

Requirements engineering research and practice highlight evolution as an important as-

pect of software production. Although research results and experience are still patchy,

requirements evolution emerges as a comprehensive viewpoint that allows us further

to understand the mechanisms of socio-technical system evolution. On the other hand

requirements evolution provides new insights in research and practice in software pro-

duction.

Iterative development processes emphasise evolutionary aspects of software pro-

duction. Although management and development processes provide overall organisa-

tion in terms of development activities and phases, they require to be tailored for spe-

cific software systems and design contexts. Empirical analyses allow us to understand

evolutionary aspects of software production. Requirements evolution provides new

grounds for understanding the mechanisms of socio-technical system evolution. Mod-

elling requirements (evolution) captures the understanding of software system evolu-

Chapter 9. Conclusions 178

tion. Although requirements evolution emerges as an important aspect of software

production, requirements engineering tools provide limited support for the analysis of

requirements evolution.

In contrast, this thesis takes requirements evolution as inherent in software produc-

tion. It investigates the current understanding of requirements evolution and explores

new directions in requirements evolution research. The empirical analysis of industrial

case studies highlights software requirements evolution as an important issue. Unfor-

tunately, traditional requirements engineering methodologies provide limited support

to capture requirements evolution. This thesis highlights a set of methodologies to-

wards Requirements Evolution Engineering (REE). This thesis addresses the problem

of empirically understanding and modelling requirements evolution. The empirical

analyses of industrial case studies highlight several aspects of requirements evolution.

For instance, it is possible to classify requirements according to their volatility and ori-

gins. Although empirical analyses successfully capture requirements evolution, they

are context sensitive. That is, it is difficult to generalise results as well as methodolo-

gies. Requirements evolution modelling allows the tailoring of development processes

and artefacts to development environments. The combination of empirical analyses

and requirements evolution models captures environmental features (e.g., work prac-

tice, product characterisation, etc.). They identify a convenient requirements engi-

neering practice that continuously provides feedback while software production pro-

gresses. Although these methodologies provide a comprehensive account of require-

ments evolution, requirements engineering practice little exploits them. On the other

hand requirements engineering practice needs to identify how requirements evolution

supports software production. Requirements evolution engineering involves analysis,

modelling and practice of requirements evolution. Requirements evolution therefore

identifies strategies and methodologies that support software production.

This thesis describes how to use the requirements evolution modelling in three sce-

narios of practice: modelling requirements evolution, process calibration and require-

ments evolution regression. Moreover, it describes how the comprehensive account of

heterogeneous requirements evolution supports the refinement of design models. Al-

though design phases intend to identify the most suitable solutions that fulfil the given

Chapter 9. Conclusions 179

requirements. In contrast, heterogeneous requirements engineering highlights how de-

sign models (that is, solutions) support the observation of requirements evolution. The

solution space transformation allows the gathering of requirements (evolution) during

design. Although these scenarios are descriptive, they provide an overall understanding

of how modelling requirements evolution enhances system production. The scenarios

therefore represent a contribution towards requirements evolution engineering.

9.3 Evolution as Dependability

Software evolution represents just one aspect of the evolution of socio-technical sys-

tems. This chapter describes a taxonomy of evolution: Software Evolution, Archi-

tecture (Design) Evolution, Requirements Evolution, Socio-technical System Evolu-

tion, Organisation Evolution. The taxonomy identifies an evolutionary space, which

provides a holistic viewpoint in order to analyse and to understand the evolution of

socio-technical systems. The taxonomy points out the different aspects of the evolu-

tion of socio-technical systems. The review stresses the relationship between system

evolution and dependability. Different models and methodologies take into account

to some extent the evolution of socio-technical systems. Unfortunately, these models

and methodologies rely on different assumptions of the evolution of socio-technical

systems. This can cause misunderstandings and issues about system dependability and

evolution.

In summary, the taxonomy of evolution represents a starting point for the analysis

of socio-technical systems. It identifies a framework that allows the analysis of how

socio-technical systems evolve. Moreover, the taxonomy provides a holistic viewpoint

that identifies future directions for research and practice on system evolution. On one

hand the resulting framework allows the classification of evolution of computer-based

systems, on the other hand the framework supports the analysis of the relationships be-

tween the different evolutionary phenomena and dependability. Unfortunately, the col-

lection and analysis of evolutionary data are very difficult activities, because evolution-

ary information is usually incomplete, distributed, unrelated and vaguely understood.

The taxonomy of evolution points out that methodologies rely on different assumptions

Chapter 9. Conclusions 180

of system evolution. The dependability analysis with respect to evolution identifies a

framework. The engineering hints related to each evolutionary phenomenon may serve

as basics in order empirically to acquire a taxonomy of evolution. Future work aims to

acquire practical experience using the taxonomy in industrial settings.

9.4 Postscript

This thesis supports the empirical investigation and modelling of requirements evolu-

tion, hence Observational Models of Requirements Evolution. The results provide new

insights in requirements engineering and identify the foundations for requirements evo-

lution engineering. Although researchers and practitioners recognise the importance

of requirements evolution, there is still a lot of work to do in order to address re-

quirements evolution. This thesis highlights future research and practice directions

in requirements engineering. The results point out how a heterogeneous viewpoint is

convenient to analyse and model evolutionary requirements aspects in industrial set-

tings. Thus, the heterogeneous requirements evolution allows the understanding of the

mechanisms of socio-technical evolution. However, it would be useful further to in-

tegrate requirements evolution with other methodologies and models. Requirements

evolution is convenient to integrate either engineering approaches (e.g., design, test-

ing, etc.) or social models (e.g., activity theory, distributed cognition, etc.). Hence,

requirements evolution stresses that future research and practice should rely on mul-

tidisciplinary approaches. This should also support further evaluations in industrial

settings. Although heterogeneous requirements evolution originates from empirical

evidence of software production, it needs further experience in different live produc-

tion environments. A key aspect that allows the evaluation is the integration of re-

quirements evolution modelling in various design and management tools that support

production activities. Moreover, this supports the analysis of requirements evolution

with respect to dependability. In conclusion, this thesis addresses the problem of em-

pirically understanding and modelling requirements evolution. The results highlight

multidisciplinary research directions in requirements evolution.

181

Appendix A. Requirements Engineering Questionnaire 182

Appendix A

Requirements Engineering

Questionnaire

A.1 Business Requirements Engineering

Requirements Methodology Compliance

Question N/A UN VL L A H VH

A.1.1 Have the applicable organisation’s poli-

cies and procedures been identified?

A.1.2 Do requirements comply with these poli-

cies and procedures?

A.1.3 Do you document requirements in accor-

dance with the requirements methodology?

A.1.4 Is the cost/benefit analysis prepared in ac-

cordance with the appropriate procedures?

A.1.5 Does the requirements phase meet the in-

tent of the requirements methodology?

A.1.6 Is the requirements phase staffed accord-

ing to procedures?

A.1.7 Will all the applicable policies, procedures

and requirements be in effect at the time the system

goes in operation?

A.1.8 Will there be new standards, policies and

procedures in effect at the time the system goes

operational?

Appendix A. Requirements Engineering Questionnaire 183

Business Tolerance Requirements

Question N/A UN VL L A H VH

A.1.9 Have the significant financial fields been

identified?

A.1.10 Has responsibility for the accuracy and

completeness of each financial field been as-

signed?

A.1.11 Have the accuracy and completeness

risks been identified?

A.1.12 Has the individual responsible for each

field stated the required precision for financial ac-

curacy?

A.1.13 Has the accounting cutoff method been

determined?

A.1.14 Has a procedure been specified to moni-

tor the accuracy of financial information?

A.1.15 Are rules established on handling inac-

curate and incomplete data?

Appendix A. Requirements Engineering Questionnaire 184

Business Performance Requirements

Question N/A UN VL L A H VH

A.1.16 Will hardware and software be obtained

through competitive bidding?

A.1.17 Have cost-effectiveness criteria been de-

fined?

A.1.18 Do you calculate the cost-effectiveness

for an application system in accordance with the

procedures?

A.1.19 Are the cost-effectiveness procedures ap-

plicable to any application?

A.1.20 Could application characteristics cause

the actual cost to vary significantly from the pro-

jections?

A.1.21 Are there application characteristics that

could cause the benefits to vary significantly from

the projected benefits?

A.1.22 Is the expected life of projects reason-

able?

A.1.23 Does a design phase schedule exist which

identifies tasks, people, budgets and costs?

A.1.24 Have you obtained quality certifications

(e.g., ISO 9001, CMM, Prince2, TQM, etc.) for

your process?

A.1.25 If your organisation is certified to some

standards (e.g., ISO 9001, CMM, Prince2, TQM,

etc.), which is the (average) level of compliance

with them?

Appendix A. Requirements Engineering Questionnaire 185

A.2 Process Requirements Engineering

Requirements Elicitation

Question N/A UN VL L A H VH

A.2.1 Do you carry out a feasibility study before

starting a new project?

A.2.2 While eliciting requirements are you sen-

sible to organisational and political factors which

influence requirements sources?

A.2.3 Do you use business concerns to drive re-

quirements elicitation?

A.2.4 Do you prototype poorly understood re-

quirements?

A.2.5 Do you use scenarios to elicit require-

ments?

A.2.6 Do you define operational processes?

A.2.7 Do you reuse requirements from other sys-

tems which have been developed in the same ap-

plication area?

Appendix A. Requirements Engineering Questionnaire 186

Requirements Analysis and Negotiation

Question N/A UN VL L A H VH

A.2.8 Do you define system boundaries?

A.2.9 Do you use checklists for requirements

analysis?

A.2.10 Do you encourage the use of electronic

systems (e.g., e-mail) to support requirements ne-

gotiations?

A.2.11 Do you plan for conflicts and conflict res-

olution?

A.2.12 Do you prioritise requirements?

A.2.13 Do you classify requirements using a

multidimensional approach which identifies spe-

cific types (e.g., hardware-software, changeable-

stable, etc.)?

A.2.14 Do you use interaction matrices to find

conflicts and overlaps?

A.2.15 Do you perform any risk analysis on re-

quirements?

Appendix A. Requirements Engineering Questionnaire 187

Requirements Validation

Question N/A UN VL L A H VH

A.2.16 Do you check that requirements docu-

ment meets your standards?

A.2.17 Do you organise formal requirements in-

spections?

A.2.18 Do you use multi-disciplinary teams to

review requirements?

A.2.19 Do you involve external (from the

project) reviewers in the validation process?

A.2.20 In order to focus the validation process

do you define validation checklists?

A.2.21 Do you use prototyping to animate /

demonstrate requirements for validation?

A.2.22 Do you propose requirements test cases?

A.2.23 Do you allow different stakeholders to

participate in requirements validation?

Appendix A. Requirements Engineering Questionnaire 188

Requirements Management

Question N/A UN VL L A H VH

A.2.24 Do you uniquely identify each require-

ment?

A.2.25 Do you have defined policies for require-

ments management?

A.2.26 Do you record requirements traceability

from original sources?

A.2.27 Do you define traceability policies?

A.2.28 Do you maintain a traceability manual?

A.2.29 Do you use a database to manage re-

quirements?

A.2.30 Do you define change management poli-

cies?

A.2.31 Do you identify global system require-

ments?

A.2.32 Do you identify volatile requirements?

A.2.33 Do you record rejected requirements?

A.2.34 Do you reuse requirements over different

projects?

Appendix A. Requirements Engineering Questionnaire 189

Requirements Evolution/Maintenance

Question N/A UN VL L A H VH

A.2.35 Has the expected life of the project been

defined?

A.2.36 Has the expected frequency of change

been defined?

A.2.37 Has the importance of keeping the system

up to date functionally been defined?

A.2.38 Has the importance of keeping the system

up to date technologically been defined?

A.2.39 Has it been decided who will perform

maintenance on the project?

A.2.40 Are the areas of greatest expected change

identified?

A.2.41 Has the method of introducing change

during development been identified?

A.2.42 Have provisions been included to prop-

erly document the application for maintenance

purposes?

Appendix A. Requirements Engineering Questionnaire 190

Requirements Process Deliverables

Question N/A UN VL L A H VH

A.2.43 Are the deliverables of the requirements

process well identified within your organisation?

A.2.44 Is the task of each deliverable well de-

fined within your organisation?

A.2.45 Are the responsibilities for producing the

deliverables well defined within your organisa-

tion?

A.2.46 Is the deliverables’ schedule well defined

within your organisation?

A.2.47 Are the responsibilities for reviewing the

deliverables well defined within your organisa-

tion?

A.2.48 Are relationships among deliverables

well defined within your organisation?

A.2.49 Are requirements used as the basis for

developing project plans?

A.2.50 Are requirements used as a basis for de-

sign?

A.2.51 Are requirements used as the basis for

testing?

A.2.52 Are requirements allocated to the soft-

ware functions of the product?

Appendix A. Requirements Engineering Questionnaire 191

A.3 Product Requirements Engineering

Requirements Description

Question N/A UN VL L A H VH

A.3.1 Do you have standards templates / docu-

ments for describing requirements?

A.3.2 Do you have a specific lay out for the re-

quirements document to improve readability?

A.3.3 Do you have guidelines how to write re-

quirements?

A.3.4 Do you produce a summary of the require-

ments?

A.3.5 Do you make a business case for a system?

A.3.6 Do you have a glossary of specialised

terms?

A.3.7 Is the requirements document easy to

change?

A.3.8 Do you use diagrams appropriately?

A.3.9 Do you supplement natural language with

other descriptions of requirements?

A.3.10 Do you specify requirements quantita-

tively?

Appendix A. Requirements Engineering Questionnaire 192

System Modelling

Question N/A UN VL L A H VH

A.3.11 Do you define the system’s operating en-

vironment?

A.3.12 Do you develop complementary system

models?

A.3.13 Do you model the system’s environment?

A.3.14 Do you model the system architecture?

A.3.15 Do you use structured methods for sys-

tem modelling?

A.3.16 Do you define operational processes to

reveal process requirements and requirements

constraints?

A.3.17 Do you use a data dictionary?

A.3.18 Do you document the links between

stakeholder requirements and system?

A.3.19 Do you specify systems using formal

specifications?

Appendix A. Requirements Engineering Questionnaire 193

Functional Requirements

Question N/A UN VL L A H VH

A.3.20 Can the data required by the application

be collected with the desired degree of reliability?

A.3.21 Can the data be collected within the time

period specified?

A.3.22 Have the user requirements been defined

in writing?

A.3.23 Are the requirements stated in measur-

able terms?

A.3.24 Has the project solution addressed the

user requirements?

A.3.25 Could test data be developed to test the

achievement of the objectives?

A.3.26 Have procedures been specified to evalu-

ate the implemented system to ensure the require-

ments are achieved?

A.3.27 Do the measurable objectives apply to

both the manual and automated segments of the

application system?

Appendix A. Requirements Engineering Questionnaire 194

Non Functional Requirements

Question N/A UN VL L A H VH

A.3.28 Do you identify non functional require-

ments (e.g., usability, quality, cognitive workload,

etc.) for a system?

A.3.29 Have the user functions been identified?

A.3.30 Have the skill levels of the users been

identified?

A.3.31 Have the expected levels of supervision

been identified?

A.3.32 Has the time span for user function been

defined?

A.3.33 Will the counsel of an industrial psychol-

ogist be used in designing user functions?

A.3.34 Have user clerical people been inter-

viewed during the requirements phase to identify

their concerns?

A.3.35 Have tradeoffs between computer and

people processing been identified?

A.3.36 Have the defined user responsibility been

presented to the user personnel for comment?

Appendix A. Requirements Engineering Questionnaire 195

Portability Requirements

Question N/A UN VL L A H VH

A.3.37 Are significant hardware changes ex-

pected during the life of the project?

A.3.38 Are significant software changes ex-

pected during the life of the project?

A.3.39 Will the application system be run in mul-

tiple locations?

A.3.40 If an on-line application, will different

types of terminal be used?

A.3.41 Is the proposed solution dependent on

specific hardware?

A.3.42 Is the proposed solution dependent on

specific software?

A.3.43 Will the application be run in other coun-

tries?

A.3.44 Have the portability requirements been

documented?

Appendix A. Requirements Engineering Questionnaire 196

Systems Interface

Question N/A UN VL L A H VH

A.3.45 Have data to be received from other ap-

plications been identified?

A.3.46 Have data going to other applications

been identified?

A.3.47 Have the reliability of interfaced data

been defined?

A.3.48 Has the timing of transmitting data being

defined?

A.3.49 Has the timing of data being received

been defined?

A.3.50 Has the method of interfacing been de-

fined?

A.3.51 Have the interface requirements been

documented?

A.3.52 Have future needs of interfaced systems

been taken into account?

Appendix A. Requirements Engineering Questionnaire 197

Requirements Viewpoints

Question N/A UN VL L A H VH

A.3.53 Do you identify and consult all likely,

sources of requirements, system stakeholders?

A.3.54 Do you look for domain constraints?

A.3.55 Do you collect requirements from multi-

ple viewpoints?

A.3.56 Do you use language simply, consistently

and concisely for describing requirements?

A.3.57 Do you record requirements traceability

from original sources?

A.3.58 Do you record requirements rationale in

order to improve requirements understanding?

Appendix A. Requirements Engineering Questionnaire 198

Product-Line Requirements

Question N/A UN VL L A H VH

A.3.59 Do you define safety-critical require-

ments?

A.3.60 Do you identify and analyse hazards?

A.3.61 Do you derive safety (or security, avail-

ability, etc.) requirements from hazard analysis?

A.3.62 Do you cross-check operational and

functional requirements against safety (or secu-

rity, availability, etc.) requirements?

A.3.63 Do you collect incident experience (e.g.,

by incident reports)?

A.3.64 Do you analyse incident reports?

A.3.65 Are responsibilities (for system safety)

well identified within your organisation?

A.3.66 Do you define operational profiles for a

system?

A.3.67 Do you develop use cases for a system?

Appendix A. Requirements Engineering Questionnaire 199

Failure Impact Requirements

Question N/A UN VL L A H VH

A.3.68 Has the financial loss of an application

system failure been defined?

A.3.69 Has the financial liss calculation for a

failure been extended to show the loss at differ-

ent time intervals, such as one hour, eight hours,

one day, one week, etc.?

A.3.70 Is the proposed system technology reli-

able and proven in practice?

A.3.71 Has a decision been made as to whether

it is necessary to recover this application in the

event of a system failure?

A.3.72 Are alternative processing procedures

needed in the vent that the system becomes unop-

erational?

A.3.73 If alternative processing procedures are

needed, have they been specified?

A.3.74 Has a procedure been identified for noti-

fying users in the event of a system failure?

A.3.75 Has the desired percent of up-time for the

system been specified?

Appendix B

Modal Logic

This chapter introduces the logic used to formalise the heterogeneous requirements

engineering framework. The basics consist of well-established results in modal logic

[Chagrov and Zakharyaschev, 1997]. Although the theoretical results in modal logic

extend over several levels of expressiveness (e.g., intuitionistic, propositional, first-

order, etc.), this chapter introduces a simple propositional modal logic. The most

popular semantics of modal logic relies on the possible worlds framework, or Kripke

structures. This allows us to define a notion of validity for modal logic, hence Kripke

models. A proof system, Tableaux system, allows us to develop proofs and counter

models [Fitting and Mendelsohn, 1998].

B.1 Propositional Modal Logic

This section briefly introduces the syntax and semantics of proposition modal logic

[Fitting and Mendelsohn, 1998].

B.1.1 Syntax

The language of propositional modal logic consists of:

� propositional letters (also called propositional variables), P, Q, R, etc., they

stand for unanalysed propositions

200

Appendix B. Modal Logic 201

� propositional constants, � and � , that represent truth and falsehood respectively

� propositional binary connectives � (and), � (or), � (if, then), � (if, and only

if); it is possible to construct other binary operators from these basic connectives

� unary operator � (not)

� modal unary operators � (necessarily) and � (possibly).

Definition B.1 (Propositional Modal Formulas) The set of propositional modal for-

mulas is specified by the following rules.

1. Every propositional letter is a formula.

2. If X is a formula, so is � X.

3. If X and Y are formulas, and � is a binary connective, � X � Y � is a formula.

4. If X is a formula, so are � X and � X.

B.1.2 Semantics

Modal logic allows the formalisation of the intuitions about necessity and possibility.

There exist many different representations that describe modal logic. Most of them

are equivalent from a theoretical viewpoint. For instance, it is possible to describe

modal logic in terms of Hypersets (or simply graphs) [Barwise and Moss, 1996]. This

section introduces a semantics for propositional modal logic. The semantics relies on

the definition of Kripke frames. Intuitively, the Kripke semantics interpretes modal

formulas like worlds that are related each other by an accessibility relationship.

Definition B.2 (Kripke Frame) A frame consists of two parts: a non-empty set, G ,

whose members are generally called possible worlds, and a binary relation, R , on G ,

generally called the accessibility relation. Thus, a Kripke frame is a pair � G � R � .
Note that although possible world is a suggestive terminology, possible worlds are

any objects (e.g., numbers, sets or even functions, requirements, set of requirements,

etc.) whatsoever in the mathematical treatment of frames.

Appendix B. Modal Logic 202

A simple intuitive interpretation considers Kripke frames as graphs. The elements

of G , are called worlds or points. The accessibility relation, R , identifies the con-

nections (or edges) in the graph. Barwise and Moss in [Barwise and Moss, 1996] give

similar definitions using a set-theoretic (i.e., hypersets or non-well-founded sets) rep-

resentation, which explicitely represents Kripke frames as graphs. We will generally

use Γ, ∆, etc. to denote possible worlds. If Γ and ∆ are in the relation R , we will write

ΓR ∆, and read this as ∆ is accessible from Γ (or ∆ is an alternative world to Γ).

A frame is turned into a modal model by specifying which propositional letters are

true at which worlds. The following definition and notation formalise Kripke models.

Definition B.3 (Kripke Model) A propositional modal model, or model for short, is

a triple M � � G � R � � � , where � G � R � is a frame and
�

is a relation between possible

worlds and propositional letters. If � M � Γ � � P holds, it means that P is true at the

world Γ of the collection G of possible worlds of the model M . If � M � Γ � � P does

not hold, represented by � M � Γ � �� P, it means that P is false at the world Γ of the

collection G of possible worlds of the model M .

If the model under consideration is unambiguous, we can just write Γ
�

P. The

truth-relation
�

consists of a mapping from the possible worlds and propositional let-

ters. Dually, it is possible to define a mapping from the propositional letters to set of

worlds at which each propositional letter is true.

Definition B.4 (Truth in a Model) Let M � � G � R � � � be a Kripke model. The re-

lation
�

is extended (by induction on the construction of the formula) to arbitrary

formulas as follows. For each Γ � G ,

� M � Γ � � � X iff � M � Γ � �� X

� M � Γ � � � X � Y � iff � M � Γ � � X and � M � Γ � � Y

� M � Γ � � � X � Y � iff � M � Γ � � X or � M � Γ � � Y

� M � Γ � � � X � Y � iff if � M � Γ � � X, then � M � Γ � � Y

� M � Γ � � � X � Y � iff � M � Γ � � X if, and only if � M � Γ � � Y

� M � Γ � � � X iff for every ∆ � G , if ΓR ∆ then � M � ∆ � � X

� M � Γ � � � X iff for some ∆ � G , ΓR ∆ and � M � ∆ � � X .

Appendix B. Modal Logic 203

B.1.3 Examples

This section shows some examples that highlight the behaviour of modal models. The

representation relies on the similarity between frames and graphs. Models are given

using diagrams, with circles representing possible worlds. For two worlds of such a

model, Γ and ∆, if ΓR ∆, an arrow from Γ to ∆ represents the accessibility relation.

The diagrams show explicitely which propositional letters are true at particular worlds.

If the diagram does not indicate some propositional letter, it is taken to be false.

Example B.1 Here is an example of propositional modal models. In this model, ∆
�

P � Q, because ∆
�

P. Similarly, Ω
�

P � Q. Thus Γ
� � � P � Q � , because ∆ and Ω are

the only possible worlds that are accessible from Γ, and P � Q is true at both of them.

On the other hand, Γ �� � P, because Ω �� P and Ω is accessible from Γ. Similarly,

Γ �� � Q and Γ �� � P � � Q. Hence, Γ �� � � P � Q � � � � P � � Q � .

Γ

∆ Ω
�

P
�

Q

Example B.2 Let consider the following model. This time, Γ �� � P � � � P.

Γ

Ω

∆
�

P

Appendix B. Modal Logic 204

Γ
� � P since ∆

�
P, and ∆ is the only world accessible from Γ. If we had Γ

� � � P,

it would follow that ∆
� � P, from which it would follow that Ω

�
P, which is not the

case. Hence, Γ �� � P � � � P.

Example B.3 This is a counter-example to lots of interesting formulas.

Γ ∆
�

P

∆
� � P, because ∆

�
P and ∆ is the only world accessible from ∆. But then again,

since ∆
� � P, it follows that ∆

� � � P, and similarly ∆
� � � � P, and so on. Similarly,

Γ
� � P, because ∆

�
P and ∆ is the only world accessible from Γ. But then again,

since ∆
� � P, it follows that Γ

� � � P, and similarly Γ
� � � � P, and so on. On the

other hand, Γ �� P. Thus at Γ, all the following formulas are false: � P � P, � � P � P,

� � � P � P, and so on.

B.1.4 Some Important Logics

Definition B.5 (L-valid) We say the model � G � R � � � is based on the frame � G � R � . A

formula X is valid in a model � G � R � � � , if it it is true at every world of G . A formula

X is valid in a frame, if it it is valid in every model based on that frame. Finally, if L is

a collection of frames, X is L-valid if X is valid in every frame in L.

Definition B.6 Let � G � R � be a frame. A frame is:

1. reflexive if ΓR Γ, for every Γ � G

2. symmetric if ΓR ∆ implies ∆R Γ, for all Γ � ∆ � G

3. transitive if ΓR ∆ and ∆R Ω together imply ΓR Ω, for all Γ � ∆ � Ω � G

4. serial if, for each Γ � G there is some ∆ � G such that ΓR ∆.

Appendix B. Modal Logic 205

Different modal logics are characterised semantically as the L-valid formulas, for

particular classes L of frames. Table B.1 identifies several frame collections and their

corresponding logics. Figure B.1 shows the inclusions among logics.

Table B.1: Some standard modal logics.

Logic Frame Conditions

K no conditions

D serial

T reflexive

B reflexive, symmetric

K4 transitive

S4 reflexive, transitive

S5 reflexive, symmetric, transitive

D

T

B

K4

S4

S5

K

Figure B.1: Inclusions among logics.

Appendix B. Modal Logic 206

B.1.5 Logical Consequence

Definition B.7 (Consequence) Let L be one of the frame collections given in Table

B.1. Also let S and U be sets of formulas, and let X be a single formula. X is a

consequence in L of S as global and U as local assumptions, in formulae S
�

� L U � X,

provided: for every frame � G � R � in the collection L, for every model � G � R � � � based

on this frame in which all members of S are valid, and for every world Γ � G at which

all members of U are true, Γ
�

X holds.

Thus S
�

� L U � X means that X is true at those worlds of L models where the

members of U are true, provided the members of S are true throughout the model, i.e.,

at each world.

B.2 Tableau Proof Systems

This section introduces a Tableau system [Fitting and Mendelsohn, 1998], which uses

prefixed formulas. Proofs are particular tableau (tree) of prefixed formulas.

Definition B.8 (Prefix) A prefix is a finite sequence of positive integers. A prefixed

formula is an expression of the form σX, where σ is a prefix and X is a formula.

Prefixes consist of integers separated by periods, 1.2.3.2.1 for instance. Also, if σ
is a prefix and n is a positive integer, σ � n is σ followed by a period followed by n. The

intuitive idea is that a prefix, σ, names a possible world in some model, and σX tells

us that X is true at the world σ names. The aim is that σ � n should always name a world

that is accessible from the one that σ names.

For any σ, a tableau can be constructed by the extension rules in Table B.2.

Now, for each of the logics in Table B.1, we get a tableau system by adding to the

system for K, i.e., Table B.2, the additional rules of B.3 corresponding to each logic.

Definition B.9 (Closure) A tableau branch is closed if it contains both σ X and σ � X

for some formula X. A branch that is not closed is open. A tableau is closed if every

branch is closed.

Definition B.10 (Tableau Proof) A closed tableau for 1 � Z is a tableau proof of Z,

and Z is a theorem if it has a tableau proof.

Appendix B. Modal Logic 207

Table B.2: Tableau extension rules.
Conjunctive Rules

σ X � Y

σ X

σ Y

σ � � X � Y �
σ � X

σ � Y

σ � � X � Y �
σ X

σ � Y

σ X � Y

σ X � Y

σ Y � X

Disjunctive Rules

σ X � Y

σ X σ Y

σ � � X � Y �
σ � X σ � Y

σ X � Y

σ � X σ Y

σ � � X � Y �
σ � � X � Y � σ � � Y � X �

Double Negation Rule

σ � � X

σ X

Possibility Rules

If the prefix σ � n is new to the branch,

σ � X

σ � n X

σ � � X

σ � n � X

Basic Necessity Rules

If the prefix σ � n already occurs on the branch,

σ � X

σ � n X

σ ��� X

σ � n � X

Table B.3: Special necessity rules and tableau system for each logic.

The following special necessity rules extend

the tableau system for K. For every σ and σ � n
already occurring on the tableau branch:

T
σ � X

σ X

σ ��� X

σ � X

D
σ � X

σ � X

σ ��� X

σ � � X

B
σ � n � X

σ X

σ � n ��� X

σ � X

4
σ � X

σ � n � X

σ ��� X

σ � n ��� X

4r
σ � n � X

σ � X

σ � n ��� X

σ ��� X

Logic Rules

D D

T T

B 4

K4 B, 4

S4 T, 4

S5 T, 4, 4r

Appendix B. Modal Logic 208

Example B.4 This example shows a proof for the formula � � X � X. The proof uses
the B rules. Note that the numbers to the right of each tableau item are for reference
only. They are not an official part of the tableau. Formula (1) is the usual starting
point. Formulas (2) and (3) are from (1) by a Conjunctive Rule; formula (4) is from (2)
by a Possibility Rule; the (5) is from (4) by Special Necessity Rule B. Closure is by (3)
and (5).

1 � � � � X � X � � 1 �
1 � � X � 2 �
1 � X � 3 �
1 � 1 �

X � 4 �
1 X � 5 �

Example B.5 The following is a proof, using the T rules, of � � � X � Y � � � X � � Y .

1 � ��� � � X � Y � � � X � � Y 	 � 1 � conjunctive rule

1
� � X � Y � � � X � 2 � conjunctive rule

1 � Y � 3 �
1

� � X � Y � � 4 � special necessity rule T

1 � X � 5 �
1 X � Y � 6 � disjunctive rule

1 X � 7 � 1 Y � 8 �

B.2.1 Logical Consequence and Tableaus

Definition B.11 (Assumption Rules) Let L be one of the modal logics for which tableau

rules have been given. Also let S and U be sets of formulas. A tableau uses S as global

assumptions and U as local assumptions if the following two additional rules are ad-

mitted.

Local Assumption Rule. If Y is any member of U, then 1 Y can be added to the end

of any open branch.

Global Assumption Rule. If Y is any member of S, then σ Y can be added to the end

any open branch on which σ appears as a prefix.

If assumptions, local or global, are involved in a tableau construction for 1 � X , we

refer to the tableau as a derivation of X rather than a proof of X .

Appendix B. Modal Logic 209

B.2.2 Soundness and Completeness

Definition B.12 (Satisfiable) Suppose S is a set of prefixed formulas. S is satisfiable

in the model � G � R � � � , if there is a way, θ, of assigning to each prefix σ that occurs in

S some possible world θ � σ � in G such that:

1. If σ and σ � n both occur as prefix in S, then θ � σ � n � is a world accessible from

θ � σ � , that is, θ � σ � R θ � σ � n � .

2. If σX is in S, then X is true at the world θ � σ � , that is, θ � σ � � X.

A tableau branch is satisfiable if the set of prefixed formulas on it is satisfiable in some

model. A tableau is satisfiable if some branch of it is satisfiable.

Proposition B.1 A closed tableau is not satisfiable.

Proposition B.2 If a tableau branch extension rule is applied to a satisfiable tableau,

the result is another satisfiable tableau.

Theorem B.1 (Tableau Soundness) If X has a tableau proof using the K rules, X is

K-valid.

Definition B.13 (Saturated) Let us say a K tableau is saturated if all appropriate

tableau rule applications have been made. More precisely, a tableau is saturated pro-

vided, for every branch that is not closed:

1. If a prefixed formula other than a possibility or necessity formula occurs on the

branch, the applicable rule has been applied to it on the branch.

2. If a possibility formula occurs on the branch, the possibility rule has been ap-

plied to it on the branch once.

3. If a necessity formula occurs on the branch, with prefix σ, the necessity rule

has been applied to it on the branch once for each prefix σ � n that occurs on the

branch.

If T is a saturated K, and B is a branch of it that is not closed, we can say several

useful things about it. If σX � Y occurs on B , so do both σX and σY , by item 1.

Similarly, if σX � Y occurs on it, one of σX or σY , again by 1. If σ � X occurs, so will

Appendix B. Modal Logic 210

σ � nX for some n. And if σ � X occurs, so will σ � nX for every prefix σ � n that occurs on

B . Similar remarks apply to other formulas.

Notice that it is always possible to construct a saturated K tableau for 1 � X . To do

this, we simply follow a systematic construction procedure. At each pick a branch that

has not closed, pick a prefixed formula on it that is not a necessity formula, not atomic,

not the negation of an atom, and that has had no rule applied on it on the branch, and

do the following. If it is a possibility formula, say σ � X , pick the smallest integer n

such that σ � n does not occur on the branch, and add σ � nX to the end of the branch;

and then for each necessity rule formula on the branch having σ as prefix, also add the

instance having σ � n as prefix (so if σ � Y occurs, add σ � nY). It is possible to show that

this procedure terminates.

Suppose we have a saturate tableau T , and there is a branch B of it that is not

closed. We show how to construct a model in which the branch is satisfiable. Let G be

the collection of prefixes that occur on the branch B . If σ and σ � n are both in G , set

σR σ � n. Finally, if P is a propositional letter, and σP occurs on B , take P to be true

at σ, that is, σ
�

P. Otherwise take P to be false. This completely determines a model

� G � R � � � . Now, the key fact, we need, is that for each formula Z,

if σZ occurs on B then σ
�

Z

if σ � Z occurs on B then σ �� Z.

The proof of this is by induction on the complexity of the formula Z.

Theorem B.2 (Tableau Completeness) If X is K-valid, X has a tableau proof using

the K rules.

Example B.6 The following is an attempted proof of � � X � � Y � � � � � X � Y � using

Appendix B. Modal Logic 211

the K rules.

1 � � � � X �
�

Y � � � � � X � Y � using the K � � 1 � conjunctive rule giving (2) and (3)

1
� � X �

�
Y � � 2 �

1 � � � � � X � Y � � � 3 � possibility rule giving (4)

1 � 1 � � � X � Y � � 4 �
1 � 1 X �

�
Y � 5 � conjunctive rule giving (6) and (7)

1 � 1 X � 6 �
1 � 1 �

Y � 7 �

1 � 1 � � X � 8 � 1 � 1 � Y � 9 �
1 � 1 � 1 � X � 10 �

1 � 1 � 1 Y � 11 �

We then continue using the model construction procedure just outlined. Both tableau

branches are open. We work with the left one. We construct a model � G � R � � � as fol-

lows. Let G �
�
1 � 1 � 1 � 1 � 1 � 1 � , the set of prefixes on the left branch. Let 1R 1 � 1 and

1 � 1R 1 � 1 � 1. Finally, set 1 � 1
�

X, 1 � 1 � 1
�

Y , and in no other cases are propositional

letters true at worlds.

1

1.1.1

1.1
�

X

�
Y

The prefixed formula 1 � 1 � � X is on the left branch. And in fact, 1 � 1 �� � X, since

1 � 1R 1 � 1 � 1 and 1 � 1 � 1 �� X. Similarly, 1 � 1 � Y occurs on the branch, and 1 � 1
� � Y

Appendix B. Modal Logic 212

since the only possible world of the model that is accessible from 1 � 1 is 1 � 1 � 1, and

we have 1 � 1 � 1
�

Y . In this way we work our way up the branch, finally verifying that

� � X � � Y � � � � � X � Y � using the K is not true at the world 1, and hence is not valid.

Bibliography

[Alexander and Stevens, 2002] Alexander, I. F. and Stevens, R. (2002). Writing Better

Requirements. Addison-Wesley.

[Anderson and Felici, 2000a] Anderson, S. and Felici, M. (2000a). Controlling re-

quirements evolution: An avionics case study. In Koornneef, F. and van der Meulen,

M., editors, Proceedings of the 19th International Conference on Computer Safety,

Reliability and Security, SAFECOMP 2000, LNCS 1943, pages 361–370, Rotter-

dam, The Netherlands. Springer-Verlag.

[Anderson and Felici, 2000b] Anderson, S. and Felici, M. (2000b). Requirements

changes risk/cost analyses: An avionics case study. In Cottam, M., Harvey, D.,

Pape, R., and Tait, J., editors, Foresight and Precaution, Proceedings of ESREL

2000, SARS and SRA-EUROPE Annual Conference, volume 2, pages 921–925, Ed-

inburgh, Scotland, United Kingdom. A.A.Balkema.

[Anderson and Felici, 2001] Anderson, S. and Felici, M. (2001). Requirements evo-

lution: From process to product oriented management. In Bomarius, F. and Komi-

Sirviö, S., editors, Proceedings of the Third International Conference on Product

Focused Software Process Improvement, PROFES 2001, LNCS 2188, pages 27–41,

Kaiserslautern, Germany. Springer-Verlag.

[Anderson and Felici, 2002] Anderson, S. and Felici, M. (2002). Quantitative aspects

of requirements evolution. In Proceedings of the Twenty-Sixth Annual International

Computer Software and Applications Conference, COMPSAC 2002, pages 27–32,

Oxford, England. IEEE Computer Society.

213

Bibliography 214

[Antoniol et al., 1999] Antoniol, G., Canfora, G., and Lucia, A. D. (1999). Estimating

the size of changes for evolving object oriented systems: A case study. In Proc-

cedings of the Sixth International Symposium on Software Metrics, METRICS ’99,

pages 250–259, Boca Raton, Florida. IEEE Computer Society.

[Arthur, 1992] Arthur, L. J. (1992). Rapid Evolutionary Development: Requirements,

Prototyping & Software Creation. John Wiley & Sons.

[Barwise and Moss, 1996] Barwise, J. and Moss, L. (1996). Vicious Circles: On the

Mathematics of Non-Wellfounded Phenomena. Number 60 in CSLI Lecture Notes.

CSLI Publications.

[Bennett et al., 2001] Bennett, S., Skeleton, J., and Lunn, K. (2001). Schaum’s Outline

of UML. Schaum’s Outline Series. McGraw-Hill.

[Bergman et al., 2002a] Bergman, M., King, J. L., and Lyytinen, K. (2002a). Large-

scale requirements analysis as heterogeneous engineering. Social Thinking - Soft-

ware Practice, pages 357–386.

[Bergman et al., 2002b] Bergman, M., King, J. L., and Lyytinen, K. (2002b). Large-

scale requirements analysis revisited: The need for understanding the political ecol-

ogy of requirements engineering. Requirements Engineering, 7(3):152–171.

[Berry and Lawrence, 1998] Berry, D. M. and Lawrence, B. (1998). Requirements

engineering. IEEE Software, pages 26–29.

[Bijker et al., 1989] Bijker, W. E., Hughes, T. P., and Pinch, T. J., editors (1989). The

Social Construction of Technology Systems: New Directions in the Sociology and

History of Technology. The MIT Press.

[Boehm, 1981] Boehm, B. W. (1981). Software Engineering Economics. Prentice-

Hall.

[Boehm, 1984] Boehm, B. W. (1984). Software engineering economics. IEEE Trans-

action on Software Engineering, 10(1):4–21.

Bibliography 215

[Boehm, 1998] Boehm, B. W. (1998). A spiral model of software development and

enhancement. IEEE Computer, 21(2):61–72.

[Boehm et al., 2000] Boehm, B. W. et al. (2000). Software Cost Estimation with CO-

COMO II. Prentice-Hall.

[Bosch, 2000] Bosch, J. (2000). Design and Use of Software Architectures: Adopting

and Evolving a Product-Line Approach. Addison-Wesley.

[Bowker and Star, 1999] Bowker, G. C. and Star, S. L. (1999). Sorting Things Out:

Classification and Its Consequences. MIT Press.

[Brooks, 1995] Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley, anniversary edition.

[Bustard et al., 2000] Bustard, D., Kawalek, P., and Norris, M., editors (2000). Sys-

tems Modeling for Business Process Improvement. Artech House.

[CCTA, 1998] CCTA (1998). Prince2 Manual - Managing successful projects with

PRINCE 2. CCTA.

[Chagrov and Zakharyaschev, 1997] Chagrov, A. and Zakharyaschev, M. (1997).

Modal Logic. Number 35 in Oxford Logic Guides. Oxford University Press.

[Coakes et al., 2000] Coakes, E., Willis, D., and Lloyd-Jones, R., editors (2000). The

New SocioTech: Graffiti on the Long Wall. Computer Supported Cooperative Work.

Springer-Verlag.

[Coleman et al., 1994] Coleman, D., Ash, D., Lowther, B., and Oman, P. (1994). Us-

ing metrics to evaluate software system maintainability. IEEE Computer, 27(8):44–

49.

[Davis and Hsia, 1994] Davis, A. M. and Hsia, P. (1994). Giving voice to require-

ments engineering. IEEE Software, pages 12–16.

[De Michelis et al., 1998] De Michelis, G., Dubois, E., Jarke, M., Matthes, F., My-

lopoulos, J., Schmidt, J. W., Woo, C., and Yu, E. (1998). A three-faceted view of

information systems. Communications of the ACM, 41(12):64–70.

Bibliography 216

[Edwards, 1972] Edwards, E. (1972). Man and machine: Systems for safety. In Pro-

ceedings of British Airline Pilots Associations Technical Symposium, pages 21–36,

London. British Airline Pilots Associations.

[Fagin et al., 2003] Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (2003). Rea-

soning about Knowledge. The MIT Press.

[Felici, 2000] Felici, M. (2000). Dependability perspectives in requirements engineer-

ing. In Student Forum, Workshops and Abstracts Proccedings of The International

Conference on Dependable Systems and Networks, DSN 2000, pages A43–A45,

New York, New York, USA. IEEE Computer Society.

[Felici, 2003] Felici, M. (2003). Taxonomy of evolution and dependability. In Pro-

ceedings of the Second International Workshop on Unanticipated Software Evolu-

tion, USE 2003, pages 95–104, Warsaw, Poland.

[Felici et al., 2000] Felici, M., Pasquini, A., and Sujan, M.-A. (2000). Applicability

limits of software reliability growth models. In MMR’2000, Deuxième Conférence

Internationale sur les Méthodes Mathématiques en Fiabilité: Méthodologie, Pra-

tique et Inférence, volume 1, pages 397–400, Bordeaux, France.

[Fenton and Pfleeger, 1996] Fenton, N. E. and Pfleeger, S. L. (1996). Software Met-

rics: A Rigorous and Practical Approach. International Thomson Computer Press,

second edition.

[Fitting and Mendelsohn, 1998] Fitting, M. and Mendelsohn, R. L. (1998). First-

Order Modal Logic. Kluwer Academic Publishers.

[Fleck, 1994] Fleck, J. (1994). Learning by trying: the implementation of configura-

tional technology. Research Policy, 23:637–652.

[Foote and Yoder, 1996] Foote, B. and Yoder, J. (1996). Evolution, architecture, and

metamorphosis. In Vlissides, J. M., Coplien, J. O., and Kerth, N. L., editors, Pattern

Languages of Program Design 2, chapter 13. Addison-Wesley.

Bibliography 217

[Gargantini and Heitmeyer, 1999] Gargantini, A. and Heitmeyer, C. (1999). Using

model checking to generate tests from requirements specifications. In Proceed-

ings of the 7th European Software Engineering Conference, Held Jointly with

the 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering,

ESEC/FSE’99, volume 1687 of LNCS, pages 146–162. Springer-Verlag.

[Gilb and Graham, 1993] Gilb, T. and Graham, D. (1993). Software Inspection.

Addison-Wesley.

[Gotel and Finkelstein, 1994] Gotel, O. C. and Finkelstein, A. C. (1994). An analysis

of the requirements traceability problem. In Proceedings of the First International

Conference on Requirements Engineering, ICRE’94, pages 94–101. IEEE Conputer

Society Press.

[Graves et al., 2000] Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H. (2000). Pre-

dicting fault incident using software change history. IEEE Transactions on Software

Engineering, 26(7):653–661.

[Gunter et al., 2000] Gunter, C. A., Gunter, E. L., Jackson, M., and Zave, P. (2000). A

reference model for requirements and specifications. IEEE Software, pages 37–43.

[Halpern, 2003] Halpern, J. Y. (2003). Reasoning about Uncertainty. The MIT Press.

[Hammer et al., 1998] Hammer, T. F., Huffman, L. L., and Rosenberg, L. H. (1998).

Doing requirements right the first time. CROSSTALK The Journal of Defense Soft-

ware Engineering, pages 20–25.

[Harker et al., 1993] Harker, S., Eason, K., and Dobson, J. (1993). The change and

evolution of requirements as a challenge to the practice of software engineering. In

Proceedings of the IEEE International Symposium on Requirements Engineering,

pages 266–272, San Diego, California, USA. IEEE Computer Society Press.

[Heinrich, 1950] Heinrich, H. W. (1950). Industrial accident prevention: a scientific

approach. McGraw-Hill, 3rd edition.

Bibliography 218

[Heitmeyer, 2002] Heitmeyer, C. L. (2002). Software cost reduction. In Marciniak,

J. J., editor, Encyclopedia of Software Engineering. John Waley & Sons, 2nd edi-

tion.

[Heitmeyer et al., 1998] Heitmeyer, C. L., Kirby, J., Labaw, B. G., and Bharadwaj, R.

(1998). SCR*: A toolset for specifying and analyzing software requirements. In

Hu, A. J. and Y.Vardi, M., editors, Proceedings of the 10th International Conference

on Computer Aided Verification, CAV ’98, volume 1427 of LNCS, pages 526–531.

[Hitchins, 1992] Hitchins, D. K. (1992). Putting Systems to Work. John Wiley & Sons.

[Hoffman and Weiss, 2001] Hoffman, D. M. and Weiss, D. M., editors (2001). Soft-

ware Fundamentals: Collected Papers by David L. Parnas. Addison-Wesley.

[Hooks and Farry, 2001] Hooks, I. F. and Farry, K. A. (2001). Customer-Centered

Products: Creating Successful Products Through Smart Requirements Manage-

ment. Amacom.

[Hughes and Hughes, 2000] Hughes, A. C. and Hughes, T. P., editors (2000). Systems,

Experts, and Computers: The Systems Approach in Management and Engineering,

World War II and After. The MIT Press.

[Hull et al., 2002] Hull, E., Jackson, K., and Dick, J. (2002). Requirements Engineer-

ing. Springer-Verlag.

[Hunt, 2000] Hunt, J. (2000). The Unified Process for Practitioners: Object Oriented

Design, UML andJava. Practitioner Series. Springer-Verlag.

[IEEE, 1988a] IEEE (1988a). IEEE Std 982.1 - IEEE Standard Dictionary of Mea-

sures to Produce Reliable Software. IEEE.

[IEEE, 1988b] IEEE (1988b). IEEE Std 982.2 - IEEE Guide for the Use of IEEE

Standard Dictionary of Measures to Produce Reliable Software. IEEE.

[ISO/IEC, 2001] ISO/IEC (2001). ISO/IEC 9126 - Software engineering - Product

quality. ISO/IEC.

Bibliography 219

[Jarke, 1998] Jarke, M. (1998). Requirements tracing. Communications of the ACM,

41(12):32–36.

[Jarke and Pohl, 1994] Jarke, M. and Pohl, K. (1994). Requirements engineering in

2001: (virtually) managing a changing reality. Software Engineering Journal, pages

257–266.

[Jirotka and Goguen, 1994] Jirotka, M. and Goguen, J. A., editors (1994). Require-

ments Engineering: Social and Technical Issues. Computers and People Series.

Academic Press.

[Kemerer and Slaughter, 1999] Kemerer, C. F. and Slaughter, S. (1999). An empirical

approach to studying software evolution. IEEE Transactions on Software Engineer-

ing, 25(4):493–509.

[Kotonya and Sommerville, 1996] Kotonya, G. and Sommerville, I. (1996). Require-

ments engineering with viewpoints. Software Engineering Journal, 11:5–18.

[Kuusela, 1999] Kuusela, J. (1999). Architectural evolution. In Donohoe, P., editor,

Software Architecture, TC2 First Working IFIP Conference on Software Architec-

ture (WICSA1), pages 471–478, San Antonio, Texas, USA. IFIP, Kluwer Academic

Publishers.

[Lam, 1997] Lam, W. (1997). Achieving requirements reuse: A domain-specific ap-

proach from avionics. The Journal of Systems and Software, 38(3):197–209.

[Lam et al., 1997] Lam, W., McDermid, J., and Vickers, A. (1997). Ten steps towards

systematic requirements reuse. In Proceedings of the Third IEEE International

Symposium on Requirements Engineering, pages 6–15, Annapolis, Maryland, USA.

IEEE Computer Society Press.

[Laprie, 1995] Laprie, J.-C. (1995). Dependable computing: Concepts, limits, chal-

lenges. In FTCS-25, the 25th IEEE International Symposium on Fault-Tolerant

Computing - Special Issue, pages 42–54, Pasadena, California, USA.

Bibliography 220

[Laprie et al., 1998] Laprie, J.-C. et al. (1998). Dependability handbook. Technical

Report LAAS Report no 98-346, LIS LAAS-CNRS.

[Lauesen, 2002] Lauesen, S. (2002). Software Requirements: Styles and Techniques.

Addison-Wesley.

[Leffingwell and Widrig, 2003] Leffingwell, D. and Widrig, D. (2003). Manag-

ing Software Requirements: A Use Case Approach. Object Technology Series.

Addison-Wesley, second edition.

[Lehman, 1998] Lehman, M. (1998). Software’s future: Managing evolution. IEEE

Software, pages 40–44.

[Lehman and Belady, 1985] Lehman, M. and Belady, L. (1985). Program Evolution:

Processes of Software Change, volume 27 of A.P.I.C. Studies in Data Processing.

Academic Press.

[Lehman et al., 1998] Lehman, M., Perry, D., and Ramil, J. (1998). On evidence sup-

porting the feast hypothesis and the laws of software evolution. In Proceedings of

Metrics ‘98, Bethesda, Maryland.

[Leveson, 1995] Leveson, N. G. (1995). SAFEWARE: System Safety and Computers.

Addison-Wesley.

[Leveson, 2000] Leveson, N. G. (2000). Intent specifications: An approach to build-

ing human-centered specifications. IEEE Transactions on Software Engineering,

26(1):15–35.

[Levine et al., 2000] Levine, F., Locke, C., Searls, D., and Weinberger, D. (2000). The

Cluetrain Manifesto: The end of business as usual. FT.com. Pearson Education.

[Linscomb, 2003] Linscomb, D. (2003). Requirements engineering maturity in the

CMM. CROSSTALK The Journal of Defence Software Engineering, 16(12):25–28.

[Littlewood et al., 2001] Littlewood, B., Popov, P., and Strigini, L. (2001). Modelling

software design diversity: a review. ACM Computing Surveys, 33(2):177–208.

Bibliography 221

[Littlewood and Strigini, 2000] Littlewood, B. and Strigini, L. (2000). Software re-

liability and dependability: a roadmap. In Finkelstein, A., editor, The Future of

Software Engineering, pages 177–188. ACM Press, Limerick.

[Lutz and Mikulski, 2003] Lutz, R. R. and Mikulski, I. C. (2003). Operational anoma-

lies as a cause of safety-critical requirements evolution. The Journal of Systems and

Software, 65(2):155–161.

[Lyu, 1996] Lyu, M. R., editor (1996). Handbook of Sofwtare Reliability Engineering.

IEEE Computer Society Press.

[MacKenzie, 1990] MacKenzie, D. A. (1990). Inventing Accuracy: A Historical So-

ciology of Nuclear Missile Guidance. The MIT Press.

[MacKenzie and Wajcman, 1999] MacKenzie, D. A. and Wajcman, J., editors (1999).

The Social Shaping of Technology. Open University Press, 2nd edition.

[Mens and Galan, 2002] Mens, T. and Galan, G. H. (2002). 4th workshop on object-

oriented architectural evolution. In Frohner, A., editor, Proceedings of the ECOOP

2001 Workshops, LNCS 2323, pages 150–164. Springer-Verlag.

[Norman, 1998] Norman, D. A. (1998). The Invisible Computer. The MIT Press

Cambridge, Massachusetts.

[O’Hara et al., 2000] O’Hara, M. T., Kavan, C. B., and Watson, R. T. (2000). In-

formation systems implementation and organisational change: A socio-technical

systems approach. In Coakes, E., Willis, D., and Lloyd-Jones, R., editors, The

New SocioTech: Graffiti on the Long Wall, Computer Supported Cooperative Work,

chapter 14. Springer-Verlag.

[Parnas and Madey, 1995] Parnas, D. L. and Madey, J. (1995). Functional documents

for computer systems. Science of Computer Programming, 25:41–61.

[Paulk et al., 1993] Paulk, M. C. et al. (1993). Key practices of the capability matu-

rity model, version 1.1. Technical Report CMU/SEI-93-025, Software Engineering

Institute, Carnegie Mellon University.

Bibliography 222

[Perrow, 1999] Perrow, C. (1999). Normal Accidents: Living with High-Risk Tech-

nologies. Princeton University Press.

[Perry, 1994] Perry, D. E. (1994). Dimensions of software evolution. In Proceedings

of the IEEE International Conference on Software Maintenance. IEEE Computer

Society Press.

[Petroski, 1992] Petroski, H. (1992). To Engineer is Human: The Role of Failure in

Successful Design. Vintage Books.

[Petroski, 1994] Petroski, H. (1994). Design Paradigms: Case Histories of Error and

Judgement in Engineering. Cambridge University Press.

[Pfleeger, 1998] Pfleeger, S. L. (1998). Software Engineering: Theory and Practice.

Prentice-Hall.

[PROTEUS, 1996] PROTEUS (1996). Meeting the challenge of changing require-

ments. Deliverable 1.3, Centre for Software Reliability, University of Newcastle

upon Tyne.

[Ramesh, 1998] Ramesh, B. (1998). Factors influencing requirements traceability

practice. Communications of the ACM, 41(12):37–44.

[Randel, 2000] Randel, B. (2000). Facing up to faults. Computer Journal, 43(2):95–

106.

[Reason, 1997] Reason, J. (1997). Managing the Risks of Organizational Accidents.

Ashgate Publishing Limited.

[Robertson and Robertson, 1999] Robertson, S. and Robertson, J. (1999). Mastering

the Requirements Process. Addison-Wesley.

[Rolland, 1994] Rolland, C. (1994). Modeling the evolution of artifacts. In Pro-

ceedings of the First IEEE International Conference on Requirements Engineering,

ICRE ’94, pages 216–219.

Bibliography 223

[RTCA, 1992] RTCA (1992). DO-178B Software Considerations in Airborne Systems

and Equipment Certification. RTCA.

[Rumbaugh et al., 1999] Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Uni-

fied Modeling Language Reference Manual. Addison-Wesley.

[Rushby, 2002] Rushby, J. (2002). Using model checking to help to discover mode

confusions and other automation surprises. Reliability Engineering and System

Safety, 75:167–177.

[Salamon and Wallace, 1994] Salamon, W. J. and Wallace, D. R. (1994). Quality char-

acteristics and metrics for reusable software. Technical Report NISTIR 5459, NIST.

[Schmid and Verlage, 2002] Schmid, K. and Verlage, M. (2002). The economic im-

pact of product line adoption and evolution. IEEE Software, 19(4):50–57.

[Sha et al., 1995] Sha, L., Rajkumar, R., and Gagliardi, M. (1995). A software ar-

chitecture for dependable and evolvable industrial computing systems. Technical

Report CMU/SEI-95-TR-005, CMU/SEI.

[Siddiqi and Shekaran, 1996] Siddiqi, J. and Shekaran, M. (1996). Requirements en-

gineering: The emerging wisdom. IEEE Software, pages 15–19.

[Sommerville, 2001] Sommerville, I. (2001). Software Engineering. Addison-Wesley,

sixth edition.

[Sommerville and Sawyer, 1997a] Sommerville, I. and Sawyer, P. (1997a). Require-

ments Engineering: A Good Practice Guide. John Wiley & Sons.

[Sommerville and Sawyer, 1997b] Sommerville, I. and Sawyer, P. (1997b). View-

points: principles, problems and a practical approach to requirments engineering.

Annals of Software Engineering, pages 101–130.

[Stark et al., 1998] Stark, G., Skillicorn, A., and Ameele, R. (1998). An examina-

tion of the effects of requirements changes on software releases. CROSSTALK The

Journal of Defence Software Engineering, pages 11–16.

Bibliography 224

[Stirling, 2001] Stirling, C. (2001). Modal and Temporal Properties of Processes.

Texts in Computer Science. Springer-Verlag.

[Storey, 1996] Storey, N. (1996). Safety-Critical Computer Systems. Addison-Wesley.

[Van Buren and Cook, 1998] Van Buren, J. and Cook, D. C. (1998). Experiences in

the adoption of requirements engineering technologies. CROSSTALK The Journal

of Defence Software Engineering, pages 3–10.

[van Lamsweerde, 2000] van Lamsweerde, A. (2000). Requirements engineering in

the year 00: A research perspective. In Proceedings of the 2000 International Con-

ference on Software Engineering, ICSE 2000, pages 5–19, Limerick, Ireland.

[Vincenti, 1990] Vincenti, W. G. (1990). What Engineers Know and How They Know

It: Analytical Studies from Aeronautical History. The Johns Hopkins University

Press.

[Weinberg, 1997] Weinberg, G. M. (1997). Quality Software Management. Volume 4:

Anticipating Change. Dorset House.

[Weiss and Lai, 1999] Weiss, D. M. and Lai, C. T. R. (1999). Software Product-Line

Engineering: A Family-Based Software Development Process. Addison-Wesley.

[Weiss et al., 2003] Weiss, K. A., C.Ong, E., and Leveson, N. G. (2003). Reusable

specification components for model-driven development. In Proceedings of the In-

ternational Conference on System Engineering, INCOSE 2003.

[Wiegers, 1999] Wiegers, K. E. (1999). Software Requirements. Microsoft Press.

[Wiels and Easterbrook, 1999] Wiels, V. and Easterbrook, S. (1999). Formal model-

ing of space shuttle software change requests using SCR. In Proceedings of the

Fouth IEEE International Symposium on Requirements Engineering, RE’99, pages

114–122. IEEE Computer Society.

[Williams and Edge, 1996] Williams, R. and Edge, D. (1996). The social shaping of

technology. Research Policy, 25(6):865–899.

Bibliography 225

[Williams et al., 2000] Williams, R., Slack, R., and Stewart, J. (2000). Social learning

in multimedia. Final report, EC targeted socio-economic research, project: 4141 PL

951003, Research Centre for Social Sciences, The University of Edinburgh.

[Zowghi et al., 1996] Zowghi, D., Ghose, A. K., and Peppas, P. (1996). A framework

for reasoning about requirements evolution. In Proceedings of PRICAI ’96, number

1114 in LNAI, pages 157–168. Springer-Verlag.

[Zowghi and Offen, 1997] Zowghi, D. and Offen, R. (1997). A logical framework

for modeling and reasoning about the evolution of requirements. In Proceedings

of the Third IEEE International Symposium on Requirements Engineering, pages

247–257, Annapolis, Maryland, USA. IEEE Computer Society Press.

