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Abstract


The Continuous Stochastic Logic (CSL) is a powerful means to state properties which


refer to Continuous Time Markov Chains (CTMCs). The verification of such proper-


ties on a model can be achieved through a suitable algorithm. In this doctoral thesis,


the CSL logic has been considered and two major aspects have been addressed: the


analysis of its expressiveness and the study of methods for a decomposed verification


of formuale. Concerning expressiveness, we have observed that the CSL syntax can


lead to formulae with a trivial semantics. As a consequence the idea of well-formed


CSL formula has been introduced. Furthermore, a simpler and equivalent syntax for


referring to ergodic CMTCs have defined as well as a brand new event-bounded Until


operator. With respect to compositionality, we have referred our study to a specific type


of decomposed CTMCs, namely the bidimensional Boucherie framework. A number


of basic properties concerning the Boucherie framework have been demonstrated and,


relying on this, a compositional semantics for a subset of the CSL syntax has been


derived. The considered subset is obtained by disallowing nesting of probabilistic


path-formulae, something whose impact on the ability to state useful properties is low.
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Chapter 1


Introduction


The continual advances in technology, result in the development of ever more com-


plex systems. Formal modelling is conceived as a means to help in optimising and


guiding the design phase. This is achieved by construction of a model of the sys-


tem, whose analysis allows for the study of the system’s behaviour. Different kinds


of analysis can be performed on a model referring to different aspects of the system’s


behaviour. For example, with respect to computer systems, one could be interested in


the evaluation of performance characteristics like, the benefit of increasing the number


of CPUs in a multiprocessor system or the impact of a scheduling algorithm on the


CPU’s throughput, or in verifying qualitative properties, like, checking that a mutual


exclusion protocol is deadlock-free. Dependability studies are also amongst the rele-


vant types of analysis which one would like to perform on a system’s model. With this


respect, indices like the mean time to failure of a system’s component can be assessed


when the system’s reliability is of interest.


A model is an abstract representation of the system. Often the system’s behaviour


can be described in terms of the states it can occupy and by specifying how it can move


from one state to another in time. This type of models are referred to as discrete-event


state-based models and this work refers to them. The model’s dimension depends on


the system’s complexity and on the details it captures. Clearly complex systems can


easily result in very large models which turn out to be intractable. In the literature,


this is often referred to as the state-space explosion problem, a well known issue the


treatment of which is of major interest in research. Compositionality is seen as a means
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to tackle the state-space explosion problem. In substance, compositionality is a mod-


elling strategy which is meant to help both in modelling and analysing complex sys-


tems. The basic idea is to obtain a decomposed representation of the model, in terms


of a number of (smaller) sub-models. The model of interest (composed model) can be


retrieved by the application of a compositional rule to the sub-models. The purpose


of a decomposed analysis technique is to draw information regarding the performance


and/or reliability of the composed model, by combining the results of the analysis of


the component models (sub-models). This allows huge, hence intractable, models to


be studied by means of smaller, tractable, sub-models.


When the future evolution of a system depends only on its current state, the system


can be represented by means of a Markov process (Markov chains when the state-space


is discrete). The most common type of analysis for Markov chains concerns the evalu-


ation of the probability of being in a given state either in the long run (i.e. at infinity) or


at a given time instant t. When time is considered as an enumerable quantity, then we


refer to Discrete Time Markov Chains (DTMCs). On the other hand if time is consid-


ered continuous, we refer to Continuous Time Markov Chains (CTMCs). CTMCs have


become a very popular/ widely used formalism for modelling purpose in many diverse


areas, not only in computer science. One possible type of analysis of CMTCs is given


by model-checking. Generally speaking, model-checking is a technique which permits


the verification of properties against a given model. Properties are given in terms of


formulae of some temporal logic, while a model, in essence, is expressed as a graph


whose paths represent the possible evolutions of the system. An algorithm (model-


checker) is then supplied with both the system’s model and the formula of interest


and returns either a positive answer, if the model fulfils the property represented by


the formula, or a counterexample (a system evolution) which contradicts the formula.


Different types of model-checking have been defined in the last decades, referring to


different types of systems and featuring different types of expressivity. The model


checking for CTMCs takes its name from the temporal logic it is based on, which is


the Continuous Stochastic Logic. Hence it is referred to as CSL model-checking.


With respect to model-checking, compositionality regards the study of decomposed


equivalences. If a certain property is to be verified with respect to a decomposed
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model, it is of interest to investigate whether this is equivalent to checking a number


of derived formulae with respect to the sub-models. By means of such an approach


the verification of a large model can be replaced by the verification of smaller models.


In the model-checking literature few works regarding the study of a compositional


approach can be found, and, to the best of our knowledge, none at all with respect to


CSL model-checking.


In this work CSL model-checking is considered and two major contributions are


presented. The first one concerns a study of the CSL expressiveness. Some syntac-


tical bounds are identified in order to characterise sensible CSL formulae. Moreover


a simplified syntax is introduced for referring to a subclass of CMTCs. Secondly, a


compositional way to check CSL formulae is studied. A decomposed approach for


CSL model checking, referring to a specific compositional framework for CTMCs,


namely the Boucherie framework, is derived. This result is based on proving a number


of equivalences which show that the verification of a certain CSL formula with respect


to a bidimensional Boucherie process, corresponds to the verification of a number of


derived formulae with respect to the component’s processes.


The remainder of the thesis is organised as follows.


In Chapter 2 some background material and definitions are presented. An overview


of the principal types of temporal logics and of the corresponding model checking


methods is provided. The CSL syntax and semantics are thoroughly described as well


as the existing algorithms for checking its formulae against a given CTMC. The Bou-


cherie compositional framework for CMTCs is then introduced together with an ex-


ample (running example) which will be used throughout the other chapters in order to


show the correctness of the derived semantic equivalences.


The syntax and semantics of the logic CSL are meant to refer to arbitrary CMTCs.


However, in Chapter 3, it will be shown that when dealing with ergodic CTMCs


(CTMCs which correspond to a strongly connected graph), a simpler and equivalent


syntax can replace the original one. Moreover well-formed CSL formulae are char-


acterised and proved to be the only sensible type of formulae which one would be


interested in. In this chapter we also introduce a new, event-bounded version of the


Until operator for which a verification method is defined.
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In Chapter 4, the bidimensional Boucherie framework is considered in more detail


and some basic definitions and properties are provided. This constitutes the basis on


which the decomposed semantics relies. A partition of the CSL formulae which refer


to a bidimensional Boucherie process is characterised: single component formulae are


those which refer to features of one component’s process only; general formulae, in-


stead, involve both components. A compositional semantics for both single-component


and general non-path formulae (i.e. formulae which involve neither the Next nor the


Until connective) is then proved.


In Chapter 5 Next formulae referring to a bidimensional Boucherie process are


considered and a compositional semantics is derived for both the single-component


and general case. It will be proved that checking a “simple” single-component bounded


Next for a probability bound p with respect to a bidimensional Boucherie process is


equivalent, in the worst-case, to checking the same formula, for a derived probability


bound p� with respect to the component it refers to, or, in the best-case, to verifying


a simple inequality. Relying on this, it will also be proved, that the verification of the


steady-state probability of a “simple” single-component bounded Next formula against


a bound p is equivalent to the verification of the steady-state probability of a derived


formula with respect to a derived probability bound p� on the component the original


formula refer to. Finally, for the general case, we will show that, checking a general


bounded Next formula against the Boucherie process, boils down to checking n derived


single-component bounded Next formulae for each of the two component’s process.


In Chapter 6, the characterisation of a decomposed semantics for Until formulae


which refer to a bidimensional Boucherie process is addressed. The relationship be-


tween paths of the composed process (bidimensional paths) and of the components’


processes are assessed and some basic properties are demonstrated. Essentially each


path of the product process is given by interleaving of a pair of paths on the compo-


nents (projection paths). It will be shown that the probability measure of a bidimen-


sional path can be factored in terms of the probability measure of its projection paths.


This allows for proving that checking a single-component Until formula for a bound p


against the product-process is equivalent to checking the same formula for a derived


bound p� and against the component process it refers to.
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Finally, in Chapter 7, a summary of the results of this work is presented, together


with an analysis of directions for future work.


The thesis also includes two appendices. Appendix A contains the formal proof of


some lemmas and propositions on which the compositional semantics of Next formulae


(Chapter 5) relies. Appendix B, instead, contains a number of definitions and propo-


sitions concerning the properties of bidimensional paths. The results there proved are


those on which the compositional semantics for Until formulae (Chapter 6) is based.











Chapter 2


Background


2.1 Introduction


This chapter contains the background material for this thesis. A compact survey of


the model-checking methodologies, ranging from the non-probabilistic framework to


the probabilistic one, is provided in the next section. Section 2.3 describes thoroughly


the model-checking technique for the Continuous-Time Markov Chains, which is the


class of stochastic models we are concerned about in this work. Section 2.4 provides


an overview of the idea of compositionality in general, in performance modelling and


in particular in the model-checking framework. Since this work focuses on the study


of a compositional approach for model-checking of Continuous-Time Markov Chains


we need to consider a compositional framework for that type of stochastic process.


Section 2.5 is devoted to describing the Boucherie product-form framework, a compo-


sitional method for CTMCs featuring a very useful (de)compositional expression for


the steady-state distribution of the composed Markov Chain.


2.2 Model-Checking: a survey


Model checking is a methodology for testing a system’s model against properties ex-


pressed in terms of some temporal logic formulae. A model checker is an algorithm (a


program) which takes a model/system M and a formula φ as inputs (Figure 2.1) and
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returns either YES if φ is satisfied in M or NO if it is not, providing, in such a case, a


counter-example of the checked property.


� ��� �


MODEL
CHECKER


�


�


NO


� �� �
YES


property


MODEL


(LTL,CTL,PCTL,CSL)


(LTS,DTMC,CTMC,MDP)


Figure 2.1: Model checking a formula φ against a model M


The existing model-checking techniques may be classified with respect to the type


of model they refer to. In this sense we can distinguish between two large classes of


models:


� non-probabilistic models: referring to systems whose behaviour can be deter-


ministically determined.


� probabilistic models: referring to systems whose behaviour can be stochasti-


cally determined.


Non-probabilistic systems are modelled in terms of Labelled Transition Systems


(LTS) (i.e. labelled graphs).


Definition 2.2.1 (Labelled Transition Systems (LTS)) A Labelled Transition System


is a tuple M � �S�R�L� where


� S set of states


� R� S�S set of arcs


� L : S� 2AP labelling function


where AP is a set of Atomic Propositions.
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Given a state s of a LTS M � �S�R�L�, we will denote ats the conjunction of all


atomic propositions with which s is labelled. In essence:


ats �
�


ai�L�s�


ai


As we will see, ats uniquely identifies the state s it refers to (i.e. the formula ats is valid


only in s).


A path from a given LTS M represents a possible execution of the system modelled


by M . Formally,


Definition 2.2.2 (Path over a LTS) Let M � �S�R�L� be a LTS. An infinite path σ is


a sequence of states s0 � s1 � s2 � � � such that for any i � � , �si�si�1� � R.


Remark 2.2.1 Let M � �S�R�L� be a LTS. A finite path σ denotes the set of all infinite


paths of M whose common prefix is σ.


Given a model M and a state s we will assume the following notations concerning


paths:


� PathM �� is the set of all possible paths of M .


� PathM �s� is the set of all possible paths of M starting at s.


Wherever it is unambiguous the superscript M is omitted from the above notations.


2.2.1 Linear Time Logic model-checking


The Linear Time Logic (LTL) [37] is a language to reason about the future considering


time as extending in a linear fashion. Models are LTS and formulae are evaluated with


respect to paths extracted from the LTS. Two basic temporal connectives allow one to


refer to the future: the next operator, denoted �X � and the until operator, denoted �U�.


The complete syntax for the formulae φ of the LTL is as follows:


φ :� a � tt � �φ � φ�φ � X φ � φ U φ (2.2.1)


where a � AP and AP being the set of atomic propositions of the considered LTS.
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The semantics of LTL is defined in terms of a relation, denoted by ��, which asso-


ciates paths σ � PathM and LTL formulae


σ �� tt forall σ � PathM σ �� φ��φ�� iff σ �� φ��σ �� φ��


σ �� a iff a � L�σ�0�� σ �� X φ iff σ�1� �� φ


σ �� �φ iff σ ��� φ σ �� φ�Uφ�� iff 	i
0:σ�i� �� φ���� j� i�σ� j� ��φ�


S� S� S� S� S�


� �� � � �� � �


�� � �� � � � ���� � �� � �


��� � ��� � � ���� � �� � � �


Figure 2.2: Semantics of next and until formulae


Example 2.2.1 Figure 2.2 provides an example of the semantics of next and until for-


mulae. Case i� shows an example of an until formula φ � aUb which is satisfied by


the path σ. In fact σ is such that there exists a future state (s3) on which b is true and,


furthermore, a is satisfied in all the predecessors of s3 (i.e. s0, s1 and s2). Similarly


case ii� (φ � bU a) is meant to show that an until formula is satisfied in any path σ
whose initial state σ�0� satisfies the target argument (i.e. a in φ � b U a) of the until,


independently by the satisfiability of the first argument (b). Case iii� exemplifies the


next semantics: φ � X c is satisfied by σ as the next argument (c) is satisfied on the


successor of σ initial state (σ�1� �� c�. Finally case iv� shows that σ does not satisfy


φ� aU d. In fact, even if there is a future state satisfying the target d (s4 �� d), it is not


the case that for all its predecessors the first argument (a) is satisfied (indeed s3 ��� a).


From now on given an until formula �φ�U φ��� we will refer to the arguments of the


until operator as the premise, φ� and the target, φ��.
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Remark 2.2.2 The set of propositional and temporal connectives described by 2.2.1


is adequate. (i.e. all the others propositional and temporal connectives can be derived


from them).


 : disjunction φ�φ�� � ���φ���φ���


 : implication φ�� φ�� � �φ�φ��


� : sometime in the future �φ� ttUφ


� : always in the future �φ� ���φ


2.2.2 Computational Tree Logic model-checking


The Computational Tree Logic (CTL) [12] is a temporal logic which allows one to


deal with non-deterministic behaviour. While in LTL the time is seen as evolving in


a single linear way (hence formulae are evaluated with respect to single paths), in


branching time logic the model of time is a tree-like structure in which the future is not


determined: there can be many different paths in the future, any one of which might


be the actual one. The ability to consider non-determinism in the future behaviour


of a system is syntactically achieved by the introduction of two path quantifiers, E


(existential) and A (universal), which are coupled with the temporal connectives next


and until.


The syntax of CTL formulae is the following:


φ :� a � tt � �φ � φ�φ � EX φ � AX φ � E�φ U φ� � A�φ U φ� (2.2.2)


Intuitively, the semantics of a path quantified CTL formula E�ϕ� or A�ϕ�, where ϕ ::�


X φ � φ�Uφ��, is the following:


� E�ϕ� (existential) is satisfied in a state s if and only if there exists at least one


path σ starting from s which satisfies ϕ.


� A�ϕ� (universal) is satisfied in a state s if and only if any path σ starting from s


satisfies ϕ.
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Formally the CTL semantics requires formulae to be evaluated with respect to


states and not to paths. The satisfiability relationship �� for CTL is a direct conse-


quence of the LTL one, except for the (path quantified) next and until formulae. Hence


let M � �S�R�L� be a LTS and s � S a state, ��� S�φ is defined as follows:


s �� tt forall s � S s �� φ��φ�� iff s �� φ�� s �� φ��


s �� a iff a � L�s� s �� �φ iff s ��� φ


s �� EX�φ� iff 	σ � Path�s� : σ�1� �� φ s �� AX�φ� iff �σ � Path�s� : σ�1� �� φ


s �� E�φ�Uφ��� iff 	σ � Path�s� : s �� A�φ�Uφ��� iff �σ � Path�s�


	i
0:σ�i� �� φ���� j� i�σ� j� ��φ� 	i
0:σ�i� �� φ���� j� i�σ� j� ��φ�


Example 2.2.2 Figure 2.3 depicts examples showing the semantics of the path quan-


tified next and until formulae of CTL. In case i� we have that the state s satisfies the


existentially quantified until formula aU b. In fact the tree-like structure shows that


there exists at least one path from s satisfying aUb. On the other hand in case ii� we


have that s satisfies the universally quantified until formula φ � A�aU b� since all the


paths starting at s satisfy aU b. Finally cases iii� and iv� provide similar examples


though referring to path quantified next formulae.


2.2.3 Probabilistic Computational Tree Logic model-checking


The Probabilistic Computational Tree Logic (PCTL) [20] provides means for verifica-


tion of quantitative properties, like time deadlines on real-time systems.


While both LTL and CTL refer to an untimed type of models (LTS), hence fo-


cusing on verification of correctness and qualitative analysis of the modelled system,


PCTL relates to probabilistic models which incorporate timing information. In partic-


ular PCTL refers to Discrete-Time Markov Chains (DTMC). Markov process analysis


techniques allow for computation of typical overall average performance measures,


such as throughput of a certain activity or average response time of a given service.


PCTL improves the analysis capability of DTMC by introducing the possibility for


verification of soft deadlines properties of the type: “the probability of a service S to
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�� � �� �� � � � �


���� � �� �� ��� ��� � �� �� ���


��� � �� �� � � � �


�


�


�


�


�


�


�


�


�


� � �


�


� ��


� �


� �


Figure 2.3: Semantics of path quantified CTL formulae


be carried out within 2 seconds is at least 98 percent”. In this sense PCTL can be seen


as a logic for stating and verifying soft deadlines.


The PCTL syntax is defined in the following way:


φ :� a � tt � �φ � φ�φ � P�p�ϕ� (state-formulae) (2.2.3)


ϕ :� φU�tφ (path-formulae) (2.2.4)


where a � AP, p � �0�1�, t � �� ��∞� and�� �
������� (i.e. a is an atomic propo-


sition and t is any positive integer or ∞).


Probabilistic CTL is a branching time logic, thus formulae are evaluated with respect


to a single source state by considering all the possible evolutions of the system starting


from that state. The existential and universal path quantifiers of CTL are replaced by


a single continuous path quantifier, namely P�p. Intuitively a path quantified formula


P�p�ϕ� is satisfied in a state s if and only if the probability measure of the paths σ
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validating ϕ is � p.


Definition 2.2.3 A labelled DTMC M is a tuple �S�P�L� with


� S finite set of states


� P : S�S� �0�1� is the transition probability matrix and it is such that


∑
s��S


P�s�s�� � 1 �s � S


� L : S� 2AP is the labelling function.


From a practical point of view DTMC are directed graphs with an arc between


each pair of states �s�s�� whose correspondent transition probability is greater than


zero: P�s�s�� � 0. Each arc s � s� is labelled with the value P�s�s�� while each node


s� S is labelled with L�s�. The value P�s�s�� represents the probability of the transition


from s to s� to take place in one time unit given that s is the current state.


Definition 2.2.4 (path in a DMTC) Let M � �S�P�L� be a DTMC, a path σ from


state s0 is an infinite sequence


s0 � s1 � � � �� sn � � � �


such that �i � � �P�si�si�1�� 0


Given a path σ, σ�k� denotes the k-th element of σ.


Remark 2.2.3 (n-th prefix of a path) Given a path σ from a DTMC M , σ � n denotes


its n-th prefix:


σ � n � s0 � s1 � � � �� sn


where σ � s0 � s1 � � � �� sn � sn�1 � � � �


Remark 2.2.4 (n-th suffix of a path) Given a path σ from a DTMC M , n � σ denotes


its n-th suffix:


n � σ � sn � sn�1 � � � �


where σ � s0 � s1 � � � �� sn � sn�1 � � � �







2.2. Model-Checking: a survey 15


Definition 2.2.5 (probability measure of a path) Let M � �S�P�L� be a DTMC then


the probability measure of the set of (infinite) paths σ with σ � n � s0 � s1 � � � �� sn


is given by the product


Prob�σ � n� �
n�1


∏
i�0


P�si�si�1�


We introduce the following notation concerning sets of paths:


� Prob�s�: probability measure of all paths σ starting at state s. (i.e. Prob�s� �


∑σ�Path�s�Prob�σ�).


� Prob�s�ϕ�: probability measure of all paths σ starting at state s satisfying the


path formula ϕ.


The PCTL semantics of state-formulae is exactly the same as the CTL ones but for


the path quantified formulae, for which it is given by:


s �� P�p�ϕ� iff Prob�s�ϕ�� p


While the bounded formulae, defined with respect to a given path σ is given by:


σ �� φ�U�tφ�� iff 	i� t : σ�i� �� φ���� j � i�σ� j� �� φ�


Example 2.2.3 Figure 2.2.3 points out examples of the semantics of PCTL continu-


ously path quantified formulae. On the left hand side (case i) we have that the prob-


ability measure of the paths from Path�s��a U b�� is somewhere within the bound


of 0�8 which we are interested to verify (we pinpoint in bold the subset of paths


Path�s��a U b��: clearly the probability measure of the whole set Path�s� is equal


to 1 for any state s).


On the other hand, the right hand side of Figure 2.2.3 shows the case where


Path�s�a U b� � Path�s� (i.e. any path out of s is a path satisfying �a U b�). Clearly


the probability measure of Path�s�a U b�, in such a case, is equal to 1, hence the
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formula P�1�a U b� is satisfied in s. This example is also meant to highlight the fact


that PCTL enriches CTL expressiveness with respect to path quantification: indeed


P�1�a U b� is equivalent to the universally quantified CSL formula A�a U b�, while


P�0�a U b� is equivalent to the existentially quantified CSL formula E�a U b�.


�


� � �


���


�


�� � �� ������� � �� ��� � �� ����� � �� � ��� � ��


�


�


� � �


Figure 2.4: Continuously quantified path formulae in PCTL


2.3 Model-Checking for Continuous-Time Markov Chains


In this work we are concerned with model-checking techniques for verification of


CTMCs. In [1] Aziz et al have introduced a temporal logic, named Continuous Stochas-


tic Logic (CSL), for expressing properties of systems modelled in terms of CTMCs.


An algorithm for checking such properties has also been provided. The original defi-


nition has then been extended by Katoen et al in [6, 4, 5] and revised algorithms have


been defined.


The CSL, basically, enriches the standard analysis capability of CTMCs (i.e. steady-


state and transient-state analysis) with the ability of specifying possible evolutions (i.e.


paths) amongst the factors characterising the states of interest (these properties are


usually referred to as path properties). Statements like ”the probability for a service S


to be carried out within time t is at least 98 percent”, where t is a generic positive real


time instant (i.e. t � ��0 ), can be verified through the CSL model checking algorithm.


Amongst other things, CSL model checking strongly relies on the definition of the
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probability measure of a CMTC’s path. Thus before going through the description


of the syntax and semantics of the CSL formulae we need to provide some formal


definitions which will be the basis for the characterisation of such measures. The


definitions, theorems and algorithms included in the remainder of this section are taken


from [5].


Basically, CTMCs differ from DTMCs in that time is considered as a continuous


quantity whereas in the discrete-time framework time is seen as an infinite but enumer-


able set of instants. Formally a labelled CTMC is defined as:


Definition 2.3.1 (labelled CTMC) A labelled CTMC M is a tuple �S�Q�L� with


� S finite set of states


� Q : S�S� ��0 is the rate matrix


� L :� 2AP is the labelling function.


where Q�s�s� � ∑s� ��s Q�s�s��.


The binary relation Q is expressed in terms of a matrix namely, the infinitesimal gen-


erator matrix. The transition rate Q�s�s��� 0 if and only if there is a transition from


s to s�. Furthermore, as a consequence of the memoryless property of Markov pro-


cesses (see for example [42],[17]), the probability that the transition s� s� takes place


within t time units (i.e. within the closed interval �0� t�) is given by 1�eQ�s�s��t , meaning


that the delay of a transition s � s� is governed by an exponential distribution whose


parameter is the transition rate Q�s�s��.


Any state s such that Q�s�s�� � 0 for all s� � S is called absorbing. The sum of


the outgoing transition rates from a state s is called the total rate or the emanating


rate of s and it is denoted by E�s� � ∑s� ��s Q�s�s�� (clearly the emanating rate of an


absorbing state is zero). Whenever Q�s�s�� � 0 for more than one state s�, then a


competition between different transitions from s exists (race condition). In such a case


the probability that a transition from s to s� (s �� s�) occurs within t time units is given


by


P�s�s�� t� �
Q�s�s��


E�s�
�
�


1� e�E�s��t
�
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The above result relies on the fact that the minimum of n exponentially distributed


random variables is an exponentially distributed random variable whose parameter is


equal to the sum of the parameters λ � ∑n
i�1 λi. Hence 1�e�E�s��t is the probability for


a transition out of s to occur with time t, while P�s�s�� � Q�s�s��
E�s� is the probability that


the delay of going from s to s� finishes before the delay of any other transition from


state s.


Embedded discrete-time Markov Chain: given a CTMC M � �S�Q�L�, the matrix


P is known as the transition matrix of the embedded discrete-time Markov chain of M
which we denote as M � �S�P�L�.


Embedded Labelled Transition System: given a CTMC M � �S�Q�L�, we can con-


sider the embedded LTS of M which is defined as M̂ � �S�R�L�, where for all s�s� � S,


�s�s�� � R��Q�s�s��� 0.


Definition 2.3.2 (initial-state distribution) Let M be a Markov chain with state-space


S, a function α : S � �0�1� is an initial-state distribution for M , given that


∑s�S α�s� � 1.


Definition 2.3.3 (Path of a CTMC) Let M � �S�Q�L� be a labelled CTMC. An infi-


nite path σ on M is an infinite sequence


s0
t0�� s1


t1�� s2 � � �
tn�1
�� sn


tn�� � � �


where �i� � si � S and Q�si�si�1�� 0 and ti � ��0 . A finite path σ is a finite sequence


s0
t0�� s1


t1�� s2 � � �
tl�1
�� sl where sl is an absorbing state.


Let σ � s0
t0�� s1


t1�� s2 � � �
tn�1
�� sn


tn�� � � � be a path over a CTMC M . The fol-


lowing notations concerning CMTC’s paths are widely used throughout the remaining


part of this work.


� σ�i�: is the �i�1�-th state of path σ, where i � � .


� δ�σ� i�: time spent by the path σ in the state si.


� σ@t: state which the path σ is in at time t, where t � ��0
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� σ � s0 �� s1 �� s2 � � ��� sn �� � � � : is the embedded untimed path of σ (i.e.


the sequence of states σ consists of). From definition 2.3.3 it clearly follows that


σ is a path over both the embedded discrete-time Markov Chain M as well as


over the embedded Labelled Transition System M̂ .


Generator (untimed) path: in the remaining part of the thesis the k-th prefix of a path


σ � so � s1 �� s2 � � ��� sn �� � � � over the embedded LTS M̂ , is also referred as the


generator of any cylinder-set C�s0� I0�s1� � � � � Ik�1�sk� where �Io� I1� � � � � Ik�1� is any k-


tuple of positive real intervals. We will use σ to denote the generator


σ � so � s1 �� s2 � � � �� sk. A generator σ characterises all the timed paths de-


termined by the sequence of states σ consists of.


Generally speaking when we consider the execution represented by a path σ,


ti � δ�σ� i� is the time spent by the system in its i-th state (σ�i�). Besides the system is in


state σ�i� in the interval �ai�bi� where ai �∑0� j�i δ�σ� j� and bi �∑0� j�i δ�σ� j�, which


means that, the system enters the state σ�i� at time ai and leaves it at time bi � ai � ti.


The next definition shows how the probability measure of CTMC’s paths is ob-


tained as a function of the initial-state distribution α.


Definition 2.3.4 (Borel space) Given a sequence of states s0� � � � �sk from a CTMC M
such that Q�si�si�1�� 0 (0� i � k) and a sequence of non empty intervals I0� � � � � Ik�1


in ��0 then C�s0� Io�s1� � � � � Ik�1�sk� denotes the cylinder set containing all the paths


s0
t0�� s1 � � �


tk�1
�� sk such that δ�σ� i� � Ii �i � k. Let F �Path� denote the smallest


σ-algebra containing all cylinder sets C�s0� Io�s1� � � � � Ik�1�sk�, then any initial distri-


bution α yields a probability measure Prα
1 on F �Path�, inductively defined on k in the


following manner:


Prα�C�s0� Io � � � � Ik�1�sk���


�������
������


α�s0� iff k � 0


Prα�C�s0� Io�s1� � � � � Ik�2�sk�1���


P�sk�1�sk� �
�


e�E�sk�1��a� e�E�sk�1��b
�


iff k � 0


where a � inf�Ik�1� and b � sup�Ik�1� (if b � ∞ and λ � 0, let e�λ∞ � 0).


1with only one initial state s (i.e. α�s� � 1), then we adopt the notation Prs instead of Prα.
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Intuitively we have that, given a CTMC M , then any path σ � s0� � � � �sk over the em-


bedded LTS interleaved with a sequence of intervals I0� � � � � Ik�1 characterises a set of


paths over M (i.e. the paths going through the states σ consists of within t i time units


where each ti falls in the interval Ii). The definition of Borel space tells us that, pro-


vided an initial distribution α has been given, the probability measure of the set of paths


characterised by the sequence of states σ and the sequence of intervals I0� � � � � Ik�1 de-


pends on the probability of each step in σ as well as on the dimension of each interval Ii.


Steady-state probability and transient-state probability


CTMCs are characterised by two major types of probabilities which concern states.


The steady-state probability of a state s indicates the likelihood of the system of being


in state s on the long run, which is, when we imagine observing the system behaviour


for an infinite time. On the other hand the transient-state probability of a state s at time


t provides an indication of how likely it is for the modelled system to be in state s at


time t.


The computation of the steady-state and transient-state distributions of a given


CTMC are basic results in the Markov Chains’ theory, exhaustively treated in the lit-


erature: see for example, [17],[42],[44].


Both transient-state and steady-state probabilities can be expressed in terms of a


probability measure of sets of paths, in the following way:


πM �α�s�� t� � Prα�σ � PathM �σ@t � s�� transient-state


where πM �α�s�� t� denotes the probability of being in state s� at time t when the initial


distribution for the states of M is α, while


πM �α�s�� � lim
t�∞


πM �α�s�� t� steady-state


is the probability of being in state s� when the time tends to infinite, given an initial


distribution α.


In its first definition ([1],[3]) CSL syntax included a single type of probabilistic


operator (P�p) and a single type of path operator, the time-bounded Until. In [6, 4, 5]


Kaoten et al. have enriched the original CSL expressiveness by adding a second prob-
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abilistic operator, namely S�p allowing reference to be made to steady-state measures,


plus a second path operator, the time-bounded Next.


In this work we are going to refer to the “extended”, version of the CSL whose


syntax is formally defined as follows:


Definition 2.3.5 (CSL syntax) The syntax of CSL state-formulae (φ) and path-formulae


(ϕ) is inductively defined as follows with respect to the set of atomic proposition AP:


φ :� a � tt � �φ � φ�φ � S�p�φ� � P�p�ϕ� (state-formulae)


ϕ :� XI φ � φ UIφ (path-formulae)


where a� AP, p� �0�1� is a real number,�� �������
� and I � ��0 is a non empty


interval.


The semantics of CSL is defined in terms of a twofold relationship denoted by ��,


which relates states of a given CTMC to state-formulae (φ) and paths to path-formulae


(ϕ). Let M � �S�Q�L� be a labelled CTMC then the relation �� for both state-formulae


and path-formulae is defined as follows:


Definition 2.3.6 (CSL state-formulae semantics) Let Sat�φ� � �s � S � s �� φ�. The


relation �� for the CSL state-formulae is defined by


s �� tt forall s � S s �� φ��φ�� iff s �� φ�� s �� φ��


s �� a iff a � L�s� s �� �φ iff s ��� φ


s �� S�p�φ� iff πM �s�Sat�φ��� p s �� P�p�ϕ� iff ProbM �s�ϕ�� p


where s� S and ProbM �s�ϕ� denotes the probability measure of all paths σ�PathM �s�


satisfying ϕ when the system starts from state s:


ProbM �s�ϕ� � Prs�σ � PathM �s� � σ �� ϕ�


Definition 2.3.7 (CSL path-formulae semantics) The relation �� for the CSL path-


formulae is defined by


σ �� XI φ iff σ�1� is defined and σ�1� �� φ�δ�σ�0� � I


σ �� φ�UIφ�� iff 	t � I : σ@t �� φ��� ��t � � �0� t��σ@t � �� φ�
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where σ � PathM .


Alternatively the timed-until semantics can be defined as follows:


σ �� φ�UIφ�� iff 	i
 0 :
�
�σ�i� �� φ��φ�� � �ai�bi�� I �� /0�  �σ�i� �� �φ��φ���ai � I�


�
�
�
σ� j� �� φ��� j � i


�
σ@t �� φ��� ��t � � �0� t��σ@t � �� φ�


meaning that a path σ satisfies the timed-until φ�UIφ�� if there exists a future state σ�i�
in which either


� the premise and target of the until formula are satisfied in σ�i� and some of the


time instants spent at σ�i� do satisfy the bound I.


� the target but not the premise of the until formula is satisfied in σ�i� and the time


instant at which σ�i� is entered, t � ai, falls into the bound I (ai � I). We observe


that in this case the only relevant time instant to care about is the time σ enters the


state where �φ��φ�� is satisfied (i.e. σ�i�). In fact, according to the semantics of


the until formula, there must be a time instant t � I at which σ satisfies the target


φ�� and such that for any preceding time instant t � � t, σ satisfies the premise φ�.
Since here we are assuming the premise φ� to be not satisfied in σ�i�, then clearly


the only possible t � �ai�bi� is t � ai (in fact �t � �ai�bi� we have that �t � � �ai� t�,


σ@t � ��� φ�).


From the semantics of CSL formulae, we note that with the empty interval I � /0 any


time-bounded path formula is clearly not satisfiable. Furthermore, we notice that the


usual untimed version of the next and until can be obtained as a special case of the


bounded ones by taking I � �0�∞�. For the sake of simplicity we will omit I � �0�∞�


from the notation, hence the unbounded next and until formulae will be simply denoted


by X φ and �φ�U φ��� respectively.


Remark 2.3.1 Let σ be a path over a CTMC M satisfying the timed-until �φ�UIφ���,
σ � PathM �s�φ�UIφ���, then the embedded untimed path σ satisfies the corresponding


untimed-until, σ � PathM �s�φ�Uφ���.


The above remark is a direct consequence of the semantics of timed-until formulae.
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2.3.1 Model-checking CSL formulae


The model-checking algorithm for CSL formulae works the same way as the CTL ones


for all the non-probabilistic state-formulae: the set Sat�φ� is recursively computed as


the fixed-point of a function which marks the states of M with sub-formulae of φ [12].


The computation of Sat�φ� for the probabilistic state-formulae requires instead a spe-


cific treatment.


Computing steady-state measures. From the CSL semantics (definition 2.3.6), we


know that the steady-state formula S�p�φ� is satisfied in a state s if and only if the


probability measure of paths σ�Path�s� starting from s and satisfying φ at time infinite


is � p, which is π�s�Sat�φ��� p.


If G is the underlying directed graph of a CTMC M then a subgraph B is a bot-


tom strongly connected component (BSCC) of G if it is a maximal strongly connected


component with no edges outside its vertices (i.e. Reach�s� � B for all s � B). Let


B�M � denote the set of BSCC of M . The computation of π�s�Sat�φ�� is based on the


following proposition:


Proposition 2.3.1 Let M � �S�Q�L� be a CTMC and s � S, S� � S, then


π�s�S�� � ∑
B�B�M �


�
Prob�s��atB� � ∑


s��B	S�
πB�s��


�


where πB�s�� is the steady-state probability of s� in BSCC B and atB �
�


s�B ats.


Algorithm for S�p�φ�. Relying on proposition 2.3.1 it is possible to characterise an


algorithm for the computation of π�s�Sat�φ��


1. the set of states satisfying φ, is recursively determined.


2. the set of BSCC of M (i.e. B�M �) is computed by means of some existing


algorithm (e.g. [43]).


3. for each B � B�M � the steady-state distribution πB is computed. This implies
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the solution of the system of linear equations


∑
s�B
s��s�


πB�s� �Q�s�s�� � πB�s�� � ∑
s�B
s��s�


�Q�s�s��


∑
s�B


πB�s� � 1


unless B � �s�� in which case, trivially, πB�s�� � 1.


4. the steady-state probability of each state s� � Sat�φ� is then obtained by weight-


ing the steady-state probability πB�s��, given that s� � B, by the probability of


reaching B from s. Such probability, denoted Prob�s��atB�, is given by the solu-


tion of the following system of linear equation:


Prob�s��atB� �


�
1 if s �� atB


∑s� P�s�s
�� �Prob�s���atB� otherwise


If M consists of a single BSCC, namely B, then


π�s�S�� � ∑
s�S�


π�s��


where π�s�� stands for πB�s��, the steady-state probability of s� with respect to the whole


CTMC (i.e. B � M ).


Computing probabilistic path measures. The verification of probabilistic path for-


mulae like P�p�ϕ� with respect to a state s, relies on the characterisation of the mea-


sure Prob�s�ϕ� (see definition 2.3.6). A distinction is needed between timed-next and


timed-until formulae. Proposition 2.3.2 characterises the measure of the paths satisfy-


ing a timed-next formula. Theorem 2.3.1 concerns the measure of the paths satisfying


a timed-until formula. As a consequence of proposition 2.3.2 and theorem 2.3.1, pro-


cedures for model checking time bounded Next and Until, respectively, are given.


Proposition 2.3.2 For s � S and interval I � ��0 with a � inf I, b � sup I and a CSL


state-formula φ:


Prob�s�X Iφ� �
�


e�a�E�s�� e�b�E�s�	 � ∑
s�
�φ


P�s�s��
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Proof. Is a direct consequence of the Borel-space construction (see definition 2.3.4).


�


The truth of proposition 2.3.2 with respect to a generic type of interval I � ��0 (i.e.


either open or closed), relies on the fact that


Prob�s�φ�UIφ��� � Prob�s�φ�Ucl�I�φ���


Prob�s�X Iφ� � Prob�s�X cl�I�φ�


where cl�I� is the closure of I. This is a consequence of the fact that the probability


measure of a cylinder-set C�so� I0�s1� � � �Ik�1�sk� does not change when some of its in-


tervals Ii (i � k) are replaced by their closure.


Algorithm for P�p�XIφ�. Relying on proposition 2.3.2 the following algorithm for


computing Sat�P�p�X Iφ�� is defined:


1. the set Sat�φ� is recursively determined.


2. the state vector bIφ is computed, where


bIφ�s� �


�
e�E�s��inf I � e�E�s��sup I if s � Sat�φ�
0 otherwise


3. the state vector Prob�X Iφ� � �� � � �Prob�s�X Iφ�� � � �� is computed by multiplica-


tion of P by bIφ


Prob�X Iφ� � P �bIφ


4. finally, a state s is added to Sat�P�p�X Iφ�� if and only if its correspondent ele-


ment of Prob�X Iφ� satisfies the bound p, which is Prob�s�X Iφ�� p.


The following theorem provides a recursive algorithm to compute the probability mea-


sure of the paths satisfying a timed-until formula �φ�UI φ���. Path�s� I� and Prob�s� I�


denote, respectively, the set of paths starting at s and satisfying the timed-until �φ �U φ���
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and its probability measure (i.e. Prob�s� I� � Prob�s�φ�UI φ���). Furthermore I� x de-


notes the set �t� x � t � I� t 
 x�.


Theorem 2.3.1 (Time Bounded Until probability measure) For s � S and interval


I���0 with a� inf I and b� sup I and φ� and φ�� CSL state-formulae. The Prob�s�φ�UIφ���
is recursively defined as follows:


Prob�s�φ�UIφ��� �


��������������������
�������������������


1 iff s �� φ����φ�


and a � 0


� b
0 ∑s��S T�s�s��x� �Prob�s��φ�UI�xφ���dx iff s �� φ���φ��


e�E�s��a�� a
0 ∑s��S T�s�s��x� �Prob�s��φ�UI�xφ���dx iff s �� φ��φ��


0 otherwise
(2.3.1)


where T�s�s��x� � P�s�s�� �E�s� � e�E�s��x denotes the density of moving from state s to


state s� in x time units.


Proof. see [5]. �


The formal proof of the above theorem is out of the scope of this work, nevertheless it


is relevant to provide an intuitive explanation of the different cases characterising the


function Prob�s�φ�UIφ���.


1. a � 0 and s �� �φ� � φ��. In such a case any path starting at s clearly satisfies


�φ�UIφ���. This is the case since s satisfies φ�� and also because trivially each


path starting at s is indeed in s at time t � 0, which, in this case, is the infinum


of the considered interval I. Therefore Prob�s�φ�UIφ��� � 1.


2. s �� φ� ��φ�� then Path�s� I� consists of all the paths σ of the form σ � s
x
� σ�


with 0 � x � b and σ� � Path�s�� I� x�, which is: if we are in a state s which


satisfies φ� but not φ�� then the paths we have to account for are those ones that
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leave s within b time units, say at x, to reach a state s� from which they will


satisfy the until formula within a time y such that the sum x� y is in I.


3. s �� φ��φ�� then Path�s� I� consists of all the paths σ of the form σ� s
x
�σ� where


either 0� x� a and σ� � Path�s�� I� x� or x � a. In fact, since we are assuming


s �� φ��φ��, we have to consider not only the paths which leave s within a time


units to reach a state s� from which they will satisfy the until formula within time


y such that x� y is in I but also those ones which leave s after a time units have


elapsed. Since φ�� is assumed to be true in s (i.e. the corresponding untimed-until


is satisfied in s) then staying in s for a time greater then a ensures that the until


is satisfied within the given bound I.


4. Any other case different from the above ones leads to a probability measure


equal to zero, as either the corresponding untimed-until is not satisfiable in the


source state s or the time bound I is unmatchable.


Corollary 2.3.1 (Unbounded path formulae probability measure) For s� S and φ��φ��


CSL state formulae


1. Prob�s�X φ�� � ∑s�
�φ� P�s�s
��.


2.


Prob�s�φ�UIφ��� �


���������
��������


1 iff s �� φ�


∑s��S P�s�s�� �Prob�s��φ�Uφ��� iff s �� φ���φ��


0 otherwise
(2.3.2)


Proof. Trivial from proposition 2.3.1 and theorem 2.3.1 with I � �0�∞�.


�


The results in Corollary 2.3.1 are identical to discrete-time framework’s ones: the


probability for satisfying next and until formulae in the logic PCTL are determined in


the same way ([20]).
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Algorithm for P�p�Xφ�. Corollary 2.3.1 suggests the following algorithm for deter-


mining Sat�P�p�Xφ��:


1. the set Sat�φ� is recursively determined and, as a result, the vector iφ given by


iφ�s� �


�
1 if s �� φ
0 otherwise


is computed.


2. the vector Prob�Xφ� � P � iφ is computed.


3. a state s is in Sat�P�p�Xφ�� if and only if Prob�Xφ��s�� p.


Algorithm for P�p�φ�U φ���. Corollary 2.3.1 also suggests the following algorithm for


determining Sat�P�p�φ� U φ����:


1. the matrix P̂ defined as


P̂�s�s�� �


�
P�s�s�� if s �� φ���φ��


0 otherwise


is computed.


2. the vector Prob�φ� U φ��� is computed as the least solution of the system of linear


equations


x � P̂ � x� iφ��


So far the algorithms for checking Next formulae (either bounded or unbounded) and


Until formulae (unbounded only, i.e. I � �0�∞�), have been presented. Verifying a


Next formula, essentially, implies the computation of a matrix-vector product. In con-


trast, the verification of an unbounded Until requires the solution of a system of linear


equations.


Time-bounded Until by means of transient analysis.


As a consequence of Theorem 2.3.1, the computation of the state vector Prob�φ�UI φ���,
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for a bounded Until formula, requires the solution of a Volterra integral equation sys-


tem. This can be done by means of some (computationally expensive) numerical tech-


niques. Alternatively, in [5], the authors, show a number of correctness-preserving


transformations by means of which the model-checking problem for time-bounded


Until formulae reduces to a transient analysis of a transformed CTMC. In essence, it is


proved that computing the probability measure for a time-bounded Until with respect


to a certain CMTC M is equivalent to computing the transient probability of certain


states with respect to a CMTC M � obtained by making some states of M absorbing.


The formalisation of these preserving transformations is provided in the following


definition and proposition.


Definition 2.3.8 Let M � �S�Q�L� be a CTMC and φ a CSL state formula. The CMTC


obtained by making all φ-states in M absorbing is denoted M �φ�. M �φ� � �S�Q��L�


where


Q��s�s�� �


�
Q�s�s�� if s ��� φ
0 otherwise


It should be noted that M �φ���φ��� � M �φ�  φ���. Relying on the definition of trans-


formed CMTC M �φ�, the following properties can be proved.


Proposition 2.3.3 Let φ��φ�� be two CSL state formulae and M a CMTC whose φ��


states are absorbing (i.e. M � M �φ���), then:


ProbM �s�φ� U�0�t� φ��� � ProbM ��φ��φ����s���t�t� φ���


� ∑
s��
�φ��


πM ��φ��φ����s�s��� t�


Proof. The proof can be found in [5].


The above proposition, shows that on a CMTC M , the probability measure for an


Until formula �φ� U φ��� bounded by the interval �0� t�, is equivalent to the transient


probability at time t, of the φ�� states on the CMTC obtained by M from making every


��φ���φ��� state absorbing.
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Theorem 2.3.2 Let M be an arbitrary CMTC and φ��φ�� two CSL state formulae, then:


ProbM �s�φ� U�0�t� φ��� � ProbM �φ����s�φ� U�0�t� φ���


� ∑
s��
�φ��


πM ��φ��φ����s�s��� t�


Proof. See [5].


The above theorem shows that also for an arbitrary CMTC M , the verification of a


bounded Until formula �φ� UI φ��� with bounding interval I � �0� t�, is equivalent to a


transient probability analysis, at time t, on a modified CMTC (i.e. M ��φ�φ���).


Theorem 2.3.3 Let M be an arbitrary CMTC and φ��φ�� two CSL state formulae and


t� t � two time instant such that 0 � t � t �, then:


ProbM �s�φ� U�t�t �� φ��� � ∑
s�
�φ�


∑
s��
�φ��


πM ��φ��s�s�� t� �πM ��φ��φ����s��s��� t �� t�


Proof. See [5].


Corollary 2.3.2 Let M be an arbitrary CMTC and φ��φ�� two CSL state formulae then:


ProbM �s�φ� U�t�t� φ��� � ∑
s�
�φ�φ��


πM ��φ��s�s�� t


Proof. See [5].


Finally, the above theorem proves that also in the case of a bounding interval whose


infinum is greater than zero (i.e. I � �t� t �� and 0 � t � t �), the bounded-until model-


checking problem on an arbitrary CMTC M boils down to the combined transient


analysis of two modified CTMCs, namely: M ��φ�� and M ��φ��φ���. Moreover, when


the bounding interval coincides with a point (i.e. I � �t� t�), a similar result holds (the


above corollary): in that case the verification of the bounded Until formula corresponds


to the transient analysis of the modified CMTC M ��φ��.


The major consequence of the above properties is that they show that the time-bounded


Until model-checking problem (in any possible case) with respect to an arbitrary CMTC
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can be replaced by the transient analysis of certain modified CMTCs. Hence, the so-


lution of the Volterra integral equation system associated with a time-bounded Until


formula is not actually needed. Instead the transient distribution for a derived CTMC


can be solved. Formally this is achieved as a solution of the Chapman-Kolmogorov


differential equations (see [42]). However, easily implementable methods, such as


Uniformisation ([42]), can be applied in order to obtain an approximate solution of the


transient distribution.


2.4 Compositionality and Model-Checking


In this section the idea of compositionality applied to model-checking techniques is


described. Before that, an introductory overview on compositionality, in general, is


provided.


2.4.1 Formal modelling and compositionality


Formal methods for systems’ verification concern the development of methodologies


for the analysis of the behaviour of real systems, in particular computer and telecom-


munication systems.


The basic idea is to provide a means through which an abstract representation of


the system, a model, can be built. A model has to enclose those bits of information


which are relevant to capture the aspects of the system’s behaviour one is interested


to analyse. As a result a model comes with a set of parameters which have to be


instatiated with proper values in order for a performance study to be carried out.


The model’s evaluation is obtained either via the solution of a set of equations


leading to analytical results (analytical models) or via simulation, leading to statistical


results (a concise but complete course on simulation can be found in see [39]).


High-level modelling formalisms like Petri Nets, Process Algebras and Queueing


Networks, easily lead to huge and complex models the solution of which turns to be


unfeasible. As a consequence, compositional approaches to performance modelling


have increasingly gained interest as means to face the tractability of models which
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Figure 2.5: A decomposable model M


have a large dimension. These approaches decompose the system into a number of


smaller and more easily modelled subsystems, as depicted in figure 2.5. The aim is


twofold: helping model construction as well as model solution of large and complex


systems, meaning, in the latter case, that the performance evaluation of a big system


can be retrieved by the analysis of the subsystems it consists of. In the following a


brief introduction to these three modelling formalisms is provided.


Petri Nets. Petri Nets are a formalism appropriate for modelling systems with con-


currency. Formally a Petri Net is a bipartite, oriented graph characterised by two class


of nodes: places and transitions. Places are connected to transitions and vice versa.


Places are filled with tokens. Transitions normally represent activities of the modelled


system. A transition is enabled whenever each of its input places contains enough to-


kens. When more than one transition is enabled a competition between the activities


they represent takes place. The system’s dynamic is captured by transition firing: when


an enabled transition fires, tokens from its input places are removed and tokens into its


output places are created; as a result the set of enabled activities can possibly vary.


Since their first definition [10], a plethora of different variants of Petri Nets have


been developed. An interesting survey on the classification of Petri Nets can be found


in [30]. Different types of structural bounds allow to refer to different types of system.


For example places in Conditions/Events Nets [19] are meant to represent boolean con-


ditions, hence they can contain at most one token in any possible marking and, more-


over, tokens represent unstructured values. Place/Transition Nets, instead, allow places


to be marked with any (positive) integer number of tokens, where again tokens repre-


sent unstructured values. High-level Petri Nets like Coloured Petri-Nets (CPN)[25, 26]
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and Well-formed Nets (WN) [18] allow one to represent structured information: places


contain multi-sets of typed tokens.


Concerning performance evaluation analysis, Petri Nets can be classified with re-


spect to the assumptions characterising the duration of the activity modelled by the


net’s transitions. Timed Petri Nets (TPN) allow one to represent timed activities. De-


terministic TPN are suitable to model systems whose activities’ duration is supposed


to be deterministically known. On the other hand Stochastic Petri Nets (SPN)[35]


and their Generalised evolution (GSPN)[33], assume the activity duration to be an


exponentially distributed random variable. Although in the literature Petri Nets with


non-Markovian stochastic behaviours have been widely studied, the most relevant type


of stochastic process underlying a (stochastic) Petri Net are CTMCs. Hence Petri Nets


are a high-level language for specification of CTMCs.


Though Petri Nets do not come with an inherent compositional rule, many tech-


niques have been developed to build a Petri Nets model by combination of a number


of submodels. There are two main ways for composing Petri Nets, either by transitions


superposition or by place superposition. An example of a compositional framework


for GSPN, based on transition superposition, is given by [41]


Process Algebras. Process Algebras are mathematical theories which model con-


current systems by their algebra. Examples are the Calculus of Concurrent Systems


(CCS)[34], Communicating Sequential Processes (CSP)[11] and the Algebra of Com-


municating Processes (ACP) [24].


Process Algebras differ from Petri-Nets in that they lack of a notion of entity or


flow within the model. On the other hand Process Algebras come with an inherent


compositional reasoning: the model is given by composition of terms or processes


(submodels) through a defined set of operators. Each component is characterised by


the set of actions it undertakes. A component’s behaviour is described by means of


combinators like the prefix, allowing the specification of the first action a component


takes, the choice, allowing the specification of an alternative between two possible


actions and the cooperation which permits characterisation of the interaction between


two different components.
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Pure process algebras do not allow consideration of time: they are meant to de-


scribe the behaviour of a system as the set of possible sequences of actions, disregard-


ing the time. Timed extensions of process algebras like TCCS [16] have been realised,


providing a means to associate a determined delay to the system’s actions.


Stochastic process algebras like, for example, PEPA[21] and EMPA[7], permit the


replacement of the nondeterministic choice which comes with pure and timed process


algebras with a probabilistic one. The operational semantics of such algebras describe


the CTMC which underlies the model. Stochastic process algebras are a useful means


which naturally allows for a compositional specification of a CMTC.


In [22] an interesting overview on how the inherent compositionality of stochastic


process algebras can be exploited for the solution of the underlying Markov process is


given.


Queueing Networks. Queueing Networks are a language for modelling systems which


consist of a number of customers competing to access a number of services. Formally


a Queueing Network is an oriented graph whose nodes, usually also called service


centres, are queues. A queue is characterise by an arrival process, a buffer where the


customers queue for the service and one or more servers representing the resources


customers are about to use. A queue is described by five factors, denoted by means of


a 5-tuple A�S�c�m�N:


A the arrival process, where M is used to denote a Markov process, while G and D


denote, respectively, a general and a deterministic distribution.


S is the service process and the above notations M,G and D are again used as distribu-


tion identifiers.


c is the number of servers the queue consists of.


m is the buffer capacity


N is the customer population


where infinite is the default assumption for both the buffer capacity and customers


population. Hence M�M�1 denotes a single-server queue whose customers’ arrival







2.4. Compositionality and Model-Checking 35


time and service time are both Markovian.


The queueing discipline determines how the customer in a queue are going to be


served. Typical serving policies are first-come-first-served (FCFS), where the longest


waiting customer is the first to be served or process sharing (PS) where the service


capacity is equally shared among the customers in the queue.


Customers in a queueing network can be partitioned in classes according to the


characteristic they exhibit. The state of a queueing network is typically given by the


number of customers of each class at each service centre. Hence a state s � �s1� � � � �sn�


of a network is completely described by the states si (i � �1� � � � �n�) the individual


queues it is made of are in.


Queueing networks may be closed if the number of customers is fixed, open whether


the population varies, or mixed if some classes of customers exhibit an open behaviour


while some other have a closed behaviour. More details on queueing networks can be


found for example in [31, 32].


Solving a queueing network characterised by exponentially distributed times, re-


quires the computation of the long run distribution π�s� In [15] it has been shown that


a large class of queueing networks allows for a compositional solution, also termed


product form solution, of the steady-state distribution: the probability of being at state


s � �s1� � � � �sn� on the long run can be expressed in terms of the product of the proba-


bility of each individual queue to be in sub-state si:


π�s1� � � � �sn� � G �
n


∏
i�1


πi�si�


where G is a normalising constant. This result allows for the computation of many


performance measures of a given queueing network without resorting to the underlying


Markov process: only Markov processes of individual queues have to be solved.


In the literature on queueing networks a lot of effort has been put on identify-


ing classes of networks which allow for a product-form solution of the equilibrium


distribution [29, 15, 45]. Similarly a quite large number of works aiming to the char-


acterisation Petri Nets models whose underlying process has a product form solution


can be found (see for example [2, 46, 40]). In this thesis the product form framework


for ergodic CTMCs described by Boucherie in [8] has been considered.
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2.4.2 Compositional Model-Checking


As a performance evaluation technique, model-checking suffers by the so-called state-


space explosion problem: complex systems result in models of huge dimension which


can not be treated by any existent computational resource. A considerable amount


of works aiming to increase the applicability of model-checking with respect to the


model’s dimension, can be found in literature.


Symbolic model-checking, concerns the study of techniques for a compact repre-


sentation of the state-space based on specific data structures like Binary Decision Di-


agrams (BDD)[38] or Multi Terminal Binary Decision Diagrams (MTBDD)[13]. The


symbolic approach has been applied to both non-probabilistic and probabilistic model-


checking showing a great improvement with respect to the tractability of big models.


In [27, 28], it has been shown that the use of BDD for the state-space representation


have allowed for the verification of CTL formulae over systems that would have oth-


erwise required 1020 states. Symbolic Model-checking for Markov-Chains [9, 23],


instead, relies on the use of both MTBDD, for representing the linear system’s matrix


involved in the verification of probabilistic formulae, and BDD for representing the


formula itself.


On the other hand abstraction in model-checking, is meant to provide means to


build an abstract, hence reduced, version of the model of interest. In[14] Clarke et


al. have shown that the formulae belonging to the logic �CTL�, a subset of the CTL�


in which only the universal path quantifier (�) is allowed, can be verified against the


abstract model, while maintaining their truth value with respect to the original system.


Finally compositional verification of properties in a given temporal logic, concerns


the analysis of the truth of a formula when the given model is obtained by composi-


tion of a number of submodels. The goal is to investigate the possibility of inferring


the truth of a formula φ by the verification of φ itself or some other formulae on the


component models. In [36], for example, Grumberg and Long define a compositional


rule for structures which are model for the �CTL� logic, proving that the validity of a


formula φ in a component M � is preserved, through preorder, in any system built on


M � (i.e. if φ is true in M � then it is true in any model obtained through an iterative


compositional process which at some stage has involved M �).
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The goal of this thesis, is to look for a compositional approach for model-checking


of CTMCs. Given a property φ we want to check against a CTMC M obtained by


composition of n submodels �M1� � � � �Mn�, we aim to search for formulae φi determin-


ing a boolean combination of satisfiability conditions which turns out to be equivalent


to the satisfiability of φ in M . For example, suppose we are interested in verifying


φ � a1�a2 with respect to a CTMC M given by composition of M1 and M2 where


ai is an atomic proposition of Mi with i � �1�2�. Intuitively we have that


M �� a1�a2 �� M1 ��1 a1M2 ���2 a2


meaning that checking φ � a1�a2 with respect to M is equivalent to verifying that


either a1 is valid with respect to M1 or a2 is not valid in M2. Clearly the above example


is a rather trivial one as it refers to a state-formula given by combination of atomic


propositions. The derivation of formulae which lead to an equivalent combination


of satisfiability conditions for a given φ is indeed not trivial whenever a probabilistic


connective like S�p and P�p is involved. Chapter ?? is devoted to the study of such


derived equivalent formulae.


2.5 The Boucherie product-process


In [8], Boucherie establishes a form of CTMC which is susceptible to product form


solution. That result relies on the characterisation of an “independence condition” for


the components of a multi-dimensional CTMC which models a number of processes


competing over shared resources. The Boucherie framework characterisation relies on


two basics ideas:


� Mutual exclusion over resources: when one process holds a resource, other


processes cannot access the resource.


� Strong blocking: processes are subject to strong blocking conditions meaning


that they cannot evolve until the resource is released.


The Boucherie framework. A collection of K regular and irreducible CTMCs, la-


belled Mk, with k � 1� � � � �K, at finite or countable state spaces Sk, is considered. Let
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qk�n̄k� n̄�k� denotes the transition rate of Mk where n̄k� n̄�k � Sk. Each Markov chain Mk


is assumed to posses a unique equilibrium distribution πk and πk�n̄k� is the probabil-


ity for Mk to be in state n̄k on the long-run. For this collection the product process


with state space S � S1� �� �� SK and transition rate in dimension k given by qk, is


introduced.


For such a product process it is assumed that in each transition the state in one


dimension only changes, that is: in any allowed change of state of the product process,


exactly one of the underlying Markov chains changes its state (i.e. synchronisation


between components is not permitted). Furthermore, competition over resources (i.e.


mutual exclusion) can be modelled as exclusion of parts of state space: the product


process can not enter a certain area A� S.


Under these circumstances, the “independence condition” which guarantee the


product form solution roughly states that if the product process is in state


n̄ � �n̄1� � � � � n̄k� � � � � n̄K� then if n̄� � �n̄�1� � � � � n̄
�
k� � � � � n̄


�
K� � A is a state in the forbid-


den area Ai (i.e. a state which breaks the mutual exclusion condition for a resource Ri)


with n̄� n̄� except for component n̄k (i.e. n̄� would be reachable from n̄ with a transition


along k dimension) then Markov chain Mk can not change its state.


This idea is formalised by means of the following two definitions.


Definition 2.5.1 (Competition) Let I be an index set. For each k, let Ak�i� i � I, be a


set of mutually exclusive sets such that /0 �� Ak�i � Sk and
�


i�I Ak�i � Sk, k � 1� � � � �K.


CTMC k uses resource i if the CTMC is in state n̄k � Ak�i. CTMCs k1 and k2 compete


over resource i if �n̄k1 � n̄k2 : nk1 � Ak1�i�nk2 � Ak2�i� � /0. Let Cki � �1� � � � �K� be the


CTMCs that compete over resource i with CTMC k.


Definition 2.5.2 (Boucherie product process) The CTMC on state space


S �
K


∏
k�1


Sk (2.5.1)


with transition rates


q�n�n�� �
K


∑
k�1


qk�nk�n
�
k�


K


∏
��1����k


1�n� � n���1�if n� � A�i then k ��C�i�
2


21 is an indicator function: the value of 1(statement) is 1 if the statement is true and 0 otherwise.
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where n � �n1� � � � �nK�, n�� �n�1� � � � �n
�
K�, is called the product process of the collection


of CTMCs 1� � � � �K, competing over resources I.


From the transition rate definition it should be noted that a move along dimension


k is not allowed whenever component k is competing for a resource i with a component


� which actually holds i in the a current state of the process. On the other hand if k is


not competing for any of the resources detained by any other component in the current


state, then a move along k dimension is permitted. Summarising: a process k in the


Boucherie framework is blocked in any state where at least one among the resources it


is competing on is occupied, while it is free to move if none of them is busy..


Two components Boucherie product process. In the simplest case, which is what


we consider in the remaining of this thesis, the Boucherie CTMC M consists of two


sub-processes, M1 and M2, and two notional resources. There is no competition over


the first resource, but the two processes compete over the second resource, which is


denoted by R. The competition over R has the effect of partitioning the state space of


each component process. If Mk (k � �1�2�) has state space Sk, then Sk � Sk�R� Sk�R,


where Sk�R denotes the set of states in which the resource is not needed, while Sk�R


denotes the set of states in which the resource is used. Figure 2.6 shows the areas


which the product process is partitioned in: Rfree � S1�R�S2�R denotes the area where


neither process is using the resource; R1 � S1�R�S2�R̄ is the area where M1 is using R;


whilst in area R2 � S1�R�S2�R, M2 is using R.


Transition rates of the product process imply that only one process can change


its state, and that process 1 is stopped whenever process 2 holds the resource and


vice versa. This is depicted in figure 2.6 where the lines indicate the direction along


with transitions can occur. As a consequence of this stopping mechanism the region


A12�A22, also denoted S1R�S2R, can not be entered. Therefore in the definition of the


Boucherie product process, the state space 2.5.1 can be replaced by S � S1�S2�S1R�


S2R and in general:


S �
K


∏
k�1


Sk �




K


∏
k�1


∏
i�I


∏
j�Cki


Ak�i�Aj�i


�
(2.5.2)
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Figure 2.6: A two component Boucherie product process state-space.


Remark 2.5.1 (Trivial case) For I � �1� (i.e. a single resource is considered) we


have Ak1 � Sk. In this case the Markov chains are independent. In such a case ei-


ther �n̄k1� n̄k2 : n̄k1 � Ak1�1� n̄k2 � Ak2�1� � /0 for some pair �k1�k2� or �n̄k1� n̄k2 : n̄k1 �


Ak1�1� n̄k2 � Ak2�1� �� /0 for all �k1�k2�. In the first case S � /0 and the Boucherie product


process is not defined; in the second case all Markov chains operate without influence


of each others.


Theorem 2.5.1 (Product-form distribution) The product process of the collection of


CTMCs 1� � � �K competing over resources I and with state space S defined as 2.5.2 and


transition rates as in definition 2.5.2, has equilibrium distribution π given by


π�n� � G
K


∏
k�1


πk�nk� n � S


where G is a normalising constant, determined by the exact form of S, and πk��� is the


equilibrium distribution of process Sk.


Proof. see [8] �
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The result of theorem 2.5.1 holds because each process can either operate indepen-


dently of the other processes or it is blocked. For all n � S, if process � is in state n�


and � �� k then process k either carries out a transition which is not in competition with


� with respect to resource i (1(if i : n� � S��i then k �� C�i) = 1 ) or process k wants to


access the resource which � occupies ( 1(if i : n� � S��i then k ��C�i) = 0 ). In either case


process k will satisfy its own global balance equations:


∑
n̄�k�Sk


�πk�n̄k�qk�n̄k� n̄
�
k��πk�n̄


�
k�qk�n̄


�
k� n̄k��� 0� n̄k � Sk


these equations are trivially satisfied when the process is stopped and also true when the


process is operating independently. It appears that the exclusion principle maintained


by the transition rates of the product process imposes a protocol on the behaviour of


the product process that ensures that the CTMCs in the collection behave as if they


are independent. For any process k, 1 � k � K, if the current state is in the subset


Ak�i it signifies that the process is presently using the resource i and no other process


j, such that j � Cki, can gain access to i and enter its subset of states A j�i. Thus the


competition and the sets Cki define areas of the state space of the product process which


are inaccessible. The transition rates of the product process are defined in a way which


ensures this exclusion.


2.5.1 The running example


In the following we introduce a practical example of a two component Boucherie prod-


uct process. This will be our running example, which we will exploit to show examples


of decompositional model checking throughout the remaining of this work.


Example 2.5.1 (Geographical Information System (GIS)) Let us consider a navi-


gational device consisting of a pair of sensors which maintain complementary data


about geographical location. In order to keep the sensors’ internal data structures in


complementary states, they share data via a register they need to access in a mutually


exclusive fashion. Each sensor gains access to the register and locks it while it reads


the current data value; it then uses this information to adjust the equipment it controls


while also recalculating a value for the shared register based on its own internal data







42 Chapter 2. Background


structures. It then updates the value in the register and releases it. In addition, sensor


1 maintains an external monitor and will periodically gather data from this monitor


and use it to recalculate its internal data structures.


Each sensor consists of two components: one responsible for resetting the equip-


ment during each cycle, and one responsible for carrying out the data recalculation.


In sensor 1, the recalculation component is assumed to be also responsible for interac-


tion with the monitor. Sensors have a cyclic behaviour characterised by the sequence


of “actions”: idle-reading-resetting/recalculating , where resetting and recalculating


are simultaneous. In addition sensor 1 can be involved in gathering information from


its monitor, whenever it is idle.


Such a framework represents an example of a two component Boucherie process


where the two sensors are the processes competing over the shared register. The


labelled CTMCs representing the two sensors are shown in Figure 2.7. They ex-


hibit similar behaviours except for the gather action (state s11) which only sensor 1


can be involved in. States are labelled with elements of the atomic proposition sets


AP1 � �idle1�read1�res1�rec1�gat1� and AP2 � �idle2�read2�res2�rec2�, representing


the actions each sensor is involved in.


From the starting state s10�s20�, where it is idle, the first(second) sensor reads data


at rate r1, entering state s12�s21�. Alternatively, sensor 1 only, can gather data from


the monitor at rate r5, entering state s11. When a sensor reads data it acquires the


resource (the register). Once it has read the data one of its component recalculates


(rate r2) while the other resets (rate r4). When both are ready the data is updated (rate


r3) and the register is released. When data has been gathered from the monitor (sensor


1 only) a recalculation is necessary (rate r2) before returning to the initial state. The


state space of each CTMC can be partitioned into two subsets: S1R � �s10�s11� (no


resource held by sensor 1) and S1R � �s12�s13�s14�s15�, being the partition for M1 and


S2R � �s20� and S2R � �s21�s22�s23�s24�, being the partition for M2.


Figure 2.8 depicts the Boucherie process, obtained by composition of sensors’


CTMCs. States of S1R�S2R are not part of the Boucherie process as a consequence of


the competition over the shared register R. The three areas, Rfree, R1 and R2 which the


state space S is partioned in, are pointed out: the register is not hold in any state of
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Figure 2.7: State space of the two components M1 and M2,showing the states labelling


region Rfree, whilst it is detained by sensor 1, in any state of region R1 and by sensor


2, in any state of region R2.


Considering the sensors in isolation we can deduce that their equilibrium proba-


bility distributions. The steady state distribution for sensor 1 is:


π1�s10� � r2r3r4�r2 � r4��G1


π1�s12� � r1r2r3r4�G1


π1�s13� � r1r2
2r3�G1


π1�s14� � r1r3r2
4�G1


π1�s15� � r1r2r4�r2 � r4��G1


π1�s11� � r3r4r5�r2 � r4��G1


where G1 � �r2r4 � r2
4��r1r2 � r1r3 � r2r3 � r3r5�� r1r2


2r3, while the steady state dis-
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Figure 2.8: State space of the product process M
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tribution for sensor 2 is:


π2�s20� � r3r2r4�r2 � r4��G2


π2�s21� � r1r3r2r4�G2


π2�s22� � r1r3r2
2�G2


π2�s23� � r1r3r2
4�G2


π2�s24� � r1r2r4�r2 � r4��G2


where G2 � �r2r4 � r2
4��r1r3 � r1r2 � r3r2�� r1r3r2


2.


As a consequence of theorem 2.5.1, the equilibrium distribution of the Boucherie


process can straightforwardly be derived from the sensors’ ones.











Chapter 3


On CSL Expressiveness


3.1 Introduction


The syntax and semantics of the CSL logic, as described in the previous chapter, pro-


vide the user with powerful means to state properties concerning CTMCs. Steady-state


and transient analysis of the system can be performed in terms of CSL state formulae,


as well as analysis of path-based properties. However there are some non-obvious


features of the CSL semantics which need to be addressed.


The temporal operators Next and Until allow us to refer to the future behaviour


of the system, though, in that respect, they feature different capabilities. A study of


their expressiveness is addressed in Section 3.2, where the idea of time quantification


as opposes to step quantification, as a feature of a temporal connective, is presented.


As a result a step-bounded version of the Until operator is defined.


Section 3.3 concerns the study of some relevant consequences of the semantics


of CSL time bounded path formulae. The characterisation of sensible probabilistic


formulae is faced in Section 3.4, where the definition of well-formed probabilistic for-


mulae is provided. The effects of the semantics of CSL steady-state formulae with


respect to ergodic models, is addressed in Section 3.5, where semantic equivalences


for formulae involving the steady-state operator are found, leading to a modified, but


equivalent, CSL syntax to refer to ergodic CTMCs.


47
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3.2 Extending the Until expressiveness


In this section some considerations regarding the expressiveness capability of the two


basic temporal connectives, Next and Until, are presented.


The main characteristic of temporal logics (i.e. LTL, CTL, PCTL, CSL), as a means


for specifying properties of a system, is that they allow one to refer to future evolutions


(i.e. paths) of a system, as “criteria” for selecting the states of interest. This is achieved


by means of two temporal connectives, namely Next and Until. Generally speaking,


with discrete-events state-based systems two types of quantification with respect to the


future appear to be sensible: a time quantification, by means of which the evolution


of the system is considered with respect to time elapsing, as opposed to a step quan-


tification or event quantification, through which the system’s evolution is considered


with respect to events’ occurrence. Clearly time quantification is sensible only when


elapsed time is captured in the modelling framework1. We observe that if time is seen


as a discrete quantity in the modelling framework, then, usually, time elapsing and


event elapsing coincide (the occurence of an event is assumed to “consume” one time


unit). Thus, when referring to such models (e.g. DTMCs), time quantification and


event quantification have the same meaning.


Both Next and Until allow us to refer to the future but with some differences.


Referring to their original (untimed) version, some observations can be made. The


Until operator U (and its derivative sometime in the future, i.e. �φ� �ttUφ�) permits


one to refer to features of the system’s behaviour which one is interested in observing in


an indefinitely long future (i.e. Until does not naturally imply any sort of quantification,


neither time nor step). Conversely, the Next operator X naturally implies a (very strict


one-transition only) step quantification: �Xφ� identifies those evolutions for which φ
happens to be true after exactly one transition from the present state.


When referring to timed models, either discrete-time (e.g. DTMCs) or continuous-


time (e.g. CTMCs), time quantification can be sensible.


In the PCTL logic (the temporal logic for DTMCs), an event-bounded version of


the Until operator (φ U�n ψ) allows one to specify an upper bound (i.e. n) for the


1We will name timed those modelling frameworks which capture time elapsing and untimed those
other ones which do not capture time elapsing.
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number of transitions/time instants within which the Until formulahas to be satisfied.


Conversely, when the time is continuous (as with CTMCs), time quantification


and event quantification are distinct. In the CSL logic, a time-bounded version of


both Next and Until is provided. It basically allows us to associate a continuous-time


quantification with the usual semantics. As a result, a time-bounded Until formula


(φ U�a�b� ψ) allows to refer to a behaviour of interest which has to happen in a time-


wise definite but step-wise indefinite future (i.e. a combined time/event quantification


is not supported by the time-bounded CSL Until operator). On the other hand, the


time-bounded Next, incorporates both types of quantification: a formula like �X �a�b�φ�
characterises those evolutions such that φ happens to be verified in a time-distance I �


�a�b� from the starting instant of observation (i.e. the time a state is entered) and also


within a (strict) step-distance of exactly one transition. In this sense, the time-bounded


Next allows for a strict, combined time-step quantification of the future, where the only


possible value for the step quantification is 1.


In the reminder of this section the definition of event-bounded Until is provided. It


extends the one which can be found in [20] by allowing the specification of a bound-


ing interval �n1�n2� with a positive, possibly non-null infinum. We will prove that,


contrary to the “standard” event-bounded Until ([20]) which refers to bounding inter-


vals like �0�n� only, the probability to satisfy an event-bounded Until which refers to


a single-point bounding interval (i.e. n1 � n2), can be computed as a function of the


transition probability matrix P rather than as a function of a tailored matrix M derived


from P.


Definition 3.2.1 (event-bounded Until) Let φ� and φ�� be two CSL state formulae,


n1�n2 two natural numbers with n1 � n2 and σ a path on a given CTMC. The step-


bounded Until formula �φ� U�n1�n2� φ��� is a path-formula whose semantics, with re-


spect to σ, is defined as:


σ �� �φ� U�n1�n2� φ��� �� 	i� n1 � i� n2 : σ�i� �� φ��� � j � i�� σ� j� �� φ�


If n1 � n2 � n the notation �φ� U�n� φ��� is used.


We recall here that the probability of satisfying an Until formula from a state s of a
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CTMC M is given by the probability of each path that, starting at s, satisfies the Until


formula, which is: ProbM �s�φU�n�ψ� � Prs�σ� Path�s� : σ �� φ U�n� ψ�. We denote


Path�s�φ U�n� ψ� the set of such paths.


The following theorem provides a method for computing the probability measure


of satisfying a step-bounded sometime in the future formula, ��n� φ� �tt U�n� φ� from


a state s.


Theorem 3.2.1 (event-bounded Diamond) For a formula ��n� φ � �tt U�n� φ� and a


state s of a CTMC,


Prob�s���n� φ� �


���������
��������


iφ�s� if n � 0


Prob�s�X φ� if n � 1


∑s��S P�s�s�� �Prob�s����n�1� φ� if n � 1


where iφ�s� � 1 if s �� φ and iφ�s� � 0, if s ��� φ.


Proof. We denote Path�s���n�φ� the paths starting at s and satisfying �nφ and


Prob�s���n�φ� the measure of their probability. Similarly Path�s�Xφ� denotes the paths


starting at s and satisfying Xφ and Prob�s�Xφ� the measure of their probability. Let us


consider the different cases.


Case 1. n � 0. In this case either every path starting at s satisfies ��0�φ or none.


If s �� φ then Path�s���0�φ� � Path�s�, hence Prob�s���0�φ� � 1 � iφ�s�. If s ��� φ then


Path�s���0�φ� � /0, hence Prob�s���0�φ� � 0 � iφ�s�.


Case 2. n� 1. Trivially Path�s���1�φ��Path�s�Xφ�hence Prob�s���1�φ��Prob�s�Xφ�.


Case 3. n � 1. In this case Path�s���n�φ� consists of all those paths σ of the form


s� σ�, where σ� � Path�s����n�1�φ� (i.e. all those paths whose first order suffix satis-


fies φ in n�1 steps, �1 � σ� ����n�1�φ). Hence


Prob�s���n�φ�� ∑
s��S


P�s�s�� �Prob�s����n�1� φ�


�
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Corollary 3.2.1 (Prob���n� φ) For a formula ��n� φ and a CTMC M the state vector


Prob���n� φ� is given by:


Prob���n� φ� �


���������
��������


iφ if n � 0


Prob�X φ� if n � 1


P �Prob���n�1� φ� if n � 1


Proof. Straightforward consequence of Theorem 3.2.1.


Corollary 3.2.1, shows that the computation of the probability state vector for a step-


bounded sometime in the future formula results in an iterative matrix-vector product.


In the next theorem a way of computing the probability measure for a step-bounded


Until formula, �φ U�n� ψ� is described. It is based on the result for the step-bounded


sometime in the future operator.


Theorem 3.2.2 (event-bounded Until) For a formula �φ U�n� ψ� and a state s of a


CTMC, the following holds:


Prob�s��φ U�n� ψ�� �


���������
��������


iψ�s� if n � 0


iφ�s� �Prob�s�X ψ� if n � 1


iφ�s� �∑s��S P�s�s�� �Prob�s���φ U�n�1� ψ�� if n � 1


Proof. Let us consider the different cases.


Case 1. n � 0. In this case either every path starting at s satisfies �φ U�0� ψ� or none.


If s �� ψ then Path�s��φ U�0� ψ�� � Path�s�, hence Prob�s��φ U�0� ψ�� � 1 � iψ�s�. If


s ��� ψ Path�s��φ U�0� ψ�� � /0, hence Prob�s��φ U�0� ψ�� � 0 � iψ�s�.
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Case 2. n � 1. The set Path�s��φ U�1� ψ�� is either equal to Path�s�Xψ� or empty. If


s �� φ then Path�s��φ U�1� ψ�� � Path�s�Xψ�. Hence, in this case,


Prob�s��φ U�1� ψ�� � Prob�s�Xψ� � iφ�s� �Prob�s�Xψ�


If s ��� φ, then Path�s��φ U�1� ψ�� � /0. Hence, in this case,


Prob�s��φ U�1� ψ�� � 0 � iφ�s� �Prob�s�Xψ�


Case 3. n � 1. The set Path�s��φ U�n� ψ�� is either empty, if s ��� φ, or it consists of all


those paths σ of the form s� σ�, where σ� � Path�s���φ U�n�1� ψ��, if s �� φ. Hence,


Prob�s��φ U�n� ψ��� iφ � �∑s��S P�s�s�� �Prob�s���φ U�n�1� ψ����.


�


Corollary 3.2.2 (Prob�φ U�n� ψ�) For a formula �φ U�n�ψ� and a CTMC M the state


vector Prob�φ U�n� ψ� is given by:


Prob�φ U�n� ψ� �


���������
��������


iψ if n � 0


iφ �Prob�X ψ� if n � 1


iφ � �P �Prob�φ U�n�1� ψ�� if n � 1


Proof. Straightforward consequence of Theorem 3.2.2.


Corollary 3.2.2, shows that, also for a step-bounded Until formula, the computation of


the probability state vector results in an iterative matrix-vector product.


In this section an event-bounded version of the Until operator has been formally


introduced. It allows us to specify a bounding interval in terms of number of events in


the executions fulfilling an Until-like property. It has been shown that the computation


of the probability measure for an event-bounded Until, can be obtained via an iterative
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Figure 3.1: A simple arbitrary CMTC M


matrix-vector multiplication. This proves that, differently from its event-unbounded


counterpart, the model checking problem for event-bounded Until does not require the


solution of a system of linear equations.


Example 3.2.1 (event-bounded Until) Figure 3.1 illustrates a simple four-states CMTC,


with transitions probability matrix P:


P�


�
�


0 1 0 0


0 0 1
2


1
2


1 0 0 0


1 0 0 0


�
������


Let φ and ψ be two CSL state-formulae and let us assume that ψ is satisfied only in the


state s2, while φ is valid in every state. As a result:


iφ � �1�1�1�1� iψ � �0�0�1�0�� Prob�X ψ� � �0�
1
2
�0�0�


By application of Corollary 3.2.2, the probability state-vectors Prob�φ U �n� X ψ�, for
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n � � , can be straighforwardly derived.


Prob�φ U�0� ψ� � �0�0�1�0�


Prob�φ U�1�3k� ψ� � �0�
1
2
�0�0�


Prob�φ U�2�3k� ψ� � �
1
2
�0�0�0�


Prob�φ U�3�3k� ψ� � �0�0�
1
2
�
1
2
�


with k � � . We observe that, for example, the probability of fulfilling the Until formula


in n � 5 steps is non-null only for state s0. This is, in fact, correct, as s0 is the only


state admitting some (in this case two, s0�s1�s2�s0�s1�s2 and s0�s1�s3�s0�s1�s2) five step


paths satisfying �φ U ψ�. Furthermore the probabilty of each one such a path (which


is given by multiplying the probability of each step) is actually 1
4 , hence their sum is 1


2 .


The correctness of the other cases can be easily verified in a similar way. �


3.3 Semantics of single-point bounded path formulae


Proposition 2.3.2 and Theorem 2.3.1 allow for the computation of the probability mea-


sure of paths which, starting from a given state s, satisfy, respectively, a bounded Next,


and a bounded Until formula. The form of the bounding interval I � �a�b�, either


single-point (a � b) or multiple-points (a� b), affects the probability measure of paths


satisfying a bounded Next and Until formulae.


Bounded Next. The probability measure of each timed path starting at s and satis-


fying the Next formula �X φ� within the time boundaries I, is given by the result of


Proposition 2.3.2. The following remark points out a peculiarity which arises when


the bounding interval I consists of a single time instant.


Remark 3.3.1 Let M � �S�Q�L� be a labelled CTMC and φ a CSL state formula.


Whenever the considered time interval consists of a single point I � �a�, the proba-


bility measure Prob�s�X Iφ� � 0, independently of the state s � S and of the formula


φ.
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Proof. By substitution of a � b in the result of Proposition 2.3.2.


�


Remark 3.3.1 highlights the fact that reaching a φ-state in one step from a state s ex-


actly at time t � a is an impossible event. This is consistent with the fact that the delay


of any transition s� s� in a CTMC is an exponentially distributed, hence continuous,


random variable X ; thus its probability of assuming any specific value is zero (i.e.


Pr�X � a� � 0, for all a � �).


Definition 3.3.1 (Well-formed bounded Next) Let φ be a CSL state formula and


I � �a�b� � R�0 a bounding time interval, then the bounded Next formula ϕ � X I φ
is said to be well-formed if and only if a � b.


Definition 3.3.2 (Well-formed path formulae) A CSL time bounded path formula ϕ
is said to be well-formed if, in case it is a bounded Next formula it is also well-formed.


Definitions 3.3.1 and 3.3.2 allow us to rule out the bounded Next formulae which can-


not be satisfied in any state of the model.


Bounded Until. The value Prob�s�φ�UIφ���, defined by means of Theorem 2.3.1, rep-


resents the measure of the probability of each timed path starting at s and satisfying


the Until formula �φ� U φ��� within the time boundaries specified by I. Any timed path


s0
t0�� s1


t1�� s2 � � �
tn�1
�� sn


tn�� � � � belongs to the set characterised by its untimed em-


bedded generator σ � s0 �� s1 �� s2 � � � �� sn �� � � �. In a way, we can say that


any timed path σ is generated by its untimed embedded generator.


As Remark 2.3.1 points out, whenever a timed path σ satisfies a bounded Un-


til �φ UI ψ�, then its untimed embedded generator σ satisfies the correspondent un-


bounded Until �φ U ψ�.


In general, the set of paths satisfying an untimed Until formula �φ� U φ��� can be


partitioned by distinguishing between those paths having a future state which satis-


fies the target φ�� but not the premise φ� (Path�s��φ���φ���U ��φ� � φ����) and those
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which allow for a future state satisfying both the target and the premise of the until


(Path�s��φ���φ��� U �φ��φ����).


Path�s�φ�U φ��� � Path�s��φ���φ���U ��φ��φ�����Path�s��φ���φ��� U �φ��φ����


The characterisation of that partition of Path�s�φ�U φ���, allows us to formulate the


following remark which considers a subtlety implied by the result of Theorem 2.3.1.


Remark 3.3.2 Let �φ� UI φ��� be a CSL bounded Until formula with I � �a�b�.


a � b (multi-points interval): the timed paths contributing with a non-null value to


the measure Prob�s�φ�UI φ��� can be generated by untimed paths of both


Path�s��φ���φ���U ��φ��φ���� and Path�s��φ���φ��� U �φ��φ����.


a � b (single-point interval): the timed paths contributing with a non-null value to


the measure Prob�s�φ�UI φ��� can be generated by untimed paths of


Path�s��φ���φ��� U �φ��φ���� only.


The next example shows what Remark 3.3.2 is meant to point out.


��


��


��


Figure 3.2: Paths unravelling from state s0
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Example 3.3.1 Let us consider a state s0 of a labelled CTMC M and the set of paths


starting at s0 (Figure 3.2 depicts the unravelling of the paths starting at s0). For the


sake of simplicity, we are assuming that s0 has a single successor state, s1, which, itself,


has a single successor, namely s2 (i.e. both s0 and s1 are states where no competition


takes place). As a result the tree representing the unravelling of paths starting at s0 is


given by appending the tree representing the unravelling of paths from s2 to the finite


path s0 � s1 � s2 (see Figure 3.2).
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Figure 3.3: Probability measure of timed-until path: case s0 �� �φ��φ��


Suppose we are interested in evaluating the probability measure for the time bounded


Until formula �φ� UI φ���, with respect to s0. Let us consider different assumptions cor-


responding to every case of the definition of Prob�s�φ� UI φ��� of Theorem 2.3.1.


i) s0 �� �φ��φ��.
Figure 3.3 shows a path starting at s0. It is assumed that s0 is such that the target φ��


is satisfied but not the premise φ�. If we are considering a lower bound of zero (a � 0),


then the first case of equation 2.3.1 does apply, thus Prob�so�φ�U�0�b� φ��� � 1. On


the other hand whenever inf�I� is greater than zero (a � 0), the “otherwise” case of


equation 2.3.1 applies hence, for example, Prob�so�φ�U�0�5�b� φ��� � 0.


ii) s0 �� φ���φ�� and s1 �� �φ��φ��.
In Figure 3.4 s0 is assumed to satisfy φ� but not φ��, hence the second case of equa-


tion 2.3.1 applies. Moreover s1, the only successor of s0, is assumed to satisfy φ�� but


not φ�. A distinction between multiple-point intervals (i.e. a � b) and single-point


intervals (i.e. a � b � 0) needs to be made.


� a � b (multiple-points interval). From equation 2.3.1 we have that


Prob�so�φ�U�a�b� φ��� �
� b


0
Q�s0�s1� � e


�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx
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Figure 3.4: Probability measure of timed-until path: case s0 �� φ���φ��


The above integral can be split into the sum of two integrals, resulting in


Prob�so�φ�U�a�b� φ��� �
� a


0
Q�s0�s1� � e


�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx�


�
� b


a
Q�s0�s1� � e


�E�so�x �Prob�s1�φ�U�0�b�x� φ���dx


Since we are assuming s1 �� φ�� � �φ� then Prob�s1�φ�U�a�x�b�x� φ��� � 0 for


any x � �0�a�, thus
� a


0 Q�s0�s1� � e�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx � 0 while


Prob�s1�φ�U�0�b�x� φ��� � 1 (see previous case). Hence


Prob�so�φ�U�a�b� φ��� �
� b


a
Q�s0�s1� � e


�E�so�xdx


� a � b � 0 (single-point interval). Again by application of the second case of


equation 2.3.1 we have that


Prob�so�φ�U�a�a� φ��� �
� a


0
Q�s0�s1� � e


�E�so�x �Prob�s1�φ�U�a�x�a�x� φ���dx


but since, as we pointed out above, Prob�s1�φ�U�a�x�a�x� φ��� � 0 for any x �


�0�a� then


Prob�so�φ�U�a�a� φ��� �
� a


0
Q�s0�s1� � e


�E�so�x �Prob�s1�φ�U�a�x�a�x� φ���dx � 0


showing that whenever dealing with a single-point bound a path


σ � Path�s0��φ���φ��� U ��φ��φ���� leads to a null probability measure.


iii) s0 �� φ���φ�� and s1 �� φ��φ��.
In Figure 3.5 s0 is again assumed to satisfy the premise but not the target of the until,







3.3. Semantics of single-point bounded path formulae 59


hence again the second case of equation 2.3.1 applies


Prob�so�φ�U�a�b� φ��� �
� b


0
Q�s0�s1� � e


�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx
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Figure 3.5: Probability measure of timed-until path: case s0 �� φ���φ�� and s1 �� φ��φ��


though now the recursive call Prob�s1�φ�UI�x φ��� is done with respect to a state, s1, in


which both φ� and φ�� are assumed to be true. Hence Prob�s1�φ�UI�x φ��� is obtained


through the third case of equation 2.3.1, therefore:


Prob�so�φ�U�a�b� φ��� �
� b


0
Q�s0�s1� � e


�E�so�x �
�
e�E�s1���a�x��


� a�x


0
Q�s1�s2� � e


�E�s1��y �Prob�s2� I� x� y�dy
�
dx


In the case of a single-point interval (i.e. b � a), as shown in the previous case,


Prob�s2� I� x� y� � 0, �x � �0�a� and �y � �0�a� x�, thus


Prob�so�φ�U�a�a� φ��� �
� a


0
Q�s0�s1� � e


�E�so�x � e�E�s1���a�x�dx


� Q�s0�s1� �
�e�a�E�s0�� e�b�E�s1��


�E�s1��E�s0��


which shows that whenever the untimed embedded generator σ of a timed path σ be-


longs to Path�s0��φ� ��φ��� U �φ� � φ���� then the probability measure of the set of


paths σ satisfying the bounded Until with respect to a single-point bound I � �a�a�, is


not necessarily equal to zero.


The above example has shown a peculiarity which concerns the semantics of bounded


Until formulae �φ�UI φ���, when the bounding interval I consists of a single-point. In


such a case, only paths which reach a future state σ�n� satisfying both the premise and
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the target of the considered Until (i.e. σ�n� �� φ� � φ��) through states satisfying the


premise, lead to a measure greater than zero, which is: any path reaching a future state


where the target but not the premise is satisfied (through states satisfying the premise),


has probability zero to fulfil the single-point time bound I � �a�a�.


3.4 Well-formed CSL probabilistic formulae


With respect to the syntax described in Definition 2.3.5, CSL probabilistic formulae are


those requiring the comparison of a probability measure with a bound: either S�p�φ�,
namely steady-state formulae, or P�p�ϕ�, that is probabilistic-path formulae.


The literature on CSL seems to lack of consistency with respect to the type of com-


parison operators (�) allowed for formulating probabilistic formulae. In its original


definition [1], the only comparison operator allowed was �; as a result P�p�ϕ� was


the only possible form of probabilistic formula (the steady-state operator was not in-


cluded in the original CSL syntax). In [4, 23], two comparison operators were permit-


ted: � and 
; hence possible probabilistic formulae were either P�p�ϕ� or P�p�ϕ�,
for probabilistic-path formulae, or S�p�φ� or S�p�φ�, for probabilistic steady-state


formulae. In its most recent treatment [5], the set of allowed comparison operators


has been further enlarged becoming the one described in Definition 2.3.5, which is:


�� �������
�.


The analysis of the sensibleness of possible combinations of the comparison oper-


ator � and the probability bound p, leads to the characterisation of relevant semantic


equivalences concerning CSL probabilistic formulae which we present here.


Definition 3.4.1 (Semantically equivalent state formulae.) Let M � �S�Q�L� be a


labelled CTMC; two CSL state formulae φ and ψ are semantically equivalent, denoted


φ� ψ, if and only if


s �� φ�� s �� ψ� �s � S


or, equivalently:


φ� ψ �� Sat�φ� � Sat�ψ�
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The syntax depicted in Definition 2.3.5 does not impose any restriction on the combina-


tions of the comparison operator�� �������
� and the probability bound p� �0�1�.


However not all the possible combinations ��� p� lead to sensible formulae. For ex-


ample, although syntactically correct, comparison combinations like ���0� or ���1�,


result in contradictory probabilistic formulae (i.e. formulae equivalent to the contra-


diction �tt). In fact it is clearly impossible for a probability measure to fall outside the


interval �0�1�.


Remark 3.4.1 (Basic contradictions) Let φ be a CSL state formula and ϕ a CSL path


formula, then the following equivalences hold:


S�0�φ�� P�0�ϕ�� S�1�φ�� P�1�ϕ�� �tt


Symmetrically, comparison combinations like �
�0� or ���1� lead to valid probabilis-


tic formulae (i.e. formulae equivalent to the validity tt). In fact any probability measure


p̄ � �0�1�, hence, trivially, it is also greater than or equal to 0 and less than or equal


to 1.


Remark 3.4.2 (Basic validities) Let φ be a CSL state formula and ϕ a CSL path for-


mula, then the following equivalences hold:


S�0�φ�� P�0�ϕ�� S�1�φ�� P�1�ϕ�� tt


By allowing the equality check (��) among the possible comparison type a proba-


bility measure can be verified for (i.e. �� �������
����), the following trivial


equivalences hold:


Remark 3.4.3 (Equality check equivalences) Let φ be a CSL state formula and ϕ a


CSL path formula, then the following equivalences hold:


S�1�φ�� S��1�φ�� S�1�φ�� S��1�φ�


P�1�ϕ�� P��1�ϕ�� P�0�ϕ�� P��0�ϕ�







62 Chapter 3. On CSL Expressiveness


As for the PCTL, the existential and universal path quantifiers can be obtained as


special cases of probabilistic-path formulae, obtained, respectively, by the comparison


combinations ���0� and �
�1�.


Remark 3.4.4 (Existential and Universal path quantifiers) Let ϕ be a CSL path for-


mula, then E�ϕ� and A�ϕ� are notations to represent respectively, the existentially and


universally path quantified formula P�0�ϕ� and P�1�ϕ�.


E�ϕ�� P�0�ϕ�


A�ϕ�� P�1�ϕ�


The following definition provides a list of logical conditions useful for characterising


the type of bound check the combination ��� p� represents.


Definition 3.4.2 Let�� �������
� be a comparison operator and p� �0�1� a prob-


ability value, the following logical conditions characterise the type of the combination


��� p�:


� low��� p�� �p � �0�1����
� �p � �0�1������.


The combination ��� p� represents a lower-bound check if the logical condition


low��� p� holds.


� up��� p�� �p � �0�1������ �p � �0�1������.


The combination ��� p� represents an upper-bound check if the logical condition


up��� p� holds.


� E��� p�� �p � 0����� (Existential quantifier).


The combination ��� p� characterises an Existential quantifier for probabilistic-


path formulae.


� A��� p�� �p � 1����� �p � 1���
� (Universal quantifier).


The combination ��� p� characterises an Universal quantifier for probabilistic-


path formulae.
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The logical conditions introduced in the above definition allow for the characterisation


of semantic equivalences for formulae involving the steady-state operator. Although


the type of check a pair ��� p� represents (i.e. lower-bound or upper-bound) could be


distinguished only by means of the comparison operator (�), the value of the prob-


ability bound p is also relevant. In fact by considering p, it is possible to rule out


those combinations ��� p� leading to either contradictory or always valid probabilistic


formulae. That allows for the following definition.


Definition 3.4.3 (Well-formed probabilistic CSL formulae) Let φ be a CSL state for-


mula, ϕ a CSL well-formed path formula, p � �0�1� a probability bound and


�� �������
� a comparison operator. The probabilistic formulae S�p�φ� and


P�p�ϕ� are said to be well-formed if and only if


low��� p� or up���q�


The above definition allows for ruling out probabilistic formulae whose semantics is


trivial (e.g. S�0�φ� or P�0�ϕ�). For the remaining part of the thesis, unless other-


wise stated, we will assume that any generic CSL probabilistic formula like S�p�φ� or


P�p�ϕ�, is actually a well-formed one.


3.5 Nesting of the CSL probabilistic connectives


The mutually recursive structure of CSL state and path formulae syntax (see Defini-


tion 2.3.5) allows for nesting of the probabilistic operators S�p and P�p. As a result


formulae like


S�0�9�P�0�8�rec1 U idle1�� (3.5.1)


or


P�0�9�X �S�0�8rec1�� (3.5.2)


showing a probabilistic path formula nested within the steady-state operator and a


steady-state formula nested within a probabilistic next, are legitimate examples of


properties in the CSL syntax.
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In [5] an interesting overview regarding the specification of performance measures


in terms of CSL formulae, is given. The authors show how standard steady-state and


transient measures can be obtained in CSL. Furthermore it is shown how the expres-


siveness with respect to performance measuring of CTMCs is improved with CSL by


means of time bounded path formulae. Finally the possibility of mutual nesting of the


probabilistic connectives S�p and P�p is considered and it is proved that that provides


further means to state useful measures which it would not be possible to express by


means of any other CTMCs’ analysis technique.


Concerning the issue of nesting the probabilistic operators of CSL a relevant point


appears not to have been considered in literature: a distinction has to be made de-


pending on the structure of the considered CTMC, either ergodic (i.e. consisting of a


single BSCC) or non-ergodic (i.e. resulting in a number of BSCCs). The ergodicity of


the model impacts on the validity of CSL steady-state formulae, as pointed out in the


following remark.


Proposition 3.5.1 (Steady-state semantics with respect to ergodic CMTCs) Let φ be


a CSL state formula, M � �S�Q�L� an ergodic labelled CTMC, p � �0�1� a probability


bound and �� �������
�. The formula S�p�φ� is either satisfied in all or none of


the states s � S:


�s � S� s �� S�p�φ� or �s � S� s ��� S�p�φ�


Proof. From the CSL semantics we know that


s �� S�p�φ��� πM �s�Sat�φ��� p


Since M is ergodic, then from Proposition 2.3.1 we know that:


πM �s�Sat�φ�� � ∑
s��Sat�φ�


π�s��


which proves the measure πM �s�Sat�φ�� being dependent only on the satisfiability set


Sat�φ� and not on the considered state s.


�
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The above remark points out a relevant feature of the CSL logic: steady-state formulae,


like S�p�φ�, are model dependent, rather than state dependent, whenever the model


they refer to is an ergodic CTMC.


Intuitively, for a non-ergodic CTMC M , the satisfiability of a steady-state formula


like S�p�φ� with respect to a state s, depends on the measure of how likely it is to reach


a state satisfying φ when s is considered as the starting point (to be more precise: how


likely it is to reach the BSCC B a state satisfying φ belongs to, when we start from s).


Hence, in the non-ergodic framework, the satisfiability of S�p�φ� strongly depends on


the considered starting state s other than on M itself. Conversely, in the ergodic case,


all states belong to the same, unique, BSCC the CTMC consists of; thus the formula


S�p�φ� is either valid in M or false in every state: the satisfiability of S�p�φ� is state


independent.


As a consequence, in the ergodic framework, we will use M �� S�p�φ�
(M ��� S�p�φ�) to denote the fact that the steady-state formula S�p�φ� is satisfied (not


satisfied) in every state of M or, whenever the model M is clear from the context,


simply �� S�p�φ� (��� S�p�φ�). An alternative formulation of Proposition 3.5.1 is given


in the following corollary.


Corollary 3.5.1 The satisfiability set of S�p�φ� with respect to an ergodic CTMC


M � �S�Q�L� is either the whole state space S or the empty set:


Sat
�
S�p�φ�


	
� S or Sat


�
S�p�φ�


	
� /0


�


3.5.1 Semantics equivalences for nested formulae


The relevance of the model’s ergodicity with respect to the semantics of CSL steady-


state formulae, calls for checking the existence of semantic equivalences for formulae


involving the steady-state connective. The following propositions characterise relevant


equivalences concerning such types of formulae.


Proposition 3.5.2 (Basic steady-state equivalence.) Let M � �S�Q�L� be an ergodic


labelled CTMC and S�p�φ� a CSL state formula, then S�p�φ� is semantically equiva-
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lent either to tt, if �� S�p�φ� or to �tt, if ��� S�p�φ�:


S�p�φ��


�
tt if �� S�p�φ�
�tt if ��� S�p�φ�


(3.5.3)


Proof.


Trivial consequence of Proposition 3.5.1, in fact clearly


�� S�p�φ��� Sat�S�p�φ�� � S � Sat�tt�


��� S�p�φ��� Sat�S�p�φ�� � /0 � Sat��tt�


�


Relying on Proposition 3.5.2 semantic equivalences can be found for any possible


combination of steady-state formulae obtained by means of the CSL connectives.


Proposition 3.5.3 (S nested in S ) . Let M � �S�Q�L� be an ergodic labelled CTMC


and φ a CSL state formula. The following semantic equivalence regarding nesting of


the steady-state formula S�q�φ� within a probabilistic steady-state operator holds:


S�p�S�q�φ���


����
���


tt if
��


low��� p�
�
�
�
�� S�q�φ�


��
��


up��� p�
�
�
�
��� S�q�φ�


��
�tt otherwise


(3.5.4)


Proof.


The proof proceeds similarly to the one regarding nesting of S within an unbounded


Next. The validity of the innermost steady-state formula (i.e. S�q�φ�), directly af-


fects the equivalence. In fact the nested formula S�p�S�q�φ�� states that the long-run


probability for the states satisfying S�q�φ� respects the bound� p. However the states


satisfying the innermost steady-state are either all the states in S or none. As a result if


S�q�φ� is satisfied in M (i.e. �� S�q�φ�), then so is S�p�S�q�φ�� given that the type of


bound check it represents is a lower-bound. While if S�q�φ� is not satisfied in M (i.e.


��� S�q�φ�) then S�p�S�q�φ�� is satisfied in M , given that it represents an upper-bound


check.


�
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The above proposition has shown that formulae given by nesting a steady-state connec-


tive within another one are equivalent either to the tautology tt or to the contradiction


�tt. The following two propositions, instead, highlight the equivalences for boolean


combinations of steady-state connectives (i.e. conjunctions and negations of steady-


state formulae).


Proposition 3.5.4 ( S nested in �) Let M � �S�Q�L� be an ergodic labelled CTMC,


φ and ψ two CSL state formulae, p�q � �0�1� and �� � �����
���. The following


semantic equivalences regarding nesting of steady-state formulae within the conjunc-


tive operator holds:


ψ� �S�p�φ�� �


����
���


ψ if �� S�p�φ�


�tt otherwise


�S�p�φ��� �S�q�ψ�� �


����
���


tt if
�
�� S�q�φ�


�
�
�
�� S�q�ψ�


�


�tt otherwise


Proof.


Trivial consequence of Proposition 3.5.2.


�


Proposition 3.5.5 ( S nested in �) Let M � �S�Q�L� be an ergodic labelled CTMC,


φ a CSL state formula, p � �0�1� and�� �����
���. The following semantic equiv-


alence regarding nesting of the steady-state formula S�p�φ� within the negation oper-


ator holds:


��S�p�φ���


����
���


�tt if �� S�p�φ�


tt otherwise


(3.5.5)


Proof.


Trivial consequence of Proposition 3.5.2. �


So far equivalences for non-path formulae, containing a steady-state sub-formula have


been proved. In the following four propositions the case of path formulae, both Until
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and Next either bounded or unbounded, built on some steady-state sub-formula is faced


and equivalences are proved.


Proposition 3.5.6 (S nested in a bounded Until.) Let M � �S�Q�L� be an ergodic


labelled CTMC, φ and ψ two CSL state formulae, I � �a�b� � ��0 a time interval,


p�q�r � �0�1� and ���� �̃ � �����
���. The following semantic equivalences re-


garding nesting of the steady-state formulae within a probabilistic bounded Until op-


erator hold:


P�p�φ UI S�q�ψ�� �


����������������������
���������������������


tt if
��
��S�q�ψ�


�
�
�
low��� p�


�
�
�
a � 0


��


�
��
��� S�q�ψ�


�
�
�
up��� p�


��


�φ��φ�P�p�φ UI tt�� if
��
��S�q�ψ�


�
�
�
up��� p�


�
�
�
a �� 0


��


�φ�P�p�φ UI tt�� if
��
��S�q�ψ�


�
�
�
low��� p�


�
�
�
a �� 0


��


�tt if
��
�� S�q�ψ�


�
�
�
up��� p�


�
�
�
a � 0


��


�
��
��� S�q�ψ�


�
�
�
low��� p�


��
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P�p�S�q�ψ� UI φ� �


���������������
��������������


P�p��
Iφ� if �� S�q�φ�


φ if ��� S�q�φ�� �low��� p��� �a � 0�


tt if ��� S�q�φ�� �up��� p��� �a �� 0�


�tt otherwise


P�p�S�̃r�φ� UI S�q�ψ�� �


����������������������������
���������������������������


tt if
��
�� S�q�ψ�


�
�
�
low��� p�


�
�
�
a � 0


��


�
��
��� S�q�ψ�


�
�
�
up��� p�


��


�
��
�� S�q�ψ�


�
�
�
�� S�̃r�φ�


�


�
�
up��� p�


�
�
�
a � 0


��


�tt if
��
�� S�q�ψ�


�
�
�
up��� p�


�
�
�
a � 0


��


�
��
��� S�q�ψ�


�
�
�
low��� p�


��


�
��
�� S�q�ψ�


�
�
�
�� S�̃r�φ�


�


�
�
low��� p�


�
�
�
a � 0


��


P�p��
Itt� if


��
�� S�q�ψ�


�
�
�
�� S�̃r�φ�


�
�
�
a � 0


��


Proof.


The proof relies both on the basic equivalence for steady-state formulae (Proposi-


tion 3.5.2) and on the result of Theorem 2.3.1 concerning the probability measure


for bounded-Until paths. With respect to the first and second cases (i.e. one steady-


state formula among the operands of a bounded Until), three factors are relevant: the


validity of the steady-state operand with respect to the model M (either �� S�q�ψ� or


��� S�q�ψ�), the type of bound check involved (either low��� p� or up��� p�) and the


value of the bounding interval’s infinum (either a � 0 or a � 0). That leads to a total


of eight possible combinations which, are fully caught by the conditions characteris-


ing the first and second equivalences. In the third case, (i.e. both the operands of the


Until are steady-state formulae) also the validity of the second steady-state operand of
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the bounded Until, has to be considered amongst the factors affecting the semantics of


P�p�S�̃r�φ� UI S�q�ψ��. Hence the possible combinations of conditions are, in this


case, sixteen.


i) P�p�φ U S�q�ψ��.


Case 1. If S�q�ψ� is valid in the considered model and a � 0, the probability measure


of paths satisfying �φ U I S�q�ψ�� is equal 1 (case 1 of Theorem 2.3.1), for every state


s. Hence if we are checking that measure against a lower-bound (i.e. low��� p�) the


formula is satisfied in every state s, since clearly 1� p. Similarly if S�q�ψ� is not satis-


fied in M (i.e. not satisfied in any state s � S), then it is equivalent to the contradiction


�tt (Proposition 3.5.2); thus the original Until formula P�p�φ U S�q�ψ�� boils down


to P�p�φ U �tt� which, independently of a and of the considered state s, is satisfied,


if and only if ��� p� represents an upper bound check (i.e. up��� p�): the probability


measure of paths satisfying P�p�φ U �tt� is zero (case “otherwise” of Theorem 2.3.1).


Case 2. If S�q�ψ� is valid in the considered model and a � 0 then a distinction be-


tween states satisfying φ and states satisfying �φ needs to be made. First of all, since


we are assuming �� S�q�ψ� then, again, the original Until formula is actually equiv-


alent to P�p�φ U tt�. If s does not satisfy φ (i.e. s �� �φ), the probability measure


Prob�s�φ UI tt� is equal zero (case “otherwise” of Theorem 2.3.1). Hence, if up��� p�,


P�p�φ U S�q�ψ�� is clearly satisfied in s, as 0� p. On the other hand if s satisfies φ,


case 3 of Theorem 2.3.1 applies. and the measure Prob�s�φ U I tt� is equal to the prob-


ability of leaving s within the bound I. The formula φ�P�p�φ UI tt� clearly captures


the states fulfilling this second possibility


Case 3. This case is identical to the previous one (case 2) except for the type of bound


check, which is supposed, in this case, to be a lower-bound check (i.e. low��� p�).


As we know, Prob�s�φ U I S�q�ψ�� � 0 �� p for any state s �� �φ (see previous case).


Hence the only states s for which the measure Prob�s�φ U I S�q�ψ��� p are those sat-


isfying φ and Prob�s�φ U I tt� (i.e. s is such that the probability measure of �φ U I tt�


is � p).
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Case 4. If �� S�q�ψ� and a � 0, then Prob�s�φ U I S�q�ψ�� � 1, independently of


the state s (i.e. case 1 of Theorem 2.3.1). Hence, if up��� p� holds, then clearly


Prob�s�φ UI S�q�ψ�� � 1 �� p, for all s � S which proves P�p�φ U S�q�ψ�� � �tt.


Similarly if ��� S�q�ψ�, then Prob�s�φ U I S�q�ψ��� 0, independently of the state s and


of a (either a � 0 or a � 0). Thus if low��� p�, then again


Prob�s�φ UI S�q�ψ�� � 1 �� p. which proves P�p�φ U S�q�ψ�� being equivalent


to the contradiction �tt.


ii) P�p�S�q�ψ� U φ�.
Case 1. Direct consequence of Proposition 3.5.2 and of the equivalence �Iφ� �tt UI φ�.


Case 2. If ��� S�q�ψ� then �S�q�ψ�UI φ�� ��tt UI φ� . Then if a� 0, a distinction be-


tween s �� φ and s �� �φ has to be made.


Prob�s��S�q�ψ� U φ�� � 1 for any state s �� φ. Thus if low��� p�, then for each such


state also s �� P�p�S�q�ψ� U φ� as clearly 1 � p. On the other hand


Prob�s��S�q�ψ� U φ�� � 0 �� p for any state s �� �φ.


Case 3. Here again ��� S�q�ψ� is assumed but now the infinum of the bounding interval


I is supposed to be a � 0. If this is the case then Prob�s��S�q�ψ� U φ�� � 0 both with


s �� φ and with s ��� φ (i.e. in both cases the “otherwise” case of Theorem 2.3.1 applies).


Hence of up��� p� then P�p�S�q�ψ� U φ� is equivalent to the tautology tt.


Case 4. This case regards the remaining two possibilities, which are, respectively:


��� S�q�ψ�� low��� p�� �a � 0� and ��� S�q�ψ�� up��� p�� �a � 0�. If ��� S�q�ψ��


low��� p�� �a � 0� then Prob�s��ttU I φ� � 0 �� p (i.e. we are assuming low��� p�),


independently of s. Hence clearly, for every s� S, s ��� P�p�S�q�ψ� U φ� which proves


the equivalence of s ��� P�p�S�q�ψ� U φ� with the contradiction �tt. On the other hand


if ��� S�q�ψ�� up��� p�� �a � 0� then again Prob�s��ttU I φ� � 0 �� p which proves


the equivalence with the contradiction also in this case.
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iii) P�p�S�̃r�φ� UI S�q�ψ��.


Similar to the previous cases.


�


The above proposition shows the equivalences for bounded Until formulae having


steady-state formulae amongst their operands. The following proposition, instead,


proves results regarding the unbounded Until case.


Proposition 3.5.7 (S nested in an unbounded Until) Let M ��S�Q�L� be an ergodic


labelled CTMC, φ and ψ two CSL state formulae, p�q�r � �0�1� and


�����̃�� �����
���. The following semantic equivalences regarding nesting of


the steady-state formulae within a probabilistic unbounded Until operator hold:


P�p�φ U S�q�ψ�� �


����
���


tt if
��


low��� p�
�
�
�
�� S�q�ψ�


��
��


up��� p�
�
�
�
��� S�q�ψ�


��
�tt otherwise


P�p�S�q�ψ� U φ� �


����
���


P�p��φ� if �� S�q�ψ�


φ if ��� S�q�ψ�� �low��� p��


�φ if ��� S�q�ψ�� �up��� p��


P�p�S�̃r�φ� U S�q�ψ�� �


����
���


tt if
��


low��� p�
�
�
�
�� S�q�ψ�


��
��


up��� p�
�
�
�
��� S�q�ψ�


��
�tt otherwise


Proof.


The proof relies on Proposition 3.5.2 and Corollary 2.3.1.


i) P�p�φ U S�q�ψ��.


If �� S�q�ψ� then S�q�ψ� is equivalent to tt. As a consequence Prob�s�φ U ψ� � 1,


for any state s. Hence if low��� p� holds, then clearly P�p�φU S�q�ψ�� is satisfied in


any state, thus it is equivalent to tt. Conversely if ��� S�q�ψ� then the Until formula is
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not satisfiable by any path σ. As a result the probability measure of paths satisfying


�φ U S�q�ψ�� is zero in any state hence P�p�φ U S�q�ψ�� is equivalent to tt given


that up��� p�.


ii) P�p�S�q�ψ�U φ��.
If �� S�q�ψ� then S�q�ψ� is equivalent to tt hence �S�q�ψ�U φ� is equivalent to the


sometime in the future formula ��φ� . If ��� S�q�ψ� then the premise of the Until for-


mula �S�q�ψ�U φ� is always false. As a consequence for any state s the probability


measure of paths satisfying �S�q�ψ�U φ� is either 1 if the target φ is satisfied in s or 0


if it is not. Hence P�p�S�q�ψ�U φ�� is equivalent either to φ, if it represents a lower-


bound check, or to �φ if it is an upper-bound check.


iii) P�p�S�̃r�φ� U S�q�ψ��.


The proof of this case is a direct consequence of the first case P�p�φ� U S�q�ψ�� with


φ� � S�̃r�φ�.


�


Finally in the remaining two propositions, the semantic equivalences concerning nest-


ing of steady-state properties within a Next operator, either bounded or unbounded,


are proved.


Proposition 3.5.8 (S nested in a bounded Next) Let M � �S�Q�L� be an ergodic la-


belled CTMC, φ a CSL state formula, I � �a�b� � ��0 a time interval, p�q � �0�1� and


��� � �����
���. The following semantic equivalence regarding nesting of the


steady-state formula S�q�φ� within a probabilistic bounded Next operator holds:


P�p�X
I S�q�φ���


����������
���������


tt if
��
��� S�q�φ�


�
�
�
up��� p�


��


�tt if
��
��� S�q�φ�


�
�
�
low��� p�


��


P�p�XI tt� if
�
�� S�q�φ�


�
(3.5.6)
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Proof.


If ��� S�q�φ� then the measure Prob�s��XI S�q�φ�� is equal to zero for any state s � S.


Hence if up��� p�, the formula P�p�XI S�q�φ�� is valid in every state s as clearly


0� p. On the other hand, if low��� p�, then 0 �� p, thus P�p�XI S�q�φ�� is equivalent


to the contradiction �tt. The final case (i.e. �� S�q�φ�) is a trivial consequence of


Proposition 3.5.2.


�


Proposition 3.5.9 (S nested in an unbounded Next) Let M ��S�Q�L� be an ergodic


labelled CTMC, φ a CSL state formula, p�q � �0�1� and ��� � �����
���. The


following semantic equivalence regarding nesting of the steady-state formula S�q �φ�
within a probabilistic unbounded Next operator holds:


P�p�X S�q�φ���


����
���


tt if
��


low��� p�
�
�
�
�� S�q�φ�


��
��


up��� p�
�
�
�
��� S�q�φ�


��
�tt otherwise


(3.5.7)


Proof.


If the steady-state formula S�q�φ� is satisfied in M (i.e. �� S�q�φ�), then it is equivalent


to tt, hence the probability measure of the paths satisfying �X S�q�φ�� is clearly 1,


independently of the starting state. As a result, P�p�X S�q�φ�� is satisfied in every


state, if it represents a lower-bound check for the probability measure of �X S�q�φ��
(i.e. low��� p� holds). Similarly, if S�q�φ� is not satisfied in M (i.e. ��� S�q�φ�) then it


is equivalent to �tt. Thus there can be no paths satisfying �X S�q�φ�� whatever is the


considered starting state (i.e. the probability measure of paths satisfying �X S�q�φ��
is 0). As a consequence, P�p�X S�q�φ�� is satisfied in every state, if it represents an


upper-bound check for the probability measure of �X S�q�φ�� (i.e. up��� p� holds).


�
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3.5.2 CSL syntax for ergodic models (no nesting of S�p).


The semantic equivalences described in Propositions 3.5.2-9, suggest a modified ver-


sion of the CSL syntax introduced in Definition 2.3.5, which can be used to state


properties referring to ergodic CTMCs. The main point with such a syntax is to keep


steady-state formulae apart from the other logical connectives so that recursion is only


allowed for boolean and probabilistic-path combinators. The steady-state connective


S�p can be applied, at top level only, to formulae which do not contain it.


Definition 3.5.1 (CSL syntax for ergodic CTMCs) The syntax of CSL state-formulae


(φ), boolean and probabilistic-formulae (ψ), path-formulae (ϕ) and steady-state for-


mulae (ξ) is inductively defined as follows with respect to the set of atomic proposition


AP:


φ ::� ψ � ξ � ξ�ψ � ψ�ξ � ξ�ξ � �ξ (state-formulae)


ψ ::� tt � a � ψ�ψ � �ψ � P�p�ϕ� (BP-formulae)


ϕ ::� X Iψ � �ψ UI ψ� (path-formulae)


ξ ::� S�p�ψ� (steady-state-formulae)


(3.5.8)


where a � AP, p � �0�1� is a real number, �� �������
� and I � �a�b�� ��0 is a


non-empty interval.


Proposition 3.5.10 (Equivalent CSL syntax) The language generated by the CSL syn-


tax (Definition 2.3.5) is semantically equivalent to the one generated by the modified


CSL syntax (Definition 3.5.1) given that the considered model is an ergodic CTMC.


Proof. Straightforward consequence of Propositions 3.5.2-9.


�


Example 3.5.1 Let us show how the equivalences described in Propositions 3.5.2-9


work in practice by considering some examples of CSL formulae involving the steady-


state operator. The formulae in this example refer to the ergodic CTMCs of the GIS


system of our running example (see Section 2.5.1). In Figure 3.6 the state-space of the
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Figure 3.6: State space of the GIS system’s components


two CTMCs is depicted. For illustrative purpose only2, let us assume the following


values for the steady-state distribution π1 of component M1:


π1�s10� � 0�3� π1�s11� � π1�s12� � 0�2� π1�s13� � π1�s14� � π1�s15� � 0�1


Furthermore let us suppose we are interested in the analysis of the steady-state proba-


bility of those states of M1 which satisfy respectively the formulae φ and ψ:


φ� idle1 ψ� rec1 res1


The formula ψ is valid in state s13�s14 and s15 while φ is satisfied in s10 only. As


a consequence the measure of the steady-state probability for Sat�φ� and Sat�ψ� is,


respectively, given by:


π1�s��idle1�� � π1�s10� � 0�2


π1�s��rec1 res1�� � π1�s13��π1�s14��π1�s15� � 0�3


2The values here assumed may turn out to be impossible with respect to the solution of the steady-
state distribution π1, as it is described in Example 2.5.1
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independently of the considered state s (i.e. M1 is ergodic). In the following some


examples of steady-state formulae are considered in order to illustrate the basic equiv-


alences which have been proved in the initial part of this section.


Basic steady-state equivalences. (application of Proposition 3.5.2 and Remark 3.4.2).


Let us consider the following examples of CSL steady-state properties.


i� S�0�2�ψ� � tt


ii� S�0�2�ψ� � �tt


iii� S�0�ψ� � S�1�ψ�� tt


Case i� is clearly satisfied in every state of M1 (i.e. is valid) as the steady-state prob-


ability for states satisfying ψ is 0�3
 0�2. For the same reason ii� is never satisfied in


M1, as 0�2 is not an upper bound for the steady-state probability of states satisfying ψ.


Case iii� shows an example of non-well-formed probabilistic formulae: both the pairs


�
�0� and ���1� result in pointless probabilistic formulae (i.e. tautologies), as clearly


a probability measure muust fall in �0�1�.


S nested in bounded Until (application of Proposition 3.5.6).


Here some examples of time-bounded Until formulae with nested steady-state prop-


erties are provided. The operands of the Until will be chosen amongst the following


three: read1, S�q�ψ�� and S�̃r�φ��. Furthermore two different cases of bounding in-


terval will be considered, namely I � �0�5� or I � �2�5�, in order to points out the


differences between a null and a non-null in f inum.


Case 1.


P�p�read1 U�a�b� S�q�ψ��


i� P�0�7�read1 U�0�5� S�0�2�ψ�� � tt


ii� P�0�7�read1 U�2�5� S�0�2�ψ�� � �read1�P�0�7�read1 U�2�5� tt��


iii� P�0�7�read1 U�2�5� S�0�2�ψ�� � �read1 �read1�P�0�7�read1 U�2�5� tt��


iv� P�0�7�read1 U�2�5� S�0�2�ψ�� � �tt


Case i) is clearly satisfied in every state since the proability measure of the target-


formula, S�0�2�ψ�, is itself satisfied in every state (see previous case). Hence every path
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from every state satisfies the Until formula, which means:


Prob�s��read1 U�0�5� S�0�2�ψ��� � 1
 0�7, for every state s.


In case ii) we are concerned with a lower-bound check for the probabiity measure of


a time-bounded Until formula. We observe that since we have a non-null infinum (i.e.


2) of the bounding interval, then a path σ must start in a read1 state in order to sat-


isfy �read1 U�2�5� S�0�2�ψ��. Thus the conjunction �read1�P�0�7�read1 U�2�5� tt�� rules


out those state (i.e. �read1 states) whose paths cannot satisfy �read1 U�2�5� S�0�2�ψ��.


In fact, for every state s ��� read1 the probability measure


Prob�s��read1 U�2�5� S�0�2�ψ��� � 0 �
 0�7.


In case iii), we are considering an upper-bound check for the probability


measure of the same Until formula. As a consequence, the disjunction


�read1 �read1�P�0�7�read1 U�2�5� tt�� reflects the fact that in order for the proba-


bility measure Prob�s��read1 U�2�5� S�0�2�ψ��� of a state s to meet the bound � 0�7 it


suffices s ���read1. The conjunntion �read1�P�0�7�read1 U�2�5� tt��, instead, identifies


those amongst the read1 states whose measure Prob�s��read1 U�2�5� S�0�2�ψ���� 0�7.


Finally, the formula in case iv) is clearly unsatisfiable, as the target, S�0�2�ψ�� false in


the model (see previous case of the example).


In the remainder examples regarding the other possible way of nesting a steady-state


property within a time-bounded operator, are illustrated. They are obtained by appli-


cation of Proposition 3.5.6.


case 2. P�p�S�q�rec1 res1� U�a�b� read1�


P�0�7�S�0�2�rec1 res1� U�0�5� read1� � P�0�7��
�0�5� read1�


P�0�7�S�0�2�rec1 res1� U�0�5� read1� � read1


P�0�7�S�0�2�rec1 res1� U�2�5� read1� � tt
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case 3. P�p�S�̃r�idle1� U�a�b� S�q�rec1 res1��


P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��


P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��


�
� tt


P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��


P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��


�
� �tt


�











Chapter 4


Compositional CSL model checking:


non-Path formulae


4.1 Introduction


The Boucherie framework introduced in Chapter 2, provides a method to compose


CTMCs which features a product-form solution for the composed model. In this chap-


ter the analysis of a compositional semantics for CSL formulae referring to a two com-


ponent Boucherie process is addressed. Unlike other works which base their results


for “compositionally” checking the truth of a formula on the existence of a preorder


relation between a model and its components [36], the results presented in this chap-


ter depend on the compositional structure of the Boucherie process only: no preorder


relation holds between a Boucherie process and its components.


Section 4.2 recalls the Boucherie framework description for the case of two com-


ponents, introducing notations used throughout the rest of the chapter as well as some


relevant background properties. In Section 4.3 a subset of the CSL syntax, in which


probabilistic path formulae are not permitted, is considered and “compositional” equiv-


alences are proved with respect to a two component Boucherie process. In Section 6.2


the considered logic is extended by allowing also probabilistic path formulae but, dif-


ferently from the original CSL syntax, restraining the nesting capability of probabilistic


operators: probabilistic path connective P can be nested only within a the steady-state


81







82 Chapter 4. Compositional CSL model checking: non-Path formulae


operator S , while the converse is not permitted. Compositional semantic equivalences


for formulae of that “restricted” CSL logic are then proved in this section, relying on


results obtained in the previous section.


4.2 The two component Boucherie framework


The n-dimensional Boucherie product-process has been formally introduced in sec-


tion 2.5. Here we focus on the bidimensional case where M � �S�Q�L� is a Boucherie


process, with components1 M1 � �S1�Q1�L1� and M2 � �S2�Q2�L2�. The two inde-


pendent processes M1 and M2 compete over a shared resource R.


Boucherie Bidimensional state-space. The state-space Sk of each component k �


�1�2�, is partitioned according to the resource possession: Sk�R � Sk represents the


states where component k does not hold R, while Sk�R � Sk are the states where Mk


holds the resource.


S1 � S1�R�S1�R


S2 � S2�R�S2�R


The product-process state-space S (Figure 4.1) is obtained by eliminating the states


representing the simultaneous possession of the shared resource R from the Cartesian


product of the components’ state-spaces:


S � S1�S2 � �S1�R�S2�R�


In the remainder, the notation R1R2 will be used to refer to the Cartesian product


�S1�R�S2�R�, representing the prohibited area of states which has to be ruled out from


the Boucherie state-space definition.


1From now on, unless otherwise stated, M � �S�Q�L�, will denote a generic bidimensional Bouche-
rie process with components M1 � �S1�Q1�L1� and M2 � �S2�Q2�L2�.
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Figure 4.1: The bidimensional state-space of a two components Boucherie process.


Boucherie process transitions. Transitions of the Boucherie process are such that


only moves along a single component direction are allowed (as components are sup-


posedly independent, synchronisation is not allowed). As Figure 4.1 points out, in


every state �s1�s2� belonging to the area of S where neither M1 nor M2 hold R (i.e.


�s1�s2� � Rf ree), both types of transition are permitted: either a 1-move (i.e. according


to the behaviour of component M1) leading to a state �t1�s2� where the second com-


ponent’s state (s2) is unchanged, or a 2-move leading to a state �s1� t2� where the first


component’s state (s1) is unchanged.


On the other hand when a component holds R (i.e. �s1�s2� � Rk) the only permitted


behaviour is the one of the resource holder’s process. Hence, for example, any state


�t1� t2� reachable from a state �s1�s2� � R1 must be such that the M2 component state


t2 is unchanged: t2 � s2 (similarly any state �t1� t2� reachable from a state �s1�s2� �


R2 must be such that t1 � s1). This is formally achieved through the definition of


the infinitesimal generator matrix Q for a bidimensional Boucherie process, which


is obtained from definition 2.5.2 by considering the two components only case (i.e.
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K � 2):


Q��s1�s2���t1� t2�� �


���������
��������


Q1�s
1� t1� if s2 � t2� s2 �� S2�R


Q2�s
2� t2� if s1 � t1� s1 �� S1�R


0 otherwise


(4.2.1)


Boucherie process labelling. L : S� AP1�AP2 where


L��s1�s2�� � L1�s
1��L2�s


2�


Throughout the remainder we will adopt the indices k and j, with k� j � �1�2�, to allow


reference to a generic component of a bidimensional Boucherie process and its dual:


both j and k can represent either the first or second component but while k represents


one j represents the other (i.e. j � �k mod 2�� 1). Furthermore, to ease the descrip-


tion, the notions of k-move and k-projection are introduced.


k-move. A transition �s1�s2��� �t1� t2� is called a k-move, if and only if


Q��s1�s2���t1� t2�� � Qk�s
k� tk�


k-projection. The k-projection of a state �s1�s2� � S is its k-th component: sk.


For example:


s1 is the 1-projection of �s1�s2�


t2 is the 2-projection of �s1� t2�


�s1�s2��� �t1�s2� is a 1-move given that Q1�s
1� t1� �� 0


Here we are assuming that self-loops are not allowed in the Boucherie framework.


Hence the source and target state of a transition in Mk are always different


(i.e. �sk� tk � Sk, Qk�s
k� tk�� 0� sk �� tk).
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Definition 4.2.1 (Probability of a k-move) . Given a state �s1�s2� � S of a Boucherie


process, the probability of a k-move out of �s1�s2� is given by:


pk�s1�s2� �


����
���


Ek�sk�
Ek�sk��E j�s j�


if �s1�s2� � Rf ree


1 if �s1�s2� � Rk


0 if �s1�s2� � Rj


So for example for any state �s1�s2� where neither M1 nor M2 possesses R, the prob-


ability of a 1-move is p1�s1�s2� � E1�s1�
E1�s1��E2�s2�


while the probability for a 2-move is


p2�s1�s2� � E2�s2�
E1�s1��E2�s2�


.


As a consequence of the transition rate for a bidimensional Boucherie process (see


equation 4.2.1), two trivial Remarks regarding the emanating rate of states and the


probability of transitions, can be straightforwardly derived.


Remark 4.2.1 Let M � �S�Q�L� be a bidimensional Boucherie process, the emanat-


ing rate of a state �s1�s2� � S is given by the sum of the emanating rates of its compo-


nents, if the resource R is free in �s1�s2�, or by the emanating rate of the holder of R, if


R is not free.


E
�
�s1�s2�


	
�


���������
��������


E1�s1��E2�s2� if �s1�s2� � Rf ree


E1�s1� if �s1�s2� � R1


E2�s2� if �s1�s2� � R2


(4.2.2)


The above Remark provides a compositional way to obtain the total rate out of a state of


a bidimensional Boucherie process: the emanating rate of any state �s1�s2� is obtained


from the emanating rate of its components. In the next Remark, instead, the probability


of the Boucherie process transitions is characterised.


Remark 4.2.2 Let M � �S�Q�L� be a bidimensional Boucherie process, then the
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probability of a transition from a state �s1�s2� � S to a state �t1� t2� � S, is given by:


P
�
�s1�s2���t1� t2�


	
�


����������������
���������������


Q1�s
1�t1�


E1�s1��E2�s2�
if �s1�s2��Rf ree� �s2� t2�


Q2�s
2�t2�


E1�s1��E2�s2�
if �s1�s2��Rf ree� �s1� t1�


Q1�s
1�t1�


E1�s1�
if �s1�s2��R1


Q2�s
2�t2�


E2�s2�
if �s1�s2��R2


(4.2.3)


or equivalently


P
�
�s1�s2���t1� t2�


	
�


���������������
��������������


P1�s1� t1� � p1�s1�s2� if �s1�s2��Rf ree� �s2� t2�


P2�s2� t2� � p2�s1�s2� if �s1�s2��Rf ree� �s1� t1�


P1�s1� t1� if �s1�s2��R1


P2�s2� t2� if �s1�s2��R2


(4.2.4)


The second formulation of the above Remark (4.2.4) points out how the probability for


a transition �s1�s2�� �t1� t2� can be determined compositionally, in terms of the prob-


ability of the corresponding component’s transition. Whenever the source state �s1�s2�


is in R f ree the transition’s probability is given by a factor of the probability of the cor-


responding Mk’s transition (i.e. sk �� tk) probability, given that �s1�s2� �� �t1� t2�


is a k-move. On the other hand if the source state �s1�s2� is in Rk the only possible


transitions are k-moves, hence the probability of �s1�s2� �� �t1� t2� is equal to the


probability of its corresponding Mk’s transition (i.e. sk �� tk).


Product-form. The steady-state distribution π of a bidimensional Boucherie process


is given by the product of the steady-state distributions of its components. For every


state �s1�s2� � S the following holds:
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π�s1�s2� � G �π1�s
1� �π2�s


2�


where πk�sk� is the probability for component Mk to be in state sk on the long-run,


while G is a normalisation constant.


On subsets of components’ state-space. Concerning the Boucherie framework we


introduce a specific notation to characterise subsets of the component’s state-space


according to the state space partition. Thus given a subset Ak � Sk of component


Mk state-space, the two parts it consists of are denoted, respectively, Ak�R � Sk�R and


Ak�R � Sk�R.


Given two subsets, respectively A1 � S1 and A2 � S2, the intersection of their prod-


uct with the Boucherie state-space S, can be decomposed into the union of two sub-


products, as the following Remark points out.


Remark 4.2.3 Let A1 � S1 and A2 � S2 be two subsets with respect to the components


of a bidimensional Boucherie process with state-space S, then the following holds:


�A1�A2��S � �A1�R�A2�� �A1�R�A2�R� � �A1�A2�R�� �A1�R�A2�R�


Figure 4.2 shows what Remark 4.2.3 is meant to point out: the part of the product of


two subsets A1 and A2 which falls in S allows for a bi-partition which is susceptible


for two different but equivalent characterisations. In the first characterisation (Fig-


ure 4.2.a) one part is obtained by coupling every state of A1 where M1 does not hold R


(i.e. A1�R) with every state of A2, while the other part, is given by coupling the states of


A1 where M1 holds R (i.e. A1�R) only with the states of A2 where M2 does not hold R


(i.e. so that the mutual-exclusion condition is not breached). In the second characteri-


sation (Figure 4.2.b) the first part is obtained by coupling every state of A1 with every


state of A2 such that M2 does not hold R (i.e. A2�R), while the second part, is given by


coupling the states of A1 where M1 does not hold R (i.e. A1�R) only with the states of


A2 such that M2 holds R (i.e. A2�R).
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Figure 4.2: �A1�A2��S � �A1�R�A2�� �A1�R�A2�R� � �A1�A2�R�� �A1�R�A2�R�.


Satisfiability sets Sat�φ��Satk�φ��Satk�R�φ��Satk�R�φ�. If M � �S�Q�L� is a bidimen-


sional Boucherie process with components M1 � �S1�Q1�L1� and M2 � �S2�Q2�L2�


and φ is a CSL formula the following notations will be adopted throughout the remain-


ing parts of this chapter:


� Sat�φ�� S denotes the subset of M ’s states which validate φ.


� Satk�φ�� Sk denotes the subset of component Mk’s states which validate φ.


� Satk�R�φ�� Sk denotes the subset of Satk�φ� consisting only of states where Mk


does not hold R.


� Satk�R�φ�� Sk denotes the subset of Satk�φ� consisting only of states where Mk


holds R.


As will soon be clear, the above characterisation is important in order to find a decom-


positional expression for the set Sat�φ�.
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4.2.1 Partitioning the Atomic Propositions set


In order to find a compositional semantics for formulae of the CSL with respect to


bidimensional Boucherie processes, the set of atomic propositions AP on which the


formulae are built needs to be partitioned. Since the components of a Boucherie frame-


work are independent processes it is sensible to keep the atomic propositions referring


to one process separated from the ones referring to the other process.


AP � AP1�AP2


where APk denotes the atomic propositions for component Mk.


As a consequence of the AP’s partition, the CSL formulae referring to a bidimen-


sional Boucherie process can also be distinguished according to the number of com-


ponents they refer to. We will call single-component formulae, the formulae which


state properties concerning one component only (i.e. those formulae involving atomic


proposition of one part only, either AP1 or AP2) as opposed to general formulae, namely


those formulae which refer to both components (i.e. formulae for which atomic propo-


sitions of both components are involved). The following two definitions, provide a


formalisation of these concepts.


Definition 4.2.2 (Single-component formulae) Let M ��S�Q�L� be a bidimensional


Boucherie process labelled over the set AP � AP1 � AP2, where APk is the atomic


propositions set for component Mk. The formulae φk characterised by the following


syntax are CSL single-component state formulae:


φk :� ak � tt � �φk � φk�φk � S�p�φk� � P�p�ϕk� (state-formulae)


ϕk :� X Iφk � φk UIφk (path-formulae)
(4.2.5)


where ak � APk.


Definition 4.2.3 (General formulae) Let M � �S�Q�L� be a bidimensional Bouche-


rie process labelled over the set AP � AP1�AP2, where APk is the atomic propositions


set for component Mk. The formulae φ12 characterised by the following syntax are


CSL general formulae:


φ12 :� φ1�φ2 � φ2�φ1 � �φ12 � S�p�φ12� � P�p�ϕ12� (state-formulae)


ϕ12 :� X Iφ12 � φ j12 UIφ12 � φ12 UIφk � φk UIφ j12 (path-formulae)
(4.2.6)
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where φk are CSL single-component.state formulae as in Definition 4.2.2.


As a consequence of the partition of the atomic proposition set AP the set of CSL


state formulae Φ for a bidimensional Boucherie process is is also partitioned in the


following manner:


Φ � Φ1�Φ2�Φ12


Each formula φ � Φ can be classified as single-component or general by means of a


function, named At��, which returns the set of atoms φ is built on.


Definition 4.2.4 (Atoms of a CSL formula) Let AP be a set of atomic propositions


and φ a CSL formula built on AP. The function At�� : Φ� ϕ � AP, is defined as


follows:


At�φ� �


���������
��������


a if φ� a


At�φ���At�φ��� if φ� φ��φ��


At�φ�� if φ� �φ�


At�φ�� if φ� S�p�φ��
At�ϕ� if φ� P�p�ϕ�


At�ϕ� �


�
At�φ�� if ϕ� X φ�


At�φ���At�φ��� if ϕ� φ�Uφ��


where ϕ denotes the set of path formulae ϕ built on AP.


Relying on the above Definition the classification for the formulae φ referring to a


bidimensional Boucherie process can straightforwardly be obtained as follows:


φ �


����
���


φk iff At�φ�� APk


φ12 iff ��At�φ��AP1� �� /0�� ��At�φ��AP2� �� /0�


(4.2.7)


In the next section we deal with the problem of deriving a compositional semantics for


single-component formulae. The results there obtained will be then exploited through-
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out the subsequent section, where the study of a compositional way to check general


formulae is faced.


4.3 Model checking non-Probabilistic state formulae


In this section a restricted syntax of the CSL logic is considered and a compositional


semantics, with respect to a bidimensional Boucherie process, is proved for the formu-


lae belonging to it. The logic is obtained from the one described in Definition 2.3.5,


by disallowing probabilistic path formulae. Essentially only Boolean combinations of


atomic-propositions and steady-state formulae are permitted; furthermore the steady-


state connective S�p cannot be nested (i.e. it can appear at top-level only). This last


feature, though, does not affect the logic expressiveness, since models in a Boucherie


framework are ergodic CTMCs. Hence, as proved by Proposition 3.5.10, the expres-


siveness is unchanged: the logic given by eliminating P�p�ϕ� from Definition 2.3.5 is


semantically equivalent to the one characterised by the following syntax.


φ ::� ψ � ξ � φ�φ � �φ


ψ ::� tt � a � ψ�ψ � �ψ


ξ ::� S�p�ψ�


(4.3.1)


The remainder of this section is split in two parts: the first is devoted to proving the


existence of a compositional semantics for single-component formulae; the second


involves the analysis of the general formulae case.


4.3.1 Compositional semantics for single-component formulae


We take into account only formulae which are built on atomic propositions belonging


to APk (k � �1�2�). The syntax for single-component formulae, results from the one


described by equation 4.3.1:
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φk ::� ψk � ξk � φ�k �φ��k � �φk


ψk ::� tt � ak � ψk �ψk � �ψk


ξk ::� S�p�ψk�


(4.3.2)


Given a state �s1�s2� of the product-process, we aim to prove that there exists a trans-


formation function ft : Φk � Φk, which applied to a single-component formula φk,


returns another single-component formula ft�φk�, such that:


�s1�s2� �� φk �� sk ��k ft�φk� (4.3.3)


where ��k denotes the semantics relationship with respect to component Mk. The


equivalence 4.3.3 provides us with a compositional semantics for single-component


state-formulae φk: checking the validity of φk with respect to a state �s1�s2� of a bidi-


mensional Boucherie process is equivalent to check the validity of a derived formula


ft�φk� with respect to the projection state sk of component Mk.


As one can easily understand, the main issue with the characterisation of “composition-


ally” equivalent single-component formulae, concerns steady-state formulae, namely


S�p�ψk�. It will be shown that characterising the equivalence for S�p�ψk� concerns


the derivation of an equivalent probability bound p̂ which depends on the original one,


i.e. p, as well as on the argument formula ψk and on the component Mk it refers to,


which is: a formula S�p�ψk� is valid in a bidimensional Boucherie M if and only if


S� p̂�ψk� is valid with respect to the component Mk.


The characterisation of the equivalent probability bound for single-component steady-


state formulae, is given by a function named g�� whose definition follows.


Definition 4.3.1 (Equivalent steady-state probability bound function g��) Let


ψk �Ψk be a single-component formula , where Ψk is the set of ψk formulae described


by equation 4.3.2; the function g�� : �0�1��Ψk�CTMC � �0�1� is defined as:
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g�p�ψk�Mk� �


����������
���������


p
G if Satk�ψk�� Sk�R


p
G�Cj


if Satk�ψk�� Sk�R


p�G�Ck j
G�Cj


if �Satk�R�ψk� �� /0�� �Satk�R�ψk� �� /0�


(4.3.4)


where G is the product-form normalisation constant, and C j and Ck j are respectively


defined as follows:


Cj � ∑
t j�S j�R


π j�t
j�


Ck j � ∑
sk�Satk�R�ψk�


πk�s
k� ∑


s j�S j�R


π j�s
j� �


�
∑


sk�Satk�R�ψk�


πk�s
k�
�
� �1�Cj�


(4.3.5)


The function g distinguishes between three different cases depending on Satk�ψk�. The


proof of correctness for g�� will be faced in Theorem 4.3.1, here an informal descrip-


tion of the intuitions it relies on is given. Figure 4.3 provides a graphical description of


the three possible cases concerning the satisfiability set for a formula ψ1 with respect


to component M1: Sat1�ψ1� � S1�R (Figure 4.3.a), Sat1�ψ1� � S1�R (Figure 4.3.c) or


�Sat1�ψ1��S1�R� �� /0 and �Sat1�ψ1��S1�R� �� /0 (Figure 4.3.b). The main point in deter-


mining the equivalent probability bound for a steady-state formula S�p�ψk�, is to find


a decomposition of the set Sat�ψk� in terms of products of subsets of the components’


state-space Sk and S j.


� if ψk is satisfied only in states where component Mk does not hold R


(i.e. Satk�ψk� � Sk�R, see figure 4.3.a) then it is straightforward to prove that


the set of M ’s states satisfying ψk is given by2 Sat�ψk� � Satk�ψk��S j. In such


a case, as will be proven by Theorem 4.3.1, the equivalent probability bound


g�p�ψk�Mk� is given by p
G .


2Here we are assuming k � 1 and j � 2; clearly if k � 2 and j � 1, then Sat�ψ k� � S j�Satk�ψk�.
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Figure 4.3: Three possibilities concerning Sat1�ψ1�.


� on the other hand, if ψk is satisfied only in states where component Mk retains R


(i.e. Satk�ψk�� Sk�R, see figure 4.3.c) then Sat�ψk� � Satk�ψk��S j�R. As a con-


sequence, (see Theorem 4.3.1), the equivalent probability bound g�p�ψk�Mk�,


is given by p
G�Cj


. It is relevant to note that the constant C j represents the long-


run probability of not holding the shared resource for component M j. Thus,


the meaning of g�p�ψk�Mk� in this case is as follows: checking the steady-state


probability of ψk against a probability bound p with respect to M is equivalent


to check the steady-state probability of ψk with respect to Mk, against a derived


bound whose value depends on the probability that M j does not hold R in the


long-run.


� the most complex situation is when ψk is valid both in states where Mk does and


does not holds R (i.e. �Satk�R�ψk� �� /0�� �Satk�R�ψk� �� /0� see figure 4.3.b) then


Sat�ψk� is decomposable in two parts Sat�ψk�� �Satk�R�ψk��S j�� �Satk�R�ψk��


S j�R�; the first one is given by coupling all those states where Mk does not hold


R but satisfies ψk (i.e. Satk�R�ψk�) with any state of M j (i.e. S j); the second


part is obtained by coupling the states where Mk holds R and satisfies ψk (i.e.
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Satk�R�ψk�), only with those states where M j does not hold R (i.e. S j�R): the


states of S j�R must be ruled out in order not to breach the mutually exclusive


access to R. The equivalent probability bound g�p�ψk�Mk�, in that case, is given


by
p�G�Ck j


G�Cj
. The constant Ck j represents the long-run probability for component


M j to hold the shared resource weighted by the probability for component Mk


to satisfy ψk while not holding R at steady-state. Summarising, in this case,


checking S�p�ψk� with respect to a bidimensional Boucherie M is equivalent


to check S� p̂�ψk� with respect to Mk, where the equivalent probability bound p̂


depends on two factors: the probability of M j to retain R in the long-run and the


probability of Mk to not satisfy ψk while not holding R in the long-run.


The formal definition of the transformation function for the the single-component for-


mulae, can be now introduced.


Definition 4.3.2 (Transformation function ft��) Let φk � Φk be a single-component


formula, where Φk is the set of single-component formulae φk described in equation


4.3.2; the transformation function ft�� : Φk �Φk is defined as:


ft�φk� �


���������������
��������������


φk if φk�ψk


� ft�φ�k� if φk��φ�k


ft�φ�k�� ft�φ��k � if φk��φ�k�φ��k �


Sg�p�ψk�Mk�
�ψk� if φk � ξk � S�p�ψk�


(4.3.6)


Having introduced the transformation function ft��, the next step is to prove that it


is actually correct (i.e. it provides us with formulae that are “compositionally” equiva-


lent to the transformed one). This is the result of the Theorem 4.3.1. Before proceeding


with proving the correctness of the transformation function, a minor, but relevant re-
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sult, concerning the characterisation of the satisfiability set Sat�φk� needs to be shown


and is done in the following Lemma.


Firstly, though, a notational peculiarity which is assumed in the following, deserves


to be clarified: in general k� j � �1�2� are interchangeable indices used to distinguish


elements (i.e. sets of states, formulae, set of atomic propositions � � �) referring to the


components of a bidimensional Boucherie process. In the following, the Cartesian


product of subsets of the two components, like, for example, Satk�ψk� and S j, even


though asymmetric, always appear in the form Satk�ψk�� S j (i.e. with k as the first


operand of the product and j the second), which with respect to the Boucherie frame-


work is proper only if k � 1� j � 2 is assumed. Nevertheless in the following wherever


a result involving the Cartesian product of a k subset times a j (i.e. k first operand


and j second operand of the product) is shown, that result also holds in the dual case


k � 2� j � 1: in such a case, a product like Satk�ψk�� S j has to be intended as if


reversed, which is S j�Satk�ψk�.


Lemma 4.3.1 Let M be a bidimensional Boucherie process and φk a single compo-


nent state-formula from the syntax described by equation (4.3.2), then the following


implication holds:


�
�s1�s2� �� φk � sk ��k ft�φk�


�
�� Sat�φk� � �Satk� ft�φk���S j��S


Proof. The equality Sat�φk� � �Satk� ft�φk��� S j� � S has to be shown assuming


�s1�s2� �� φk � sk ��k ft�φk� as hypothesis.


(�) let us suppose that �s1�s2� � Sat�φk� then, �s1�s2� �� φk hence from the hypothe-


sis, also sk ��k ft�φk� �� sk � Satk� ft�φk��. Furthermore, since obviously Sat�φk�� S,


then �s1�s2� � S, hence clearly �s1�s2� � �Satk� ft�φk���S j��S, which proves that any


state �s!�s2� � Sat�φk� is also a state �s1�s2� � ��Satk� ft�φk���S j��S�.


(�) if �s1�s2� � ��Satk� ft�φk��� S j�� S� then �s1�s2� � S� sk � Satk� ft�φk��. Hence,


from the hypothesis, also �s1�s2� � Sat�φk�, which proves that any state


�s1�s2� � ��Satk� ft�φk��� S j�� S� is also a state �s1�s2� � Sat�φk�, hence the equal-


ity Sat�φk� � �Satk� ft�φk���S j��S.
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�


Lemma 4.3.1 shows that by assuming the transformation function’s correctness


(i.e.
�
�s1�s2� �� φk� sk ��k ft�φk�


�
), the satisfiability set Sat�φk� for a single-component


formula can be decomposed in terms of the satisfiability set, with respect to component


Mk, of the corresponding transformed formula ft�φk� (i.e. Satk�φk�). This result turns


out to be useful in the proving the following Theorem.


Theorem 4.3.1 Let M be a bidimensional Boucherie process and φk a single compo-


nent state-formula as in (4.3.2), then the following implication holds:


�s1�s2� �� φk �� sk ��k ft�φk� ��s1�s2� � S


where ft is defined as in (4.3.6).


Proof. By structural induction over the form of φk.


base case: φk � ψk � ak.


The proof is trivial. From Definition 4.3.2 we have that ft�ak� � ak. Furthermore an


atomic proposition ak labels a state �s1�s2� of the Boucherie process if and only if it


labels the state sk of component Mk (i.e. ak � L��s1�s2��� ak � Lk�sk�). Hence,


clearly


�s1�s2� �� ak �� sk ��k ak�


induction step: all the other cases have to be considered.


1. φk � �ψk .


Let us assume the following inductive hypothesis:


�s1�s2� �� ψk �� sk ��k ft�ψk� ��s1�s2� � S (4.3.7)


We aim to show that the following bi-implication:


�s1�s2� �� �ψk �� sk ��k � ft�ψk��


(�) if �s1�s2� �� �ψk then clearly �s1�s2� �� Sat�ψk�, hence by inductive hypothesis


(i.e. 4.3.7) also sk �� Satk� ft�ψk��, then clearly sk � Satk�� ft�ψk�� �� sk ��k � ft�ψk�.
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(�) if sk ��k � ft�ψk� then sk �� Satk� ft�ψk��. Hence, by inductive hypothesis (i.e.


4.3.7), also �sk�s j� �� Sat�ψk�, �s j � S j : �sk�s j�� S. But then clearly �sk�s j�� Sat��ψk�


which means �sk�s j� �� �ψk, �s j � S j : �sk�s j� � S .


For the sake of simplicity, we will refer the proof of the remainder of this Theorem


to single-component formulae φk which refer to component M1 (i.e. k � 1), having


in mind that the argument can straightforwardly be reversed to the case of formulae


referring to component M2 (i.e. k � 2).


2. φ1 � ψ�
1�ψ��


1.


From Definition 4.3.2, we have that ft�ψ�
1�ψ��


1� � ft�ψ�
1�� ft�ψ��


1�. Let us assume the


following inductive hypothesis:


�s1�s2� �� ψ�
1 � s1 ��1 ft�ψ�


1� and �s1�s2� �� ψ��
1 � s1 ��1 ft�ψ��


1� (4.3.8)


for all states �s1�s2� � S.


We aim to show that:


�s1�s2� �� ψ�
1�ψ��


1 �� s1 ��1 ft�ψ�
1�� ft�ψ��


1��


for any state �s1�s2� � S.


(�) if �s1�s2� �� ψ�
1�ψ��


1 then clearly �s1�s2� �� ψ�
1 and �s1�s2� �� ψ��


1. Hence, from the


inductive hypothesis (i.e. 4.3.8) also s1 ��1 ft�ψ�
1� and s1 ��1 ft�ψ��


1�, which is to say


s1 ��1 ft�ψ�
1�� ft�ψ��


1�.


(�) if s1 ��1 ft�ψ�
1�� ft�ψ��


1� then clearly s1 ��1 ft�ψ�
1� and s1 ��1 ft�ψ��


1�. Thus, from


from the inductive hypothesis (i.e. 4.3.8), we also have that, �s2 � S2 : �s1�s2� � S,


�s1�s2� �� ψ�
1 and �s1�s2� �� ψ��


1 which means that �s1�s2� �� ψ�
1�ψ��


1.


3. φ1 � ξ1 � S�p�ψ1�.


Let us assume (4.3.7) as inductive hypothesis. From Definition 4.3.2, we have that


ft�S�p�ψ1�� � S�g�p�ψ1�M1�
ft�ψ1�, hence we aim to prove that3:


3Here �� S�p�ψ1� and ��1 Sg�p�ψ1�M1�� f̂t �ψ1�� are used instead of �s1
�s2� �� S�p�ψ1� and


s1 ��1 Sg�p�ψ1�M1�� f̂t�ψ1�� since models in a Boucherie framework are ergodic CTMCs, hence, as pointed
out in section 3.5, steady-state formulae are actually model dependent rather than state dependent.
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�� S�p�ψ1� �� ��1 Sg�p�ψ1�M1�
� f̂t�ψ1���


(�) if �� S�p�ψ1� then �
∑


�t1�t2��Sat�ψ1�


π�t1� t2�
�
� p


which, since M has a product form solution, we can rewrite as:


G
�


∑
�t1�t2��Sat�ψ1�


π1�t
1� �π2�t


2�
�
� p


Since we are assuming (4.3.7) as inductive hypothesis, then from Lemma 4.3.1 also


Sat�ψ1� � �Sat1� ft�ψ1��� S2�� S, which, from Remark 4.2.3, we can rewrite as,


Sat�ψ1� � �Sat1�R� ft�ψ1��� S2�� �Sat1�R� ft�ψ1��� S2�R�. As a consequence the sum


in the above inequality, can be split as follows:


G
�


Suma�Sumb
�
� p (4.3.9)


where:


Suma � ∑
t1�Sat1�R� ft�ψ1�


π1�t
1� � ∑


t2�S2


π2�t
2�


Sumb � ∑
t1�Sat1�R� ft�ψ1�


π1�t
1� � ∑


t2�Sat2�R


π2�t
2�


Three different cases, depending on the set Sat1� ft�ψ1��, need to be considered:


� Sat1� ft�ψ1��� S1�R:


in such a case g�p�φ�1�M1� �
p
G , hence we aim to show that�


G
�


Suma �Sumb
�
� p


�
��


��
∑


t1�Sat1� ft�ψ1��


π1�t
1���


p
G


�


Note that


Sat1� ft�ψ1��� S1�R �� Sat1�R� ft�ψ1�� � /0


hence the sum Sumb � 0 in (4.3.9). Thus (4.3.9) results in:


G
�


∑
t1�Sat1� ft�ψ1��


π1�t
1� ∑


t2�S2


π2�t
2�
�
� p
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which, since π2 is a distribution over S2, results in:


G
�


∑
t1�Sat1� ft�ψ1��


π1�t
1��� p


proving that:


s1 ��1 S� p
G


�
ft�ψ1�


	
�


(�) By reversing the order of passages in ���.


� Sat1� ft�ψ1��� S1�R.


In this case g�p�ψ1�M1� �
p


G�C2
where C2 � ∑t2�S2�R


π2�t2�, obtained from 4.3.5


with j � 2, is the probability of not holding R for component M2 in the long-run.


Hence we aim to show that


�
G
�


Suma�Sumb
�
� p


�
��


��
∑


t1�Sat1� ft�ψ1��


π1�t
1���


p
G �C2


�


Note that


Sat1� ft�ψ1��� S1�R �� S1�R � /0


hence the sum Suma � 0 in (4.3.9). Thus (4.3.9) results in:


G
�


∑
t1�Sat1� ft�ψ1��


π1�t
1� ∑


t2�S2�R


π2�t
2�
�
� p


which, proves that


s1 ��1 S� p
G�C2


�
ft�ψ1�


	
�


(�) By reversing the order of passages in ���.


� �Sat1�R� ft�ψ1�� �� /0�� �Sat1�R� ft�ψ1�� �� /0�:
In this case g�p�ψ1�M1� �


p�G�C2
G�C12


where C2 is as in the previous case while


C12 � ∑
s1�Sat1�R�ψ1�


π1�s
1� ∑


s2�S2�R


π2�s
2� �


�
∑


s1�Sat1�R�ψ1�


π1�s
1�
�
� �1�C2�
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is the probability for M1 to satisfy ψ1 while holding R on the long-run, weighted


by the long-run probability for M2 to hold R (both C2 and C12 are given by 4.3.5


with k � 1� j � 2). Hence we aim to show that�
G
�


Suma �Sumb
�
� p


�
��


��
∑


t1�Sat1� ft�ψ1��


π1�t
1���


p�G �C2


G �C12


�


Since (�Sat1�R� ft�φ1�� �� /0�� �Sat1�R� ft�φ1�� �� /0�), then both Suma and Sumb


in (4.3.9) are greater than zero. By factoring out the common states in S2, and


noting that ft�ψ1� � ψ1, we obtain:


G
�


∑
t1�Sat1� ft�ψ1��


π1�t
1� ∑


t2�S2�R


π2�t
2�� ∑


t1�Sat1�R� ft�ψ1��


π1�t
1� ∑


t2�S2�R


π2�t
2�
�
� p


which results in: �
∑


t1�Sat1� ft�ψ1��


π1�t
1�
�
�


p�G �C2


G �C12


hence proving that


s1 ��1 S
�


p�G�C2
G�C12


�
ft�ψ1�


	
�


(�) By reversing the order of passages in ���.


The proof for the remaining cases (i.e. φ1� φ�1�φ��1, φ1��φ�1) is similar to the previous


cases, hence, for brevity, we skip it.


�


The above Theorem proves the correctness of the compositional semantics for the


single-component non-probabilistic state-formulae (i.e. formulae characterised by the


syntax 4.3.2), as it is described by the transformation function ft��. Hence checking


a non-probabilistic state-formula which refers to a single component only, either M1


or M2, against M is equivalent to checking a derived non-probabilistic state-formula


against the component it refers to.


Next, formulae involving both components of the Boucherie process are considered


and a compositional semantics is derived for them.
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4.3.2 Compositional semantics for general formulae


CSL general formulae are generated by coupling single component formulae relating


to different components (φ1 and φ2), by means of binary connectives. Their formal


characterisation, with respect to the original CSL syntax, has been shown in Defini-


tion 4.2.3. Here, though, the same restrictions imposed for single-component formulae


are considered: probabilistic-path formulae (P�p�ϕ�) are ruled out and nesting of the


steady-state connective (S�p) is not permitted.


The resulting syntax for general non-probabilistic state-formulae (i.e. which is di-


rectly derived from the syntax for generic non-probabilistic state-formulae described


in 4.3.1) is as follows:


φ12 ::� φ1�φ2 � φ2�φ1 � φk �φ12 � φ12�φk � φ12�φ12 � ξ12 � �φ12


ψ12 ::� ψ1�ψ2 � ψ2�ψ1 � ψk �ψ12 � ψ12�ψk � ψ12�ψ12 � �ψ12


ξ12 ::�S�p�ψ12�


(4.3.10)


where φk and ψk are as in 4.3.2, while ξ12 are steady-state formulae whose argument is


a general formula (i.e. it refers to both components M1 and M2). The use of a specific


production for ξ12 formulae in 4.3.10, prevents the possibility of nesting S�p.


The basic idea on which the compositional semantics for general formulae relies, is


that given a formula φ12 whose validity is to be checked against a state �s1�s2�, there ex-


ists a Boolean combination of satisfiability conditions concerning some derived single-


component formulae, which turns out to be equivalent to �s1�s2� �� φ12.


To explain the intuition on which this idea is based, let us consider an example,


referring to the Boucherie process introduced as our running example in Section 2.5.1.


Suppose we are interested in checking whether the general formula �idle1� idle2� is


satisfied with respect to the state �s10�s20� of the Boucherie process pictured in Fig-


ure 2.8. From the CSL semantics we know that, trivially,


�s10�s20� �� �idle1� idle2��� �s10�s20� �� idle1 and �s10�s20� �� idle2


but then, from Theorem 4.3.1 (i.e compositional semantics for single-component for-







4.3. Model checking non-Probabilistic state formulae 103


mulae), it follows that


�s10�s20� �� �idle1� idle2��� s10 ��1 idle1 and s20 ��2 idle2


The above, trivial, example shows that a compositional semantics for general formulae


is possible; in fact, checking : the validity of �idle1� idle2� against the state �s10�s20�


of the Boucherie process is equivalent to check that idle1 and idle2 are valid with


respect to the states s1 and s2 of the components’ processes.


The formal characterisation of the “decomposed equivalent satisfiability condi-


tions” for a formula φ12 and a state �s1�s2� is by means of the function cond��, in-


troduced in Definition 4.3.4. The main point there regards the case of steady-state


general formulae (i.e. last case of Definition 4.3.4). In order to define the equivalence


for φ12 � ξ12 � S�p�ψ12�, a decomposed characterisation of Sat�ψ12� is needed (i.e.


Sat�ψ12� must be partitioned in a number of parts each of which is given by the Carte-


sian product of subsets of the two components). This is achieved through the function


DecSat�� : Ψ12 � 2Ψ1�Ψ2 , which takes a ψ12 formula as argument and returns a set of


pair of single-component formulae �φ1�φ2� � �Ψ1�Ψ2� characterising a partition of


Sat�ψ12� (see Lemmma 4.3.2).


Definition 4.3.3 (function DecSat�� : Ψ12 � 2Ψ1�Ψ2) Let ψ12 be a Boolean proposi-


tion as described in (4.3.10). The value DecSat�ψ12� is defined as follows:


DecSat �ψ12� ���������������������
�������������������


��ψ1�ψ2�� if �ψ12 � ψ1�ψ2�


�ψ12 � ψ2�ψ1�


ψk ANDk DecSat�ψ�
12� if �ψ12 � ψk �ψ�


12�


�ψ12 � ψ�
12�ψk�


DecSat�ψ�
12� AND DecSat�ψ��


12� if �ψ12 � ψ�
12�ψ��


12�


�
�α1�α2��DecSat�ψ�


12�
���α1� tt���α1��α2�� if ψ12 � �ψ�


12
(4.3.11)
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where AND1, AND2 and AND are binary operators returning, respectively, the con-


junction of a single-component formula with a set of pairs of single-component formu-


lae and the pairwise conjunction of two sets of pairs of single-component formulae.


Formally


�γ1 AND1 Γ� �
�


�α1�α2��Γ
��γ1�α1�α2��


�γ2 AND2 Γ� �
�


�α1�α2��Γ
��α1�α2� γ2��


�Γ�AND Γ��� �
�


�α�1�α
�
2��Γ�


� �
�α��1 α��2��Γ��


��α�1�α��1�α
�
2�α��2��


�


and where
�


in (4.3.11) refers to the conjunction AND of sets of pairs of single-


component formulae.


The next Lemma proves that the set of pairs of single-component formulae provided


by DecSat�ψ12� actually represents a characterisation of a partition of Sat�ψ12�. In


order to prove such a result a preliminary property concerning the complement of the


Cartesian product of two subsets, needs to be introduced.


Proposition 4.3.1 (Complement of a Cartesian product) Let A� � A and B� � B, be


subsets, respectively, of a set A and a set B. The complement of the Cartesian product


A��B� is given by:


A��B� � �A��B�� �A��B��


Proof. We need to show that the following bi-implication holds:


�a�b� � A��B��� �a�b� � ��A��B�� �A��B���


(�) If �a�b�� A��B� then �a� A�b� B��. But �a� A�b� B�� �� �a�b�� �A��B�


which proves (�).
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(�) If �a�b�� ��A��B���A��B��� two cases need to be considered. If �a�b�� �A��B�


then �a�A��b�B� but this implies also �a�A�b�B��which proves �a�b��A��B�.


On the other hand if �a�b� � �A�� B�� then �a � A� � b � B�� but this implies also


�a � A�b � B�� which proves �a�b� � A��B�.


�


S1


S


S2


��


�� � ����


���


���


���


���


Figure 4.4: Decomposition of Sat�a1�a2� � �Sat1��a1��S2�� �Sat�a1��Sat��a2��.


Figure 4.4 shows an example of application of Proposition 4.3.1 to a bidimensional


Boucherie process: the complement of Sat�a1�a2�� Sat1�a1��Sat2�a2� is partitioned


in two subsets. The first one being �Sat�a1��S2� � �Sat1��a1��S2�; the second one


being �Sat�a1��Sat2�a2�� � �Sat1�a1��Sat2��a2��.


The result of Proposition 4.3.1 is needed for proving the following Lemma, which


shows that DecSat�ψ12� actually characterises a partition of Sat�ψ12�.


Lemma 4.3.2 Let M be a bidimensional Boucherie process and ψ12 a formula as in


the syntax described by (4.3.10), then the following holds:


Sat�ψ12� �
�


�α1�α2��DecSat�ψ12�


�
Sat1�α1��Sat2�α2�


�
� �R1R2� (4.3.12)
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Proof. By structural induction over the definition of DecSat��. For simplicity we


denote the right hand side of the equality (4.3.12) as S��ψ12�.


Proving the equality (4.3.12) means showing that


�s1� t2� � Sat�ψ12��� �s1� t2� � S��ψ12�


base case:4 ψ12 � ψ1�ψ2 or ψ12 � ψ2�ψ1�


From Definition 4.3.3, we know that, in this case, DecSat�ψ12� � ��ψ1�ψ2��, hence


S��ψ1�ψ2� � �Sat1�ψ1��Sat2�ψ2��� �R1R2�. Thus we aim to prove that


�s1�s2� � Sat�ψ1�ψ2��� �Sat1�ψ1��Sat2�ψ2��� �R1R2�


��� if �s1�s2� � Sat�ψ1�ψ2� then �s1�s2� �� ψ1 and �s1�s2� �� ψ2 and clearly also


�s1�s2� � S. But then from Theorem 4.3.1, we also have that, �s1 ��1 ψ1 � s2 ��2 ψ2�


which proves, �s1�s2� � S��ψ1�ψ2�.


��� by reversing ���.


induction step: all the remaing cases in the definition of DecSat�� needs to be consid-


ered.


1. ψ12 � ψk �ψ�
12 or ψ12 � ψ�


12�ψk


Again here, for brevity, we consider only the case ψ12 � ψk �ψ�
12, knowing that the


same result holds also for ψ12 � ψ�
12�ψk as a direct consequence of the simmetricity


of the conjunction.


If ψ12 �ψ1�ψ�
12 then DecSat�ψ12� � �ψ1 AND1 DecSat�ψ�


12��, hence we aim to show


that


�s1�s2� � Sat�ψ1�ψ�
12��� �s1�s2� �


�
�α1�α2���ψ1 AND1 DecSat�ψ�


12��


�
Sat1�α1��Sat2�α2�


�
��R1R2��


As inductive hypothesis let us assume


Sat�ψ�
12� � S��ψ�


12�


4For brevity we consider ψ12 � ψ1 �ψ2 as our base-case, knowing that same result holds when
ψ12 �ψ2�ψ1 is considered.
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��� if �s1�s2� � Sat�ψ1 � ψ�
12� then it is true that �s1�s2� � Sat�ψ1� and


�s1�s2�� Sat�ψ�
12� and clearly also �s1�s2�� S. Though, if �s1�s2�� Sat�ψ�


12� then (in-


ductive hypothesis) there exists a pair �α�
1�α


�
2� � DecSat�ψ�


12� such that


�s1�s2� � �Sat1�α�1��Sat2�α�2��� �R1R2�. which means �s1�s2� �� α�1 and �s1�s2� �� α�2.


From Theorem 4.3.1 then also s1 ��1 α�1 and s2 ��2 α�2 and also s1 ��1 ψ1 which proves


�s1�s2� � �Sat1�ψ1�α�1��Sat2�α�2��� �R1R2� hence �s1�s2� � S��ψ1�ψ�
12�.


��� by reversing ���.


2. ψ12 � ψ�
12�ψ��


12�


If ψ12 � ψ�
12 �ψ��


12 then DecSat�ψ12� � �DecSat�ψ�
12� AND DecSat�ψ��


12��, hence we


aim to show that


�s1�s2� � Sat�ψ�
12�ψ��


12��� �s1�s2� �
�


�α1�α2���DecSat�ψ�
12� AND DecSat�ψ��


12��


�
Sat1�α1��Sat2�α2�


�
��R1R2��


Let assume the following inductive hypothesis:


Sat�ψ�
12� � S��ψ�


12� and Sat�ψ��
12� � S��ψ��


12�


��� if �s1�s2� � Sat�ψ�
12�ψ��


12� then


�s1�s2� � Sat�ψ�
12�� �s1�s2� � Sat�ψ��


12�


Hence also, (inductive hypothesis) �s1�s2� � S��ψ�
12� and �s1�s2� � S��ψ��


12�, but that


means that there exists a pair �α�
1�α


�
2��DecSat�ψ�


12� and a pair �α��1�α
��
2��DecSat�ψ��


12�


such that �s1�s2� � �Sat1�α�1� � Sat2�α�2�� � �R1R2� and


�s1�s2� � �Sat1�α��1�� Sat2�α��2�� � �R1R2�. Then, as a consequence of Theorem 4.3.1,


also �s1�s2�� �Sat1�α�1�α��1��Sat2�α��α��2����R1R2�. From the definition of the opera-


tor AND it is straightforward to show that �α�
1�α


�
2� � DecSat�ψ�


12� and


�α��1�α
��
2� � DecSat�ψ��


12� implies �α�
1�α��1 �α


�
2�α��2� � DecSat�ψ�


12�ψ��
12� which proves


�s1�s2� � S��ψ�
12�ψ��


12�.


��� by reversing ���.
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3. ψ12 � �ψ�
12


If ψ12 � �ψ�
12 then


DecSat�ψ12� �
�


�α1�α2��DecSat�ψ�
12�
���α1� true���α1��α2��


where
�


refers to the binary operator AND as described in Definition 4.3.3. We denote


the right hand side of the above equality as NOT �ψ�
12�. Hence we aim to show that


�s1�s2� � Sat��ψ�
12��� �s1�s2� �


�
�α1�α2��NOT �ψ�


12�


�
Sat1�α1��Sat2�α2�


�
��R1R2��


Let assume the following inductive hypothesis:


Sat�ψ�
12� � S��ψ�


12�


��� if �s1�s2� � Sat��ψ�
12� then �s1�s2� �� Sat�ψ�


12� which also means (inductive hy-


pothesis) that �s1�s2� �� �Sat1�α1��Sat2�α2����R1R2�, ��α1�α2��DecSat�ψ�
12�. Which


is �s1�s2� � �Sat1�α1��Sat2�α2��� �R1R2�, hence:


�s1�s2� �
�


�α1�α2��DecSat�ψ�
12�


�
�Sat1�α1��Sat2�α2��� �R1R2�


�


From Proposition 4.3.1 we know that


�Sat1�α1��Sat2�α2�� � �Sat1�α1��S2�� �Sat1�α1��Sat2�α2��


� �Sat1��α1��S2�� �Sat1�α1��Sat2��α2��


thus


�s1�s2� �
�


�α1�α2��DecSat�ψ�
12�


�
�Sat1��α1��S2�� �Sat1�α1��Sat2��α2��


�
� �R1R2�


Considering the distribution of � with respect to both � and � and also considering


that, Sat1�φ�1�� Sat1�φ��1� � Sat1�φ�1 � φ��1� for any two single-component formulae φ�1
and φ��1, then it straightforwardly follows that


�
�α1�α2��DecSat�ψ�


12�


�
�Sat1��α1��S2�� �Sat1�α1��Sat2��α2��


�
�R1R2 �


�
�δ1�δ2��NOT �ψ�


12�


Sat1�δ1��Sat2�δ2��R1R2


which proves ���.
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��� By reversing ���.


�


In the next example some ψ12 formulae are considered and the set DecSat�ψ12� is


computed, illustrating the application of the above Lemma.


Example 4.3.1 (Decomposition of Sat�ψ12� by means of DecSat�ψ12�) Let us consider


the application DecSat�� to some ψ12 formulae. We focus on ψ12 formulae involving


four atomic propositions, namely �a1�b1�a2�b2� (i.e. At�ψ12� � �a1�b1�a2�b2�). We


observe that there are four possible situations concerning the relationship between


Sat1�a1� and Sat1�b1� on one hand and Sat2�a2� and Sat2�b2� on the other and these


can be characterised in the following way:


a) �Sat1�a1��Sat1�b1� � /0� �Sat2�a2��Sat2�b2� � /0�.
This case relates to one out of the three situations depicted in Figure 4.5.


b) �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� �� /0�.
This case relates to Figure 4.6.


The distinction concerning the possible relationship between the satisfiability sets for


the atoms a1�b1 and a2�b2 is useful to show that the decomposition provided by DecSat�ψ12�


is correct in any possible situation. Let us focus on the following examples of ψ12.


1. ψ12 � ψ1�ψ2 � �a1�b1�� �a2�b2�.


In this case we know that, trivially, Sat��a1 � b1�� �a2 � b2�� is given by the part


of the Cartesian product Sat1��a1� b1��� Sat2�a2 � b2� which intersects S which is:


Sat��a1�b1�� �a2�b2�� � Sat1��a1�b1���Sat2�a2�b2�� �R1R2�. Also, from Defi-


nition 4.3.11, we have that:


DecSat��a1�b1�� �a2�b2�� � ��a1�b1���a2�b2��
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b) c)


Figure 4.5: �Sat1�a1��Sat1�b1� � /0� �Sat2�a2��Sat2�b2� � /0�.


which shows the correctness of Lemma 4.3.2 for this case.


Let us consider, one by one, each possibility regarding the satisfiability of the atoms


a1�b1 and a2�b2 and let us show that in any case Sat��a1� b1�� �a2� b2�� is char-


acterised in terms of the product �Sat1�a1 � b1�� Sat2�a2 � b2�� � �R1R2�. If either


Sat1�a1� and Sat1�b1� or Sat2�a2� and Sat2�b2� are disjoint ( Figure 4.5), then clearly


Sat��a1�b1���a2�b2��� /0. Though, clearly, also Sat1�a1�b1� � /0 or Sat1�a1�b1��


/0, hence �Sat1�a1�b1��Sat2�a2�b2�� � /0. On the other hand if both Sat1�a1�b1� and


Sat2�a2�b2� are not empty (Figure 4.6) then the conjunction �a1�b1���a2�b2� is not


empty and Sat��a1�b1���a2�b2�� is actually given by coupling all states of Sat1�a1�
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Figure 4.6: �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� �� /0�.


b1� with all the states of Sat2�a2� b2�, which proves the result of DecSat��a1� b1��


�a2�b2�� being correct also for this case.


In the following, the less trivial case of a negated general formula (DecSat��ψ12�) is


considered. We will focus on two different types of negated general formulae. The first


one is given by the negation of a “simple” conjunction, �ψ12 � ���a1 � b1�� �a2 �


b2��), while the second involves recursion, being the negation of a conjunction whose


conjuncts are themselves negated conjunctions, �ψ12 � ����a1 � a2����b1 � b2��,


(we note that, indeed, this is equivalent to the disjunction of two conjunctions �ψ12 �


�a1� a2� �b1� b2�). In both cases the set DecSat��ψ12� is computed and proved to


be correct by considering every possible case concerning the satisfiability of the atoms


a1�b1 and a2�b2 (see Figure 4.5 and Figure 4.6).


2. ψ12 � �ψ12 � ���a1�b1�� �a2�b2��.


From Definition 4.3.3 we know that DecSat��ψ12� is given by the pairwise conjunction


(AND) between the sets of pairs ���α1� tt���α1��α2�� where �α1�α2� are elements


of DecSat�ψ12�. From the previous case, though, we know that the decomposition of


�a1 � b1� � �a2 � b2� consists of a single pair which is,


DecSat��a1� b1�� �a2� b2�� � ��a1� b1���a2� b2��, hence the decomposition of its
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negation5 is given by:


DecSat����a1�b1�� �a2�b2��� �
�


�α1�α2��DecSat���a1b1��a2b2���
���α1� tt���α1��α2��


� ����a1�b1�� tt����a1�b1����a2�b2���


Let us consider now the different possible situations concerning the satisfiability of the


atoms a1�b1 and a2�b2 and show that in every case the pairs in


DecSat����a1 � b1� � �a2 � b2��� actually provide a characterisation of


Sat����a1�b1�� �a2�b2���.


a) In this case either �Sat1�a1�� Sat1�b1�� � /0 or �Sat2�a2�� Sat2�b2�� � /0, or both.


That means that there can be no such a state �s1�s2�� S where both the conjuncts


�a1�b1� and �a2�b2� are satisfied, hence Sat����a1�b1�� �a2�b2��� � S.


Let us suppose that Sat1�a1� and Sat1�b1� are disjoint; in this case Sat1�a1�b1�


is the empty set (see Figure 4.5.a or Figure 4.5.b), hence Sat1���a1� b1�� � S1


which means Sat1���a1� b1��� Sat2�tt� � S. This proves that the first pair in


DecSat����a1 � b1�� �a2 � b2���, namely ���a1 � b1�� tt�, characterises a sin-


gle element partition of Sat����a1� b1�� �a2� b2���, independently of whether


Sat2�a2� and Sat2�b2� are disjoint or not.


On the other hand if Sat1�a1� and Sat1�b1� are not disjoint while Sat2�a2� and


Sat2�b2� are, then DecSat����a1�b1�� �a2�b2���, provides a two element par-


tition of Sat����a1�b1�� �a2�b2��� � S. Figure 4.6 depicts the form of the two


parts, associated, respectively, with the pair ���a1 � b1�� tt� and with the pair


��a1�b1����a2�b2��.


b) In this case both �Sat1�a1��Sat1�b1�� and �Sat2�a2��Sat2�b2�� are assumed to be


not empty. As a result there will exist at least one state in S where �a1� b1��


�a2�b2� is true, hence Sat����a1�b1�� �a2�b2�� has to be a proper subset of


S. In such a situation the two pairs in DecSat����a1� b1�� �a2� b2��� split the


complement of Sat��a1� b1�� �a2 � b2�� which indeed is equal to Sat����a1�


5It should be noted that, the number of pairs the decomposition of the negation of a ψ 12 formula
consists of, is given by the n-th power of 2, where n is the number of pairs the decomposition of ψ 12 is
made of: �DecSat��ψ12��� 2�DecSat�ψ12��
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b1�� �a2�b2���, in two parts.


3. ψ12 � �a1�a2� �b1�b2�� ����a1�a2����b1�b2��.


Here we consider the negation of the conjunction of two negated general formulae.


In order to determine DecSat�����a1� a2����b1� b2��� we proceed incrementally,


starting from determining the decomposition of the conjuncts:


DecSat���a1�a2�� � ���a1� tt���a1��a2��


DecSat���b1�b2�� � ���b1� tt���b1��b2��


The decomposition of the conjunction ���a1 � a2����b1 � b2�� is then given by the


pairwise conjunction of the conjuncts’ decomposition:


DecSat����a1�a2����b1�b2��� � �DecSat���a1�a2��� AND �DecSat���b1�b2���


� ���a1� tt���a1��a2�� AND ���b1� tt���b1��b2��


� ���a1��b1� tt����a1�b1��b2��


�a1��b1��a2���a1�b1��a2��b2��


Finally DecSat�����a1 � a2� � ��b1 � b2��� can be computed from the terms of


DecSat����a1 � a2����b1 � b2���. This leads to a set of sixteen pairs, which can


straightforwardly be proved equivalent6 to:


DecSat�����a1�a2����b1�b2��� � ���a1�b1���a2b2���


�a1��b1�a2��


��a1�b1�b2��


which suggests a partition of Sat��a1�a2��b1�b2�� consisting of at most three parts.


6That equivalence relies on the fact that some pair of formulae �α 1�α2�, lead to the empty set
(i.e. they are such that Sat1�α1� � /0 or Sat2�α2� � /0). For example, when either α1 or α2 contains
a contradiction (e.g. �a1��a1�b2�) then �α1�α2� can be ruled out as clearly Sat1�α1�� Sat2�α2� � /0.
Similarly a pair like ��a1�b1�����a1�b1����a1��b1����a1�b1�� tt� which is actually one of the
sixteen elements of DecSat���a1� a2����b1 � b2���, can be easily proved to lead to the empty set, as
Sat1��a1�b1�����a1�b1����a1��b1����a1�b1�� � /0 independently of the relationship between
Sat1�a1� and Sat1�b1�.
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Figure 4.7: �Sat1�a1��Sat1�b1� � /0�� �Sat2�a2��Sat2�b2� � /0�.


Let us consider some of the possible situations concerning the sets Sat1�a1�, Sat1�b1�


and Sat2�a2�, Sat2�b2�. In Figure 4.7 both Sat1�a1�, Sat1�b1� and Sat2�a2�, Sat2�b2�


are assumed to be disjoint. In this case the three pairs in DecSat��a1�a2� �b1�b2��


actually result in a bi-partition of Sat��a1� a2� �b1� b2�� as clearly Sat1�a1 � b1�


contains no elements (hence the pair ��a1 � b1���a2� b2�� � DecSat�����a1� a2��


��b1�b2��� leads to the empty set).


A three element partition of Sat��a1� a2� �b1� b2�� results, instead, both when


the intersection between Sat1�a1� and Sat1�b1� is not empty while the one between


Sat2�a2� and Sat2�b2� is (Figure 4.8), and also when neither Sat1�a1� and Sat1�b1� nor


Sat2�a2� and Sat2�b2� are disjoint (Figure 4.9). In those cases all the three pairs in


DecSat��a1�a2� �b1�b2�� correspond to a non-empty subset of S.


Finally a two element partition occurs whenever the set of states satisfying an


atom (either ak or bk) is a proper subset of the satisfiability set of the other. Fig-


ure 4.10 points out the two parts Sat��a1�a2� �b1�b2�� consists of when Sat1�b1��


Sat1�a1� and Sat2�b2�� Sat2�a2�, while Figure 4.11 shows a similar result for the case


Sat1�b1�� Sat1�a1� and Sat2�a2�� Sat2�b2�.


�
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Figure 4.8: �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� � /0�.


Having demonstrated that the decomposition of Sat�ψ12� is given by DecSat�ψ12�, the


function cond�� can be formalised in the next definition.


Definition 4.3.4 (function cond�� : S�Φ12 � B�Sat��) Let �s1�s2� be a state of a bidi-


mensional Boucherie process M and φ12 a formula as in (4.3.10), the value


cond��s1�s2��φ12� is a boolean combination of single-component satisfiability condi-
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Figure 4.9: �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� �� /0�.


tions, defined as:


cond
�
�s1�s2��φ12


	
�


������������������������������
�����������������������������


s1 ��1 ft�φ1� and s2 ��2 ft�φ2� if �φ12 � φ1�φ2�


�φ12 � φ2�φ1�


sk ��k ft�ψk� and cond
�
�s1�s2��φ�12


	
if �φ12 � φk�φ�12�


�φ12 � φ�12�φk�


cond��s1�s2��φ�12� and cond
�
�s1�s2��φ��12


	
if �φ12 � φ�12�φ��12�


not cond
�
�s1�s2��φ�12


	
if φ12 � �φ�12


sk ��k S
�


�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��


�
Gπ j�α j�


�αk� if φ12 � ξ12 � S�p�ψ12� �


�α1�α2� � DecSat�ψ12�
(4.3.13)
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Figure 4.10: �Sat1�b1�� Sat1�a1��� �Sat2�b2�� Sat2�a2��.


where B�Sat� is the set of all boolean combinations of propositions belonging to the


set Sat � Sat1�Sat2, Satk (i � 1�2) being:


Satk ::� �sk ��k φk : sk � Sk�φk �Φk�


and G is the product-form normalisation constant while for any general formula ψ12


and any pair of single-component formulae �α1�α2� �DecSat�ψ12� and the constants


π�R1R2�ψ12�, π��α1�α2��ψ12� and π j�α j� are defined as:


π�R1R2�ψ12� � ∑
�δ1�δ2��DecSat�ψ12�


�
∑


tk�Satk�R�δk�


πk�t
k� ∑


t j�Sat j�R�δ j�


π j�t
j�
�


π��α1�α2��ψ12� � ∑
�δ1�δ2��DecSat�ψ12�


�δ1�δ2����α1�α2�


�
∑


tk�Satk�δk�


πk�t
k� ∑


t j�Sat j�δ j�


π j�t
j�
�


π j�α j� � ∑
t j�Sat j�α j�


π j�t
j�
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Figure 4.11: �Sat1�b1�� Sat1�a1��� �Sat2�a2�� Sat2�22��.


The constants π j�α j�, π��α1�α2��ψ12� and π�R1R2�ψ12� appearing in the definition


of cond��, are measures concerning the long-run behaviour of the Boucherie process


and its components. Let us interpret them. Having in mind that �α1�α2� represents


one of the partitions of Sat�ψ12� by means of DecSat�ψ12�, then π j�α j� represents


the probability for component M j to satisfy the formula α j in the long-run (i.e. the


long-run probability for the projection onto S j of the part of Sat�ψ12� associated with


�α1�α2�).


On the other hand, π��α1�α2��ψ12� is defined as the sum of the steady-state prob-


ability of states in Sat1�δ1�� Sat2�δ2� for every pair �δ1�δ2� �� �α1�α2�. It should be


noted that this value deviates from the steady-state probability of the complement of


the part associated with �α1�α2� (i.e. Sat�ψ12� � �Sat1�α1�� Sat2�α2� � �R1R2��) by a


factor which depends on the part of Sat1�δ1�� Sat2�δ2� which falls in the prohibited


area (i.e. �Sat1�δ1�� Sat2�δ2��� �R1R2�). To understand what that means, let us con-


sider an example. Figure 4.12 depicts what the decomposition of Sat��a1�a2� �b1�


b2�� looks like when some among the states satisfying the atoms a1�b1 and a2�b2 are


such that the component holds R. We already know (see previous example) that


DecSat��a1�a2� �b1�b2�� � ���a1�b1���a2b2����a1��b1�a2����a1�b1�b2��
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Figure 4.12: Meaning of the deviation π�R1R2��a1�a2� �b1�b2�� � π�A��π�B�.


providing a three part partition of Sat��a1� a2� �b1 � b2��, whose elements, A �B
and C are respectively associated with the pairs �a1 ��b1�a2�, ��a1�b1���a2b2��


and ��a1�b1�b2�. We observe that, in this case, the intersection of the products


�Sat1�δ1��Sat2�δ2��� �R1R2� is not empty with two of the three pairs in DecSat��a1�


a2� �b1� b2��, namely ��a1�b1���a2b2�� and ��a1�b1�b2�. We named such not


empty intersections, respectively B (the one regarding ��a1�b1���a2b2��) and C (the


one regarding ��a1�b1�b2�). Now, if we pick up a pair, say ��a1 � b1�b2�, then the


value of the constant π��a1 ��b1�a2���a1 � a2� �b1 � b2��, is given by the sum of


the steady state probability of the areas determined by the other pairs, namely A and


�B �B�, hence:


π��a1��b1�a2���a1�a2� �b1�b2�� � π�A��π�B �B�


� π�A��π�B��π�B�


This value deviates by a factor π�B� from π�A �B� � π�A� � π�B�, which is the


probability of satisfying the formula �a1� a2� �b1� b2� without being in any of the


states associated with the pair ��a1�b1�b2�, in the long-run.


We note that, it is not always the case that the value of the constant π��α1�α2��ψ12�


differs from the probability of the complement Sat�ψ12���Sat1�α1��Sat2�α2���R1R2��.
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In fact, the deviation factor is null either if none of the parts �δ1�δ2� intersect the pro-


hibited area �R1R2� or if the only part that does that is �α1�α2�.


Finally, the constant π�R1R2�ψ12�, represents the sum of the steady-state proba-


bility of the amount of each area �Sat1�δ1��Sat2�δ2��, where �δ1�δ2� � DecSat�ψ12�,


which falls in the prohibited area. Referring to the example depicted in Figure 4.12 we


have that


π�R1R2��a1�a2� �b1�b2�� � π�B��π�C �


Again, we observe that it is not always the case that π�R1R2�ψ12�� 0. If none of the


parts �δ1�δ2� � DecSat�ψ12� intersects R1R2 then clearly π�R1R2�ψ12� � 0. If we re-


fer, for example, to Figure 4.9 then we have that π�R1R2��a1�a2� �b1�b2�� � 0.


The definition of the function cond�� tells us that in order to check that the prob-


ability for a Boucherie process to satisfy ψ12 at steady-state matches a bound p, we


have to chose one of the partitions of Sat�ψ12� by DecSat�ψ12�, namely the part char-


acterised by the pair of formulae �α1�α2�, and check either that the probability for


component M1 to satisfy α1 at steady-state respects a derived bound p̂1 or that the


probability for component M2 to satisfy α2 at steady-state respects a derived bound


p̂2, where the derived bounds p̂1 and p̂2 depend on the chosen part �α1�α2�.


This provides us with the compositional result we were looking for: the computa-


tion of the steady-state distribution for the Boucherie process’s components gives us


enough means to check properties involving the steady-state probability of the Bou-


cherie process itself.


The next Theorem proves that the results suggested by the definition of the function


cond�� are actually correct.


Theorem 4.3.2 Let M � �S�Q�L� be a bidimensional Boucherie process, then for any


general formula φ12 as in (4.3.10) and any state �s1�s2� � S, the following holds:


�s1�s2� �� φ12 �� cond
�
�s1�s2��φ12�


	
where cond�� is as in Definition 4.3.4.
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Proof. By structural induction on the definition of cond��.


base case: φ12 � φ1�φ2.


From Definition 4.3.4 we have that


cond��s1�s2��φ1�φ2� � s1 ��1 ft�φ1� and s2 ��2 ft�φ2�


Hence, we aim to show that:


�s1�s2� �� φ1�φ2 �� s1 ��1 ft�φ1� and s2 ��2 ft�φ2�


��� if �s1� t2� �� φ1 � φ2 then �s1� t2� �� φ1 and �s1� t2� �� φ2. Thus, from Theo-


rem 4.3.1,also s1 ��1 ft�φ1� and s2 ��2 ft�φ2�, which proves ���.


��� By reversing ���.


φ12 � S�p�ψ12�.


In this case we have that:


cond��s1�s2��φ1�φ2� � sk ��k S
�


�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��


�
Gπ2�α2�


�αk�


where �α1�α2� � DecSat�ψ12�. For brevity here we consider only the case with k � 1,


hence, we aim to show that:


�� S�p�ψ12�����1 S
�


�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��


�
Gπ2�α2�


�α1�


��� if �� S�p�ψ12� then


G
�


∑
�t1�t2��Sat�ψ12�


π1�t
1�π2�t


2�
�
� p


From Lemma 4.3.2, we know that


Sat�ψ12� �
�


�δ1�δ2��DecSat�ψ12�


�Sat1�δ1��Sat2�δ2��� �S1�R�Sat2�R�


which, as a consequence of Remark 4.2.3, we can rewrite as


Sat�ψ12� �
�


�δ1�δ2��DecSat�ψ12�


�
�Sat1�δ1��Sat2�R�δ2��� �Sat1�R�δ1��Sat2�R�δ2��


�
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By substitution in the above inequality, we then have:


G ∑
�δ1�δ2��DecSat�ψ12�


�
∑


t1�Sat1�δ1�


π1�t
1� ∑


t2�Sat2�R�δ2�


π2�t
2�� ∑


t1�Sat1�R�δ1�


π1�t
1� ∑


t2�Sat2�R�δ2�


π2�t
2�
�
� p


which by adding to both sides of the inequality the term Gπ�R1R2�ψ12�, where π�R1R2�ψ12�


is as in Definition 4.3.4, results in:


G ∑
�δ1�δ2��DecSat�ψ12�


�
∑


t1�Sat1�δ1�


π1�t
1� ∑


t2�Sat2�δ2�


π2�t
2�
�
� p�Gπ�R1R2�ψ12�


hence


G
�


∑
t1�Sat1�α1�


π1�t
1� ∑


t2�Sat2�α2�


π2�t
2�
�
� p�G � �π�R1R2�ψ12��π��α1�α2��ψ12��


where �α1�α2� � DecSat�ψ12�. Thus:


�
∑


t1�Sat1�α1�


π1�t
1�
�
�


�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��


�
Gπ2�α2�


which proves ���.


��� By reversing ���.


inductive step:


1. φ12 � φk�φ�12.


From Definition 4.3.4 we know that for any state �s1�s2� � S


cond��s1�s2��φk�φ�12� � sk ��k ft�φk� and cond��s1�s2��φ�12�


Hence we aim to prove that:


�s1�s2� �� φk�φ�12 �� sk ��k ft�φk� and cond��s1�s2��φ�12��


Let us assume that


�s1�s2� �� φ�12 �� cond��s1�s2��φ�12��
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as inductive hypothesis.


��� if �s1�s2� �� φk � φ�12 then �s1�s2� �� φk and �s1�s2� �� φ�12. Then from Theo-


rem 4.3.1 sk ��k φk and from the inductive hypothesis also cond��s1�s2��φ�12� which


proves ���.


��� By reversing ���.


2. φ12 � φ�12�φ��12


Similar to the one above.


3. φ12 � �φ�12.


From Definition 4.3.4 we know that for any state �s1�s2� � S


cond��s1�s2���φ�12� � not cond��s1�s2��φ�12�


Hence we aim to prove that:


�s1�s2� �� �φ�12 �� not cond��s1�s2��φ�12��


Let us assume the following inductive hypothesis:


�s1�s2� �� φ�12 �� cond��s1�s2��φ�12�


��� Trivial consequence of the inductive hypothesis.


��� Trivial consequence of the inductive hypothesis.


�


Example 4.3.2 (Decomposed checking for general formulae) Referring to the Bou-


cherie process of our running example, let us suppose we are interested in checking


that, in the long-run, there is at least a 80% probability of having at least one compo-


nent in an “operative” state (i.e. not idle). This property can be expressed by means


of the following general formula:


S�0�8���idle1� idle2��
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One possibility to check whether such a formula is valid with respect to the Boucherie


process, is to calculate the set Sat����idle1� idle2��� S by applying the CSL model-


checking algorithm to the state-space S. By application of the decomposed semantics


for general formulae given by the function cond�� a different approach is possible.


From Definition 4.3.4, we know that


�� S�0�8���idle1� idle2������k S
�


�
0�8�G�π�R1R2���idle1�idle2���π��α1�α2����idle1�idle2���


�
Gπ j�α j�


�αk�


where �α1�α2��DecSat���idle1� idle2��. Hence, as a first step, we have to determine


DecSat���idle1� idle2��, which is:


DecSat���idle1� idle2�� � ���idle1� tt���idle1��idle2��


Now we can chose a pair, say �idle1��idle2�, from DecSat���idle1� idle2�� and con-


sequently we compute the value of the constant π��idle1��idle2�����idle1 � idle2��


which is


π��idle1��idle2����idle1� idle2�� � π1��idle1�π2�S2�


� �π1�s11��π1�s12��π1�s13��π1�s14��π1�s15�� �1


� 1�π1�s10�


In order to compute the value of the other constant π�R1R2���idle1 � idle2��, we


observe that, we have to consider the intersection with the prohibited area R1R2 of


each pair in DecSat���idle1� idle2��. These are given by Sat1�R��idle1�� S2�R and


Sat1�R�idle1��Sat2�R��idle2�. Hence


π�R1R2���idle1� idle2�� � �1�π1�idle1���1�π2�idle2���π1�idle1��1�π2�idle2��


� 1�π2�idle2� � 1�π2�s20�


Finally, we can choose the component we want to refer to, meaning the component we


want to check the derived steady-state property against; say we are interested in com-


ponent M1. In that case the derived formula of interest we want to check the steady-


state probability of, is the first element of the pair �idle1��idle2� we previously picked,
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namely idle1. Thus the remaining constant we need to calculate is π2��idle2� rep-


resenting the steady-state probability for the other component, M2, to satisfy �idle2.


That is given by


π2��idle2� � 1�π2�idle1� � 1�π2�s20�


We are now able to compute the derived probability bound against which we aim to


check the steady-state probability of Sat1�idle1�. That is given by:


0�8�G�π�R1R2���idle1� idle2���π��idle1��idle2����idle1� idle2���


Gπ2��idle2�


which is equal to


0�8�G��1�π2�s20��� �1�π1�s10���


G�1�π2�s20��
�


0�8�G�π2�s20��π1�s10��


G�1�π2�s20��


Hence we have that checking the general formula S�0�8���idle1 � idle2�� with re-


spect to the Boucherie process M is equivalent to check the single-component formula


S
�


0�8�G��1�π2�s20����1�π1�s10���
G�1�π2�s20��


�idle1� with respect to component M1


�� S�0�8���idle1� idle2������1 S
�


0�8�G�π2�s20��π1�s10��
G�1�π2�s20��


�idle1�


Equivalently, we could have chosen to find a decomposed equivalence with respect to


the other component, M2. In that case we would consider the second element of the


(previously chosen) pair �idle1��idle2� as the target for the steady-state measure and


we would need to compute the value for the constant


π1�idle1� � π1�s10�


As a result the following equivalence holds as well


�� S�0�8���idle1� idle2������2 S
�


0�8�G�π2�s20��π1�s10��
Gπ1�s10�


��idle2�


The advantage of using the compositional semantics, in this case, is that the complexity


of computing the satisfiability set for the formula idle1 with respect to the component


process M1 is lower than the complexity for the computation of the satisfiability set of


��idle1� idle2� with respect to the product process M . That difference relies on the


ratio between the state-spaces’ dimension


SF �
�S�
�S1�
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The bigger the ratio SF (Savings Factor) is, the bigger is the saving, in terms of com-


plexity, gained through application of the compositional semantics.







Chapter 5


Compositional CSL model checking:


Next formulae


5.1 Introduction


In the previous chapter the existence of a compositional semantics for a subset of the


CSL where probabilistic path formulae, like P�p�ϕ�, were disallowed, has been shown.


In this chapter that syntax is extended and Next formulae are considered. However, we


observe that, in order to derive compositional equivalences for path formulae (i.e. Next


and Until), nesting of path connectives needs to be excluded. Thus, unlike the original


CSL (see Definition 2.3.5), in this work we will admit only formulae which do not


contain any probabilistic connective1 as possible type of argument of a probabilistic-


path operator. Complying with this restriction, it will be shown that a compositional


method for checking Next formulae which refer to a bidimensional Boucherie process,


can be derived. The chapter also presents a further relevant result, which regards the


procedure for checking bounded Next formulae with respect to an arbitrary CMTC.


It will be shown, in fact, that the algorithm for the computation of the state-vector


Prob�s�XI φ� provided in [5], is not correct and a revised version will be defined.


The chapter is organised in the following way: in the next section the syntax for


single-component Next formulae is introduced and decomposed semantic equivalences


1Not even a probabilistic steady-state formula, like S�p�ψ�, can be used as an argument of a proba-
bilistic connective.
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for both “simple” single component bounded Next formulae (Section 5.2.1) and steady-


state properties referring to single-component bounded Next formulae (Section 5.2.2),


are proved. Some examples are also included in order to show the correctness of


these results with respect to the GIS Boucherie framework formerly introduced in Sec-


tion 2.5.1. In Section 5.3 the algorithms for decomposed checking of such Next formu-


lae are introduced (an algorithm for P�p�X
I ψ� and an algorithm for S�p�P�p�X


I ψ��


are presented). Finally, in Section 5.4, general Next formulae are considered and a


procedure for their decomposed verification is defined. In this section, the problem


with the original version of the algorithm for computing Prob�s�X I φ�, is pointed out


by means of a simple example. The revised algorithm is then presented and proved to


fix the error with respect the considered example.


5.2 Compositional semantics for single-component Next


formulae


In this section the application of the time bounded Next connective to single-component


formulae, ψk, is considered and a compositional semantics is derived. The syntax of


the logic we refer to is derived from the one described in (4.3.2), by adding the pro-


duction for probabilistic path formulae ϕk. This results in:


φk ::� ψk � ϕk � ξk � φk�φk � �φk


ψk ::� tt � ak � ψk �ψk � �ψk


ξk ::� S�p�ψk� � S�p�ϕk�


ϕk ::� P�p�X
I�ψk��


(5.2.1)


For the time being we admit only the bounded Next as the possible type of path for-


mula ϕk. Moreover, as we have already mentioned, the possibility for nesting path


connectives is disallowed. Steady-state formulae are also excluded from the possible


type of argument for a probabilistic path connective, because of their model-like rather


than state-like semantics with respect to ergodic models (see the analysis of CSL se-


mantic equivalences for ergodic models in Section 3.5). As a result the argument of the
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bounded Next connective XI can only be a formula which itself involves neither a path


connective, nor the steady-state operator, i.e. a ψk formula. Finally, the probabilistic


steady-state operator can be applied also to probabilistic path formulae ϕk other than


non-probabilistic formulae ψk, enriching, in this way, the expressiveness of the steady-


state analysis: “future evolutions” (i.e. paths) are added to simple “state properties” in


the criteria for characterising the “long-run” behaviour of interest.


In the remainder of this chapter we will show that a compositional approach for


checking the formulae of the syntax in (5.2.1) is possible. This basically will require


us to extend the transformation function introduced in Definition 4.3.2 in order to


cope with probabilistic Next formulae. We start with the analysis of a compositional


approach for probabilistic time-bounded Next formulae (section 5.2.1); those results


will be the basis to determine the compositional semantics for steady-state formulae


whose argument is a probabilistic bounded Next (see Section 5.2.2).


In order to improve the readability, the proof of some preparatory Lemmas has been


moved to Appendix A: only fundamental theorems are reported here together with


their proof.


5.2.1 Bounded Next (P�p�XI�ψk��)


In this section, probabilistic time-bounded Next formulae like, P�p�XI�ψk��), are con-


sidered. The equivalences showing the existence of a compositional semantics for such


formulae are given in Theorem 5.2.1. The result of Theorem 5.2.1, relies on the char-


acterisation of an “equivalent” probability bound p� whose value is provided by the


function h�� introduced in the following definition.


Definition 5.2.1 (Equivalent Next’s probability and time bound ) Let �s1�s2� be a


state of a bidimensional Boucherie process, ψk a non-probabilistic formula as in the


syntax described in (5.2.1) referring to component Mk, p � �0�1� a probability bound


and I � �a�b�� ��0 a time bounding interval. The function


h�� : ��0�1��Ψk�CTMC�S�2��0�� �0�1��2��0


is defined as follows:
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h�p�ψk�Mk��s
1�s2�� I��


����������
���������


� p
pk�s1�s2�


� I��s1�s2�
	


if ��s1�s2��R f ree�� �sk ���k ψk�


� p�p j�s1�s2�
pk�s1�s2�


� I��s1�s2�
	


if ��s1�s2��R f ree�� �sk ��k ψk�


�
p� I
	


if �s1�s2� � Rk


(5.2.2)


where pk�s1�s2� is the probability of making a k-move out of state �s1�s2� and


I��s1�s2� � � a
pk�s1�s2�


� b
pk�s1�s2�


�.


The function h�� provides us with a pair representing, respectively, the equivalent


probability bound and the equivalent time bound interval for bounded Next single-


component formulae. It will be shown, in fact, that checking a formula like P�p�XI�ψk��


with respect to a state �s1�s2� of the Boucherie process, is equivalent, under certain


circumstances, to checking the formula P� p̂�XÎ�ψk�� with respect to the state sk of


component Mk, where p̂ and Î are, respectively, the first and second component of the


pair h�p�ψk�Mk��s1�s2�� I� � �p̂� Î�.


In Chapter 4, it has been shown that the equivalences characterising the compositional


semantics for non-path, single-component formulae are obtained by means of a trans-


formation function, namely ft��. Unlike the non-path formulae case, the transforma-


tion of a path formula is state dependent, other than formula dependent: the decom-


posed equivalent for a path formula like P�p�ϕ� which is to be checked against a state


�s1�s2� � S of the Boucherie process, depends both on P�p�ϕ� and on the considered


state �s1�s2�.


In the next Theorem the compositional equivalences concerning probabilistic time-


bounded single-component Next formulae, are proved.


Theorem 5.2.1 (Bounded single-component Next) Let �s1�s2�� S be a state of a bidi-


mensional Boucherie process, ψk a non-probabilistic single-component formula as in


(5.2.1), p � �0�1� a probability bound, �� �����
��� and I � �a�b� � ��0 a time
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interval. The following equivalences hold:


�s1�s2� �� P�p�X
I�ψk����


����������������������������
���������������������������


sk ��k P� p̂�XÎ�ψk�� if �s1�s2� �� Rj


sk ��k ψk if ��s1�s2��Rj�� low��� p��


�e�E j�s j�a� e�E j�s j�b�� p


sk ��k �ψk if ��s1�s2��Rj��up��� p�


�e�E j�s j�a� e�E j�s j�b� �� p


sk ��k tt if ��s1�s2��Rj��up��� p�


�e�E j�s j�a� e�E j�s j�b�� p


sk ��k �tt otherwise
(5.2.3)


where h�p�ψk�Mk��s1�s2�� I�� �p̂� Î� and low��� p�, up��� p� are the conditions char-


acterised in Definition 3.4.2.


Proof. From Proposition 2.3.2 we know that the probability measure for the paths


starting at a state �s1�s2� and satisfying the bounded Next formula X I�ψk�, is given by:


Prob��s1�s2��XI�ψk�� �
�


e�E�s1�s2��a� e�E�s1�s2��b	 � ∑
�t1�t2�
�ψk


P��s1�s2���t1� t2��


(5.2.4)


We need then to distinguish between the three different conditions characterising the


equivalence (5.2.4).


1. �s1�s2� �� Rj.


We aim to prove that


�s1�s2� �� P�p�X
I�ψk���� sk ��k P� p̂�X


Î�ψk��


where h�p�ψk�Mk��s1�s2�� I� � �p̂� Î�. A further distinction is needed, as the comple-


ment of Rj is partitioned into Rk and Rf ree.







132 Chapter 5. Compositional CSL model checking: Next formulae


1.a �s1�s2� � Rk. If �s1�s2�� Rk, then p̂ � p and Î � I (see Definition 5.2.1). Moreover


the emanating rate E�s1�s2� � Ek�sk� depends only on the emanating rate of sk (see


Remark 4.2.2), hence the probability measure described in (5.2.4) becomes :


Prob��s1�s2��XI�ψk�� �
�


e�Ek�sk��a� e�Ek�sk��b	 � ∑
�t1�t2�
�ψk


P��s1�s2���t1� t2�� (5.2.5)


Furthermore, from the compositional semantics of non-probabilistic formulae (see


Theorem 4.3.1), we know that �t1� t2� �� ψk � tk ��k ψk and also, since we are as-


suming �s1�s2� � Rk, the only admitted moves are k-moves and they have the same


probability to occur in M as they have in Mk (see Remark 4.2.2). As a result, the sum


in (5.2.5) can be reformulated resulting in:


Prob��s1�s2��XI�ψk�� �
�


e�Ek�sk��a� e�Ek�sk��b	 � ∑
tk
�kψk


P1�s
k� tk� (5.2.6)


Hence


Prob��s1�s2��XI�ψk�� � Probk�s
k�XI�ψk��


which clearly proves that


Prob��s1�s2��XI�ψk��� p�� Probk�s
k�XI�ψk��� p�


1.b �s1�s2� � Rf ree. If �s1�s2� � Rf ree, the emanating rate E�s1�s2� � E1�s1��E2�s2�


(see Remark 4.2.2) and also, again, �t1� t2� �� ψk � tk ��k ψk.


Prob��s1�s2��XI�ψk�� �
�


e��E1�s1��E2�s2���a� e��E1�s1��E2�s2���b
�
�


∑
�t1�t2�
�ψk


P��s1�s2���t1� t2��
(5.2.7)


A further distinction needs to be considered though:


1.b.1 sk ���k ψk. In this case p̂� p
pk�s1�s2�


and Î � � a
pk�s1�s2�


� b
pk�s1�s2�


� (see Definition 5.2.1).


The assumption sk ���k�ψk, allows us to exactly determine which among the successors


of �s1�s2� satisfy the argument ψk of the Next operator. We observe that if sk ���k ψk


then �s1�s2� ��� ψk but then clearly also every successor state �t1� t2� corresponding to a


j-move from �s1�s2� (i.e. such that Q��s1�s2���t1� t2��� 0 and tk � sk ) will not satisfy


ψk, while a k-successor of �s1�s2� (i.e. a state �t1� t2� such that Q��s1�s2���t1� t2��� 0
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and t j � s j) will satisfy ψk if and only if tk ��k ψk. As a result the sum in (5.2.7) can


be re-written as:


∑
�t1�t2�
�ψk


P��s1�s2���t1� t2�� � pk�s1�s2� � ∑
tk
�kψk


Pk�s
k� tk�


which substituted in (5.2.7) gives:


Prob��s1�s2��XI�ψk�� �
�


e��E1�s1��E2�s2���a� e��E1�s1��E2�s2���b
�
�


pk�s1�s2� � ∑
tk
�kψk


Pk�s
k� tk�


(5.2.8)


from which, straightforwardly follows,


Prob��s1�s2��X �a�b��ψk��� p�� Probk�s
k�X


� a
pk�s1�s2�


� b
pk�s1�s2�


�
�ψk���


p
pk�s1�s2�


which proves the theorem in this case.


1.b.2 sk ��k ψk. In this case p̂ � p�p j�s1�s2�
pk�s1�s2�


and Î � � a
pk�s1�s2�


� b
pk�s1�s2�


� (see Defini-


tion 5.2.1). Again, from the assumption sk ��k ψk, we are able to exactly determine


which among the successors of �s1�s2� satisfy ψk. In fact, if sk ��k ψk then �s1�s2� ��ψk


but then clearly also every successor state �t1� t2� corresponding to a j-move from


�s1�s2� will satisfy ψk, while a k-successor of �s1�s2� will satisfy ψk if and only if


tk ��k ψk. As a result the sum in (5.2.7) can be re-written as:


∑
�t1�t2�
�ψk


P��s1�s2���t1� t2�� � pk�s1�s2� � ∑
tk
�kψk


Pk�s
k� tk�� p j�s1�s2� � ∑


t j�S j


P j�s
j� t j�


� pk�s1�s2� � ∑
tk
�kψk


Pk�s
k� tk�� p j�s1�s2�


which substituted in (5.2.7) gets:


Prob��s1�s2��XI�ψk�� �
�


e��E1�s1��E2�s2���a� e��E1�s1��E2�s2���b
�
��


pk�s1�s2� � ∑
tk
�kψk


Pk�s
k� tk�� p j�s1�s2�


� (5.2.9)


from which, straightforwardly follows,


Prob��s1�s2��X �a�b��ψk��� p�� Probk�s
k�X


� a
pk�s1�s2�


� b
pk�s1�s2�


�
�ψk���


p� p j�s1�s2�


pk�s1�s2�
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which proves the theorem in this case.


2. �s1�s2� � Rj and low��� p� and �e�E j�s j�a� e�E j�s j�b�� p.


In this case we aim to prove that


Prob��s1�s2��XI�ψk��� p�� sk ��k ψk


Since we are assuming �s1�s2� to be in Rj (i.e. component M j is holding the re-


source), then any successor �t1� t2� of �s1�s2� must be such tk � sk. Hence, �s1�s2� ��


ψk � �t1� t2� �� ψk for every successor �t1� t2�. But then, as a consequence of The-


orem 4.3.1, also sk ��k ψk � �t1� t2� �� ψk for every successor �t1� t2�, which means


that only two situations are possible: either all or none amongst the successors of


�s1�s2� satisfy ψk and this is characterisable in terms of the satisfiability of ψk with


respect to sk. If sk ���k ψk then none of the successors of �s1�s2� satisfy ψk, thus clearly


Prob��s1�s2��XI�ψk�� � 0. On the other hand, if sk �� ψk then every successor of


�s1�s2� satisfies ψk too, hence Prob��s1�s2��XI�ψk�� � �e�E j�s j�a� e�E j�s j�b�. Then,


since we are also assuming �e�E j�s j�a� e�E j�s j�b�� p, clearly


Prob��s1�s2��XI�ψk�� � �e�E j�s j�a� e�E j�s j�b�� p�� sk ��k ψk


which proves this case.


3. �s1�s2� � Rj and up��� p�.


As for the previous case, we know that either all or none amongst the successors of


�s1�s2� satisfy ψk, hence the probability measure Prob��s1�s2��XI�ψk�� can be either


zero or equal to �e�E j�s j�a�e�E j�s j�b�. However, since we are assuming an upper bound


check for such a measure (i.e. up��� p�), then obviously


Prob��s1�s2��XI�ψk�� � 0� p�� sk ��k �ψk


which proves also this case of the theorem.


�


Example 5.2.1 Referring to the Boucherie process representing the GIS system of our


running example (Figure 5.1 and Figure 5.2), let us consider the following bounded


Next formulae:
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Figure 5.1: State space of the GIS components M1 and M2.


i) Let us suppose we are interested in checking whether the probability of reaching a


state where component M1 is reading the shared register, ψ1 � read1, in one step and


with a delay falling in the interval I � �2�5�, from the initial state �s10�s20� (i.e. both


components are idle), has p � 0�3 as a lower bound. This is the case if


�s10�s20� �� P�0�3�X
�2�5� read1�


Since �s10�s20� �� R2 then we are in the first case of (5.2.3), hence, we know that:


�s10�s20� �� P�0�3�X
�2�5� read1��� s10 ��1 P� p̂�X


Î read1�


where �p̂� Î� � h�0�3�read1�M1��s10�s20�� �2�5��. We observe that, as read1 is not sat-


isfied in s10 (i.e. s10 ���1 read1), then from the definition of h�� (5.2.2) we have


h�0�3�read1�M1��s10�s20�� �2�5�� � �
0�3


p1�s10�s20�
� �


2
p1�s10�s20�


�
5


p1�s10�s20�
��


and since the probability of making a 1-move out of �s10�s20� is


p1�s10�s20� �
E1�s10�


E1�s10��E2�s20�
�


r1 � r5


2r1 � r5
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then


h�0�3�read1�M1��s10�s20�� �2�5�� � �
0�3�2r1� r5�


�r1 � r5�
� �


2�2r1� r5�


�r1 � r5�
�
5�2r1� r5�


�r1 � r5�
��


Hence we would like to verify that checking �s10�s20� �� P�0�3�X �2�5� read1� is equiva-


lent to checking s10 ��1 P
�


0�3�2r1�r5�
�r1�r5�


�X
�
2�2r1�r5�
�r1�r5�


�
5�2r1�r5�
�r1�r5�


�
read1�. From Proposition 2.3.2


we can straightforwardly compute the probability of reaching in one step and with a


delay within the bound I � �2�5� a state where read1 is true:


Prob��s10�s20��X
�2�5� read1� � �e��E1�s10��E2�s20���2� e��E1�s10��E2�s20���5� �


∑
�t1�t2�
�read1


P��s10�s20���t
1� t2��


� �e�2��2r1�r5�� e�5��2r1�r5��
r1


2r1 � r5


Similarly the probability of reaching from state s10 in one step a state satisfying


read1 within a time in the derived equivalent interval Î � �2�2r1�r5�
�r1�r5�


� 5�2r1�r5�
�r1�r5�


� is:


Prob�s10�X
�
2�2r1�r5�
�r1�r5�


�
5�2r1�r5�
�r1�r5�


�
read1� � �e


��E1�s10���
2�2r1�r5�
�r1�r5� � e


��E1�s10���
5�2r1�r5�
�r1�r5� � �


∑
t1
�1read1


P1�s10� t
1�


� �e�2��2r1�r5�� e�5��2r1�r5��
r1


r1� r5


Thus clearly


Prob��s10�s20��X
�2�5� read1� � Prob�s10�X


�
2�2r1�r5�
�r1�r5�


�
5�2r1�r5�
�r1�r5�


�
read1� � p


1�s10�s20�


which, as expected, proves


Prob��s10�s20��X
�2�5� read1�
 0�3��Prob�s10�X


�
2�2r1�r5�
�r1�r5�


�
5�2r1�r5�
�r1�r5�


�
read1�



0�3�2r1� r5�


�r1 � r5�


ii) Let us suppose we are interested in checking the probability of reaching in one step


with no time bound (i.e. I � �0�∞�), a state such that component M1 is idle (i.e. idle1),
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Figure 5.2: State space of the GIS product process M
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from the initial state �s10�s20�, with respect to the same probability bound p � 0�3 as


in the previous case, which is:


�s10�s20� �� P�0�3�X
�0�∞� idle1�


Since component M1 is actually idle in state s10 (i.e. s10 ��1 idle1), then the equivalent


probability and time bound are given by the second case of (5.2.3), which is:


h�0�3� idle1�M1��s10�s20�� �2�5�� � �
0�3� p2�s10�s20�


p1�s10�s20�
� �0�∞��


where the probability of a 1-move and of a 2-move out of �s10�s20� are respectively:


p1�s10�s20� �
r1 � r5


2r1� r5
p2�s10�s20� �


r1


2r1 � r5


As a result we would like to verify that checking �s10�s20� �� P�0�3�X �0�∞� idle1� is


equivalent to checking s10 ��1 P
�


0�3�2r1�r5��r1
�r1�r5�


�X �0�∞� read1�. The probability of reaching


a state idle1 from �s10�s20 is


Prob��s10�s20��X
�0�∞� read1� � 1 � ∑


�t1�t2�
�read1


P��s10�s20���t
1� t2��


�
r1


2r1� r5


On the other hand, as none amongst the successors of s10 in M1 satisfies idle1, then


obviously:


Prob�s10�X
�0�∞� read1� � 0


Thus we aim to show that


r1


2r1 � r5

 0�3 �


3
10
�� 0



0�3�2r1� r5�� r1


�r1 � r5�
�


3
10�2r1� r5�� r1


�r1 � r5�


We have by rearrangement that


r1


2r1 � r5




3
10
� r1 



3
4


r5


By substituting r1 

3
4r5 in 3


10�2r1 � r5�� r1 we have that:


3
10


�
6
4


r5 � r5��
3
4


r5 

3
10


�2r1 � r5�� r1
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Clearly, however 3
10�


6
4r5 � r5��


3
4r5 � 0, which proves


r1


2r1 � r5

 0�3�� 0



0�3�2r1� r5�� r1


�r1 � r5�
�


3
10�2r1� r5�� r1


�r1 � r5�


�


5.2.2 Steady-state bounded Next (S�p�P�p�X
I�ψk���)


Theorem 5.2.1 describes the equivalences which allow for decomposed checking of


single-component time-bounded Next formulae. The next step is to consider the steady-


state formulae whose argument is a single-component Next formula, namely formulae


like S�p�P�p�X
I�ψk���. A number of preliminary definitions are needed in order to


determine a compositional semantics for that case.


Definition 5.2.2 Let M be a bidimensional Boucherie process, ψk a non-probabilistic


formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison


relation, I � �a�b� � ��0 a time interval and s j � S j a state of component M j. The


following two formulae are defined:


SXlow�ψk��� p� I�s
j��


����
���
�


sk�Sk�R


�
atsk �ψk


	
if s j � S j�R


�
sk�Sk


�
P� p̂�XÎ ψk�


	
if s j � S j�R


(5.2.10)


SXup�ψk��� p� I�s
j��


����
���
�


sk�Sk�R


�
atsk ��ψk


	
if s j � S j�R


�
sk�Sk


�
P� p̂�XÎ ψk�


	
if s j � S j�R


(5.2.11)


where �p̂� Î� � h�p�ψk�Mk��s1�s2�� I� and atsk represents the conjunction of atomic


propositions which uniquely identifies the state sk, namely atsk �
�


ak�Lk�sk� ak.


In practice, SXlow�ψk��� p� I�s j� and SXup�ψk��� p� I�s j� are template formulae which


depend on a given state s j of component M j. Their importance is beacuse they allow to


characterise those state of component Mk which coupled with s j result in a state �s1�s2�


which validates a single-component time-bounded Next formula like P�p�XI ψk�. This


result will be shown in the next lemma.
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Lemma 5.2.1 Let M be a bidimensional Boucherie process, ψk a non-probabilistic


formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison


relation and I � �a�b�� ��0 a time interval. Then the following holds:


�s1�s2� ��P�p�X
I�ψk����


�������
������


sk ��k SXlow�ψk��� p� I�s j� if low��� p���
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�


�


sk ��k SXup�ψk��� p� I�s j� if up��� p�
(5.2.12)


Proof. See Lemma A.0.1 in Appendix A.


As a consequence of the definition of the template formulae SXlow�ψk��� p� I�s j� and


SXup�ψk��� p� I�s j�, we observe that, those states of Mk for which there exists at


least a state s j of M j by coupling with which they result in a state �s1�s2� satisfy-


ing a formula P�p�XI ψk�, are identified by means of the disjunction of the formulae


SXlow�ψk��� p� I�s j� (SXlow�ψk��� p� I�s j�), which is:


�
s j�S j


SXlow�ψk��� p� I�s
j� or


�
s j�S j


SXup�ψk��� p� I�s
j�


In the next definition two templates2 formulae structurally similar to the ones described


in Definition 5.2.2, are introduced. The principal difference is in that they do not


depend on a given state s j of M j.


Definition 5.2.3 Let M be a bidimensional Boucherie process, ψk a non-probabilistic


formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison


relation and I � �a�b�� ��0 a time interval. The following two formulae are defined:


2It should be noted that, in order to improve the readability, the templates SX low�ψk��� p� I� and
SXup�ψk��� p� I� here defined as well as SXlow�ψk��� p� I� and SXup�ψk��� p� I� in Definition 5.2.2, are
expressed as disjunctions, even though the disjunctive connective � is not part of the standard CSL
syntax. However, since the set of connectives the CSL syntax is based on is adequate, the use of the
disjunction is perfectly legal .
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SXlow�ψk��� p� I��
� �


sk�Sk�R


�
atsk �


�
ψk


�
s j�S j�R


P� p̂�X
Î�ψk��


�	�



� �
sk�Sk�R


�
atsk �


�
P�p�X


I�ψk��
	�� (5.2.13)


SXup�ψk��� p� I��
� �


sk�Sk�R


�
atsk �


�
�ψk 


�
s j�S j�R


P� p̂�X
Î�ψk��


�	�




� �


sk�Sk�R


�
atsk �


�
P�p�X


I�ψk��
	�� (5.2.14)


where �p̂� Î� � h�p�ψk�Mk��s1�s2�� I� and atsk represents the conjunction of atomic


propositions which uniquely identifies the state sk, namely atsk �
�


ak�Lk�sk� ak.


The following proposition shows the semantic equivalences which relate the


“state-independent” templates formulae SXlow�ψk��� p� I� and SXup�ψk��� p� I� with


their “state-dependent” counterparts SXlow�ψk��� p� I�s j� SXup�ψk��� p� I�s j�.


Proposition 5.2.1 Let M be a bidimensional Boucherie process, ψk a non-probabilistic


formula as in (5.2.1), p � �0�1�,�� �����
��� and I � �a�b�� ��0 a time interval.


The following semantic equivalences holds:


SXlow�ψk��� p� I��
�


s j�S j


SXlow�ψk��� p� I�s
j�


SXup�ψk��� p� I��
�


s j�S j


SXup�ψk��� p� I�s
j�


Proof. Starighforward.


The above result tells us that the states of Mk which map on a state �s1�s2� sat-


isfying a formula P�p�XI ψk�, are completely identified by means of the formula


SXlow�ψk��� p� I� (SXup�ψk��� p� I�).


The formulae SXlow�ψk��� p� I� and SXup�ψk��� p� I� are relevant in aiming for


a decomposed semantics of stedy-state properties like S�p�P�p�XI�ψk��� (see The-


orem 5.2.2). Next, an example showing a SXlow�ψk��� p� I� formula in practice, is


provided.
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Example 5.2.2 Referring to the Boucherie process of our running example, let us sup-


pose we are interested in the states satisfying the probabilistic bounded Next formula


P�0�3�X �2�5� read1�. Since �
�0�3� represents a lower bound check, then we may con-


sider the template formula SXlow�read1�
�0�3� �2�5��, which we can readily compute


from (5.2.13) and referring to the state-spaces shown in Figure 5.1 and Figure 5.2.


SXlow�read1�
�0�3� �2�5�� ��
ats10��read1P� p̂a�X


Îa read1��
�
�


ats11��read1P� p̂b�X
Îb read1��


�
�


�ats12�P�0�3�X
�2�5� read1���ats13�P�0�3�X


�2�5� read1��


�ats14�P�0�3�X
�2�5� read1���ats15�P�0�3�X


�2�5� read1��
�


where


�p̂a� Îa� � h�0�3�read1�M1��s10�s20�� �2�5��


�p̂b� Îb� � h�0�3�read1�M1��s10�s21�� �2�5��


�


In essence, we are aiming to prove that checking that the probability for a bidimen-


sional Boucherie process to satisfy, at steady-state, the bounded Next formula


�P�p�XI�ψk�� is � p, is equivalent to checking that the probability for the compo-


nent process Mk to satisfy SXlow�ψk��� p� I�, (or SXup�ψk��� p� I�), at steady-state, is


� p�, where p� is a derived probability whose value depends on p and other factors.


The derivation of p� is the issue we are going to address next. For that reason, some


relevant sets of states and some constants have to be characterised.


Definition 5.2.4 Let tk � Sk be a state of the component Mk of a bidimensional


Boucherie process, ψk a non-probabilistic formula as in (5.2.1), p � �0�1� a proba-


bility bound,�� �����
��� and I � �a�b�� ��0 a time interval. The following two


subsets of the state-space S j are defined:


Nextlow
j �tk�ψk� p��� I� � Next j�R�t


k�ψk� p��� I��Nextlow
j�R �tk�ψk� p��� I�


Nextup
j �tk�ψk� p��� I� � Next j�R�t


k�ψk� p��� I��Nextup
j�R�t


k�ψk� p��� I�
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where


Next j�R�t
k�ψk� p��� I� � �t j � S j�R : Satk�PXRj


�ψk� t
k� t j� p��� I� �� /0�


and the template formula PXR j
�ψk�sk�s j� p��� I�, is defined as:


PXRj
�ψk�s


k�s j� p��� I�� atsk �P� p̂�X
Î�ψk�� (5.2.15)


with �p̂� Î� � h�p�ψk�Mk��s1�s2�� I�, and where


Nextlow
j�R �tk�ψk� p��� I� �


����������
���������


�
t j�S j�R:�e�E j�t


j�a
�e�E j�t


j�b
��p
�t j� if tk ��k ψk �


tk � Sk�R


/0 if �tk ���k ψk� 


�tk � Sk�R�


Nextup
j�R�t


k�ψk� p��� I� �


���������������
��������������


�
t j�S j�R:�e�E j�t


j�a
�e�E j�t


j�b
��p
�t j� if tk ��k ψk �


tk � Sk�R


S j�R if tk ���k ψk �


tk � Sk�R


/0 if tk � Sk�R


When considering the states of Sat�P�p�XI�ψk��� we can refer to a row-by-row (or


column-by-column) partition of the state-space, namely S �
�


s1�S1
�s1�S2��R1R2 (or


S �
�


s2�S2
�S1� s2� �R1R2). In that sense, each row (s1� t1� � � �) or column (s2� t2� � � �),


can have either none, one or many states satisfying P�p�XI�ψk�� and to each of them


corresponds an equivalent derived condition, described by Theorem 5.2.1, which sk


is ensured to fulfil. We can describe that situation by saying that each state of a row


s1� S j �R1R2 (or column S1� s2 �R1R2), which satisfies P�p�XI�ψk�� maps on sk.


Moreover each row (column) sk can be further partitioned according to the resource


possession for M j: �sk� S j�R� ( �S j�R� sk� ) denotes the sk row’s (column’s) states







144 Chapter 5. Compositional CSL model checking: Next formulae


where M j does not hold R while �sk� S j�R� ( �S j�R� sk� ) are those states where M j


holds R.


The sets of states Nextlow
j �tk�ψk� p��� I� and Nextup


j �tk�ψk� p��� I�, introduced in


the above definition, allow for the row-wise (column-wise) partition of


Sat�P�p�XI�ψk���, as the following two lemmas will show.


Lemma 5.2.2 Let �s1�s2� � S be a state of a bidimensional Boucherie process, ψk a


non-probabilistic formula as in (5.2.1), p � �0�1� a probability bound,


�� �����
���, I � �a�b�� ��0 a time interval. The state �s1�s2� satisfies the for-


mula Sat�P�p�XI�ψk��� if and only if its j-projection, s j, is either in


Nextlow
j �sk�ψk� p��� I� if low��� p�, or in Nextup


j �sk�ψk� p��� I�, if up��� p�.


�s1�s2��Sat�P�p�X
I�ψk�����


����
���


s j � Nextlow
j �sk�ψk� p��� I� if low��� p�


s j � Nextup
j �sk�ψk� p��� I� if up��� p�


Proof. See Lemma A.0.2 in Appendix A.


Relying on the above result, the following lemma, showing a row-wise (column-wise)


partition for Sat�P�p�XI�ψk���, can straightforwardly be proved.


Lemma 5.2.3 Let tk � Sk be a state of the component Mk of a bidimensional Boucherie


process, ψk a non-probabilistic formula as in (5.2.1), p � �0�1� a probability bound,


�� �����
���, I � �a�b�� ��0 a time interval. The satisfiability set for the formula


P�p�XI�ψk�� is partitionable in the following way:


Sat�P�p�X
I�ψk����


���������
��������


�
tk�Satk�SXlow�ψk���p�I���t


k�Nextlow
j �tk�ψk� p��� I��


if low��� p�


�
tk�Satk�SXup�ψk���p�I���t


k�Nextup
j �tk�ψk� p��� I��


if up��� p�


Proof. See Lemma A.0.3 in Appendix A.
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In aiming for a compositional semantics for S�p�P�p�X
I�ψk���, it is relevant to pro-


vide a characterisation of those states of a row (column) sk which satisfy P�p�X
I�ψk��.


The sets Nextlow
j �tk�ψk� p��� and Nextup


j �tk�ψk� p���, introduced in Definition 5.2.4,


provide such a characterisation and by means of them the equivalent bound p� for the


steady-state probability of the P�p�X
I�ψk�� states, will be derived. The notation for


the steady-state probability of the states of the row (column) Next low
j �tk�ψk� p��� and


Nextup
j �tk�ψk� p��� is introduced in the following remark.


Remark 5.2.1 Let tk � Sk be a state of the component Mk of a bidimensional Bouche-


rie process, ψk a non-probabilistic formula as in (5.2.1), p � �0�1� a probability bound,


� � �����
���, I � �a�b�� ��0 a time interval. The steady-state probability of the


sets Nextlow
j �tk�ψk� p��� and Nextup


j �tk�ψk� p��� is denoted as:


π j�Nextlow
j �tk�ψk� p���� � ∑


t j�Nextlow
j �tk�ψk�p���


π j�t
j�


while


π j�Nextup
j �tk�ψk� p���� � ∑


t j�Nextup
j �tk�ψk�p���


π j�t
j�


It is relevant to be able to distinguish which, amongst the states of Mk, is the one whose


associated set Nextlow
j �tk�ψk� p��� (or Nextup


j �tk�ψk� p���) has the highest steady-


state probability. The following remark introduces the notation adopted for such a


state.


Remark 5.2.2 Let ψk be a non-probabilistic formula as in (5.2.1), p � �0�1� a proba-


bility bound,� � �����
���, I � �a�b�� ��0 a time interval, we denote by tk
Xmax �


Sk, the state of component Mk which maximises the steady-state probability of its as-


sociated set Nextlow
j �tk


Xmax�ψk� p��� (Nextup
j �tk


Xmax�ψk� p���).


tk
Xmax � Sk : �tk � Sk� t


k �� tk
Xmax �


π j�Nextlow
j �tk


Xmax�ψk� p��� I��
 π j�Nextlow
j �tk�ψk� p��� I��


The following definition introduces the notation adopted to indicate the steady-state


probability of the set Nextlow
j �tk


Xmax�ψk� p��� (Nextup
j �tk


Xmax�ψk� p���), which is the


maximum value amongst the π j�Nextlow
j �tk�ψk� p���� of every state tk � Sk.
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Definition 5.2.5 Let ψk be a non-probabilistic formula as in (5.2.1), p � �0�1� a prob-


ability bound, � � �����
��� and I � �a�b�� ��0 a time interval. The following


constant is defined:


πmax
j �ψk� p��� I� �


�
π j�Nextlow


j �tk
Xmax�ψk� p���� iff low�p���


π j�Nextup
j �tk


Xmax�ψk� p���� iff up�p���


In the next definition two important constants are introduced, namely Clow�ψk� p��� I�


and Cup�ψk� p��� I�. They represent the probability for component Mk to be in a


state sk, at steady-state, weighted with the deviation of the steady-state probability


π j�Nextlow
j �tk�ψk� p��� I�� (π j�Nextlow


j �tk�ψk� p��� I��), from the maximum


πmax
j �ψk� p��� I�.


Definition 5.2.6 Let ψk be a non-probabilistic formula as in (5.2.1), p � �0�1� a prob-


ability bound, � � �����
��� and I � �a�b�� ��0 a time interval. The following


constants are defined:


Clow�ψk� p��� I� � ∑
tk�Satk�SXlow�ψk���p�I��


tk ��tk
Xmax


πk�t
k��πmax


j �ψk� p��� I��π j�Nextlow
j �tk�ψk� p��� I���


Cup�ψk� p��� I� � ∑
tk�Satk�SXup�ψk���p�I��


tk ��tk
Xmax


πk�t
k��πmax


j �ψk� p��� I��π j�Nextup
j �tk�ψk� p��� I���


Finally, the following theorem determines the compositional semantics for steady-state


bounded Next formulae.


Theorem 5.2.2 (Steady-state Bounded single-component Next) Let M be a bidimen-


sional Boucherie process, ψk a non-probabilistic single-component formula as in (5.2.1),


p� p� �0�1� two probability bounds,��� � ����
��� two comparison relations and


I � �a�b�� ��0 a time interval. The following equivalences hold:


�� S�p�P�p�X
I�ψk����


����
���
��k S�p�low


�SXlow�ψk��� p� I�� if low�p���


��k S�p�up
�SXup�ψk��� p� I�� if up�p���


(5.2.16)
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where p�low � p�GClow�ψk�p���I�
Gπmax


j �ψk�p���I�
and p�up � p�GCup�ψk�p���I�


Gπmax
j �ψk�p���I�


while G is the normalising


constant for the product-form solution, of M .


Proof. We aim to show the validity of the two implications ��� and ��� of (5.2.16).


For brevity we consider here only the first case, i.e. we assume low�p��� (the proof


for up�p���, is similar). Furthermore we focus on the case k � 1 (hence j � 2), which


means we consider here a formula ψ1 which refers to component M1.


��� If �� S�p�P�p�X
I�ψ1�� then from the CSL semantics


�
∑


�t1�t2��Sat�P�p�X
Iψ1��


π�t1� t2�
�
� p


which from the product-form solution, results in


�
∑


�t1�t2��Sat�P�p�X
Iψ1��


G �π1�t
1�π2�t


2�
�
� p (5.2.17)


By applying the row-wise partition of Sat�P�p�X
Iψ1� (see Lemma 5.2.3) to the sum


in (5.2.17) we obtain:


G
�


∑
t1�Sat1�SXlow�ψ1���p�I��


π1�t
1� ∑


t2�Nextlow
2 �t1�ψ1�p���I�


π2�t
2�
�
� p


From Remark 5.2.1 also ∑t2�Nextlow
2 �t1�ψ1�p���I�


π2�t2�� π2�Nextlow
2 �t1�ψ1� p��� I��. Hence:


G �
�


∑
t1�Sat1�SXlow�ψ1���p�I��


π1�t
1� �π2�Nextlow


2 �t1�ψ1� p��� I��
�
� p


from which, straightforwardly,


G �π2�Nextlow
2 �t1


Xmax�ψ1� p��� I�� ∑
t1�Sat1�SXlow�ψ1���p�I��


π1�t
1�� �p�G �Clow�t1�ψ1� p��� I���


Thus,


�
∑


t1�Sat1�SXlow�ψ1���p�I��


π1�t
1�
�
�


�p�G �Clow�t1�ψ1� p��� I��


G �π2�Nextlow
2 �t1


Xmax�ψ1� p��� I��
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which proves


��1 S
�


�p�G�Clow�t1�ψ1�p���I��


G�π2�Nextlow
2 �t1Xmax�ψ1�p���I��


�SXlow�ψ1��� p� I��


(�) By reversing (�).


�


Example 5.2.3 Still referring to our running example (see Figure 5.1 and Figure 5.2),


let us suppose we are interested in checking whether the probability, in the long-run,


for those states which satisfy the bounded Next P�0�3�X �2�5� read1�, is 
 0�5. In terms


of the syntax in (5.2.1), this is represented by the formula


S�0�5�P�0�3�X
�2�5� read1��


According to Theorem 5.2.2, we expect


�� S�0�5�P�0�3�X
�2�5� read1������1 S�p�low


�SXlow�read1�
�0�3� �2�5���


where p�low � 0�5�GClow�read1�0�3����2�5��
Gπmax


2 �ψ1�0�3����2�5��
, which is to say:


∑
�t1�t2�
�P�0�3�X �2�5� read1�


G �π1�t
1�π2�t


2��
 0�5 �� ∑
t1
�1SXlow�read1���0�3��2�5��


π1�t
1�
 p�low (5.2.18)


Let us verify whether this is the case. From Figure 2.8, we know that �s12�s20� is the


only state where component M1 is reading the shared register, hence the only potential


candidate for satisfying the Next formula P�0�3�X �2�5� read1� is its unique predecessor


�s10�s20�. Let us assume that, in fact, �s10�s20� �� P�0�3�X �2�5� read1�. In this case the


left sum in the above equivalence is


∑
�t1�t2�
�P�0�3�X �2�5� read1�


G �π1�t
1�π2�t


2� � G �π1�s10�π2�s20�


In Example 5.2.2, the formula SXlow�read1�
�0�3� �2�5�� has been shown. From Fig-


ure 2.7, we know that read1 is true only in state s12, which has a unique predecessor,


namely s10. Furthermore, since we are assuming �s10�s20� �� P�0�3�X �2�5� read1�, then


from Theorem 5.2.1 also, as it has been shown in Example 5.2.1,


s10 ��1 P
�


0�3��2r1�r5�
r1�r5


�X
�
2��2r1�r5�


r1�r5
�
5��2r1�r5�


r1�r5
�
read1�
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From this it is straightforward to show that there is only one state satisfying


SXlow�read1�
�0�3� �2�5��, namely Sat1�SXlow�read1�
�0�3� �2�5��� � �s10�. Hence,


s10, is also the maximum (i.e. s10 is the state which maximises the steady-state proba-


bility of the associated set Next low
2 �s10�read1�0�3�
�), which means


πmax
2 �read1�0�3�
� �2�5�� � π2�Nextlow


2 �s10�read1�0�3�
��


As a result, the constant Clow�read1�0�3�
� �2�5�� (see Definition 5.2.6), is null. In


order to compute the value of πmax
2 �ψ1�0�3�
� �2�5��, we need to determine the set


Nextlow
2 �s10�read1�0�3�
�, which from Definition 5.2.4 we know consists of two parti-


tions, namely Nextlow
2�R


�s10�read1�0�3�
� and Nextlow
2�R �s10�read1�. As s10 ���1 read1 then


Nextlow
2�R �s10�read1� � /0. Moreover, as a consequence of the assumptions we made, it


is easy to show that Nextlow
2�R


�s10�read1�0�3�
� � �s20� (i.e. s20 is the only state which


coupled with s10, results in a state, �s10�s20�, which satisfies P�0�3�X �2�5� read1�). Then


clearly πmax
2 �read1�0�3�
� �2�5��� π2�s20�. Thus the equivalent probability value p�low


is equal to:


p�low �
0�5�GClow�read1�0�3�
� �2�5��


Gπmax
2 �ψ1�0�3�
� �2�5��


�
0�5


G �π2�s20�


Since s10 is the only state of M1 satisfying SXlow�read1�
�0�3� �2�5�� then the right-


hand side sum in equivalence (5.2.18) is


∑
t1
�1SXlow�read1���0�3��2�5��


π1�t
1� � π1�s10�


But this proves that the equivalence (5.2.18) actually holds, in fact:


G �π1�s10�π2�s20�
 0�5 �� π1�s10�

0�5


G �π2�s20�


�


5.3 Compositional model-checking of single-component


Next


The properties proved in the previous section of this chapter call for the formal char-


acterisation of methods for a decomposed verification of single-component bounded
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Next formulae (i.e. P�p�X
I�ψk��) as well as steady-state bounded Next formulae (i.e.


S�p�P�p�X
I�ψk���). Algorithm 5.3.1 describes a procedure for decomposed checking


of a probabilistic bounded Next. Algorithm 5.3.3, instead, shows such a procedure for


steady-state bounded Next formulae.


Algorithm 5.3.1 (P�p�X
I�ψk��) Let �s1�s2� be a state of a bidimensional Boucherie


process M with components M1 and M2. Furthermore let ψk be a single-component


formula, p � �0�1� a probability bound, � � �����
��� and I � �a�b�� ��0 a time


interval. The following procedure can be used for checking the truth of the formula


P�p�X
I�ψk�� with respect to state �s1�s2�.


Algorithm (�s1�s2� �� P� p̂�X
Î�ψk��).


IF �s1�s2� � Rj THEN


- �p̂� Î� � h�p�ψk�Mk�s1�s2� I�;


- compute Satk�P�p̂�X
Î�ψk��;


- IF sk � Satk�P�p̂�X
Î�ψk�� THEN return YES; ELSE return NO;


ELSE


IF low��� p� THEN


IF �e�a�Ej�s j�� e�b�Ej�s j�� ��p THEN return NO;


ELSE


- compute Satk�ψk�;


- IF sk � Satk�ψk� THEN return YES ELSE return NO;


ELSE


IF �e�a�Ej�s j�� e�b�Ej�s j���p THEN return YES;


ELSE


- compute Satk�ψk�;


- IF sk � Satk�ψk� THEN return NO; ELSE return YES;


�


The procedure for decomposed checking of steady-state bounded Next formulae ba-


sically requires the instantiation of some template formulae and the application of the
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model-checking algorithm to those formulae with respect to component Mk.


The following algorithm characterises the procedure for determining which amongst


the states of a row (column) sk satisfy the formula P�p�X
I�ψk��. The compositional


checking of S�p�P�p�X
I�ψk��� relies on it.


Algorithm 5.3.2 (Nextlow
j �sk�ψk� p��� I�, Nextup


j �sk�ψk� p��� I�) Let M be a bidimen-


sional Boucherie process with components M1 and M2 and sk a state of component


Mk. Furthermore let ψk be a single-component formula, p� �0�1� a probability bound,


�� �����
��� and I � �a�b�� ��0 a time interval. The sets Next j�R�s
k�ψk� p��� I�,


Nextlow
j�R


�sk�ψk� p��� I� and Nextup
j�R
�sk�ψk� p��� I� can be determined by means of the


following procedures:


Algorithm A (Next j�R�s
k�ψk� p���).


1. Next j�R�s
k�ψk� p��� � /0


2 FOR every s j � S j�R DO


- instantiate the template formula


PXR j
�ψk�s


k�s j� p���� atsk �P� p̂�X
Î�ψk��


where �p̂� Î� � h�ψk�Mk�sk�s j� I�.


- check for emptyness the set Satk�PXR j
�ψk�sk�s j� p����. Then


Next j�R�s
k�ψk� p����


�
Next j�R�s


k�ψk� p��� if Satk�PXRj
�ψk�sk�s j� p���� � /0


Next j�R�s
k�ψk� p�����sk� if Satk�PXRj


�ψk�sk�s j� p���� �� /0


�


Algorithm B (Nextlow
j�R


�sk�ψk� p��� I�).


1. Nextlow
j�R


�sk�ψk� p��� I� � /0
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2. IF sk � Sk�R THEN return;


ELSE


- compute Satk�ψk�;


- IF sk �� Satk�ψk� THEN return;


ELSE


FOR every s j � S j�R DO


Nextlow
j�R �sk�ψk� p��� I��


��
� Nextlow


j�R
�sk�ψk� p��� I� if �e�a�Ej�s j�� e�b�Ej�s j�� � �p


Nextlow
j�R


�sk�ψk� p��� I���s j� if �e�a�Ej�s j�� e�b�Ej�s j���p


�


Algorithm C (Nextup
j�R
�sk�ψk� p��� I�).


1. Nextup
j�R
�sk�ψk� p��� I� � /0


2. IF sk � Sk�R THEN return;


ELSE


- compute Satk�ψk�;


- IF sk �� Satk�ψk� THEN Nextup
j�R
�sk�ψk� p��� I� � S j�R;


ELSE


FOR every s j � S j�R DO


Nextlow
j�R �sk�ψk� p��� I��


��
�


Nextlow
j�R


�sk�ψk� p��� I� if �e�a�Ej�s j�� e�b�Ej�s j�� � �p


Nextlow
j�R


�sk�ψk� p��� I���s j� if �e�a�Ej�s j�� e�b�Ej�s j���p


�


Relying on the above algorithms, the method for a decomposed verification of the


steady-state probability of single-component bounded Next formulae is defined in the


following manner.
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Algorithm 5.3.3 (Compositional model-checking of S�p�P�p�X
I�ψk���) Let �s1�s2�


be a state of a bidimensional Boucherie process M with components M1 and M2, ψk


a single-component formula, p� p � �0�1� two probability bounds and ��� � �����



���. The following algorithm can be applied for decomposed checking of the formula


S�p�P�p�X
I�ψk���


with respect to M : it returns YES if S�p�P�p�X
I�ψk��� is satisfied in M or NO if it is


not.


1. The pair ��� p� is considered and the template formula SX is instantiated by means


of the parameters ψk,�,p and I.


SX �


�
SXlow�ψk� p��� I� if low��� p�


SXup�ψk� p��� I� if up��� p�


2. Satk�SX� is computed by application of the CSL model-checking algorithm with


respect to component Mk.


3. FOR every sk � Satk�SX� DO


- compute Next j�sk� � Next j�R�s
k��Next j�R�sk� where


Next j�R�s
k� � Next j�R�s


k�ψk��� p� I�


and


Next j�R�s
k� �


�
Nextlow


j�R �s
k�ψk� p��� I� if low��� p�


Nextup
j�R�s


k�ψk� p��� I� if up��� p�


are computed by means of the procedure described in Algorithm 5.3.2.


4.


- Determine the state sk
MAX � Satk�SX� such that π j�Next j�sk


MAX�� is maximum.


- Let πMAX
j � π j�Next j�sk


MAX��.
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5. Compute the value C given by:


C � ∑
tk�Satk�SX�


tk ��sk
MAX


πk�t
k��πMAX


j �π j�Next j�t
k���;


6. Compute the equivalent probability bound p�


p� �
p�G �C


G �πMAX
j


;


7. IF πk�Satk�SX��� p� THEN return YES; ELSE return NO.


�


5.4 Compositional model-checking of general Next


So far, in the chapter, we have considered only single-component non-probabilistic


formulae (i.e. ψk) as possible arguments of a bounded Next connective. In this sec-


tion, we investigate the existence of a compositional method for checking formulae


given by the application of the bounded Next operator to a non-probabilistic general


argument (i.e ψ12). The new version of the syntax for general state formulae (i.e. φ12)


(an extension of the one introduced in Section 4.3.2) is characterised in the following


manner3:


φ12 ::� φ1�φ2 � φ2�φ1 � φk�φ12 � φ12�φk � �φ12 � φ12�φ12 � ξ12 � ϕ12


ψ12 ::� ψ1�ψ2 � ψ2�ψ1 � ψk �ψ12 � ψ12�ψk � ψ12�ψ12 � �ψ12


ξ12 ::�S�p�ψ12�


ϕ12 ::�P�p�X
I ψ12�


(5.4.1)


where φ1 and φ2 are as in (5.2.1).


3As one can notice from (5.4.1), the application of the steady-state connective to general bounded
Next formulae is not allowed in the given syntax.
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A revised method for computing Prob�s�XI φ�.
Before facing the study of a compositional approach for checking bounded Next gen-


eral formulae, we need to consider the method for checking bounded Next formulae


which can be found in the literature.


From the CSL semantics (see Proposition 2.3.2), we know that the probability of


reaching a φ-state in one step from a state s of an arbitrary CTMC within a time bound


I � �a�b�, is given by:


Prob�s�XI φ� � �e�a�E�s�� e�b�E�s�� ∑
t
�φ


P�s� t� (5.4.2)


In essence, the above equation tells us that the probability of satisfying φ in one step


from s without violating the bounding interval I is given by the product of the proba-


bility of reaching a φ state, from s, in one step (i.e ∑t
�φ P�s� t�), and the probability of


leaving s within I � �a�b� (i.e. such a probability being given by � �e�a�E�s��e�b�E�s��).


In [5] the authors claim that the state vector


Prob�XI φ� � �� � � �Prob�s�XI φ�� � � ��


can be obtained by multiplying the probability matrix P by the vector bI ,


Prob�XI φ� � P �bI


where bI is defined as:


bI�s� �


�
e�a�E�s�� e�b�E�s� if s � Sat�φ�
0 otherwise


(5.4.3)


However, the proposed algorithm, leads to a wrong result. To understand why, let


us consider a simple example. In Figure 5.3 the oriented graph representing a very


simple three state CTMC is depicted. The arcs of each transition are labelled with the


corresponding rate, resulting in the following probability matrix:


P �


�
�


0 1
3


2
3


1 0 0


1 0 0


�
���
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� �


� �


��


��


�� �� �


Figure 5.3: A simple arbitrary CMTC M


We then consider an arbitrary state formula φ and we further assume that state s2 is


the only one satisfying φ. Finally, we consider I � �2�5� as the bounding time interval.


By applying (5.4.2) we can compute the probability of satisfying the bounded Next


formula �X �2�5� φ� for each one of the three state s1�s2 and s3. This is straightforward


because, since we are assuming s2 to be the only state satisfying φ, then the only state


with a non-zero probability of reaching a φ-state, in one step, is clearly s1. Hence:


Prob�s2�X
�2�5� φ� � Prob�s3�X


�2�5� φ� � 0


Prob�s1�X
�2�5� φ� � �e�2�3� e�5�3�P�s1�s2�


�
�e�6� e�15�


3


as clearly E�s1� � 3 and P�s1�s2� �
1
3 . The vector Prob�X �2�5��φ� is then:


Prob�X �2�5� φ� � �
�e�6� e�15�


3
�0�0�


From (5.4.3), we can then derive the elements of the state vector b�2�5�:


b�2�5��s1� � b�2�5��s3� � 0


b�2�5��s2� � �e�2� e�5�


as E�s2� � 1. Hence the state vector b�2�5� is:


b�2�5� � �0� �e�2� e�5��0�
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Hence by applying the algorithm proposed in [5], we need to determine the product of


the matrix P by the vector b�2�5�, which is:


P �b�2�5� � �
�e�2� e�5�


3
�0�0�


But this proves that, contrary to what is claimed in [5], actually:


Prob�X �2�5� φ� �� P �b�2�5�


The problem with the above method, has to do with the definition of the state vector


bI . In fact, the value of bI�s� for a state s satisfying φ (i.e. bI�s� � �e�a�E�s��e�b�E�s��),


represents the probability of leaving a φ state, within I. However, in order to calculate


Prob�XI φ�, the probability of reaching a φ state within I is what is needed.


In the following an alternative algorithm for computing Prob�X I φ�, is introduced.


It relies on the definition of the diagonal matrix IeI , whose elements represents the


probability of exiting each state within the bounding interval I, and of the state-vector


iφ, characterising the φ states. This is achieved by means of the following formal


definitions.


Definition 5.4.1 Let M � �S�Q�L� be an arbitrary labelled CTMC with state-space


S � �s1�s2� � � � �sn� and I � �a�b� � ��0 a time interval. The state-vector eI with ele-


ments w


eI�s� � e�a�E�s�� e�b�E�s�


is defined. The coefficient eI�s� denotes the probability of exiting the state s within I.


We observe that, by means of the above definition, the expression (5.4.2) for the prob-


ability of reaching in one step, from s, a state satisfying a certain formula φ within the


bounding interval I, can be re-formulated in the following way:


Prob�s�XI φ� � �e�a�E�s�� e�b�E�s�� � ∑
t
�φ


P�s� t� � eI�s� � ∑
t
�φ


P�s� t� (5.4.4)
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The diagonal matrix consisting of coefficients eI�s� is formally introduced in the next


definition.


Definition 5.4.2 Let M � �S�Q�L� be a labelled CTMC with state-space


S � �s1�s2� � � � �sn� and I � �a�b� � ��0 a time interval. The diagonal matrix IeI is


defined as


IeI � diag�eI� �


�
�


eI�s1� 0 0 � � � 0


0 eI�s2� 0 � � � 0


0 0
. . . � � � 0


...
...


. . .
...


0 0 0 � � � eI�sn�


�
���������


where the coefficient eI�s� is as in Definition 5.4.1.


The vector characterising the states satisfying a given formula φ is described in the


following definition.


Definition 5.4.3 Let M ��S�Q�L� a labelled CTMC with state-space S� �s1�s2� � � � �sn�


and φ a CSL state formula. The state vector iφ is defined as:


iφ�s� �


�
1 if s �� φ
0 otherwise


Finally, the following proposition provides us with a method for computing the vector


Prob�XI φ� representing the probability for each state of a CTMC to fulfil a bounded


Next formula �XI φ�.


Proposition 5.4.1 Let M � �S�Q�L� be a labelled CTMC with state-space


S � �s1�s2� � � � �sn�, and probability matrix P. Let φ be a CSL state formula and


I � �a�b� � ��0 a time interval. The state vector Prob�X I φ� � �� � � �Prob�s�XI φ�� � � ��
is given by the product:


Prob�XI φ� � �IeI �P� � iφ
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Proof.


To prove that the state vectors Prob�X I φ� and �IeI �P� � iφ are identical, we need to


show that for any state sm � S, Prob�XI φ��sm� � ��IeI �P� � iφ��sm�. The m-th element


of Prob�XI φ�, is, by definition,


Prob�XI φ��sm� � Prob�sm�X
I φ� � eI�sm� � ∑


si
�φ
P�sm�si�


Let us consider the vector �IeI �P� � iφ. Let the transition probability matrix P be:


P �


�
�


p11 p12 � � � � � � p1n


p21 p22 � � � � � � p2n
...


... � � � � � �
...


pn1 pn2 � � � � � � pnn


�
������


The product of the diagonal matrix IeI by the transition probability matrix P leads to


the following matrix:


IeI �P �


�
�


eI�s1��p11 eI�s1��p12 � � � � � � eI�s1��p1n


eI�s2��p21 eI�s2��p22 � � � � � � eI�s2��p2n
...


... � � � � � �
...


eI�sn��pn1 eI�sn��pn2 � � � � � � eI�sn��pnn


�
������


The m-th element of the vector �IeI �P� � iφ, is given by the product of the m-th row of


the matrix IeI �P by iφ, which is:


��IeI �P� � iφ��sm� � �eI�sm��pm1�eI�sm��pm2� � � � �eI�sm��pmn� � iφ


� ∑
si
�φ


eI�sm� � pmi


� eI�sm� � ∑
si
�φ


P�sm�si�


which proves the equality between the state vectors Prob�X I φ� and �IeI �P� � iφ.


�


Relying on the result of Proposition 5.4.1, the following algorithm can be used, as


an alternative to the one proposed in [5], for checking a bounded Next formula with


respect to a state s.
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Algorithm 5.4.1 Let s be a state of an arbitrary labelled CMTC M , φ a CSL state


formula and I � �a�b�� ��0 a time interval. The following procedure returns YES if


the formula P�p�XI φ� is valid in s, and NO otherwise.


Algorithm


- Compute Sat�φ�.


- Determine the state vector iφ, as:


iφ�s� �


�
1 if s �� φ
0 otherwise


- Determine the diagonal matrix IeI .


- Compute the state vector


�IeI �P� � iφ


- IF ��IeI �P� � iφ��s�� p THEN return YES; ELSE return NO;


�


Let us apply the above algorithm to determine Prob�X �2�5� φ� with respect to the CTMC


of Figure 5.3. The diagonal matrix Ie�2�5�
is given by:


Ie�2�5� �


�
�


e�2�3� e�5�3 0 0


0 e�2�1� e�5�1 0


0 0 e�2�1� e�5�1


�
���


which multiplied by the transition probability matrix P gives:


Ie�2�5� �P �


�
�


0 e�6�e�15


3
2��e�6�e�15�


3


e�2� e�5 0 0


e�2� e�5 0 0


�
���


The vector iφ is given by:


iφ � �0�1�0�
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Hence the product �Ie�2�5�
�P� � iφ results in:


�Ie�2�5� �P� � iφ � �
e�6� e�15


3
�0�0�


which proves


Prob�X �2�5� φ� � �Ie�2�5�
�P� � iφ


Having provided a method for checking bounded Next formulae with respect to an


arbitrary CTMC, we can get back to our original goal, which is the study of a compo-


sitional way for verifying general bounded Next formulae referring to a bidimensional


Boucherie process.


The characterisation of a decomposed approach for checking of bounded Next general


formulae, relies on a fundamental result which is proved in Theorem 5.4.1. In order to


prove that result, some preliminary definitions and properties need to be introduced.


The following definition introduces the idea of derived time interval (or k-projection


of a time interval). Given I � �a�b� and a state �s1�s2� of a bidimensional Boucherie


process, the interval Ik�s1�s2� is obtained by shifting I with respect to the probability


of leaving �s1�s2� with a k-move, if the shared resource is not held by component M j


in �s1�s2�, or with respect to the ratio E j�s j�


Ek�sk�
, if M j holds the resource in �s1�s2�.


Definition 5.4.4 (k-projection of a time interval I) Let I � �a�b�� ��0 be a time in-


terval, �s1�s2� a state of a bidimensional Boucherie process M and pk�s1�s2� the prob-


ability of making a k-move out of �s1�s2�. The time interval Ik�s1�s2� defined as:


Ik�s1�s2� �


�����
����


�
a


pk�s1�s2�
� b


pk�s1�s2�


�
if �s1�s2� �� Rj


�
a�Ej�s j�


Ek�sk�
�


b�Ej�s j�


Ek�sk�


�
if �s1�s2� � Rj


is called the k-projection of I with respect to the state �s1�s2�.


The relevance of the definition of k-projection of a time interval with respect to a


given state of a bidimensional Boucherie process, stands in the result of the following
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proposition, which is: the probability of exiting a state �s1�s2� of a bidimensional


Boucherie process within the bound I, is equal to the probability of exiting the sk of


component Mk, within the k-projection of I, Ik�s1�s2�.


Proposition 5.4.2 Let �s1�s2� be a state of a bidimensional Boucherie process and


I � �a�b�� ��0 a time interval. The following equality holds:


eI�s
1�s2� � eIk�s1�s2��s


k�


where eI�� is as in Definition 5.4.1.


Proof.


A distinction with respect to the partitions of the Boucherie’s state-space, needs to be


considered.


1. �s1�s2� �� Rj. In this case, from Definition 5.4.4, we have:


Ik�s1�s2� �
� a


pk�s1�s2�
�


b


pk�s1�s2�


�


A further distinction has to be considered:


- �s1�s2��Rf ree. In this case E�s1�s2��E1�s1��E2�s2� and also pk�s1�s2�� Ek�sk�
E1�s1��E2�s2�


.


Hence:


eI�s
1�s2� � e�a��E1�s1��E2�s2��� e�b��E1�s1��E2�s2��


� e
�a�


�E1�s
1��E2�s


2��


Ek�s
k�


Ek�sk�
� e


�b�
�E1�s


1��E2�s
2��


Ek�s
k�


Ek�sk�


� e
� a


pk�s1�s2�
Ek�s


k�
� e


� b
pk�s1�s2�


Ek�s
k�


� e�
a


pk�s1�s2�
� b


pk�s1�s2�


��sk�


� eIk�s1�s2��s
k�


- �s1�s2� � Rk. In this case E�s1�s2� � Ek�sk� and also pk�s1�s2� � 1. Hence,


Ik�s1�s2� �
� a


pk�s1�s2�
�


b


pk�s1�s2�


�
� �a�b�
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and also:


eI�s
1�s2� � e�a�Ek�s


k�� e�b�Ek�s
k� � e�a�b��s


k� � eIk�s1�s2��s
k�


2. �s1�s2� � Rj. In this case, from Definition 5.4.4, we have:


Ik�s1�s2� �
�a �Ej�s j�


Ek�sk�
�
b �Ej�s j�


Ek�sk�


�


Furthermore E�s1�s2� � Ej�s j�, hence:


eI�s
1�s2� � e�a�Ej�s j�� e�b�Ej�s j�


� e
�a�


E j�s
j�


Ek�s
k�


Ek�sk�
� e


�b�
E j�s


j�


Ek�s
k�


Ek�sk�


� e� a�E j�s
j�


Ek�s
k�


�
b�E j�s


j�


Ek�s
k�


��sk�


� eIk�s1�s2��s
k�


�


The next theorem shows a basic equivalence regarding the semantics of general bounded


Next formulae. This result provides us with a decomposed relation which allows for


the definition of an algorithm for compositional checking of such formulae.


Theorem 5.4.1 Let �s1�s2� be a state of a bidimensional Boucherie process, p � �0�1�


a probability bound,�� �����
���, I � �a�b�� ��0 a time interval, ψ12 a formula


as in (5.4.1). The following equivalence holds:


�s1�s2� ��P�p�X
I ψ12����


∑
�α1�α2��DecSat�ψ12�


p1�s1�s2��Prob1�X
I1�s1�s2�α1��s


1��p2�s1�s2��Prob2�X
I2�s1�s2�α2��s


2�
�
� p


(5.4.5)


Proof.


(�) From the CSL semantics we know that if �s1�s2� �� P�p�XI ψ12� then


�e�a�E�s1�s2�� e�b�E�s1�s2�� �
�


∑
�t1�t2��Sat�ψ12�


P��s1�s2���t1� t2��
�
� p
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which is:


eI�s
1�s2� �


�
∑


�t1�t2��Sat�ψ12�


P��s1�s2���t1� t2��
�
� p


However Sat�ψ12� can be decomposed, by means of the Lemma 4.3.2, in the following


way:


Sat�ψ12� �
�


�α1�α2��DecSat�ψ12�


�
Sat1�α1��Sat2�α2�


�
� �R1R2�


Hence the sum in the above inequality can be re-formulated in terms of DecSat�ψ12�,


resulting in4:


eI�s
1�s2� � ∑
�α1�α2��DecSat�ψ12�


�
∑


�t1�t2��Sat1�α1��Sat2�α2�


P��s1�s2���t1� t2��
�
� p (5.4.6)


Since, in a Boucherie process each transition corresponds to a change of state for


exactly one component, then the above inequality is equivalent to the following one:


eI�s
1�s2�� ∑
�α1�α2��DecSat�ψ12�


�
∑


�t1�s2��Sat1�α1��Sat2�α2�


P��s1�s2���t1�s2��� ∑
�s1�t2��Sat1�α1��Sat2�α2�


P��s1�s2���s1� t2��
�
� p


(5.4.7)


From Remark 4.2.2, we know that the probability of a 1-move (2-move) from a state


�s1�s2� is a factor of the probability of the corresponding component’s transition,


which is:


P��s1�s2���t1�s2�� � p1�s1�s2� �P1�s
1� t1�


where p1�s1�s2� is the probability of a 1-move from �s1�s2�. Hence (5.4.7) results in:


eI�s
1�s2� � ∑
�α1�α2��DecSat�ψ12�


�
p1�s1�s2� ∑


t1�Sat1�α1�


P1�s
1� t1�� p2�s1�s2� ∑


t2�Sat2�α2�


P2�s
2� t2�


�
� p


which we can re-write as:


∑
�α1�α2��DecSat�ψ12�


�
eI�s


1�s2�p1�s1�s2� ∑
t1�Sat1�α1�


P1�s
1� t1�� eI�s


1�s2�p2�s1�s2� ∑
t2�Sat2�α2�


P2�s
2� t2�


�
� p


(5.4.8)


4It should be noted that the R1R2 states need not to be excluded from the innermost sum in (5.4.6), as
the probability of reaching such a state from �s1


�s2� is clearly zero (i.e. ��t1
� t2��R1R2 and ��s1


�s2�� S,
P��s1


�s2���t1
� t2�� � 0)
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From Proposition 5.4.2 we have eI�s1�s2� � eIk�s1�s2��s
k� which, substituted in (5.4.8),


gives:


∑
�α1�α2��DecSat�ψ12�


�
eI1�s1�s2��s


1�p1�s1�s2� ∑
t1�Sat1�α1�


P1�s
1� t1�� eI2�s1�s2��s


2�p2�s1�s2� ∑
t2�Sat2�α2�


P2�s
2� t2�


�
� p


(5.4.9)


But from Proposition 5.4.1 we know that


Prob1�X
I1�s1�s2� α1��s1� � eI1�s1�s2��s


1� ∑
t1�Sat1�α1�


P1�s
1� t1�


and also:


Prob2�X
I2�s1�s2� α2��s2� � eI2�s1�s2��s


2� ∑
t2�Sat2�α2�


P2�s
2� t2�


which by substituting in (5.4.9), proves the implication ���.


(�). By reversing ���.


�


The result of the above theorem suggests the definition of the following algorithm for


decomposed checking of general bounded Next formulae with respect to a bidimen-


sional Boucherie process.


Algorithm 5.4.2 Let �s1�s2� be a state of a bidimensional Boucherie process M with


components M1 and M2, ψ12 a general formula as in (5.4.1), p � �0�1� a probability


bound,�� �����
��� and I � �a�b�� ��0 a time interval. The following algorithm


can be applied for checking whether:


�s1�s2� �� P�p�X
I ψ12�


Algorithm (�s1�s2� �� P�p�XI ψ12�).
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1. PX � 0;


2. Determine the set of pairs DecSat�ψ12� by application of Definition 4.3.3.


3. Determine the diagonal matrices:


M1 �I1
eI1�s1�s2�


M2 �I2
eI2�s1�s2�


for component M1 and component M2 respectively.


4. FOR �α1�α2� � DecSat�ψ12� DO


- determine Sat1�α1� and Sat2�α2�, hence the vectors b1
φ and b2


φ;


- determine the vectors Prob1�X
I1�s1�s2� α1� and Prob1�X


I1�s1�s2� α1�:


Prob1�X
I1�s1�s2� α1� � �M1 �P1� �b


1
φ;


Prob2�X
I2�s1�s2� α2� � �M2 �P2� �b


2
φ;


- PX � PX � p1�s1�s2�Prob1�X
I1�s1�s2� α1��s1�� p2�s1�s2�Prob2�X


I2�s1�s2� α2��s2�;


5. IF PX � p THEN return YES; ELSE return NO.


�


Complexity analysis.


A precise evaluation of the complexity of the decomposed verification method de-


scribed by the above algorithm, is not part of this work. However, here some in-


tuitive considerations are given. As a first thing we observe that, by means of the


above method, the verification of a bounded Next general formula, like P�p�XI ψ12�,


on the product process M , is replaced by the verification of some bounded Next


single-component formulae on the components M1 and M2, respectively. The num-


ber of corresponding single-component formulae is equal to the number of partitions


of Sat�ψ12�. Thus, if Sat�ψ12� consists of n partitions (i.e. �DecSat�ψ12�� � n), then
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checking P�p�XI ψ12� with respect to the state-space S, boils down to checking n de-


rived formulae P�p�XI� ψi
1�, with respect to state space S1 and n derived formulae


P�p�XI�� ψi
2�, with respect to state space S2 (1 � i � n). The computational saving


implied by that, depends on both the dimension and the structure of the components’


state-space (the computational gain is proportional to the ratios

Sk�R


Sk�R



). Checking of


an arbitrary bounded Next P�p�XI φ� on a state-space S (see Algorithm 5.4.1), re-


quires the computation of Sat�φ� and of the matrix-matrix-vector product �IeI �P� � iφ.


Its computational cost is clearly proportional to the dimension of S. The state-space’s


dimension of a bidimensional Boucherie process is:


�S�� �S1� � �S2�� ��S1�R� � �S2�r��


where the dimension of component Mk’s state-space is:


�Sk�� �Sk�R�� �Sk�R�


The saving gained through the compositional algorithm, depends on the percentage of


states in which each component holds the shared resource (i.e. the cardinality of Sk�R).


For example, if we consider a state-space of 1000 elements for both components (i.e.


�S1�� �S2�� 1000), and we assume that for each component the states representing the


resource holding are 5% of the whole (i.e. �S1�R� � �S2�R� � 50), then the application


of the compositional checking to P�p�XI ψ12� results in checking 2 � n bounded Next


formulae (P�p�XI� ψk
1�) over a 1000 elements state-space, instead of checking a single


bounded Next formula with respect to a 997500 elements state-space (in fact, in this


case, �S�� 1000 �1000� �50 �50� � 997500). We further observe that the number n of


partitions Sat�ψ12� consists of, depends on the number of nested negation connectives


(�) contained in ψ12 and hardly exceed some units5.


Finally, to be more precise, we notice that also the cost for computing DecSat�ψ12�


has also to be considered in the evaluation of the complexity impact of decomposed


checking of bounded Next general formulae.


5In Example 4.3.1 it has been shown that the satisfiability set of a rather complex formula like
����a1�a2����b1�b2�� results in three partitions. The study of the existence of a relationship between
the structure of a general formula ψ12 and the number of partitions its satisfiability set results in, is an
interesting subject for future works.
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Example 5.4.1 Let us consider an example of general bounded Next formulae, re-


ferring to the GIS Boucherie framework of our running example (see Figure 5.1 and


Figure 5.2) and let us show that the decomposed approach for checking it is actually


correct. Let us suppose we are interested in verifying that there is at least a 50% pos-


sibility that soon after being started (i.e. initial state �s10�s20�, Figure 5.2) and within


the time interval �2�5�, the GIS process reaches a state where component M1 is reading


the shared register (i.e. read1). This corresponds to checking that the following folds:


�s10�s20� �� P�0�5�X
�2�5� �read1� idle2��


By means of the “standard” approach (non-decompositional checking), we can apply


Algorithm 5.4.1 to compute the state vector Prob�X �2�5� �read1� idle2�� for the product


process. Hence


Prob�X �2�5� �read1� idle2�� � �Ie�2�5�
�P� � i�read1idle2�


From Figure 5.2, we know that the only state where �read1� idle2� is valid is �s12�s20�.


Hence the vector i�read1idle2�
is:


i�read1idle2�
� �0�0�0�0�0�0�0�0�0�0�1�0�0�0�


The transitions’ probability matrix for the product process is:


P�


�
�


0 r1
2r1�r5


0 0 0 r5
2r1�r5


0 0 0 0 r1
2r1�r5


0 0 0


0 0 r2
r2�r4


r4
r2�r4


0 0 0 0 0 0 0 0 0 0


0 0 0 0 1 0 0 0 0 0 0 0 0 0


0 0 0 0 1 0 0 0 0 0 0 0 0 0


1 0 0 0 0 0 0 0 0 0 0 0 0 0
r2


r1�r2
0 0 0 0 0 r1


r1�r2
0 0 0 0 0 0 0


0 0 0 0 0 0 0 r2
r2�r4


r4
r2�r4


0 0 0 0 0


0 0 0 0 0 0 0 0 0 1 0 0 0 0


0 0 0 0 0 0 0 0 0 1 0 0 0 0


0 0 0 0 0 1 0 0 0 0 0 0 0 0


0 0 0 0 0 0 0 0 0 0 0 r2
r2�r4


r4
r2�r4


0


0 0 0 0 0 0 0 0 0 0 0 0 0 1


0 0 0 0 0 0 0 0 0 0 0 0 0 1


1 0 0 0 0 0 0 0 0 0 0 0 0 0


�
��������������������������������







5.4. Compositional model-checking of general Next 169


It is straightforward to show that the product of the matrix �Ie�2�5�
�P� by the vector


i�read1idle2�
, leads to the following state vector:


�Ie�2�5� �P��b�read1idle2���
r1


r1 � r5
�e�2�2r2�r5��e�5�2r2�r5���0�0�0�0�0�0�0�0�0�0�0�0�0�


which, as expected, tells us that the only state from which there is a non-null probability


of reaching, within the time bound �2�5�, a state where component M1 is reading the


register while M2 is idle, is the initial state �s10�s20�. Furthermore, the probability for


such a state is equal to:


Prob��s10�s20��X
�2�5� �read1� idle2�� �


r1


r1 � r5
�e�2�2r2�r5��e�5�2r2�r5��


As a consequence we have that


�s10�s20� �� P�0�5�X
�2�5� �read1� idle2���


r1


r1 � r5
�e�2�2r2�r5��e�5�2r2�r5��� p


(5.4.10)


In the above, we have shown how to verify �s10�s20� �� P�0�5�X �2�5� �read1� idle2�� by


application of the “standard” method with respect to the product process. Let us see


that the application of decomposed checking leads to the an equivalent result.


As a first step, we need to determine the partitions of Sat�read1� idle2�. Triv-


ially, DecSat�read1� idle2� � ��read1� idle2��, meaning that the satisfiability set for


�read1� idle2� consists of a single partition:


Sat�read1� idle2� � Sat1�read1��Sat2�idle2��R1R2


As a result we know that we will have to check one bounded Next formula


(i.e. �X
�
a�2r1�r5�


r1�r5
�


read1�) on component M1 and another one (i.e. �X
�
a�2r1�r5�


r5
�


idle2�),


on component M2.


In order to compute the state vector Prob1�X
�
a�2r1�r5�


r1�r5
�
read1�, first we need to determine


i1read1
. But since s12 is the only state of M1 satisfying read1 (i.e. Sat1�read1� � �s12�),


then:


i1read1
� �0�0�1�0�0�0�


Similarly for the vector i2idle2
, we have:


i2idle2
� �1�0�0�0�0�
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Next we need to consider the diagonal matrices built on the projections of the bounding


interval I � �2�5� with respect to state �s10�s20�. As the probability of a 1-move and of a


2-move out of �s10�s20� are respectively p1�s10�s20� �
r1�r5
2r1�r5


and p2�s10�s20� �
r5


2r1�r5
,


then the projections of the time interval I are:


I1�s1�s2� �
�a�2r1 � r5�


r1 � r5
�
a�2r1 � r5�


r1 � r5


�
I2�s1�s2� �


�a�2r1 � r5�


r5
�
a�2r1 � r5�


r5


�


The derivation of the diagonal matrices IeI1�s1�s2�
and IeI2�s1�s2�


is then straightforward


(however, for brevity, here we skip it). Knowing that the transition probability matrices


P1 and P2 are equal to:


P1�


�
�


0 r5
r1�r5


r1
r1�r5


0 0 0


1 0 0 0 0 0


0 0 0 r2
r2�r4


r4
r2�r4


0


0 0 0 0 0 1


0 0 0 0 0 1


1 0 0 0 0 0


�
�����������


P2�


�
�


0 1 0 0 0


0 0 r2
r2�r4


r4
r2�r4


0


0 0 0 0 1


0 0 0 0 1


1 0 0 0 0


�
��������


the state vectors Prob1�X
�
a�2r1�r5�


r1�r5
�
a�2r1�r5�


r1�r5
�
read1� and Prob2�X


�
a�2r1�r5�


r5
�
a�2r1�r5�


r5
�
idle2�,
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can easily be obtained as the products


Prob1�X
�
2�2r1�r5�


r1�r5
�
5�2r1�r5�


r1�r5
�
read1� � �IeI1�s1�s2�


�P1� � i
1
read1


� �
r1


r1 � r5
�e�2�2r1�r5��e�5�2r1�r5���0�0�0�0�0�


Prob2�X
�
2�2r1�r5�


r5
�
5�2r1�r5�


r5
�
idle2� � �IeI2�s1�s2�


�P2� � i
2
idle2


� �0�0�0�0�e
�2r3�2r1�r5�


r1�r5 �e
�5r3�2r1�r5�


r1�r5 �


Finally we have to consider the weighted sum of the elements of vectors


Prob1�X
�
2�2r1�r5�


r1�r5
�
5�2r1�r5�


r1�r5
�
read1� and Prob2�X


�
2�2r1�r5�


r5
�
5�2r1�r5�


r5
�
idle2� corresponding to


the considered source state of the product process (i.e. �s10�s20�) and check whether it


is � p.


PX � p1�s10�s20�Prob1�X
�
2�2r1�r5�


r1�r5
�
5�2r1�r5�


r1�r5
�
read1��s10�


� p2�s10�s20�Prob2�X
�
2�2r1�r5�


r5
�
5�2r1�r5�


r5
�
idle2��s20�


�
r1 � r5


2r1 � r5
�


r1


r1 � r5
�e�2�2r1�r5��e�5�2r1�r5���


r5


2r1 � r5
�0


�
r1


2r1 � r5
� �e�2�2r1�r5��e�5�2r1�r5��� p


which proves that by application of the decomposed method with respect to the compo-


nents M1 and M2, we have obtained exactly the same condition (5.4.10) given by the


application of the “standard” method on the product process.


�











Chapter 6


Compositional CSL model checking:


Until formulae


6.1 Introduction


In this chapter the study of a compositional way for checking Until formulae on a


bidimensional Boucherie process is tackled. At the time being, the results we managed


to obtain are not complete. The main issue is the semantics of the Until formulae which


makes the derivation of a decomposed technique a difficult task.


From the CSL semantics we know that a path σ from a state s of an arbitrary CTMC


M , satisfies an Until formula like �φ� UI φ��� (i.e. σ �� �φ� UI φ���), if and only if, there


exists a future time instant t � I such that the state σ is in at t, σ@t, validates φ �� (i.e.


σ@t �� φ��), while up until time t σ satisfies φ� (i.e. σ@t � �� φ�, �t � � t). For the un-


bounded Until (i.e. I � �0�∞�), this is equivalent to say that there has to be a future


state n 
 0 at which σ validates φ�� (σ�n� �� φ��) and such that for each predecessor


m � n, σ�m� �� φ�. Furthermore a probabilistic Until formula, like P�p�φ� UI φ���, is


satisfied in a state s, if and only if, the probability measure of the paths (from state s)


which satisfy �φ� UI φ��� is � p (i.e. ProbM �s��φ� UI φ���� � p). The main problem


with the verification of a probabilistic Until formula, is the evaluation of the proba-


bility measure ProbM �s��φ� UI φ����. In Chapter 2, we have seen that, for bounded


Until formulae (i.e. I �� �0�∞�), this, generally, involves the solution of a Volterra inte-
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gral equation system, requiring complex mathematical methods. However, it has been


shown, that by means of proper manipulations, this problem boils down to the compu-


tation of transient state probabilities for a transformed CTMC, a good approximation


of which can be obtained by applying the Uniformisation method (see [42]). In con-


trast, the verification of unbounded Until formulae, implies the solution of a system


of linear equations. In both cases (i.e. bounded and unbounded Until), the search for


a compositional semantics, would require finding a decomposed relationship from the


application of solving method (i.e. Uniformisation, for bounded Until or solution of a


system of linear equation, for the unbounded Until).


Very recently, we have begun to consider the application of tensorial algebras to a


bidimensional Boucherie framework for obtaining a compositional expression of the


infinitesimal generator matrix (i.e. Q) and of its associated transition probability ma-


trix (i.e. P). Our believe is that, that could be of some help in finding a decomposed


method for checking both bounded and unbounded Until formulae which refer to a


bidimensional Boucherie process.


In the remainder of the chapter, instead, we will show the type of result we have


achieved by considering a path-wise interpretation of the Until semantics rather than


a state-wise. As we said, verifying an Until formula with respect to a state s of M ,


requires the evaluation of the probability measure ProbM �s��φ� UI φ����. This value,


accounts for the probability measure of each path that satisfies �φ� UI φ���, which is:


ProbM �s��ψ�
k U ψ��


k �� � ∑
σ�Path�s��ψ�


k U ψ��
k ��


Pr�σ�


By means of the existing methods the value of ProbM �s��φ� UI φ���� is worked out


in a state-wise fashion: a recursive function defined on S, computes that probability


value by unravelling only those paths which satisfy �φ� UI φ���. In essence the set


Path�s��ψ�
k U ψ��


k �� is never determined, and the above mentioned methods are proved


to provide a value which is equivalent to the sum of the probability measure of the


paths satisfying �φ� UI φ���.
Our argument here, originates from observing that there exists a close relation be-


tween the paths of the product process and the paths of the components’ processes in a


bidimensional Boucherie framework. In particular, as we will see in detail in the next
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section, each path of the product-process results from interleaving two corresponding


paths (projection paths), one from component M1 and the other from component M2.


As a consequence, it can be shown that the probability measure of a path of the product-


process can be factored by means of the probability measure of its two corresponding


projection paths.


This leads to a non-constructive proof showing the existence of a compositional


semantics for Until formulae1. In Section 6.3, we will show that checking that the


probability measure Prob��s1�s2���ψ�
k U ψ��


k �� is� p, where �s1�s2� is a state of a bidi-


mensional Boucherie process, is equivalent to checking that the probability measure


Prob�sk��ψ�
k U ψ��


k �� is � p�, where p� is a derived probability value. This means that


the probability measure of the paths satisfying �ψ�
k U ψ��


k � with respect to the product-


process, is related to the probability measure of the paths of component Mk which


satisfy the same Until formula �ψ�
k U ψ��


k �. The problem with this approach is that the


evaluation of the equivalent probability bound p� would require both a method that,


given a state s of a CTMC, returns the set of paths Path�s��ψ�
k U ψ��


k �� and a method


that, given a path σk over component Mk, returns the corresponding set of paths of


the product-process, which map on to σk. Both those methods, seem to rely on graph


analysis techniques, something which we still need to investigate.


The following section is devoted to the analysis of the basics properties relating


paths of the product process and paths of the components’ process in a bidimensional


Boucherie framework.


6.2 Paths in a bidimensional Boucherie process


In any graph-like structure (Transition System, Markov Chain, � � �) a path is an infi-


nite sequence of states σ � s0�s1� � � � �sn� � � � such that each state si in the sequence, is


connected to its successor si�1 by an arc. In a Markov Chain such an arc reflects the


fact that for the state si the probability of reaching its successor is greater than zero


(see Definition 2.2.4). Furthermore, with respect to CTMCs, paths can be timed by


interleaving the sequence of states with a sequence of time intervals I0� I1� � � � � In� � � �


1In this work single-component unbounded Until formulae only are treated.







176 Chapter 6. Compositional CSL model checking: Until formulae


(see Definition 2.3.3).


σ� s0� I0�s1� I1� � � � � In�1�sn� � � �


We remember that by untimed generator σ̄ of a timed-path, we mean the sequence of


states (i.e. the untimed path) obtained by elimination of the interleaved time intervals,


Ii, from the timed path σ, or, alternatively, by assuming every time interval Ii � �0�∞�


(i
 0).


σ̄� s0�s1� � � � � �sn� � � �


For the time being we concentrate on untimed paths only. In Section 4.3 it has been


pointed out that transitions in a bidimensional Boucherie process, can be classified ei-


ther as 1-moves or 2-moves, according to the component which is involved2. Hence a


transition �s1�s2�� �t1� t2� will be a 1-move whenever the state change involves com-


ponent M1 (i.e. s1 �� t1, s2 � t2), or a 2-move, if it reflects a state change regarding com-


ponent M2 (i.e. s1 � t1, s2 �� t2). As a result a path σ � �s1
0�s


2
0���s


1
1�s


2
1�� � � � ��s


1
n�s


2
n�� � � �


over a two component Boucherie state-space corresponds to an interleaved sequence


of 1-moves and 2-moves. In the remainder we will refer to paths of a two component


Boucherie process, as bidimensional paths or Boucherie paths.


Intuitively the k-projection of a bidimensional path σ, is given by the contraction


of σ with respect to the j-moves (i.e. the path obtained by eliminating every j-move


from the sequence it is made of). Thus every bidimensional path σ, is associated with


a pair of projections, namely its 1-projection and 2-projection3.


In this section a formal definition of the k-projection of a Boucherie path σ, is given


and three basic results are proved. The first and trivial one, states that the k-projection


of a path σ, formally defined by means of a function named Pro jk��, is actually a


proper path over component Mk. The formal proof of this intuitively obvious result


(see Proposition B.0.3) relies on a number of intermediate results which are treated


in the Appendix B. The second and more relevant result, states that the probability


measure of a path σ can be factored by means of the probability measure of its two


projections. Finally it will be shown that every path σ of a bidimensional Boucherie


2In a Boucherie framework synchronisation is not permitted, hence only one component at a time
can change its state.


3Note that either one projection or the other can be the empty path ε but not both unless the consid-
ered σ is itself the empty path.
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process, satisfies a single-component unbounded Until formula, like ϕk � �ψ�
k U ψ��


k �,


if and only if its k-projection Pro jk�σ� does. These results are useful in the study of a


compositional semantics for unbounded Until formulae with respect to the Boucherie


framework.


In the following some notations and remarks regarding generic paths and bidimen-


sional paths are introduced. Let σ be a (generic) path, then:


� ε : is the empty path


� �σ � n� : is the prefix of σ up to the n-th element (inclusive).


� �n � σ� : is the suffix of σ starting at the n-th element (inclusive).


where n � � . Generally speaking a path is an infinite sequence of states. However


finite paths are used to represent a set of infinite paths characterised by a common


prefix.


Remark 6.2.1 The n-th prefix of a path σ represents the set of all paths which have


σ�n as a common prefix.


From now on, unless explicitly specified, σ will denote a finite sequence


σ � s0 � s1 � � � �� sn


representing the set of infinite paths which have s0 � s1 � � � �� sn as common prefix.


Definition 6.2.1 The length of a (finite) path σ is given by the number of transitions it


consists of:


length�s0 � s1 � � � �� sn� � n


Given a (finite) path σ we adopt the following conventions:


� σ�0� is the first element of σ while σ�length�σ�� is the last one.


� �n � �0� length�σ��1�, σ�n� is called the predecessor of σ�n�1�, while σ�n�1�


is called the successor of σ�n�.


� �m�n � �0� length�σ�� with m � n, we will say that σ�m� precedes σ�n�, while


σ�n� follows σ�m�.
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It should be noted that a sequence consisting of a single state, for example σ � s0, is


a proper path even if it contains no transitions at all. Since a finite path σ is meant


to represents the set of all infinite paths which have σ as common prefix, then σ � s0


represents the set of all infinite paths starting at s0. Hence the probability measure


of a single element path is clearly Pr�σ � s0� � 1, as it is given by the sum of the


probability measure of every path starting at s0.


Definition 6.2.2 (Path�s�ψ� U ψ���) Let s � S be a state of a labelled CTMC


M ��S�Q�L� and ψ��ψ�� two non-probabilistic formulae as in (4.3.1). Path�s�ψ � U ψ���


denotes the set of paths starting at s and satisfying the unbounded Until formula


�ψ� U ψ���.


Remark 6.2.2 (Path��s1�s2��ψ� U ψ���) Definition 6.2.2 naturally applies to a bidi-


mensional Boucherie process M � �S�Q�L�, hence Path��s1�s2��ψ� U ψ��� denotes


the set of paths starting at �s1�s2� and satisfying �ψ� U ψ��� in M , �s1�s2� being a state


of the Boucherie process.


In the remainder we will use σ�n�k to denote the k-th component of the n-th state of a


Boucherie path σ. Thus, if we consider the following bidimensional path


σ � �s1�s2��s1� t2��t1� t2��t1�u2��t1�v2� (6.2.1)


then, for example,


σ�0�1 � s1 σ�3�2 � u2


Moreover, as we have already pointed out, each bidimensional path corresponds to


an interleaved sequence of 1-moves and 2-moves, hence σ maps on the following se-


quence:


2-move�1-move�2-move�2-move


Definition 6.2.3 (Number of k-moves in a bidimensional path) Let σ be a bidimen-


sional path, then k steps�σ � n� denotes the number of k-moves contained in the n-th


prefix of σ. If σ is finite then k steps�σ� stands for k steps�σ � length�σ��.
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Fact 6.2.1 (Length of a bidimensional path) The length of a bidimensional path σ is


equal to the sum of the k steps and j steps it consists of.


length�σ� � k steps�σ�� j steps�σ�


Fact 6.2.1 is trivially true as any transition in a bidimensional Boucherie process can


either be a 1-move or a 2-move. Therefore it is obvious that the length of any finite


sequence of such transitions has to be equal to the sum of 1-moves and 2-moves it


consists of. For example, the path σ shown in (6.2.1) consists of four transitions (i.e.


length�σ� � 4), three of which are 2-moves (i.e. 2 steps�σ� � 3) while the remaining


one is a 1-move (i.e. 1 steps�σ� � 1).


Definition 6.2.4 (k-path) A bidimensional path σ is called a k-path if it consists only


of k-moves, which is, j steps�σ� � 0.


For example the bidimensional path σ � �s1�s2��s1� t2��s1�u2��s1�v2� is a 2-path as


contains no 1-moves4.


Fact 6.2.2 The k-component of the target and source state of a j-move taken from a


bidimensional path σ, is constant.


σ�n�� σ�n�1� � j-move �� σ�n�k � σ�n�1�k


�n � �0� length�σ��1�


Fact 6.2.2 is a trivial consequence of the definition of Boucherie product process.


Definition 6.2.5 (k-projection of a bidimensional path) Let σ be a bidimensional (timed)


path with respect to a Boucherie process M , then its k-projection Pro jk�σ�, or simply


4Again we point out that we are referring to CTMCs with no self-loops, hence a transition like
�s1


�s2�� �s1
� t2� can only represents a 2-move.
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σk, is defined as:


Pro jk�σ�� σk �


���������������
��������������


σ�0�k�Pro jk�1�σ� if σ�0�� σ�1� � k-moves


Pro jk�1�σ� if σ�0�� σ�1� � j-moves


σ�0�k if �1�σ�� ε


ε if σ� ε


Next an example of a bidimensional path σ is considered and its two projections


Pro j1�σ� and Pro j2�σ� are computed.


Example 6.2.1 Let us consider the following bidimensional path σ


σ � �s1�s2��s1� t2��t1� t2��u1� t2��u1�u2��v1�u2�


and let us compute its projections by means of the function Pro jk�σ� described in


Definition 6.2.5. As a first thing we notice that σ maps on the following sequence of


transitions


2-move�1-move�1-move�2-move�1-move


which also means that 1-steps�σ� � 3, while 2-steps�σ� � 2.


The iterative application of Pro jk�� to σ with respect to both components M1 (i.e.
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Pro j1�σ�) and M2 (i.e. Pro j2�σ�), results in:


Pro j1�σ� � Pro j1��s
1�s2��s1� t2��t1� t2��u1� t2��u1�u2��v1�u2��


� Pro j1��s
1� t2��t1� t2��u1� t2��u1�u2��v1�u2��


� s1�Pro j1��t
1� t2��u1� t2��u1�u2��v1�u2��


� s1� t1�Pro j1��u
1� t2��u1�u2��v1�u2��


� s1� t1�Pro j1��u
1�u2��v1�u2��


� s1� t1�u1�Pro j1��v
1�u2��


� s1� t1�u1�v1


Pro j2�σ� � Pro j2��s
1�s2��s1� t2��t1� t2��u1� t2��u1�u2��v1�u2��


� s2�Pro j2��s
1� t2��t1� t2��u1� t2��u1�u2��v1�u2��


� s2�Pro j2��t
1� t2��u1� t2��u1�u2��v1�u2��


� s2�Pro j2��u
1� t2��u1�u2��v1�u2��


� s2� t2�Pro j2��u
1�u2��v1�u2��


� s2� t2�Pro j2��v
1�u2��


� s2� t2�u2


Figure 6.1 depicts how the states of the bidimensional path σ are mapped onto the


projections’ paths. It should be noted that the n-th state of σ, σ�n�, is mapped, with re-


spect to the 1-projection (2-projection) on the same element on which its predecessor,


σ�n�1�, is mapped, whenever the transition σ�n�1�� σ�n� is a 2-move (1-move). On


the other hand the element on which σ�n� is mapped, with respect to the 1-projection


(2-projection), is the successor of the element on which σ�n�1� is mapped, whenever


σ�n�1�� σ�n� is a 1-move (2-move).


�


The next fact points out an evident consequence of the definition of k-projection of a


bidimensional path.
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Figure 6.1: The two projections of a bidimensional path σ


Fact 6.2.3 (The k-projection is a k-path) The k-projection of a bidimensional path σ
is a path with respect to component Mk starting at state σ�0�k.


Pro jk�σ� � Path�σ�0�k�


Fact 6.2.3 trivially relies on the definition of k-projection of a bidimensional path as


well as on the definition of Boucherie process. In fact since Pro jk�σ� is obtained by


elimination of the j-moves from σ, the result is clearly a sequence of k-moves which,


according to the definition of Boucherie process, is also a proper sequence of moves,


hence a path, over component Mk. The formal proof of the result stated in Fact 6.2.3


can be found, in the Appendix B.


The following two facts point out two other trivial consequences of the definition of


k-projection of a bidimensional path.


Fact 6.2.4 (Length of the k-projection of a bidimensional path) The length of the i-


projection of a path σ is equal to the number of i-steps in σ.


length�Pro ji�σ�� � i steps�σ�
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Fact 6.2.4 is also trivially true. From Fact 6.2.3, we know that Pro jk�σ� is a path start-


ing at σ�0�k, hence it has a length. Furthermore since Pro ji�σ� is made of the k-moves


of σ, then clearly its length is given by the number of k steps in σ.


Remark 6.2.3 (Length of a bidimensional path) The length of a bidimensional path


σ is equal to the sum of the length of its k and j projections:


length�σ� � length�Pro jk�σ��� length�Pro j j�σ��


So far the idea of k-projection of a bidimensional path has been introduced and formal


means to derive it have been provided (see Definition 6.2.5). Moreover, it has been


shown that the k-projection of a path of a bidimensional Boucherie process is a proper


path over the component Mk.


We now aim to show that the probability measure of a bidimensional path σ can


be expressed in terms of the probability measure of its projections σ1 and σ2. Such a


property will be the basis for showing the existence of a compositional semantics for


probabilistic path formulae P�p�ϕ�. In order to do that, we first need to prove another


property concerning bidimensional paths. The following proposition states that the k-


projection of a bidimensional path σ can be split in two parts: the first one being given


by the k-projection of its n-th prefix and the second being obtained by elimination of


the first element from the k-projection of its n-th suffix.


Proposition 6.2.1 (Splitting the k-projection of a path) Let σ be a bidimensional path


consisting of l � length�σ�� 0 transitions and 0� n� l. The k-projection of σ can be


split in terms of the k-projection of its n-th prefix and suffix, in the following manner:


Pro jk�σ� � Pro jk�σ � n���1 � �Pro jk�n � σ���


Proof.


By induction on n � �0� l�. Let σ be


σ � �s1
0�s


2
0�� � � � ��s


1
n�1�s


2
n�1���s


1
n�s


2
n�� � � ��s


1
l �s


2
l �
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base case: n � 0.


In this case �σ � n� � �s1
0�s


2
0� hence Pro jk�σ � n� � sk


0. Furthermore �n � σ� � σ, thus


Pro jk�n � σ� � Pro jk�σ� hence �1 � �n � σ�� � 1 � σ. We need to distinguish between


two cases:


i. �s1
0�s


2
0�� �s1


1�s
2
1� � k-move.


In this case, from Definition 6.2.5, we have that Pro jk�σ� � sk
0�Pro jk�1 � σ�, hence


here we aim to prove that


Pro jk�σ � 0���1 � �Pro jk�0 � σ��� � sk
0�Pro jk�1 � σ�


As we have already noticed


�1 � �Pro jk�0 � σ��� � 1 � Pro jk�σ� � �1 � �sk
0�Pro jk�1 � σ��� � Pro jk�1 � σ�


Thus the above equality is proved.


ii. �s1
0�s


2
0�� �s1


1�s
2
1� � j-move.


In this case a further distinction is needed. If σ is a j path (i.e. it consists only


of j-moves), then Pro jk�σ� � sk
l � sk


0. Also, since �n � σ� � σ with n � 0 then


�1 � �Pro jk�n � σ��� � ε, hence


Pro jk�σ � n���1 � �Pro jk�n � σ��� � sk
0 � Pro jk�σ��


On the other hand if σ is not a j path then there exists an index n� � �1� l� such that


�s1
n��s


2
n��� �s1


n��1�s
2
n��1�� k-move and �n̂� � �1�n��, �s1


n̂��s
2
n̂��� �s1


n̂��1�s
2
n̂��1�� j-move.


In this case, from Definition 6.2.5, it is straightforward to show that


Pro jk�σ� � Pro jk�1 � σ� � sk
n� �Pro jk��n


��1� � σ�


where also sk
0 � sk


n� .Furthermore, since with n � 0


�1 � �Pro jk�0 � σ��� � 1 � Pro jk�σ�


then


�1 � �Pro jk�0 � σ��� � Pro jk��n
��1� � σ�
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Hence


�σ � n���1 � �Pro jk�0 � σ��� � sk
0�Pro jk��n


��1� � σ� � Pro jk�σ�


which proves the base of the induction also in this second case.


inductive step: 0 � n � l.


We aim to show that


Pro jk�σ� � Pro jk�σ � �n�1����1 � �Pro jk��n�1� � σ���


assuming


Pro jk�σ� � Pro jk�σ � n���1 � �Pro jk�n � σ���


as inductive hypothesis. As before, we need to distinguish between two cases.


i. �s1
n�s


2
n�� �s1


n�1�s
2
n�1� � j-move.


In this case, as a consequence of Definition 6.2.5, we have that Pro jk�σ � n��Pro jk�σ �
�n�1��. Furthermore, Pro jk�n � σ� � Pro jk��n�1� � σ�, hence


Pro jk�σ � n���1 � �Pro jk�n � σ��� � Pro jk�σ � �n�1����1 � �Pro jk��n�1� � σ���


which, as a consequence of the inductive hyptosis, proves that:


Pro jk�σ� � Pro jk�σ � �n�1����1 � �Pro jk��n�1� � σ���


ii. �s1
n�s


2
n�� �s1


n�1�s
2
n�1� � k-move.


In this case from Definition 6.2.5, it is easy to show that


Pro jk�σ � n��sk
n�1 � Pro jk�σ � �n�1�� (6.2.2)


and also Pro jk�n � σ� � sk
n�Pro jk��n�1� � σ� which implies:


�1 � Pro jk�n � σ�� � Pro jk��n�1� � σ� (6.2.3)


Trivially though, we can rewrite Pro jk��n� 1� � σ� as the concatenation of its first


element to its first suffix, namely:


Pro jk��n�1� � σ� � Pro jk��n�1� � σ��0���1 � Pro jk��n�1� � σ��







186 Chapter 6. Compositional CSL model checking: Until formulae


Straightforwardly, Pro jk��n� 1� � σ��0� turns out to be equal to sk
n�1. To prove that a


further distinction needs to be considered: if �1 � Pro jk��n�1� � σ�� is a j path, then


clearly Pro jk��n�1� � σ� � sk
l � sk


n�1; on the other hand if �1 � Pro jk��n�1� � σ�� is


not a j path, then there will exists an index n� � �n�1� l� such that σ�n��� σ�n��1� �


k-move and �n̂� � �n� 1�n��, σ�n̂��� σ�n̂�� 1� � j-move, hence Pro jk��n� 1� � σ� �
sk
n� � sk


n̂� . which proves Pro jk��n�1� � σ� � sk
n�1, in this case too. Relying on this and


on (6.2.2) and (6.2.3) we have that:


Pro jk�σ � �n�1����1 � Pro jk�n � σ�� � Pro jk�σ � n��sk
n�1��1 � Pro jk��n�1� � σ��


� Pro jk�σ � n��Pro jk��n�1� � σ�


� Pro jk�σ � n���1 � Pro jk�n � σ��


which, as a consequence of the inductive hypothesis proves that:


Pro jk�σ� � Pro jk�σ � �n�1����1 � Pro jk��n�1� � σ��
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Figure 6.2: Splitting Pro jk�σ�


To understand the meaning of the result of the above proposition, let us consider the







6.2. Paths in a bidimensional Boucherie process 187


bidimensional path


σ � �s1
0�s


2
0���s


1
0�s


2
1���s


1
1�s


2
1���s


1
2�s


2
1���s


1
2�s


2
2���s


1
3�s


2
2�


which is depicted in Figure 6.2, together with its projections:


Pro j1�σ� � s1
0�s


1
1�s


1
2�s


1
3


Pro j2�σ� � s2
0�s


2
1�s


2
2


Suppose we are concerned about the 1-projection of σ, namely Pro j1�σ�, then, accord-


ing to Proposition 6.2.1 we can randomly choose a splitting point n in �0� � � � � l� where


l is the length of σ, i.e. l � 5. For example, if we choose n � 0 as splitting point (i.e.


a splitting point corresponding to a 2-move), then the n-th prefix and suffix of σ are


respectively: �σ � n� � �σ � 0� � �s1
0�s


2
0� and �n � σ� � �0 � σ� � σ. Proposition 6.2.1


tells us that


Pro j1�σ� � Pro j1�σ � 0���1 � Pro j1�0 � σ��


Let us verify if this is the case. Trivially Pro j1�σ � 0� � s1
0. Furthermore


Pro j1�0 � σ� � Pro j1�σ� � s1
0�s


1
1�s


1
2�s


1
3, which by elimination of the head element be-


comes


�1 � Pro j1�0 � σ�� � s1
1�s


1
2�s


1
3


Then, clearly, the concatenation of Pro j1�σ � 0� � s1
0 and �1 � Pro j1�0 � σ�� � s1


1�s
1
2�s


1
3


leads to Pro j1�σ� � s1
0�s


1
1�s


1
2�s


1
3. If instead we consider n � 4 as splitting point, which


corresponds to a 1-move (i.e. σ�4�� σ�5� � 1-move), the n-th prefix and suffix are:


�σ � n� � �σ � 4� � �s1
0�s


2
0���s


1
0�s


2
1���s


1
1�s


2
1���s


1
2�s


2
1���s


1
2�s


2
2�


�n � σ� � �4 � σ� � �s1
2�s


2
2���s


1
3�s


2
2�


and their 1-projections are:


Pro j1�σ � 4� � s1
0�s


1
1�s


1
2


Pro j1�4 � σ� � s1
2�s


1
3


from which, straightforwardly, Pro j1�σ� � Pro j1�σ � 4���1 � Pro j1�4 � σ��.
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This proves that the splitting rule for Pro jk�σ� works properly both when the cho-


sen splitting point corresponds to a j-move or to a k-move.


The ability to split the k-projection of a bidimensional path σ is a basic result for


proving that the probability measure of σ can be factored in terms of the probability


measure of its projections.


Given a bidimensional path σ, we introduce the further notations:


� k move�σ�: represents the set of indices m � �0� length�σ�� corresponding to a


k-move in σ, namely such that σ�m�� σ�m�1� is a k-move.


� pk
σ: is a constant, accounting for the probability of the k-moves of σ. It is defined


as follows:


pk
σ �


�
Πm�k-move�σ��p


k�σ�m��� if n � 0 and k-move�σ� �� /0
1 otherwise


where pk�σ�m�� represents the probability for a k-move to occur when at state


σ�m� (see Definition 4.2.1).


In essence the coefficient pk
σ is proportional to the measure of the probability of the


k-moves in a bidimensional path σ.


Proposition 6.2.2 (Factors of the probability measure of a bidimensional path) Let


σ be a bidimensional path. The probability measure of σ is expressible in terms of the


probability measure of its 1-projection and 2-projection, in the following way:


Pr�σ� � p1
σ � p


2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ��


where the constant pk
σ is as described above.


Proof.


By induction on n � length�σ�. Let σ be:


σ � �s1
0�s


2
0� � � ��s


1
n�s


2
n�
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base: n � 0.


In this case σ � �s1
0�s


2
0� hence, trivially, Pr�σ� � 1. Moreover Pro j1�σ� � s1


0 and


Pro j2�σ� � s2
0 then clearly Pr�Pro j1�σ�� � Pr�Pro j2�σ�� � 1 and also p1


σ � p2
σ � 1


which proves


Pr�σ� � p1
σ � p


2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ���


induction: n � 0.


Trivially, we know that the probability measure of a path is given by the product of the


probability measure of its m-th prefix and suffix, hence, with respect to the �n� 1�-th


prefix and suffix of σ:


Pr�σ� � Pr�σ��n�1�� �Pr��s1
n�1�s


2
n�1��s


1
n�s


2
n�� (6.2.4)


Since the length of the �n�1�-th prefix of σ is n�1, then by inductive hypothesis, we


know that:


Pr�σ��n�1��� � p1
�σ��n�1�� �Pr�Pro j1�σ��n�1��� � p2


�σ��n�1�� �Pr�Pro j2�σ��n�1���


By substituting this result in 6.2.4 we get:


Pr�σ� � p1
�σ��n�1�� �Pr�Pro j1�σ��n�1��� � p2


�σ��n�1�� �Pr�Pro j2�σ��n�1���


�Pr��s1
n�1�s


2
n�1��s


1
n�s


2
n���


(6.2.5)


We then need to distinguish between two possibilities:


i. �s1
n�1�s


2
n�1�� �s1


n�s
2
n� � 1-move.


In this case Pro j1��n�1��σ� � s1
n�1�s


1
n, hence


Pr��s1
n�1�s


2
n�1��s


1
n�s


2
n�� � p1��s1


n�1�s
2
n�1�� �Pr�s1


n�1�s
1
n�


where p1��s1
n�1�s


2
n�1�� is as in Definition 4.2.1. Then by substitution in 6.2.5 we get:


Pr�σ� � p1
�σ��n�1�� �Pr�Pro j1�σ��n�1��� � p2


�σ��n�1�� �Pr�Pro j2�σ��n�1���


� p1��s1
n�1�s


2
n�1�� �Pr�s1


n�1�s
1
n��


(6.2.6)
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Moreover, from Proposition 6.2.1 we know that Pro jk�σ� can be split in two parts,


particularly:


Pro j1�σ� � Pro j1�σ��n�1����1 � Pro j1��n�1��σ��


Pro j2�σ� � Pro j2�σ��n�1����1 � Pro j2��n�1��σ��


Since we are assuming �s1
n�1�s


2
n�1�� �s1


n�s
2
n� � 1-move, then


Pro j1��n�1��σ� � s1
n�1�s


1
n


Pro j2��n�1��σ� � s2
n


hence


Pro j1�σ� � Pro j1�σ��n�1����1 � �s1
n�1�s


1
n�� � Pro j1�σ��n�1���s1


n


Pro j2�σ� � Pro j2�σ��n�1����1 � s2
n� � Pro j2�σ��n�1��


then:


Pr�Pro j1�σ�� � Pr�Pro j1�σ��n�1����Pr�s1
n�1�s


1
n�


Pr�Pro j2�σ�� � Pr�Pro j2�σ��n�1���


By substituting the above results in 6.2.6, we get


Pr�σ� � p1
�σ��n�1��p


2
�σ��n�1��Pr�Pro j1�σ��Pr�Pro j2�σ�� � p1��s1


n�1�s
2
n�1�� (6.2.7)


but since we are assuming �s1
n�1�s


2
n�1�� �s1


n�s
2
n� � 1-move, then also


p1
σ � p1


�σ��n�1�� � p
1��s1


n�1�s
2
n�1��


p2
σ � p2


�σ��n�1��


which substituted in (6.2.7) proves


Pr�σ� � p1
σ p2


σPr�Pro j1�σ��Pr�Pro j2�σ��


ii. �s1
n�1�s


2
n�1�� �s1


n�s
2
n� � 2-move.


The proof of this case is symmetric to the one of the previous case.


�
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The above proposition provides us with a compositional method to compute the prob-


ability measure of a bidimensional Boucherie path. Given such a path σ, the value of


its probability measure is given by the product of the probability measure of its projec-


tions multiplied by two constants, the values of which depend on the transitions σ is


made up of. The following example shows how to apply the above result in practice.


�
�


�
�


�
�


�
�


�
�


�
�


���� ���


���� ���


���� ���
���� ���


���� ���
�


��������


��������


Figure 6.3: factorizing the probability measure of a path σ


Example 6.2.2 Figure 6.3 shows a path σ together with its projections Pro j1�σ� and


Pro j2�σ�. The probability measure of σ is given by the product of the probability of


each step, hence:


Pr�σ��
Q2�s2� t2�


E1�s1��E2�s2�
�


Q1�s1� t1�


E1�s1��E2�t2�
�


Q2�t2�u2�


E1�t1��E2�t2�
�


Q1�t1�u1�


E1�t1��E2�u2�
(6.2.8)


Having in mind that the probability of a k-move from a state �ŝ1� ŝ2�, is given by:


pk�ŝ1� ŝ2� �
Ek�ŝk�


E1�ŝ1��E2�ŝ2�


then we can rewrite (6.2.8) as follows:


Pr�σ�� p2��s1�s2�� �
Q2�s2� t2�


E2�s2�
� p1��s1� t2�� �


Q1�s1� t1�


E1�s1�
�


p2��t1� t2�� �
Q2�t2�u2�


E2�t2�
� p1��t1�u2�� �


Q1�t1�u1�


E1�t1�
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On the other hand, the probability measure of the σ projections are respectively


Pr�Pro j1�σ���
Q1�s1� t1�


E1�s1�
�
Q1�t1�u1�


E1�t1�


Pr�Pro j2�σ���
Q2�s2� t2�


E2�s2�
�
Q1�t2�u2�


E2�t2�


Hence, since p1
σ� p1��s1� t2�� � p1��t1�u2�� and p2


σ� p2��s1�s2�� � p2��t1� t2��, we have


that:


Pr�σ�� p1
σ � p


2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ��


proving the validity of Proposition 6.2.2 in this case.


�


Finally, we are going to show a basic result which regards the semantics of single-


component unbounded Until formulae with respect to bidimensional paths: a bidimen-


sional path satisfies a formula like �ψ�
kU ψ��


k � if and only if, its k-projection does.


Proposition 6.2.3 Let σ be a bidimensional path with respect to a bidimensional Bou-


cherie process M and ψ�
k�ψ


��
k two single-component formulae as in (5.2.1). Then the


following holds:


σ �� �ψ�
kU ψ��


k ��� Pro jk�σ� ��k �ψ�
kU ψ��


k �


Proof.


��� From the CSL semantics we know that if σ �� �ψ�
k U ψ��


k � then 	n
 0 : σ�n� �� ψ��
k


and �m � n σ�m� �� ψ�
k. From the decomposed semantics of non-probabilistic single-


component formulae, we know that


σ�m� �� ψ�
k �� σ�m�k ��k ψ�


k


σ�n� �� ψ��
k �� σ�n�k ��k ψ��


k


Moreover, thanks to Remark ?? (see Appendix B), we know that the n-th element of


σ is projected over the mapk�σ�n�-th of its k-projection. Hence 	n� � mapk�σ�n�
 0


such that Pro ji�σ��n�� � σ�n�k ��k ψ��
k and also �m� � mapk�σ�m� � n�,


Pro jk�σ��m���σ�m�k ��k ψ�
k which proves Pro jk�σ� �� �ψ�


k U ψ��
k �.
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Figure 6.4: Semantics of �ψ�
1 U ψ��


1� with respect to a bidimensional path


��� Straightforward by reversing the argument in (�).


�


In Figure 6.4 an example of the property proved by Proposition 6.2.3 is depicted. The


bidimensional path σ satisfies �ψ�
1 U ψ��


1� and also, clearly, its projection on component


M1, σ1, satisfies �ψ�
1 U ψ��


1�.


A direct consequence of the above result is the one proved in the following proposi-


tion. It states that the k-projection of the paths which start from a state �s1�s2� and sat-


isfy the formula �ψ�
kU ψ��


k � is equal to the set of paths from state sk satisfying ψ�
i U ψ��


i .


Proposition 6.2.4 Let �s1�s2� be a a state of a bidimensional Boucherie process M
and ψ�


k�ψ
��
k two single-component formulae as in (5.2.1). Then the following holds:


Pro jk�Path��s1�s2��ψ�
k U ψ��


k �� � Path�sk�ψ�
k U ψ��


k �


Proof.


(�) If σk � Pro jk�Path��s1�s2��ψ�
k U ψ��


k ��, then from Proposition 6.2.3 also σk ��k


�ψ�
k U ψ��


k �, and since clearly σk�0� � sk, then σk � Path�sk�ψ�
k U ψ��


k �.
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(�) Let us consider an arbitrary path σk � Path�sk�ψ�
k U ψ��


k �. We aim to show that


for each such a path σk, there exists a bidimensional path from �s1�s2�, which as well


satisfies �ψ�
k U ψ��


k � and whose k-projection is actually σk. This is equivalent to show


that the subset of Path��s1�s2��ψ�
k U ψ��


k � given by the paths whose k-projection is σk,


namely Pro j�1
k �σk���s1�s2��ψ�


k U ψ��
k ��, is not empty. In order to do that we need to


distinguish between three possible cases, which are:


i) All states in σk fall in Sk�R. For simplicity, in the remainder of the proof we


refer our argument to the case k � 1 hence j � 2. We observe that a symmetrical and


equivalent derivation can be straightforwardly obtained from the above by swapping


the indices k and j. If all states of σk are in Sk�R and s j � S j�R, then σ��σk�s j��


�σk�0��s j� � � ��σk�n��s j�, where n � length�σk�, is clearly a path from �s1�s2� and fur-


thermore, as a consequence of the decomposed semantics of ψk formulae, also σ ��
�ψ�


k U ψ��
k �. Hence σ � �Path��s1�s2��ψ�


k U ψ��
k �� and also, trivially, Pro jk�σ� � σk


which proves Pro j�1
k �σk��s1�s2��ψ�


k U ψ��
k � to be non empty.


On the other hand if s j � S j�R, then since we are dealing here only with ergodic


Markov Chains (i.e. any state is reachable from any other state), there will be a path


σ̄ � s j � � �t j on M j leading from s j to a state t j � S j�R. Thus, clearly, �sk � σ̄� is a


path on M from �sk�s j� and furthermore �sk�σ̄��σ � Path��s1�s2��ψ�
k U ψ��


k �� and


Pro jk��sk� σ̄��σ� � σk which again proves Pro j�1
k �σk��s1�s2��ψ�


k U ψ��
k � to be non


empty.


ii) All states in σk are in Sk�R. In this case s j must be in S j�R (as Sk�R�S j�R is not part


of the Boucherie state space). Then �σk�s j� is a path from �s1�s2� and, thanks to de-


composed semantics of ψk formulae, we also know that �σk�s j� satisfies �ψ�
k U ψ��


k �,


while clearly its k-projection is σk.


iii) Some states of σk are in Sk�R and some others are in Sk�R. In the most general case


the path σ1 we consider (we are assuming k � 1), is given by a (finite) sequence of


σ1R
and σ1R subpaths (subpaths consisting only of states in S1�R and S1�R respectively).


However we can consider the simplest case of σ1 consisting of a sequence of only two


such subpaths, either σ1 � σ1R
�σ1R or σ1 � σ1R �σ1R


, knowing that the proof for any
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Figure 6.5: Pro jk�Path��s1�s2��ψ�
k U ψ��


k �� � Path�sk�ψ�
k U ψ��


k �


other case is a direct consequence of this simple one. Let us assume


σ1 � σ1R
�σ1R


Let us denote by k� �0� l� (l�length�σ1�� the last element of σ1R
(i.e. k� length�σ1R


�).


Then clearly, σ1�k� � S1�R and σ�k�1� � S1�R. As we have seen in the previous case, if


s2 � S2�R then the bidimensional path given by the product of σ1 by s2, σa�σ1�s2, is a


proper path from �s1�s2�. On the other hand (see Figure 6.5), if s2 � S2�R there will be


a state t2 � S2�R reachable from s2 through a path σ̄2 such that the bidimensional path


obtained by concatenation of the product paths �σ1�0��σ̄2� and ��1 � σ1R
��t2�, i.e.


σb��σ�0�1�σ̄2����1 � σ1R
��t2�


is a proper path from the state �s1�s2� to the state �σ1�k�� t2�.


It is straightforward to show that both σa and σb are paths from �s1�s2� which


project on σ1. Moreover since, by the hypothesis, σ1 satisfies �ψ�
k U ψ��


k � then there


exists n� � �0� l� such that σ1�n�� ��1 ψ��
1 and �m� � n�, σ1�m�� ��1 ψ�


1. Thus, if s2 � S2�R
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then thanks to the compositional semantics of ψk formulae, also there will exist n � n�


such that, with σ�σa, σ�n� �� ψ��
1 and �m�m� � n�n� σ�m� �� ψ�


1, which proves σa


being in Path��s1�s2���ψ�
k U ψ��


k �� (hence Path��s1�s2���ψ�
k U ψ��


k �� �� /0).


If, instead, s2 � S2�R, then the path σ�σb��σ1R
�t2� is such that with n�n��length�σ̄2�,


σ�n� �� ψ��
1 and �m � n σ�m� �� ψ�


1, which means σ �� �ψ�
k U ψ��


k �. Hence, also in the


case s2 � S2�R, the set Path��s1�s2���ψ�
k U ψ��


k �� is not empty as it contains, at least,


σ�σb��σ1R
�t2�.


The proof for the symmetrical case σ1 �σ1R �σ1R
is simpler as clearly the only possi-


bility, in this case, is s2 � S2�R (we are considering a path σ1 generated from a state


σ1�0� � S1�R where component M1 holds the shared resource, hence s1 can only be


coupled with states s2 � S2�R). In this case the product path σ�σ1�s2 is clearly a


path from �s1�s2� projecting on σ1. Furthermore it is straightforward to show that, by


assuming σ1 ��k �ψ�
k U ψ��


k � then also σ �� �ψ�
k U ψ��


k �.


�


The result of the above proposition relating bidimensional paths and their k-projections,


will be the basis for a non-constructive prove of existence of a compositional semantics


for single-component unbounded Until formulae. This will be the subject of the next


section.


6.3 On single-component unbounded Until formulae


Relying on the background material about bidimensional paths provided in the previ-


ous section, we are now ready to deal with the analysis of a compositional semantics


for unbounded Until formulae which refer to a bidimensional Boucherie process. For


that purpose, we consider an enriched version of the syntax for single-component for-


mulae introduced in (5.2.1), where the Until connective U I , in its unbounded version


(i.e. I � �0�∞�) only, has been added.
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φk ::� ψk � ϕk � ωk � ξk � φk�φk � �φk


ψk ::� tt � ak � ψk�ψk � �ψk


ξk ::� S�p�ψk� � S�p�ϕk�


ϕk ::� P�p�X
I�ψk��


ωk ::� P�p�ψkU ψk�


(6.3.1)


We notice that the same type of restrictions concerning nesting of probabilistic op-


erators (see Section 5.2) still apply. Thus, also for the Until connective, only non-


probabilistic single-component formulae ψk, are admitted as the possible type of argu-


ment. Furthermore, Until formulae are kept apart from Next formulae. This is due to


the fact that, for the time being, no results have been found showing a compositional


semantics of steady-state properties which refer to Until paths (while, as shown in


Section 5.2.2, there is a decomposed way to check steady-state properties of bounded


Next single-component formulae). As a consequence, the Until formulae cannot ap-


pear as argument of the steady-state operator, in the syntax of formulae for which a


decomposed semantics exists.


The following theorem proves that, relying on the properties of bidimensional paths,


the derivation of a compositional semantics for single-component unbounded Until for-


mulae is possible.


Theorem 6.3.1 Let �s1�s2� be a state of a bidimensional Boucherie process, ψ�
k�ψ


��
k


two non-probabilistic formulae as in (6.3.1), p � �0�1� a probability value and


�� �����
���. Then there exists a derived probability value p� such that the fol-


lowing holds:


�s1�s2� �� P�p�ψ�
k U ψ��


k ��� sk ��k P�p��ψ�
k U ψ��


k �


Proof. From the CSL semantics we know that a state s of an arbitrary CTMC M
satisfies a probabilistic Until formula like P�p�ψ�


k U ψ��
k � if and only if the probability
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measure ProbM �s��ψ�
k U ψ��


k �� � p. However, ProbM �s��ψ�
k U ψ��


k �� is equal to the


sum of the probability measure of the paths starting from s and satisfying �ψ �
k U ψ��


k �,


which is:


ProbM �s��ψ�
k U ψ��


k �� � ∑
σ�Path�s��ψ�


k U ψ��
k ��


Pr�σ�


where the probability of a path σ is given by the product of the probability of each


transition it consists of. Relying on this remark let us prove the two implications.


��� If �s1�s2� �� P�p�ψ�
i U ψ��


i �. Then�
∑


σ�Path��s1�s2��ψ�
i U ψ��


i �


Pr�σ�
�
� p (6.3.2)


If we denote by P� the set of k-projections of the paths σ � Path��s1�s2��ψ�
i U ψ��


i �


(i.e. P� � Pro jk�Path��s1�s2��ψ�
i U ψ��


i ��) and by Pro j�1
k �σ���s1�s2�� the set of paths


σ from �s1�s2� whose k-projection is σ� (i.e. the path σ such that Pro jk�σ� � σ�), then


we can rewrite the above sum by factoring out the paths with common k-projection in


the following way:


∑
σ�Path��s1�s2��ψ�


k U ψ��
k �


Pr�σ� � ∑
σ��P�


�
∑


σ�Pro j�1
k �σ���s1�s2��


Pr�σ�
�


(6.3.3)


From Proposition 6.2.2 we know that the probability measure of every bidimensional


path σ can be factored in terms of the probability measure of its projections Pro j1�σ�
and Pro j2�σ� and of two constants, namely p1


σ and p2
σ:


�σ�	pi
σ� p


j
σ : Pr�σ�� p1


σ � p
2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ��


Hence (6.3.3) results in:


∑
σ�Path��s1�s2��ψ�


k U ψ��
k �


Pr�σ� � ∑
σ��P�


�
∑


σ�Pro j�1
k �σ���s1�s2��


pi
σp j


σPr�σ��Pr�Pro j j�σ���
�


� ∑
σ��Pro jk�Path��s1�s2��ψ�


kUψ��
k ��


kσ�Pr�σ��� p


(6.3.4)


with


kσ� � ∑
σ�Pro j�1


i �σ���s1�s2��


pi
σp j


σPr�Pro j j�σ�� (6.3.5)
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But from Proposition 6.2.4, we know that


Pro jk�Path��s1�s2��ψ�
kUψ��


k �� � Path�sk��ψ�
k U ψ��


k ��


which substituted in the inequality (6.3.4) results in:


∑
σ��Path�sk��ψ�


k U ψ��
k ��


kσ�Pr�σ��� p (6.3.6)


If we denote by σ�M the path in Path�sk��ψ�
k U ψ��


k �� which maximises the associated


constant kσ�M , then we can define the constant C which accounts for the total deviation


from the maximum kσ�M of each other path σ� � Path�sk��ψ�
k U ψ��


k ��, σ� �� σ�M, namely:


C � ∑
σ��Path�sk��ψ�k U ψ��k ��


σ� ��σ�M


�kσ�m � kσ� �Pr�σ��


Then from (6.3.6), straightforwardly follows


kσ�M ∑
σ��Path�sk��ψ�


k U ψ��
k ��


Pr�σ��� �p�C�


which, clearly, proves


sk ��k P
�


�p�C�
kσ�M


�ψ�
k U ψ��


k �


��� By reversing ���.


�


Relying on the properties of bidimensional paths, the above theorem proves the


existence of a compositional semantics for single-component unbounded Until for-


mulae. This result, though correct, does not provide a practical way of decomposed


checking of Until formulae. The computation of the equivalent probability bound


p� , in fact, requires determing the set of paths which satisfy an Until formula (i.e


Path�sk��ψ�
k U ψ��


k ��), something which could be achieved by defining some specific


graph-analysis technique. In the next section we will show that a decomposed verifi-


cation of event-bounded Until formulae is easily achievable.
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6.4 Compositional Semantics of event-bounded Until


formulae


In Section 3.2 an event-bounded version of the Until operator has been formally in-


troduced and a verification method has been demonstrated for the case of a single-


point bounding interval. It has been shown that verifying an event-bounded formula


�ψ� U�n� ψ��� boils down to the verification of its operands, ψ� and ψ��, plus the ver-


ification of the Next formula �X ψ���. In Chapter 4 and Chapter 5, we have proved


methods for decomposed checking of both simple boolean combinations of atomic


propositions (i.e. ψkk and ψ12) and Next formulae (i.e. Xψk and Xψ12). As a conse-


quence, the derivation of an algorithm for compositional verification of event-bounded


Until formulae, both single-component and general, is straightforward. In Algorithm


6.4.1 such a method is provided. That procedure requires the computation of the state-


vectors Prob�Xψk� and Prob�Xψ12� whose elements represent the probability of sat-


isfying, respectively, a single-component and a general Next formula, for the states of


a bidimensional Boucherie CTMC. The following two remarks point out that the ele-


ments of those vectors can be evaluated in a compositional way (i.e. by computing the


probability of Next formulae with respect to the states of the component’s processes).


Remark 6.4.1 Let �s1�s2� be a state of a bidimensional Boucherie process and ψk a


boolean combination of atomic propositions referring to component Mk. The proba-


bility of reaching a ψk-state from �s1�s2� in one-step, is equal to:


Prob�X ψk��s1�s2� �


��������������������
�������������������


Probk�X ψk��sk� if �s1�s2� � Rk


1 if �s1�s2� � Rj


and sk ��k ψk


0 if �s1�s2� � Rj


and sk ���k ψk


pk�s1�s2� �Probk�X ψk��sk� if �s1�s2� � Rf ree


and sk ���k ψk


pk�s1�s2� �Probk�X ψk��sk�� p j�s1�s2� if �s1�s2� � Rf ree


and sk ��k ψk
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The above remark shows that the probability vector Prob�Xψk� for a bidimensional


Boucherie process is a function of the corresponding probability vector Probk�Xψk�


computed with respect to component Mk.


Remark 6.4.2 Let s1 and s2 be a state of a bidimensional Boucherie process and ψ12


a general formula as in 5.4.1. The probability of reaching a ψ12-state from �s1�s2� in


one-step, is equal to:


Prob�Xψ12��s
1�s2�� ∑


�α1�α2��DecSat�ψ12�


�p1�s1�s2� �Prob1�X α1��s
1�� p2�s1�s2� �Prob2�X α2��s


2��


The above remark is a direct consequence of Algorithm 5.4.2. It shows that the stat-


evector Prob�Xψ12�, for a bidimensional Boucherie process, can be obtained as a func-


tion of the components’ state-vectors Prob1�Xα1� and Prob�Xα2� , where α1 and α2


are the single-component formulae characterising the partition of Sat�ψ12�.


Having shown that the vectors Prob�Xψk� and Prob�Xψ12� for a bidimensional


Boucherie CTMC can be computed in a compositional manner, it is easy to determine


a method for decomposed verification of both single-component and general event-


bounded Until formulae.


Algorithm 6.4.1 Let M be a bidimensional Boucherie process with components M1


and M2, ψ� and ψ�� two boolean combinations of atomic propositions (either single-


component or general) and n a natural number. The following algorithm can be ap-


plied for computing the state-vector PU�Prob�ψ� U�n� ψ���


Algorithm (Prob�ψ� U�n� ψ���).


1. PU�0;


2. IF n � 0 THEN PU � iψ�� ; ELSE


i. Determine Prob�X ψ���;


ii. Determine iψ�;


iii. PU � iψ� �Prob�X ψ���; n � n�1;


iv. FOR n � 0 DO


PU � iψ� � �P �PU�;
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n � n�1;


3. return PU.


�


The above algorithm shows a method for computing the probability of satisfying an


event-bounded Until formulae of any type (i.e. with any possible combination of


operands, either single-component formulae, ψk, or general formulae, ψ12) for a bidi-


mensional Boucherie process. We observe that the evaluation of the state-vector


Prob�ψ� U�n� ψ���, for the product-process, is obtained in a decomposed way which is,


by means of a number of verifications involving the component’s processes only (no


actual verification with respect to the state-space of the product-process is needed). In


fact, in order to determine Prob�ψ� U�n� ψ��� the vectors iψ� , iψ�� and Prob�Xψ��� are


needed. However, relying on Theorem 4.3.1 and Theorem 4.3.2, we know that iψ� and


underlineiψ�� can be evaluated in a compositional way. Moreover, from Remark 6.4.1


and Remark 6.4.2, we know that also Prob�Xψ��� can be computed compositionally.


Hence, the procedure illustrated by Algorithm 6.4.1 shows that an approach for de-


composed verification of event-bounded Until formulae, is possible when referring to


a bidimensional Boucherie process.







Chapter 7


Conclusion


7.1 Introduction


In this chapter a summary of the main results of the thesis is presented. The extent to


which these address the analysis of CSL expressiveness and the study of a composi-


tional approach to CTMC’s model-checking is assessed. Furthermore, in Section 7.3, a


description of the ongoing work and directions for further developments are provided.


7.2 Summary


In this work the model-checking technique for CMTCs has been considered and two


major aspects have been addressed: the study of the expressiveness of the CSL logic


and the analysis of a compositional method to check CSL formulae with respect to a


bidimensional Boucherie process.


CSL expressiveness


In Chapter 3 the CSL logic has been considered and its expressiveness analysed. Rel-


evant points have been made regarding each of the following subjects.


Extending the future-quantification: in referring to a behaviour of interest with re-


spect to a system’s evolution, the idea of event-quantification, as opposed to time-
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quantification, of the future has been pointed out. In this respect, we have seen that the


Until and Next operator perform differently, the former allowing us to refer to an indef-


initely long (in terms of events) future only, the latter allowing a one-event-long only


quantification of the future. The extension of the strict (one-only) event-quantification


capability of the CSL logic to the most general case of n events, seemed then to be


natural. As a result, an event-bounded version of the time-unbounded Until operator


has been introduced and a method for its verification has been demonstrated. This has


been shown to require the computation of an iterative matrix-vector multiplication, as


opposed to the the solution of a system of linear equations which is needed for its


event-unbounded counterpart (i.e. the standard unbounded Until).


Single-point time-bounded formulae: time-bounded path formulae (i.e. XI φ and


φUI ψ) allow us to specify a bounding interval I � �a�b� for the time-wise distance of


a future behaviour of interest. When the bounding interval consists of a single instant


(i.e. I � �a�a�) we have pointed out some relevant features of both Next and Until.


Concerning a Next formulae, (i.e. X �a�a� φ), it has been shown that reaching a φ state in


one step exactly at time t is an impossible event (i.e. it has probability zero to happen).


As a consequence a time-bounded Next formula has been characterised as well-formed


only if a � b. With the Until formulae (i.e. �φU �a�a� ψ�), instead, we have seen that


only the evolutions in which a future state where both the source (i.e. φ) and the target


(i.e. ψ) formulae are valid is reached through a sequence of states where the source is


satisfied, have a non-null probability to fulfil the point time-bound �a�a�. In contrast,


in the non-point interval case, a � b, also the paths in which a future state where only


the target is valid is reached through a sequence of states where the source is satisfied,


can have a non-zero probability to fulfil the time bound I � �a�b�.


Well-formed probabilistic formulae: CSL probabilistic formulae (i.e. S�p�φ� and


P�p�ϕ�) allow us to compare a probability measure (either an equilibrium probability


measure or a path probability measure) with respect to a bound p. The comparison is


achieved by means of any operator�� �����
��� and any bound p� �0�1�. We have


pointed out that the absence of restrictions in associating� and p can lead to senseless
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formulae, like S�0�φ� or P�1�ϕ�. Such formulae are trivially valid in any state, be-


cause, clearly, a probability measure must fall in the interval �0�1�. This has led to the


characterisation of well-formed probabilistic CSL formulae, achieved by identifying


the sensible pairs ��� p� through proper logical conditions.


Simpler syntax for ergodic CTMCs: the CSL syntax admits nesting of probabilistic


operators (i.e. S�p and P�p). This facility allows for expressing complicated proper-


ties of a CTMC. However, we have demonstrated that when the considered model is an


ergodic CTMC, the complete nesting facility of the original CSL syntax is not actually


needed. This is due to the fact that with ergodic CTMCs, steady-state formulae like


S�p�φ�, are model-dependent rather than state-dependent (i.e. they are either valid in


every state or in none). As a result, we have proved a number of equivalences which


show that nesting of S�p within a P�p operator is pointless when dealing with ergodic


CTMCs. That has led to the characterisation of a simpler, but equivalent, CSL syntax


for referring to ergodic models.


Compositional CSL model-checking


Chapters 4, 5 and 6 have been devoted to the analysis of a compositional CSL se-


mantics for bidimensional Boucherie CTMCs. Formulae referring to a two component


Boucherie process have been partitioned into single-component, for stating properties


which refer to features of a single component only, and general, which refer to features


of both components. A progressive approach has been have adopted in deriving of a


compositional semantics.


Non-path formulae: in Chapter 4 decomposed semantic equivalences for non-path


formulae (i.e. formulae not involving X nor U) have been proved, first for the single-


component case, then, relying on those results, for the general case. With respect to


properties which refer to a single component only, it has been proved that the model-


checking problem for a single-component steady-state formula (i.e. S�p�ψk�) on the
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product-process, is equivalent to the model-checking problem of the same steady-state


formula on component Mk, but with respect to a derived probability bound p� (whose


value depends on Satk�ψk�). On the other hand, we have shown that checking of gen-


eral formulae reduces to a combined checking of single-component formulae. In par-


ticular, a decomposed semantics for general steady-state formulae, like S�p�ψ12�, has


been derived, relying on the definition of a partition of the set Sat�ψ12�. We observe


that most of the decomposed semantic equivalences for steady-state properties (both


single-component and general) we have proved, assume that the normalisation con-


stant G, for the product form solution of the Boucherie steady-state distribution, is


known. The problem of computing G (a well known one in the literature) has not been


considered in this work.


Next formulae and new algorithm for Prob�XI φ�: in Chapter 5 time-bounded Next


formulae have been considered and a decomposed semantics has been provided. For


the time being the possibility for nesting of the probabilistic Next operator (i.e. P�pXI)


has been excluded. Furthermore, since both the product process and the component’s


processes of a Boucherie framework are ergodic CTMCs, then only non-probabilistic


formulae have been allowed as the possible type of argument of P�pXI. Under these re-


strictions we have proved that checking a single-component probabilistic time-bounded


Next formula, like P�p�XI ψk�, on the product process, is equivalent to checking the


same formula on component Mk but with respect to a derived probability bound p�


and a derived time-bound I �, in the worst case, and to verifying a simple inequality,


in the best case. Furthermore, we have proved that, checking the steady-state prob-


ability of single-component probabilistic time-bounded Next against a bound p (i.e.


formulae like S�p�P�p�X
I ψK��), reduces to checking the steady-state probability of


a derived single-component formula (i.e. SXlow�ψk��� p� I� or SXup�ψk��� p� I�) with


respect to a derived probability bound p�low (or p�up). Finally, a decomposed method for


checking general probabilistic time-bounded Next formulae has been provided. In this


chapter another interesting result have been provided. We have demonstrated that the


algorithm for computing the probability measure of satisfying a time-bounded Next


formula (i.e. the state vector Prob�X I φ�) which can be found in the literature, is not
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correct. A revised (and correct) version has been defined and its use has been shown


with respect to an example.


Until formulae: in Chapter 6 the study of a decomposed way for checking single-


component unbounded Until formulae has been faced. As for the Next operator, for


the time being, only non-probabilistic formulae have been considered as the possible


type of operand of a probabilistic until operator. Under this condition, we have shown


that the verification of a formula P�p�ψ�
k U ψ��


k � with respect to the Boucherie process,


is equivalent to the verification of the same formula on component Mk but against a


derived probability bound p� (i.e. P�p��ψ�
k U ψ��


k �). Although correct, our argument


relies on a non-constructive proof. Hence, it does not provide a practical decomposed


method for checking those formulae. In order to obtain the equivalent probability


bound p� one would need some method which, given a state s of a CTMC, returns the


set of paths starting at s and satisfying �ψ�
k U ψ��


k �.


About excluding nested path-operators. In our work on compositionality we have


considered a strict restriction by disallowing nesting of path operators. In practice,


we have demonstrated that a decomposed verification is possible only for the formulae


belonging to that subset of the CSL. Assessing the extent to which this limits the ability


to state properties of interest is relevant. A formal study of this problem will be the


object of future work, however here some informal consideration is provided1. We


observe that the practical relevance of formulae given, for instance, by nesting of a


probabilistic Until operator within another probabilistic Until operator is not easily


understandable. A formula like


P�p1�φU �P�p2�ψ U ξ���


identifies all those states for which, with probability � p1, there exists a future state,


reachable via φ states, at which, with probability � p2, a ξ state is reached through


ψ states. The practical utility of such a formula, is far to be crystal clear. Similar


considerations hold for the converse case, P�p1��P�p2�ψ U ξ��U φ�, and for nesting


1A complete analysis of the problem would require all the possible nesting combinations of Next
and Until to be considered.







208 Chapter 7. Conclusion


of Until and Next like, P�p1�φU �P�p2�X ψ��� or P�p2�X �P�p1�φU ψ��� even if the


practical application of the latter case seems to have some relevance.


Abolishing the nesting facility, on the other hand, affects the ability to express tran-


sient properties. A formula like P�p��
�t�t� φ�, can be used to check the states’ transient


probability of matching φ at time t, against a bound p. If probabilistic path formulae


cannot be used as argument of the �I operator, the expressiveness for identifying the


target states of interest, hence, the transient analysis capability, is reduced2 .


7.3 Future work


At time of publication of this thesis several aspects of the research are still under pro-


cess. In this section we provide directions for future developments of this work. In


particular, we would like to point out that the (brand) new event-bounded Until op-


erator, introduced in Chapter 3, has actually been a very recent “discovery”. For this


reason we have had no time enough to develop further material concerning it, even if


there are many interesting aspects which originate from its definition. In the remainder


a list of relevant points is provided.


Expressiveness analysis for nested probabilistic path-formulae. A formal analy-


sis concerning the nesting facility for CSL path-formulae, is an interesting subject for


further work. In this respect, it is relevant to work out what type of measures are


expressible by means of nested path-properties and how sensible is to resort to that


facility of the CSL syntax from a performance analysis point of view. Searching for


the existence of useful equivalences, is also relevant.


Event-bounded Until. The event-bounded Until discloses the possibility for a new


type of analysis of path properties. The results proved in Chapter 3 show that the


model-checking problem for event-bounded Until actually reduces to the verification of


2We observe, however, that the use of probabilistic path formulae to identify the target state for a
transient analysis, is not always sensible. A formula like, P�p1�	


�t1�t1��P�p2�	
�t2�t2� φ��, which nests a


transient probability measure within another, appears to be reduceable to an equivalent, simple, transient
analysis P�p�	


�t� t� φ�, with t � t1 � t2 and p � p1 
 p2.
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a Next property plus the calculation of an iterative matrix-vector product. In Chapter 5


we have demonstrated methods for decomposed checking of Next formulae referring


to a bidimensional Boucherie framework. As a result the derivation of an algorithm


for decomposed verification of event-bounded Until on a Boucherie process, seems to


be straightforward. The definition of a combined time/event-bounded Until operator is


also a relevant aspect which we are currently investigating.


Until decomposed semantics. Very recently we have started to consider the use of


tensorial algebras to obtain a decomposed representation of the infinitesimal generator


matrix of a bidimensional Boucherie process M . We are currently studying if the ap-


plication of such a decomposition in the Uniformisation method leads to a decomposed


approximation of the transient distribution of M . This would allow us to exploit the


correctness preserving transformations described in Chapter 2, by means of which the


model-checking problem for time-bounded Until with respect to a Boucherie process,


would reduce to a transient analysis on the component’s processes. .


Complexity. The analysis of the computational costs/savings resulting by application


of the decomposed CSL verification (on a bidimensional Boucherie process) needs to


be performed. With this respect, it is relevant to assess the computational cost for the


function DecSat�� which, given a general non-probabilistic formula, ψ12, returns a de-


composed partition of Sat�ψ12�.











Appendix A


On the compositional semantics of


Next formulae


In this Appendix three lemmas which have been mentioned in Section 5.2.2, are re-


ported and proved. They regard properties which are essential to deriving a composi-


tional semantics for single-component steady-state time-bounded Next formulae (i.e.


formulae like S�p�P�p�X
I�ψk���).


Lemma A.0.1 Let M be a bidimensional Boucherie process, ψk a non-probabilistic


formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison


relation and I � �a�b� � ��0 a time interval. Then a state �s1�s2� � S satisfies the


formula P�p�XI�ψk�� if and only if sk satisfies SXup�ψk��� p� I�


�s1�s2� ��P�p�X
I�ψk����


�������
������


sk ��k SXlow�ψk��� p� I�s j� if low��� p���
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�


�


sk ��k SXup�ψk��� p� I�s j� if up��� p�
(A.0.1)


Proof. For brevity we focus only on the first case of the bi-implication. The derivation


of results for the case up��� p�, is similar.


��) Let us show that if �s1�s2� �� P�p�XI�ψk�� then sk ��k SXlow�ψk��� p� I�s j�, given


that low��� p� and
�
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�


�
. We have to distinguish


211







212 Appendix A. On the compositional semantics of Next formulae


between two possibilities which are: �s1�s2� � Rj, (i.e. M j holds the shared resource)


and �s1�s2� �� Rj (i.e. component M j does not hold the shared resource).


i) If �s1�s2� � Rj then also sk � Sk�R and s j � S j�R. Hence, since we are assuming�
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�


�
, also ��e�E j�s j�a�e�E j�s j�b�� p� is true. As


a result, from Theorem 5.2.1, we then have that sk ��k ψk, but then also the formula


SXlow�ψk��� p� I�s j�, which since s j � S j�R is SXlow�ψk��� p� I�s j��
�


tk�Sk�R
�attk�ψk�


is true since at least the disjunct �attk �ψk�, clearly is satisfied by tk � sk.


ii) If �s1�s2� �� Rj then, from Theorem 5.2.1, we know that sk ��k P� p̂�XÎ�ψk��, where


h�p�ψk�Mk��s1�s2�� I� � �p̂� Î�. Since �s1�s2� �� Rj then also s j � S j�R, but then


SXlow�ψk��� p� I� �
�


tk�Sk
�attk �P� p̂�XÎ ψk�� (see Definition 5.2.2), which is clearly


valid in sk.


��� For simplicity we show the prove of this case by considering k � 1 and j � 2. The


same result can easily be derived for the dual case k � 2 and j � 1. Here we assume that


for s2 � S2, s1 ��1 SXlow�ψ1��� p� I�s2� given that low��� p� and�
�s2 � S2�R�� �e�E2�s2�a�e�E2�s2�b� p�


�
. We then have to distinguish between two


cases.


i) If s2 � S2�R then SXlow�ψ1��� p� I�s j� �
�


t1�S1�R
�att1 �ψ1� and then also s1 � S1�R


thus, �s1�s2� � Rj. Hence clearly s1 �� ψ1. Furthermore, since we are assuming�
�s2 � S2�R�� ��e�E2�s2�a�e�E2�s2�b�� p�


�
, then �e�E2�s2�a�e�E2�s2�b�� p is true. But


then from Theorem 5.2.1 also �s1�s2� �� P�p�XI ψ1�.


ii) If s2 � S2�R then clearly �s1�s2� �� Rj and also, in this case,


SXlow�ψ1��� p� I�s j� �
�


t1�S1
�att1 �P� p̂�XÎ ψ1��. Thus, clearly s1 ��1 P� p̂�XÎ ψ1��,


then from Theorem 5.2.1 also �s1�s2� �� P�p�XI ψ1�.


�
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Lemma A.0.2 Let �s1�s2� be a state of a bidimensional Boucherie process, ψk a non-


probabilistic formula as in (5.2.1), p � �0�1�,�� �����
��� and I � �a�b�� ��0 a


time interval. The following equivalence holds:


�s1�s2��Sat�P�p�X
I�ψk�����


����
���


s j � Nextlow
j �sk�ψk� p��� I� if low��� p�


s j � Nextup
j �sk�ψk� p��� I� if up��� p�


Proof.


��� We need to distinguish between two possibilities: �s1�s2� �� Rj or �s1�s2� � Rj.


i) If �s1�s2� �� Rj, since we are assuming �s1�s2� � Sat�P�p�XI�ψk��� then from The-


orem 5.2.1, also sk ��k P� p̂�XÎ�ψk�� with �p̂� Î� � h�p�ψk�Mk��s1�s2�� I�. But this


implies also that Satk�PXRj
�ψk�s1�s2� p��� I�� �� /0, as


PXR j
�ψk�s


1�s2� p��� I� � atsk �P� p̂�X
Î�ψk��


(see Definition 5.2.4) then proving that s j falls in the first partition


s j � Next j�R�s
k�ψk� p��� I�, of the row(column) sk independently of the type of check


��� p� represents, which is: s j � Nextlow
j �sk�ψk� p��� I�, if low��� p� or


s j � Nextup
j �sk�ψk� p��� I�, if up��� p�.


ii) If �s1�s2� � Rj, a further distinction has to be considered. If low��� p�, since we


are assuming �s1�s2� �� �P�p�XI�ψk��� then, as a consequence of Theorem 5.2.1, also


�e�E j�s j�a�e�E j�s j�b� � p (as clearly it is not possible that sk ��k �tt). Since, in this


case


Nextlow
j�R �sk�ψk� p��� I� �


�
t j�S j�R:�e�E j�t


j�a
�e�E j�t


j�b
��p


�t j�


(see Definition 5.2.4), then clearly s j � Nextlow
j�R �sk�ψk� p��� I�, hence


s j � Nextlow
j �sk�ψk� p��� I�. If up��� p� a further distinction has to be considered.


If �e�E j�t j�a� e�E j�t j�b� � p then from Theorem 5.2.1 sk ��k ψk. Hence from Defini-


tion 5.2.4


Nextup
j�R�s


k�ψk� p��� I� �
�


t j�S j�R:�e�E j�t
j�a
�e�E j�t


j�b
��p


�t j�
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which proves s j � Nextup
j�R�s


k�ψk� p��� I� � S j�R, hence s j � Nextup
j �sk�ψk� p��� I�. If


�e�E j�t j�a� e�E j�t j�b� �� p then from Theorem 5.2.1 sk ��k �ψk. Hence from Defini-


tion 5.2.4


Nextup
j�R�s


k�ψk� p��� I� � S j�R


thus, clearly, s j � Nextup
j�R�s


k�ψk� p��� I�, which means s j � Nextup
j �sk�ψk� p��� I�.


(�) By reversing ���.


�


Lemma A.0.3 Let M be a bidimensional Boucherie process and t k a state in compo-


nent Mk, ψk a non-probabilistic formula as in (5.2.1), p � �0�1�,�� �����
��� and


I � �a�b�� ��0 a time interval. The following equivalence holds:


Sat�P�p�X
I�ψk����


���������
��������


�
tk�Satk�SXlow�ψk���p�I��


�tk�Nextlow
j �tk�ψk� p��� I��


if low��� p�


�
tk�Satk�SXup�ψk���p�I��


�tk�Nextup
j �tk�ψk� p��� I��


if up��� p�


Proof. For brevity we consider here only the first case of the above equality, which is:


we assume low��� p�. Furthermore, for simplicity, we suppose to refer to component


M1, which is we further assume k � 1 and j � 2. Again the proof for the dual case


k � 2 and j � 1, is symmetrical to the following one.


We then aim to prove the following bi-implication:


�s1�s2� � Sat�P�p�X
I�ψ1����� �s1�s2� �


�
t1�Sat1�SXlow�ψ1���p�I��


�t1�Nextlow
2 �t1�ψ1� p��� I��


��� If �s1�s2�� Sat�P�p�XI�ψ1��� (i.e. �s1�s2� ��P�p�XI�ψ1��) then, from Lemma A.0.1,


also s1 ��1 SXlow�ψk��� p� I�s2�. Hence


s1 ��1
�


t2�S2


SXlow�ψk��� p� I� t
2�� SXlow�ψ1��� p� I��
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which proves s1 � Sat1�SXlow�ψ1��� p� I��. Furthermore from Lemma A.0.2 also


s2 � Nextlow
2 �s1�ψ1� p��� I�, then, clearly,


�s1�s2� �
�


t1�Sat1�SXlow�ψ1���p�I��


�t1�Nextlow
2 �t1�ψ1� p��� I��


��� By reversing (�).


�











Appendix B


On the bidimensional paths


This appendix contains some background material regarding paths over a bidimen-


sional Boucherie process (i.e. bidimensional paths). In Section 6.2 the idea of


k-projection of a bidimensional path has been introduced. In essence the k-projection


of a path σ is obtained by contraction of σ with respect to its j-moves. Intuitively,


such a contraction is itself a path on Mk. However, since the k-projection of a path


has been formally defined (see Definition 6.2.5), a rigorous proof of that is needed.


This result is proved in Proposition B.0.3. Before that some definition and preliminary


property are introduced. A quick reminder of the principal notations and conventions


adopted in the appendix is given. Unless otherwise stated, σ will denote a bidimen-


sional path; length�σ� denotes the number of transitions σ consists of; σ�n� is the n-th


state in the sequence σ and σ�n�k is the k-component of state σ�n�; a transition (or step)


σ�n�� σ�n� 1� is called a k-move if it corresponds to a transition on component Mk;


the number of k-moves in σ is denoted k steps�σ�; σ is said to be a k-path if it consists


of k-moves only;


Remark B.0.1 The states in a k-path σ have a constant j-component:


σ�n1�
j � σ�n2�


j


for every n1�n2 � �0� length�σ�� with n1 �� n2.


The above remark is a trivial consequence of the definition of Boucherie process. In


fact, in a bidimensional Boucherie framework, every global transition corresponds to
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exactly one local transition (i.e. synchronisation is not allowed). Hence, clearly, with


a k-move, σ�n�� σ�n� 1� � k-move, the j-component of the source and target state


must be constant: σ�n� j � σ�n�1� j (see Fact 6.2.2).


Definition B.0.1 Let σ be a bidimensional path and σk � Pro jk�σ� its k-projection.


We denote mapk�σ�n�, the index of the element of σk on which σ�n� is mapped. For-


mally,


mapk�σ�n� � �0� length�σk�� : σk�mapk�σ�n�� � σ�n�k


The index mapk�σ�n�, introduced in the above definition, provides a means to refer to


the state of the k-projection of σ which corresponds to σ�n�.


Proposition B.0.1 The n-th element of a bidimensional path σ, maps on the�
n� � j steps�σ�n��


	
-th element of its k-projection:


mapk�σ�n� � n� j steps�σ�n�


Proof. by induction on n.


base: n � 0. From Definition 6.2.5 we have, Pro j�σ��0� � σ�0�i.
induction: we aim to show that Pro jk�σ���n�1��m�� �σ��n�1��k, given that Pro jk�σ��n�
m� � σ�n�k, with 0 � n� length�σ�� 1, is assumed as inductive hypothesis, where m


and m� are, respectively:


m � j steps�σ�n�


m� � j steps�σ��n�1��


We need to distinguish between two cases:


1� σ�n�� σ�n�1� � k-move.


In this case, m� � m, hence Pro jk�σ���n� 1��m�� � Pro jk�σ���n�m�� 1�. The k-


projection of σ can be expressed in terms of its �n�m�-th element, in the following


manner:


Pro jk�σ� � �Pro jk�σ���n�m�1�� � Pro jk�σ��n�m� � ��n�m�1��Pro jk�σ��
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Since from the inductive hypothesis we know that Pro jk�σ��n�m� � σ�n�k, then rely-


ing on Definition 6.2.5 we can rewrite the above, as:


Pro jk�σ� � �Pro jk�σ���n�m�1�� � σ�n�k � Pro jk��n�1��σ�� (B.0.1)


Let us now consider the term Pro jk��n�1��σ�� in (B.0.1):


- if n � 1 � length�σ�, then from Definition 6.2.5 we have that


Pro jk��n�1��σ�� � σ�n�1�k. Hence, by substituting in (B.0.1), we have


Pro jk�σ� � �Pro jk�σ���n�m�1�� � σ�n�k � σ�n�1�k


which proves the proposition (i.e. Pro ji�σ��n�1�m�� � σ�n�1�i).


- if n � 1 � length�σ� and �n � 1� � σ is a j-path, then from Definition 6.2.5 it is


straightforward to show that Pro jk��n�1��σ�� consists of a single state, which is:


Pro jk��n�1��σ�� � σ�length�σ��k


Furthermore, since we are assuming �n�1��σ to be a j path, then from Remark B.0.1


we know that


σ�n�1�k � σ�length�σ��k


which by substitution in (B.0.1) proves that Pro jk�σ��n�1�m�� � σ�n�1�k.


- if n�1 � length�σ� and σ�n�1�� σ�n�2� � k-move, then by Definition 6.2.5 it is


straightforward to show that


Pro jk��n�1��σ�� � ��n�1��σ��0�k�Pro jk��n�2��σ�


since, again, ��n�1��σ��0�k � σ�n�1�k then


Pro jk��n�1��σ�� � σ�n�1�k�Pro jk��n�2��σ�


which substituted in (B.0.1) shows that Pro jk�σ��n�1�m�� � σ�n�1�k.


- if n�1 � length�σ� and �n�1��σ is not a j-path and σ�n�1�� σ�n�2�� j-move,


then there exist q � �0� length�σ��2� such that


σ�n�1�q�� σ�n�1��q�1�� � k-move
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Thus, from Definition 6.2.5


Pro jk��n�1��σ� � σ�n�1�q�k�Pro jk��n�1��q�1���σ�


furthermore ���n� 1��σ��q� is a j-path hence, as a consequence of Remark B.0.1,


also σ�n�1�q�k � σ�n�1�k, by which we can rewrite the above equality as


Pro jk��n�1��σ� � σ�n�1�k�Pro jk��n�1��q�1���σ�


which substituted in (B.0.1) proves that Pro jk�σ��n�1�m�� � σ�n�1�k.


2� σ�n�� σ�n�1� � j-move. In this case, m� � m�1, hence the ��n�1��m��-th and


�n�m�-th element of the projected path are actually the same. Furthermore, since we


are assuming the n-th transition of σ to be a j-move, then, thanks to Proposition 6.2.2,


σ�n�k � σ�n�1�k, thus, relying on the inductive hypothesis:


Pro jk�σ��n�1�m�� � Pro jk�σ��n�m� � σ�n�k � σ�n�1�k


which proves the proposition also for the case σ�n�� σ�n�1� � j-move.


�


Remark B.0.2 The k-component of the last element of a path σ maps on the last ele-


ment of the σ k-projection.


map�σ� length�σ�� � k steps�σ�


We notice that Remark B.0.2 is a direct consequence of Proposition B.0.1 and Re-


mark 6.2.3.


Definition B.0.2 Given the n-th element of the k-projection of a path σ, we define


Map�1
k �σ�n�, to be the set of elements in σ which (all) map on Pro jk�σ��n�. Formally,


Map�1
k �σ�n� � �m � �0� length�σ�� : mapk�σ�m� � n�
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Lemma B.0.4 The k-projections of two distinct elements of a path σ are in relation �


if and only if the number of k-steps in their respective prefix are in relation �


mapk�σ�k1��mapk�σ�k2��� k steps�σ�k1�� k steps�σ�k2�


�k1�k2 � �0� length�σ�� and � � �����
�����.


Proof.


(�) Let us suppose that mapk�σ�k1� � mapk�σ�k2�, then from Proposition B.0.1


k1� j steps�σ�k1��k2� j steps�σ�k2�, which means (Proposition 6.2.1) k steps�σ�
k1 � k steps�σ�k2��.


(�) By reversing (�).


�


Fact B.0.1 For any given path σ, the function map�σ�k� is monotonic.


Fact B.0.1 points out that the index on which an element σ�n� is mapped on the k-


projection of σ can only be greater or equal to the index on which any of its predecessor


is mapped. This is obviously true as a consequence of definition of k-projection of σ.


Remark B.0.3 For any path σ if σ�n�� σ�n�1� � k-move, then


mapk�σ�n�1� � mapk�σ�n��1


Remark B.0.3 points out that every k-move on a path σ is actually preserved on its


k-projection, but shifted j steps element ahead. On the other hand every j-move on σ
is deleted by Pro jk�σ�, (as a result both the source and target state σ�n� and σ�n� 1�


map on the same element of the k-projection).


Relying on the results proved so far, we now introduce a proposition which is the basis


to prove that the k-projection of bidimensional path σ is a path on component Mk.


Proposition B.0.2 Given a bidimensional path σ, the minimum element which maps


on the n-th element of its k-projection, is the successor of the maximum element which


maps on the �n�1�-th element.
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max�Map�1
k �σ�n�1�� � min�Map�1


k �σ�n���1


�n � �1� length�Pro jk�σ���


Proof. Let us assume that m is the maximum amongst the indeces of σ which map


on the n-th element of its k-projection (i.e. max�Map�1
k �σ�n�� � m). Hence, clearly,


mapk�σ�m� � n. Furthermore, thanks to Lemma B.0.4, also �m� � m, k steps�σ �
m� � k steps�σ � m��. But with m� � m � 1, that implies k steps�σ � �m � 1�� �


k steps�σ �m�� 1 which means σ�m�� σ�m� 1� � k-move, hence also j steps�σ �
m� � j steps�σ��m�1��. From Definition B.0.1 and Proposition B.0.1, we know that


mapk�σ�m�1� � m�1� j steps�σ��m�1�� � m� j steps�σ�m��1 � n�1


which proves that the successor of max�Map�1
i �σ�n�� � m maps on the successor (n�


1) of the element it maps on (n). Relying on Fact B.0.1 we also know that �m�� � m�


1�mapk�σ�m���
 mapk�σ�m�1�, which proves m�1 being the minimum element


of σ mapping on the �n�1�-th element of its m-projection.


�


Remark B.0.4 The transition from the maximum element of a path σ whose k-projection


is n�1 and the minimum element which maps on n, is a k-move.


σ�max�Map�1
k �σ�n�1���� σ�min�Map�1


k �σ�n��� � k-move


Proof. contained in the proof of Proposition B.0.2.


�


Proposition B.0.3 The k-projection of a bidimensional path σ is a path from σ�0�k on


component Mk:


Pro jk�σ� � PathMk
�σ�0�k�


Proof. by induction on lk � length�Pro jk�σ��.


base: lk � 1. In this case Pro jk�σ� � σ�0�k hence clearly Pro jk�σ� � PathMK
�σ�0�k�.
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induction: we assume that Pro jk�σ� � PathMk
�σ�0�k�, if lk � x � 1 and we aim to


show that, as a consequence, that holds also when lk � x�1. To prove that Pro jk�σ� �
PathMk


�σ�0�k� we need to show that


Qk�Pro jk�σ��m��Pro jk�σ��m�1��� 0 �m � �0� lk�


Let as assume (inductive hypothesis) that this is the case with lk � x � 1. Now let us


consider lk � x�1. Thus we only need to show that


Qk�Pro jk�σ��x��Pro jk�σ��x�1��� 0


holds. From Corollary B.0.4 we know that


σ�max�Map�1
k �x���� σ�min�Map�1


k �x�1��� � k-move


hence clearly Qk�σ�max�Map�1
k �x����σ�min�Map�1


k �x � 1���� � 0. Since


Pro jk�n � 1� � σ�max�Map�1
k �x��� and Pro jk�n� � σ�min�Map�1


k �n��� then


Qk�Pro jk�n�1��Pro jk�n��� 0, which proves the induction.


�


The result of the above proposition proves that, as expected, the path obtained by


application of the function Pro jk�� (see Definition 6.2.5) on a bidimensional path σ, is


a actually a path on component Mk.
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