

Towards compositional CSL model checking

Paolo Ballarini

Doctor of Philosophy

Dipartimento di Informatica

Università di Torino

2004

Abstract

The Continuous Stochastic Logic (CSL) is a powerful means to state properties which

refer to Continuous Time Markov Chains (CTMCs). The verification of such proper-

ties on a model can be achieved through a suitable algorithm. In this doctoral thesis,

the CSL logic has been considered and two major aspects have been addressed: the

analysis of its expressiveness and the study of methods for a decomposed verification

of formuale. Concerning expressiveness, we have observed that the CSL syntax can

lead to formulae with a trivial semantics. As a consequence the idea of well-formed

CSL formula has been introduced. Furthermore, a simpler and equivalent syntax for

referring to ergodic CMTCs have defined as well as a brand new event-bounded Until

operator. With respect to compositionality, we have referred our study to a specific type

of decomposed CTMCs, namely the bidimensional Boucherie framework. A number

of basic properties concerning the Boucherie framework have been demonstrated and,

relying on this, a compositional semantics for a subset of the CSL syntax has been

derived. The considered subset is obtained by disallowing nesting of probabilistic

path-formulae, something whose impact on the ability to state useful properties is low.

iii

Acknowledgements

Although officially I am a member of the Modelling and Analysis of Computer Sys-

tems (MACS) group at Dipartimento di Informatica, Università di Torino (Italy), I

spent the last twenty-three months at Laboratory for Foundations of Computer Science

(LFCS) of University of Edinburgh (United Kingdom), where I had the opportunity

to profit of a very fruitful cooperation with Jane Hillston. For that I wish to thank

my supervisor Susanna Donatelli, who strongly encouraged that cooperation to take

place and for all her support throughout my sojourn at LFCS. I especially would like

to thank Jane Hillston, my co-supervisor, for the time she devoted to me and for help-

ing me in finding the necessary motivation to write this thesis. Her knowledge, her

precious advices and her “being so picky”, have been fundamental for the outcomes of

this work.

Being in Edinburgh for almost two years has given me the chance to improve my

English and to be part of a very international community, something that I am really

glad to have experienced.

I am very grateful to Colin Stirling, the head of LFCS, for supporting my pres-

ence as a member of the lab during the last two years. LFCS is an excellent research

environmnet where I had the chance to meet very skilful people.

I also wish to thank a number of persons, both in Edinburgh and in Torino, with

which I had the opportunity to get invloved in various technical discussions during the

years of my doctorate. The patience and interest they showed in answering/discussing

my points have been very important to me and helped a lot with keeping my motiva-

tion high. Among then are Stephen Gilmore, Leila Kloul and also Kousha Etessami,

from LFCS, as well as Jeremy Sproston and András Horváth, from MACS group at

Dipartimento di Informatica, Università di Torino.

A final thank goes to my family for their love.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Paolo Ballarini)

v

Table of Contents

1 Introduction 1

2 Background 7

2.1 Introduction . 7

2.2 Model-Checking: a survey . 7

2.2.1 Linear Time Logic model-checking 9

2.2.2 Computational Tree Logic model-checking 11

2.2.3 Probabilistic Computational Tree Logic model-checking . . . 12

2.3 Model-Checking for Continuous-Time Markov Chains 16

2.3.1 Model-checking CSL formulae 23

2.4 Compositionality and Model-Checking 31

2.4.1 Formal modelling and compositionality 31

2.4.2 Compositional Model-Checking 36

2.5 The Boucherie product-process . 37

2.5.1 The running example . 41

3 On CSL Expressiveness 47

3.1 Introduction . 47

3.2 Extending the Until expressiveness 48

3.3 Semantics of single-point bounded path formulae 54

3.4 Well-formed CSL probabilistic formulae 60

3.5 Nesting of the CSL probabilistic connectives 63

3.5.1 Semantics equivalences for nested formulae 65

3.5.2 CSL syntax for ergodic models (no nesting of S�p). 75

vii

4 Compositional CSL model checking: non-Path formulae 81

4.1 Introduction . 81

4.2 The two component Boucherie framework 82

4.2.1 Partitioning the Atomic Propositions set 89

4.3 Model checking non-Probabilistic state formulae 91

4.3.1 Compositional semantics for single-component formulae . . . 91

4.3.2 Compositional semantics for general formulae 102

5 Compositional CSL model checking: Next formulae 127

5.1 Introduction . 127

5.2 Compositional semantics for single-component Next formulae 128

5.2.1 Bounded Next (P�p�XI�ψk��) 129

5.2.2 Steady-state bounded Next (S�p�P�p�X
I�ψk���) 139

5.3 Compositional model-checking of single-component Next 149

5.4 Compositional model-checking of general Next 154

6 Compositional CSL model checking: Until formulae 173

6.1 Introduction . 173

6.2 Paths in a bidimensional Boucherie process 175

6.3 On single-component unbounded Until formulae 196

6.4 Compositional Semantics of event-bounded Until formulae 200

7 Conclusion 203

7.1 Introduction . 203

7.2 Summary . 203

7.3 Future work . 208

A On the compositional semantics of Next formulae 211

B On the bidimensional paths 217

Bibliography 225

viii

Chapter 1

Introduction

The continual advances in technology, result in the development of ever more com-

plex systems. Formal modelling is conceived as a means to help in optimising and

guiding the design phase. This is achieved by construction of a model of the sys-

tem, whose analysis allows for the study of the system’s behaviour. Different kinds

of analysis can be performed on a model referring to different aspects of the system’s

behaviour. For example, with respect to computer systems, one could be interested in

the evaluation of performance characteristics like, the benefit of increasing the number

of CPUs in a multiprocessor system or the impact of a scheduling algorithm on the

CPU’s throughput, or in verifying qualitative properties, like, checking that a mutual

exclusion protocol is deadlock-free. Dependability studies are also amongst the rele-

vant types of analysis which one would like to perform on a system’s model. With this

respect, indices like the mean time to failure of a system’s component can be assessed

when the system’s reliability is of interest.

A model is an abstract representation of the system. Often the system’s behaviour

can be described in terms of the states it can occupy and by specifying how it can move

from one state to another in time. This type of models are referred to as discrete-event

state-based models and this work refers to them. The model’s dimension depends on

the system’s complexity and on the details it captures. Clearly complex systems can

easily result in very large models which turn out to be intractable. In the literature,

this is often referred to as the state-space explosion problem, a well known issue the

treatment of which is of major interest in research. Compositionality is seen as a means

1

2 Chapter 1. Introduction

to tackle the state-space explosion problem. In substance, compositionality is a mod-

elling strategy which is meant to help both in modelling and analysing complex sys-

tems. The basic idea is to obtain a decomposed representation of the model, in terms

of a number of (smaller) sub-models. The model of interest (composed model) can be

retrieved by the application of a compositional rule to the sub-models. The purpose

of a decomposed analysis technique is to draw information regarding the performance

and/or reliability of the composed model, by combining the results of the analysis of

the component models (sub-models). This allows huge, hence intractable, models to

be studied by means of smaller, tractable, sub-models.

When the future evolution of a system depends only on its current state, the system

can be represented by means of a Markov process (Markov chains when the state-space

is discrete). The most common type of analysis for Markov chains concerns the evalu-

ation of the probability of being in a given state either in the long run (i.e. at infinity) or

at a given time instant t. When time is considered as an enumerable quantity, then we

refer to Discrete Time Markov Chains (DTMCs). On the other hand if time is consid-

ered continuous, we refer to Continuous Time Markov Chains (CTMCs). CTMCs have

become a very popular/ widely used formalism for modelling purpose in many diverse

areas, not only in computer science. One possible type of analysis of CMTCs is given

by model-checking. Generally speaking, model-checking is a technique which permits

the verification of properties against a given model. Properties are given in terms of

formulae of some temporal logic, while a model, in essence, is expressed as a graph

whose paths represent the possible evolutions of the system. An algorithm (model-

checker) is then supplied with both the system’s model and the formula of interest

and returns either a positive answer, if the model fulfils the property represented by

the formula, or a counterexample (a system evolution) which contradicts the formula.

Different types of model-checking have been defined in the last decades, referring to

different types of systems and featuring different types of expressivity. The model

checking for CTMCs takes its name from the temporal logic it is based on, which is

the Continuous Stochastic Logic. Hence it is referred to as CSL model-checking.

With respect to model-checking, compositionality regards the study of decomposed

equivalences. If a certain property is to be verified with respect to a decomposed

3

model, it is of interest to investigate whether this is equivalent to checking a number

of derived formulae with respect to the sub-models. By means of such an approach

the verification of a large model can be replaced by the verification of smaller models.

In the model-checking literature few works regarding the study of a compositional

approach can be found, and, to the best of our knowledge, none at all with respect to

CSL model-checking.

In this work CSL model-checking is considered and two major contributions are

presented. The first one concerns a study of the CSL expressiveness. Some syntac-

tical bounds are identified in order to characterise sensible CSL formulae. Moreover

a simplified syntax is introduced for referring to a subclass of CMTCs. Secondly, a

compositional way to check CSL formulae is studied. A decomposed approach for

CSL model checking, referring to a specific compositional framework for CTMCs,

namely the Boucherie framework, is derived. This result is based on proving a number

of equivalences which show that the verification of a certain CSL formula with respect

to a bidimensional Boucherie process, corresponds to the verification of a number of

derived formulae with respect to the component’s processes.

The remainder of the thesis is organised as follows.

In Chapter 2 some background material and definitions are presented. An overview

of the principal types of temporal logics and of the corresponding model checking

methods is provided. The CSL syntax and semantics are thoroughly described as well

as the existing algorithms for checking its formulae against a given CTMC. The Bou-

cherie compositional framework for CMTCs is then introduced together with an ex-

ample (running example) which will be used throughout the other chapters in order to

show the correctness of the derived semantic equivalences.

The syntax and semantics of the logic CSL are meant to refer to arbitrary CMTCs.

However, in Chapter 3, it will be shown that when dealing with ergodic CTMCs

(CTMCs which correspond to a strongly connected graph), a simpler and equivalent

syntax can replace the original one. Moreover well-formed CSL formulae are char-

acterised and proved to be the only sensible type of formulae which one would be

interested in. In this chapter we also introduce a new, event-bounded version of the

Until operator for which a verification method is defined.

4 Chapter 1. Introduction

In Chapter 4, the bidimensional Boucherie framework is considered in more detail

and some basic definitions and properties are provided. This constitutes the basis on

which the decomposed semantics relies. A partition of the CSL formulae which refer

to a bidimensional Boucherie process is characterised: single component formulae are

those which refer to features of one component’s process only; general formulae, in-

stead, involve both components. A compositional semantics for both single-component

and general non-path formulae (i.e. formulae which involve neither the Next nor the

Until connective) is then proved.

In Chapter 5 Next formulae referring to a bidimensional Boucherie process are

considered and a compositional semantics is derived for both the single-component

and general case. It will be proved that checking a “simple” single-component bounded

Next for a probability bound p with respect to a bidimensional Boucherie process is

equivalent, in the worst-case, to checking the same formula, for a derived probability

bound p� with respect to the component it refers to, or, in the best-case, to verifying

a simple inequality. Relying on this, it will also be proved, that the verification of the

steady-state probability of a “simple” single-component bounded Next formula against

a bound p is equivalent to the verification of the steady-state probability of a derived

formula with respect to a derived probability bound p� on the component the original

formula refer to. Finally, for the general case, we will show that, checking a general

bounded Next formula against the Boucherie process, boils down to checking n derived

single-component bounded Next formulae for each of the two component’s process.

In Chapter 6, the characterisation of a decomposed semantics for Until formulae

which refer to a bidimensional Boucherie process is addressed. The relationship be-

tween paths of the composed process (bidimensional paths) and of the components’

processes are assessed and some basic properties are demonstrated. Essentially each

path of the product process is given by interleaving of a pair of paths on the compo-

nents (projection paths). It will be shown that the probability measure of a bidimen-

sional path can be factored in terms of the probability measure of its projection paths.

This allows for proving that checking a single-component Until formula for a bound p

against the product-process is equivalent to checking the same formula for a derived

bound p� and against the component process it refers to.

5

Finally, in Chapter 7, a summary of the results of this work is presented, together

with an analysis of directions for future work.

The thesis also includes two appendices. Appendix A contains the formal proof of

some lemmas and propositions on which the compositional semantics of Next formulae

(Chapter 5) relies. Appendix B, instead, contains a number of definitions and propo-

sitions concerning the properties of bidimensional paths. The results there proved are

those on which the compositional semantics for Until formulae (Chapter 6) is based.

Chapter 2

Background

2.1 Introduction

This chapter contains the background material for this thesis. A compact survey of

the model-checking methodologies, ranging from the non-probabilistic framework to

the probabilistic one, is provided in the next section. Section 2.3 describes thoroughly

the model-checking technique for the Continuous-Time Markov Chains, which is the

class of stochastic models we are concerned about in this work. Section 2.4 provides

an overview of the idea of compositionality in general, in performance modelling and

in particular in the model-checking framework. Since this work focuses on the study

of a compositional approach for model-checking of Continuous-Time Markov Chains

we need to consider a compositional framework for that type of stochastic process.

Section 2.5 is devoted to describing the Boucherie product-form framework, a compo-

sitional method for CTMCs featuring a very useful (de)compositional expression for

the steady-state distribution of the composed Markov Chain.

2.2 Model-Checking: a survey

Model checking is a methodology for testing a system’s model against properties ex-

pressed in terms of some temporal logic formulae. A model checker is an algorithm (a

program) which takes a model/system M and a formula φ as inputs (Figure 2.1) and

7

8 Chapter 2. Background

returns either YES if φ is satisfied in M or NO if it is not, providing, in such a case, a

counter-example of the checked property.

� ��� �

MODEL
CHECKER

�

�

NO

� �� �
YES

property

MODEL

(LTL,CTL,PCTL,CSL)

(LTS,DTMC,CTMC,MDP)

Figure 2.1: Model checking a formula φ against a model M

The existing model-checking techniques may be classified with respect to the type

of model they refer to. In this sense we can distinguish between two large classes of

models:

� non-probabilistic models: referring to systems whose behaviour can be deter-

ministically determined.

� probabilistic models: referring to systems whose behaviour can be stochasti-

cally determined.

Non-probabilistic systems are modelled in terms of Labelled Transition Systems

(LTS) (i.e. labelled graphs).

Definition 2.2.1 (Labelled Transition Systems (LTS)) A Labelled Transition System

is a tuple M � �S�R�L� where

� S set of states

� R� S�S set of arcs

� L : S� 2AP labelling function

where AP is a set of Atomic Propositions.

2.2. Model-Checking: a survey 9

Given a state s of a LTS M � �S�R�L�, we will denote ats the conjunction of all

atomic propositions with which s is labelled. In essence:

ats �
�

ai�L�s�

ai

As we will see, ats uniquely identifies the state s it refers to (i.e. the formula ats is valid

only in s).

A path from a given LTS M represents a possible execution of the system modelled

by M . Formally,

Definition 2.2.2 (Path over a LTS) Let M � �S�R�L� be a LTS. An infinite path σ is

a sequence of states s0 � s1 � s2 � � � such that for any i � � , �si�si�1� � R.

Remark 2.2.1 Let M � �S�R�L� be a LTS. A finite path σ denotes the set of all infinite

paths of M whose common prefix is σ.

Given a model M and a state s we will assume the following notations concerning

paths:

� PathM �� is the set of all possible paths of M .

� PathM �s� is the set of all possible paths of M starting at s.

Wherever it is unambiguous the superscript M is omitted from the above notations.

2.2.1 Linear Time Logic model-checking

The Linear Time Logic (LTL) [37] is a language to reason about the future considering

time as extending in a linear fashion. Models are LTS and formulae are evaluated with

respect to paths extracted from the LTS. Two basic temporal connectives allow one to

refer to the future: the next operator, denoted �X � and the until operator, denoted �U�.

The complete syntax for the formulae φ of the LTL is as follows:

φ :� a � tt � �φ � φ�φ � X φ � φ U φ (2.2.1)

where a � AP and AP being the set of atomic propositions of the considered LTS.

10 Chapter 2. Background

The semantics of LTL is defined in terms of a relation, denoted by ��, which asso-

ciates paths σ � PathM and LTL formulae

σ �� tt forall σ � PathM σ �� φ��φ�� iff σ �� φ��σ �� φ��

σ �� a iff a � L�σ�0�� σ �� X φ iff σ�1� �� φ

σ �� �φ iff σ ��� φ σ �� φ�Uφ�� iff 	i
0:σ�i� �� φ���� j� i�σ� j� ��φ�

S� S� S� S� S�

� �� � � �� � �

�� � �� � � � ���� � �� � �

��� � ��� � � ���� � �� � � �

Figure 2.2: Semantics of next and until formulae

Example 2.2.1 Figure 2.2 provides an example of the semantics of next and until for-

mulae. Case i� shows an example of an until formula φ � aUb which is satisfied by

the path σ. In fact σ is such that there exists a future state (s3) on which b is true and,

furthermore, a is satisfied in all the predecessors of s3 (i.e. s0, s1 and s2). Similarly

case ii� (φ � bU a) is meant to show that an until formula is satisfied in any path σ
whose initial state σ�0� satisfies the target argument (i.e. a in φ � b U a) of the until,

independently by the satisfiability of the first argument (b). Case iii� exemplifies the

next semantics: φ � X c is satisfied by σ as the next argument (c) is satisfied on the

successor of σ initial state (σ�1� �� c�. Finally case iv� shows that σ does not satisfy

φ� aU d. In fact, even if there is a future state satisfying the target d (s4 �� d), it is not

the case that for all its predecessors the first argument (a) is satisfied (indeed s3 ��� a).

From now on given an until formula �φ�U φ��� we will refer to the arguments of the

until operator as the premise, φ� and the target, φ��.

2.2. Model-Checking: a survey 11

Remark 2.2.2 The set of propositional and temporal connectives described by 2.2.1

is adequate. (i.e. all the others propositional and temporal connectives can be derived

from them).

 : disjunction φ�φ�� � ���φ���φ���

 : implication φ�� φ�� � �φ�φ��

� : sometime in the future �φ� ttUφ

� : always in the future �φ� ���φ

2.2.2 Computational Tree Logic model-checking

The Computational Tree Logic (CTL) [12] is a temporal logic which allows one to

deal with non-deterministic behaviour. While in LTL the time is seen as evolving in

a single linear way (hence formulae are evaluated with respect to single paths), in

branching time logic the model of time is a tree-like structure in which the future is not

determined: there can be many different paths in the future, any one of which might

be the actual one. The ability to consider non-determinism in the future behaviour

of a system is syntactically achieved by the introduction of two path quantifiers, E

(existential) and A (universal), which are coupled with the temporal connectives next

and until.

The syntax of CTL formulae is the following:

φ :� a � tt � �φ � φ�φ � EX φ � AX φ � E�φ U φ� � A�φ U φ� (2.2.2)

Intuitively, the semantics of a path quantified CTL formula E�ϕ� or A�ϕ�, where ϕ ::�

X φ � φ�Uφ��, is the following:

� E�ϕ� (existential) is satisfied in a state s if and only if there exists at least one

path σ starting from s which satisfies ϕ.

� A�ϕ� (universal) is satisfied in a state s if and only if any path σ starting from s

satisfies ϕ.

12 Chapter 2. Background

Formally the CTL semantics requires formulae to be evaluated with respect to

states and not to paths. The satisfiability relationship �� for CTL is a direct conse-

quence of the LTL one, except for the (path quantified) next and until formulae. Hence

let M � �S�R�L� be a LTS and s � S a state, ��� S�φ is defined as follows:

s �� tt forall s � S s �� φ��φ�� iff s �� φ�� s �� φ��

s �� a iff a � L�s� s �� �φ iff s ��� φ

s �� EX�φ� iff 	σ � Path�s� : σ�1� �� φ s �� AX�φ� iff �σ � Path�s� : σ�1� �� φ

s �� E�φ�Uφ��� iff 	σ � Path�s� : s �� A�φ�Uφ��� iff �σ � Path�s�

	i
0:σ�i� �� φ���� j� i�σ� j� ��φ� 	i
0:σ�i� �� φ���� j� i�σ� j� ��φ�

Example 2.2.2 Figure 2.3 depicts examples showing the semantics of the path quan-

tified next and until formulae of CTL. In case i� we have that the state s satisfies the

existentially quantified until formula aU b. In fact the tree-like structure shows that

there exists at least one path from s satisfying aUb. On the other hand in case ii� we

have that s satisfies the universally quantified until formula φ � A�aU b� since all the

paths starting at s satisfy aU b. Finally cases iii� and iv� provide similar examples

though referring to path quantified next formulae.

2.2.3 Probabilistic Computational Tree Logic model-checking

The Probabilistic Computational Tree Logic (PCTL) [20] provides means for verifica-

tion of quantitative properties, like time deadlines on real-time systems.

While both LTL and CTL refer to an untimed type of models (LTS), hence fo-

cusing on verification of correctness and qualitative analysis of the modelled system,

PCTL relates to probabilistic models which incorporate timing information. In partic-

ular PCTL refers to Discrete-Time Markov Chains (DTMC). Markov process analysis

techniques allow for computation of typical overall average performance measures,

such as throughput of a certain activity or average response time of a given service.

PCTL improves the analysis capability of DTMC by introducing the possibility for

verification of soft deadlines properties of the type: “the probability of a service S to

2.2. Model-Checking: a survey 13

�� � �� �� � � � �

���� � �� �� ��� ��� � �� �� ���

��� � �� �� � � � �

�

�

�

�

�

�

�

�

�

� � �

�

� ��

� �

� �

Figure 2.3: Semantics of path quantified CTL formulae

be carried out within 2 seconds is at least 98 percent”. In this sense PCTL can be seen

as a logic for stating and verifying soft deadlines.

The PCTL syntax is defined in the following way:

φ :� a � tt � �φ � φ�φ � P�p�ϕ� (state-formulae) (2.2.3)

ϕ :� φU�tφ (path-formulae) (2.2.4)

where a � AP, p � �0�1�, t � �� ��∞� and�� �
������� (i.e. a is an atomic propo-

sition and t is any positive integer or ∞).

Probabilistic CTL is a branching time logic, thus formulae are evaluated with respect

to a single source state by considering all the possible evolutions of the system starting

from that state. The existential and universal path quantifiers of CTL are replaced by

a single continuous path quantifier, namely P�p. Intuitively a path quantified formula

P�p�ϕ� is satisfied in a state s if and only if the probability measure of the paths σ

14 Chapter 2. Background

validating ϕ is � p.

Definition 2.2.3 A labelled DTMC M is a tuple �S�P�L� with

� S finite set of states

� P : S�S� �0�1� is the transition probability matrix and it is such that

∑
s��S

P�s�s�� � 1 �s � S

� L : S� 2AP is the labelling function.

From a practical point of view DTMC are directed graphs with an arc between

each pair of states �s�s�� whose correspondent transition probability is greater than

zero: P�s�s�� � 0. Each arc s � s� is labelled with the value P�s�s�� while each node

s� S is labelled with L�s�. The value P�s�s�� represents the probability of the transition

from s to s� to take place in one time unit given that s is the current state.

Definition 2.2.4 (path in a DMTC) Let M � �S�P�L� be a DTMC, a path σ from

state s0 is an infinite sequence

s0 � s1 � � � �� sn � � � �

such that �i � � �P�si�si�1�� 0

Given a path σ, σ�k� denotes the k-th element of σ.

Remark 2.2.3 (n-th prefix of a path) Given a path σ from a DTMC M , σ � n denotes

its n-th prefix:

σ � n � s0 � s1 � � � �� sn

where σ � s0 � s1 � � � �� sn � sn�1 � � � �

Remark 2.2.4 (n-th suffix of a path) Given a path σ from a DTMC M , n � σ denotes

its n-th suffix:

n � σ � sn � sn�1 � � � �

where σ � s0 � s1 � � � �� sn � sn�1 � � � �

2.2. Model-Checking: a survey 15

Definition 2.2.5 (probability measure of a path) Let M � �S�P�L� be a DTMC then

the probability measure of the set of (infinite) paths σ with σ � n � s0 � s1 � � � �� sn

is given by the product

Prob�σ � n� �
n�1

∏
i�0

P�si�si�1�

We introduce the following notation concerning sets of paths:

� Prob�s�: probability measure of all paths σ starting at state s. (i.e. Prob�s� �

∑σ�Path�s�Prob�σ�).

� Prob�s�ϕ�: probability measure of all paths σ starting at state s satisfying the

path formula ϕ.

The PCTL semantics of state-formulae is exactly the same as the CTL ones but for

the path quantified formulae, for which it is given by:

s �� P�p�ϕ� iff Prob�s�ϕ�� p

While the bounded formulae, defined with respect to a given path σ is given by:

σ �� φ�U�tφ�� iff 	i� t : σ�i� �� φ���� j � i�σ� j� �� φ�

Example 2.2.3 Figure 2.2.3 points out examples of the semantics of PCTL continu-

ously path quantified formulae. On the left hand side (case i) we have that the prob-

ability measure of the paths from Path�s��a U b�� is somewhere within the bound

of 0�8 which we are interested to verify (we pinpoint in bold the subset of paths

Path�s��a U b��: clearly the probability measure of the whole set Path�s� is equal

to 1 for any state s).

On the other hand, the right hand side of Figure 2.2.3 shows the case where

Path�s�a U b� � Path�s� (i.e. any path out of s is a path satisfying �a U b�). Clearly

the probability measure of Path�s�a U b�, in such a case, is equal to 1, hence the

16 Chapter 2. Background

formula P�1�a U b� is satisfied in s. This example is also meant to highlight the fact

that PCTL enriches CTL expressiveness with respect to path quantification: indeed

P�1�a U b� is equivalent to the universally quantified CSL formula A�a U b�, while

P�0�a U b� is equivalent to the existentially quantified CSL formula E�a U b�.

�

� � �

���

�

�� � �� ������� � �� ��� � �� ����� � �� � ��� � ��

�

�

� � �

Figure 2.4: Continuously quantified path formulae in PCTL

2.3 Model-Checking for Continuous-Time Markov Chains

In this work we are concerned with model-checking techniques for verification of

CTMCs. In [1] Aziz et al have introduced a temporal logic, named Continuous Stochas-

tic Logic (CSL), for expressing properties of systems modelled in terms of CTMCs.

An algorithm for checking such properties has also been provided. The original defi-

nition has then been extended by Katoen et al in [6, 4, 5] and revised algorithms have

been defined.

The CSL, basically, enriches the standard analysis capability of CTMCs (i.e. steady-

state and transient-state analysis) with the ability of specifying possible evolutions (i.e.

paths) amongst the factors characterising the states of interest (these properties are

usually referred to as path properties). Statements like ”the probability for a service S

to be carried out within time t is at least 98 percent”, where t is a generic positive real

time instant (i.e. t � ��0), can be verified through the CSL model checking algorithm.

Amongst other things, CSL model checking strongly relies on the definition of the

2.3. Model-Checking for Continuous-Time Markov Chains 17

probability measure of a CMTC’s path. Thus before going through the description

of the syntax and semantics of the CSL formulae we need to provide some formal

definitions which will be the basis for the characterisation of such measures. The

definitions, theorems and algorithms included in the remainder of this section are taken

from [5].

Basically, CTMCs differ from DTMCs in that time is considered as a continuous

quantity whereas in the discrete-time framework time is seen as an infinite but enumer-

able set of instants. Formally a labelled CTMC is defined as:

Definition 2.3.1 (labelled CTMC) A labelled CTMC M is a tuple �S�Q�L� with

� S finite set of states

� Q : S�S� ��0 is the rate matrix

� L :� 2AP is the labelling function.

where Q�s�s� � ∑s� ��s Q�s�s��.

The binary relation Q is expressed in terms of a matrix namely, the infinitesimal gen-

erator matrix. The transition rate Q�s�s��� 0 if and only if there is a transition from

s to s�. Furthermore, as a consequence of the memoryless property of Markov pro-

cesses (see for example [42],[17]), the probability that the transition s� s� takes place

within t time units (i.e. within the closed interval �0� t�) is given by 1�eQ�s�s��t , meaning

that the delay of a transition s � s� is governed by an exponential distribution whose

parameter is the transition rate Q�s�s��.

Any state s such that Q�s�s�� � 0 for all s� � S is called absorbing. The sum of

the outgoing transition rates from a state s is called the total rate or the emanating

rate of s and it is denoted by E�s� � ∑s� ��s Q�s�s�� (clearly the emanating rate of an

absorbing state is zero). Whenever Q�s�s�� � 0 for more than one state s�, then a

competition between different transitions from s exists (race condition). In such a case

the probability that a transition from s to s� (s �� s�) occurs within t time units is given

by

P�s�s�� t� �
Q�s�s��

E�s�
�
�

1� e�E�s��t
�

18 Chapter 2. Background

The above result relies on the fact that the minimum of n exponentially distributed

random variables is an exponentially distributed random variable whose parameter is

equal to the sum of the parameters λ � ∑n
i�1 λi. Hence 1�e�E�s��t is the probability for

a transition out of s to occur with time t, while P�s�s�� � Q�s�s��
E�s� is the probability that

the delay of going from s to s� finishes before the delay of any other transition from

state s.

Embedded discrete-time Markov Chain: given a CTMC M � �S�Q�L�, the matrix

P is known as the transition matrix of the embedded discrete-time Markov chain of M
which we denote as M � �S�P�L�.

Embedded Labelled Transition System: given a CTMC M � �S�Q�L�, we can con-

sider the embedded LTS of M which is defined as M̂ � �S�R�L�, where for all s�s� � S,

�s�s�� � R��Q�s�s��� 0.

Definition 2.3.2 (initial-state distribution) Let M be a Markov chain with state-space

S, a function α : S � �0�1� is an initial-state distribution for M , given that

∑s�S α�s� � 1.

Definition 2.3.3 (Path of a CTMC) Let M � �S�Q�L� be a labelled CTMC. An infi-

nite path σ on M is an infinite sequence

s0
t0�� s1

t1�� s2 � � �
tn�1
�� sn

tn�� � � �

where �i� � si � S and Q�si�si�1�� 0 and ti � ��0 . A finite path σ is a finite sequence

s0
t0�� s1

t1�� s2 � � �
tl�1
�� sl where sl is an absorbing state.

Let σ � s0
t0�� s1

t1�� s2 � � �
tn�1
�� sn

tn�� � � � be a path over a CTMC M . The fol-

lowing notations concerning CMTC’s paths are widely used throughout the remaining

part of this work.

� σ�i�: is the �i�1�-th state of path σ, where i � � .

� δ�σ� i�: time spent by the path σ in the state si.

� σ@t: state which the path σ is in at time t, where t � ��0

2.3. Model-Checking for Continuous-Time Markov Chains 19

� σ � s0 �� s1 �� s2 � � ��� sn �� � � � : is the embedded untimed path of σ (i.e.

the sequence of states σ consists of). From definition 2.3.3 it clearly follows that

σ is a path over both the embedded discrete-time Markov Chain M as well as

over the embedded Labelled Transition System M̂ .

Generator (untimed) path: in the remaining part of the thesis the k-th prefix of a path

σ � so � s1 �� s2 � � ��� sn �� � � � over the embedded LTS M̂ , is also referred as the

generator of any cylinder-set C�s0� I0�s1� � � � � Ik�1�sk� where �Io� I1� � � � � Ik�1� is any k-

tuple of positive real intervals. We will use σ to denote the generator

σ � so � s1 �� s2 � � � �� sk. A generator σ characterises all the timed paths de-

termined by the sequence of states σ consists of.

Generally speaking when we consider the execution represented by a path σ,

ti � δ�σ� i� is the time spent by the system in its i-th state (σ�i�). Besides the system is in

state σ�i� in the interval �ai�bi� where ai �∑0� j�i δ�σ� j� and bi �∑0� j�i δ�σ� j�, which

means that, the system enters the state σ�i� at time ai and leaves it at time bi � ai � ti.

The next definition shows how the probability measure of CTMC’s paths is ob-

tained as a function of the initial-state distribution α.

Definition 2.3.4 (Borel space) Given a sequence of states s0� � � � �sk from a CTMC M
such that Q�si�si�1�� 0 (0� i � k) and a sequence of non empty intervals I0� � � � � Ik�1

in ��0 then C�s0� Io�s1� � � � � Ik�1�sk� denotes the cylinder set containing all the paths

s0
t0�� s1 � � �

tk�1
�� sk such that δ�σ� i� � Ii �i � k. Let F �Path� denote the smallest

σ-algebra containing all cylinder sets C�s0� Io�s1� � � � � Ik�1�sk�, then any initial distri-

bution α yields a probability measure Prα
1 on F �Path�, inductively defined on k in the

following manner:

Prα�C�s0� Io � � � � Ik�1�sk���

�������
������

α�s0� iff k � 0

Prα�C�s0� Io�s1� � � � � Ik�2�sk�1���

P�sk�1�sk� �
�

e�E�sk�1��a� e�E�sk�1��b
�

iff k � 0

where a � inf�Ik�1� and b � sup�Ik�1� (if b � ∞ and λ � 0, let e�λ∞ � 0).

1with only one initial state s (i.e. α�s� � 1), then we adopt the notation Prs instead of Prα.

20 Chapter 2. Background

Intuitively we have that, given a CTMC M , then any path σ � s0� � � � �sk over the em-

bedded LTS interleaved with a sequence of intervals I0� � � � � Ik�1 characterises a set of

paths over M (i.e. the paths going through the states σ consists of within t i time units

where each ti falls in the interval Ii). The definition of Borel space tells us that, pro-

vided an initial distribution α has been given, the probability measure of the set of paths

characterised by the sequence of states σ and the sequence of intervals I0� � � � � Ik�1 de-

pends on the probability of each step in σ as well as on the dimension of each interval Ii.

Steady-state probability and transient-state probability

CTMCs are characterised by two major types of probabilities which concern states.

The steady-state probability of a state s indicates the likelihood of the system of being

in state s on the long run, which is, when we imagine observing the system behaviour

for an infinite time. On the other hand the transient-state probability of a state s at time

t provides an indication of how likely it is for the modelled system to be in state s at

time t.

The computation of the steady-state and transient-state distributions of a given

CTMC are basic results in the Markov Chains’ theory, exhaustively treated in the lit-

erature: see for example, [17],[42],[44].

Both transient-state and steady-state probabilities can be expressed in terms of a

probability measure of sets of paths, in the following way:

πM �α�s�� t� � Prα�σ � PathM �σ@t � s�� transient-state

where πM �α�s�� t� denotes the probability of being in state s� at time t when the initial

distribution for the states of M is α, while

πM �α�s�� � lim
t�∞

πM �α�s�� t� steady-state

is the probability of being in state s� when the time tends to infinite, given an initial

distribution α.

In its first definition ([1],[3]) CSL syntax included a single type of probabilistic

operator (P�p) and a single type of path operator, the time-bounded Until. In [6, 4, 5]

Kaoten et al. have enriched the original CSL expressiveness by adding a second prob-

2.3. Model-Checking for Continuous-Time Markov Chains 21

abilistic operator, namely S�p allowing reference to be made to steady-state measures,

plus a second path operator, the time-bounded Next.

In this work we are going to refer to the “extended”, version of the CSL whose

syntax is formally defined as follows:

Definition 2.3.5 (CSL syntax) The syntax of CSL state-formulae (φ) and path-formulae

(ϕ) is inductively defined as follows with respect to the set of atomic proposition AP:

φ :� a � tt � �φ � φ�φ � S�p�φ� � P�p�ϕ� (state-formulae)

ϕ :� XI φ � φ UIφ (path-formulae)

where a� AP, p� �0�1� is a real number,�� �������
� and I � ��0 is a non empty

interval.

The semantics of CSL is defined in terms of a twofold relationship denoted by ��,

which relates states of a given CTMC to state-formulae (φ) and paths to path-formulae

(ϕ). Let M � �S�Q�L� be a labelled CTMC then the relation �� for both state-formulae

and path-formulae is defined as follows:

Definition 2.3.6 (CSL state-formulae semantics) Let Sat�φ� � �s � S � s �� φ�. The

relation �� for the CSL state-formulae is defined by

s �� tt forall s � S s �� φ��φ�� iff s �� φ�� s �� φ��

s �� a iff a � L�s� s �� �φ iff s ��� φ

s �� S�p�φ� iff πM �s�Sat�φ��� p s �� P�p�ϕ� iff ProbM �s�ϕ�� p

where s� S and ProbM �s�ϕ� denotes the probability measure of all paths σ�PathM �s�

satisfying ϕ when the system starts from state s:

ProbM �s�ϕ� � Prs�σ � PathM �s� � σ �� ϕ�

Definition 2.3.7 (CSL path-formulae semantics) The relation �� for the CSL path-

formulae is defined by

σ �� XI φ iff σ�1� is defined and σ�1� �� φ�δ�σ�0� � I

σ �� φ�UIφ�� iff 	t � I : σ@t �� φ��� ��t � � �0� t��σ@t � �� φ�

22 Chapter 2. Background

where σ � PathM .

Alternatively the timed-until semantics can be defined as follows:

σ �� φ�UIφ�� iff 	i
 0 :
�
�σ�i� �� φ��φ�� � �ai�bi�� I �� /0� �σ�i� �� �φ��φ���ai � I�

�
�
�
σ� j� �� φ��� j � i

�
σ@t �� φ��� ��t � � �0� t��σ@t � �� φ�

meaning that a path σ satisfies the timed-until φ�UIφ�� if there exists a future state σ�i�
in which either

� the premise and target of the until formula are satisfied in σ�i� and some of the

time instants spent at σ�i� do satisfy the bound I.

� the target but not the premise of the until formula is satisfied in σ�i� and the time

instant at which σ�i� is entered, t � ai, falls into the bound I (ai � I). We observe

that in this case the only relevant time instant to care about is the time σ enters the

state where �φ��φ�� is satisfied (i.e. σ�i�). In fact, according to the semantics of

the until formula, there must be a time instant t � I at which σ satisfies the target

φ�� and such that for any preceding time instant t � � t, σ satisfies the premise φ�.
Since here we are assuming the premise φ� to be not satisfied in σ�i�, then clearly

the only possible t � �ai�bi� is t � ai (in fact �t � �ai�bi� we have that �t � � �ai� t�,

σ@t � ��� φ�).

From the semantics of CSL formulae, we note that with the empty interval I � /0 any

time-bounded path formula is clearly not satisfiable. Furthermore, we notice that the

usual untimed version of the next and until can be obtained as a special case of the

bounded ones by taking I � �0�∞�. For the sake of simplicity we will omit I � �0�∞�

from the notation, hence the unbounded next and until formulae will be simply denoted

by X φ and �φ�U φ��� respectively.

Remark 2.3.1 Let σ be a path over a CTMC M satisfying the timed-until �φ�UIφ���,
σ � PathM �s�φ�UIφ���, then the embedded untimed path σ satisfies the corresponding

untimed-until, σ � PathM �s�φ�Uφ���.

The above remark is a direct consequence of the semantics of timed-until formulae.

2.3. Model-Checking for Continuous-Time Markov Chains 23

2.3.1 Model-checking CSL formulae

The model-checking algorithm for CSL formulae works the same way as the CTL ones

for all the non-probabilistic state-formulae: the set Sat�φ� is recursively computed as

the fixed-point of a function which marks the states of M with sub-formulae of φ [12].

The computation of Sat�φ� for the probabilistic state-formulae requires instead a spe-

cific treatment.

Computing steady-state measures. From the CSL semantics (definition 2.3.6), we

know that the steady-state formula S�p�φ� is satisfied in a state s if and only if the

probability measure of paths σ�Path�s� starting from s and satisfying φ at time infinite

is � p, which is π�s�Sat�φ��� p.

If G is the underlying directed graph of a CTMC M then a subgraph B is a bot-

tom strongly connected component (BSCC) of G if it is a maximal strongly connected

component with no edges outside its vertices (i.e. Reach�s� � B for all s � B). Let

B�M � denote the set of BSCC of M . The computation of π�s�Sat�φ�� is based on the

following proposition:

Proposition 2.3.1 Let M � �S�Q�L� be a CTMC and s � S, S� � S, then

π�s�S�� � ∑
B�B�M �

�
Prob�s��atB� � ∑

s��B	S�
πB�s��

�

where πB�s�� is the steady-state probability of s� in BSCC B and atB �
�

s�B ats.

Algorithm for S�p�φ�. Relying on proposition 2.3.1 it is possible to characterise an

algorithm for the computation of π�s�Sat�φ��

1. the set of states satisfying φ, is recursively determined.

2. the set of BSCC of M (i.e. B�M �) is computed by means of some existing

algorithm (e.g. [43]).

3. for each B � B�M � the steady-state distribution πB is computed. This implies

24 Chapter 2. Background

the solution of the system of linear equations

∑
s�B
s��s�

πB�s� �Q�s�s�� � πB�s�� � ∑
s�B
s��s�

�Q�s�s��

∑
s�B

πB�s� � 1

unless B � �s�� in which case, trivially, πB�s�� � 1.

4. the steady-state probability of each state s� � Sat�φ� is then obtained by weight-

ing the steady-state probability πB�s��, given that s� � B, by the probability of

reaching B from s. Such probability, denoted Prob�s��atB�, is given by the solu-

tion of the following system of linear equation:

Prob�s��atB� �

�
1 if s �� atB

∑s� P�s�s
�� �Prob�s���atB� otherwise

If M consists of a single BSCC, namely B, then

π�s�S�� � ∑
s�S�

π�s��

where π�s�� stands for πB�s��, the steady-state probability of s� with respect to the whole

CTMC (i.e. B � M).

Computing probabilistic path measures. The verification of probabilistic path for-

mulae like P�p�ϕ� with respect to a state s, relies on the characterisation of the mea-

sure Prob�s�ϕ� (see definition 2.3.6). A distinction is needed between timed-next and

timed-until formulae. Proposition 2.3.2 characterises the measure of the paths satisfy-

ing a timed-next formula. Theorem 2.3.1 concerns the measure of the paths satisfying

a timed-until formula. As a consequence of proposition 2.3.2 and theorem 2.3.1, pro-

cedures for model checking time bounded Next and Until, respectively, are given.

Proposition 2.3.2 For s � S and interval I � ��0 with a � inf I, b � sup I and a CSL

state-formula φ:

Prob�s�X Iφ� �
�

e�a�E�s�� e�b�E�s�	 � ∑
s�
�φ

P�s�s��

2.3. Model-Checking for Continuous-Time Markov Chains 25

Proof. Is a direct consequence of the Borel-space construction (see definition 2.3.4).

�

The truth of proposition 2.3.2 with respect to a generic type of interval I � ��0 (i.e.

either open or closed), relies on the fact that

Prob�s�φ�UIφ��� � Prob�s�φ�Ucl�I�φ���

Prob�s�X Iφ� � Prob�s�X cl�I�φ�

where cl�I� is the closure of I. This is a consequence of the fact that the probability

measure of a cylinder-set C�so� I0�s1� � � �Ik�1�sk� does not change when some of its in-

tervals Ii (i � k) are replaced by their closure.

Algorithm for P�p�XIφ�. Relying on proposition 2.3.2 the following algorithm for

computing Sat�P�p�X Iφ�� is defined:

1. the set Sat�φ� is recursively determined.

2. the state vector bIφ is computed, where

bIφ�s� �

�
e�E�s��inf I � e�E�s��sup I if s � Sat�φ�
0 otherwise

3. the state vector Prob�X Iφ� � �� � � �Prob�s�X Iφ�� � � �� is computed by multiplica-

tion of P by bIφ

Prob�X Iφ� � P �bIφ

4. finally, a state s is added to Sat�P�p�X Iφ�� if and only if its correspondent ele-

ment of Prob�X Iφ� satisfies the bound p, which is Prob�s�X Iφ�� p.

The following theorem provides a recursive algorithm to compute the probability mea-

sure of the paths satisfying a timed-until formula �φ�UI φ���. Path�s� I� and Prob�s� I�

denote, respectively, the set of paths starting at s and satisfying the timed-until �φ �U φ���

26 Chapter 2. Background

and its probability measure (i.e. Prob�s� I� � Prob�s�φ�UI φ���). Furthermore I� x de-

notes the set �t� x � t � I� t
 x�.

Theorem 2.3.1 (Time Bounded Until probability measure) For s � S and interval

I���0 with a� inf I and b� sup I and φ� and φ�� CSL state-formulae. The Prob�s�φ�UIφ���
is recursively defined as follows:

Prob�s�φ�UIφ��� �

��������������������
�������������������

1 iff s �� φ����φ�

and a � 0

� b
0 ∑s��S T�s�s��x� �Prob�s��φ�UI�xφ���dx iff s �� φ���φ��

e�E�s��a�� a
0 ∑s��S T�s�s��x� �Prob�s��φ�UI�xφ���dx iff s �� φ��φ��

0 otherwise
(2.3.1)

where T�s�s��x� � P�s�s�� �E�s� � e�E�s��x denotes the density of moving from state s to

state s� in x time units.

Proof. see [5]. �

The formal proof of the above theorem is out of the scope of this work, nevertheless it

is relevant to provide an intuitive explanation of the different cases characterising the

function Prob�s�φ�UIφ���.

1. a � 0 and s �� �φ� � φ��. In such a case any path starting at s clearly satisfies

�φ�UIφ���. This is the case since s satisfies φ�� and also because trivially each

path starting at s is indeed in s at time t � 0, which, in this case, is the infinum

of the considered interval I. Therefore Prob�s�φ�UIφ��� � 1.

2. s �� φ� ��φ�� then Path�s� I� consists of all the paths σ of the form σ � s
x
� σ�

with 0 � x � b and σ� � Path�s�� I� x�, which is: if we are in a state s which

satisfies φ� but not φ�� then the paths we have to account for are those ones that

2.3. Model-Checking for Continuous-Time Markov Chains 27

leave s within b time units, say at x, to reach a state s� from which they will

satisfy the until formula within a time y such that the sum x� y is in I.

3. s �� φ��φ�� then Path�s� I� consists of all the paths σ of the form σ� s
x
�σ� where

either 0� x� a and σ� � Path�s�� I� x� or x � a. In fact, since we are assuming

s �� φ��φ��, we have to consider not only the paths which leave s within a time

units to reach a state s� from which they will satisfy the until formula within time

y such that x� y is in I but also those ones which leave s after a time units have

elapsed. Since φ�� is assumed to be true in s (i.e. the corresponding untimed-until

is satisfied in s) then staying in s for a time greater then a ensures that the until

is satisfied within the given bound I.

4. Any other case different from the above ones leads to a probability measure

equal to zero, as either the corresponding untimed-until is not satisfiable in the

source state s or the time bound I is unmatchable.

Corollary 2.3.1 (Unbounded path formulae probability measure) For s� S and φ��φ��

CSL state formulae

1. Prob�s�X φ�� � ∑s�
�φ� P�s�s
��.

2.

Prob�s�φ�UIφ��� �

���������
��������

1 iff s �� φ�

∑s��S P�s�s�� �Prob�s��φ�Uφ��� iff s �� φ���φ��

0 otherwise
(2.3.2)

Proof. Trivial from proposition 2.3.1 and theorem 2.3.1 with I � �0�∞�.

�

The results in Corollary 2.3.1 are identical to discrete-time framework’s ones: the

probability for satisfying next and until formulae in the logic PCTL are determined in

the same way ([20]).

28 Chapter 2. Background

Algorithm for P�p�Xφ�. Corollary 2.3.1 suggests the following algorithm for deter-

mining Sat�P�p�Xφ��:

1. the set Sat�φ� is recursively determined and, as a result, the vector iφ given by

iφ�s� �

�
1 if s �� φ
0 otherwise

is computed.

2. the vector Prob�Xφ� � P � iφ is computed.

3. a state s is in Sat�P�p�Xφ�� if and only if Prob�Xφ��s�� p.

Algorithm for P�p�φ�U φ���. Corollary 2.3.1 also suggests the following algorithm for

determining Sat�P�p�φ� U φ����:

1. the matrix P̂ defined as

P̂�s�s�� �

�
P�s�s�� if s �� φ���φ��

0 otherwise

is computed.

2. the vector Prob�φ� U φ��� is computed as the least solution of the system of linear

equations

x � P̂ � x� iφ��

So far the algorithms for checking Next formulae (either bounded or unbounded) and

Until formulae (unbounded only, i.e. I � �0�∞�), have been presented. Verifying a

Next formula, essentially, implies the computation of a matrix-vector product. In con-

trast, the verification of an unbounded Until requires the solution of a system of linear

equations.

Time-bounded Until by means of transient analysis.

As a consequence of Theorem 2.3.1, the computation of the state vector Prob�φ�UI φ���,

2.3. Model-Checking for Continuous-Time Markov Chains 29

for a bounded Until formula, requires the solution of a Volterra integral equation sys-

tem. This can be done by means of some (computationally expensive) numerical tech-

niques. Alternatively, in [5], the authors, show a number of correctness-preserving

transformations by means of which the model-checking problem for time-bounded

Until formulae reduces to a transient analysis of a transformed CTMC. In essence, it is

proved that computing the probability measure for a time-bounded Until with respect

to a certain CMTC M is equivalent to computing the transient probability of certain

states with respect to a CMTC M � obtained by making some states of M absorbing.

The formalisation of these preserving transformations is provided in the following

definition and proposition.

Definition 2.3.8 Let M � �S�Q�L� be a CTMC and φ a CSL state formula. The CMTC

obtained by making all φ-states in M absorbing is denoted M �φ�. M �φ� � �S�Q��L�

where

Q��s�s�� �

�
Q�s�s�� if s ��� φ
0 otherwise

It should be noted that M �φ���φ��� � M �φ� φ���. Relying on the definition of trans-

formed CMTC M �φ�, the following properties can be proved.

Proposition 2.3.3 Let φ��φ�� be two CSL state formulae and M a CMTC whose φ��

states are absorbing (i.e. M � M �φ���), then:

ProbM �s�φ� U�0�t� φ��� � ProbM ��φ��φ����s���t�t� φ���

� ∑
s��
�φ��

πM ��φ��φ����s�s��� t�

Proof. The proof can be found in [5].

The above proposition, shows that on a CMTC M , the probability measure for an

Until formula �φ� U φ��� bounded by the interval �0� t�, is equivalent to the transient

probability at time t, of the φ�� states on the CMTC obtained by M from making every

��φ���φ��� state absorbing.

30 Chapter 2. Background

Theorem 2.3.2 Let M be an arbitrary CMTC and φ��φ�� two CSL state formulae, then:

ProbM �s�φ� U�0�t� φ��� � ProbM �φ����s�φ� U�0�t� φ���

� ∑
s��
�φ��

πM ��φ��φ����s�s��� t�

Proof. See [5].

The above theorem shows that also for an arbitrary CMTC M , the verification of a

bounded Until formula �φ� UI φ��� with bounding interval I � �0� t�, is equivalent to a

transient probability analysis, at time t, on a modified CMTC (i.e. M ��φ�φ���).

Theorem 2.3.3 Let M be an arbitrary CMTC and φ��φ�� two CSL state formulae and

t� t � two time instant such that 0 � t � t �, then:

ProbM �s�φ� U�t�t �� φ��� � ∑
s�
�φ�

∑
s��
�φ��

πM ��φ��s�s�� t� �πM ��φ��φ����s��s��� t �� t�

Proof. See [5].

Corollary 2.3.2 Let M be an arbitrary CMTC and φ��φ�� two CSL state formulae then:

ProbM �s�φ� U�t�t� φ��� � ∑
s�
�φ�φ��

πM ��φ��s�s�� t

Proof. See [5].

Finally, the above theorem proves that also in the case of a bounding interval whose

infinum is greater than zero (i.e. I � �t� t �� and 0 � t � t �), the bounded-until model-

checking problem on an arbitrary CMTC M boils down to the combined transient

analysis of two modified CTMCs, namely: M ��φ�� and M ��φ��φ���. Moreover, when

the bounding interval coincides with a point (i.e. I � �t� t�), a similar result holds (the

above corollary): in that case the verification of the bounded Until formula corresponds

to the transient analysis of the modified CMTC M ��φ��.

The major consequence of the above properties is that they show that the time-bounded

Until model-checking problem (in any possible case) with respect to an arbitrary CMTC

2.4. Compositionality and Model-Checking 31

can be replaced by the transient analysis of certain modified CMTCs. Hence, the so-

lution of the Volterra integral equation system associated with a time-bounded Until

formula is not actually needed. Instead the transient distribution for a derived CTMC

can be solved. Formally this is achieved as a solution of the Chapman-Kolmogorov

differential equations (see [42]). However, easily implementable methods, such as

Uniformisation ([42]), can be applied in order to obtain an approximate solution of the

transient distribution.

2.4 Compositionality and Model-Checking

In this section the idea of compositionality applied to model-checking techniques is

described. Before that, an introductory overview on compositionality, in general, is

provided.

2.4.1 Formal modelling and compositionality

Formal methods for systems’ verification concern the development of methodologies

for the analysis of the behaviour of real systems, in particular computer and telecom-

munication systems.

The basic idea is to provide a means through which an abstract representation of

the system, a model, can be built. A model has to enclose those bits of information

which are relevant to capture the aspects of the system’s behaviour one is interested

to analyse. As a result a model comes with a set of parameters which have to be

instatiated with proper values in order for a performance study to be carried out.

The model’s evaluation is obtained either via the solution of a set of equations

leading to analytical results (analytical models) or via simulation, leading to statistical

results (a concise but complete course on simulation can be found in see [39]).

High-level modelling formalisms like Petri Nets, Process Algebras and Queueing

Networks, easily lead to huge and complex models the solution of which turns to be

unfeasible. As a consequence, compositional approaches to performance modelling

have increasingly gained interest as means to face the tractability of models which

32 Chapter 2. Background

�

��

��
��

��

��

��

Figure 2.5: A decomposable model M

have a large dimension. These approaches decompose the system into a number of

smaller and more easily modelled subsystems, as depicted in figure 2.5. The aim is

twofold: helping model construction as well as model solution of large and complex

systems, meaning, in the latter case, that the performance evaluation of a big system

can be retrieved by the analysis of the subsystems it consists of. In the following a

brief introduction to these three modelling formalisms is provided.

Petri Nets. Petri Nets are a formalism appropriate for modelling systems with con-

currency. Formally a Petri Net is a bipartite, oriented graph characterised by two class

of nodes: places and transitions. Places are connected to transitions and vice versa.

Places are filled with tokens. Transitions normally represent activities of the modelled

system. A transition is enabled whenever each of its input places contains enough to-

kens. When more than one transition is enabled a competition between the activities

they represent takes place. The system’s dynamic is captured by transition firing: when

an enabled transition fires, tokens from its input places are removed and tokens into its

output places are created; as a result the set of enabled activities can possibly vary.

Since their first definition [10], a plethora of different variants of Petri Nets have

been developed. An interesting survey on the classification of Petri Nets can be found

in [30]. Different types of structural bounds allow to refer to different types of system.

For example places in Conditions/Events Nets [19] are meant to represent boolean con-

ditions, hence they can contain at most one token in any possible marking and, more-

over, tokens represent unstructured values. Place/Transition Nets, instead, allow places

to be marked with any (positive) integer number of tokens, where again tokens repre-

sent unstructured values. High-level Petri Nets like Coloured Petri-Nets (CPN)[25, 26]

2.4. Compositionality and Model-Checking 33

and Well-formed Nets (WN) [18] allow one to represent structured information: places

contain multi-sets of typed tokens.

Concerning performance evaluation analysis, Petri Nets can be classified with re-

spect to the assumptions characterising the duration of the activity modelled by the

net’s transitions. Timed Petri Nets (TPN) allow one to represent timed activities. De-

terministic TPN are suitable to model systems whose activities’ duration is supposed

to be deterministically known. On the other hand Stochastic Petri Nets (SPN)[35]

and their Generalised evolution (GSPN)[33], assume the activity duration to be an

exponentially distributed random variable. Although in the literature Petri Nets with

non-Markovian stochastic behaviours have been widely studied, the most relevant type

of stochastic process underlying a (stochastic) Petri Net are CTMCs. Hence Petri Nets

are a high-level language for specification of CTMCs.

Though Petri Nets do not come with an inherent compositional rule, many tech-

niques have been developed to build a Petri Nets model by combination of a number

of submodels. There are two main ways for composing Petri Nets, either by transitions

superposition or by place superposition. An example of a compositional framework

for GSPN, based on transition superposition, is given by [41]

Process Algebras. Process Algebras are mathematical theories which model con-

current systems by their algebra. Examples are the Calculus of Concurrent Systems

(CCS)[34], Communicating Sequential Processes (CSP)[11] and the Algebra of Com-

municating Processes (ACP) [24].

Process Algebras differ from Petri-Nets in that they lack of a notion of entity or

flow within the model. On the other hand Process Algebras come with an inherent

compositional reasoning: the model is given by composition of terms or processes

(submodels) through a defined set of operators. Each component is characterised by

the set of actions it undertakes. A component’s behaviour is described by means of

combinators like the prefix, allowing the specification of the first action a component

takes, the choice, allowing the specification of an alternative between two possible

actions and the cooperation which permits characterisation of the interaction between

two different components.

34 Chapter 2. Background

Pure process algebras do not allow consideration of time: they are meant to de-

scribe the behaviour of a system as the set of possible sequences of actions, disregard-

ing the time. Timed extensions of process algebras like TCCS [16] have been realised,

providing a means to associate a determined delay to the system’s actions.

Stochastic process algebras like, for example, PEPA[21] and EMPA[7], permit the

replacement of the nondeterministic choice which comes with pure and timed process

algebras with a probabilistic one. The operational semantics of such algebras describe

the CTMC which underlies the model. Stochastic process algebras are a useful means

which naturally allows for a compositional specification of a CMTC.

In [22] an interesting overview on how the inherent compositionality of stochastic

process algebras can be exploited for the solution of the underlying Markov process is

given.

Queueing Networks. Queueing Networks are a language for modelling systems which

consist of a number of customers competing to access a number of services. Formally

a Queueing Network is an oriented graph whose nodes, usually also called service

centres, are queues. A queue is characterise by an arrival process, a buffer where the

customers queue for the service and one or more servers representing the resources

customers are about to use. A queue is described by five factors, denoted by means of

a 5-tuple A�S�c�m�N:

A the arrival process, where M is used to denote a Markov process, while G and D

denote, respectively, a general and a deterministic distribution.

S is the service process and the above notations M,G and D are again used as distribu-

tion identifiers.

c is the number of servers the queue consists of.

m is the buffer capacity

N is the customer population

where infinite is the default assumption for both the buffer capacity and customers

population. Hence M�M�1 denotes a single-server queue whose customers’ arrival

2.4. Compositionality and Model-Checking 35

time and service time are both Markovian.

The queueing discipline determines how the customer in a queue are going to be

served. Typical serving policies are first-come-first-served (FCFS), where the longest

waiting customer is the first to be served or process sharing (PS) where the service

capacity is equally shared among the customers in the queue.

Customers in a queueing network can be partitioned in classes according to the

characteristic they exhibit. The state of a queueing network is typically given by the

number of customers of each class at each service centre. Hence a state s � �s1� � � � �sn�

of a network is completely described by the states si (i � �1� � � � �n�) the individual

queues it is made of are in.

Queueing networks may be closed if the number of customers is fixed, open whether

the population varies, or mixed if some classes of customers exhibit an open behaviour

while some other have a closed behaviour. More details on queueing networks can be

found for example in [31, 32].

Solving a queueing network characterised by exponentially distributed times, re-

quires the computation of the long run distribution π�s� In [15] it has been shown that

a large class of queueing networks allows for a compositional solution, also termed

product form solution, of the steady-state distribution: the probability of being at state

s � �s1� � � � �sn� on the long run can be expressed in terms of the product of the proba-

bility of each individual queue to be in sub-state si:

π�s1� � � � �sn� � G �
n

∏
i�1

πi�si�

where G is a normalising constant. This result allows for the computation of many

performance measures of a given queueing network without resorting to the underlying

Markov process: only Markov processes of individual queues have to be solved.

In the literature on queueing networks a lot of effort has been put on identify-

ing classes of networks which allow for a product-form solution of the equilibrium

distribution [29, 15, 45]. Similarly a quite large number of works aiming to the char-

acterisation Petri Nets models whose underlying process has a product form solution

can be found (see for example [2, 46, 40]). In this thesis the product form framework

for ergodic CTMCs described by Boucherie in [8] has been considered.

36 Chapter 2. Background

2.4.2 Compositional Model-Checking

As a performance evaluation technique, model-checking suffers by the so-called state-

space explosion problem: complex systems result in models of huge dimension which

can not be treated by any existent computational resource. A considerable amount

of works aiming to increase the applicability of model-checking with respect to the

model’s dimension, can be found in literature.

Symbolic model-checking, concerns the study of techniques for a compact repre-

sentation of the state-space based on specific data structures like Binary Decision Di-

agrams (BDD)[38] or Multi Terminal Binary Decision Diagrams (MTBDD)[13]. The

symbolic approach has been applied to both non-probabilistic and probabilistic model-

checking showing a great improvement with respect to the tractability of big models.

In [27, 28], it has been shown that the use of BDD for the state-space representation

have allowed for the verification of CTL formulae over systems that would have oth-

erwise required 1020 states. Symbolic Model-checking for Markov-Chains [9, 23],

instead, relies on the use of both MTBDD, for representing the linear system’s matrix

involved in the verification of probabilistic formulae, and BDD for representing the

formula itself.

On the other hand abstraction in model-checking, is meant to provide means to

build an abstract, hence reduced, version of the model of interest. In[14] Clarke et

al. have shown that the formulae belonging to the logic �CTL�, a subset of the CTL�

in which only the universal path quantifier (�) is allowed, can be verified against the

abstract model, while maintaining their truth value with respect to the original system.

Finally compositional verification of properties in a given temporal logic, concerns

the analysis of the truth of a formula when the given model is obtained by composi-

tion of a number of submodels. The goal is to investigate the possibility of inferring

the truth of a formula φ by the verification of φ itself or some other formulae on the

component models. In [36], for example, Grumberg and Long define a compositional

rule for structures which are model for the �CTL� logic, proving that the validity of a

formula φ in a component M � is preserved, through preorder, in any system built on

M � (i.e. if φ is true in M � then it is true in any model obtained through an iterative

compositional process which at some stage has involved M �).

2.5. The Boucherie product-process 37

The goal of this thesis, is to look for a compositional approach for model-checking

of CTMCs. Given a property φ we want to check against a CTMC M obtained by

composition of n submodels �M1� � � � �Mn�, we aim to search for formulae φi determin-

ing a boolean combination of satisfiability conditions which turns out to be equivalent

to the satisfiability of φ in M . For example, suppose we are interested in verifying

φ � a1�a2 with respect to a CTMC M given by composition of M1 and M2 where

ai is an atomic proposition of Mi with i � �1�2�. Intuitively we have that

M �� a1�a2 �� M1 ��1 a1M2 ���2 a2

meaning that checking φ � a1�a2 with respect to M is equivalent to verifying that

either a1 is valid with respect to M1 or a2 is not valid in M2. Clearly the above example

is a rather trivial one as it refers to a state-formula given by combination of atomic

propositions. The derivation of formulae which lead to an equivalent combination

of satisfiability conditions for a given φ is indeed not trivial whenever a probabilistic

connective like S�p and P�p is involved. Chapter ?? is devoted to the study of such

derived equivalent formulae.

2.5 The Boucherie product-process

In [8], Boucherie establishes a form of CTMC which is susceptible to product form

solution. That result relies on the characterisation of an “independence condition” for

the components of a multi-dimensional CTMC which models a number of processes

competing over shared resources. The Boucherie framework characterisation relies on

two basics ideas:

� Mutual exclusion over resources: when one process holds a resource, other

processes cannot access the resource.

� Strong blocking: processes are subject to strong blocking conditions meaning

that they cannot evolve until the resource is released.

The Boucherie framework. A collection of K regular and irreducible CTMCs, la-

belled Mk, with k � 1� � � � �K, at finite or countable state spaces Sk, is considered. Let

38 Chapter 2. Background

qk�n̄k� n̄�k� denotes the transition rate of Mk where n̄k� n̄�k � Sk. Each Markov chain Mk

is assumed to posses a unique equilibrium distribution πk and πk�n̄k� is the probabil-

ity for Mk to be in state n̄k on the long-run. For this collection the product process

with state space S � S1� �� �� SK and transition rate in dimension k given by qk, is

introduced.

For such a product process it is assumed that in each transition the state in one

dimension only changes, that is: in any allowed change of state of the product process,

exactly one of the underlying Markov chains changes its state (i.e. synchronisation

between components is not permitted). Furthermore, competition over resources (i.e.

mutual exclusion) can be modelled as exclusion of parts of state space: the product

process can not enter a certain area A� S.

Under these circumstances, the “independence condition” which guarantee the

product form solution roughly states that if the product process is in state

n̄ � �n̄1� � � � � n̄k� � � � � n̄K� then if n̄� � �n̄�1� � � � � n̄
�
k� � � � � n̄

�
K� � A is a state in the forbid-

den area Ai (i.e. a state which breaks the mutual exclusion condition for a resource Ri)

with n̄� n̄� except for component n̄k (i.e. n̄� would be reachable from n̄ with a transition

along k dimension) then Markov chain Mk can not change its state.

This idea is formalised by means of the following two definitions.

Definition 2.5.1 (Competition) Let I be an index set. For each k, let Ak�i� i � I, be a

set of mutually exclusive sets such that /0 �� Ak�i � Sk and
�

i�I Ak�i � Sk, k � 1� � � � �K.

CTMC k uses resource i if the CTMC is in state n̄k � Ak�i. CTMCs k1 and k2 compete

over resource i if �n̄k1 � n̄k2 : nk1 � Ak1�i�nk2 � Ak2�i� � /0. Let Cki � �1� � � � �K� be the

CTMCs that compete over resource i with CTMC k.

Definition 2.5.2 (Boucherie product process) The CTMC on state space

S �
K

∏
k�1

Sk (2.5.1)

with transition rates

q�n�n�� �
K

∑
k�1

qk�nk�n
�
k�

K

∏
��1����k

1�n� � n���1�if n� � A�i then k ��C�i�
2

21 is an indicator function: the value of 1(statement) is 1 if the statement is true and 0 otherwise.

2.5. The Boucherie product-process 39

where n � �n1� � � � �nK�, n�� �n�1� � � � �n
�
K�, is called the product process of the collection

of CTMCs 1� � � � �K, competing over resources I.

From the transition rate definition it should be noted that a move along dimension

k is not allowed whenever component k is competing for a resource i with a component

� which actually holds i in the a current state of the process. On the other hand if k is

not competing for any of the resources detained by any other component in the current

state, then a move along k dimension is permitted. Summarising: a process k in the

Boucherie framework is blocked in any state where at least one among the resources it

is competing on is occupied, while it is free to move if none of them is busy..

Two components Boucherie product process. In the simplest case, which is what

we consider in the remaining of this thesis, the Boucherie CTMC M consists of two

sub-processes, M1 and M2, and two notional resources. There is no competition over

the first resource, but the two processes compete over the second resource, which is

denoted by R. The competition over R has the effect of partitioning the state space of

each component process. If Mk (k � �1�2�) has state space Sk, then Sk � Sk�R� Sk�R,

where Sk�R denotes the set of states in which the resource is not needed, while Sk�R

denotes the set of states in which the resource is used. Figure 2.6 shows the areas

which the product process is partitioned in: Rfree � S1�R�S2�R denotes the area where

neither process is using the resource; R1 � S1�R�S2�R̄ is the area where M1 is using R;

whilst in area R2 � S1�R�S2�R, M2 is using R.

Transition rates of the product process imply that only one process can change

its state, and that process 1 is stopped whenever process 2 holds the resource and

vice versa. This is depicted in figure 2.6 where the lines indicate the direction along

with transitions can occur. As a consequence of this stopping mechanism the region

A12�A22, also denoted S1R�S2R, can not be entered. Therefore in the definition of the

Boucherie product process, the state space 2.5.1 can be replaced by S � S1�S2�S1R�

S2R and in general:

S �
K

∏
k�1

Sk �

K

∏
k�1

∏
i�I

∏
j�Cki

Ak�i�Aj�i

�
(2.5.2)

40 Chapter 2. Background

S

�
���

����

��

��

�
��� ����

��
���
� �

���
�

�����

��

��

��
���
� �����

����� � �
���

�

Figure 2.6: A two component Boucherie product process state-space.

Remark 2.5.1 (Trivial case) For I � �1� (i.e. a single resource is considered) we

have Ak1 � Sk. In this case the Markov chains are independent. In such a case ei-

ther �n̄k1� n̄k2 : n̄k1 � Ak1�1� n̄k2 � Ak2�1� � /0 for some pair �k1�k2� or �n̄k1� n̄k2 : n̄k1 �

Ak1�1� n̄k2 � Ak2�1� �� /0 for all �k1�k2�. In the first case S � /0 and the Boucherie product

process is not defined; in the second case all Markov chains operate without influence

of each others.

Theorem 2.5.1 (Product-form distribution) The product process of the collection of

CTMCs 1� � � �K competing over resources I and with state space S defined as 2.5.2 and

transition rates as in definition 2.5.2, has equilibrium distribution π given by

π�n� � G
K

∏
k�1

πk�nk� n � S

where G is a normalising constant, determined by the exact form of S, and πk��� is the

equilibrium distribution of process Sk.

Proof. see [8] �

2.5. The Boucherie product-process 41

The result of theorem 2.5.1 holds because each process can either operate indepen-

dently of the other processes or it is blocked. For all n � S, if process � is in state n�

and � �� k then process k either carries out a transition which is not in competition with

� with respect to resource i (1(if i : n� � S��i then k �� C�i) = 1) or process k wants to

access the resource which � occupies (1(if i : n� � S��i then k ��C�i) = 0). In either case

process k will satisfy its own global balance equations:

∑
n̄�k�Sk

�πk�n̄k�qk�n̄k� n̄
�
k��πk�n̄

�
k�qk�n̄

�
k� n̄k��� 0� n̄k � Sk

these equations are trivially satisfied when the process is stopped and also true when the

process is operating independently. It appears that the exclusion principle maintained

by the transition rates of the product process imposes a protocol on the behaviour of

the product process that ensures that the CTMCs in the collection behave as if they

are independent. For any process k, 1 � k � K, if the current state is in the subset

Ak�i it signifies that the process is presently using the resource i and no other process

j, such that j � Cki, can gain access to i and enter its subset of states A j�i. Thus the

competition and the sets Cki define areas of the state space of the product process which

are inaccessible. The transition rates of the product process are defined in a way which

ensures this exclusion.

2.5.1 The running example

In the following we introduce a practical example of a two component Boucherie prod-

uct process. This will be our running example, which we will exploit to show examples

of decompositional model checking throughout the remaining of this work.

Example 2.5.1 (Geographical Information System (GIS)) Let us consider a navi-

gational device consisting of a pair of sensors which maintain complementary data

about geographical location. In order to keep the sensors’ internal data structures in

complementary states, they share data via a register they need to access in a mutually

exclusive fashion. Each sensor gains access to the register and locks it while it reads

the current data value; it then uses this information to adjust the equipment it controls

while also recalculating a value for the shared register based on its own internal data

42 Chapter 2. Background

structures. It then updates the value in the register and releases it. In addition, sensor

1 maintains an external monitor and will periodically gather data from this monitor

and use it to recalculate its internal data structures.

Each sensor consists of two components: one responsible for resetting the equip-

ment during each cycle, and one responsible for carrying out the data recalculation.

In sensor 1, the recalculation component is assumed to be also responsible for interac-

tion with the monitor. Sensors have a cyclic behaviour characterised by the sequence

of “actions”: idle-reading-resetting/recalculating , where resetting and recalculating

are simultaneous. In addition sensor 1 can be involved in gathering information from

its monitor, whenever it is idle.

Such a framework represents an example of a two component Boucherie process

where the two sensors are the processes competing over the shared register. The

labelled CTMCs representing the two sensors are shown in Figure 2.7. They ex-

hibit similar behaviours except for the gather action (state s11) which only sensor 1

can be involved in. States are labelled with elements of the atomic proposition sets

AP1 � �idle1�read1�res1�rec1�gat1� and AP2 � �idle2�read2�res2�rec2�, representing

the actions each sensor is involved in.

From the starting state s10�s20�, where it is idle, the first(second) sensor reads data

at rate r1, entering state s12�s21�. Alternatively, sensor 1 only, can gather data from

the monitor at rate r5, entering state s11. When a sensor reads data it acquires the

resource (the register). Once it has read the data one of its component recalculates

(rate r2) while the other resets (rate r4). When both are ready the data is updated (rate

r3) and the register is released. When data has been gathered from the monitor (sensor

1 only) a recalculation is necessary (rate r2) before returning to the initial state. The

state space of each CTMC can be partitioned into two subsets: S1R � �s10�s11� (no

resource held by sensor 1) and S1R � �s12�s13�s14�s15�, being the partition for M1 and

S2R � �s20� and S2R � �s21�s22�s23�s24�, being the partition for M2.

Figure 2.8 depicts the Boucherie process, obtained by composition of sensors’

CTMCs. States of S1R�S2R are not part of the Boucherie process as a consequence of

the competition over the shared register R. The three areas, Rfree, R1 and R2 which the

state space S is partioned in, are pointed out: the register is not hold in any state of

2.5. The Boucherie product-process 43

������

���

���

���

���

���

�����

�����

���

���

��� ���

���

�����

��

�� ��

�� ��

��

��

����� ����

�����

�����

��������

����� ����

����

����

���

���
��

��

��

����

��

����

Figure 2.7: State space of the two components M1 and M2,showing the states labelling

region Rfree, whilst it is detained by sensor 1, in any state of region R1 and by sensor

2, in any state of region R2.

Considering the sensors in isolation we can deduce that their equilibrium proba-

bility distributions. The steady state distribution for sensor 1 is:

π1�s10� � r2r3r4�r2 � r4��G1

π1�s12� � r1r2r3r4�G1

π1�s13� � r1r2
2r3�G1

π1�s14� � r1r3r2
4�G1

π1�s15� � r1r2r4�r2 � r4��G1

π1�s11� � r3r4r5�r2 � r4��G1

where G1 � �r2r4 � r2
4��r1r2 � r1r3 � r2r3 � r3r5�� r1r2

2r3, while the steady state dis-

44 Chapter 2. Background

����� ����
����� ����

����� ����
����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ���� ����� ����

��

�����

��

���
�
� �����

���
�
� �����

���
�
� ����

���
�
� ����� ����

���
�
� ���������� �����

������ �����

����� ����� �����

������ ����

������ ����� ����

������ ����

������ �����

����� ���������� �����

��

��

��
��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

Figure 2.8: State space of the product process M

2.5. The Boucherie product-process 45

tribution for sensor 2 is:

π2�s20� � r3r2r4�r2 � r4��G2

π2�s21� � r1r3r2r4�G2

π2�s22� � r1r3r2
2�G2

π2�s23� � r1r3r2
4�G2

π2�s24� � r1r2r4�r2 � r4��G2

where G2 � �r2r4 � r2
4��r1r3 � r1r2 � r3r2�� r1r3r2

2.

As a consequence of theorem 2.5.1, the equilibrium distribution of the Boucherie

process can straightforwardly be derived from the sensors’ ones.

Chapter 3

On CSL Expressiveness

3.1 Introduction

The syntax and semantics of the CSL logic, as described in the previous chapter, pro-

vide the user with powerful means to state properties concerning CTMCs. Steady-state

and transient analysis of the system can be performed in terms of CSL state formulae,

as well as analysis of path-based properties. However there are some non-obvious

features of the CSL semantics which need to be addressed.

The temporal operators Next and Until allow us to refer to the future behaviour

of the system, though, in that respect, they feature different capabilities. A study of

their expressiveness is addressed in Section 3.2, where the idea of time quantification

as opposes to step quantification, as a feature of a temporal connective, is presented.

As a result a step-bounded version of the Until operator is defined.

Section 3.3 concerns the study of some relevant consequences of the semantics

of CSL time bounded path formulae. The characterisation of sensible probabilistic

formulae is faced in Section 3.4, where the definition of well-formed probabilistic for-

mulae is provided. The effects of the semantics of CSL steady-state formulae with

respect to ergodic models, is addressed in Section 3.5, where semantic equivalences

for formulae involving the steady-state operator are found, leading to a modified, but

equivalent, CSL syntax to refer to ergodic CTMCs.

47

48 Chapter 3. On CSL Expressiveness

3.2 Extending the Until expressiveness

In this section some considerations regarding the expressiveness capability of the two

basic temporal connectives, Next and Until, are presented.

The main characteristic of temporal logics (i.e. LTL, CTL, PCTL, CSL), as a means

for specifying properties of a system, is that they allow one to refer to future evolutions

(i.e. paths) of a system, as “criteria” for selecting the states of interest. This is achieved

by means of two temporal connectives, namely Next and Until. Generally speaking,

with discrete-events state-based systems two types of quantification with respect to the

future appear to be sensible: a time quantification, by means of which the evolution

of the system is considered with respect to time elapsing, as opposed to a step quan-

tification or event quantification, through which the system’s evolution is considered

with respect to events’ occurrence. Clearly time quantification is sensible only when

elapsed time is captured in the modelling framework1. We observe that if time is seen

as a discrete quantity in the modelling framework, then, usually, time elapsing and

event elapsing coincide (the occurence of an event is assumed to “consume” one time

unit). Thus, when referring to such models (e.g. DTMCs), time quantification and

event quantification have the same meaning.

Both Next and Until allow us to refer to the future but with some differences.

Referring to their original (untimed) version, some observations can be made. The

Until operator U (and its derivative sometime in the future, i.e. �φ� �ttUφ�) permits

one to refer to features of the system’s behaviour which one is interested in observing in

an indefinitely long future (i.e. Until does not naturally imply any sort of quantification,

neither time nor step). Conversely, the Next operator X naturally implies a (very strict

one-transition only) step quantification: �Xφ� identifies those evolutions for which φ
happens to be true after exactly one transition from the present state.

When referring to timed models, either discrete-time (e.g. DTMCs) or continuous-

time (e.g. CTMCs), time quantification can be sensible.

In the PCTL logic (the temporal logic for DTMCs), an event-bounded version of

the Until operator (φ U�n ψ) allows one to specify an upper bound (i.e. n) for the

1We will name timed those modelling frameworks which capture time elapsing and untimed those
other ones which do not capture time elapsing.

3.2. Extending the Until expressiveness 49

number of transitions/time instants within which the Until formulahas to be satisfied.

Conversely, when the time is continuous (as with CTMCs), time quantification

and event quantification are distinct. In the CSL logic, a time-bounded version of

both Next and Until is provided. It basically allows us to associate a continuous-time

quantification with the usual semantics. As a result, a time-bounded Until formula

(φ U�a�b� ψ) allows to refer to a behaviour of interest which has to happen in a time-

wise definite but step-wise indefinite future (i.e. a combined time/event quantification

is not supported by the time-bounded CSL Until operator). On the other hand, the

time-bounded Next, incorporates both types of quantification: a formula like �X �a�b�φ�
characterises those evolutions such that φ happens to be verified in a time-distance I �

�a�b� from the starting instant of observation (i.e. the time a state is entered) and also

within a (strict) step-distance of exactly one transition. In this sense, the time-bounded

Next allows for a strict, combined time-step quantification of the future, where the only

possible value for the step quantification is 1.

In the reminder of this section the definition of event-bounded Until is provided. It

extends the one which can be found in [20] by allowing the specification of a bound-

ing interval �n1�n2� with a positive, possibly non-null infinum. We will prove that,

contrary to the “standard” event-bounded Until ([20]) which refers to bounding inter-

vals like �0�n� only, the probability to satisfy an event-bounded Until which refers to

a single-point bounding interval (i.e. n1 � n2), can be computed as a function of the

transition probability matrix P rather than as a function of a tailored matrix M derived

from P.

Definition 3.2.1 (event-bounded Until) Let φ� and φ�� be two CSL state formulae,

n1�n2 two natural numbers with n1 � n2 and σ a path on a given CTMC. The step-

bounded Until formula �φ� U�n1�n2� φ��� is a path-formula whose semantics, with re-

spect to σ, is defined as:

σ �� �φ� U�n1�n2� φ��� �� 	i� n1 � i� n2 : σ�i� �� φ��� � j � i�� σ� j� �� φ�

If n1 � n2 � n the notation �φ� U�n� φ��� is used.

We recall here that the probability of satisfying an Until formula from a state s of a

50 Chapter 3. On CSL Expressiveness

CTMC M is given by the probability of each path that, starting at s, satisfies the Until

formula, which is: ProbM �s�φU�n�ψ� � Prs�σ� Path�s� : σ �� φ U�n� ψ�. We denote

Path�s�φ U�n� ψ� the set of such paths.

The following theorem provides a method for computing the probability measure

of satisfying a step-bounded sometime in the future formula, ��n� φ� �tt U�n� φ� from

a state s.

Theorem 3.2.1 (event-bounded Diamond) For a formula ��n� φ � �tt U�n� φ� and a

state s of a CTMC,

Prob�s���n� φ� �

���������
��������

iφ�s� if n � 0

Prob�s�X φ� if n � 1

∑s��S P�s�s�� �Prob�s����n�1� φ� if n � 1

where iφ�s� � 1 if s �� φ and iφ�s� � 0, if s ��� φ.

Proof. We denote Path�s���n�φ� the paths starting at s and satisfying �nφ and

Prob�s���n�φ� the measure of their probability. Similarly Path�s�Xφ� denotes the paths

starting at s and satisfying Xφ and Prob�s�Xφ� the measure of their probability. Let us

consider the different cases.

Case 1. n � 0. In this case either every path starting at s satisfies ��0�φ or none.

If s �� φ then Path�s���0�φ� � Path�s�, hence Prob�s���0�φ� � 1 � iφ�s�. If s ��� φ then

Path�s���0�φ� � /0, hence Prob�s���0�φ� � 0 � iφ�s�.

Case 2. n� 1. Trivially Path�s���1�φ��Path�s�Xφ�hence Prob�s���1�φ��Prob�s�Xφ�.

Case 3. n � 1. In this case Path�s���n�φ� consists of all those paths σ of the form

s� σ�, where σ� � Path�s����n�1�φ� (i.e. all those paths whose first order suffix satis-

fies φ in n�1 steps, �1 � σ� ����n�1�φ). Hence

Prob�s���n�φ�� ∑
s��S

P�s�s�� �Prob�s����n�1� φ�

�

3.2. Extending the Until expressiveness 51

Corollary 3.2.1 (Prob���n� φ) For a formula ��n� φ and a CTMC M the state vector

Prob���n� φ� is given by:

Prob���n� φ� �

���������
��������

iφ if n � 0

Prob�X φ� if n � 1

P �Prob���n�1� φ� if n � 1

Proof. Straightforward consequence of Theorem 3.2.1.

Corollary 3.2.1, shows that the computation of the probability state vector for a step-

bounded sometime in the future formula results in an iterative matrix-vector product.

In the next theorem a way of computing the probability measure for a step-bounded

Until formula, �φ U�n� ψ� is described. It is based on the result for the step-bounded

sometime in the future operator.

Theorem 3.2.2 (event-bounded Until) For a formula �φ U�n� ψ� and a state s of a

CTMC, the following holds:

Prob�s��φ U�n� ψ�� �

���������
��������

iψ�s� if n � 0

iφ�s� �Prob�s�X ψ� if n � 1

iφ�s� �∑s��S P�s�s�� �Prob�s���φ U�n�1� ψ�� if n � 1

Proof. Let us consider the different cases.

Case 1. n � 0. In this case either every path starting at s satisfies �φ U�0� ψ� or none.

If s �� ψ then Path�s��φ U�0� ψ�� � Path�s�, hence Prob�s��φ U�0� ψ�� � 1 � iψ�s�. If

s ��� ψ Path�s��φ U�0� ψ�� � /0, hence Prob�s��φ U�0� ψ�� � 0 � iψ�s�.

52 Chapter 3. On CSL Expressiveness

Case 2. n � 1. The set Path�s��φ U�1� ψ�� is either equal to Path�s�Xψ� or empty. If

s �� φ then Path�s��φ U�1� ψ�� � Path�s�Xψ�. Hence, in this case,

Prob�s��φ U�1� ψ�� � Prob�s�Xψ� � iφ�s� �Prob�s�Xψ�

If s ��� φ, then Path�s��φ U�1� ψ�� � /0. Hence, in this case,

Prob�s��φ U�1� ψ�� � 0 � iφ�s� �Prob�s�Xψ�

Case 3. n � 1. The set Path�s��φ U�n� ψ�� is either empty, if s ��� φ, or it consists of all

those paths σ of the form s� σ�, where σ� � Path�s���φ U�n�1� ψ��, if s �� φ. Hence,

Prob�s��φ U�n� ψ��� iφ � �∑s��S P�s�s�� �Prob�s���φ U�n�1� ψ����.

�

Corollary 3.2.2 (Prob�φ U�n� ψ�) For a formula �φ U�n�ψ� and a CTMC M the state

vector Prob�φ U�n� ψ� is given by:

Prob�φ U�n� ψ� �

���������
��������

iψ if n � 0

iφ �Prob�X ψ� if n � 1

iφ � �P �Prob�φ U�n�1� ψ�� if n � 1

Proof. Straightforward consequence of Theorem 3.2.2.

Corollary 3.2.2, shows that, also for a step-bounded Until formula, the computation of

the probability state vector results in an iterative matrix-vector product.

In this section an event-bounded version of the Until operator has been formally

introduced. It allows us to specify a bounding interval in terms of number of events in

the executions fulfilling an Until-like property. It has been shown that the computation

of the probability measure for an event-bounded Until, can be obtained via an iterative

3.2. Extending the Until expressiveness 53

�

� �

�� �� ��� �� � � �

�

�

�� �� �

�� �� �

Figure 3.1: A simple arbitrary CMTC M

matrix-vector multiplication. This proves that, differently from its event-unbounded

counterpart, the model checking problem for event-bounded Until does not require the

solution of a system of linear equations.

Example 3.2.1 (event-bounded Until) Figure 3.1 illustrates a simple four-states CMTC,

with transitions probability matrix P:

P�

�
�

0 1 0 0

0 0 1
2

1
2

1 0 0 0

1 0 0 0

�
������

Let φ and ψ be two CSL state-formulae and let us assume that ψ is satisfied only in the

state s2, while φ is valid in every state. As a result:

iφ � �1�1�1�1� iψ � �0�0�1�0�� Prob�X ψ� � �0�
1
2
�0�0�

By application of Corollary 3.2.2, the probability state-vectors Prob�φ U �n� X ψ�, for

54 Chapter 3. On CSL Expressiveness

n � � , can be straighforwardly derived.

Prob�φ U�0� ψ� � �0�0�1�0�

Prob�φ U�1�3k� ψ� � �0�
1
2
�0�0�

Prob�φ U�2�3k� ψ� � �
1
2
�0�0�0�

Prob�φ U�3�3k� ψ� � �0�0�
1
2
�
1
2
�

with k � � . We observe that, for example, the probability of fulfilling the Until formula

in n � 5 steps is non-null only for state s0. This is, in fact, correct, as s0 is the only

state admitting some (in this case two, s0�s1�s2�s0�s1�s2 and s0�s1�s3�s0�s1�s2) five step

paths satisfying �φ U ψ�. Furthermore the probabilty of each one such a path (which

is given by multiplying the probability of each step) is actually 1
4 , hence their sum is 1

2 .

The correctness of the other cases can be easily verified in a similar way. �

3.3 Semantics of single-point bounded path formulae

Proposition 2.3.2 and Theorem 2.3.1 allow for the computation of the probability mea-

sure of paths which, starting from a given state s, satisfy, respectively, a bounded Next,

and a bounded Until formula. The form of the bounding interval I � �a�b�, either

single-point (a � b) or multiple-points (a� b), affects the probability measure of paths

satisfying a bounded Next and Until formulae.

Bounded Next. The probability measure of each timed path starting at s and satis-

fying the Next formula �X φ� within the time boundaries I, is given by the result of

Proposition 2.3.2. The following remark points out a peculiarity which arises when

the bounding interval I consists of a single time instant.

Remark 3.3.1 Let M � �S�Q�L� be a labelled CTMC and φ a CSL state formula.

Whenever the considered time interval consists of a single point I � �a�, the proba-

bility measure Prob�s�X Iφ� � 0, independently of the state s � S and of the formula

φ.

3.3. Semantics of single-point bounded path formulae 55

Proof. By substitution of a � b in the result of Proposition 2.3.2.

�

Remark 3.3.1 highlights the fact that reaching a φ-state in one step from a state s ex-

actly at time t � a is an impossible event. This is consistent with the fact that the delay

of any transition s� s� in a CTMC is an exponentially distributed, hence continuous,

random variable X ; thus its probability of assuming any specific value is zero (i.e.

Pr�X � a� � 0, for all a � �).

Definition 3.3.1 (Well-formed bounded Next) Let φ be a CSL state formula and

I � �a�b� � R�0 a bounding time interval, then the bounded Next formula ϕ � X I φ
is said to be well-formed if and only if a � b.

Definition 3.3.2 (Well-formed path formulae) A CSL time bounded path formula ϕ
is said to be well-formed if, in case it is a bounded Next formula it is also well-formed.

Definitions 3.3.1 and 3.3.2 allow us to rule out the bounded Next formulae which can-

not be satisfied in any state of the model.

Bounded Until. The value Prob�s�φ�UIφ���, defined by means of Theorem 2.3.1, rep-

resents the measure of the probability of each timed path starting at s and satisfying

the Until formula �φ� U φ��� within the time boundaries specified by I. Any timed path

s0
t0�� s1

t1�� s2 � � �
tn�1
�� sn

tn�� � � � belongs to the set characterised by its untimed em-

bedded generator σ � s0 �� s1 �� s2 � � � �� sn �� � � �. In a way, we can say that

any timed path σ is generated by its untimed embedded generator.

As Remark 2.3.1 points out, whenever a timed path σ satisfies a bounded Un-

til �φ UI ψ�, then its untimed embedded generator σ satisfies the correspondent un-

bounded Until �φ U ψ�.

In general, the set of paths satisfying an untimed Until formula �φ� U φ��� can be

partitioned by distinguishing between those paths having a future state which satis-

fies the target φ�� but not the premise φ� (Path�s��φ���φ���U ��φ� � φ����) and those

56 Chapter 3. On CSL Expressiveness

which allow for a future state satisfying both the target and the premise of the until

(Path�s��φ���φ��� U �φ��φ����).

Path�s�φ�U φ��� � Path�s��φ���φ���U ��φ��φ�����Path�s��φ���φ��� U �φ��φ����

The characterisation of that partition of Path�s�φ�U φ���, allows us to formulate the

following remark which considers a subtlety implied by the result of Theorem 2.3.1.

Remark 3.3.2 Let �φ� UI φ��� be a CSL bounded Until formula with I � �a�b�.

a � b (multi-points interval): the timed paths contributing with a non-null value to

the measure Prob�s�φ�UI φ��� can be generated by untimed paths of both

Path�s��φ���φ���U ��φ��φ���� and Path�s��φ���φ��� U �φ��φ����.

a � b (single-point interval): the timed paths contributing with a non-null value to

the measure Prob�s�φ�UI φ��� can be generated by untimed paths of

Path�s��φ���φ��� U �φ��φ���� only.

The next example shows what Remark 3.3.2 is meant to point out.

��

��

��

Figure 3.2: Paths unravelling from state s0

3.3. Semantics of single-point bounded path formulae 57

Example 3.3.1 Let us consider a state s0 of a labelled CTMC M and the set of paths

starting at s0 (Figure 3.2 depicts the unravelling of the paths starting at s0). For the

sake of simplicity, we are assuming that s0 has a single successor state, s1, which, itself,

has a single successor, namely s2 (i.e. both s0 and s1 are states where no competition

takes place). As a result the tree representing the unravelling of paths starting at s0 is

given by appending the tree representing the unravelling of paths from s2 to the finite

path s0 � s1 � s2 (see Figure 3.2).

��

��

�� �

�� �������� �
�
�

��������� � �

���
� ���

�

��

��� �������� �
�
�

����������� � �

Figure 3.3: Probability measure of timed-until path: case s0 �� �φ��φ��

Suppose we are interested in evaluating the probability measure for the time bounded

Until formula �φ� UI φ���, with respect to s0. Let us consider different assumptions cor-

responding to every case of the definition of Prob�s�φ� UI φ��� of Theorem 2.3.1.

i) s0 �� �φ��φ��.
Figure 3.3 shows a path starting at s0. It is assumed that s0 is such that the target φ��

is satisfied but not the premise φ�. If we are considering a lower bound of zero (a � 0),

then the first case of equation 2.3.1 does apply, thus Prob�so�φ�U�0�b� φ��� � 1. On

the other hand whenever inf�I� is greater than zero (a � 0), the “otherwise” case of

equation 2.3.1 applies hence, for example, Prob�so�φ�U�0�5�b� φ��� � 0.

ii) s0 �� φ���φ�� and s1 �� �φ��φ��.
In Figure 3.4 s0 is assumed to satisfy φ� but not φ��, hence the second case of equa-

tion 2.3.1 applies. Moreover s1, the only successor of s0, is assumed to satisfy φ�� but

not φ�. A distinction between multiple-point intervals (i.e. a � b) and single-point

intervals (i.e. a � b � 0) needs to be made.

� a � b (multiple-points interval). From equation 2.3.1 we have that

Prob�so�φ�U�a�b� φ��� �
� b

0
Q�s0�s1� � e

�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx

58 Chapter 3. On CSL Expressiveness

��

��

�� �

�� �������� �
�
�

����������
� �

�
����� �����

��������	

���
� ���

�

��

��� �������� �
�
�

��������� � �

��
� ����

Figure 3.4: Probability measure of timed-until path: case s0 �� φ���φ��

The above integral can be split into the sum of two integrals, resulting in

Prob�so�φ�U�a�b� φ��� �
� a

0
Q�s0�s1� � e

�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx�

�
� b

a
Q�s0�s1� � e

�E�so�x �Prob�s1�φ�U�0�b�x� φ���dx

Since we are assuming s1 �� φ�� � �φ� then Prob�s1�φ�U�a�x�b�x� φ��� � 0 for

any x � �0�a�, thus
� a

0 Q�s0�s1� � e�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx � 0 while

Prob�s1�φ�U�0�b�x� φ��� � 1 (see previous case). Hence

Prob�so�φ�U�a�b� φ��� �
� b

a
Q�s0�s1� � e

�E�so�xdx

� a � b � 0 (single-point interval). Again by application of the second case of

equation 2.3.1 we have that

Prob�so�φ�U�a�a� φ��� �
� a

0
Q�s0�s1� � e

�E�so�x �Prob�s1�φ�U�a�x�a�x� φ���dx

but since, as we pointed out above, Prob�s1�φ�U�a�x�a�x� φ��� � 0 for any x �

�0�a� then

Prob�so�φ�U�a�a� φ��� �
� a

0
Q�s0�s1� � e

�E�so�x �Prob�s1�φ�U�a�x�a�x� φ���dx � 0

showing that whenever dealing with a single-point bound a path

σ � Path�s0��φ���φ��� U ��φ��φ���� leads to a null probability measure.

iii) s0 �� φ���φ�� and s1 �� φ��φ��.
In Figure 3.5 s0 is again assumed to satisfy the premise but not the target of the until,

3.3. Semantics of single-point bounded path formulae 59

hence again the second case of equation 2.3.1 applies

Prob�so�φ�U�a�b� φ��� �
� b

0
Q�s0�s1� � e

�E�so�x �Prob�s1�φ�U�a�x�b�x� φ���dx

��

��

�� �

��
� ���

�

��

��� �������� �
�
�

��������� � ����� ��� �
���������� � ����������

�	����� 	�����

��
� ����

� ���
� ���

Figure 3.5: Probability measure of timed-until path: case s0 �� φ���φ�� and s1 �� φ��φ��

though now the recursive call Prob�s1�φ�UI�x φ��� is done with respect to a state, s1, in

which both φ� and φ�� are assumed to be true. Hence Prob�s1�φ�UI�x φ��� is obtained

through the third case of equation 2.3.1, therefore:

Prob�so�φ�U�a�b� φ��� �
� b

0
Q�s0�s1� � e

�E�so�x �
�
e�E�s1���a�x��

� a�x

0
Q�s1�s2� � e

�E�s1��y �Prob�s2� I� x� y�dy
�
dx

In the case of a single-point interval (i.e. b � a), as shown in the previous case,

Prob�s2� I� x� y� � 0, �x � �0�a� and �y � �0�a� x�, thus

Prob�so�φ�U�a�a� φ��� �
� a

0
Q�s0�s1� � e

�E�so�x � e�E�s1���a�x�dx

� Q�s0�s1� �
�e�a�E�s0�� e�b�E�s1��

�E�s1��E�s0��

which shows that whenever the untimed embedded generator σ of a timed path σ be-

longs to Path�s0��φ� ��φ��� U �φ� � φ���� then the probability measure of the set of

paths σ satisfying the bounded Until with respect to a single-point bound I � �a�a�, is

not necessarily equal to zero.

The above example has shown a peculiarity which concerns the semantics of bounded

Until formulae �φ�UI φ���, when the bounding interval I consists of a single-point. In

such a case, only paths which reach a future state σ�n� satisfying both the premise and

60 Chapter 3. On CSL Expressiveness

the target of the considered Until (i.e. σ�n� �� φ� � φ��) through states satisfying the

premise, lead to a measure greater than zero, which is: any path reaching a future state

where the target but not the premise is satisfied (through states satisfying the premise),

has probability zero to fulfil the single-point time bound I � �a�a�.

3.4 Well-formed CSL probabilistic formulae

With respect to the syntax described in Definition 2.3.5, CSL probabilistic formulae are

those requiring the comparison of a probability measure with a bound: either S�p�φ�,
namely steady-state formulae, or P�p�ϕ�, that is probabilistic-path formulae.

The literature on CSL seems to lack of consistency with respect to the type of com-

parison operators (�) allowed for formulating probabilistic formulae. In its original

definition [1], the only comparison operator allowed was �; as a result P�p�ϕ� was

the only possible form of probabilistic formula (the steady-state operator was not in-

cluded in the original CSL syntax). In [4, 23], two comparison operators were permit-

ted: � and
; hence possible probabilistic formulae were either P�p�ϕ� or P�p�ϕ�,
for probabilistic-path formulae, or S�p�φ� or S�p�φ�, for probabilistic steady-state

formulae. In its most recent treatment [5], the set of allowed comparison operators

has been further enlarged becoming the one described in Definition 2.3.5, which is:

�� �������
�.

The analysis of the sensibleness of possible combinations of the comparison oper-

ator � and the probability bound p, leads to the characterisation of relevant semantic

equivalences concerning CSL probabilistic formulae which we present here.

Definition 3.4.1 (Semantically equivalent state formulae.) Let M � �S�Q�L� be a

labelled CTMC; two CSL state formulae φ and ψ are semantically equivalent, denoted

φ� ψ, if and only if

s �� φ�� s �� ψ� �s � S

or, equivalently:

φ� ψ �� Sat�φ� � Sat�ψ�

3.4. Well-formed CSL probabilistic formulae 61

The syntax depicted in Definition 2.3.5 does not impose any restriction on the combina-

tions of the comparison operator�� �������
� and the probability bound p� �0�1�.

However not all the possible combinations ��� p� lead to sensible formulae. For ex-

ample, although syntactically correct, comparison combinations like ���0� or ���1�,

result in contradictory probabilistic formulae (i.e. formulae equivalent to the contra-

diction �tt). In fact it is clearly impossible for a probability measure to fall outside the

interval �0�1�.

Remark 3.4.1 (Basic contradictions) Let φ be a CSL state formula and ϕ a CSL path

formula, then the following equivalences hold:

S�0�φ�� P�0�ϕ�� S�1�φ�� P�1�ϕ�� �tt

Symmetrically, comparison combinations like �
�0� or ���1� lead to valid probabilis-

tic formulae (i.e. formulae equivalent to the validity tt). In fact any probability measure

p̄ � �0�1�, hence, trivially, it is also greater than or equal to 0 and less than or equal

to 1.

Remark 3.4.2 (Basic validities) Let φ be a CSL state formula and ϕ a CSL path for-

mula, then the following equivalences hold:

S�0�φ�� P�0�ϕ�� S�1�φ�� P�1�ϕ�� tt

By allowing the equality check (��) among the possible comparison type a proba-

bility measure can be verified for (i.e. �� �������
����), the following trivial

equivalences hold:

Remark 3.4.3 (Equality check equivalences) Let φ be a CSL state formula and ϕ a

CSL path formula, then the following equivalences hold:

S�1�φ�� S��1�φ�� S�1�φ�� S��1�φ�

P�1�ϕ�� P��1�ϕ�� P�0�ϕ�� P��0�ϕ�

62 Chapter 3. On CSL Expressiveness

As for the PCTL, the existential and universal path quantifiers can be obtained as

special cases of probabilistic-path formulae, obtained, respectively, by the comparison

combinations ���0� and �
�1�.

Remark 3.4.4 (Existential and Universal path quantifiers) Let ϕ be a CSL path for-

mula, then E�ϕ� and A�ϕ� are notations to represent respectively, the existentially and

universally path quantified formula P�0�ϕ� and P�1�ϕ�.

E�ϕ�� P�0�ϕ�

A�ϕ�� P�1�ϕ�

The following definition provides a list of logical conditions useful for characterising

the type of bound check the combination ��� p� represents.

Definition 3.4.2 Let�� �������
� be a comparison operator and p� �0�1� a prob-

ability value, the following logical conditions characterise the type of the combination

��� p�:

� low��� p�� �p � �0�1����
� �p � �0�1������.

The combination ��� p� represents a lower-bound check if the logical condition

low��� p� holds.

� up��� p�� �p � �0�1������ �p � �0�1������.

The combination ��� p� represents an upper-bound check if the logical condition

up��� p� holds.

� E��� p�� �p � 0����� (Existential quantifier).

The combination ��� p� characterises an Existential quantifier for probabilistic-

path formulae.

� A��� p�� �p � 1����� �p � 1���
� (Universal quantifier).

The combination ��� p� characterises an Universal quantifier for probabilistic-

path formulae.

3.5. Nesting of the CSL probabilistic connectives 63

The logical conditions introduced in the above definition allow for the characterisation

of semantic equivalences for formulae involving the steady-state operator. Although

the type of check a pair ��� p� represents (i.e. lower-bound or upper-bound) could be

distinguished only by means of the comparison operator (�), the value of the prob-

ability bound p is also relevant. In fact by considering p, it is possible to rule out

those combinations ��� p� leading to either contradictory or always valid probabilistic

formulae. That allows for the following definition.

Definition 3.4.3 (Well-formed probabilistic CSL formulae) Let φ be a CSL state for-

mula, ϕ a CSL well-formed path formula, p � �0�1� a probability bound and

�� �������
� a comparison operator. The probabilistic formulae S�p�φ� and

P�p�ϕ� are said to be well-formed if and only if

low��� p� or up���q�

The above definition allows for ruling out probabilistic formulae whose semantics is

trivial (e.g. S�0�φ� or P�0�ϕ�). For the remaining part of the thesis, unless other-

wise stated, we will assume that any generic CSL probabilistic formula like S�p�φ� or

P�p�ϕ�, is actually a well-formed one.

3.5 Nesting of the CSL probabilistic connectives

The mutually recursive structure of CSL state and path formulae syntax (see Defini-

tion 2.3.5) allows for nesting of the probabilistic operators S�p and P�p. As a result

formulae like

S�0�9�P�0�8�rec1 U idle1�� (3.5.1)

or

P�0�9�X �S�0�8rec1�� (3.5.2)

showing a probabilistic path formula nested within the steady-state operator and a

steady-state formula nested within a probabilistic next, are legitimate examples of

properties in the CSL syntax.

64 Chapter 3. On CSL Expressiveness

In [5] an interesting overview regarding the specification of performance measures

in terms of CSL formulae, is given. The authors show how standard steady-state and

transient measures can be obtained in CSL. Furthermore it is shown how the expres-

siveness with respect to performance measuring of CTMCs is improved with CSL by

means of time bounded path formulae. Finally the possibility of mutual nesting of the

probabilistic connectives S�p and P�p is considered and it is proved that that provides

further means to state useful measures which it would not be possible to express by

means of any other CTMCs’ analysis technique.

Concerning the issue of nesting the probabilistic operators of CSL a relevant point

appears not to have been considered in literature: a distinction has to be made de-

pending on the structure of the considered CTMC, either ergodic (i.e. consisting of a

single BSCC) or non-ergodic (i.e. resulting in a number of BSCCs). The ergodicity of

the model impacts on the validity of CSL steady-state formulae, as pointed out in the

following remark.

Proposition 3.5.1 (Steady-state semantics with respect to ergodic CMTCs) Let φ be

a CSL state formula, M � �S�Q�L� an ergodic labelled CTMC, p � �0�1� a probability

bound and �� �������
�. The formula S�p�φ� is either satisfied in all or none of

the states s � S:

�s � S� s �� S�p�φ� or �s � S� s ��� S�p�φ�

Proof. From the CSL semantics we know that

s �� S�p�φ��� πM �s�Sat�φ��� p

Since M is ergodic, then from Proposition 2.3.1 we know that:

πM �s�Sat�φ�� � ∑
s��Sat�φ�

π�s��

which proves the measure πM �s�Sat�φ�� being dependent only on the satisfiability set

Sat�φ� and not on the considered state s.

�

3.5. Nesting of the CSL probabilistic connectives 65

The above remark points out a relevant feature of the CSL logic: steady-state formulae,

like S�p�φ�, are model dependent, rather than state dependent, whenever the model

they refer to is an ergodic CTMC.

Intuitively, for a non-ergodic CTMC M , the satisfiability of a steady-state formula

like S�p�φ� with respect to a state s, depends on the measure of how likely it is to reach

a state satisfying φ when s is considered as the starting point (to be more precise: how

likely it is to reach the BSCC B a state satisfying φ belongs to, when we start from s).

Hence, in the non-ergodic framework, the satisfiability of S�p�φ� strongly depends on

the considered starting state s other than on M itself. Conversely, in the ergodic case,

all states belong to the same, unique, BSCC the CTMC consists of; thus the formula

S�p�φ� is either valid in M or false in every state: the satisfiability of S�p�φ� is state

independent.

As a consequence, in the ergodic framework, we will use M �� S�p�φ�
(M ��� S�p�φ�) to denote the fact that the steady-state formula S�p�φ� is satisfied (not

satisfied) in every state of M or, whenever the model M is clear from the context,

simply �� S�p�φ� (��� S�p�φ�). An alternative formulation of Proposition 3.5.1 is given

in the following corollary.

Corollary 3.5.1 The satisfiability set of S�p�φ� with respect to an ergodic CTMC

M � �S�Q�L� is either the whole state space S or the empty set:

Sat
�
S�p�φ�

	
� S or Sat

�
S�p�φ�

	
� /0

�

3.5.1 Semantics equivalences for nested formulae

The relevance of the model’s ergodicity with respect to the semantics of CSL steady-

state formulae, calls for checking the existence of semantic equivalences for formulae

involving the steady-state connective. The following propositions characterise relevant

equivalences concerning such types of formulae.

Proposition 3.5.2 (Basic steady-state equivalence.) Let M � �S�Q�L� be an ergodic

labelled CTMC and S�p�φ� a CSL state formula, then S�p�φ� is semantically equiva-

66 Chapter 3. On CSL Expressiveness

lent either to tt, if �� S�p�φ� or to �tt, if ��� S�p�φ�:

S�p�φ��

�
tt if �� S�p�φ�
�tt if ��� S�p�φ�

(3.5.3)

Proof.

Trivial consequence of Proposition 3.5.1, in fact clearly

�� S�p�φ��� Sat�S�p�φ�� � S � Sat�tt�

��� S�p�φ��� Sat�S�p�φ�� � /0 � Sat��tt�

�

Relying on Proposition 3.5.2 semantic equivalences can be found for any possible

combination of steady-state formulae obtained by means of the CSL connectives.

Proposition 3.5.3 (S nested in S) . Let M � �S�Q�L� be an ergodic labelled CTMC

and φ a CSL state formula. The following semantic equivalence regarding nesting of

the steady-state formula S�q�φ� within a probabilistic steady-state operator holds:

S�p�S�q�φ���

����
���

tt if
��

low��� p�
�
�
�
�� S�q�φ�

��
��

up��� p�
�
�
�
��� S�q�φ�

��
�tt otherwise

(3.5.4)

Proof.

The proof proceeds similarly to the one regarding nesting of S within an unbounded

Next. The validity of the innermost steady-state formula (i.e. S�q�φ�), directly af-

fects the equivalence. In fact the nested formula S�p�S�q�φ�� states that the long-run

probability for the states satisfying S�q�φ� respects the bound� p. However the states

satisfying the innermost steady-state are either all the states in S or none. As a result if

S�q�φ� is satisfied in M (i.e. �� S�q�φ�), then so is S�p�S�q�φ�� given that the type of

bound check it represents is a lower-bound. While if S�q�φ� is not satisfied in M (i.e.

��� S�q�φ�) then S�p�S�q�φ�� is satisfied in M , given that it represents an upper-bound

check.

�

3.5. Nesting of the CSL probabilistic connectives 67

The above proposition has shown that formulae given by nesting a steady-state connec-

tive within another one are equivalent either to the tautology tt or to the contradiction

�tt. The following two propositions, instead, highlight the equivalences for boolean

combinations of steady-state connectives (i.e. conjunctions and negations of steady-

state formulae).

Proposition 3.5.4 (S nested in �) Let M � �S�Q�L� be an ergodic labelled CTMC,

φ and ψ two CSL state formulae, p�q � �0�1� and �� � �����
���. The following

semantic equivalences regarding nesting of steady-state formulae within the conjunc-

tive operator holds:

ψ� �S�p�φ�� �

����
���

ψ if �� S�p�φ�

�tt otherwise

�S�p�φ��� �S�q�ψ�� �

����
���

tt if
�
�� S�q�φ�

�
�
�
�� S�q�ψ�

�

�tt otherwise

Proof.

Trivial consequence of Proposition 3.5.2.

�

Proposition 3.5.5 (S nested in �) Let M � �S�Q�L� be an ergodic labelled CTMC,

φ a CSL state formula, p � �0�1� and�� �����
���. The following semantic equiv-

alence regarding nesting of the steady-state formula S�p�φ� within the negation oper-

ator holds:

��S�p�φ���

����
���

�tt if �� S�p�φ�

tt otherwise

(3.5.5)

Proof.

Trivial consequence of Proposition 3.5.2. �

So far equivalences for non-path formulae, containing a steady-state sub-formula have

been proved. In the following four propositions the case of path formulae, both Until

68 Chapter 3. On CSL Expressiveness

and Next either bounded or unbounded, built on some steady-state sub-formula is faced

and equivalences are proved.

Proposition 3.5.6 (S nested in a bounded Until.) Let M � �S�Q�L� be an ergodic

labelled CTMC, φ and ψ two CSL state formulae, I � �a�b� � ��0 a time interval,

p�q�r � �0�1� and ���� �̃ � �����
���. The following semantic equivalences re-

garding nesting of the steady-state formulae within a probabilistic bounded Until op-

erator hold:

P�p�φ UI S�q�ψ�� �

����������������������
���������������������

tt if
��
��S�q�ψ�

�
�
�
low��� p�

�
�
�
a � 0

��

�
��
��� S�q�ψ�

�
�
�
up��� p�

��

�φ��φ�P�p�φ UI tt�� if
��
��S�q�ψ�

�
�
�
up��� p�

�
�
�
a �� 0

��

�φ�P�p�φ UI tt�� if
��
��S�q�ψ�

�
�
�
low��� p�

�
�
�
a �� 0

��

�tt if
��
�� S�q�ψ�

�
�
�
up��� p�

�
�
�
a � 0

��

�
��
��� S�q�ψ�

�
�
�
low��� p�

��

3.5. Nesting of the CSL probabilistic connectives 69

P�p�S�q�ψ� UI φ� �

���������������
��������������

P�p��
Iφ� if �� S�q�φ�

φ if ��� S�q�φ�� �low��� p��� �a � 0�

tt if ��� S�q�φ�� �up��� p��� �a �� 0�

�tt otherwise

P�p�S�̃r�φ� UI S�q�ψ�� �

����������������������������
���������������������������

tt if
��
�� S�q�ψ�

�
�
�
low��� p�

�
�
�
a � 0

��

�
��
��� S�q�ψ�

�
�
�
up��� p�

��

�
��
�� S�q�ψ�

�
�
�
�� S�̃r�φ�

�

�
�
up��� p�

�
�
�
a � 0

��

�tt if
��
�� S�q�ψ�

�
�
�
up��� p�

�
�
�
a � 0

��

�
��
��� S�q�ψ�

�
�
�
low��� p�

��

�
��
�� S�q�ψ�

�
�
�
�� S�̃r�φ�

�

�
�
low��� p�

�
�
�
a � 0

��

P�p��
Itt� if

��
�� S�q�ψ�

�
�
�
�� S�̃r�φ�

�
�
�
a � 0

��

Proof.

The proof relies both on the basic equivalence for steady-state formulae (Proposi-

tion 3.5.2) and on the result of Theorem 2.3.1 concerning the probability measure

for bounded-Until paths. With respect to the first and second cases (i.e. one steady-

state formula among the operands of a bounded Until), three factors are relevant: the

validity of the steady-state operand with respect to the model M (either �� S�q�ψ� or

��� S�q�ψ�), the type of bound check involved (either low��� p� or up��� p�) and the

value of the bounding interval’s infinum (either a � 0 or a � 0). That leads to a total

of eight possible combinations which, are fully caught by the conditions characteris-

ing the first and second equivalences. In the third case, (i.e. both the operands of the

Until are steady-state formulae) also the validity of the second steady-state operand of

70 Chapter 3. On CSL Expressiveness

the bounded Until, has to be considered amongst the factors affecting the semantics of

P�p�S�̃r�φ� UI S�q�ψ��. Hence the possible combinations of conditions are, in this

case, sixteen.

i) P�p�φ U S�q�ψ��.

Case 1. If S�q�ψ� is valid in the considered model and a � 0, the probability measure

of paths satisfying �φ U I S�q�ψ�� is equal 1 (case 1 of Theorem 2.3.1), for every state

s. Hence if we are checking that measure against a lower-bound (i.e. low��� p�) the

formula is satisfied in every state s, since clearly 1� p. Similarly if S�q�ψ� is not satis-

fied in M (i.e. not satisfied in any state s � S), then it is equivalent to the contradiction

�tt (Proposition 3.5.2); thus the original Until formula P�p�φ U S�q�ψ�� boils down

to P�p�φ U �tt� which, independently of a and of the considered state s, is satisfied,

if and only if ��� p� represents an upper bound check (i.e. up��� p�): the probability

measure of paths satisfying P�p�φ U �tt� is zero (case “otherwise” of Theorem 2.3.1).

Case 2. If S�q�ψ� is valid in the considered model and a � 0 then a distinction be-

tween states satisfying φ and states satisfying �φ needs to be made. First of all, since

we are assuming �� S�q�ψ� then, again, the original Until formula is actually equiv-

alent to P�p�φ U tt�. If s does not satisfy φ (i.e. s �� �φ), the probability measure

Prob�s�φ UI tt� is equal zero (case “otherwise” of Theorem 2.3.1). Hence, if up��� p�,

P�p�φ U S�q�ψ�� is clearly satisfied in s, as 0� p. On the other hand if s satisfies φ,

case 3 of Theorem 2.3.1 applies. and the measure Prob�s�φ U I tt� is equal to the prob-

ability of leaving s within the bound I. The formula φ�P�p�φ UI tt� clearly captures

the states fulfilling this second possibility

Case 3. This case is identical to the previous one (case 2) except for the type of bound

check, which is supposed, in this case, to be a lower-bound check (i.e. low��� p�).

As we know, Prob�s�φ U I S�q�ψ�� � 0 �� p for any state s �� �φ (see previous case).

Hence the only states s for which the measure Prob�s�φ U I S�q�ψ��� p are those sat-

isfying φ and Prob�s�φ U I tt� (i.e. s is such that the probability measure of �φ U I tt�

is � p).

3.5. Nesting of the CSL probabilistic connectives 71

Case 4. If �� S�q�ψ� and a � 0, then Prob�s�φ U I S�q�ψ�� � 1, independently of

the state s (i.e. case 1 of Theorem 2.3.1). Hence, if up��� p� holds, then clearly

Prob�s�φ UI S�q�ψ�� � 1 �� p, for all s � S which proves P�p�φ U S�q�ψ�� � �tt.

Similarly if ��� S�q�ψ�, then Prob�s�φ U I S�q�ψ��� 0, independently of the state s and

of a (either a � 0 or a � 0). Thus if low��� p�, then again

Prob�s�φ UI S�q�ψ�� � 1 �� p. which proves P�p�φ U S�q�ψ�� being equivalent

to the contradiction �tt.

ii) P�p�S�q�ψ� U φ�.
Case 1. Direct consequence of Proposition 3.5.2 and of the equivalence �Iφ� �tt UI φ�.

Case 2. If ��� S�q�ψ� then �S�q�ψ�UI φ�� ��tt UI φ� . Then if a� 0, a distinction be-

tween s �� φ and s �� �φ has to be made.

Prob�s��S�q�ψ� U φ�� � 1 for any state s �� φ. Thus if low��� p�, then for each such

state also s �� P�p�S�q�ψ� U φ� as clearly 1 � p. On the other hand

Prob�s��S�q�ψ� U φ�� � 0 �� p for any state s �� �φ.

Case 3. Here again ��� S�q�ψ� is assumed but now the infinum of the bounding interval

I is supposed to be a � 0. If this is the case then Prob�s��S�q�ψ� U φ�� � 0 both with

s �� φ and with s ��� φ (i.e. in both cases the “otherwise” case of Theorem 2.3.1 applies).

Hence of up��� p� then P�p�S�q�ψ� U φ� is equivalent to the tautology tt.

Case 4. This case regards the remaining two possibilities, which are, respectively:

��� S�q�ψ�� low��� p�� �a � 0� and ��� S�q�ψ�� up��� p�� �a � 0�. If ��� S�q�ψ��

low��� p�� �a � 0� then Prob�s��ttU I φ� � 0 �� p (i.e. we are assuming low��� p�),

independently of s. Hence clearly, for every s� S, s ��� P�p�S�q�ψ� U φ� which proves

the equivalence of s ��� P�p�S�q�ψ� U φ� with the contradiction �tt. On the other hand

if ��� S�q�ψ�� up��� p�� �a � 0� then again Prob�s��ttU I φ� � 0 �� p which proves

the equivalence with the contradiction also in this case.

72 Chapter 3. On CSL Expressiveness

iii) P�p�S�̃r�φ� UI S�q�ψ��.

Similar to the previous cases.

�

The above proposition shows the equivalences for bounded Until formulae having

steady-state formulae amongst their operands. The following proposition, instead,

proves results regarding the unbounded Until case.

Proposition 3.5.7 (S nested in an unbounded Until) Let M ��S�Q�L� be an ergodic

labelled CTMC, φ and ψ two CSL state formulae, p�q�r � �0�1� and

�����̃�� �����
���. The following semantic equivalences regarding nesting of

the steady-state formulae within a probabilistic unbounded Until operator hold:

P�p�φ U S�q�ψ�� �

����
���

tt if
��

low��� p�
�
�
�
�� S�q�ψ�

��
��

up��� p�
�
�
�
��� S�q�ψ�

��
�tt otherwise

P�p�S�q�ψ� U φ� �

����
���

P�p��φ� if �� S�q�ψ�

φ if ��� S�q�ψ�� �low��� p��

�φ if ��� S�q�ψ�� �up��� p��

P�p�S�̃r�φ� U S�q�ψ�� �

����
���

tt if
��

low��� p�
�
�
�
�� S�q�ψ�

��
��

up��� p�
�
�
�
��� S�q�ψ�

��
�tt otherwise

Proof.

The proof relies on Proposition 3.5.2 and Corollary 2.3.1.

i) P�p�φ U S�q�ψ��.

If �� S�q�ψ� then S�q�ψ� is equivalent to tt. As a consequence Prob�s�φ U ψ� � 1,

for any state s. Hence if low��� p� holds, then clearly P�p�φU S�q�ψ�� is satisfied in

any state, thus it is equivalent to tt. Conversely if ��� S�q�ψ� then the Until formula is

3.5. Nesting of the CSL probabilistic connectives 73

not satisfiable by any path σ. As a result the probability measure of paths satisfying

�φ U S�q�ψ�� is zero in any state hence P�p�φ U S�q�ψ�� is equivalent to tt given

that up��� p�.

ii) P�p�S�q�ψ�U φ��.
If �� S�q�ψ� then S�q�ψ� is equivalent to tt hence �S�q�ψ�U φ� is equivalent to the

sometime in the future formula ��φ� . If ��� S�q�ψ� then the premise of the Until for-

mula �S�q�ψ�U φ� is always false. As a consequence for any state s the probability

measure of paths satisfying �S�q�ψ�U φ� is either 1 if the target φ is satisfied in s or 0

if it is not. Hence P�p�S�q�ψ�U φ�� is equivalent either to φ, if it represents a lower-

bound check, or to �φ if it is an upper-bound check.

iii) P�p�S�̃r�φ� U S�q�ψ��.

The proof of this case is a direct consequence of the first case P�p�φ� U S�q�ψ�� with

φ� � S�̃r�φ�.

�

Finally in the remaining two propositions, the semantic equivalences concerning nest-

ing of steady-state properties within a Next operator, either bounded or unbounded,

are proved.

Proposition 3.5.8 (S nested in a bounded Next) Let M � �S�Q�L� be an ergodic la-

belled CTMC, φ a CSL state formula, I � �a�b� � ��0 a time interval, p�q � �0�1� and

��� � �����
���. The following semantic equivalence regarding nesting of the

steady-state formula S�q�φ� within a probabilistic bounded Next operator holds:

P�p�X
I S�q�φ���

����������
���������

tt if
��
��� S�q�φ�

�
�
�
up��� p�

��

�tt if
��
��� S�q�φ�

�
�
�
low��� p�

��

P�p�XI tt� if
�
�� S�q�φ�

�
(3.5.6)

74 Chapter 3. On CSL Expressiveness

Proof.

If ��� S�q�φ� then the measure Prob�s��XI S�q�φ�� is equal to zero for any state s � S.

Hence if up��� p�, the formula P�p�XI S�q�φ�� is valid in every state s as clearly

0� p. On the other hand, if low��� p�, then 0 �� p, thus P�p�XI S�q�φ�� is equivalent

to the contradiction �tt. The final case (i.e. �� S�q�φ�) is a trivial consequence of

Proposition 3.5.2.

�

Proposition 3.5.9 (S nested in an unbounded Next) Let M ��S�Q�L� be an ergodic

labelled CTMC, φ a CSL state formula, p�q � �0�1� and ��� � �����
���. The

following semantic equivalence regarding nesting of the steady-state formula S�q �φ�
within a probabilistic unbounded Next operator holds:

P�p�X S�q�φ���

����
���

tt if
��

low��� p�
�
�
�
�� S�q�φ�

��
��

up��� p�
�
�
�
��� S�q�φ�

��
�tt otherwise

(3.5.7)

Proof.

If the steady-state formula S�q�φ� is satisfied in M (i.e. �� S�q�φ�), then it is equivalent

to tt, hence the probability measure of the paths satisfying �X S�q�φ�� is clearly 1,

independently of the starting state. As a result, P�p�X S�q�φ�� is satisfied in every

state, if it represents a lower-bound check for the probability measure of �X S�q�φ��
(i.e. low��� p� holds). Similarly, if S�q�φ� is not satisfied in M (i.e. ��� S�q�φ�) then it

is equivalent to �tt. Thus there can be no paths satisfying �X S�q�φ�� whatever is the

considered starting state (i.e. the probability measure of paths satisfying �X S�q�φ��
is 0). As a consequence, P�p�X S�q�φ�� is satisfied in every state, if it represents an

upper-bound check for the probability measure of �X S�q�φ�� (i.e. up��� p� holds).

�

3.5. Nesting of the CSL probabilistic connectives 75

3.5.2 CSL syntax for ergodic models (no nesting of S�p).

The semantic equivalences described in Propositions 3.5.2-9, suggest a modified ver-

sion of the CSL syntax introduced in Definition 2.3.5, which can be used to state

properties referring to ergodic CTMCs. The main point with such a syntax is to keep

steady-state formulae apart from the other logical connectives so that recursion is only

allowed for boolean and probabilistic-path combinators. The steady-state connective

S�p can be applied, at top level only, to formulae which do not contain it.

Definition 3.5.1 (CSL syntax for ergodic CTMCs) The syntax of CSL state-formulae

(φ), boolean and probabilistic-formulae (ψ), path-formulae (ϕ) and steady-state for-

mulae (ξ) is inductively defined as follows with respect to the set of atomic proposition

AP:

φ ::� ψ � ξ � ξ�ψ � ψ�ξ � ξ�ξ � �ξ (state-formulae)

ψ ::� tt � a � ψ�ψ � �ψ � P�p�ϕ� (BP-formulae)

ϕ ::� X Iψ � �ψ UI ψ� (path-formulae)

ξ ::� S�p�ψ� (steady-state-formulae)

(3.5.8)

where a � AP, p � �0�1� is a real number, �� �������
� and I � �a�b�� ��0 is a

non-empty interval.

Proposition 3.5.10 (Equivalent CSL syntax) The language generated by the CSL syn-

tax (Definition 2.3.5) is semantically equivalent to the one generated by the modified

CSL syntax (Definition 3.5.1) given that the considered model is an ergodic CTMC.

Proof. Straightforward consequence of Propositions 3.5.2-9.

�

Example 3.5.1 Let us show how the equivalences described in Propositions 3.5.2-9

work in practice by considering some examples of CSL formulae involving the steady-

state operator. The formulae in this example refer to the ergodic CTMCs of the GIS

system of our running example (see Section 2.5.1). In Figure 3.6 the state-space of the

76 Chapter 3. On CSL Expressiveness

������

���

���

���

���

���

�����

�����

���

���

��� ���

���

�����

��

�� ��

�� ��

��

��

����� ����

�����

�����

��������

����� ����

����

����

���

���
��

��

��

����

��

����

Figure 3.6: State space of the GIS system’s components

two CTMCs is depicted. For illustrative purpose only2, let us assume the following

values for the steady-state distribution π1 of component M1:

π1�s10� � 0�3� π1�s11� � π1�s12� � 0�2� π1�s13� � π1�s14� � π1�s15� � 0�1

Furthermore let us suppose we are interested in the analysis of the steady-state proba-

bility of those states of M1 which satisfy respectively the formulae φ and ψ:

φ� idle1 ψ� rec1 res1

The formula ψ is valid in state s13�s14 and s15 while φ is satisfied in s10 only. As

a consequence the measure of the steady-state probability for Sat�φ� and Sat�ψ� is,

respectively, given by:

π1�s��idle1�� � π1�s10� � 0�2

π1�s��rec1 res1�� � π1�s13��π1�s14��π1�s15� � 0�3

2The values here assumed may turn out to be impossible with respect to the solution of the steady-
state distribution π1, as it is described in Example 2.5.1

3.5. Nesting of the CSL probabilistic connectives 77

independently of the considered state s (i.e. M1 is ergodic). In the following some

examples of steady-state formulae are considered in order to illustrate the basic equiv-

alences which have been proved in the initial part of this section.

Basic steady-state equivalences. (application of Proposition 3.5.2 and Remark 3.4.2).

Let us consider the following examples of CSL steady-state properties.

i� S�0�2�ψ� � tt

ii� S�0�2�ψ� � �tt

iii� S�0�ψ� � S�1�ψ�� tt

Case i� is clearly satisfied in every state of M1 (i.e. is valid) as the steady-state prob-

ability for states satisfying ψ is 0�3
 0�2. For the same reason ii� is never satisfied in

M1, as 0�2 is not an upper bound for the steady-state probability of states satisfying ψ.

Case iii� shows an example of non-well-formed probabilistic formulae: both the pairs

�
�0� and ���1� result in pointless probabilistic formulae (i.e. tautologies), as clearly

a probability measure muust fall in �0�1�.

S nested in bounded Until (application of Proposition 3.5.6).

Here some examples of time-bounded Until formulae with nested steady-state prop-

erties are provided. The operands of the Until will be chosen amongst the following

three: read1, S�q�ψ�� and S�̃r�φ��. Furthermore two different cases of bounding in-

terval will be considered, namely I � �0�5� or I � �2�5�, in order to points out the

differences between a null and a non-null in f inum.

Case 1.

P�p�read1 U�a�b� S�q�ψ��

i� P�0�7�read1 U�0�5� S�0�2�ψ�� � tt

ii� P�0�7�read1 U�2�5� S�0�2�ψ�� � �read1�P�0�7�read1 U�2�5� tt��

iii� P�0�7�read1 U�2�5� S�0�2�ψ�� � �read1 �read1�P�0�7�read1 U�2�5� tt��

iv� P�0�7�read1 U�2�5� S�0�2�ψ�� � �tt

Case i) is clearly satisfied in every state since the proability measure of the target-

formula, S�0�2�ψ�, is itself satisfied in every state (see previous case). Hence every path

78 Chapter 3. On CSL Expressiveness

from every state satisfies the Until formula, which means:

Prob�s��read1 U�0�5� S�0�2�ψ��� � 1
 0�7, for every state s.

In case ii) we are concerned with a lower-bound check for the probabiity measure of

a time-bounded Until formula. We observe that since we have a non-null infinum (i.e.

2) of the bounding interval, then a path σ must start in a read1 state in order to sat-

isfy �read1 U�2�5� S�0�2�ψ��. Thus the conjunction �read1�P�0�7�read1 U�2�5� tt�� rules

out those state (i.e. �read1 states) whose paths cannot satisfy �read1 U�2�5� S�0�2�ψ��.

In fact, for every state s ��� read1 the probability measure

Prob�s��read1 U�2�5� S�0�2�ψ��� � 0 �
 0�7.

In case iii), we are considering an upper-bound check for the probability

measure of the same Until formula. As a consequence, the disjunction

�read1 �read1�P�0�7�read1 U�2�5� tt�� reflects the fact that in order for the proba-

bility measure Prob�s��read1 U�2�5� S�0�2�ψ��� of a state s to meet the bound � 0�7 it

suffices s ���read1. The conjunntion �read1�P�0�7�read1 U�2�5� tt��, instead, identifies

those amongst the read1 states whose measure Prob�s��read1 U�2�5� S�0�2�ψ���� 0�7.

Finally, the formula in case iv) is clearly unsatisfiable, as the target, S�0�2�ψ�� false in

the model (see previous case of the example).

In the remainder examples regarding the other possible way of nesting a steady-state

property within a time-bounded operator, are illustrated. They are obtained by appli-

cation of Proposition 3.5.6.

case 2. P�p�S�q�rec1 res1� U�a�b� read1�

P�0�7�S�0�2�rec1 res1� U�0�5� read1� � P�0�7��
�0�5� read1�

P�0�7�S�0�2�rec1 res1� U�0�5� read1� � read1

P�0�7�S�0�2�rec1 res1� U�2�5� read1� � tt

3.5. Nesting of the CSL probabilistic connectives 79

case 3. P�p�S�̃r�idle1� U�a�b� S�q�rec1 res1��

P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��

P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��

�
� tt

P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��

P�0�7�S�0�2�idle1� U�0�5� S�0�2�rec1 res1��

�
� �tt

�

Chapter 4

Compositional CSL model checking:

non-Path formulae

4.1 Introduction

The Boucherie framework introduced in Chapter 2, provides a method to compose

CTMCs which features a product-form solution for the composed model. In this chap-

ter the analysis of a compositional semantics for CSL formulae referring to a two com-

ponent Boucherie process is addressed. Unlike other works which base their results

for “compositionally” checking the truth of a formula on the existence of a preorder

relation between a model and its components [36], the results presented in this chap-

ter depend on the compositional structure of the Boucherie process only: no preorder

relation holds between a Boucherie process and its components.

Section 4.2 recalls the Boucherie framework description for the case of two com-

ponents, introducing notations used throughout the rest of the chapter as well as some

relevant background properties. In Section 4.3 a subset of the CSL syntax, in which

probabilistic path formulae are not permitted, is considered and “compositional” equiv-

alences are proved with respect to a two component Boucherie process. In Section 6.2

the considered logic is extended by allowing also probabilistic path formulae but, dif-

ferently from the original CSL syntax, restraining the nesting capability of probabilistic

operators: probabilistic path connective P can be nested only within a the steady-state

81

82 Chapter 4. Compositional CSL model checking: non-Path formulae

operator S , while the converse is not permitted. Compositional semantic equivalences

for formulae of that “restricted” CSL logic are then proved in this section, relying on

results obtained in the previous section.

4.2 The two component Boucherie framework

The n-dimensional Boucherie product-process has been formally introduced in sec-

tion 2.5. Here we focus on the bidimensional case where M � �S�Q�L� is a Boucherie

process, with components1 M1 � �S1�Q1�L1� and M2 � �S2�Q2�L2�. The two inde-

pendent processes M1 and M2 compete over a shared resource R.

Boucherie Bidimensional state-space. The state-space Sk of each component k �

�1�2�, is partitioned according to the resource possession: Sk�R � Sk represents the

states where component k does not hold R, while Sk�R � Sk are the states where Mk

holds the resource.

S1 � S1�R�S1�R

S2 � S2�R�S2�R

The product-process state-space S (Figure 4.1) is obtained by eliminating the states

representing the simultaneous possession of the shared resource R from the Cartesian

product of the components’ state-spaces:

S � S1�S2 � �S1�R�S2�R�

In the remainder, the notation R1R2 will be used to refer to the Cartesian product

�S1�R�S2�R�, representing the prohibited area of states which has to be ruled out from

the Boucherie state-space definition.

1From now on, unless otherwise stated, M � �S�Q�L�, will denote a generic bidimensional Bouche-
rie process with components M1 � �S1�Q1�L1� and M2 � �S2�Q2�L2�.

4.2. The two component Boucherie framework 83

S

�
���

����

��

��

�
��� ����

��
���
� �

���
�

�����

��

��

��
���
� �����

����� � �
���

�

Figure 4.1: The bidimensional state-space of a two components Boucherie process.

Boucherie process transitions. Transitions of the Boucherie process are such that

only moves along a single component direction are allowed (as components are sup-

posedly independent, synchronisation is not allowed). As Figure 4.1 points out, in

every state �s1�s2� belonging to the area of S where neither M1 nor M2 hold R (i.e.

�s1�s2� � Rf ree), both types of transition are permitted: either a 1-move (i.e. according

to the behaviour of component M1) leading to a state �t1�s2� where the second com-

ponent’s state (s2) is unchanged, or a 2-move leading to a state �s1� t2� where the first

component’s state (s1) is unchanged.

On the other hand when a component holds R (i.e. �s1�s2� � Rk) the only permitted

behaviour is the one of the resource holder’s process. Hence, for example, any state

�t1� t2� reachable from a state �s1�s2� � R1 must be such that the M2 component state

t2 is unchanged: t2 � s2 (similarly any state �t1� t2� reachable from a state �s1�s2� �

R2 must be such that t1 � s1). This is formally achieved through the definition of

the infinitesimal generator matrix Q for a bidimensional Boucherie process, which

is obtained from definition 2.5.2 by considering the two components only case (i.e.

84 Chapter 4. Compositional CSL model checking: non-Path formulae

K � 2):

Q��s1�s2���t1� t2�� �

���������
��������

Q1�s
1� t1� if s2 � t2� s2 �� S2�R

Q2�s
2� t2� if s1 � t1� s1 �� S1�R

0 otherwise

(4.2.1)

Boucherie process labelling. L : S� AP1�AP2 where

L��s1�s2�� � L1�s
1��L2�s

2�

Throughout the remainder we will adopt the indices k and j, with k� j � �1�2�, to allow

reference to a generic component of a bidimensional Boucherie process and its dual:

both j and k can represent either the first or second component but while k represents

one j represents the other (i.e. j � �k mod 2�� 1). Furthermore, to ease the descrip-

tion, the notions of k-move and k-projection are introduced.

k-move. A transition �s1�s2��� �t1� t2� is called a k-move, if and only if

Q��s1�s2���t1� t2�� � Qk�s
k� tk�

k-projection. The k-projection of a state �s1�s2� � S is its k-th component: sk.

For example:

s1 is the 1-projection of �s1�s2�

t2 is the 2-projection of �s1� t2�

�s1�s2��� �t1�s2� is a 1-move given that Q1�s
1� t1� �� 0

Here we are assuming that self-loops are not allowed in the Boucherie framework.

Hence the source and target state of a transition in Mk are always different

(i.e. �sk� tk � Sk, Qk�s
k� tk�� 0� sk �� tk).

4.2. The two component Boucherie framework 85

Definition 4.2.1 (Probability of a k-move) . Given a state �s1�s2� � S of a Boucherie

process, the probability of a k-move out of �s1�s2� is given by:

pk�s1�s2� �

����
���

Ek�sk�
Ek�sk��E j�s j�

if �s1�s2� � Rf ree

1 if �s1�s2� � Rk

0 if �s1�s2� � Rj

So for example for any state �s1�s2� where neither M1 nor M2 possesses R, the prob-

ability of a 1-move is p1�s1�s2� � E1�s1�
E1�s1��E2�s2�

while the probability for a 2-move is

p2�s1�s2� � E2�s2�
E1�s1��E2�s2�

.

As a consequence of the transition rate for a bidimensional Boucherie process (see

equation 4.2.1), two trivial Remarks regarding the emanating rate of states and the

probability of transitions, can be straightforwardly derived.

Remark 4.2.1 Let M � �S�Q�L� be a bidimensional Boucherie process, the emanat-

ing rate of a state �s1�s2� � S is given by the sum of the emanating rates of its compo-

nents, if the resource R is free in �s1�s2�, or by the emanating rate of the holder of R, if

R is not free.

E
�
�s1�s2�

	
�

���������
��������

E1�s1��E2�s2� if �s1�s2� � Rf ree

E1�s1� if �s1�s2� � R1

E2�s2� if �s1�s2� � R2

(4.2.2)

The above Remark provides a compositional way to obtain the total rate out of a state of

a bidimensional Boucherie process: the emanating rate of any state �s1�s2� is obtained

from the emanating rate of its components. In the next Remark, instead, the probability

of the Boucherie process transitions is characterised.

Remark 4.2.2 Let M � �S�Q�L� be a bidimensional Boucherie process, then the

86 Chapter 4. Compositional CSL model checking: non-Path formulae

probability of a transition from a state �s1�s2� � S to a state �t1� t2� � S, is given by:

P
�
�s1�s2���t1� t2�

	
�

����������������
���������������

Q1�s
1�t1�

E1�s1��E2�s2�
if �s1�s2��Rf ree� �s2� t2�

Q2�s
2�t2�

E1�s1��E2�s2�
if �s1�s2��Rf ree� �s1� t1�

Q1�s
1�t1�

E1�s1�
if �s1�s2��R1

Q2�s
2�t2�

E2�s2�
if �s1�s2��R2

(4.2.3)

or equivalently

P
�
�s1�s2���t1� t2�

	
�

���������������
��������������

P1�s1� t1� � p1�s1�s2� if �s1�s2��Rf ree� �s2� t2�

P2�s2� t2� � p2�s1�s2� if �s1�s2��Rf ree� �s1� t1�

P1�s1� t1� if �s1�s2��R1

P2�s2� t2� if �s1�s2��R2

(4.2.4)

The second formulation of the above Remark (4.2.4) points out how the probability for

a transition �s1�s2�� �t1� t2� can be determined compositionally, in terms of the prob-

ability of the corresponding component’s transition. Whenever the source state �s1�s2�

is in R f ree the transition’s probability is given by a factor of the probability of the cor-

responding Mk’s transition (i.e. sk �� tk) probability, given that �s1�s2� �� �t1� t2�

is a k-move. On the other hand if the source state �s1�s2� is in Rk the only possible

transitions are k-moves, hence the probability of �s1�s2� �� �t1� t2� is equal to the

probability of its corresponding Mk’s transition (i.e. sk �� tk).

Product-form. The steady-state distribution π of a bidimensional Boucherie process

is given by the product of the steady-state distributions of its components. For every

state �s1�s2� � S the following holds:

4.2. The two component Boucherie framework 87

π�s1�s2� � G �π1�s
1� �π2�s

2�

where πk�sk� is the probability for component Mk to be in state sk on the long-run,

while G is a normalisation constant.

On subsets of components’ state-space. Concerning the Boucherie framework we

introduce a specific notation to characterise subsets of the component’s state-space

according to the state space partition. Thus given a subset Ak � Sk of component

Mk state-space, the two parts it consists of are denoted, respectively, Ak�R � Sk�R and

Ak�R � Sk�R.

Given two subsets, respectively A1 � S1 and A2 � S2, the intersection of their prod-

uct with the Boucherie state-space S, can be decomposed into the union of two sub-

products, as the following Remark points out.

Remark 4.2.3 Let A1 � S1 and A2 � S2 be two subsets with respect to the components

of a bidimensional Boucherie process with state-space S, then the following holds:

�A1�A2��S � �A1�R�A2�� �A1�R�A2�R� � �A1�A2�R�� �A1�R�A2�R�

Figure 4.2 shows what Remark 4.2.3 is meant to point out: the part of the product of

two subsets A1 and A2 which falls in S allows for a bi-partition which is susceptible

for two different but equivalent characterisations. In the first characterisation (Fig-

ure 4.2.a) one part is obtained by coupling every state of A1 where M1 does not hold R

(i.e. A1�R) with every state of A2, while the other part, is given by coupling the states of

A1 where M1 holds R (i.e. A1�R) only with the states of A2 where M2 does not hold R

(i.e. so that the mutual-exclusion condition is not breached). In the second characteri-

sation (Figure 4.2.b) the first part is obtained by coupling every state of A1 with every

state of A2 such that M2 does not hold R (i.e. A2�R), while the second part, is given by

coupling the states of A1 where M1 does not hold R (i.e. A1�R) only with the states of

A2 such that M2 holds R (i.e. A2�R).

88 Chapter 4. Compositional CSL model checking: non-Path formulae

��

��

�
�

��

�
���

�
��� ����

����

���

��

��

�
�

��

�
���

�
��� ����

����

���

b)a)

Figure 4.2: �A1�A2��S � �A1�R�A2�� �A1�R�A2�R� � �A1�A2�R�� �A1�R�A2�R�.

Satisfiability sets Sat�φ��Satk�φ��Satk�R�φ��Satk�R�φ�. If M � �S�Q�L� is a bidimen-

sional Boucherie process with components M1 � �S1�Q1�L1� and M2 � �S2�Q2�L2�

and φ is a CSL formula the following notations will be adopted throughout the remain-

ing parts of this chapter:

� Sat�φ�� S denotes the subset of M ’s states which validate φ.

� Satk�φ�� Sk denotes the subset of component Mk’s states which validate φ.

� Satk�R�φ�� Sk denotes the subset of Satk�φ� consisting only of states where Mk

does not hold R.

� Satk�R�φ�� Sk denotes the subset of Satk�φ� consisting only of states where Mk

holds R.

As will soon be clear, the above characterisation is important in order to find a decom-

positional expression for the set Sat�φ�.

4.2. The two component Boucherie framework 89

4.2.1 Partitioning the Atomic Propositions set

In order to find a compositional semantics for formulae of the CSL with respect to

bidimensional Boucherie processes, the set of atomic propositions AP on which the

formulae are built needs to be partitioned. Since the components of a Boucherie frame-

work are independent processes it is sensible to keep the atomic propositions referring

to one process separated from the ones referring to the other process.

AP � AP1�AP2

where APk denotes the atomic propositions for component Mk.

As a consequence of the AP’s partition, the CSL formulae referring to a bidimen-

sional Boucherie process can also be distinguished according to the number of com-

ponents they refer to. We will call single-component formulae, the formulae which

state properties concerning one component only (i.e. those formulae involving atomic

proposition of one part only, either AP1 or AP2) as opposed to general formulae, namely

those formulae which refer to both components (i.e. formulae for which atomic propo-

sitions of both components are involved). The following two definitions, provide a

formalisation of these concepts.

Definition 4.2.2 (Single-component formulae) Let M ��S�Q�L� be a bidimensional

Boucherie process labelled over the set AP � AP1 � AP2, where APk is the atomic

propositions set for component Mk. The formulae φk characterised by the following

syntax are CSL single-component state formulae:

φk :� ak � tt � �φk � φk�φk � S�p�φk� � P�p�ϕk� (state-formulae)

ϕk :� X Iφk � φk UIφk (path-formulae)
(4.2.5)

where ak � APk.

Definition 4.2.3 (General formulae) Let M � �S�Q�L� be a bidimensional Bouche-

rie process labelled over the set AP � AP1�AP2, where APk is the atomic propositions

set for component Mk. The formulae φ12 characterised by the following syntax are

CSL general formulae:

φ12 :� φ1�φ2 � φ2�φ1 � �φ12 � S�p�φ12� � P�p�ϕ12� (state-formulae)

ϕ12 :� X Iφ12 � φ j12 UIφ12 � φ12 UIφk � φk UIφ j12 (path-formulae)
(4.2.6)

90 Chapter 4. Compositional CSL model checking: non-Path formulae

where φk are CSL single-component.state formulae as in Definition 4.2.2.

As a consequence of the partition of the atomic proposition set AP the set of CSL

state formulae Φ for a bidimensional Boucherie process is is also partitioned in the

following manner:

Φ � Φ1�Φ2�Φ12

Each formula φ � Φ can be classified as single-component or general by means of a

function, named At��, which returns the set of atoms φ is built on.

Definition 4.2.4 (Atoms of a CSL formula) Let AP be a set of atomic propositions

and φ a CSL formula built on AP. The function At�� : Φ� ϕ � AP, is defined as

follows:

At�φ� �

���������
��������

a if φ� a

At�φ���At�φ��� if φ� φ��φ��

At�φ�� if φ� �φ�

At�φ�� if φ� S�p�φ��
At�ϕ� if φ� P�p�ϕ�

At�ϕ� �

�
At�φ�� if ϕ� X φ�

At�φ���At�φ��� if ϕ� φ�Uφ��

where ϕ denotes the set of path formulae ϕ built on AP.

Relying on the above Definition the classification for the formulae φ referring to a

bidimensional Boucherie process can straightforwardly be obtained as follows:

φ �

����
���

φk iff At�φ�� APk

φ12 iff ��At�φ��AP1� �� /0�� ��At�φ��AP2� �� /0�

(4.2.7)

In the next section we deal with the problem of deriving a compositional semantics for

single-component formulae. The results there obtained will be then exploited through-

4.3. Model checking non-Probabilistic state formulae 91

out the subsequent section, where the study of a compositional way to check general

formulae is faced.

4.3 Model checking non-Probabilistic state formulae

In this section a restricted syntax of the CSL logic is considered and a compositional

semantics, with respect to a bidimensional Boucherie process, is proved for the formu-

lae belonging to it. The logic is obtained from the one described in Definition 2.3.5,

by disallowing probabilistic path formulae. Essentially only Boolean combinations of

atomic-propositions and steady-state formulae are permitted; furthermore the steady-

state connective S�p cannot be nested (i.e. it can appear at top-level only). This last

feature, though, does not affect the logic expressiveness, since models in a Boucherie

framework are ergodic CTMCs. Hence, as proved by Proposition 3.5.10, the expres-

siveness is unchanged: the logic given by eliminating P�p�ϕ� from Definition 2.3.5 is

semantically equivalent to the one characterised by the following syntax.

φ ::� ψ � ξ � φ�φ � �φ

ψ ::� tt � a � ψ�ψ � �ψ

ξ ::� S�p�ψ�

(4.3.1)

The remainder of this section is split in two parts: the first is devoted to proving the

existence of a compositional semantics for single-component formulae; the second

involves the analysis of the general formulae case.

4.3.1 Compositional semantics for single-component formulae

We take into account only formulae which are built on atomic propositions belonging

to APk (k � �1�2�). The syntax for single-component formulae, results from the one

described by equation 4.3.1:

92 Chapter 4. Compositional CSL model checking: non-Path formulae

φk ::� ψk � ξk � φ�k �φ��k � �φk

ψk ::� tt � ak � ψk �ψk � �ψk

ξk ::� S�p�ψk�

(4.3.2)

Given a state �s1�s2� of the product-process, we aim to prove that there exists a trans-

formation function ft : Φk � Φk, which applied to a single-component formula φk,

returns another single-component formula ft�φk�, such that:

�s1�s2� �� φk �� sk ��k ft�φk� (4.3.3)

where ��k denotes the semantics relationship with respect to component Mk. The

equivalence 4.3.3 provides us with a compositional semantics for single-component

state-formulae φk: checking the validity of φk with respect to a state �s1�s2� of a bidi-

mensional Boucherie process is equivalent to check the validity of a derived formula

ft�φk� with respect to the projection state sk of component Mk.

As one can easily understand, the main issue with the characterisation of “composition-

ally” equivalent single-component formulae, concerns steady-state formulae, namely

S�p�ψk�. It will be shown that characterising the equivalence for S�p�ψk� concerns

the derivation of an equivalent probability bound p̂ which depends on the original one,

i.e. p, as well as on the argument formula ψk and on the component Mk it refers to,

which is: a formula S�p�ψk� is valid in a bidimensional Boucherie M if and only if

S� p̂�ψk� is valid with respect to the component Mk.

The characterisation of the equivalent probability bound for single-component steady-

state formulae, is given by a function named g�� whose definition follows.

Definition 4.3.1 (Equivalent steady-state probability bound function g��) Let

ψk �Ψk be a single-component formula , where Ψk is the set of ψk formulae described

by equation 4.3.2; the function g�� : �0�1��Ψk�CTMC � �0�1� is defined as:

4.3. Model checking non-Probabilistic state formulae 93

g�p�ψk�Mk� �

����������
���������

p
G if Satk�ψk�� Sk�R

p
G�Cj

if Satk�ψk�� Sk�R

p�G�Ck j
G�Cj

if �Satk�R�ψk� �� /0�� �Satk�R�ψk� �� /0�

(4.3.4)

where G is the product-form normalisation constant, and C j and Ck j are respectively

defined as follows:

Cj � ∑
t j�S j�R

π j�t
j�

Ck j � ∑
sk�Satk�R�ψk�

πk�s
k� ∑

s j�S j�R

π j�s
j� �

�
∑

sk�Satk�R�ψk�

πk�s
k�
�
� �1�Cj�

(4.3.5)

The function g distinguishes between three different cases depending on Satk�ψk�. The

proof of correctness for g�� will be faced in Theorem 4.3.1, here an informal descrip-

tion of the intuitions it relies on is given. Figure 4.3 provides a graphical description of

the three possible cases concerning the satisfiability set for a formula ψ1 with respect

to component M1: Sat1�ψ1� � S1�R (Figure 4.3.a), Sat1�ψ1� � S1�R (Figure 4.3.c) or

�Sat1�ψ1��S1�R� �� /0 and �Sat1�ψ1��S1�R� �� /0 (Figure 4.3.b). The main point in deter-

mining the equivalent probability bound for a steady-state formula S�p�ψk�, is to find

a decomposition of the set Sat�ψk� in terms of products of subsets of the components’

state-space Sk and S j.

� if ψk is satisfied only in states where component Mk does not hold R

(i.e. Satk�ψk� � Sk�R, see figure 4.3.a) then it is straightforward to prove that

the set of M ’s states satisfying ψk is given by2 Sat�ψk� � Satk�ψk��S j. In such

a case, as will be proven by Theorem 4.3.1, the equivalent probability bound

g�p�ψk�Mk� is given by p
G .

2Here we are assuming k � 1 and j � 2; clearly if k � 2 and j � 1, then Sat�ψ k� � S j�Satk�ψk�.

94 Chapter 4. Compositional CSL model checking: non-Path formulae

��������

��

��

�
�

��

��

�
�

��

��

�
�

a) b)

c)

��������

��������

Figure 4.3: Three possibilities concerning Sat1�ψ1�.

� on the other hand, if ψk is satisfied only in states where component Mk retains R

(i.e. Satk�ψk�� Sk�R, see figure 4.3.c) then Sat�ψk� � Satk�ψk��S j�R. As a con-

sequence, (see Theorem 4.3.1), the equivalent probability bound g�p�ψk�Mk�,

is given by p
G�Cj

. It is relevant to note that the constant C j represents the long-

run probability of not holding the shared resource for component M j. Thus,

the meaning of g�p�ψk�Mk� in this case is as follows: checking the steady-state

probability of ψk against a probability bound p with respect to M is equivalent

to check the steady-state probability of ψk with respect to Mk, against a derived

bound whose value depends on the probability that M j does not hold R in the

long-run.

� the most complex situation is when ψk is valid both in states where Mk does and

does not holds R (i.e. �Satk�R�ψk� �� /0�� �Satk�R�ψk� �� /0� see figure 4.3.b) then

Sat�ψk� is decomposable in two parts Sat�ψk�� �Satk�R�ψk��S j�� �Satk�R�ψk��

S j�R�; the first one is given by coupling all those states where Mk does not hold

R but satisfies ψk (i.e. Satk�R�ψk�) with any state of M j (i.e. S j); the second

part is obtained by coupling the states where Mk holds R and satisfies ψk (i.e.

4.3. Model checking non-Probabilistic state formulae 95

Satk�R�ψk�), only with those states where M j does not hold R (i.e. S j�R): the

states of S j�R must be ruled out in order not to breach the mutually exclusive

access to R. The equivalent probability bound g�p�ψk�Mk�, in that case, is given

by
p�G�Ck j

G�Cj
. The constant Ck j represents the long-run probability for component

M j to hold the shared resource weighted by the probability for component Mk

to satisfy ψk while not holding R at steady-state. Summarising, in this case,

checking S�p�ψk� with respect to a bidimensional Boucherie M is equivalent

to check S� p̂�ψk� with respect to Mk, where the equivalent probability bound p̂

depends on two factors: the probability of M j to retain R in the long-run and the

probability of Mk to not satisfy ψk while not holding R in the long-run.

The formal definition of the transformation function for the the single-component for-

mulae, can be now introduced.

Definition 4.3.2 (Transformation function ft��) Let φk � Φk be a single-component

formula, where Φk is the set of single-component formulae φk described in equation

4.3.2; the transformation function ft�� : Φk �Φk is defined as:

ft�φk� �

���������������
��������������

φk if φk�ψk

� ft�φ�k� if φk��φ�k

ft�φ�k�� ft�φ��k � if φk��φ�k�φ��k �

Sg�p�ψk�Mk�
�ψk� if φk � ξk � S�p�ψk�

(4.3.6)

Having introduced the transformation function ft��, the next step is to prove that it

is actually correct (i.e. it provides us with formulae that are “compositionally” equiva-

lent to the transformed one). This is the result of the Theorem 4.3.1. Before proceeding

with proving the correctness of the transformation function, a minor, but relevant re-

96 Chapter 4. Compositional CSL model checking: non-Path formulae

sult, concerning the characterisation of the satisfiability set Sat�φk� needs to be shown

and is done in the following Lemma.

Firstly, though, a notational peculiarity which is assumed in the following, deserves

to be clarified: in general k� j � �1�2� are interchangeable indices used to distinguish

elements (i.e. sets of states, formulae, set of atomic propositions � � �) referring to the

components of a bidimensional Boucherie process. In the following, the Cartesian

product of subsets of the two components, like, for example, Satk�ψk� and S j, even

though asymmetric, always appear in the form Satk�ψk�� S j (i.e. with k as the first

operand of the product and j the second), which with respect to the Boucherie frame-

work is proper only if k � 1� j � 2 is assumed. Nevertheless in the following wherever

a result involving the Cartesian product of a k subset times a j (i.e. k first operand

and j second operand of the product) is shown, that result also holds in the dual case

k � 2� j � 1: in such a case, a product like Satk�ψk�� S j has to be intended as if

reversed, which is S j�Satk�ψk�.

Lemma 4.3.1 Let M be a bidimensional Boucherie process and φk a single compo-

nent state-formula from the syntax described by equation (4.3.2), then the following

implication holds:

�
�s1�s2� �� φk � sk ��k ft�φk�

�
�� Sat�φk� � �Satk� ft�φk���S j��S

Proof. The equality Sat�φk� � �Satk� ft�φk��� S j� � S has to be shown assuming

�s1�s2� �� φk � sk ��k ft�φk� as hypothesis.

(�) let us suppose that �s1�s2� � Sat�φk� then, �s1�s2� �� φk hence from the hypothe-

sis, also sk ��k ft�φk� �� sk � Satk� ft�φk��. Furthermore, since obviously Sat�φk�� S,

then �s1�s2� � S, hence clearly �s1�s2� � �Satk� ft�φk���S j��S, which proves that any

state �s!�s2� � Sat�φk� is also a state �s1�s2� � ��Satk� ft�φk���S j��S�.

(�) if �s1�s2� � ��Satk� ft�φk��� S j�� S� then �s1�s2� � S� sk � Satk� ft�φk��. Hence,

from the hypothesis, also �s1�s2� � Sat�φk�, which proves that any state

�s1�s2� � ��Satk� ft�φk��� S j�� S� is also a state �s1�s2� � Sat�φk�, hence the equal-

ity Sat�φk� � �Satk� ft�φk���S j��S.

4.3. Model checking non-Probabilistic state formulae 97

�

Lemma 4.3.1 shows that by assuming the transformation function’s correctness

(i.e.
�
�s1�s2� �� φk� sk ��k ft�φk�

�
), the satisfiability set Sat�φk� for a single-component

formula can be decomposed in terms of the satisfiability set, with respect to component

Mk, of the corresponding transformed formula ft�φk� (i.e. Satk�φk�). This result turns

out to be useful in the proving the following Theorem.

Theorem 4.3.1 Let M be a bidimensional Boucherie process and φk a single compo-

nent state-formula as in (4.3.2), then the following implication holds:

�s1�s2� �� φk �� sk ��k ft�φk� ��s1�s2� � S

where ft is defined as in (4.3.6).

Proof. By structural induction over the form of φk.

base case: φk � ψk � ak.

The proof is trivial. From Definition 4.3.2 we have that ft�ak� � ak. Furthermore an

atomic proposition ak labels a state �s1�s2� of the Boucherie process if and only if it

labels the state sk of component Mk (i.e. ak � L��s1�s2��� ak � Lk�sk�). Hence,

clearly

�s1�s2� �� ak �� sk ��k ak�

induction step: all the other cases have to be considered.

1. φk � �ψk .

Let us assume the following inductive hypothesis:

�s1�s2� �� ψk �� sk ��k ft�ψk� ��s1�s2� � S (4.3.7)

We aim to show that the following bi-implication:

�s1�s2� �� �ψk �� sk ��k � ft�ψk��

(�) if �s1�s2� �� �ψk then clearly �s1�s2� �� Sat�ψk�, hence by inductive hypothesis

(i.e. 4.3.7) also sk �� Satk� ft�ψk��, then clearly sk � Satk�� ft�ψk�� �� sk ��k � ft�ψk�.

98 Chapter 4. Compositional CSL model checking: non-Path formulae

(�) if sk ��k � ft�ψk� then sk �� Satk� ft�ψk��. Hence, by inductive hypothesis (i.e.

4.3.7), also �sk�s j� �� Sat�ψk�, �s j � S j : �sk�s j�� S. But then clearly �sk�s j�� Sat��ψk�

which means �sk�s j� �� �ψk, �s j � S j : �sk�s j� � S .

For the sake of simplicity, we will refer the proof of the remainder of this Theorem

to single-component formulae φk which refer to component M1 (i.e. k � 1), having

in mind that the argument can straightforwardly be reversed to the case of formulae

referring to component M2 (i.e. k � 2).

2. φ1 � ψ�
1�ψ��

1.

From Definition 4.3.2, we have that ft�ψ�
1�ψ��

1� � ft�ψ�
1�� ft�ψ��

1�. Let us assume the

following inductive hypothesis:

�s1�s2� �� ψ�
1 � s1 ��1 ft�ψ�

1� and �s1�s2� �� ψ��
1 � s1 ��1 ft�ψ��

1� (4.3.8)

for all states �s1�s2� � S.

We aim to show that:

�s1�s2� �� ψ�
1�ψ��

1 �� s1 ��1 ft�ψ�
1�� ft�ψ��

1��

for any state �s1�s2� � S.

(�) if �s1�s2� �� ψ�
1�ψ��

1 then clearly �s1�s2� �� ψ�
1 and �s1�s2� �� ψ��

1. Hence, from the

inductive hypothesis (i.e. 4.3.8) also s1 ��1 ft�ψ�
1� and s1 ��1 ft�ψ��

1�, which is to say

s1 ��1 ft�ψ�
1�� ft�ψ��

1�.

(�) if s1 ��1 ft�ψ�
1�� ft�ψ��

1� then clearly s1 ��1 ft�ψ�
1� and s1 ��1 ft�ψ��

1�. Thus, from

from the inductive hypothesis (i.e. 4.3.8), we also have that, �s2 � S2 : �s1�s2� � S,

�s1�s2� �� ψ�
1 and �s1�s2� �� ψ��

1 which means that �s1�s2� �� ψ�
1�ψ��

1.

3. φ1 � ξ1 � S�p�ψ1�.

Let us assume (4.3.7) as inductive hypothesis. From Definition 4.3.2, we have that

ft�S�p�ψ1�� � S�g�p�ψ1�M1�
ft�ψ1�, hence we aim to prove that3:

3Here �� S�p�ψ1� and ��1 Sg�p�ψ1�M1�� f̂t �ψ1�� are used instead of �s1
�s2� �� S�p�ψ1� and

s1 ��1 Sg�p�ψ1�M1�� f̂t�ψ1�� since models in a Boucherie framework are ergodic CTMCs, hence, as pointed
out in section 3.5, steady-state formulae are actually model dependent rather than state dependent.

4.3. Model checking non-Probabilistic state formulae 99

�� S�p�ψ1� �� ��1 Sg�p�ψ1�M1�
� f̂t�ψ1���

(�) if �� S�p�ψ1� then �
∑

�t1�t2��Sat�ψ1�

π�t1� t2�
�
� p

which, since M has a product form solution, we can rewrite as:

G
�

∑
�t1�t2��Sat�ψ1�

π1�t
1� �π2�t

2�
�
� p

Since we are assuming (4.3.7) as inductive hypothesis, then from Lemma 4.3.1 also

Sat�ψ1� � �Sat1� ft�ψ1��� S2�� S, which, from Remark 4.2.3, we can rewrite as,

Sat�ψ1� � �Sat1�R� ft�ψ1��� S2�� �Sat1�R� ft�ψ1��� S2�R�. As a consequence the sum

in the above inequality, can be split as follows:

G
�

Suma�Sumb
�
� p (4.3.9)

where:

Suma � ∑
t1�Sat1�R� ft�ψ1�

π1�t
1� � ∑

t2�S2

π2�t
2�

Sumb � ∑
t1�Sat1�R� ft�ψ1�

π1�t
1� � ∑

t2�Sat2�R

π2�t
2�

Three different cases, depending on the set Sat1� ft�ψ1��, need to be considered:

� Sat1� ft�ψ1��� S1�R:

in such a case g�p�φ�1�M1� �
p
G , hence we aim to show that�

G
�

Suma �Sumb
�
� p

�
��

��
∑

t1�Sat1� ft�ψ1��

π1�t
1���

p
G

�

Note that

Sat1� ft�ψ1��� S1�R �� Sat1�R� ft�ψ1�� � /0

hence the sum Sumb � 0 in (4.3.9). Thus (4.3.9) results in:

G
�

∑
t1�Sat1� ft�ψ1��

π1�t
1� ∑

t2�S2

π2�t
2�
�
� p

100 Chapter 4. Compositional CSL model checking: non-Path formulae

which, since π2 is a distribution over S2, results in:

G
�

∑
t1�Sat1� ft�ψ1��

π1�t
1��� p

proving that:

s1 ��1 S� p
G

�
ft�ψ1�

	
�

(�) By reversing the order of passages in ���.

� Sat1� ft�ψ1��� S1�R.

In this case g�p�ψ1�M1� �
p

G�C2
where C2 � ∑t2�S2�R

π2�t2�, obtained from 4.3.5

with j � 2, is the probability of not holding R for component M2 in the long-run.

Hence we aim to show that

�
G
�

Suma�Sumb
�
� p

�
��

��
∑

t1�Sat1� ft�ψ1��

π1�t
1���

p
G �C2

�

Note that

Sat1� ft�ψ1��� S1�R �� S1�R � /0

hence the sum Suma � 0 in (4.3.9). Thus (4.3.9) results in:

G
�

∑
t1�Sat1� ft�ψ1��

π1�t
1� ∑

t2�S2�R

π2�t
2�
�
� p

which, proves that

s1 ��1 S� p
G�C2

�
ft�ψ1�

	
�

(�) By reversing the order of passages in ���.

� �Sat1�R� ft�ψ1�� �� /0�� �Sat1�R� ft�ψ1�� �� /0�:
In this case g�p�ψ1�M1� �

p�G�C2
G�C12

where C2 is as in the previous case while

C12 � ∑
s1�Sat1�R�ψ1�

π1�s
1� ∑

s2�S2�R

π2�s
2� �

�
∑

s1�Sat1�R�ψ1�

π1�s
1�
�
� �1�C2�

4.3. Model checking non-Probabilistic state formulae 101

is the probability for M1 to satisfy ψ1 while holding R on the long-run, weighted

by the long-run probability for M2 to hold R (both C2 and C12 are given by 4.3.5

with k � 1� j � 2). Hence we aim to show that�
G
�

Suma �Sumb
�
� p

�
��

��
∑

t1�Sat1� ft�ψ1��

π1�t
1���

p�G �C2

G �C12

�

Since (�Sat1�R� ft�φ1�� �� /0�� �Sat1�R� ft�φ1�� �� /0�), then both Suma and Sumb

in (4.3.9) are greater than zero. By factoring out the common states in S2, and

noting that ft�ψ1� � ψ1, we obtain:

G
�

∑
t1�Sat1� ft�ψ1��

π1�t
1� ∑

t2�S2�R

π2�t
2�� ∑

t1�Sat1�R� ft�ψ1��

π1�t
1� ∑

t2�S2�R

π2�t
2�
�
� p

which results in: �
∑

t1�Sat1� ft�ψ1��

π1�t
1�
�
�

p�G �C2

G �C12

hence proving that

s1 ��1 S
�

p�G�C2
G�C12

�
ft�ψ1�

	
�

(�) By reversing the order of passages in ���.

The proof for the remaining cases (i.e. φ1� φ�1�φ��1, φ1��φ�1) is similar to the previous

cases, hence, for brevity, we skip it.

�

The above Theorem proves the correctness of the compositional semantics for the

single-component non-probabilistic state-formulae (i.e. formulae characterised by the

syntax 4.3.2), as it is described by the transformation function ft��. Hence checking

a non-probabilistic state-formula which refers to a single component only, either M1

or M2, against M is equivalent to checking a derived non-probabilistic state-formula

against the component it refers to.

Next, formulae involving both components of the Boucherie process are considered

and a compositional semantics is derived for them.

102 Chapter 4. Compositional CSL model checking: non-Path formulae

4.3.2 Compositional semantics for general formulae

CSL general formulae are generated by coupling single component formulae relating

to different components (φ1 and φ2), by means of binary connectives. Their formal

characterisation, with respect to the original CSL syntax, has been shown in Defini-

tion 4.2.3. Here, though, the same restrictions imposed for single-component formulae

are considered: probabilistic-path formulae (P�p�ϕ�) are ruled out and nesting of the

steady-state connective (S�p) is not permitted.

The resulting syntax for general non-probabilistic state-formulae (i.e. which is di-

rectly derived from the syntax for generic non-probabilistic state-formulae described

in 4.3.1) is as follows:

φ12 ::� φ1�φ2 � φ2�φ1 � φk �φ12 � φ12�φk � φ12�φ12 � ξ12 � �φ12

ψ12 ::� ψ1�ψ2 � ψ2�ψ1 � ψk �ψ12 � ψ12�ψk � ψ12�ψ12 � �ψ12

ξ12 ::�S�p�ψ12�

(4.3.10)

where φk and ψk are as in 4.3.2, while ξ12 are steady-state formulae whose argument is

a general formula (i.e. it refers to both components M1 and M2). The use of a specific

production for ξ12 formulae in 4.3.10, prevents the possibility of nesting S�p.

The basic idea on which the compositional semantics for general formulae relies, is

that given a formula φ12 whose validity is to be checked against a state �s1�s2�, there ex-

ists a Boolean combination of satisfiability conditions concerning some derived single-

component formulae, which turns out to be equivalent to �s1�s2� �� φ12.

To explain the intuition on which this idea is based, let us consider an example,

referring to the Boucherie process introduced as our running example in Section 2.5.1.

Suppose we are interested in checking whether the general formula �idle1� idle2� is

satisfied with respect to the state �s10�s20� of the Boucherie process pictured in Fig-

ure 2.8. From the CSL semantics we know that, trivially,

�s10�s20� �� �idle1� idle2��� �s10�s20� �� idle1 and �s10�s20� �� idle2

but then, from Theorem 4.3.1 (i.e compositional semantics for single-component for-

4.3. Model checking non-Probabilistic state formulae 103

mulae), it follows that

�s10�s20� �� �idle1� idle2��� s10 ��1 idle1 and s20 ��2 idle2

The above, trivial, example shows that a compositional semantics for general formulae

is possible; in fact, checking : the validity of �idle1� idle2� against the state �s10�s20�

of the Boucherie process is equivalent to check that idle1 and idle2 are valid with

respect to the states s1 and s2 of the components’ processes.

The formal characterisation of the “decomposed equivalent satisfiability condi-

tions” for a formula φ12 and a state �s1�s2� is by means of the function cond��, in-

troduced in Definition 4.3.4. The main point there regards the case of steady-state

general formulae (i.e. last case of Definition 4.3.4). In order to define the equivalence

for φ12 � ξ12 � S�p�ψ12�, a decomposed characterisation of Sat�ψ12� is needed (i.e.

Sat�ψ12� must be partitioned in a number of parts each of which is given by the Carte-

sian product of subsets of the two components). This is achieved through the function

DecSat�� : Ψ12 � 2Ψ1�Ψ2 , which takes a ψ12 formula as argument and returns a set of

pair of single-component formulae �φ1�φ2� � �Ψ1�Ψ2� characterising a partition of

Sat�ψ12� (see Lemmma 4.3.2).

Definition 4.3.3 (function DecSat�� : Ψ12 � 2Ψ1�Ψ2) Let ψ12 be a Boolean proposi-

tion as described in (4.3.10). The value DecSat�ψ12� is defined as follows:

DecSat �ψ12� ���������������������
�������������������

��ψ1�ψ2�� if �ψ12 � ψ1�ψ2�

�ψ12 � ψ2�ψ1�

ψk ANDk DecSat�ψ�
12� if �ψ12 � ψk �ψ�

12�

�ψ12 � ψ�
12�ψk�

DecSat�ψ�
12� AND DecSat�ψ��

12� if �ψ12 � ψ�
12�ψ��

12�

�
�α1�α2��DecSat�ψ�

12�
���α1� tt���α1��α2�� if ψ12 � �ψ�

12
(4.3.11)

104 Chapter 4. Compositional CSL model checking: non-Path formulae

where AND1, AND2 and AND are binary operators returning, respectively, the con-

junction of a single-component formula with a set of pairs of single-component formu-

lae and the pairwise conjunction of two sets of pairs of single-component formulae.

Formally

�γ1 AND1 Γ� �
�

�α1�α2��Γ
��γ1�α1�α2��

�γ2 AND2 Γ� �
�

�α1�α2��Γ
��α1�α2� γ2��

�Γ�AND Γ��� �
�

�α�1�α
�
2��Γ�

� �
�α��1 α��2��Γ��

��α�1�α��1�α
�
2�α��2��

�

and where
�

in (4.3.11) refers to the conjunction AND of sets of pairs of single-

component formulae.

The next Lemma proves that the set of pairs of single-component formulae provided

by DecSat�ψ12� actually represents a characterisation of a partition of Sat�ψ12�. In

order to prove such a result a preliminary property concerning the complement of the

Cartesian product of two subsets, needs to be introduced.

Proposition 4.3.1 (Complement of a Cartesian product) Let A� � A and B� � B, be

subsets, respectively, of a set A and a set B. The complement of the Cartesian product

A��B� is given by:

A��B� � �A��B�� �A��B��

Proof. We need to show that the following bi-implication holds:

�a�b� � A��B��� �a�b� � ��A��B�� �A��B���

(�) If �a�b�� A��B� then �a� A�b� B��. But �a� A�b� B�� �� �a�b�� �A��B�

which proves (�).

4.3. Model checking non-Probabilistic state formulae 105

(�) If �a�b�� ��A��B���A��B��� two cases need to be considered. If �a�b�� �A��B�

then �a�A��b�B� but this implies also �a�A�b�B��which proves �a�b��A��B�.

On the other hand if �a�b� � �A�� B�� then �a � A� � b � B�� but this implies also

�a � A�b � B�� which proves �a�b� � A��B�.

�

S1

S

S2

��

�� � ����

���

���

���

���

Figure 4.4: Decomposition of Sat�a1�a2� � �Sat1��a1��S2�� �Sat�a1��Sat��a2��.

Figure 4.4 shows an example of application of Proposition 4.3.1 to a bidimensional

Boucherie process: the complement of Sat�a1�a2�� Sat1�a1��Sat2�a2� is partitioned

in two subsets. The first one being �Sat�a1��S2� � �Sat1��a1��S2�; the second one

being �Sat�a1��Sat2�a2�� � �Sat1�a1��Sat2��a2��.

The result of Proposition 4.3.1 is needed for proving the following Lemma, which

shows that DecSat�ψ12� actually characterises a partition of Sat�ψ12�.

Lemma 4.3.2 Let M be a bidimensional Boucherie process and ψ12 a formula as in

the syntax described by (4.3.10), then the following holds:

Sat�ψ12� �
�

�α1�α2��DecSat�ψ12�

�
Sat1�α1��Sat2�α2�

�
� �R1R2� (4.3.12)

106 Chapter 4. Compositional CSL model checking: non-Path formulae

Proof. By structural induction over the definition of DecSat��. For simplicity we

denote the right hand side of the equality (4.3.12) as S��ψ12�.

Proving the equality (4.3.12) means showing that

�s1� t2� � Sat�ψ12��� �s1� t2� � S��ψ12�

base case:4 ψ12 � ψ1�ψ2 or ψ12 � ψ2�ψ1�

From Definition 4.3.3, we know that, in this case, DecSat�ψ12� � ��ψ1�ψ2��, hence

S��ψ1�ψ2� � �Sat1�ψ1��Sat2�ψ2��� �R1R2�. Thus we aim to prove that

�s1�s2� � Sat�ψ1�ψ2��� �Sat1�ψ1��Sat2�ψ2��� �R1R2�

��� if �s1�s2� � Sat�ψ1�ψ2� then �s1�s2� �� ψ1 and �s1�s2� �� ψ2 and clearly also

�s1�s2� � S. But then from Theorem 4.3.1, we also have that, �s1 ��1 ψ1 � s2 ��2 ψ2�

which proves, �s1�s2� � S��ψ1�ψ2�.

��� by reversing ���.

induction step: all the remaing cases in the definition of DecSat�� needs to be consid-

ered.

1. ψ12 � ψk �ψ�
12 or ψ12 � ψ�

12�ψk

Again here, for brevity, we consider only the case ψ12 � ψk �ψ�
12, knowing that the

same result holds also for ψ12 � ψ�
12�ψk as a direct consequence of the simmetricity

of the conjunction.

If ψ12 �ψ1�ψ�
12 then DecSat�ψ12� � �ψ1 AND1 DecSat�ψ�

12��, hence we aim to show

that

�s1�s2� � Sat�ψ1�ψ�
12��� �s1�s2� �

�
�α1�α2���ψ1 AND1 DecSat�ψ�

12��

�
Sat1�α1��Sat2�α2�

�
��R1R2��

As inductive hypothesis let us assume

Sat�ψ�
12� � S��ψ�

12�

4For brevity we consider ψ12 � ψ1 �ψ2 as our base-case, knowing that same result holds when
ψ12 �ψ2�ψ1 is considered.

4.3. Model checking non-Probabilistic state formulae 107

��� if �s1�s2� � Sat�ψ1 � ψ�
12� then it is true that �s1�s2� � Sat�ψ1� and

�s1�s2�� Sat�ψ�
12� and clearly also �s1�s2�� S. Though, if �s1�s2�� Sat�ψ�

12� then (in-

ductive hypothesis) there exists a pair �α�
1�α

�
2� � DecSat�ψ�

12� such that

�s1�s2� � �Sat1�α�1��Sat2�α�2��� �R1R2�. which means �s1�s2� �� α�1 and �s1�s2� �� α�2.

From Theorem 4.3.1 then also s1 ��1 α�1 and s2 ��2 α�2 and also s1 ��1 ψ1 which proves

�s1�s2� � �Sat1�ψ1�α�1��Sat2�α�2��� �R1R2� hence �s1�s2� � S��ψ1�ψ�
12�.

��� by reversing ���.

2. ψ12 � ψ�
12�ψ��

12�

If ψ12 � ψ�
12 �ψ��

12 then DecSat�ψ12� � �DecSat�ψ�
12� AND DecSat�ψ��

12��, hence we

aim to show that

�s1�s2� � Sat�ψ�
12�ψ��

12��� �s1�s2� �
�

�α1�α2���DecSat�ψ�
12� AND DecSat�ψ��

12��

�
Sat1�α1��Sat2�α2�

�
��R1R2��

Let assume the following inductive hypothesis:

Sat�ψ�
12� � S��ψ�

12� and Sat�ψ��
12� � S��ψ��

12�

��� if �s1�s2� � Sat�ψ�
12�ψ��

12� then

�s1�s2� � Sat�ψ�
12�� �s1�s2� � Sat�ψ��

12�

Hence also, (inductive hypothesis) �s1�s2� � S��ψ�
12� and �s1�s2� � S��ψ��

12�, but that

means that there exists a pair �α�
1�α

�
2��DecSat�ψ�

12� and a pair �α��1�α
��
2��DecSat�ψ��

12�

such that �s1�s2� � �Sat1�α�1� � Sat2�α�2�� � �R1R2� and

�s1�s2� � �Sat1�α��1�� Sat2�α��2�� � �R1R2�. Then, as a consequence of Theorem 4.3.1,

also �s1�s2�� �Sat1�α�1�α��1��Sat2�α��α��2����R1R2�. From the definition of the opera-

tor AND it is straightforward to show that �α�
1�α

�
2� � DecSat�ψ�

12� and

�α��1�α
��
2� � DecSat�ψ��

12� implies �α�
1�α��1 �α

�
2�α��2� � DecSat�ψ�

12�ψ��
12� which proves

�s1�s2� � S��ψ�
12�ψ��

12�.

��� by reversing ���.

108 Chapter 4. Compositional CSL model checking: non-Path formulae

3. ψ12 � �ψ�
12

If ψ12 � �ψ�
12 then

DecSat�ψ12� �
�

�α1�α2��DecSat�ψ�
12�
���α1� true���α1��α2��

where
�

refers to the binary operator AND as described in Definition 4.3.3. We denote

the right hand side of the above equality as NOT �ψ�
12�. Hence we aim to show that

�s1�s2� � Sat��ψ�
12��� �s1�s2� �

�
�α1�α2��NOT �ψ�

12�

�
Sat1�α1��Sat2�α2�

�
��R1R2��

Let assume the following inductive hypothesis:

Sat�ψ�
12� � S��ψ�

12�

��� if �s1�s2� � Sat��ψ�
12� then �s1�s2� �� Sat�ψ�

12� which also means (inductive hy-

pothesis) that �s1�s2� �� �Sat1�α1��Sat2�α2����R1R2�, ��α1�α2��DecSat�ψ�
12�. Which

is �s1�s2� � �Sat1�α1��Sat2�α2��� �R1R2�, hence:

�s1�s2� �
�

�α1�α2��DecSat�ψ�
12�

�
�Sat1�α1��Sat2�α2��� �R1R2�

�

From Proposition 4.3.1 we know that

�Sat1�α1��Sat2�α2�� � �Sat1�α1��S2�� �Sat1�α1��Sat2�α2��

� �Sat1��α1��S2�� �Sat1�α1��Sat2��α2��

thus

�s1�s2� �
�

�α1�α2��DecSat�ψ�
12�

�
�Sat1��α1��S2�� �Sat1�α1��Sat2��α2��

�
� �R1R2�

Considering the distribution of � with respect to both � and � and also considering

that, Sat1�φ�1�� Sat1�φ��1� � Sat1�φ�1 � φ��1� for any two single-component formulae φ�1
and φ��1, then it straightforwardly follows that

�
�α1�α2��DecSat�ψ�

12�

�
�Sat1��α1��S2�� �Sat1�α1��Sat2��α2��

�
�R1R2 �

�
�δ1�δ2��NOT �ψ�

12�

Sat1�δ1��Sat2�δ2��R1R2

which proves ���.

4.3. Model checking non-Probabilistic state formulae 109

��� By reversing ���.

�

In the next example some ψ12 formulae are considered and the set DecSat�ψ12� is

computed, illustrating the application of the above Lemma.

Example 4.3.1 (Decomposition of Sat�ψ12� by means of DecSat�ψ12�) Let us consider

the application DecSat�� to some ψ12 formulae. We focus on ψ12 formulae involving

four atomic propositions, namely �a1�b1�a2�b2� (i.e. At�ψ12� � �a1�b1�a2�b2�). We

observe that there are four possible situations concerning the relationship between

Sat1�a1� and Sat1�b1� on one hand and Sat2�a2� and Sat2�b2� on the other and these

can be characterised in the following way:

a) �Sat1�a1��Sat1�b1� � /0� �Sat2�a2��Sat2�b2� � /0�.
This case relates to one out of the three situations depicted in Figure 4.5.

b) �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� �� /0�.
This case relates to Figure 4.6.

The distinction concerning the possible relationship between the satisfiability sets for

the atoms a1�b1 and a2�b2 is useful to show that the decomposition provided by DecSat�ψ12�

is correct in any possible situation. Let us focus on the following examples of ψ12.

1. ψ12 � ψ1�ψ2 � �a1�b1�� �a2�b2�.

In this case we know that, trivially, Sat��a1 � b1�� �a2 � b2�� is given by the part

of the Cartesian product Sat1��a1� b1��� Sat2�a2 � b2� which intersects S which is:

Sat��a1�b1�� �a2�b2�� � Sat1��a1�b1���Sat2�a2�b2�� �R1R2�. Also, from Defi-

nition 4.3.11, we have that:

DecSat��a1�b1�� �a2�b2�� � ��a1�b1���a2�b2��

110 Chapter 4. Compositional CSL model checking: non-Path formulae

��

� �

�
�

��

��

��

��

��
��

��

��

��

��

��

��

�� ��

�

�

�

��

�� ��

a)

b) c)

Figure 4.5: �Sat1�a1��Sat1�b1� � /0� �Sat2�a2��Sat2�b2� � /0�.

which shows the correctness of Lemma 4.3.2 for this case.

Let us consider, one by one, each possibility regarding the satisfiability of the atoms

a1�b1 and a2�b2 and let us show that in any case Sat��a1� b1�� �a2� b2�� is char-

acterised in terms of the product �Sat1�a1 � b1�� Sat2�a2 � b2�� � �R1R2�. If either

Sat1�a1� and Sat1�b1� or Sat2�a2� and Sat2�b2� are disjoint (Figure 4.5), then clearly

Sat��a1�b1���a2�b2��� /0. Though, clearly, also Sat1�a1�b1� � /0 or Sat1�a1�b1��

/0, hence �Sat1�a1�b1��Sat2�a2�b2�� � /0. On the other hand if both Sat1�a1�b1� and

Sat2�a2�b2� are not empty (Figure 4.6) then the conjunction �a1�b1���a2�b2� is not

empty and Sat��a1�b1���a2�b2�� is actually given by coupling all states of Sat1�a1�

4.3. Model checking non-Probabilistic state formulae 111

S

��

��

��

��

��

��

�
�

� �

Figure 4.6: �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� �� /0�.

b1� with all the states of Sat2�a2� b2�, which proves the result of DecSat��a1� b1��

�a2�b2�� being correct also for this case.

In the following, the less trivial case of a negated general formula (DecSat��ψ12�) is

considered. We will focus on two different types of negated general formulae. The first

one is given by the negation of a “simple” conjunction, �ψ12 � ���a1 � b1�� �a2 �

b2��), while the second involves recursion, being the negation of a conjunction whose

conjuncts are themselves negated conjunctions, �ψ12 � ����a1 � a2����b1 � b2��,

(we note that, indeed, this is equivalent to the disjunction of two conjunctions �ψ12 �

�a1� a2� �b1� b2�). In both cases the set DecSat��ψ12� is computed and proved to

be correct by considering every possible case concerning the satisfiability of the atoms

a1�b1 and a2�b2 (see Figure 4.5 and Figure 4.6).

2. ψ12 � �ψ12 � ���a1�b1�� �a2�b2��.

From Definition 4.3.3 we know that DecSat��ψ12� is given by the pairwise conjunction

(AND) between the sets of pairs ���α1� tt���α1��α2�� where �α1�α2� are elements

of DecSat�ψ12�. From the previous case, though, we know that the decomposition of

�a1 � b1� � �a2 � b2� consists of a single pair which is,

DecSat��a1� b1�� �a2� b2�� � ��a1� b1���a2� b2��, hence the decomposition of its

112 Chapter 4. Compositional CSL model checking: non-Path formulae

negation5 is given by:

DecSat����a1�b1�� �a2�b2��� �
�

�α1�α2��DecSat���a1b1��a2b2���
���α1� tt���α1��α2��

� ����a1�b1�� tt����a1�b1����a2�b2���

Let us consider now the different possible situations concerning the satisfiability of the

atoms a1�b1 and a2�b2 and show that in every case the pairs in

DecSat����a1 � b1� � �a2 � b2��� actually provide a characterisation of

Sat����a1�b1�� �a2�b2���.

a) In this case either �Sat1�a1�� Sat1�b1�� � /0 or �Sat2�a2�� Sat2�b2�� � /0, or both.

That means that there can be no such a state �s1�s2�� S where both the conjuncts

�a1�b1� and �a2�b2� are satisfied, hence Sat����a1�b1�� �a2�b2��� � S.

Let us suppose that Sat1�a1� and Sat1�b1� are disjoint; in this case Sat1�a1�b1�

is the empty set (see Figure 4.5.a or Figure 4.5.b), hence Sat1���a1� b1�� � S1

which means Sat1���a1� b1��� Sat2�tt� � S. This proves that the first pair in

DecSat����a1 � b1�� �a2 � b2���, namely ���a1 � b1�� tt�, characterises a sin-

gle element partition of Sat����a1� b1�� �a2� b2���, independently of whether

Sat2�a2� and Sat2�b2� are disjoint or not.

On the other hand if Sat1�a1� and Sat1�b1� are not disjoint while Sat2�a2� and

Sat2�b2� are, then DecSat����a1�b1�� �a2�b2���, provides a two element par-

tition of Sat����a1�b1�� �a2�b2��� � S. Figure 4.6 depicts the form of the two

parts, associated, respectively, with the pair ���a1 � b1�� tt� and with the pair

��a1�b1����a2�b2��.

b) In this case both �Sat1�a1��Sat1�b1�� and �Sat2�a2��Sat2�b2�� are assumed to be

not empty. As a result there will exist at least one state in S where �a1� b1��

�a2�b2� is true, hence Sat����a1�b1�� �a2�b2�� has to be a proper subset of

S. In such a situation the two pairs in DecSat����a1� b1�� �a2� b2��� split the

complement of Sat��a1� b1�� �a2 � b2�� which indeed is equal to Sat����a1�

5It should be noted that, the number of pairs the decomposition of the negation of a ψ 12 formula
consists of, is given by the n-th power of 2, where n is the number of pairs the decomposition of ψ 12 is
made of: �DecSat��ψ12��� 2�DecSat�ψ12��

4.3. Model checking non-Probabilistic state formulae 113

b1�� �a2�b2���, in two parts.

3. ψ12 � �a1�a2� �b1�b2�� ����a1�a2����b1�b2��.

Here we consider the negation of the conjunction of two negated general formulae.

In order to determine DecSat�����a1� a2����b1� b2��� we proceed incrementally,

starting from determining the decomposition of the conjuncts:

DecSat���a1�a2�� � ���a1� tt���a1��a2��

DecSat���b1�b2�� � ���b1� tt���b1��b2��

The decomposition of the conjunction ���a1 � a2����b1 � b2�� is then given by the

pairwise conjunction of the conjuncts’ decomposition:

DecSat����a1�a2����b1�b2��� � �DecSat���a1�a2��� AND �DecSat���b1�b2���

� ���a1� tt���a1��a2�� AND ���b1� tt���b1��b2��

� ���a1��b1� tt����a1�b1��b2��

�a1��b1��a2���a1�b1��a2��b2��

Finally DecSat�����a1 � a2� � ��b1 � b2��� can be computed from the terms of

DecSat����a1 � a2����b1 � b2���. This leads to a set of sixteen pairs, which can

straightforwardly be proved equivalent6 to:

DecSat�����a1�a2����b1�b2��� � ���a1�b1���a2b2���

�a1��b1�a2��

��a1�b1�b2��

which suggests a partition of Sat��a1�a2��b1�b2�� consisting of at most three parts.

6That equivalence relies on the fact that some pair of formulae �α 1�α2�, lead to the empty set
(i.e. they are such that Sat1�α1� � /0 or Sat2�α2� � /0). For example, when either α1 or α2 contains
a contradiction (e.g. �a1��a1�b2�) then �α1�α2� can be ruled out as clearly Sat1�α1�� Sat2�α2� � /0.
Similarly a pair like ��a1�b1�����a1�b1����a1��b1����a1�b1�� tt� which is actually one of the
sixteen elements of DecSat���a1� a2����b1 � b2���, can be easily proved to lead to the empty set, as
Sat1��a1�b1�����a1�b1����a1��b1����a1�b1�� � /0 independently of the relationship between
Sat1�a1� and Sat1�b1�.

114 Chapter 4. Compositional CSL model checking: non-Path formulae

�

��

������

��

��

�������� � ���� ��������

������� � ����� ��������

������� � ���� ������� � ��� � �

Figure 4.7: �Sat1�a1��Sat1�b1� � /0�� �Sat2�a2��Sat2�b2� � /0�.

Let us consider some of the possible situations concerning the sets Sat1�a1�, Sat1�b1�

and Sat2�a2�, Sat2�b2�. In Figure 4.7 both Sat1�a1�, Sat1�b1� and Sat2�a2�, Sat2�b2�

are assumed to be disjoint. In this case the three pairs in DecSat��a1�a2� �b1�b2��

actually result in a bi-partition of Sat��a1� a2� �b1� b2�� as clearly Sat1�a1 � b1�

contains no elements (hence the pair ��a1 � b1���a2� b2�� � DecSat�����a1� a2��

��b1�b2��� leads to the empty set).

A three element partition of Sat��a1� a2� �b1� b2�� results, instead, both when

the intersection between Sat1�a1� and Sat1�b1� is not empty while the one between

Sat2�a2� and Sat2�b2� is (Figure 4.8), and also when neither Sat1�a1� and Sat1�b1� nor

Sat2�a2� and Sat2�b2� are disjoint (Figure 4.9). In those cases all the three pairs in

DecSat��a1�a2� �b1�b2�� correspond to a non-empty subset of S.

Finally a two element partition occurs whenever the set of states satisfying an

atom (either ak or bk) is a proper subset of the satisfiability set of the other. Fig-

ure 4.10 points out the two parts Sat��a1�a2� �b1�b2�� consists of when Sat1�b1��

Sat1�a1� and Sat2�b2�� Sat2�a2�, while Figure 4.11 shows a similar result for the case

Sat1�b1�� Sat1�a1� and Sat2�a2�� Sat2�b2�.

�

4.3. Model checking non-Probabilistic state formulae 115

�
�

��

��

��

���� ��

�

�������� � ���� ��������

������� � ����� ��������

������� � ���� ������� � ���

Figure 4.8: �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� � /0�.

Having demonstrated that the decomposition of Sat�ψ12� is given by DecSat�ψ12�, the

function cond�� can be formalised in the next definition.

Definition 4.3.4 (function cond�� : S�Φ12 � B�Sat��) Let �s1�s2� be a state of a bidi-

mensional Boucherie process M and φ12 a formula as in (4.3.10), the value

cond��s1�s2��φ12� is a boolean combination of single-component satisfiability condi-

116 Chapter 4. Compositional CSL model checking: non-Path formulae

��

��

��

��

��

�
�

� �

�������� � ���� ��������

������� � ����� ��������

������� � ���� ������� � ���

��

�

Figure 4.9: �Sat1�a1��Sat1�b1� �� /0�� �Sat2�a2��Sat2�b2� �� /0�.

tions, defined as:

cond
�
�s1�s2��φ12

	
�

������������������������������
�����������������������������

s1 ��1 ft�φ1� and s2 ��2 ft�φ2� if �φ12 � φ1�φ2�

�φ12 � φ2�φ1�

sk ��k ft�ψk� and cond
�
�s1�s2��φ�12

	
if �φ12 � φk�φ�12�

�φ12 � φ�12�φk�

cond��s1�s2��φ�12� and cond
�
�s1�s2��φ��12

	
if �φ12 � φ�12�φ��12�

not cond
�
�s1�s2��φ�12

	
if φ12 � �φ�12

sk ��k S
�

�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��

�
Gπ j�α j�

�αk� if φ12 � ξ12 � S�p�ψ12� �

�α1�α2� � DecSat�ψ12�
(4.3.13)

4.3. Model checking non-Probabilistic state formulae 117

��

��

��

��

��

��� �

�
�

�������� � ���� �������� � �

������� � ����� ��������

������� � ���� ������� � ���

�

Figure 4.10: �Sat1�b1�� Sat1�a1��� �Sat2�b2�� Sat2�a2��.

where B�Sat� is the set of all boolean combinations of propositions belonging to the

set Sat � Sat1�Sat2, Satk (i � 1�2) being:

Satk ::� �sk ��k φk : sk � Sk�φk �Φk�

and G is the product-form normalisation constant while for any general formula ψ12

and any pair of single-component formulae �α1�α2� �DecSat�ψ12� and the constants

π�R1R2�ψ12�, π��α1�α2��ψ12� and π j�α j� are defined as:

π�R1R2�ψ12� � ∑
�δ1�δ2��DecSat�ψ12�

�
∑

tk�Satk�R�δk�

πk�t
k� ∑

t j�Sat j�R�δ j�

π j�t
j�
�

π��α1�α2��ψ12� � ∑
�δ1�δ2��DecSat�ψ12�

�δ1�δ2����α1�α2�

�
∑

tk�Satk�δk�

πk�t
k� ∑

t j�Sat j�δ j�

π j�t
j�
�

π j�α j� � ∑
t j�Sat j�α j�

π j�t
j�

118 Chapter 4. Compositional CSL model checking: non-Path formulae

� �

�
�

�

��

�� ��

��

��

��

������� � ���� ������� � ���

������� � ����� ��������

�������� � ���� �������� � �

Figure 4.11: �Sat1�b1�� Sat1�a1��� �Sat2�a2�� Sat2�22��.

The constants π j�α j�, π��α1�α2��ψ12� and π�R1R2�ψ12� appearing in the definition

of cond��, are measures concerning the long-run behaviour of the Boucherie process

and its components. Let us interpret them. Having in mind that �α1�α2� represents

one of the partitions of Sat�ψ12� by means of DecSat�ψ12�, then π j�α j� represents

the probability for component M j to satisfy the formula α j in the long-run (i.e. the

long-run probability for the projection onto S j of the part of Sat�ψ12� associated with

�α1�α2�).

On the other hand, π��α1�α2��ψ12� is defined as the sum of the steady-state prob-

ability of states in Sat1�δ1�� Sat2�δ2� for every pair �δ1�δ2� �� �α1�α2�. It should be

noted that this value deviates from the steady-state probability of the complement of

the part associated with �α1�α2� (i.e. Sat�ψ12� � �Sat1�α1�� Sat2�α2� � �R1R2��) by a

factor which depends on the part of Sat1�δ1�� Sat2�δ2� which falls in the prohibited

area (i.e. �Sat1�δ1�� Sat2�δ2��� �R1R2�). To understand what that means, let us con-

sider an example. Figure 4.12 depicts what the decomposition of Sat��a1�a2� �b1�

b2�� looks like when some among the states satisfying the atoms a1�b1 and a2�b2 are

such that the component holds R. We already know (see previous example) that

DecSat��a1�a2� �b1�b2�� � ���a1�b1���a2b2����a1��b1�a2����a1�b1�b2��

4.3. Model checking non-Probabilistic state formulae 119

��

��

��

��

��

� �

� �
��

�

�

� �

� �
�������� � ���� �������� � � � �

������� � ���� ������� � ��� � � � �

� � ������� � ����� ��������

� � ������������������������� � �����������

� � ������������������������� � �����������

� � ����������������������� � �����������

� � ����������������������� � �����������

��� � ��� � ��� � ��� � ���

�������� � � � � � �

Figure 4.12: Meaning of the deviation π�R1R2��a1�a2� �b1�b2�� � π�A��π�B�.

providing a three part partition of Sat��a1� a2� �b1 � b2��, whose elements, A �B
and C are respectively associated with the pairs �a1 ��b1�a2�, ��a1�b1���a2b2��

and ��a1�b1�b2�. We observe that, in this case, the intersection of the products

�Sat1�δ1��Sat2�δ2��� �R1R2� is not empty with two of the three pairs in DecSat��a1�

a2� �b1� b2��, namely ��a1�b1���a2b2�� and ��a1�b1�b2�. We named such not

empty intersections, respectively B (the one regarding ��a1�b1���a2b2��) and C (the

one regarding ��a1�b1�b2�). Now, if we pick up a pair, say ��a1 � b1�b2�, then the

value of the constant π��a1 ��b1�a2���a1 � a2� �b1 � b2��, is given by the sum of

the steady state probability of the areas determined by the other pairs, namely A and

�B �B�, hence:

π��a1��b1�a2���a1�a2� �b1�b2�� � π�A��π�B �B�

� π�A��π�B��π�B�

This value deviates by a factor π�B� from π�A �B� � π�A� � π�B�, which is the

probability of satisfying the formula �a1� a2� �b1� b2� without being in any of the

states associated with the pair ��a1�b1�b2�, in the long-run.

We note that, it is not always the case that the value of the constant π��α1�α2��ψ12�

differs from the probability of the complement Sat�ψ12���Sat1�α1��Sat2�α2���R1R2��.

120 Chapter 4. Compositional CSL model checking: non-Path formulae

In fact, the deviation factor is null either if none of the parts �δ1�δ2� intersect the pro-

hibited area �R1R2� or if the only part that does that is �α1�α2�.

Finally, the constant π�R1R2�ψ12�, represents the sum of the steady-state proba-

bility of the amount of each area �Sat1�δ1��Sat2�δ2��, where �δ1�δ2� � DecSat�ψ12�,

which falls in the prohibited area. Referring to the example depicted in Figure 4.12 we

have that

π�R1R2��a1�a2� �b1�b2�� � π�B��π�C �

Again, we observe that it is not always the case that π�R1R2�ψ12�� 0. If none of the

parts �δ1�δ2� � DecSat�ψ12� intersects R1R2 then clearly π�R1R2�ψ12� � 0. If we re-

fer, for example, to Figure 4.9 then we have that π�R1R2��a1�a2� �b1�b2�� � 0.

The definition of the function cond�� tells us that in order to check that the prob-

ability for a Boucherie process to satisfy ψ12 at steady-state matches a bound p, we

have to chose one of the partitions of Sat�ψ12� by DecSat�ψ12�, namely the part char-

acterised by the pair of formulae �α1�α2�, and check either that the probability for

component M1 to satisfy α1 at steady-state respects a derived bound p̂1 or that the

probability for component M2 to satisfy α2 at steady-state respects a derived bound

p̂2, where the derived bounds p̂1 and p̂2 depend on the chosen part �α1�α2�.

This provides us with the compositional result we were looking for: the computa-

tion of the steady-state distribution for the Boucherie process’s components gives us

enough means to check properties involving the steady-state probability of the Bou-

cherie process itself.

The next Theorem proves that the results suggested by the definition of the function

cond�� are actually correct.

Theorem 4.3.2 Let M � �S�Q�L� be a bidimensional Boucherie process, then for any

general formula φ12 as in (4.3.10) and any state �s1�s2� � S, the following holds:

�s1�s2� �� φ12 �� cond
�
�s1�s2��φ12�

	
where cond�� is as in Definition 4.3.4.

4.3. Model checking non-Probabilistic state formulae 121

Proof. By structural induction on the definition of cond��.

base case: φ12 � φ1�φ2.

From Definition 4.3.4 we have that

cond��s1�s2��φ1�φ2� � s1 ��1 ft�φ1� and s2 ��2 ft�φ2�

Hence, we aim to show that:

�s1�s2� �� φ1�φ2 �� s1 ��1 ft�φ1� and s2 ��2 ft�φ2�

��� if �s1� t2� �� φ1 � φ2 then �s1� t2� �� φ1 and �s1� t2� �� φ2. Thus, from Theo-

rem 4.3.1,also s1 ��1 ft�φ1� and s2 ��2 ft�φ2�, which proves ���.

��� By reversing ���.

φ12 � S�p�ψ12�.

In this case we have that:

cond��s1�s2��φ1�φ2� � sk ��k S
�

�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��

�
Gπ2�α2�

�αk�

where �α1�α2� � DecSat�ψ12�. For brevity here we consider only the case with k � 1,

hence, we aim to show that:

�� S�p�ψ12�����1 S
�

�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��

�
Gπ2�α2�

�α1�

��� if �� S�p�ψ12� then

G
�

∑
�t1�t2��Sat�ψ12�

π1�t
1�π2�t

2�
�
� p

From Lemma 4.3.2, we know that

Sat�ψ12� �
�

�δ1�δ2��DecSat�ψ12�

�Sat1�δ1��Sat2�δ2��� �S1�R�Sat2�R�

which, as a consequence of Remark 4.2.3, we can rewrite as

Sat�ψ12� �
�

�δ1�δ2��DecSat�ψ12�

�
�Sat1�δ1��Sat2�R�δ2��� �Sat1�R�δ1��Sat2�R�δ2��

�

122 Chapter 4. Compositional CSL model checking: non-Path formulae

By substitution in the above inequality, we then have:

G ∑
�δ1�δ2��DecSat�ψ12�

�
∑

t1�Sat1�δ1�

π1�t
1� ∑

t2�Sat2�R�δ2�

π2�t
2�� ∑

t1�Sat1�R�δ1�

π1�t
1� ∑

t2�Sat2�R�δ2�

π2�t
2�
�
� p

which by adding to both sides of the inequality the term Gπ�R1R2�ψ12�, where π�R1R2�ψ12�

is as in Definition 4.3.4, results in:

G ∑
�δ1�δ2��DecSat�ψ12�

�
∑

t1�Sat1�δ1�

π1�t
1� ∑

t2�Sat2�δ2�

π2�t
2�
�
� p�Gπ�R1R2�ψ12�

hence

G
�

∑
t1�Sat1�α1�

π1�t
1� ∑

t2�Sat2�α2�

π2�t
2�
�
� p�G � �π�R1R2�ψ12��π��α1�α2��ψ12��

where �α1�α2� � DecSat�ψ12�. Thus:

�
∑

t1�Sat1�α1�

π1�t
1�
�
�

�
p�G�π�R1R2�ψ12��π��α1�α2��ψ12��

�
Gπ2�α2�

which proves ���.

��� By reversing ���.

inductive step:

1. φ12 � φk�φ�12.

From Definition 4.3.4 we know that for any state �s1�s2� � S

cond��s1�s2��φk�φ�12� � sk ��k ft�φk� and cond��s1�s2��φ�12�

Hence we aim to prove that:

�s1�s2� �� φk�φ�12 �� sk ��k ft�φk� and cond��s1�s2��φ�12��

Let us assume that

�s1�s2� �� φ�12 �� cond��s1�s2��φ�12��

4.3. Model checking non-Probabilistic state formulae 123

as inductive hypothesis.

��� if �s1�s2� �� φk � φ�12 then �s1�s2� �� φk and �s1�s2� �� φ�12. Then from Theo-

rem 4.3.1 sk ��k φk and from the inductive hypothesis also cond��s1�s2��φ�12� which

proves ���.

��� By reversing ���.

2. φ12 � φ�12�φ��12

Similar to the one above.

3. φ12 � �φ�12.

From Definition 4.3.4 we know that for any state �s1�s2� � S

cond��s1�s2���φ�12� � not cond��s1�s2��φ�12�

Hence we aim to prove that:

�s1�s2� �� �φ�12 �� not cond��s1�s2��φ�12��

Let us assume the following inductive hypothesis:

�s1�s2� �� φ�12 �� cond��s1�s2��φ�12�

��� Trivial consequence of the inductive hypothesis.

��� Trivial consequence of the inductive hypothesis.

�

Example 4.3.2 (Decomposed checking for general formulae) Referring to the Bou-

cherie process of our running example, let us suppose we are interested in checking

that, in the long-run, there is at least a 80% probability of having at least one compo-

nent in an “operative” state (i.e. not idle). This property can be expressed by means

of the following general formula:

S�0�8���idle1� idle2��

124 Chapter 4. Compositional CSL model checking: non-Path formulae

One possibility to check whether such a formula is valid with respect to the Boucherie

process, is to calculate the set Sat����idle1� idle2��� S by applying the CSL model-

checking algorithm to the state-space S. By application of the decomposed semantics

for general formulae given by the function cond�� a different approach is possible.

From Definition 4.3.4, we know that

�� S�0�8���idle1� idle2������k S
�

�
0�8�G�π�R1R2���idle1�idle2���π��α1�α2����idle1�idle2���

�
Gπ j�α j�

�αk�

where �α1�α2��DecSat���idle1� idle2��. Hence, as a first step, we have to determine

DecSat���idle1� idle2��, which is:

DecSat���idle1� idle2�� � ���idle1� tt���idle1��idle2��

Now we can chose a pair, say �idle1��idle2�, from DecSat���idle1� idle2�� and con-

sequently we compute the value of the constant π��idle1��idle2�����idle1 � idle2��

which is

π��idle1��idle2����idle1� idle2�� � π1��idle1�π2�S2�

� �π1�s11��π1�s12��π1�s13��π1�s14��π1�s15�� �1

� 1�π1�s10�

In order to compute the value of the other constant π�R1R2���idle1 � idle2��, we

observe that, we have to consider the intersection with the prohibited area R1R2 of

each pair in DecSat���idle1� idle2��. These are given by Sat1�R��idle1�� S2�R and

Sat1�R�idle1��Sat2�R��idle2�. Hence

π�R1R2���idle1� idle2�� � �1�π1�idle1���1�π2�idle2���π1�idle1��1�π2�idle2��

� 1�π2�idle2� � 1�π2�s20�

Finally, we can choose the component we want to refer to, meaning the component we

want to check the derived steady-state property against; say we are interested in com-

ponent M1. In that case the derived formula of interest we want to check the steady-

state probability of, is the first element of the pair �idle1��idle2� we previously picked,

4.3. Model checking non-Probabilistic state formulae 125

namely idle1. Thus the remaining constant we need to calculate is π2��idle2� rep-

resenting the steady-state probability for the other component, M2, to satisfy �idle2.

That is given by

π2��idle2� � 1�π2�idle1� � 1�π2�s20�

We are now able to compute the derived probability bound against which we aim to

check the steady-state probability of Sat1�idle1�. That is given by:

0�8�G�π�R1R2���idle1� idle2���π��idle1��idle2����idle1� idle2���

Gπ2��idle2�

which is equal to

0�8�G��1�π2�s20��� �1�π1�s10���

G�1�π2�s20��
�

0�8�G�π2�s20��π1�s10��

G�1�π2�s20��

Hence we have that checking the general formula S�0�8���idle1 � idle2�� with re-

spect to the Boucherie process M is equivalent to check the single-component formula

S
�

0�8�G��1�π2�s20����1�π1�s10���
G�1�π2�s20��

�idle1� with respect to component M1

�� S�0�8���idle1� idle2������1 S
�

0�8�G�π2�s20��π1�s10��
G�1�π2�s20��

�idle1�

Equivalently, we could have chosen to find a decomposed equivalence with respect to

the other component, M2. In that case we would consider the second element of the

(previously chosen) pair �idle1��idle2� as the target for the steady-state measure and

we would need to compute the value for the constant

π1�idle1� � π1�s10�

As a result the following equivalence holds as well

�� S�0�8���idle1� idle2������2 S
�

0�8�G�π2�s20��π1�s10��
Gπ1�s10�

��idle2�

The advantage of using the compositional semantics, in this case, is that the complexity

of computing the satisfiability set for the formula idle1 with respect to the component

process M1 is lower than the complexity for the computation of the satisfiability set of

��idle1� idle2� with respect to the product process M . That difference relies on the

ratio between the state-spaces’ dimension

SF �
�S�
�S1�

126 Chapter 4. Compositional CSL model checking: non-Path formulae

The bigger the ratio SF (Savings Factor) is, the bigger is the saving, in terms of com-

plexity, gained through application of the compositional semantics.

Chapter 5

Compositional CSL model checking:

Next formulae

5.1 Introduction

In the previous chapter the existence of a compositional semantics for a subset of the

CSL where probabilistic path formulae, like P�p�ϕ�, were disallowed, has been shown.

In this chapter that syntax is extended and Next formulae are considered. However, we

observe that, in order to derive compositional equivalences for path formulae (i.e. Next

and Until), nesting of path connectives needs to be excluded. Thus, unlike the original

CSL (see Definition 2.3.5), in this work we will admit only formulae which do not

contain any probabilistic connective1 as possible type of argument of a probabilistic-

path operator. Complying with this restriction, it will be shown that a compositional

method for checking Next formulae which refer to a bidimensional Boucherie process,

can be derived. The chapter also presents a further relevant result, which regards the

procedure for checking bounded Next formulae with respect to an arbitrary CMTC.

It will be shown, in fact, that the algorithm for the computation of the state-vector

Prob�s�XI φ� provided in [5], is not correct and a revised version will be defined.

The chapter is organised in the following way: in the next section the syntax for

single-component Next formulae is introduced and decomposed semantic equivalences

1Not even a probabilistic steady-state formula, like S�p�ψ�, can be used as an argument of a proba-
bilistic connective.

127

128 Chapter 5. Compositional CSL model checking: Next formulae

for both “simple” single component bounded Next formulae (Section 5.2.1) and steady-

state properties referring to single-component bounded Next formulae (Section 5.2.2),

are proved. Some examples are also included in order to show the correctness of

these results with respect to the GIS Boucherie framework formerly introduced in Sec-

tion 2.5.1. In Section 5.3 the algorithms for decomposed checking of such Next formu-

lae are introduced (an algorithm for P�p�X
I ψ� and an algorithm for S�p�P�p�X

I ψ��

are presented). Finally, in Section 5.4, general Next formulae are considered and a

procedure for their decomposed verification is defined. In this section, the problem

with the original version of the algorithm for computing Prob�s�X I φ�, is pointed out

by means of a simple example. The revised algorithm is then presented and proved to

fix the error with respect the considered example.

5.2 Compositional semantics for single-component Next

formulae

In this section the application of the time bounded Next connective to single-component

formulae, ψk, is considered and a compositional semantics is derived. The syntax of

the logic we refer to is derived from the one described in (4.3.2), by adding the pro-

duction for probabilistic path formulae ϕk. This results in:

φk ::� ψk � ϕk � ξk � φk�φk � �φk

ψk ::� tt � ak � ψk �ψk � �ψk

ξk ::� S�p�ψk� � S�p�ϕk�

ϕk ::� P�p�X
I�ψk��

(5.2.1)

For the time being we admit only the bounded Next as the possible type of path for-

mula ϕk. Moreover, as we have already mentioned, the possibility for nesting path

connectives is disallowed. Steady-state formulae are also excluded from the possible

type of argument for a probabilistic path connective, because of their model-like rather

than state-like semantics with respect to ergodic models (see the analysis of CSL se-

mantic equivalences for ergodic models in Section 3.5). As a result the argument of the

5.2. Compositional semantics for single-component Next formulae 129

bounded Next connective XI can only be a formula which itself involves neither a path

connective, nor the steady-state operator, i.e. a ψk formula. Finally, the probabilistic

steady-state operator can be applied also to probabilistic path formulae ϕk other than

non-probabilistic formulae ψk, enriching, in this way, the expressiveness of the steady-

state analysis: “future evolutions” (i.e. paths) are added to simple “state properties” in

the criteria for characterising the “long-run” behaviour of interest.

In the remainder of this chapter we will show that a compositional approach for

checking the formulae of the syntax in (5.2.1) is possible. This basically will require

us to extend the transformation function introduced in Definition 4.3.2 in order to

cope with probabilistic Next formulae. We start with the analysis of a compositional

approach for probabilistic time-bounded Next formulae (section 5.2.1); those results

will be the basis to determine the compositional semantics for steady-state formulae

whose argument is a probabilistic bounded Next (see Section 5.2.2).

In order to improve the readability, the proof of some preparatory Lemmas has been

moved to Appendix A: only fundamental theorems are reported here together with

their proof.

5.2.1 Bounded Next (P�p�XI�ψk��)

In this section, probabilistic time-bounded Next formulae like, P�p�XI�ψk��), are con-

sidered. The equivalences showing the existence of a compositional semantics for such

formulae are given in Theorem 5.2.1. The result of Theorem 5.2.1, relies on the char-

acterisation of an “equivalent” probability bound p� whose value is provided by the

function h�� introduced in the following definition.

Definition 5.2.1 (Equivalent Next’s probability and time bound) Let �s1�s2� be a

state of a bidimensional Boucherie process, ψk a non-probabilistic formula as in the

syntax described in (5.2.1) referring to component Mk, p � �0�1� a probability bound

and I � �a�b�� ��0 a time bounding interval. The function

h�� : ��0�1��Ψk�CTMC�S�2��0�� �0�1��2��0

is defined as follows:

130 Chapter 5. Compositional CSL model checking: Next formulae

h�p�ψk�Mk��s
1�s2�� I��

����������
���������

� p
pk�s1�s2�

� I��s1�s2�
	

if ��s1�s2��R f ree�� �sk ���k ψk�

� p�p j�s1�s2�
pk�s1�s2�

� I��s1�s2�
	

if ��s1�s2��R f ree�� �sk ��k ψk�

�
p� I
	

if �s1�s2� � Rk

(5.2.2)

where pk�s1�s2� is the probability of making a k-move out of state �s1�s2� and

I��s1�s2� � � a
pk�s1�s2�

� b
pk�s1�s2�

�.

The function h�� provides us with a pair representing, respectively, the equivalent

probability bound and the equivalent time bound interval for bounded Next single-

component formulae. It will be shown, in fact, that checking a formula like P�p�XI�ψk��

with respect to a state �s1�s2� of the Boucherie process, is equivalent, under certain

circumstances, to checking the formula P� p̂�XÎ�ψk�� with respect to the state sk of

component Mk, where p̂ and Î are, respectively, the first and second component of the

pair h�p�ψk�Mk��s1�s2�� I� � �p̂� Î�.

In Chapter 4, it has been shown that the equivalences characterising the compositional

semantics for non-path, single-component formulae are obtained by means of a trans-

formation function, namely ft��. Unlike the non-path formulae case, the transforma-

tion of a path formula is state dependent, other than formula dependent: the decom-

posed equivalent for a path formula like P�p�ϕ� which is to be checked against a state

�s1�s2� � S of the Boucherie process, depends both on P�p�ϕ� and on the considered

state �s1�s2�.

In the next Theorem the compositional equivalences concerning probabilistic time-

bounded single-component Next formulae, are proved.

Theorem 5.2.1 (Bounded single-component Next) Let �s1�s2�� S be a state of a bidi-

mensional Boucherie process, ψk a non-probabilistic single-component formula as in

(5.2.1), p � �0�1� a probability bound, �� �����
��� and I � �a�b� � ��0 a time

5.2. Compositional semantics for single-component Next formulae 131

interval. The following equivalences hold:

�s1�s2� �� P�p�X
I�ψk����

����������������������������
���������������������������

sk ��k P� p̂�XÎ�ψk�� if �s1�s2� �� Rj

sk ��k ψk if ��s1�s2��Rj�� low��� p��

�e�E j�s j�a� e�E j�s j�b�� p

sk ��k �ψk if ��s1�s2��Rj��up��� p�

�e�E j�s j�a� e�E j�s j�b� �� p

sk ��k tt if ��s1�s2��Rj��up��� p�

�e�E j�s j�a� e�E j�s j�b�� p

sk ��k �tt otherwise
(5.2.3)

where h�p�ψk�Mk��s1�s2�� I�� �p̂� Î� and low��� p�, up��� p� are the conditions char-

acterised in Definition 3.4.2.

Proof. From Proposition 2.3.2 we know that the probability measure for the paths

starting at a state �s1�s2� and satisfying the bounded Next formula X I�ψk�, is given by:

Prob��s1�s2��XI�ψk�� �
�

e�E�s1�s2��a� e�E�s1�s2��b	 � ∑
�t1�t2�
�ψk

P��s1�s2���t1� t2��

(5.2.4)

We need then to distinguish between the three different conditions characterising the

equivalence (5.2.4).

1. �s1�s2� �� Rj.

We aim to prove that

�s1�s2� �� P�p�X
I�ψk���� sk ��k P� p̂�X

Î�ψk��

where h�p�ψk�Mk��s1�s2�� I� � �p̂� Î�. A further distinction is needed, as the comple-

ment of Rj is partitioned into Rk and Rf ree.

132 Chapter 5. Compositional CSL model checking: Next formulae

1.a �s1�s2� � Rk. If �s1�s2�� Rk, then p̂ � p and Î � I (see Definition 5.2.1). Moreover

the emanating rate E�s1�s2� � Ek�sk� depends only on the emanating rate of sk (see

Remark 4.2.2), hence the probability measure described in (5.2.4) becomes :

Prob��s1�s2��XI�ψk�� �
�

e�Ek�sk��a� e�Ek�sk��b	 � ∑
�t1�t2�
�ψk

P��s1�s2���t1� t2�� (5.2.5)

Furthermore, from the compositional semantics of non-probabilistic formulae (see

Theorem 4.3.1), we know that �t1� t2� �� ψk � tk ��k ψk and also, since we are as-

suming �s1�s2� � Rk, the only admitted moves are k-moves and they have the same

probability to occur in M as they have in Mk (see Remark 4.2.2). As a result, the sum

in (5.2.5) can be reformulated resulting in:

Prob��s1�s2��XI�ψk�� �
�

e�Ek�sk��a� e�Ek�sk��b	 � ∑
tk
�kψk

P1�s
k� tk� (5.2.6)

Hence

Prob��s1�s2��XI�ψk�� � Probk�s
k�XI�ψk��

which clearly proves that

Prob��s1�s2��XI�ψk��� p�� Probk�s
k�XI�ψk��� p�

1.b �s1�s2� � Rf ree. If �s1�s2� � Rf ree, the emanating rate E�s1�s2� � E1�s1��E2�s2�

(see Remark 4.2.2) and also, again, �t1� t2� �� ψk � tk ��k ψk.

Prob��s1�s2��XI�ψk�� �
�

e��E1�s1��E2�s2���a� e��E1�s1��E2�s2���b
�
�

∑
�t1�t2�
�ψk

P��s1�s2���t1� t2��
(5.2.7)

A further distinction needs to be considered though:

1.b.1 sk ���k ψk. In this case p̂� p
pk�s1�s2�

and Î � � a
pk�s1�s2�

� b
pk�s1�s2�

� (see Definition 5.2.1).

The assumption sk ���k�ψk, allows us to exactly determine which among the successors

of �s1�s2� satisfy the argument ψk of the Next operator. We observe that if sk ���k ψk

then �s1�s2� ��� ψk but then clearly also every successor state �t1� t2� corresponding to a

j-move from �s1�s2� (i.e. such that Q��s1�s2���t1� t2��� 0 and tk � sk) will not satisfy

ψk, while a k-successor of �s1�s2� (i.e. a state �t1� t2� such that Q��s1�s2���t1� t2��� 0

5.2. Compositional semantics for single-component Next formulae 133

and t j � s j) will satisfy ψk if and only if tk ��k ψk. As a result the sum in (5.2.7) can

be re-written as:

∑
�t1�t2�
�ψk

P��s1�s2���t1� t2�� � pk�s1�s2� � ∑
tk
�kψk

Pk�s
k� tk�

which substituted in (5.2.7) gives:

Prob��s1�s2��XI�ψk�� �
�

e��E1�s1��E2�s2���a� e��E1�s1��E2�s2���b
�
�

pk�s1�s2� � ∑
tk
�kψk

Pk�s
k� tk�

(5.2.8)

from which, straightforwardly follows,

Prob��s1�s2��X �a�b��ψk��� p�� Probk�s
k�X

� a
pk�s1�s2�

� b
pk�s1�s2�

�
�ψk���

p
pk�s1�s2�

which proves the theorem in this case.

1.b.2 sk ��k ψk. In this case p̂ � p�p j�s1�s2�
pk�s1�s2�

and Î � � a
pk�s1�s2�

� b
pk�s1�s2�

� (see Defini-

tion 5.2.1). Again, from the assumption sk ��k ψk, we are able to exactly determine

which among the successors of �s1�s2� satisfy ψk. In fact, if sk ��k ψk then �s1�s2� ��ψk

but then clearly also every successor state �t1� t2� corresponding to a j-move from

�s1�s2� will satisfy ψk, while a k-successor of �s1�s2� will satisfy ψk if and only if

tk ��k ψk. As a result the sum in (5.2.7) can be re-written as:

∑
�t1�t2�
�ψk

P��s1�s2���t1� t2�� � pk�s1�s2� � ∑
tk
�kψk

Pk�s
k� tk�� p j�s1�s2� � ∑

t j�S j

P j�s
j� t j�

� pk�s1�s2� � ∑
tk
�kψk

Pk�s
k� tk�� p j�s1�s2�

which substituted in (5.2.7) gets:

Prob��s1�s2��XI�ψk�� �
�

e��E1�s1��E2�s2���a� e��E1�s1��E2�s2���b
�
��

pk�s1�s2� � ∑
tk
�kψk

Pk�s
k� tk�� p j�s1�s2�

� (5.2.9)

from which, straightforwardly follows,

Prob��s1�s2��X �a�b��ψk��� p�� Probk�s
k�X

� a
pk�s1�s2�

� b
pk�s1�s2�

�
�ψk���

p� p j�s1�s2�

pk�s1�s2�

134 Chapter 5. Compositional CSL model checking: Next formulae

which proves the theorem in this case.

2. �s1�s2� � Rj and low��� p� and �e�E j�s j�a� e�E j�s j�b�� p.

In this case we aim to prove that

Prob��s1�s2��XI�ψk��� p�� sk ��k ψk

Since we are assuming �s1�s2� to be in Rj (i.e. component M j is holding the re-

source), then any successor �t1� t2� of �s1�s2� must be such tk � sk. Hence, �s1�s2� ��

ψk � �t1� t2� �� ψk for every successor �t1� t2�. But then, as a consequence of The-

orem 4.3.1, also sk ��k ψk � �t1� t2� �� ψk for every successor �t1� t2�, which means

that only two situations are possible: either all or none amongst the successors of

�s1�s2� satisfy ψk and this is characterisable in terms of the satisfiability of ψk with

respect to sk. If sk ���k ψk then none of the successors of �s1�s2� satisfy ψk, thus clearly

Prob��s1�s2��XI�ψk�� � 0. On the other hand, if sk �� ψk then every successor of

�s1�s2� satisfies ψk too, hence Prob��s1�s2��XI�ψk�� � �e�E j�s j�a� e�E j�s j�b�. Then,

since we are also assuming �e�E j�s j�a� e�E j�s j�b�� p, clearly

Prob��s1�s2��XI�ψk�� � �e�E j�s j�a� e�E j�s j�b�� p�� sk ��k ψk

which proves this case.

3. �s1�s2� � Rj and up��� p�.

As for the previous case, we know that either all or none amongst the successors of

�s1�s2� satisfy ψk, hence the probability measure Prob��s1�s2��XI�ψk�� can be either

zero or equal to �e�E j�s j�a�e�E j�s j�b�. However, since we are assuming an upper bound

check for such a measure (i.e. up��� p�), then obviously

Prob��s1�s2��XI�ψk�� � 0� p�� sk ��k �ψk

which proves also this case of the theorem.

�

Example 5.2.1 Referring to the Boucherie process representing the GIS system of our

running example (Figure 5.1 and Figure 5.2), let us consider the following bounded

Next formulae:

5.2. Compositional semantics for single-component Next formulae 135

������

���

���

���

���

���

�����

�����

���

���

��� ���

���

�����

��

�� ��

�� ��

��

��

����� ����

�����

�����

��������

����� ����

����

����

���

���
��

��

��

����

��

����

Figure 5.1: State space of the GIS components M1 and M2.

i) Let us suppose we are interested in checking whether the probability of reaching a

state where component M1 is reading the shared register, ψ1 � read1, in one step and

with a delay falling in the interval I � �2�5�, from the initial state �s10�s20� (i.e. both

components are idle), has p � 0�3 as a lower bound. This is the case if

�s10�s20� �� P�0�3�X
�2�5� read1�

Since �s10�s20� �� R2 then we are in the first case of (5.2.3), hence, we know that:

�s10�s20� �� P�0�3�X
�2�5� read1��� s10 ��1 P� p̂�X

Î read1�

where �p̂� Î� � h�0�3�read1�M1��s10�s20�� �2�5��. We observe that, as read1 is not sat-

isfied in s10 (i.e. s10 ���1 read1), then from the definition of h�� (5.2.2) we have

h�0�3�read1�M1��s10�s20�� �2�5�� � �
0�3

p1�s10�s20�
� �

2
p1�s10�s20�

�
5

p1�s10�s20�
��

and since the probability of making a 1-move out of �s10�s20� is

p1�s10�s20� �
E1�s10�

E1�s10��E2�s20�
�

r1 � r5

2r1 � r5

136 Chapter 5. Compositional CSL model checking: Next formulae

then

h�0�3�read1�M1��s10�s20�� �2�5�� � �
0�3�2r1� r5�

�r1 � r5�
� �

2�2r1� r5�

�r1 � r5�
�
5�2r1� r5�

�r1 � r5�
��

Hence we would like to verify that checking �s10�s20� �� P�0�3�X �2�5� read1� is equiva-

lent to checking s10 ��1 P
�

0�3�2r1�r5�
�r1�r5�

�X
�
2�2r1�r5�
�r1�r5�

�
5�2r1�r5�
�r1�r5�

�
read1�. From Proposition 2.3.2

we can straightforwardly compute the probability of reaching in one step and with a

delay within the bound I � �2�5� a state where read1 is true:

Prob��s10�s20��X
�2�5� read1� � �e��E1�s10��E2�s20���2� e��E1�s10��E2�s20���5� �

∑
�t1�t2�
�read1

P��s10�s20���t
1� t2��

� �e�2��2r1�r5�� e�5��2r1�r5��
r1

2r1 � r5

Similarly the probability of reaching from state s10 in one step a state satisfying

read1 within a time in the derived equivalent interval Î � �2�2r1�r5�
�r1�r5�

� 5�2r1�r5�
�r1�r5�

� is:

Prob�s10�X
�
2�2r1�r5�
�r1�r5�

�
5�2r1�r5�
�r1�r5�

�
read1� � �e

��E1�s10���
2�2r1�r5�
�r1�r5� � e

��E1�s10���
5�2r1�r5�
�r1�r5� � �

∑
t1
�1read1

P1�s10� t
1�

� �e�2��2r1�r5�� e�5��2r1�r5��
r1

r1� r5

Thus clearly

Prob��s10�s20��X
�2�5� read1� � Prob�s10�X

�
2�2r1�r5�
�r1�r5�

�
5�2r1�r5�
�r1�r5�

�
read1� � p

1�s10�s20�

which, as expected, proves

Prob��s10�s20��X
�2�5� read1�
 0�3��Prob�s10�X

�
2�2r1�r5�
�r1�r5�

�
5�2r1�r5�
�r1�r5�

�
read1�

0�3�2r1� r5�

�r1 � r5�

ii) Let us suppose we are interested in checking the probability of reaching in one step

with no time bound (i.e. I � �0�∞�), a state such that component M1 is idle (i.e. idle1),

5.2. Compositional semantics for single-component Next formulae 137

����� ����
����� ����

����� ����
����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ����

����� ���� ����� ����

��

�����

��

���
�
� �����

���
�
� �����

���
�
� ����

���
�
� ����� ����

���
�
� ���������� �����

������ �����

����� ����� �����

������ ����

������ ����� ����

������ ����

������ �����

����� ���������� �����

��

��

��
��

��

��

��

��

��
��

��

��

��

��

��

��

��

��

��

Figure 5.2: State space of the GIS product process M

138 Chapter 5. Compositional CSL model checking: Next formulae

from the initial state �s10�s20�, with respect to the same probability bound p � 0�3 as

in the previous case, which is:

�s10�s20� �� P�0�3�X
�0�∞� idle1�

Since component M1 is actually idle in state s10 (i.e. s10 ��1 idle1), then the equivalent

probability and time bound are given by the second case of (5.2.3), which is:

h�0�3� idle1�M1��s10�s20�� �2�5�� � �
0�3� p2�s10�s20�

p1�s10�s20�
� �0�∞��

where the probability of a 1-move and of a 2-move out of �s10�s20� are respectively:

p1�s10�s20� �
r1 � r5

2r1� r5
p2�s10�s20� �

r1

2r1 � r5

As a result we would like to verify that checking �s10�s20� �� P�0�3�X �0�∞� idle1� is

equivalent to checking s10 ��1 P
�

0�3�2r1�r5��r1
�r1�r5�

�X �0�∞� read1�. The probability of reaching

a state idle1 from �s10�s20 is

Prob��s10�s20��X
�0�∞� read1� � 1 � ∑

�t1�t2�
�read1

P��s10�s20���t
1� t2��

�
r1

2r1� r5

On the other hand, as none amongst the successors of s10 in M1 satisfies idle1, then

obviously:

Prob�s10�X
�0�∞� read1� � 0

Thus we aim to show that

r1

2r1 � r5

 0�3 �

3
10
�� 0

0�3�2r1� r5�� r1

�r1 � r5�
�

3
10�2r1� r5�� r1

�r1 � r5�

We have by rearrangement that

r1

2r1 � r5

3
10
� r1

3
4

r5

By substituting r1

3
4r5 in 3

10�2r1 � r5�� r1 we have that:

3
10

�
6
4

r5 � r5��
3
4

r5

3
10

�2r1 � r5�� r1

5.2. Compositional semantics for single-component Next formulae 139

Clearly, however 3
10�

6
4r5 � r5��

3
4r5 � 0, which proves

r1

2r1 � r5

 0�3�� 0

0�3�2r1� r5�� r1

�r1 � r5�
�

3
10�2r1� r5�� r1

�r1 � r5�

�

5.2.2 Steady-state bounded Next (S�p�P�p�X
I�ψk���)

Theorem 5.2.1 describes the equivalences which allow for decomposed checking of

single-component time-bounded Next formulae. The next step is to consider the steady-

state formulae whose argument is a single-component Next formula, namely formulae

like S�p�P�p�X
I�ψk���. A number of preliminary definitions are needed in order to

determine a compositional semantics for that case.

Definition 5.2.2 Let M be a bidimensional Boucherie process, ψk a non-probabilistic

formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison

relation, I � �a�b� � ��0 a time interval and s j � S j a state of component M j. The

following two formulae are defined:

SXlow�ψk��� p� I�s
j��

����
���
�

sk�Sk�R

�
atsk �ψk

	
if s j � S j�R

�
sk�Sk

�
P� p̂�XÎ ψk�

	
if s j � S j�R

(5.2.10)

SXup�ψk��� p� I�s
j��

����
���
�

sk�Sk�R

�
atsk ��ψk

	
if s j � S j�R

�
sk�Sk

�
P� p̂�XÎ ψk�

	
if s j � S j�R

(5.2.11)

where �p̂� Î� � h�p�ψk�Mk��s1�s2�� I� and atsk represents the conjunction of atomic

propositions which uniquely identifies the state sk, namely atsk �
�

ak�Lk�sk� ak.

In practice, SXlow�ψk��� p� I�s j� and SXup�ψk��� p� I�s j� are template formulae which

depend on a given state s j of component M j. Their importance is beacuse they allow to

characterise those state of component Mk which coupled with s j result in a state �s1�s2�

which validates a single-component time-bounded Next formula like P�p�XI ψk�. This

result will be shown in the next lemma.

140 Chapter 5. Compositional CSL model checking: Next formulae

Lemma 5.2.1 Let M be a bidimensional Boucherie process, ψk a non-probabilistic

formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison

relation and I � �a�b�� ��0 a time interval. Then the following holds:

�s1�s2� ��P�p�X
I�ψk����

�������
������

sk ��k SXlow�ψk��� p� I�s j� if low��� p���
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�

�

sk ��k SXup�ψk��� p� I�s j� if up��� p�
(5.2.12)

Proof. See Lemma A.0.1 in Appendix A.

As a consequence of the definition of the template formulae SXlow�ψk��� p� I�s j� and

SXup�ψk��� p� I�s j�, we observe that, those states of Mk for which there exists at

least a state s j of M j by coupling with which they result in a state �s1�s2� satisfy-

ing a formula P�p�XI ψk�, are identified by means of the disjunction of the formulae

SXlow�ψk��� p� I�s j� (SXlow�ψk��� p� I�s j�), which is:

�
s j�S j

SXlow�ψk��� p� I�s
j� or

�
s j�S j

SXup�ψk��� p� I�s
j�

In the next definition two templates2 formulae structurally similar to the ones described

in Definition 5.2.2, are introduced. The principal difference is in that they do not

depend on a given state s j of M j.

Definition 5.2.3 Let M be a bidimensional Boucherie process, ψk a non-probabilistic

formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison

relation and I � �a�b�� ��0 a time interval. The following two formulae are defined:

2It should be noted that, in order to improve the readability, the templates SX low�ψk��� p� I� and
SXup�ψk��� p� I� here defined as well as SXlow�ψk��� p� I� and SXup�ψk��� p� I� in Definition 5.2.2, are
expressed as disjunctions, even though the disjunctive connective � is not part of the standard CSL
syntax. However, since the set of connectives the CSL syntax is based on is adequate, the use of the
disjunction is perfectly legal .

5.2. Compositional semantics for single-component Next formulae 141

SXlow�ψk��� p� I��
� �

sk�Sk�R

�
atsk �

�
ψk

�
s j�S j�R

P� p̂�X
Î�ψk��

�	�

� �
sk�Sk�R

�
atsk �

�
P�p�X

I�ψk��
	�� (5.2.13)

SXup�ψk��� p� I��
� �

sk�Sk�R

�
atsk �

�
�ψk

�
s j�S j�R

P� p̂�X
Î�ψk��

�	�

� �

sk�Sk�R

�
atsk �

�
P�p�X

I�ψk��
	�� (5.2.14)

where �p̂� Î� � h�p�ψk�Mk��s1�s2�� I� and atsk represents the conjunction of atomic

propositions which uniquely identifies the state sk, namely atsk �
�

ak�Lk�sk� ak.

The following proposition shows the semantic equivalences which relate the

“state-independent” templates formulae SXlow�ψk��� p� I� and SXup�ψk��� p� I� with

their “state-dependent” counterparts SXlow�ψk��� p� I�s j� SXup�ψk��� p� I�s j�.

Proposition 5.2.1 Let M be a bidimensional Boucherie process, ψk a non-probabilistic

formula as in (5.2.1), p � �0�1�,�� �����
��� and I � �a�b�� ��0 a time interval.

The following semantic equivalences holds:

SXlow�ψk��� p� I��
�

s j�S j

SXlow�ψk��� p� I�s
j�

SXup�ψk��� p� I��
�

s j�S j

SXup�ψk��� p� I�s
j�

Proof. Starighforward.

The above result tells us that the states of Mk which map on a state �s1�s2� sat-

isfying a formula P�p�XI ψk�, are completely identified by means of the formula

SXlow�ψk��� p� I� (SXup�ψk��� p� I�).

The formulae SXlow�ψk��� p� I� and SXup�ψk��� p� I� are relevant in aiming for

a decomposed semantics of stedy-state properties like S�p�P�p�XI�ψk��� (see The-

orem 5.2.2). Next, an example showing a SXlow�ψk��� p� I� formula in practice, is

provided.

142 Chapter 5. Compositional CSL model checking: Next formulae

Example 5.2.2 Referring to the Boucherie process of our running example, let us sup-

pose we are interested in the states satisfying the probabilistic bounded Next formula

P�0�3�X �2�5� read1�. Since �
�0�3� represents a lower bound check, then we may con-

sider the template formula SXlow�read1�
�0�3� �2�5��, which we can readily compute

from (5.2.13) and referring to the state-spaces shown in Figure 5.1 and Figure 5.2.

SXlow�read1�
�0�3� �2�5�� ��
ats10��read1P� p̂a�X

Îa read1��
�
�

ats11��read1P� p̂b�X
Îb read1��

�
�

�ats12�P�0�3�X
�2�5� read1���ats13�P�0�3�X

�2�5� read1��

�ats14�P�0�3�X
�2�5� read1���ats15�P�0�3�X

�2�5� read1��
�

where

�p̂a� Îa� � h�0�3�read1�M1��s10�s20�� �2�5��

�p̂b� Îb� � h�0�3�read1�M1��s10�s21�� �2�5��

�

In essence, we are aiming to prove that checking that the probability for a bidimen-

sional Boucherie process to satisfy, at steady-state, the bounded Next formula

�P�p�XI�ψk�� is � p, is equivalent to checking that the probability for the compo-

nent process Mk to satisfy SXlow�ψk��� p� I�, (or SXup�ψk��� p� I�), at steady-state, is

� p�, where p� is a derived probability whose value depends on p and other factors.

The derivation of p� is the issue we are going to address next. For that reason, some

relevant sets of states and some constants have to be characterised.

Definition 5.2.4 Let tk � Sk be a state of the component Mk of a bidimensional

Boucherie process, ψk a non-probabilistic formula as in (5.2.1), p � �0�1� a proba-

bility bound,�� �����
��� and I � �a�b�� ��0 a time interval. The following two

subsets of the state-space S j are defined:

Nextlow
j �tk�ψk� p��� I� � Next j�R�t

k�ψk� p��� I��Nextlow
j�R �tk�ψk� p��� I�

Nextup
j �tk�ψk� p��� I� � Next j�R�t

k�ψk� p��� I��Nextup
j�R�t

k�ψk� p��� I�

5.2. Compositional semantics for single-component Next formulae 143

where

Next j�R�t
k�ψk� p��� I� � �t j � S j�R : Satk�PXRj

�ψk� t
k� t j� p��� I� �� /0�

and the template formula PXR j
�ψk�sk�s j� p��� I�, is defined as:

PXRj
�ψk�s

k�s j� p��� I�� atsk �P� p̂�X
Î�ψk�� (5.2.15)

with �p̂� Î� � h�p�ψk�Mk��s1�s2�� I�, and where

Nextlow
j�R �tk�ψk� p��� I� �

����������
���������

�
t j�S j�R:�e�E j�t

j�a
�e�E j�t

j�b
��p
�t j� if tk ��k ψk �

tk � Sk�R

/0 if �tk ���k ψk�

�tk � Sk�R�

Nextup
j�R�t

k�ψk� p��� I� �

���������������
��������������

�
t j�S j�R:�e�E j�t

j�a
�e�E j�t

j�b
��p
�t j� if tk ��k ψk �

tk � Sk�R

S j�R if tk ���k ψk �

tk � Sk�R

/0 if tk � Sk�R

When considering the states of Sat�P�p�XI�ψk��� we can refer to a row-by-row (or

column-by-column) partition of the state-space, namely S �
�

s1�S1
�s1�S2��R1R2 (or

S �
�

s2�S2
�S1� s2� �R1R2). In that sense, each row (s1� t1� � � �) or column (s2� t2� � � �),

can have either none, one or many states satisfying P�p�XI�ψk�� and to each of them

corresponds an equivalent derived condition, described by Theorem 5.2.1, which sk

is ensured to fulfil. We can describe that situation by saying that each state of a row

s1� S j �R1R2 (or column S1� s2 �R1R2), which satisfies P�p�XI�ψk�� maps on sk.

Moreover each row (column) sk can be further partitioned according to the resource

possession for M j: �sk� S j�R� (�S j�R� sk�) denotes the sk row’s (column’s) states

144 Chapter 5. Compositional CSL model checking: Next formulae

where M j does not hold R while �sk� S j�R� (�S j�R� sk�) are those states where M j

holds R.

The sets of states Nextlow
j �tk�ψk� p��� I� and Nextup

j �tk�ψk� p��� I�, introduced in

the above definition, allow for the row-wise (column-wise) partition of

Sat�P�p�XI�ψk���, as the following two lemmas will show.

Lemma 5.2.2 Let �s1�s2� � S be a state of a bidimensional Boucherie process, ψk a

non-probabilistic formula as in (5.2.1), p � �0�1� a probability bound,

�� �����
���, I � �a�b�� ��0 a time interval. The state �s1�s2� satisfies the for-

mula Sat�P�p�XI�ψk��� if and only if its j-projection, s j, is either in

Nextlow
j �sk�ψk� p��� I� if low��� p�, or in Nextup

j �sk�ψk� p��� I�, if up��� p�.

�s1�s2��Sat�P�p�X
I�ψk�����

����
���

s j � Nextlow
j �sk�ψk� p��� I� if low��� p�

s j � Nextup
j �sk�ψk� p��� I� if up��� p�

Proof. See Lemma A.0.2 in Appendix A.

Relying on the above result, the following lemma, showing a row-wise (column-wise)

partition for Sat�P�p�XI�ψk���, can straightforwardly be proved.

Lemma 5.2.3 Let tk � Sk be a state of the component Mk of a bidimensional Boucherie

process, ψk a non-probabilistic formula as in (5.2.1), p � �0�1� a probability bound,

�� �����
���, I � �a�b�� ��0 a time interval. The satisfiability set for the formula

P�p�XI�ψk�� is partitionable in the following way:

Sat�P�p�X
I�ψk����

���������
��������

�
tk�Satk�SXlow�ψk���p�I���t

k�Nextlow
j �tk�ψk� p��� I��

if low��� p�

�
tk�Satk�SXup�ψk���p�I���t

k�Nextup
j �tk�ψk� p��� I��

if up��� p�

Proof. See Lemma A.0.3 in Appendix A.

5.2. Compositional semantics for single-component Next formulae 145

In aiming for a compositional semantics for S�p�P�p�X
I�ψk���, it is relevant to pro-

vide a characterisation of those states of a row (column) sk which satisfy P�p�X
I�ψk��.

The sets Nextlow
j �tk�ψk� p��� and Nextup

j �tk�ψk� p���, introduced in Definition 5.2.4,

provide such a characterisation and by means of them the equivalent bound p� for the

steady-state probability of the P�p�X
I�ψk�� states, will be derived. The notation for

the steady-state probability of the states of the row (column) Next low
j �tk�ψk� p��� and

Nextup
j �tk�ψk� p��� is introduced in the following remark.

Remark 5.2.1 Let tk � Sk be a state of the component Mk of a bidimensional Bouche-

rie process, ψk a non-probabilistic formula as in (5.2.1), p � �0�1� a probability bound,

� � �����
���, I � �a�b�� ��0 a time interval. The steady-state probability of the

sets Nextlow
j �tk�ψk� p��� and Nextup

j �tk�ψk� p��� is denoted as:

π j�Nextlow
j �tk�ψk� p���� � ∑

t j�Nextlow
j �tk�ψk�p���

π j�t
j�

while

π j�Nextup
j �tk�ψk� p���� � ∑

t j�Nextup
j �tk�ψk�p���

π j�t
j�

It is relevant to be able to distinguish which, amongst the states of Mk, is the one whose

associated set Nextlow
j �tk�ψk� p��� (or Nextup

j �tk�ψk� p���) has the highest steady-

state probability. The following remark introduces the notation adopted for such a

state.

Remark 5.2.2 Let ψk be a non-probabilistic formula as in (5.2.1), p � �0�1� a proba-

bility bound,� � �����
���, I � �a�b�� ��0 a time interval, we denote by tk
Xmax �

Sk, the state of component Mk which maximises the steady-state probability of its as-

sociated set Nextlow
j �tk

Xmax�ψk� p��� (Nextup
j �tk

Xmax�ψk� p���).

tk
Xmax � Sk : �tk � Sk� t

k �� tk
Xmax �

π j�Nextlow
j �tk

Xmax�ψk� p��� I��
 π j�Nextlow
j �tk�ψk� p��� I��

The following definition introduces the notation adopted to indicate the steady-state

probability of the set Nextlow
j �tk

Xmax�ψk� p��� (Nextup
j �tk

Xmax�ψk� p���), which is the

maximum value amongst the π j�Nextlow
j �tk�ψk� p���� of every state tk � Sk.

146 Chapter 5. Compositional CSL model checking: Next formulae

Definition 5.2.5 Let ψk be a non-probabilistic formula as in (5.2.1), p � �0�1� a prob-

ability bound, � � �����
��� and I � �a�b�� ��0 a time interval. The following

constant is defined:

πmax
j �ψk� p��� I� �

�
π j�Nextlow

j �tk
Xmax�ψk� p���� iff low�p���

π j�Nextup
j �tk

Xmax�ψk� p���� iff up�p���

In the next definition two important constants are introduced, namely Clow�ψk� p��� I�

and Cup�ψk� p��� I�. They represent the probability for component Mk to be in a

state sk, at steady-state, weighted with the deviation of the steady-state probability

π j�Nextlow
j �tk�ψk� p��� I�� (π j�Nextlow

j �tk�ψk� p��� I��), from the maximum

πmax
j �ψk� p��� I�.

Definition 5.2.6 Let ψk be a non-probabilistic formula as in (5.2.1), p � �0�1� a prob-

ability bound, � � �����
��� and I � �a�b�� ��0 a time interval. The following

constants are defined:

Clow�ψk� p��� I� � ∑
tk�Satk�SXlow�ψk���p�I��

tk ��tk
Xmax

πk�t
k��πmax

j �ψk� p��� I��π j�Nextlow
j �tk�ψk� p��� I���

Cup�ψk� p��� I� � ∑
tk�Satk�SXup�ψk���p�I��

tk ��tk
Xmax

πk�t
k��πmax

j �ψk� p��� I��π j�Nextup
j �tk�ψk� p��� I���

Finally, the following theorem determines the compositional semantics for steady-state

bounded Next formulae.

Theorem 5.2.2 (Steady-state Bounded single-component Next) Let M be a bidimen-

sional Boucherie process, ψk a non-probabilistic single-component formula as in (5.2.1),

p� p� �0�1� two probability bounds,��� � ����
��� two comparison relations and

I � �a�b�� ��0 a time interval. The following equivalences hold:

�� S�p�P�p�X
I�ψk����

����
���
��k S�p�low

�SXlow�ψk��� p� I�� if low�p���

��k S�p�up
�SXup�ψk��� p� I�� if up�p���

(5.2.16)

5.2. Compositional semantics for single-component Next formulae 147

where p�low � p�GClow�ψk�p���I�
Gπmax

j �ψk�p���I�
and p�up � p�GCup�ψk�p���I�

Gπmax
j �ψk�p���I�

while G is the normalising

constant for the product-form solution, of M .

Proof. We aim to show the validity of the two implications ��� and ��� of (5.2.16).

For brevity we consider here only the first case, i.e. we assume low�p��� (the proof

for up�p���, is similar). Furthermore we focus on the case k � 1 (hence j � 2), which

means we consider here a formula ψ1 which refers to component M1.

��� If �� S�p�P�p�X
I�ψ1�� then from the CSL semantics

�
∑

�t1�t2��Sat�P�p�X
Iψ1��

π�t1� t2�
�
� p

which from the product-form solution, results in

�
∑

�t1�t2��Sat�P�p�X
Iψ1��

G �π1�t
1�π2�t

2�
�
� p (5.2.17)

By applying the row-wise partition of Sat�P�p�X
Iψ1� (see Lemma 5.2.3) to the sum

in (5.2.17) we obtain:

G
�

∑
t1�Sat1�SXlow�ψ1���p�I��

π1�t
1� ∑

t2�Nextlow
2 �t1�ψ1�p���I�

π2�t
2�
�
� p

From Remark 5.2.1 also ∑t2�Nextlow
2 �t1�ψ1�p���I�

π2�t2�� π2�Nextlow
2 �t1�ψ1� p��� I��. Hence:

G �
�

∑
t1�Sat1�SXlow�ψ1���p�I��

π1�t
1� �π2�Nextlow

2 �t1�ψ1� p��� I��
�
� p

from which, straightforwardly,

G �π2�Nextlow
2 �t1

Xmax�ψ1� p��� I�� ∑
t1�Sat1�SXlow�ψ1���p�I��

π1�t
1�� �p�G �Clow�t1�ψ1� p��� I���

Thus,

�
∑

t1�Sat1�SXlow�ψ1���p�I��

π1�t
1�
�
�

�p�G �Clow�t1�ψ1� p��� I��

G �π2�Nextlow
2 �t1

Xmax�ψ1� p��� I��

148 Chapter 5. Compositional CSL model checking: Next formulae

which proves

��1 S
�

�p�G�Clow�t1�ψ1�p���I��

G�π2�Nextlow
2 �t1Xmax�ψ1�p���I��

�SXlow�ψ1��� p� I��

(�) By reversing (�).

�

Example 5.2.3 Still referring to our running example (see Figure 5.1 and Figure 5.2),

let us suppose we are interested in checking whether the probability, in the long-run,

for those states which satisfy the bounded Next P�0�3�X �2�5� read1�, is
 0�5. In terms

of the syntax in (5.2.1), this is represented by the formula

S�0�5�P�0�3�X
�2�5� read1��

According to Theorem 5.2.2, we expect

�� S�0�5�P�0�3�X
�2�5� read1������1 S�p�low

�SXlow�read1�
�0�3� �2�5���

where p�low � 0�5�GClow�read1�0�3����2�5��
Gπmax

2 �ψ1�0�3����2�5��
, which is to say:

∑
�t1�t2�
�P�0�3�X �2�5� read1�

G �π1�t
1�π2�t

2��
 0�5 �� ∑
t1
�1SXlow�read1���0�3��2�5��

π1�t
1�
 p�low (5.2.18)

Let us verify whether this is the case. From Figure 2.8, we know that �s12�s20� is the

only state where component M1 is reading the shared register, hence the only potential

candidate for satisfying the Next formula P�0�3�X �2�5� read1� is its unique predecessor

�s10�s20�. Let us assume that, in fact, �s10�s20� �� P�0�3�X �2�5� read1�. In this case the

left sum in the above equivalence is

∑
�t1�t2�
�P�0�3�X �2�5� read1�

G �π1�t
1�π2�t

2� � G �π1�s10�π2�s20�

In Example 5.2.2, the formula SXlow�read1�
�0�3� �2�5�� has been shown. From Fig-

ure 2.7, we know that read1 is true only in state s12, which has a unique predecessor,

namely s10. Furthermore, since we are assuming �s10�s20� �� P�0�3�X �2�5� read1�, then

from Theorem 5.2.1 also, as it has been shown in Example 5.2.1,

s10 ��1 P
�

0�3��2r1�r5�
r1�r5

�X
�
2��2r1�r5�

r1�r5
�
5��2r1�r5�

r1�r5
�
read1�

5.3. Compositional model-checking of single-component Next 149

From this it is straightforward to show that there is only one state satisfying

SXlow�read1�
�0�3� �2�5��, namely Sat1�SXlow�read1�
�0�3� �2�5��� � �s10�. Hence,

s10, is also the maximum (i.e. s10 is the state which maximises the steady-state proba-

bility of the associated set Next low
2 �s10�read1�0�3�
�), which means

πmax
2 �read1�0�3�
� �2�5�� � π2�Nextlow

2 �s10�read1�0�3�
��

As a result, the constant Clow�read1�0�3�
� �2�5�� (see Definition 5.2.6), is null. In

order to compute the value of πmax
2 �ψ1�0�3�
� �2�5��, we need to determine the set

Nextlow
2 �s10�read1�0�3�
�, which from Definition 5.2.4 we know consists of two parti-

tions, namely Nextlow
2�R

�s10�read1�0�3�
� and Nextlow
2�R �s10�read1�. As s10 ���1 read1 then

Nextlow
2�R �s10�read1� � /0. Moreover, as a consequence of the assumptions we made, it

is easy to show that Nextlow
2�R

�s10�read1�0�3�
� � �s20� (i.e. s20 is the only state which

coupled with s10, results in a state, �s10�s20�, which satisfies P�0�3�X �2�5� read1�). Then

clearly πmax
2 �read1�0�3�
� �2�5��� π2�s20�. Thus the equivalent probability value p�low

is equal to:

p�low �
0�5�GClow�read1�0�3�
� �2�5��

Gπmax
2 �ψ1�0�3�
� �2�5��

�
0�5

G �π2�s20�

Since s10 is the only state of M1 satisfying SXlow�read1�
�0�3� �2�5�� then the right-

hand side sum in equivalence (5.2.18) is

∑
t1
�1SXlow�read1���0�3��2�5��

π1�t
1� � π1�s10�

But this proves that the equivalence (5.2.18) actually holds, in fact:

G �π1�s10�π2�s20�
 0�5 �� π1�s10�

0�5

G �π2�s20�

�

5.3 Compositional model-checking of single-component

Next

The properties proved in the previous section of this chapter call for the formal char-

acterisation of methods for a decomposed verification of single-component bounded

150 Chapter 5. Compositional CSL model checking: Next formulae

Next formulae (i.e. P�p�X
I�ψk��) as well as steady-state bounded Next formulae (i.e.

S�p�P�p�X
I�ψk���). Algorithm 5.3.1 describes a procedure for decomposed checking

of a probabilistic bounded Next. Algorithm 5.3.3, instead, shows such a procedure for

steady-state bounded Next formulae.

Algorithm 5.3.1 (P�p�X
I�ψk��) Let �s1�s2� be a state of a bidimensional Boucherie

process M with components M1 and M2. Furthermore let ψk be a single-component

formula, p � �0�1� a probability bound, � � �����
��� and I � �a�b�� ��0 a time

interval. The following procedure can be used for checking the truth of the formula

P�p�X
I�ψk�� with respect to state �s1�s2�.

Algorithm (�s1�s2� �� P� p̂�X
Î�ψk��).

IF �s1�s2� � Rj THEN

- �p̂� Î� � h�p�ψk�Mk�s1�s2� I�;

- compute Satk�P�p̂�X
Î�ψk��;

- IF sk � Satk�P�p̂�X
Î�ψk�� THEN return YES; ELSE return NO;

ELSE

IF low��� p� THEN

IF �e�a�Ej�s j�� e�b�Ej�s j�� ��p THEN return NO;

ELSE

- compute Satk�ψk�;

- IF sk � Satk�ψk� THEN return YES ELSE return NO;

ELSE

IF �e�a�Ej�s j�� e�b�Ej�s j���p THEN return YES;

ELSE

- compute Satk�ψk�;

- IF sk � Satk�ψk� THEN return NO; ELSE return YES;

�

The procedure for decomposed checking of steady-state bounded Next formulae ba-

sically requires the instantiation of some template formulae and the application of the

5.3. Compositional model-checking of single-component Next 151

model-checking algorithm to those formulae with respect to component Mk.

The following algorithm characterises the procedure for determining which amongst

the states of a row (column) sk satisfy the formula P�p�X
I�ψk��. The compositional

checking of S�p�P�p�X
I�ψk��� relies on it.

Algorithm 5.3.2 (Nextlow
j �sk�ψk� p��� I�, Nextup

j �sk�ψk� p��� I�) Let M be a bidimen-

sional Boucherie process with components M1 and M2 and sk a state of component

Mk. Furthermore let ψk be a single-component formula, p� �0�1� a probability bound,

�� �����
��� and I � �a�b�� ��0 a time interval. The sets Next j�R�s
k�ψk� p��� I�,

Nextlow
j�R

�sk�ψk� p��� I� and Nextup
j�R
�sk�ψk� p��� I� can be determined by means of the

following procedures:

Algorithm A (Next j�R�s
k�ψk� p���).

1. Next j�R�s
k�ψk� p��� � /0

2 FOR every s j � S j�R DO

- instantiate the template formula

PXR j
�ψk�s

k�s j� p���� atsk �P� p̂�X
Î�ψk��

where �p̂� Î� � h�ψk�Mk�sk�s j� I�.

- check for emptyness the set Satk�PXR j
�ψk�sk�s j� p����. Then

Next j�R�s
k�ψk� p����

�
Next j�R�s

k�ψk� p��� if Satk�PXRj
�ψk�sk�s j� p���� � /0

Next j�R�s
k�ψk� p�����sk� if Satk�PXRj

�ψk�sk�s j� p���� �� /0

�

Algorithm B (Nextlow
j�R

�sk�ψk� p��� I�).

1. Nextlow
j�R

�sk�ψk� p��� I� � /0

152 Chapter 5. Compositional CSL model checking: Next formulae

2. IF sk � Sk�R THEN return;

ELSE

- compute Satk�ψk�;

- IF sk �� Satk�ψk� THEN return;

ELSE

FOR every s j � S j�R DO

Nextlow
j�R �sk�ψk� p��� I��

��
� Nextlow

j�R
�sk�ψk� p��� I� if �e�a�Ej�s j�� e�b�Ej�s j�� � �p

Nextlow
j�R

�sk�ψk� p��� I���s j� if �e�a�Ej�s j�� e�b�Ej�s j���p

�

Algorithm C (Nextup
j�R
�sk�ψk� p��� I�).

1. Nextup
j�R
�sk�ψk� p��� I� � /0

2. IF sk � Sk�R THEN return;

ELSE

- compute Satk�ψk�;

- IF sk �� Satk�ψk� THEN Nextup
j�R
�sk�ψk� p��� I� � S j�R;

ELSE

FOR every s j � S j�R DO

Nextlow
j�R �sk�ψk� p��� I��

��
�

Nextlow
j�R

�sk�ψk� p��� I� if �e�a�Ej�s j�� e�b�Ej�s j�� � �p

Nextlow
j�R

�sk�ψk� p��� I���s j� if �e�a�Ej�s j�� e�b�Ej�s j���p

�

Relying on the above algorithms, the method for a decomposed verification of the

steady-state probability of single-component bounded Next formulae is defined in the

following manner.

5.3. Compositional model-checking of single-component Next 153

Algorithm 5.3.3 (Compositional model-checking of S�p�P�p�X
I�ψk���) Let �s1�s2�

be a state of a bidimensional Boucherie process M with components M1 and M2, ψk

a single-component formula, p� p � �0�1� two probability bounds and ��� � �����

���. The following algorithm can be applied for decomposed checking of the formula

S�p�P�p�X
I�ψk���

with respect to M : it returns YES if S�p�P�p�X
I�ψk��� is satisfied in M or NO if it is

not.

1. The pair ��� p� is considered and the template formula SX is instantiated by means

of the parameters ψk,�,p and I.

SX �

�
SXlow�ψk� p��� I� if low��� p�

SXup�ψk� p��� I� if up��� p�

2. Satk�SX� is computed by application of the CSL model-checking algorithm with

respect to component Mk.

3. FOR every sk � Satk�SX� DO

- compute Next j�sk� � Next j�R�s
k��Next j�R�sk� where

Next j�R�s
k� � Next j�R�s

k�ψk��� p� I�

and

Next j�R�s
k� �

�
Nextlow

j�R �s
k�ψk� p��� I� if low��� p�

Nextup
j�R�s

k�ψk� p��� I� if up��� p�

are computed by means of the procedure described in Algorithm 5.3.2.

4.

- Determine the state sk
MAX � Satk�SX� such that π j�Next j�sk

MAX�� is maximum.

- Let πMAX
j � π j�Next j�sk

MAX��.

154 Chapter 5. Compositional CSL model checking: Next formulae

5. Compute the value C given by:

C � ∑
tk�Satk�SX�

tk ��sk
MAX

πk�t
k��πMAX

j �π j�Next j�t
k���;

6. Compute the equivalent probability bound p�

p� �
p�G �C

G �πMAX
j

;

7. IF πk�Satk�SX��� p� THEN return YES; ELSE return NO.

�

5.4 Compositional model-checking of general Next

So far, in the chapter, we have considered only single-component non-probabilistic

formulae (i.e. ψk) as possible arguments of a bounded Next connective. In this sec-

tion, we investigate the existence of a compositional method for checking formulae

given by the application of the bounded Next operator to a non-probabilistic general

argument (i.e ψ12). The new version of the syntax for general state formulae (i.e. φ12)

(an extension of the one introduced in Section 4.3.2) is characterised in the following

manner3:

φ12 ::� φ1�φ2 � φ2�φ1 � φk�φ12 � φ12�φk � �φ12 � φ12�φ12 � ξ12 � ϕ12

ψ12 ::� ψ1�ψ2 � ψ2�ψ1 � ψk �ψ12 � ψ12�ψk � ψ12�ψ12 � �ψ12

ξ12 ::�S�p�ψ12�

ϕ12 ::�P�p�X
I ψ12�

(5.4.1)

where φ1 and φ2 are as in (5.2.1).

3As one can notice from (5.4.1), the application of the steady-state connective to general bounded
Next formulae is not allowed in the given syntax.

5.4. Compositional model-checking of general Next 155

A revised method for computing Prob�s�XI φ�.
Before facing the study of a compositional approach for checking bounded Next gen-

eral formulae, we need to consider the method for checking bounded Next formulae

which can be found in the literature.

From the CSL semantics (see Proposition 2.3.2), we know that the probability of

reaching a φ-state in one step from a state s of an arbitrary CTMC within a time bound

I � �a�b�, is given by:

Prob�s�XI φ� � �e�a�E�s�� e�b�E�s�� ∑
t
�φ

P�s� t� (5.4.2)

In essence, the above equation tells us that the probability of satisfying φ in one step

from s without violating the bounding interval I is given by the product of the proba-

bility of reaching a φ state, from s, in one step (i.e ∑t
�φ P�s� t�), and the probability of

leaving s within I � �a�b� (i.e. such a probability being given by � �e�a�E�s��e�b�E�s��).

In [5] the authors claim that the state vector

Prob�XI φ� � �� � � �Prob�s�XI φ�� � � ��

can be obtained by multiplying the probability matrix P by the vector bI ,

Prob�XI φ� � P �bI

where bI is defined as:

bI�s� �

�
e�a�E�s�� e�b�E�s� if s � Sat�φ�
0 otherwise

(5.4.3)

However, the proposed algorithm, leads to a wrong result. To understand why, let

us consider a simple example. In Figure 5.3 the oriented graph representing a very

simple three state CTMC is depicted. The arcs of each transition are labelled with the

corresponding rate, resulting in the following probability matrix:

P �

�
�

0 1
3

2
3

1 0 0

1 0 0

�
���

156 Chapter 5. Compositional CSL model checking: Next formulae

� �

� �

��

��

�� �� �

Figure 5.3: A simple arbitrary CMTC M

We then consider an arbitrary state formula φ and we further assume that state s2 is

the only one satisfying φ. Finally, we consider I � �2�5� as the bounding time interval.

By applying (5.4.2) we can compute the probability of satisfying the bounded Next

formula �X �2�5� φ� for each one of the three state s1�s2 and s3. This is straightforward

because, since we are assuming s2 to be the only state satisfying φ, then the only state

with a non-zero probability of reaching a φ-state, in one step, is clearly s1. Hence:

Prob�s2�X
�2�5� φ� � Prob�s3�X

�2�5� φ� � 0

Prob�s1�X
�2�5� φ� � �e�2�3� e�5�3�P�s1�s2�

�
�e�6� e�15�

3

as clearly E�s1� � 3 and P�s1�s2� �
1
3 . The vector Prob�X �2�5��φ� is then:

Prob�X �2�5� φ� � �
�e�6� e�15�

3
�0�0�

From (5.4.3), we can then derive the elements of the state vector b�2�5�:

b�2�5��s1� � b�2�5��s3� � 0

b�2�5��s2� � �e�2� e�5�

as E�s2� � 1. Hence the state vector b�2�5� is:

b�2�5� � �0� �e�2� e�5��0�

5.4. Compositional model-checking of general Next 157

Hence by applying the algorithm proposed in [5], we need to determine the product of

the matrix P by the vector b�2�5�, which is:

P �b�2�5� � �
�e�2� e�5�

3
�0�0�

But this proves that, contrary to what is claimed in [5], actually:

Prob�X �2�5� φ� �� P �b�2�5�

The problem with the above method, has to do with the definition of the state vector

bI . In fact, the value of bI�s� for a state s satisfying φ (i.e. bI�s� � �e�a�E�s��e�b�E�s��),

represents the probability of leaving a φ state, within I. However, in order to calculate

Prob�XI φ�, the probability of reaching a φ state within I is what is needed.

In the following an alternative algorithm for computing Prob�X I φ�, is introduced.

It relies on the definition of the diagonal matrix IeI , whose elements represents the

probability of exiting each state within the bounding interval I, and of the state-vector

iφ, characterising the φ states. This is achieved by means of the following formal

definitions.

Definition 5.4.1 Let M � �S�Q�L� be an arbitrary labelled CTMC with state-space

S � �s1�s2� � � � �sn� and I � �a�b� � ��0 a time interval. The state-vector eI with ele-

ments w

eI�s� � e�a�E�s�� e�b�E�s�

is defined. The coefficient eI�s� denotes the probability of exiting the state s within I.

We observe that, by means of the above definition, the expression (5.4.2) for the prob-

ability of reaching in one step, from s, a state satisfying a certain formula φ within the

bounding interval I, can be re-formulated in the following way:

Prob�s�XI φ� � �e�a�E�s�� e�b�E�s�� � ∑
t
�φ

P�s� t� � eI�s� � ∑
t
�φ

P�s� t� (5.4.4)

158 Chapter 5. Compositional CSL model checking: Next formulae

The diagonal matrix consisting of coefficients eI�s� is formally introduced in the next

definition.

Definition 5.4.2 Let M � �S�Q�L� be a labelled CTMC with state-space

S � �s1�s2� � � � �sn� and I � �a�b� � ��0 a time interval. The diagonal matrix IeI is

defined as

IeI � diag�eI� �

�
�

eI�s1� 0 0 � � � 0

0 eI�s2� 0 � � � 0

0 0
. . . � � � 0

...
...

. . .
...

0 0 0 � � � eI�sn�

�
���������

where the coefficient eI�s� is as in Definition 5.4.1.

The vector characterising the states satisfying a given formula φ is described in the

following definition.

Definition 5.4.3 Let M ��S�Q�L� a labelled CTMC with state-space S� �s1�s2� � � � �sn�

and φ a CSL state formula. The state vector iφ is defined as:

iφ�s� �

�
1 if s �� φ
0 otherwise

Finally, the following proposition provides us with a method for computing the vector

Prob�XI φ� representing the probability for each state of a CTMC to fulfil a bounded

Next formula �XI φ�.

Proposition 5.4.1 Let M � �S�Q�L� be a labelled CTMC with state-space

S � �s1�s2� � � � �sn�, and probability matrix P. Let φ be a CSL state formula and

I � �a�b� � ��0 a time interval. The state vector Prob�X I φ� � �� � � �Prob�s�XI φ�� � � ��
is given by the product:

Prob�XI φ� � �IeI �P� � iφ

5.4. Compositional model-checking of general Next 159

Proof.

To prove that the state vectors Prob�X I φ� and �IeI �P� � iφ are identical, we need to

show that for any state sm � S, Prob�XI φ��sm� � ��IeI �P� � iφ��sm�. The m-th element

of Prob�XI φ�, is, by definition,

Prob�XI φ��sm� � Prob�sm�X
I φ� � eI�sm� � ∑

si
�φ
P�sm�si�

Let us consider the vector �IeI �P� � iφ. Let the transition probability matrix P be:

P �

�
�

p11 p12 � � � � � � p1n

p21 p22 � � � � � � p2n
...

... � � � � � �
...

pn1 pn2 � � � � � � pnn

�
������

The product of the diagonal matrix IeI by the transition probability matrix P leads to

the following matrix:

IeI �P �

�
�

eI�s1��p11 eI�s1��p12 � � � � � � eI�s1��p1n

eI�s2��p21 eI�s2��p22 � � � � � � eI�s2��p2n
...

... � � � � � �
...

eI�sn��pn1 eI�sn��pn2 � � � � � � eI�sn��pnn

�
������

The m-th element of the vector �IeI �P� � iφ, is given by the product of the m-th row of

the matrix IeI �P by iφ, which is:

��IeI �P� � iφ��sm� � �eI�sm��pm1�eI�sm��pm2� � � � �eI�sm��pmn� � iφ

� ∑
si
�φ

eI�sm� � pmi

� eI�sm� � ∑
si
�φ

P�sm�si�

which proves the equality between the state vectors Prob�X I φ� and �IeI �P� � iφ.

�

Relying on the result of Proposition 5.4.1, the following algorithm can be used, as

an alternative to the one proposed in [5], for checking a bounded Next formula with

respect to a state s.

160 Chapter 5. Compositional CSL model checking: Next formulae

Algorithm 5.4.1 Let s be a state of an arbitrary labelled CMTC M , φ a CSL state

formula and I � �a�b�� ��0 a time interval. The following procedure returns YES if

the formula P�p�XI φ� is valid in s, and NO otherwise.

Algorithm

- Compute Sat�φ�.

- Determine the state vector iφ, as:

iφ�s� �

�
1 if s �� φ
0 otherwise

- Determine the diagonal matrix IeI .

- Compute the state vector

�IeI �P� � iφ

- IF ��IeI �P� � iφ��s�� p THEN return YES; ELSE return NO;

�

Let us apply the above algorithm to determine Prob�X �2�5� φ� with respect to the CTMC

of Figure 5.3. The diagonal matrix Ie�2�5�
is given by:

Ie�2�5� �

�
�

e�2�3� e�5�3 0 0

0 e�2�1� e�5�1 0

0 0 e�2�1� e�5�1

�
���

which multiplied by the transition probability matrix P gives:

Ie�2�5� �P �

�
�

0 e�6�e�15

3
2��e�6�e�15�

3

e�2� e�5 0 0

e�2� e�5 0 0

�
���

The vector iφ is given by:

iφ � �0�1�0�

5.4. Compositional model-checking of general Next 161

Hence the product �Ie�2�5�
�P� � iφ results in:

�Ie�2�5� �P� � iφ � �
e�6� e�15

3
�0�0�

which proves

Prob�X �2�5� φ� � �Ie�2�5�
�P� � iφ

Having provided a method for checking bounded Next formulae with respect to an

arbitrary CTMC, we can get back to our original goal, which is the study of a compo-

sitional way for verifying general bounded Next formulae referring to a bidimensional

Boucherie process.

The characterisation of a decomposed approach for checking of bounded Next general

formulae, relies on a fundamental result which is proved in Theorem 5.4.1. In order to

prove that result, some preliminary definitions and properties need to be introduced.

The following definition introduces the idea of derived time interval (or k-projection

of a time interval). Given I � �a�b� and a state �s1�s2� of a bidimensional Boucherie

process, the interval Ik�s1�s2� is obtained by shifting I with respect to the probability

of leaving �s1�s2� with a k-move, if the shared resource is not held by component M j

in �s1�s2�, or with respect to the ratio E j�s j�

Ek�sk�
, if M j holds the resource in �s1�s2�.

Definition 5.4.4 (k-projection of a time interval I) Let I � �a�b�� ��0 be a time in-

terval, �s1�s2� a state of a bidimensional Boucherie process M and pk�s1�s2� the prob-

ability of making a k-move out of �s1�s2�. The time interval Ik�s1�s2� defined as:

Ik�s1�s2� �

�����
����

�
a

pk�s1�s2�
� b

pk�s1�s2�

�
if �s1�s2� �� Rj

�
a�Ej�s j�

Ek�sk�
�

b�Ej�s j�

Ek�sk�

�
if �s1�s2� � Rj

is called the k-projection of I with respect to the state �s1�s2�.

The relevance of the definition of k-projection of a time interval with respect to a

given state of a bidimensional Boucherie process, stands in the result of the following

162 Chapter 5. Compositional CSL model checking: Next formulae

proposition, which is: the probability of exiting a state �s1�s2� of a bidimensional

Boucherie process within the bound I, is equal to the probability of exiting the sk of

component Mk, within the k-projection of I, Ik�s1�s2�.

Proposition 5.4.2 Let �s1�s2� be a state of a bidimensional Boucherie process and

I � �a�b�� ��0 a time interval. The following equality holds:

eI�s
1�s2� � eIk�s1�s2��s

k�

where eI�� is as in Definition 5.4.1.

Proof.

A distinction with respect to the partitions of the Boucherie’s state-space, needs to be

considered.

1. �s1�s2� �� Rj. In this case, from Definition 5.4.4, we have:

Ik�s1�s2� �
� a

pk�s1�s2�
�

b

pk�s1�s2�

�

A further distinction has to be considered:

- �s1�s2��Rf ree. In this case E�s1�s2��E1�s1��E2�s2� and also pk�s1�s2�� Ek�sk�
E1�s1��E2�s2�

.

Hence:

eI�s
1�s2� � e�a��E1�s1��E2�s2��� e�b��E1�s1��E2�s2��

� e
�a�

�E1�s
1��E2�s

2��

Ek�s
k�

Ek�sk�
� e

�b�
�E1�s

1��E2�s
2��

Ek�s
k�

Ek�sk�

� e
� a

pk�s1�s2�
Ek�s

k�
� e

� b
pk�s1�s2�

Ek�s
k�

� e�
a

pk�s1�s2�
� b

pk�s1�s2�

��sk�

� eIk�s1�s2��s
k�

- �s1�s2� � Rk. In this case E�s1�s2� � Ek�sk� and also pk�s1�s2� � 1. Hence,

Ik�s1�s2� �
� a

pk�s1�s2�
�

b

pk�s1�s2�

�
� �a�b�

5.4. Compositional model-checking of general Next 163

and also:

eI�s
1�s2� � e�a�Ek�s

k�� e�b�Ek�s
k� � e�a�b��s

k� � eIk�s1�s2��s
k�

2. �s1�s2� � Rj. In this case, from Definition 5.4.4, we have:

Ik�s1�s2� �
�a �Ej�s j�

Ek�sk�
�
b �Ej�s j�

Ek�sk�

�

Furthermore E�s1�s2� � Ej�s j�, hence:

eI�s
1�s2� � e�a�Ej�s j�� e�b�Ej�s j�

� e
�a�

E j�s
j�

Ek�s
k�

Ek�sk�
� e

�b�
E j�s

j�

Ek�s
k�

Ek�sk�

� e� a�E j�s
j�

Ek�s
k�

�
b�E j�s

j�

Ek�s
k�

��sk�

� eIk�s1�s2��s
k�

�

The next theorem shows a basic equivalence regarding the semantics of general bounded

Next formulae. This result provides us with a decomposed relation which allows for

the definition of an algorithm for compositional checking of such formulae.

Theorem 5.4.1 Let �s1�s2� be a state of a bidimensional Boucherie process, p � �0�1�

a probability bound,�� �����
���, I � �a�b�� ��0 a time interval, ψ12 a formula

as in (5.4.1). The following equivalence holds:

�s1�s2� ��P�p�X
I ψ12����

∑
�α1�α2��DecSat�ψ12�

p1�s1�s2��Prob1�X
I1�s1�s2�α1��s

1��p2�s1�s2��Prob2�X
I2�s1�s2�α2��s

2�
�
� p

(5.4.5)

Proof.

(�) From the CSL semantics we know that if �s1�s2� �� P�p�XI ψ12� then

�e�a�E�s1�s2�� e�b�E�s1�s2�� �
�

∑
�t1�t2��Sat�ψ12�

P��s1�s2���t1� t2��
�
� p

164 Chapter 5. Compositional CSL model checking: Next formulae

which is:

eI�s
1�s2� �

�
∑

�t1�t2��Sat�ψ12�

P��s1�s2���t1� t2��
�
� p

However Sat�ψ12� can be decomposed, by means of the Lemma 4.3.2, in the following

way:

Sat�ψ12� �
�

�α1�α2��DecSat�ψ12�

�
Sat1�α1��Sat2�α2�

�
� �R1R2�

Hence the sum in the above inequality can be re-formulated in terms of DecSat�ψ12�,

resulting in4:

eI�s
1�s2� � ∑
�α1�α2��DecSat�ψ12�

�
∑

�t1�t2��Sat1�α1��Sat2�α2�

P��s1�s2���t1� t2��
�
� p (5.4.6)

Since, in a Boucherie process each transition corresponds to a change of state for

exactly one component, then the above inequality is equivalent to the following one:

eI�s
1�s2�� ∑
�α1�α2��DecSat�ψ12�

�
∑

�t1�s2��Sat1�α1��Sat2�α2�

P��s1�s2���t1�s2��� ∑
�s1�t2��Sat1�α1��Sat2�α2�

P��s1�s2���s1� t2��
�
� p

(5.4.7)

From Remark 4.2.2, we know that the probability of a 1-move (2-move) from a state

�s1�s2� is a factor of the probability of the corresponding component’s transition,

which is:

P��s1�s2���t1�s2�� � p1�s1�s2� �P1�s
1� t1�

where p1�s1�s2� is the probability of a 1-move from �s1�s2�. Hence (5.4.7) results in:

eI�s
1�s2� � ∑
�α1�α2��DecSat�ψ12�

�
p1�s1�s2� ∑

t1�Sat1�α1�

P1�s
1� t1�� p2�s1�s2� ∑

t2�Sat2�α2�

P2�s
2� t2�

�
� p

which we can re-write as:

∑
�α1�α2��DecSat�ψ12�

�
eI�s

1�s2�p1�s1�s2� ∑
t1�Sat1�α1�

P1�s
1� t1�� eI�s

1�s2�p2�s1�s2� ∑
t2�Sat2�α2�

P2�s
2� t2�

�
� p

(5.4.8)

4It should be noted that the R1R2 states need not to be excluded from the innermost sum in (5.4.6), as
the probability of reaching such a state from �s1

�s2� is clearly zero (i.e. ��t1
� t2��R1R2 and ��s1

�s2�� S,
P��s1

�s2���t1
� t2�� � 0)

5.4. Compositional model-checking of general Next 165

From Proposition 5.4.2 we have eI�s1�s2� � eIk�s1�s2��s
k� which, substituted in (5.4.8),

gives:

∑
�α1�α2��DecSat�ψ12�

�
eI1�s1�s2��s

1�p1�s1�s2� ∑
t1�Sat1�α1�

P1�s
1� t1�� eI2�s1�s2��s

2�p2�s1�s2� ∑
t2�Sat2�α2�

P2�s
2� t2�

�
� p

(5.4.9)

But from Proposition 5.4.1 we know that

Prob1�X
I1�s1�s2� α1��s1� � eI1�s1�s2��s

1� ∑
t1�Sat1�α1�

P1�s
1� t1�

and also:

Prob2�X
I2�s1�s2� α2��s2� � eI2�s1�s2��s

2� ∑
t2�Sat2�α2�

P2�s
2� t2�

which by substituting in (5.4.9), proves the implication ���.

(�). By reversing ���.

�

The result of the above theorem suggests the definition of the following algorithm for

decomposed checking of general bounded Next formulae with respect to a bidimen-

sional Boucherie process.

Algorithm 5.4.2 Let �s1�s2� be a state of a bidimensional Boucherie process M with

components M1 and M2, ψ12 a general formula as in (5.4.1), p � �0�1� a probability

bound,�� �����
��� and I � �a�b�� ��0 a time interval. The following algorithm

can be applied for checking whether:

�s1�s2� �� P�p�X
I ψ12�

Algorithm (�s1�s2� �� P�p�XI ψ12�).

166 Chapter 5. Compositional CSL model checking: Next formulae

1. PX � 0;

2. Determine the set of pairs DecSat�ψ12� by application of Definition 4.3.3.

3. Determine the diagonal matrices:

M1 �I1
eI1�s1�s2�

M2 �I2
eI2�s1�s2�

for component M1 and component M2 respectively.

4. FOR �α1�α2� � DecSat�ψ12� DO

- determine Sat1�α1� and Sat2�α2�, hence the vectors b1
φ and b2

φ;

- determine the vectors Prob1�X
I1�s1�s2� α1� and Prob1�X

I1�s1�s2� α1�:

Prob1�X
I1�s1�s2� α1� � �M1 �P1� �b

1
φ;

Prob2�X
I2�s1�s2� α2� � �M2 �P2� �b

2
φ;

- PX � PX � p1�s1�s2�Prob1�X
I1�s1�s2� α1��s1�� p2�s1�s2�Prob2�X

I2�s1�s2� α2��s2�;

5. IF PX � p THEN return YES; ELSE return NO.

�

Complexity analysis.

A precise evaluation of the complexity of the decomposed verification method de-

scribed by the above algorithm, is not part of this work. However, here some in-

tuitive considerations are given. As a first thing we observe that, by means of the

above method, the verification of a bounded Next general formula, like P�p�XI ψ12�,

on the product process M , is replaced by the verification of some bounded Next

single-component formulae on the components M1 and M2, respectively. The num-

ber of corresponding single-component formulae is equal to the number of partitions

of Sat�ψ12�. Thus, if Sat�ψ12� consists of n partitions (i.e. �DecSat�ψ12�� � n), then

5.4. Compositional model-checking of general Next 167

checking P�p�XI ψ12� with respect to the state-space S, boils down to checking n de-

rived formulae P�p�XI� ψi
1�, with respect to state space S1 and n derived formulae

P�p�XI�� ψi
2�, with respect to state space S2 (1 � i � n). The computational saving

implied by that, depends on both the dimension and the structure of the components’

state-space (the computational gain is proportional to the ratios

Sk�R

Sk�R

). Checking of

an arbitrary bounded Next P�p�XI φ� on a state-space S (see Algorithm 5.4.1), re-

quires the computation of Sat�φ� and of the matrix-matrix-vector product �IeI �P� � iφ.

Its computational cost is clearly proportional to the dimension of S. The state-space’s

dimension of a bidimensional Boucherie process is:

�S�� �S1� � �S2�� ��S1�R� � �S2�r��

where the dimension of component Mk’s state-space is:

�Sk�� �Sk�R�� �Sk�R�

The saving gained through the compositional algorithm, depends on the percentage of

states in which each component holds the shared resource (i.e. the cardinality of Sk�R).

For example, if we consider a state-space of 1000 elements for both components (i.e.

�S1�� �S2�� 1000), and we assume that for each component the states representing the

resource holding are 5% of the whole (i.e. �S1�R� � �S2�R� � 50), then the application

of the compositional checking to P�p�XI ψ12� results in checking 2 � n bounded Next

formulae (P�p�XI� ψk
1�) over a 1000 elements state-space, instead of checking a single

bounded Next formula with respect to a 997500 elements state-space (in fact, in this

case, �S�� 1000 �1000� �50 �50� � 997500). We further observe that the number n of

partitions Sat�ψ12� consists of, depends on the number of nested negation connectives

(�) contained in ψ12 and hardly exceed some units5.

Finally, to be more precise, we notice that also the cost for computing DecSat�ψ12�

has also to be considered in the evaluation of the complexity impact of decomposed

checking of bounded Next general formulae.

5In Example 4.3.1 it has been shown that the satisfiability set of a rather complex formula like
����a1�a2����b1�b2�� results in three partitions. The study of the existence of a relationship between
the structure of a general formula ψ12 and the number of partitions its satisfiability set results in, is an
interesting subject for future works.

168 Chapter 5. Compositional CSL model checking: Next formulae

Example 5.4.1 Let us consider an example of general bounded Next formulae, re-

ferring to the GIS Boucherie framework of our running example (see Figure 5.1 and

Figure 5.2) and let us show that the decomposed approach for checking it is actually

correct. Let us suppose we are interested in verifying that there is at least a 50% pos-

sibility that soon after being started (i.e. initial state �s10�s20�, Figure 5.2) and within

the time interval �2�5�, the GIS process reaches a state where component M1 is reading

the shared register (i.e. read1). This corresponds to checking that the following folds:

�s10�s20� �� P�0�5�X
�2�5� �read1� idle2��

By means of the “standard” approach (non-decompositional checking), we can apply

Algorithm 5.4.1 to compute the state vector Prob�X �2�5� �read1� idle2�� for the product

process. Hence

Prob�X �2�5� �read1� idle2�� � �Ie�2�5�
�P� � i�read1idle2�

From Figure 5.2, we know that the only state where �read1� idle2� is valid is �s12�s20�.

Hence the vector i�read1idle2�
is:

i�read1idle2�
� �0�0�0�0�0�0�0�0�0�0�1�0�0�0�

The transitions’ probability matrix for the product process is:

P�

�
�

0 r1
2r1�r5

0 0 0 r5
2r1�r5

0 0 0 0 r1
2r1�r5

0 0 0

0 0 r2
r2�r4

r4
r2�r4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0
r2

r1�r2
0 0 0 0 0 r1

r1�r2
0 0 0 0 0 0 0

0 0 0 0 0 0 0 r2
r2�r4

r4
r2�r4

0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 r2
r2�r4

r4
r2�r4

0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0

�
��������������������������������

5.4. Compositional model-checking of general Next 169

It is straightforward to show that the product of the matrix �Ie�2�5�
�P� by the vector

i�read1idle2�
, leads to the following state vector:

�Ie�2�5� �P��b�read1idle2���
r1

r1 � r5
�e�2�2r2�r5��e�5�2r2�r5���0�0�0�0�0�0�0�0�0�0�0�0�0�

which, as expected, tells us that the only state from which there is a non-null probability

of reaching, within the time bound �2�5�, a state where component M1 is reading the

register while M2 is idle, is the initial state �s10�s20�. Furthermore, the probability for

such a state is equal to:

Prob��s10�s20��X
�2�5� �read1� idle2�� �

r1

r1 � r5
�e�2�2r2�r5��e�5�2r2�r5��

As a consequence we have that

�s10�s20� �� P�0�5�X
�2�5� �read1� idle2���

r1

r1 � r5
�e�2�2r2�r5��e�5�2r2�r5��� p

(5.4.10)

In the above, we have shown how to verify �s10�s20� �� P�0�5�X �2�5� �read1� idle2�� by

application of the “standard” method with respect to the product process. Let us see

that the application of decomposed checking leads to the an equivalent result.

As a first step, we need to determine the partitions of Sat�read1� idle2�. Triv-

ially, DecSat�read1� idle2� � ��read1� idle2��, meaning that the satisfiability set for

�read1� idle2� consists of a single partition:

Sat�read1� idle2� � Sat1�read1��Sat2�idle2��R1R2

As a result we know that we will have to check one bounded Next formula

(i.e. �X
�
a�2r1�r5�

r1�r5
�

read1�) on component M1 and another one (i.e. �X
�
a�2r1�r5�

r5
�

idle2�),

on component M2.

In order to compute the state vector Prob1�X
�
a�2r1�r5�

r1�r5
�
read1�, first we need to determine

i1read1
. But since s12 is the only state of M1 satisfying read1 (i.e. Sat1�read1� � �s12�),

then:

i1read1
� �0�0�1�0�0�0�

Similarly for the vector i2idle2
, we have:

i2idle2
� �1�0�0�0�0�

170 Chapter 5. Compositional CSL model checking: Next formulae

Next we need to consider the diagonal matrices built on the projections of the bounding

interval I � �2�5� with respect to state �s10�s20�. As the probability of a 1-move and of a

2-move out of �s10�s20� are respectively p1�s10�s20� �
r1�r5
2r1�r5

and p2�s10�s20� �
r5

2r1�r5
,

then the projections of the time interval I are:

I1�s1�s2� �
�a�2r1 � r5�

r1 � r5
�
a�2r1 � r5�

r1 � r5

�
I2�s1�s2� �

�a�2r1 � r5�

r5
�
a�2r1 � r5�

r5

�

The derivation of the diagonal matrices IeI1�s1�s2�
and IeI2�s1�s2�

is then straightforward

(however, for brevity, here we skip it). Knowing that the transition probability matrices

P1 and P2 are equal to:

P1�

�
�

0 r5
r1�r5

r1
r1�r5

0 0 0

1 0 0 0 0 0

0 0 0 r2
r2�r4

r4
r2�r4

0

0 0 0 0 0 1

0 0 0 0 0 1

1 0 0 0 0 0

�
�����������

P2�

�
�

0 1 0 0 0

0 0 r2
r2�r4

r4
r2�r4

0

0 0 0 0 1

0 0 0 0 1

1 0 0 0 0

�
��������

the state vectors Prob1�X
�
a�2r1�r5�

r1�r5
�
a�2r1�r5�

r1�r5
�
read1� and Prob2�X

�
a�2r1�r5�

r5
�
a�2r1�r5�

r5
�
idle2�,

5.4. Compositional model-checking of general Next 171

can easily be obtained as the products

Prob1�X
�
2�2r1�r5�

r1�r5
�
5�2r1�r5�

r1�r5
�
read1� � �IeI1�s1�s2�

�P1� � i
1
read1

� �
r1

r1 � r5
�e�2�2r1�r5��e�5�2r1�r5���0�0�0�0�0�

Prob2�X
�
2�2r1�r5�

r5
�
5�2r1�r5�

r5
�
idle2� � �IeI2�s1�s2�

�P2� � i
2
idle2

� �0�0�0�0�e
�2r3�2r1�r5�

r1�r5 �e
�5r3�2r1�r5�

r1�r5 �

Finally we have to consider the weighted sum of the elements of vectors

Prob1�X
�
2�2r1�r5�

r1�r5
�
5�2r1�r5�

r1�r5
�
read1� and Prob2�X

�
2�2r1�r5�

r5
�
5�2r1�r5�

r5
�
idle2� corresponding to

the considered source state of the product process (i.e. �s10�s20�) and check whether it

is � p.

PX � p1�s10�s20�Prob1�X
�
2�2r1�r5�

r1�r5
�
5�2r1�r5�

r1�r5
�
read1��s10�

� p2�s10�s20�Prob2�X
�
2�2r1�r5�

r5
�
5�2r1�r5�

r5
�
idle2��s20�

�
r1 � r5

2r1 � r5
�

r1

r1 � r5
�e�2�2r1�r5��e�5�2r1�r5���

r5

2r1 � r5
�0

�
r1

2r1 � r5
� �e�2�2r1�r5��e�5�2r1�r5��� p

which proves that by application of the decomposed method with respect to the compo-

nents M1 and M2, we have obtained exactly the same condition (5.4.10) given by the

application of the “standard” method on the product process.

�

Chapter 6

Compositional CSL model checking:

Until formulae

6.1 Introduction

In this chapter the study of a compositional way for checking Until formulae on a

bidimensional Boucherie process is tackled. At the time being, the results we managed

to obtain are not complete. The main issue is the semantics of the Until formulae which

makes the derivation of a decomposed technique a difficult task.

From the CSL semantics we know that a path σ from a state s of an arbitrary CTMC

M , satisfies an Until formula like �φ� UI φ��� (i.e. σ �� �φ� UI φ���), if and only if, there

exists a future time instant t � I such that the state σ is in at t, σ@t, validates φ �� (i.e.

σ@t �� φ��), while up until time t σ satisfies φ� (i.e. σ@t � �� φ�, �t � � t). For the un-

bounded Until (i.e. I � �0�∞�), this is equivalent to say that there has to be a future

state n
 0 at which σ validates φ�� (σ�n� �� φ��) and such that for each predecessor

m � n, σ�m� �� φ�. Furthermore a probabilistic Until formula, like P�p�φ� UI φ���, is

satisfied in a state s, if and only if, the probability measure of the paths (from state s)

which satisfy �φ� UI φ��� is � p (i.e. ProbM �s��φ� UI φ���� � p). The main problem

with the verification of a probabilistic Until formula, is the evaluation of the proba-

bility measure ProbM �s��φ� UI φ����. In Chapter 2, we have seen that, for bounded

Until formulae (i.e. I �� �0�∞�), this, generally, involves the solution of a Volterra inte-

173

174 Chapter 6. Compositional CSL model checking: Until formulae

gral equation system, requiring complex mathematical methods. However, it has been

shown, that by means of proper manipulations, this problem boils down to the compu-

tation of transient state probabilities for a transformed CTMC, a good approximation

of which can be obtained by applying the Uniformisation method (see [42]). In con-

trast, the verification of unbounded Until formulae, implies the solution of a system

of linear equations. In both cases (i.e. bounded and unbounded Until), the search for

a compositional semantics, would require finding a decomposed relationship from the

application of solving method (i.e. Uniformisation, for bounded Until or solution of a

system of linear equation, for the unbounded Until).

Very recently, we have begun to consider the application of tensorial algebras to a

bidimensional Boucherie framework for obtaining a compositional expression of the

infinitesimal generator matrix (i.e. Q) and of its associated transition probability ma-

trix (i.e. P). Our believe is that, that could be of some help in finding a decomposed

method for checking both bounded and unbounded Until formulae which refer to a

bidimensional Boucherie process.

In the remainder of the chapter, instead, we will show the type of result we have

achieved by considering a path-wise interpretation of the Until semantics rather than

a state-wise. As we said, verifying an Until formula with respect to a state s of M ,

requires the evaluation of the probability measure ProbM �s��φ� UI φ����. This value,

accounts for the probability measure of each path that satisfies �φ� UI φ���, which is:

ProbM �s��ψ�
k U ψ��

k �� � ∑
σ�Path�s��ψ�

k U ψ��
k ��

Pr�σ�

By means of the existing methods the value of ProbM �s��φ� UI φ���� is worked out

in a state-wise fashion: a recursive function defined on S, computes that probability

value by unravelling only those paths which satisfy �φ� UI φ���. In essence the set

Path�s��ψ�
k U ψ��

k �� is never determined, and the above mentioned methods are proved

to provide a value which is equivalent to the sum of the probability measure of the

paths satisfying �φ� UI φ���.
Our argument here, originates from observing that there exists a close relation be-

tween the paths of the product process and the paths of the components’ processes in a

bidimensional Boucherie framework. In particular, as we will see in detail in the next

6.2. Paths in a bidimensional Boucherie process 175

section, each path of the product-process results from interleaving two corresponding

paths (projection paths), one from component M1 and the other from component M2.

As a consequence, it can be shown that the probability measure of a path of the product-

process can be factored by means of the probability measure of its two corresponding

projection paths.

This leads to a non-constructive proof showing the existence of a compositional

semantics for Until formulae1. In Section 6.3, we will show that checking that the

probability measure Prob��s1�s2���ψ�
k U ψ��

k �� is� p, where �s1�s2� is a state of a bidi-

mensional Boucherie process, is equivalent to checking that the probability measure

Prob�sk��ψ�
k U ψ��

k �� is � p�, where p� is a derived probability value. This means that

the probability measure of the paths satisfying �ψ�
k U ψ��

k � with respect to the product-

process, is related to the probability measure of the paths of component Mk which

satisfy the same Until formula �ψ�
k U ψ��

k �. The problem with this approach is that the

evaluation of the equivalent probability bound p� would require both a method that,

given a state s of a CTMC, returns the set of paths Path�s��ψ�
k U ψ��

k �� and a method

that, given a path σk over component Mk, returns the corresponding set of paths of

the product-process, which map on to σk. Both those methods, seem to rely on graph

analysis techniques, something which we still need to investigate.

The following section is devoted to the analysis of the basics properties relating

paths of the product process and paths of the components’ process in a bidimensional

Boucherie framework.

6.2 Paths in a bidimensional Boucherie process

In any graph-like structure (Transition System, Markov Chain, � � �) a path is an infi-

nite sequence of states σ � s0�s1� � � � �sn� � � � such that each state si in the sequence, is

connected to its successor si�1 by an arc. In a Markov Chain such an arc reflects the

fact that for the state si the probability of reaching its successor is greater than zero

(see Definition 2.2.4). Furthermore, with respect to CTMCs, paths can be timed by

interleaving the sequence of states with a sequence of time intervals I0� I1� � � � � In� � � �

1In this work single-component unbounded Until formulae only are treated.

176 Chapter 6. Compositional CSL model checking: Until formulae

(see Definition 2.3.3).

σ� s0� I0�s1� I1� � � � � In�1�sn� � � �

We remember that by untimed generator σ̄ of a timed-path, we mean the sequence of

states (i.e. the untimed path) obtained by elimination of the interleaved time intervals,

Ii, from the timed path σ, or, alternatively, by assuming every time interval Ii � �0�∞�

(i
 0).

σ̄� s0�s1� � � � � �sn� � � �

For the time being we concentrate on untimed paths only. In Section 4.3 it has been

pointed out that transitions in a bidimensional Boucherie process, can be classified ei-

ther as 1-moves or 2-moves, according to the component which is involved2. Hence a

transition �s1�s2�� �t1� t2� will be a 1-move whenever the state change involves com-

ponent M1 (i.e. s1 �� t1, s2 � t2), or a 2-move, if it reflects a state change regarding com-

ponent M2 (i.e. s1 � t1, s2 �� t2). As a result a path σ � �s1
0�s

2
0���s

1
1�s

2
1�� � � � ��s

1
n�s

2
n�� � � �

over a two component Boucherie state-space corresponds to an interleaved sequence

of 1-moves and 2-moves. In the remainder we will refer to paths of a two component

Boucherie process, as bidimensional paths or Boucherie paths.

Intuitively the k-projection of a bidimensional path σ, is given by the contraction

of σ with respect to the j-moves (i.e. the path obtained by eliminating every j-move

from the sequence it is made of). Thus every bidimensional path σ, is associated with

a pair of projections, namely its 1-projection and 2-projection3.

In this section a formal definition of the k-projection of a Boucherie path σ, is given

and three basic results are proved. The first and trivial one, states that the k-projection

of a path σ, formally defined by means of a function named Pro jk��, is actually a

proper path over component Mk. The formal proof of this intuitively obvious result

(see Proposition B.0.3) relies on a number of intermediate results which are treated

in the Appendix B. The second and more relevant result, states that the probability

measure of a path σ can be factored by means of the probability measure of its two

projections. Finally it will be shown that every path σ of a bidimensional Boucherie

2In a Boucherie framework synchronisation is not permitted, hence only one component at a time
can change its state.

3Note that either one projection or the other can be the empty path ε but not both unless the consid-
ered σ is itself the empty path.

6.2. Paths in a bidimensional Boucherie process 177

process, satisfies a single-component unbounded Until formula, like ϕk � �ψ�
k U ψ��

k �,

if and only if its k-projection Pro jk�σ� does. These results are useful in the study of a

compositional semantics for unbounded Until formulae with respect to the Boucherie

framework.

In the following some notations and remarks regarding generic paths and bidimen-

sional paths are introduced. Let σ be a (generic) path, then:

� ε : is the empty path

� �σ � n� : is the prefix of σ up to the n-th element (inclusive).

� �n � σ� : is the suffix of σ starting at the n-th element (inclusive).

where n � � . Generally speaking a path is an infinite sequence of states. However

finite paths are used to represent a set of infinite paths characterised by a common

prefix.

Remark 6.2.1 The n-th prefix of a path σ represents the set of all paths which have

σ�n as a common prefix.

From now on, unless explicitly specified, σ will denote a finite sequence

σ � s0 � s1 � � � �� sn

representing the set of infinite paths which have s0 � s1 � � � �� sn as common prefix.

Definition 6.2.1 The length of a (finite) path σ is given by the number of transitions it

consists of:

length�s0 � s1 � � � �� sn� � n

Given a (finite) path σ we adopt the following conventions:

� σ�0� is the first element of σ while σ�length�σ�� is the last one.

� �n � �0� length�σ��1�, σ�n� is called the predecessor of σ�n�1�, while σ�n�1�

is called the successor of σ�n�.

� �m�n � �0� length�σ�� with m � n, we will say that σ�m� precedes σ�n�, while

σ�n� follows σ�m�.

178 Chapter 6. Compositional CSL model checking: Until formulae

It should be noted that a sequence consisting of a single state, for example σ � s0, is

a proper path even if it contains no transitions at all. Since a finite path σ is meant

to represents the set of all infinite paths which have σ as common prefix, then σ � s0

represents the set of all infinite paths starting at s0. Hence the probability measure

of a single element path is clearly Pr�σ � s0� � 1, as it is given by the sum of the

probability measure of every path starting at s0.

Definition 6.2.2 (Path�s�ψ� U ψ���) Let s � S be a state of a labelled CTMC

M ��S�Q�L� and ψ��ψ�� two non-probabilistic formulae as in (4.3.1). Path�s�ψ � U ψ���

denotes the set of paths starting at s and satisfying the unbounded Until formula

�ψ� U ψ���.

Remark 6.2.2 (Path��s1�s2��ψ� U ψ���) Definition 6.2.2 naturally applies to a bidi-

mensional Boucherie process M � �S�Q�L�, hence Path��s1�s2��ψ� U ψ��� denotes

the set of paths starting at �s1�s2� and satisfying �ψ� U ψ��� in M , �s1�s2� being a state

of the Boucherie process.

In the remainder we will use σ�n�k to denote the k-th component of the n-th state of a

Boucherie path σ. Thus, if we consider the following bidimensional path

σ � �s1�s2��s1� t2��t1� t2��t1�u2��t1�v2� (6.2.1)

then, for example,

σ�0�1 � s1 σ�3�2 � u2

Moreover, as we have already pointed out, each bidimensional path corresponds to

an interleaved sequence of 1-moves and 2-moves, hence σ maps on the following se-

quence:

2-move�1-move�2-move�2-move

Definition 6.2.3 (Number of k-moves in a bidimensional path) Let σ be a bidimen-

sional path, then k steps�σ � n� denotes the number of k-moves contained in the n-th

prefix of σ. If σ is finite then k steps�σ� stands for k steps�σ � length�σ��.

6.2. Paths in a bidimensional Boucherie process 179

Fact 6.2.1 (Length of a bidimensional path) The length of a bidimensional path σ is

equal to the sum of the k steps and j steps it consists of.

length�σ� � k steps�σ�� j steps�σ�

Fact 6.2.1 is trivially true as any transition in a bidimensional Boucherie process can

either be a 1-move or a 2-move. Therefore it is obvious that the length of any finite

sequence of such transitions has to be equal to the sum of 1-moves and 2-moves it

consists of. For example, the path σ shown in (6.2.1) consists of four transitions (i.e.

length�σ� � 4), three of which are 2-moves (i.e. 2 steps�σ� � 3) while the remaining

one is a 1-move (i.e. 1 steps�σ� � 1).

Definition 6.2.4 (k-path) A bidimensional path σ is called a k-path if it consists only

of k-moves, which is, j steps�σ� � 0.

For example the bidimensional path σ � �s1�s2��s1� t2��s1�u2��s1�v2� is a 2-path as

contains no 1-moves4.

Fact 6.2.2 The k-component of the target and source state of a j-move taken from a

bidimensional path σ, is constant.

σ�n�� σ�n�1� � j-move �� σ�n�k � σ�n�1�k

�n � �0� length�σ��1�

Fact 6.2.2 is a trivial consequence of the definition of Boucherie product process.

Definition 6.2.5 (k-projection of a bidimensional path) Let σ be a bidimensional (timed)

path with respect to a Boucherie process M , then its k-projection Pro jk�σ�, or simply

4Again we point out that we are referring to CTMCs with no self-loops, hence a transition like
�s1

�s2�� �s1
� t2� can only represents a 2-move.

180 Chapter 6. Compositional CSL model checking: Until formulae

σk, is defined as:

Pro jk�σ�� σk �

���������������
��������������

σ�0�k�Pro jk�1�σ� if σ�0�� σ�1� � k-moves

Pro jk�1�σ� if σ�0�� σ�1� � j-moves

σ�0�k if �1�σ�� ε

ε if σ� ε

Next an example of a bidimensional path σ is considered and its two projections

Pro j1�σ� and Pro j2�σ� are computed.

Example 6.2.1 Let us consider the following bidimensional path σ

σ � �s1�s2��s1� t2��t1� t2��u1� t2��u1�u2��v1�u2�

and let us compute its projections by means of the function Pro jk�σ� described in

Definition 6.2.5. As a first thing we notice that σ maps on the following sequence of

transitions

2-move�1-move�1-move�2-move�1-move

which also means that 1-steps�σ� � 3, while 2-steps�σ� � 2.

The iterative application of Pro jk�� to σ with respect to both components M1 (i.e.

6.2. Paths in a bidimensional Boucherie process 181

Pro j1�σ�) and M2 (i.e. Pro j2�σ�), results in:

Pro j1�σ� � Pro j1��s
1�s2��s1� t2��t1� t2��u1� t2��u1�u2��v1�u2��

� Pro j1��s
1� t2��t1� t2��u1� t2��u1�u2��v1�u2��

� s1�Pro j1��t
1� t2��u1� t2��u1�u2��v1�u2��

� s1� t1�Pro j1��u
1� t2��u1�u2��v1�u2��

� s1� t1�Pro j1��u
1�u2��v1�u2��

� s1� t1�u1�Pro j1��v
1�u2��

� s1� t1�u1�v1

Pro j2�σ� � Pro j2��s
1�s2��s1� t2��t1� t2��u1� t2��u1�u2��v1�u2��

� s2�Pro j2��s
1� t2��t1� t2��u1� t2��u1�u2��v1�u2��

� s2�Pro j2��t
1� t2��u1� t2��u1�u2��v1�u2��

� s2�Pro j2��u
1� t2��u1�u2��v1�u2��

� s2� t2�Pro j2��u
1�u2��v1�u2��

� s2� t2�Pro j2��v
1�u2��

� s2� t2�u2

Figure 6.1 depicts how the states of the bidimensional path σ are mapped onto the

projections’ paths. It should be noted that the n-th state of σ, σ�n�, is mapped, with re-

spect to the 1-projection (2-projection) on the same element on which its predecessor,

σ�n�1�, is mapped, whenever the transition σ�n�1�� σ�n� is a 2-move (1-move). On

the other hand the element on which σ�n� is mapped, with respect to the 1-projection

(2-projection), is the successor of the element on which σ�n�1� is mapped, whenever

σ�n�1�� σ�n� is a 1-move (2-move).

�

The next fact points out an evident consequence of the definition of k-projection of a

bidimensional path.

182 Chapter 6. Compositional CSL model checking: Until formulae

���� ��� ���� ��� ���� ���

�
�

�
�

���� ��� ���� ��� ��� � ���

2 1

�
�

�
�

� �

�������� �

�������� � �
�

�
�

�
�

121

Figure 6.1: The two projections of a bidimensional path σ

Fact 6.2.3 (The k-projection is a k-path) The k-projection of a bidimensional path σ
is a path with respect to component Mk starting at state σ�0�k.

Pro jk�σ� � Path�σ�0�k�

Fact 6.2.3 trivially relies on the definition of k-projection of a bidimensional path as

well as on the definition of Boucherie process. In fact since Pro jk�σ� is obtained by

elimination of the j-moves from σ, the result is clearly a sequence of k-moves which,

according to the definition of Boucherie process, is also a proper sequence of moves,

hence a path, over component Mk. The formal proof of the result stated in Fact 6.2.3

can be found, in the Appendix B.

The following two facts point out two other trivial consequences of the definition of

k-projection of a bidimensional path.

Fact 6.2.4 (Length of the k-projection of a bidimensional path) The length of the i-

projection of a path σ is equal to the number of i-steps in σ.

length�Pro ji�σ�� � i steps�σ�

6.2. Paths in a bidimensional Boucherie process 183

Fact 6.2.4 is also trivially true. From Fact 6.2.3, we know that Pro jk�σ� is a path start-

ing at σ�0�k, hence it has a length. Furthermore since Pro ji�σ� is made of the k-moves

of σ, then clearly its length is given by the number of k steps in σ.

Remark 6.2.3 (Length of a bidimensional path) The length of a bidimensional path

σ is equal to the sum of the length of its k and j projections:

length�σ� � length�Pro jk�σ��� length�Pro j j�σ��

So far the idea of k-projection of a bidimensional path has been introduced and formal

means to derive it have been provided (see Definition 6.2.5). Moreover, it has been

shown that the k-projection of a path of a bidimensional Boucherie process is a proper

path over the component Mk.

We now aim to show that the probability measure of a bidimensional path σ can

be expressed in terms of the probability measure of its projections σ1 and σ2. Such a

property will be the basis for showing the existence of a compositional semantics for

probabilistic path formulae P�p�ϕ�. In order to do that, we first need to prove another

property concerning bidimensional paths. The following proposition states that the k-

projection of a bidimensional path σ can be split in two parts: the first one being given

by the k-projection of its n-th prefix and the second being obtained by elimination of

the first element from the k-projection of its n-th suffix.

Proposition 6.2.1 (Splitting the k-projection of a path) Let σ be a bidimensional path

consisting of l � length�σ�� 0 transitions and 0� n� l. The k-projection of σ can be

split in terms of the k-projection of its n-th prefix and suffix, in the following manner:

Pro jk�σ� � Pro jk�σ � n���1 � �Pro jk�n � σ���

Proof.

By induction on n � �0� l�. Let σ be

σ � �s1
0�s

2
0�� � � � ��s

1
n�1�s

2
n�1���s

1
n�s

2
n�� � � ��s

1
l �s

2
l �

184 Chapter 6. Compositional CSL model checking: Until formulae

base case: n � 0.

In this case �σ � n� � �s1
0�s

2
0� hence Pro jk�σ � n� � sk

0. Furthermore �n � σ� � σ, thus

Pro jk�n � σ� � Pro jk�σ� hence �1 � �n � σ�� � 1 � σ. We need to distinguish between

two cases:

i. �s1
0�s

2
0�� �s1

1�s
2
1� � k-move.

In this case, from Definition 6.2.5, we have that Pro jk�σ� � sk
0�Pro jk�1 � σ�, hence

here we aim to prove that

Pro jk�σ � 0���1 � �Pro jk�0 � σ��� � sk
0�Pro jk�1 � σ�

As we have already noticed

�1 � �Pro jk�0 � σ��� � 1 � Pro jk�σ� � �1 � �sk
0�Pro jk�1 � σ��� � Pro jk�1 � σ�

Thus the above equality is proved.

ii. �s1
0�s

2
0�� �s1

1�s
2
1� � j-move.

In this case a further distinction is needed. If σ is a j path (i.e. it consists only

of j-moves), then Pro jk�σ� � sk
l � sk

0. Also, since �n � σ� � σ with n � 0 then

�1 � �Pro jk�n � σ��� � ε, hence

Pro jk�σ � n���1 � �Pro jk�n � σ��� � sk
0 � Pro jk�σ��

On the other hand if σ is not a j path then there exists an index n� � �1� l� such that

�s1
n��s

2
n��� �s1

n��1�s
2
n��1�� k-move and �n̂� � �1�n��, �s1

n̂��s
2
n̂��� �s1

n̂��1�s
2
n̂��1�� j-move.

In this case, from Definition 6.2.5, it is straightforward to show that

Pro jk�σ� � Pro jk�1 � σ� � sk
n� �Pro jk��n

��1� � σ�

where also sk
0 � sk

n� .Furthermore, since with n � 0

�1 � �Pro jk�0 � σ��� � 1 � Pro jk�σ�

then

�1 � �Pro jk�0 � σ��� � Pro jk��n
��1� � σ�

6.2. Paths in a bidimensional Boucherie process 185

Hence

�σ � n���1 � �Pro jk�0 � σ��� � sk
0�Pro jk��n

��1� � σ� � Pro jk�σ�

which proves the base of the induction also in this second case.

inductive step: 0 � n � l.

We aim to show that

Pro jk�σ� � Pro jk�σ � �n�1����1 � �Pro jk��n�1� � σ���

assuming

Pro jk�σ� � Pro jk�σ � n���1 � �Pro jk�n � σ���

as inductive hypothesis. As before, we need to distinguish between two cases.

i. �s1
n�s

2
n�� �s1

n�1�s
2
n�1� � j-move.

In this case, as a consequence of Definition 6.2.5, we have that Pro jk�σ � n��Pro jk�σ �
�n�1��. Furthermore, Pro jk�n � σ� � Pro jk��n�1� � σ�, hence

Pro jk�σ � n���1 � �Pro jk�n � σ��� � Pro jk�σ � �n�1����1 � �Pro jk��n�1� � σ���

which, as a consequence of the inductive hyptosis, proves that:

Pro jk�σ� � Pro jk�σ � �n�1����1 � �Pro jk��n�1� � σ���

ii. �s1
n�s

2
n�� �s1

n�1�s
2
n�1� � k-move.

In this case from Definition 6.2.5, it is easy to show that

Pro jk�σ � n��sk
n�1 � Pro jk�σ � �n�1�� (6.2.2)

and also Pro jk�n � σ� � sk
n�Pro jk��n�1� � σ� which implies:

�1 � Pro jk�n � σ�� � Pro jk��n�1� � σ� (6.2.3)

Trivially though, we can rewrite Pro jk��n� 1� � σ� as the concatenation of its first

element to its first suffix, namely:

Pro jk��n�1� � σ� � Pro jk��n�1� � σ��0���1 � Pro jk��n�1� � σ��

186 Chapter 6. Compositional CSL model checking: Until formulae

Straightforwardly, Pro jk��n� 1� � σ��0� turns out to be equal to sk
n�1. To prove that a

further distinction needs to be considered: if �1 � Pro jk��n�1� � σ�� is a j path, then

clearly Pro jk��n�1� � σ� � sk
l � sk

n�1; on the other hand if �1 � Pro jk��n�1� � σ�� is

not a j path, then there will exists an index n� � �n�1� l� such that σ�n��� σ�n��1� �

k-move and �n̂� � �n� 1�n��, σ�n̂��� σ�n̂�� 1� � j-move, hence Pro jk��n� 1� � σ� �
sk
n� � sk

n̂� . which proves Pro jk��n�1� � σ� � sk
n�1, in this case too. Relying on this and

on (6.2.2) and (6.2.3) we have that:

Pro jk�σ � �n�1����1 � Pro jk�n � σ�� � Pro jk�σ � n��sk
n�1��1 � Pro jk��n�1� � σ��

� Pro jk�σ � n��Pro jk��n�1� � σ�

� Pro jk�σ � n���1 � Pro jk�n � σ��

which, as a consequence of the inductive hypothesis proves that:

Pro jk�σ� � Pro jk�σ � �n�1����1 � Pro jk��n�1� � σ��

�

��������

���
�
� �

�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

� �
�

�
�
�

�

���
�
� �

�

�
�

���
�
� �

�

�
�

���
�
� �

�

�
�

�

��������

���
�
� �

�

�
�

���
�
� �

�

�
�

Figure 6.2: Splitting Pro jk�σ�

To understand the meaning of the result of the above proposition, let us consider the

6.2. Paths in a bidimensional Boucherie process 187

bidimensional path

σ � �s1
0�s

2
0���s

1
0�s

2
1���s

1
1�s

2
1���s

1
2�s

2
1���s

1
2�s

2
2���s

1
3�s

2
2�

which is depicted in Figure 6.2, together with its projections:

Pro j1�σ� � s1
0�s

1
1�s

1
2�s

1
3

Pro j2�σ� � s2
0�s

2
1�s

2
2

Suppose we are concerned about the 1-projection of σ, namely Pro j1�σ�, then, accord-

ing to Proposition 6.2.1 we can randomly choose a splitting point n in �0� � � � � l� where

l is the length of σ, i.e. l � 5. For example, if we choose n � 0 as splitting point (i.e.

a splitting point corresponding to a 2-move), then the n-th prefix and suffix of σ are

respectively: �σ � n� � �σ � 0� � �s1
0�s

2
0� and �n � σ� � �0 � σ� � σ. Proposition 6.2.1

tells us that

Pro j1�σ� � Pro j1�σ � 0���1 � Pro j1�0 � σ��

Let us verify if this is the case. Trivially Pro j1�σ � 0� � s1
0. Furthermore

Pro j1�0 � σ� � Pro j1�σ� � s1
0�s

1
1�s

1
2�s

1
3, which by elimination of the head element be-

comes

�1 � Pro j1�0 � σ�� � s1
1�s

1
2�s

1
3

Then, clearly, the concatenation of Pro j1�σ � 0� � s1
0 and �1 � Pro j1�0 � σ�� � s1

1�s
1
2�s

1
3

leads to Pro j1�σ� � s1
0�s

1
1�s

1
2�s

1
3. If instead we consider n � 4 as splitting point, which

corresponds to a 1-move (i.e. σ�4�� σ�5� � 1-move), the n-th prefix and suffix are:

�σ � n� � �σ � 4� � �s1
0�s

2
0���s

1
0�s

2
1���s

1
1�s

2
1���s

1
2�s

2
1���s

1
2�s

2
2�

�n � σ� � �4 � σ� � �s1
2�s

2
2���s

1
3�s

2
2�

and their 1-projections are:

Pro j1�σ � 4� � s1
0�s

1
1�s

1
2

Pro j1�4 � σ� � s1
2�s

1
3

from which, straightforwardly, Pro j1�σ� � Pro j1�σ � 4���1 � Pro j1�4 � σ��.

188 Chapter 6. Compositional CSL model checking: Until formulae

This proves that the splitting rule for Pro jk�σ� works properly both when the cho-

sen splitting point corresponds to a j-move or to a k-move.

The ability to split the k-projection of a bidimensional path σ is a basic result for

proving that the probability measure of σ can be factored in terms of the probability

measure of its projections.

Given a bidimensional path σ, we introduce the further notations:

� k move�σ�: represents the set of indices m � �0� length�σ�� corresponding to a

k-move in σ, namely such that σ�m�� σ�m�1� is a k-move.

� pk
σ: is a constant, accounting for the probability of the k-moves of σ. It is defined

as follows:

pk
σ �

�
Πm�k-move�σ��p

k�σ�m��� if n � 0 and k-move�σ� �� /0
1 otherwise

where pk�σ�m�� represents the probability for a k-move to occur when at state

σ�m� (see Definition 4.2.1).

In essence the coefficient pk
σ is proportional to the measure of the probability of the

k-moves in a bidimensional path σ.

Proposition 6.2.2 (Factors of the probability measure of a bidimensional path) Let

σ be a bidimensional path. The probability measure of σ is expressible in terms of the

probability measure of its 1-projection and 2-projection, in the following way:

Pr�σ� � p1
σ � p

2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ��

where the constant pk
σ is as described above.

Proof.

By induction on n � length�σ�. Let σ be:

σ � �s1
0�s

2
0� � � ��s

1
n�s

2
n�

6.2. Paths in a bidimensional Boucherie process 189

base: n � 0.

In this case σ � �s1
0�s

2
0� hence, trivially, Pr�σ� � 1. Moreover Pro j1�σ� � s1

0 and

Pro j2�σ� � s2
0 then clearly Pr�Pro j1�σ�� � Pr�Pro j2�σ�� � 1 and also p1

σ � p2
σ � 1

which proves

Pr�σ� � p1
σ � p

2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ���

induction: n � 0.

Trivially, we know that the probability measure of a path is given by the product of the

probability measure of its m-th prefix and suffix, hence, with respect to the �n� 1�-th

prefix and suffix of σ:

Pr�σ� � Pr�σ��n�1�� �Pr��s1
n�1�s

2
n�1��s

1
n�s

2
n�� (6.2.4)

Since the length of the �n�1�-th prefix of σ is n�1, then by inductive hypothesis, we

know that:

Pr�σ��n�1��� � p1
�σ��n�1�� �Pr�Pro j1�σ��n�1��� � p2

�σ��n�1�� �Pr�Pro j2�σ��n�1���

By substituting this result in 6.2.4 we get:

Pr�σ� � p1
�σ��n�1�� �Pr�Pro j1�σ��n�1��� � p2

�σ��n�1�� �Pr�Pro j2�σ��n�1���

�Pr��s1
n�1�s

2
n�1��s

1
n�s

2
n���

(6.2.5)

We then need to distinguish between two possibilities:

i. �s1
n�1�s

2
n�1�� �s1

n�s
2
n� � 1-move.

In this case Pro j1��n�1��σ� � s1
n�1�s

1
n, hence

Pr��s1
n�1�s

2
n�1��s

1
n�s

2
n�� � p1��s1

n�1�s
2
n�1�� �Pr�s1

n�1�s
1
n�

where p1��s1
n�1�s

2
n�1�� is as in Definition 4.2.1. Then by substitution in 6.2.5 we get:

Pr�σ� � p1
�σ��n�1�� �Pr�Pro j1�σ��n�1��� � p2

�σ��n�1�� �Pr�Pro j2�σ��n�1���

� p1��s1
n�1�s

2
n�1�� �Pr�s1

n�1�s
1
n��

(6.2.6)

190 Chapter 6. Compositional CSL model checking: Until formulae

Moreover, from Proposition 6.2.1 we know that Pro jk�σ� can be split in two parts,

particularly:

Pro j1�σ� � Pro j1�σ��n�1����1 � Pro j1��n�1��σ��

Pro j2�σ� � Pro j2�σ��n�1����1 � Pro j2��n�1��σ��

Since we are assuming �s1
n�1�s

2
n�1�� �s1

n�s
2
n� � 1-move, then

Pro j1��n�1��σ� � s1
n�1�s

1
n

Pro j2��n�1��σ� � s2
n

hence

Pro j1�σ� � Pro j1�σ��n�1����1 � �s1
n�1�s

1
n�� � Pro j1�σ��n�1���s1

n

Pro j2�σ� � Pro j2�σ��n�1����1 � s2
n� � Pro j2�σ��n�1��

then:

Pr�Pro j1�σ�� � Pr�Pro j1�σ��n�1����Pr�s1
n�1�s

1
n�

Pr�Pro j2�σ�� � Pr�Pro j2�σ��n�1���

By substituting the above results in 6.2.6, we get

Pr�σ� � p1
�σ��n�1��p

2
�σ��n�1��Pr�Pro j1�σ��Pr�Pro j2�σ�� � p1��s1

n�1�s
2
n�1�� (6.2.7)

but since we are assuming �s1
n�1�s

2
n�1�� �s1

n�s
2
n� � 1-move, then also

p1
σ � p1

�σ��n�1�� � p
1��s1

n�1�s
2
n�1��

p2
σ � p2

�σ��n�1��

which substituted in (6.2.7) proves

Pr�σ� � p1
σ p2

σPr�Pro j1�σ��Pr�Pro j2�σ��

ii. �s1
n�1�s

2
n�1�� �s1

n�s
2
n� � 2-move.

The proof of this case is symmetric to the one of the previous case.

�

6.2. Paths in a bidimensional Boucherie process 191

The above proposition provides us with a compositional method to compute the prob-

ability measure of a bidimensional Boucherie path. Given such a path σ, the value of

its probability measure is given by the product of the probability measure of its projec-

tions multiplied by two constants, the values of which depend on the transitions σ is

made up of. The following example shows how to apply the above result in practice.

�
�

�
�

�
�

�
�

�
�

�
�

���� ���

���� ���

���� ���
���� ���

���� ���
�

��������

��������

Figure 6.3: factorizing the probability measure of a path σ

Example 6.2.2 Figure 6.3 shows a path σ together with its projections Pro j1�σ� and

Pro j2�σ�. The probability measure of σ is given by the product of the probability of

each step, hence:

Pr�σ��
Q2�s2� t2�

E1�s1��E2�s2�
�

Q1�s1� t1�

E1�s1��E2�t2�
�

Q2�t2�u2�

E1�t1��E2�t2�
�

Q1�t1�u1�

E1�t1��E2�u2�
(6.2.8)

Having in mind that the probability of a k-move from a state �ŝ1� ŝ2�, is given by:

pk�ŝ1� ŝ2� �
Ek�ŝk�

E1�ŝ1��E2�ŝ2�

then we can rewrite (6.2.8) as follows:

Pr�σ�� p2��s1�s2�� �
Q2�s2� t2�

E2�s2�
� p1��s1� t2�� �

Q1�s1� t1�

E1�s1�
�

p2��t1� t2�� �
Q2�t2�u2�

E2�t2�
� p1��t1�u2�� �

Q1�t1�u1�

E1�t1�

192 Chapter 6. Compositional CSL model checking: Until formulae

On the other hand, the probability measure of the σ projections are respectively

Pr�Pro j1�σ���
Q1�s1� t1�

E1�s1�
�
Q1�t1�u1�

E1�t1�

Pr�Pro j2�σ���
Q2�s2� t2�

E2�s2�
�
Q1�t2�u2�

E2�t2�

Hence, since p1
σ� p1��s1� t2�� � p1��t1�u2�� and p2

σ� p2��s1�s2�� � p2��t1� t2��, we have

that:

Pr�σ�� p1
σ � p

2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ��

proving the validity of Proposition 6.2.2 in this case.

�

Finally, we are going to show a basic result which regards the semantics of single-

component unbounded Until formulae with respect to bidimensional paths: a bidimen-

sional path satisfies a formula like �ψ�
kU ψ��

k � if and only if, its k-projection does.

Proposition 6.2.3 Let σ be a bidimensional path with respect to a bidimensional Bou-

cherie process M and ψ�
k�ψ

��
k two single-component formulae as in (5.2.1). Then the

following holds:

σ �� �ψ�
kU ψ��

k ��� Pro jk�σ� ��k �ψ�
kU ψ��

k �

Proof.

��� From the CSL semantics we know that if σ �� �ψ�
k U ψ��

k � then 	n
 0 : σ�n� �� ψ��
k

and �m � n σ�m� �� ψ�
k. From the decomposed semantics of non-probabilistic single-

component formulae, we know that

σ�m� �� ψ�
k �� σ�m�k ��k ψ�

k

σ�n� �� ψ��
k �� σ�n�k ��k ψ��

k

Moreover, thanks to Remark ?? (see Appendix B), we know that the n-th element of

σ is projected over the mapk�σ�n�-th of its k-projection. Hence 	n� � mapk�σ�n�
 0

such that Pro ji�σ��n�� � σ�n�k ��k ψ��
k and also �m� � mapk�σ�m� � n�,

Pro jk�σ��m���σ�m�k ��k ψ�
k which proves Pro jk�σ� �� �ψ�

k U ψ��
k �.

6.2. Paths in a bidimensional Boucherie process 193

��������

���
�
� �

�

�
�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

� �
�

�
�
�

�

���
�
� �

�

�
�

���
�
� �

�

�
�

���
�
� �

�

�
�

�

��������

���
�
� �

�

�
�

���
�
� �

�

�
� ���

�

��

�
��

�

��

�

��

�

��

�

��

�

��

�

��

�

���

�

Figure 6.4: Semantics of �ψ�
1 U ψ��

1� with respect to a bidimensional path

��� Straightforward by reversing the argument in (�).

�

In Figure 6.4 an example of the property proved by Proposition 6.2.3 is depicted. The

bidimensional path σ satisfies �ψ�
1 U ψ��

1� and also, clearly, its projection on component

M1, σ1, satisfies �ψ�
1 U ψ��

1�.

A direct consequence of the above result is the one proved in the following proposi-

tion. It states that the k-projection of the paths which start from a state �s1�s2� and sat-

isfy the formula �ψ�
kU ψ��

k � is equal to the set of paths from state sk satisfying ψ�
i U ψ��

i .

Proposition 6.2.4 Let �s1�s2� be a a state of a bidimensional Boucherie process M
and ψ�

k�ψ
��
k two single-component formulae as in (5.2.1). Then the following holds:

Pro jk�Path��s1�s2��ψ�
k U ψ��

k �� � Path�sk�ψ�
k U ψ��

k �

Proof.

(�) If σk � Pro jk�Path��s1�s2��ψ�
k U ψ��

k ��, then from Proposition 6.2.3 also σk ��k

�ψ�
k U ψ��

k �, and since clearly σk�0� � sk, then σk � Path�sk�ψ�
k U ψ��

k �.

194 Chapter 6. Compositional CSL model checking: Until formulae

(�) Let us consider an arbitrary path σk � Path�sk�ψ�
k U ψ��

k �. We aim to show that

for each such a path σk, there exists a bidimensional path from �s1�s2�, which as well

satisfies �ψ�
k U ψ��

k � and whose k-projection is actually σk. This is equivalent to show

that the subset of Path��s1�s2��ψ�
k U ψ��

k � given by the paths whose k-projection is σk,

namely Pro j�1
k �σk���s1�s2��ψ�

k U ψ��
k ��, is not empty. In order to do that we need to

distinguish between three possible cases, which are:

i) All states in σk fall in Sk�R. For simplicity, in the remainder of the proof we

refer our argument to the case k � 1 hence j � 2. We observe that a symmetrical and

equivalent derivation can be straightforwardly obtained from the above by swapping

the indices k and j. If all states of σk are in Sk�R and s j � S j�R, then σ��σk�s j��

�σk�0��s j� � � ��σk�n��s j�, where n � length�σk�, is clearly a path from �s1�s2� and fur-

thermore, as a consequence of the decomposed semantics of ψk formulae, also σ ��
�ψ�

k U ψ��
k �. Hence σ � �Path��s1�s2��ψ�

k U ψ��
k �� and also, trivially, Pro jk�σ� � σk

which proves Pro j�1
k �σk��s1�s2��ψ�

k U ψ��
k � to be non empty.

On the other hand if s j � S j�R, then since we are dealing here only with ergodic

Markov Chains (i.e. any state is reachable from any other state), there will be a path

σ̄ � s j � � �t j on M j leading from s j to a state t j � S j�R. Thus, clearly, �sk � σ̄� is a

path on M from �sk�s j� and furthermore �sk�σ̄��σ � Path��s1�s2��ψ�
k U ψ��

k �� and

Pro jk��sk� σ̄��σ� � σk which again proves Pro j�1
k �σk��s1�s2��ψ�

k U ψ��
k � to be non

empty.

ii) All states in σk are in Sk�R. In this case s j must be in S j�R (as Sk�R�S j�R is not part

of the Boucherie state space). Then �σk�s j� is a path from �s1�s2� and, thanks to de-

composed semantics of ψk formulae, we also know that �σk�s j� satisfies �ψ�
k U ψ��

k �,

while clearly its k-projection is σk.

iii) Some states of σk are in Sk�R and some others are in Sk�R. In the most general case

the path σ1 we consider (we are assuming k � 1), is given by a (finite) sequence of

σ1R
and σ1R subpaths (subpaths consisting only of states in S1�R and S1�R respectively).

However we can consider the simplest case of σ1 consisting of a sequence of only two

such subpaths, either σ1 � σ1R
�σ1R or σ1 � σ1R �σ1R

, knowing that the proof for any

6.2. Paths in a bidimensional Boucherie process 195

�

���� ���
���� ���

���� ���

���
� �

��

���� ���

�
��

�

�����

���� ���

���

��

�

��

�

���

�

��

�

��

�

��

�

��

�
��

�

��

�

����������� �� � ��������

�
�

�
�

�
�

�
�

�
�

��

���

�

��

�

��

�

��

��

Figure 6.5: Pro jk�Path��s1�s2��ψ�
k U ψ��

k �� � Path�sk�ψ�
k U ψ��

k �

other case is a direct consequence of this simple one. Let us assume

σ1 � σ1R
�σ1R

Let us denote by k� �0� l� (l�length�σ1�� the last element of σ1R
(i.e. k� length�σ1R

�).

Then clearly, σ1�k� � S1�R and σ�k�1� � S1�R. As we have seen in the previous case, if

s2 � S2�R then the bidimensional path given by the product of σ1 by s2, σa�σ1�s2, is a

proper path from �s1�s2�. On the other hand (see Figure 6.5), if s2 � S2�R there will be

a state t2 � S2�R reachable from s2 through a path σ̄2 such that the bidimensional path

obtained by concatenation of the product paths �σ1�0��σ̄2� and ��1 � σ1R
��t2�, i.e.

σb��σ�0�1�σ̄2����1 � σ1R
��t2�

is a proper path from the state �s1�s2� to the state �σ1�k�� t2�.

It is straightforward to show that both σa and σb are paths from �s1�s2� which

project on σ1. Moreover since, by the hypothesis, σ1 satisfies �ψ�
k U ψ��

k � then there

exists n� � �0� l� such that σ1�n�� ��1 ψ��
1 and �m� � n�, σ1�m�� ��1 ψ�

1. Thus, if s2 � S2�R

196 Chapter 6. Compositional CSL model checking: Until formulae

then thanks to the compositional semantics of ψk formulae, also there will exist n � n�

such that, with σ�σa, σ�n� �� ψ��
1 and �m�m� � n�n� σ�m� �� ψ�

1, which proves σa

being in Path��s1�s2���ψ�
k U ψ��

k �� (hence Path��s1�s2���ψ�
k U ψ��

k �� �� /0).

If, instead, s2 � S2�R, then the path σ�σb��σ1R
�t2� is such that with n�n��length�σ̄2�,

σ�n� �� ψ��
1 and �m � n σ�m� �� ψ�

1, which means σ �� �ψ�
k U ψ��

k �. Hence, also in the

case s2 � S2�R, the set Path��s1�s2���ψ�
k U ψ��

k �� is not empty as it contains, at least,

σ�σb��σ1R
�t2�.

The proof for the symmetrical case σ1 �σ1R �σ1R
is simpler as clearly the only possi-

bility, in this case, is s2 � S2�R (we are considering a path σ1 generated from a state

σ1�0� � S1�R where component M1 holds the shared resource, hence s1 can only be

coupled with states s2 � S2�R). In this case the product path σ�σ1�s2 is clearly a

path from �s1�s2� projecting on σ1. Furthermore it is straightforward to show that, by

assuming σ1 ��k �ψ�
k U ψ��

k � then also σ �� �ψ�
k U ψ��

k �.

�

The result of the above proposition relating bidimensional paths and their k-projections,

will be the basis for a non-constructive prove of existence of a compositional semantics

for single-component unbounded Until formulae. This will be the subject of the next

section.

6.3 On single-component unbounded Until formulae

Relying on the background material about bidimensional paths provided in the previ-

ous section, we are now ready to deal with the analysis of a compositional semantics

for unbounded Until formulae which refer to a bidimensional Boucherie process. For

that purpose, we consider an enriched version of the syntax for single-component for-

mulae introduced in (5.2.1), where the Until connective U I , in its unbounded version

(i.e. I � �0�∞�) only, has been added.

6.3. On single-component unbounded Until formulae 197

φk ::� ψk � ϕk � ωk � ξk � φk�φk � �φk

ψk ::� tt � ak � ψk�ψk � �ψk

ξk ::� S�p�ψk� � S�p�ϕk�

ϕk ::� P�p�X
I�ψk��

ωk ::� P�p�ψkU ψk�

(6.3.1)

We notice that the same type of restrictions concerning nesting of probabilistic op-

erators (see Section 5.2) still apply. Thus, also for the Until connective, only non-

probabilistic single-component formulae ψk, are admitted as the possible type of argu-

ment. Furthermore, Until formulae are kept apart from Next formulae. This is due to

the fact that, for the time being, no results have been found showing a compositional

semantics of steady-state properties which refer to Until paths (while, as shown in

Section 5.2.2, there is a decomposed way to check steady-state properties of bounded

Next single-component formulae). As a consequence, the Until formulae cannot ap-

pear as argument of the steady-state operator, in the syntax of formulae for which a

decomposed semantics exists.

The following theorem proves that, relying on the properties of bidimensional paths,

the derivation of a compositional semantics for single-component unbounded Until for-

mulae is possible.

Theorem 6.3.1 Let �s1�s2� be a state of a bidimensional Boucherie process, ψ�
k�ψ

��
k

two non-probabilistic formulae as in (6.3.1), p � �0�1� a probability value and

�� �����
���. Then there exists a derived probability value p� such that the fol-

lowing holds:

�s1�s2� �� P�p�ψ�
k U ψ��

k ��� sk ��k P�p��ψ�
k U ψ��

k �

Proof. From the CSL semantics we know that a state s of an arbitrary CTMC M
satisfies a probabilistic Until formula like P�p�ψ�

k U ψ��
k � if and only if the probability

198 Chapter 6. Compositional CSL model checking: Until formulae

measure ProbM �s��ψ�
k U ψ��

k �� � p. However, ProbM �s��ψ�
k U ψ��

k �� is equal to the

sum of the probability measure of the paths starting from s and satisfying �ψ �
k U ψ��

k �,

which is:

ProbM �s��ψ�
k U ψ��

k �� � ∑
σ�Path�s��ψ�

k U ψ��
k ��

Pr�σ�

where the probability of a path σ is given by the product of the probability of each

transition it consists of. Relying on this remark let us prove the two implications.

��� If �s1�s2� �� P�p�ψ�
i U ψ��

i �. Then�
∑

σ�Path��s1�s2��ψ�
i U ψ��

i �

Pr�σ�
�
� p (6.3.2)

If we denote by P� the set of k-projections of the paths σ � Path��s1�s2��ψ�
i U ψ��

i �

(i.e. P� � Pro jk�Path��s1�s2��ψ�
i U ψ��

i ��) and by Pro j�1
k �σ���s1�s2�� the set of paths

σ from �s1�s2� whose k-projection is σ� (i.e. the path σ such that Pro jk�σ� � σ�), then

we can rewrite the above sum by factoring out the paths with common k-projection in

the following way:

∑
σ�Path��s1�s2��ψ�

k U ψ��
k �

Pr�σ� � ∑
σ��P�

�
∑

σ�Pro j�1
k �σ���s1�s2��

Pr�σ�
�

(6.3.3)

From Proposition 6.2.2 we know that the probability measure of every bidimensional

path σ can be factored in terms of the probability measure of its projections Pro j1�σ�
and Pro j2�σ� and of two constants, namely p1

σ and p2
σ:

�σ�	pi
σ� p

j
σ : Pr�σ�� p1

σ � p
2
σ �Pr�Pro j1�σ�� �Pr�Pro j2�σ��

Hence (6.3.3) results in:

∑
σ�Path��s1�s2��ψ�

k U ψ��
k �

Pr�σ� � ∑
σ��P�

�
∑

σ�Pro j�1
k �σ���s1�s2��

pi
σp j

σPr�σ��Pr�Pro j j�σ���
�

� ∑
σ��Pro jk�Path��s1�s2��ψ�

kUψ��
k ��

kσ�Pr�σ��� p

(6.3.4)

with

kσ� � ∑
σ�Pro j�1

i �σ���s1�s2��

pi
σp j

σPr�Pro j j�σ�� (6.3.5)

6.3. On single-component unbounded Until formulae 199

But from Proposition 6.2.4, we know that

Pro jk�Path��s1�s2��ψ�
kUψ��

k �� � Path�sk��ψ�
k U ψ��

k ��

which substituted in the inequality (6.3.4) results in:

∑
σ��Path�sk��ψ�

k U ψ��
k ��

kσ�Pr�σ��� p (6.3.6)

If we denote by σ�M the path in Path�sk��ψ�
k U ψ��

k �� which maximises the associated

constant kσ�M , then we can define the constant C which accounts for the total deviation

from the maximum kσ�M of each other path σ� � Path�sk��ψ�
k U ψ��

k ��, σ� �� σ�M, namely:

C � ∑
σ��Path�sk��ψ�k U ψ��k ��

σ� ��σ�M

�kσ�m � kσ� �Pr�σ��

Then from (6.3.6), straightforwardly follows

kσ�M ∑
σ��Path�sk��ψ�

k U ψ��
k ��

Pr�σ��� �p�C�

which, clearly, proves

sk ��k P
�

�p�C�
kσ�M

�ψ�
k U ψ��

k �

��� By reversing ���.

�

Relying on the properties of bidimensional paths, the above theorem proves the

existence of a compositional semantics for single-component unbounded Until for-

mulae. This result, though correct, does not provide a practical way of decomposed

checking of Until formulae. The computation of the equivalent probability bound

p� , in fact, requires determing the set of paths which satisfy an Until formula (i.e

Path�sk��ψ�
k U ψ��

k ��), something which could be achieved by defining some specific

graph-analysis technique. In the next section we will show that a decomposed verifi-

cation of event-bounded Until formulae is easily achievable.

200 Chapter 6. Compositional CSL model checking: Until formulae

6.4 Compositional Semantics of event-bounded Until

formulae

In Section 3.2 an event-bounded version of the Until operator has been formally in-

troduced and a verification method has been demonstrated for the case of a single-

point bounding interval. It has been shown that verifying an event-bounded formula

�ψ� U�n� ψ��� boils down to the verification of its operands, ψ� and ψ��, plus the ver-

ification of the Next formula �X ψ���. In Chapter 4 and Chapter 5, we have proved

methods for decomposed checking of both simple boolean combinations of atomic

propositions (i.e. ψkk and ψ12) and Next formulae (i.e. Xψk and Xψ12). As a conse-

quence, the derivation of an algorithm for compositional verification of event-bounded

Until formulae, both single-component and general, is straightforward. In Algorithm

6.4.1 such a method is provided. That procedure requires the computation of the state-

vectors Prob�Xψk� and Prob�Xψ12� whose elements represent the probability of sat-

isfying, respectively, a single-component and a general Next formula, for the states of

a bidimensional Boucherie CTMC. The following two remarks point out that the ele-

ments of those vectors can be evaluated in a compositional way (i.e. by computing the

probability of Next formulae with respect to the states of the component’s processes).

Remark 6.4.1 Let �s1�s2� be a state of a bidimensional Boucherie process and ψk a

boolean combination of atomic propositions referring to component Mk. The proba-

bility of reaching a ψk-state from �s1�s2� in one-step, is equal to:

Prob�X ψk��s1�s2� �

��������������������
�������������������

Probk�X ψk��sk� if �s1�s2� � Rk

1 if �s1�s2� � Rj

and sk ��k ψk

0 if �s1�s2� � Rj

and sk ���k ψk

pk�s1�s2� �Probk�X ψk��sk� if �s1�s2� � Rf ree

and sk ���k ψk

pk�s1�s2� �Probk�X ψk��sk�� p j�s1�s2� if �s1�s2� � Rf ree

and sk ��k ψk

6.4. Compositional Semantics of event-bounded Until formulae 201

The above remark shows that the probability vector Prob�Xψk� for a bidimensional

Boucherie process is a function of the corresponding probability vector Probk�Xψk�

computed with respect to component Mk.

Remark 6.4.2 Let s1 and s2 be a state of a bidimensional Boucherie process and ψ12

a general formula as in 5.4.1. The probability of reaching a ψ12-state from �s1�s2� in

one-step, is equal to:

Prob�Xψ12��s
1�s2�� ∑

�α1�α2��DecSat�ψ12�

�p1�s1�s2� �Prob1�X α1��s
1�� p2�s1�s2� �Prob2�X α2��s

2��

The above remark is a direct consequence of Algorithm 5.4.2. It shows that the stat-

evector Prob�Xψ12�, for a bidimensional Boucherie process, can be obtained as a func-

tion of the components’ state-vectors Prob1�Xα1� and Prob�Xα2� , where α1 and α2

are the single-component formulae characterising the partition of Sat�ψ12�.

Having shown that the vectors Prob�Xψk� and Prob�Xψ12� for a bidimensional

Boucherie CTMC can be computed in a compositional manner, it is easy to determine

a method for decomposed verification of both single-component and general event-

bounded Until formulae.

Algorithm 6.4.1 Let M be a bidimensional Boucherie process with components M1

and M2, ψ� and ψ�� two boolean combinations of atomic propositions (either single-

component or general) and n a natural number. The following algorithm can be ap-

plied for computing the state-vector PU�Prob�ψ� U�n� ψ���

Algorithm (Prob�ψ� U�n� ψ���).

1. PU�0;

2. IF n � 0 THEN PU � iψ�� ; ELSE

i. Determine Prob�X ψ���;

ii. Determine iψ�;

iii. PU � iψ� �Prob�X ψ���; n � n�1;

iv. FOR n � 0 DO

PU � iψ� � �P �PU�;

202 Chapter 6. Compositional CSL model checking: Until formulae

n � n�1;

3. return PU.

�

The above algorithm shows a method for computing the probability of satisfying an

event-bounded Until formulae of any type (i.e. with any possible combination of

operands, either single-component formulae, ψk, or general formulae, ψ12) for a bidi-

mensional Boucherie process. We observe that the evaluation of the state-vector

Prob�ψ� U�n� ψ���, for the product-process, is obtained in a decomposed way which is,

by means of a number of verifications involving the component’s processes only (no

actual verification with respect to the state-space of the product-process is needed). In

fact, in order to determine Prob�ψ� U�n� ψ��� the vectors iψ� , iψ�� and Prob�Xψ��� are

needed. However, relying on Theorem 4.3.1 and Theorem 4.3.2, we know that iψ� and

underlineiψ�� can be evaluated in a compositional way. Moreover, from Remark 6.4.1

and Remark 6.4.2, we know that also Prob�Xψ��� can be computed compositionally.

Hence, the procedure illustrated by Algorithm 6.4.1 shows that an approach for de-

composed verification of event-bounded Until formulae, is possible when referring to

a bidimensional Boucherie process.

Chapter 7

Conclusion

7.1 Introduction

In this chapter a summary of the main results of the thesis is presented. The extent to

which these address the analysis of CSL expressiveness and the study of a composi-

tional approach to CTMC’s model-checking is assessed. Furthermore, in Section 7.3, a

description of the ongoing work and directions for further developments are provided.

7.2 Summary

In this work the model-checking technique for CMTCs has been considered and two

major aspects have been addressed: the study of the expressiveness of the CSL logic

and the analysis of a compositional method to check CSL formulae with respect to a

bidimensional Boucherie process.

CSL expressiveness

In Chapter 3 the CSL logic has been considered and its expressiveness analysed. Rel-

evant points have been made regarding each of the following subjects.

Extending the future-quantification: in referring to a behaviour of interest with re-

spect to a system’s evolution, the idea of event-quantification, as opposed to time-

203

204 Chapter 7. Conclusion

quantification, of the future has been pointed out. In this respect, we have seen that the

Until and Next operator perform differently, the former allowing us to refer to an indef-

initely long (in terms of events) future only, the latter allowing a one-event-long only

quantification of the future. The extension of the strict (one-only) event-quantification

capability of the CSL logic to the most general case of n events, seemed then to be

natural. As a result, an event-bounded version of the time-unbounded Until operator

has been introduced and a method for its verification has been demonstrated. This has

been shown to require the computation of an iterative matrix-vector multiplication, as

opposed to the the solution of a system of linear equations which is needed for its

event-unbounded counterpart (i.e. the standard unbounded Until).

Single-point time-bounded formulae: time-bounded path formulae (i.e. XI φ and

φUI ψ) allow us to specify a bounding interval I � �a�b� for the time-wise distance of

a future behaviour of interest. When the bounding interval consists of a single instant

(i.e. I � �a�a�) we have pointed out some relevant features of both Next and Until.

Concerning a Next formulae, (i.e. X �a�a� φ), it has been shown that reaching a φ state in

one step exactly at time t is an impossible event (i.e. it has probability zero to happen).

As a consequence a time-bounded Next formula has been characterised as well-formed

only if a � b. With the Until formulae (i.e. �φU �a�a� ψ�), instead, we have seen that

only the evolutions in which a future state where both the source (i.e. φ) and the target

(i.e. ψ) formulae are valid is reached through a sequence of states where the source is

satisfied, have a non-null probability to fulfil the point time-bound �a�a�. In contrast,

in the non-point interval case, a � b, also the paths in which a future state where only

the target is valid is reached through a sequence of states where the source is satisfied,

can have a non-zero probability to fulfil the time bound I � �a�b�.

Well-formed probabilistic formulae: CSL probabilistic formulae (i.e. S�p�φ� and

P�p�ϕ�) allow us to compare a probability measure (either an equilibrium probability

measure or a path probability measure) with respect to a bound p. The comparison is

achieved by means of any operator�� �����
��� and any bound p� �0�1�. We have

pointed out that the absence of restrictions in associating� and p can lead to senseless

7.2. Summary 205

formulae, like S�0�φ� or P�1�ϕ�. Such formulae are trivially valid in any state, be-

cause, clearly, a probability measure must fall in the interval �0�1�. This has led to the

characterisation of well-formed probabilistic CSL formulae, achieved by identifying

the sensible pairs ��� p� through proper logical conditions.

Simpler syntax for ergodic CTMCs: the CSL syntax admits nesting of probabilistic

operators (i.e. S�p and P�p). This facility allows for expressing complicated proper-

ties of a CTMC. However, we have demonstrated that when the considered model is an

ergodic CTMC, the complete nesting facility of the original CSL syntax is not actually

needed. This is due to the fact that with ergodic CTMCs, steady-state formulae like

S�p�φ�, are model-dependent rather than state-dependent (i.e. they are either valid in

every state or in none). As a result, we have proved a number of equivalences which

show that nesting of S�p within a P�p operator is pointless when dealing with ergodic

CTMCs. That has led to the characterisation of a simpler, but equivalent, CSL syntax

for referring to ergodic models.

Compositional CSL model-checking

Chapters 4, 5 and 6 have been devoted to the analysis of a compositional CSL se-

mantics for bidimensional Boucherie CTMCs. Formulae referring to a two component

Boucherie process have been partitioned into single-component, for stating properties

which refer to features of a single component only, and general, which refer to features

of both components. A progressive approach has been have adopted in deriving of a

compositional semantics.

Non-path formulae: in Chapter 4 decomposed semantic equivalences for non-path

formulae (i.e. formulae not involving X nor U) have been proved, first for the single-

component case, then, relying on those results, for the general case. With respect to

properties which refer to a single component only, it has been proved that the model-

checking problem for a single-component steady-state formula (i.e. S�p�ψk�) on the

206 Chapter 7. Conclusion

product-process, is equivalent to the model-checking problem of the same steady-state

formula on component Mk, but with respect to a derived probability bound p� (whose

value depends on Satk�ψk�). On the other hand, we have shown that checking of gen-

eral formulae reduces to a combined checking of single-component formulae. In par-

ticular, a decomposed semantics for general steady-state formulae, like S�p�ψ12�, has

been derived, relying on the definition of a partition of the set Sat�ψ12�. We observe

that most of the decomposed semantic equivalences for steady-state properties (both

single-component and general) we have proved, assume that the normalisation con-

stant G, for the product form solution of the Boucherie steady-state distribution, is

known. The problem of computing G (a well known one in the literature) has not been

considered in this work.

Next formulae and new algorithm for Prob�XI φ�: in Chapter 5 time-bounded Next

formulae have been considered and a decomposed semantics has been provided. For

the time being the possibility for nesting of the probabilistic Next operator (i.e. P�pXI)

has been excluded. Furthermore, since both the product process and the component’s

processes of a Boucherie framework are ergodic CTMCs, then only non-probabilistic

formulae have been allowed as the possible type of argument of P�pXI. Under these re-

strictions we have proved that checking a single-component probabilistic time-bounded

Next formula, like P�p�XI ψk�, on the product process, is equivalent to checking the

same formula on component Mk but with respect to a derived probability bound p�

and a derived time-bound I �, in the worst case, and to verifying a simple inequality,

in the best case. Furthermore, we have proved that, checking the steady-state prob-

ability of single-component probabilistic time-bounded Next against a bound p (i.e.

formulae like S�p�P�p�X
I ψK��), reduces to checking the steady-state probability of

a derived single-component formula (i.e. SXlow�ψk��� p� I� or SXup�ψk��� p� I�) with

respect to a derived probability bound p�low (or p�up). Finally, a decomposed method for

checking general probabilistic time-bounded Next formulae has been provided. In this

chapter another interesting result have been provided. We have demonstrated that the

algorithm for computing the probability measure of satisfying a time-bounded Next

formula (i.e. the state vector Prob�X I φ�) which can be found in the literature, is not

7.2. Summary 207

correct. A revised (and correct) version has been defined and its use has been shown

with respect to an example.

Until formulae: in Chapter 6 the study of a decomposed way for checking single-

component unbounded Until formulae has been faced. As for the Next operator, for

the time being, only non-probabilistic formulae have been considered as the possible

type of operand of a probabilistic until operator. Under this condition, we have shown

that the verification of a formula P�p�ψ�
k U ψ��

k � with respect to the Boucherie process,

is equivalent to the verification of the same formula on component Mk but against a

derived probability bound p� (i.e. P�p��ψ�
k U ψ��

k �). Although correct, our argument

relies on a non-constructive proof. Hence, it does not provide a practical decomposed

method for checking those formulae. In order to obtain the equivalent probability

bound p� one would need some method which, given a state s of a CTMC, returns the

set of paths starting at s and satisfying �ψ�
k U ψ��

k �.

About excluding nested path-operators. In our work on compositionality we have

considered a strict restriction by disallowing nesting of path operators. In practice,

we have demonstrated that a decomposed verification is possible only for the formulae

belonging to that subset of the CSL. Assessing the extent to which this limits the ability

to state properties of interest is relevant. A formal study of this problem will be the

object of future work, however here some informal consideration is provided1. We

observe that the practical relevance of formulae given, for instance, by nesting of a

probabilistic Until operator within another probabilistic Until operator is not easily

understandable. A formula like

P�p1�φU �P�p2�ψ U ξ���

identifies all those states for which, with probability � p1, there exists a future state,

reachable via φ states, at which, with probability � p2, a ξ state is reached through

ψ states. The practical utility of such a formula, is far to be crystal clear. Similar

considerations hold for the converse case, P�p1��P�p2�ψ U ξ��U φ�, and for nesting

1A complete analysis of the problem would require all the possible nesting combinations of Next
and Until to be considered.

208 Chapter 7. Conclusion

of Until and Next like, P�p1�φU �P�p2�X ψ��� or P�p2�X �P�p1�φU ψ��� even if the

practical application of the latter case seems to have some relevance.

Abolishing the nesting facility, on the other hand, affects the ability to express tran-

sient properties. A formula like P�p��
�t�t� φ�, can be used to check the states’ transient

probability of matching φ at time t, against a bound p. If probabilistic path formulae

cannot be used as argument of the �I operator, the expressiveness for identifying the

target states of interest, hence, the transient analysis capability, is reduced2 .

7.3 Future work

At time of publication of this thesis several aspects of the research are still under pro-

cess. In this section we provide directions for future developments of this work. In

particular, we would like to point out that the (brand) new event-bounded Until op-

erator, introduced in Chapter 3, has actually been a very recent “discovery”. For this

reason we have had no time enough to develop further material concerning it, even if

there are many interesting aspects which originate from its definition. In the remainder

a list of relevant points is provided.

Expressiveness analysis for nested probabilistic path-formulae. A formal analy-

sis concerning the nesting facility for CSL path-formulae, is an interesting subject for

further work. In this respect, it is relevant to work out what type of measures are

expressible by means of nested path-properties and how sensible is to resort to that

facility of the CSL syntax from a performance analysis point of view. Searching for

the existence of useful equivalences, is also relevant.

Event-bounded Until. The event-bounded Until discloses the possibility for a new

type of analysis of path properties. The results proved in Chapter 3 show that the

model-checking problem for event-bounded Until actually reduces to the verification of

2We observe, however, that the use of probabilistic path formulae to identify the target state for a
transient analysis, is not always sensible. A formula like, P�p1�	

�t1�t1��P�p2�	
�t2�t2� φ��, which nests a

transient probability measure within another, appears to be reduceable to an equivalent, simple, transient
analysis P�p�	

�t� t� φ�, with t � t1 � t2 and p � p1
 p2.

7.3. Future work 209

a Next property plus the calculation of an iterative matrix-vector product. In Chapter 5

we have demonstrated methods for decomposed checking of Next formulae referring

to a bidimensional Boucherie framework. As a result the derivation of an algorithm

for decomposed verification of event-bounded Until on a Boucherie process, seems to

be straightforward. The definition of a combined time/event-bounded Until operator is

also a relevant aspect which we are currently investigating.

Until decomposed semantics. Very recently we have started to consider the use of

tensorial algebras to obtain a decomposed representation of the infinitesimal generator

matrix of a bidimensional Boucherie process M . We are currently studying if the ap-

plication of such a decomposition in the Uniformisation method leads to a decomposed

approximation of the transient distribution of M . This would allow us to exploit the

correctness preserving transformations described in Chapter 2, by means of which the

model-checking problem for time-bounded Until with respect to a Boucherie process,

would reduce to a transient analysis on the component’s processes. .

Complexity. The analysis of the computational costs/savings resulting by application

of the decomposed CSL verification (on a bidimensional Boucherie process) needs to

be performed. With this respect, it is relevant to assess the computational cost for the

function DecSat�� which, given a general non-probabilistic formula, ψ12, returns a de-

composed partition of Sat�ψ12�.

Appendix A

On the compositional semantics of

Next formulae

In this Appendix three lemmas which have been mentioned in Section 5.2.2, are re-

ported and proved. They regard properties which are essential to deriving a composi-

tional semantics for single-component steady-state time-bounded Next formulae (i.e.

formulae like S�p�P�p�X
I�ψk���).

Lemma A.0.1 Let M be a bidimensional Boucherie process, ψk a non-probabilistic

formula as in (5.2.1), p � �0�1� a probability bound, �� �����
��� a comparison

relation and I � �a�b� � ��0 a time interval. Then a state �s1�s2� � S satisfies the

formula P�p�XI�ψk�� if and only if sk satisfies SXup�ψk��� p� I�

�s1�s2� ��P�p�X
I�ψk����

�������
������

sk ��k SXlow�ψk��� p� I�s j� if low��� p���
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�

�

sk ��k SXup�ψk��� p� I�s j� if up��� p�
(A.0.1)

Proof. For brevity we focus only on the first case of the bi-implication. The derivation

of results for the case up��� p�, is similar.

��) Let us show that if �s1�s2� �� P�p�XI�ψk�� then sk ��k SXlow�ψk��� p� I�s j�, given

that low��� p� and
�
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�

�
. We have to distinguish

211

212 Appendix A. On the compositional semantics of Next formulae

between two possibilities which are: �s1�s2� � Rj, (i.e. M j holds the shared resource)

and �s1�s2� �� Rj (i.e. component M j does not hold the shared resource).

i) If �s1�s2� � Rj then also sk � Sk�R and s j � S j�R. Hence, since we are assuming�
�s j � S j�R�� ��e�E j�s j�a�e�E j�s j�b�� p�

�
, also ��e�E j�s j�a�e�E j�s j�b�� p� is true. As

a result, from Theorem 5.2.1, we then have that sk ��k ψk, but then also the formula

SXlow�ψk��� p� I�s j�, which since s j � S j�R is SXlow�ψk��� p� I�s j��
�

tk�Sk�R
�attk�ψk�

is true since at least the disjunct �attk �ψk�, clearly is satisfied by tk � sk.

ii) If �s1�s2� �� Rj then, from Theorem 5.2.1, we know that sk ��k P� p̂�XÎ�ψk��, where

h�p�ψk�Mk��s1�s2�� I� � �p̂� Î�. Since �s1�s2� �� Rj then also s j � S j�R, but then

SXlow�ψk��� p� I� �
�

tk�Sk
�attk �P� p̂�XÎ ψk�� (see Definition 5.2.2), which is clearly

valid in sk.

��� For simplicity we show the prove of this case by considering k � 1 and j � 2. The

same result can easily be derived for the dual case k � 2 and j � 1. Here we assume that

for s2 � S2, s1 ��1 SXlow�ψ1��� p� I�s2� given that low��� p� and�
�s2 � S2�R�� �e�E2�s2�a�e�E2�s2�b� p�

�
. We then have to distinguish between two

cases.

i) If s2 � S2�R then SXlow�ψ1��� p� I�s j� �
�

t1�S1�R
�att1 �ψ1� and then also s1 � S1�R

thus, �s1�s2� � Rj. Hence clearly s1 �� ψ1. Furthermore, since we are assuming�
�s2 � S2�R�� ��e�E2�s2�a�e�E2�s2�b�� p�

�
, then �e�E2�s2�a�e�E2�s2�b�� p is true. But

then from Theorem 5.2.1 also �s1�s2� �� P�p�XI ψ1�.

ii) If s2 � S2�R then clearly �s1�s2� �� Rj and also, in this case,

SXlow�ψ1��� p� I�s j� �
�

t1�S1
�att1 �P� p̂�XÎ ψ1��. Thus, clearly s1 ��1 P� p̂�XÎ ψ1��,

then from Theorem 5.2.1 also �s1�s2� �� P�p�XI ψ1�.

�

213

Lemma A.0.2 Let �s1�s2� be a state of a bidimensional Boucherie process, ψk a non-

probabilistic formula as in (5.2.1), p � �0�1�,�� �����
��� and I � �a�b�� ��0 a

time interval. The following equivalence holds:

�s1�s2��Sat�P�p�X
I�ψk�����

����
���

s j � Nextlow
j �sk�ψk� p��� I� if low��� p�

s j � Nextup
j �sk�ψk� p��� I� if up��� p�

Proof.

��� We need to distinguish between two possibilities: �s1�s2� �� Rj or �s1�s2� � Rj.

i) If �s1�s2� �� Rj, since we are assuming �s1�s2� � Sat�P�p�XI�ψk��� then from The-

orem 5.2.1, also sk ��k P� p̂�XÎ�ψk�� with �p̂� Î� � h�p�ψk�Mk��s1�s2�� I�. But this

implies also that Satk�PXRj
�ψk�s1�s2� p��� I�� �� /0, as

PXR j
�ψk�s

1�s2� p��� I� � atsk �P� p̂�X
Î�ψk��

(see Definition 5.2.4) then proving that s j falls in the first partition

s j � Next j�R�s
k�ψk� p��� I�, of the row(column) sk independently of the type of check

��� p� represents, which is: s j � Nextlow
j �sk�ψk� p��� I�, if low��� p� or

s j � Nextup
j �sk�ψk� p��� I�, if up��� p�.

ii) If �s1�s2� � Rj, a further distinction has to be considered. If low��� p�, since we

are assuming �s1�s2� �� �P�p�XI�ψk��� then, as a consequence of Theorem 5.2.1, also

�e�E j�s j�a�e�E j�s j�b� � p (as clearly it is not possible that sk ��k �tt). Since, in this

case

Nextlow
j�R �sk�ψk� p��� I� �

�
t j�S j�R:�e�E j�t

j�a
�e�E j�t

j�b
��p

�t j�

(see Definition 5.2.4), then clearly s j � Nextlow
j�R �sk�ψk� p��� I�, hence

s j � Nextlow
j �sk�ψk� p��� I�. If up��� p� a further distinction has to be considered.

If �e�E j�t j�a� e�E j�t j�b� � p then from Theorem 5.2.1 sk ��k ψk. Hence from Defini-

tion 5.2.4

Nextup
j�R�s

k�ψk� p��� I� �
�

t j�S j�R:�e�E j�t
j�a
�e�E j�t

j�b
��p

�t j�

214 Appendix A. On the compositional semantics of Next formulae

which proves s j � Nextup
j�R�s

k�ψk� p��� I� � S j�R, hence s j � Nextup
j �sk�ψk� p��� I�. If

�e�E j�t j�a� e�E j�t j�b� �� p then from Theorem 5.2.1 sk ��k �ψk. Hence from Defini-

tion 5.2.4

Nextup
j�R�s

k�ψk� p��� I� � S j�R

thus, clearly, s j � Nextup
j�R�s

k�ψk� p��� I�, which means s j � Nextup
j �sk�ψk� p��� I�.

(�) By reversing ���.

�

Lemma A.0.3 Let M be a bidimensional Boucherie process and t k a state in compo-

nent Mk, ψk a non-probabilistic formula as in (5.2.1), p � �0�1�,�� �����
��� and

I � �a�b�� ��0 a time interval. The following equivalence holds:

Sat�P�p�X
I�ψk����

���������
��������

�
tk�Satk�SXlow�ψk���p�I��

�tk�Nextlow
j �tk�ψk� p��� I��

if low��� p�

�
tk�Satk�SXup�ψk���p�I��

�tk�Nextup
j �tk�ψk� p��� I��

if up��� p�

Proof. For brevity we consider here only the first case of the above equality, which is:

we assume low��� p�. Furthermore, for simplicity, we suppose to refer to component

M1, which is we further assume k � 1 and j � 2. Again the proof for the dual case

k � 2 and j � 1, is symmetrical to the following one.

We then aim to prove the following bi-implication:

�s1�s2� � Sat�P�p�X
I�ψ1����� �s1�s2� �

�
t1�Sat1�SXlow�ψ1���p�I��

�t1�Nextlow
2 �t1�ψ1� p��� I��

��� If �s1�s2�� Sat�P�p�XI�ψ1��� (i.e. �s1�s2� ��P�p�XI�ψ1��) then, from Lemma A.0.1,

also s1 ��1 SXlow�ψk��� p� I�s2�. Hence

s1 ��1
�

t2�S2

SXlow�ψk��� p� I� t
2�� SXlow�ψ1��� p� I��

215

which proves s1 � Sat1�SXlow�ψ1��� p� I��. Furthermore from Lemma A.0.2 also

s2 � Nextlow
2 �s1�ψ1� p��� I�, then, clearly,

�s1�s2� �
�

t1�Sat1�SXlow�ψ1���p�I��

�t1�Nextlow
2 �t1�ψ1� p��� I��

��� By reversing (�).

�

Appendix B

On the bidimensional paths

This appendix contains some background material regarding paths over a bidimen-

sional Boucherie process (i.e. bidimensional paths). In Section 6.2 the idea of

k-projection of a bidimensional path has been introduced. In essence the k-projection

of a path σ is obtained by contraction of σ with respect to its j-moves. Intuitively,

such a contraction is itself a path on Mk. However, since the k-projection of a path

has been formally defined (see Definition 6.2.5), a rigorous proof of that is needed.

This result is proved in Proposition B.0.3. Before that some definition and preliminary

property are introduced. A quick reminder of the principal notations and conventions

adopted in the appendix is given. Unless otherwise stated, σ will denote a bidimen-

sional path; length�σ� denotes the number of transitions σ consists of; σ�n� is the n-th

state in the sequence σ and σ�n�k is the k-component of state σ�n�; a transition (or step)

σ�n�� σ�n� 1� is called a k-move if it corresponds to a transition on component Mk;

the number of k-moves in σ is denoted k steps�σ�; σ is said to be a k-path if it consists

of k-moves only;

Remark B.0.1 The states in a k-path σ have a constant j-component:

σ�n1�
j � σ�n2�

j

for every n1�n2 � �0� length�σ�� with n1 �� n2.

The above remark is a trivial consequence of the definition of Boucherie process. In

fact, in a bidimensional Boucherie framework, every global transition corresponds to

217

218 Appendix B. On the bidimensional paths

exactly one local transition (i.e. synchronisation is not allowed). Hence, clearly, with

a k-move, σ�n�� σ�n� 1� � k-move, the j-component of the source and target state

must be constant: σ�n� j � σ�n�1� j (see Fact 6.2.2).

Definition B.0.1 Let σ be a bidimensional path and σk � Pro jk�σ� its k-projection.

We denote mapk�σ�n�, the index of the element of σk on which σ�n� is mapped. For-

mally,

mapk�σ�n� � �0� length�σk�� : σk�mapk�σ�n�� � σ�n�k

The index mapk�σ�n�, introduced in the above definition, provides a means to refer to

the state of the k-projection of σ which corresponds to σ�n�.

Proposition B.0.1 The n-th element of a bidimensional path σ, maps on the�
n� � j steps�σ�n��

	
-th element of its k-projection:

mapk�σ�n� � n� j steps�σ�n�

Proof. by induction on n.

base: n � 0. From Definition 6.2.5 we have, Pro j�σ��0� � σ�0�i.
induction: we aim to show that Pro jk�σ���n�1��m�� �σ��n�1��k, given that Pro jk�σ��n�
m� � σ�n�k, with 0 � n� length�σ�� 1, is assumed as inductive hypothesis, where m

and m� are, respectively:

m � j steps�σ�n�

m� � j steps�σ��n�1��

We need to distinguish between two cases:

1� σ�n�� σ�n�1� � k-move.

In this case, m� � m, hence Pro jk�σ���n� 1��m�� � Pro jk�σ���n�m�� 1�. The k-

projection of σ can be expressed in terms of its �n�m�-th element, in the following

manner:

Pro jk�σ� � �Pro jk�σ���n�m�1�� � Pro jk�σ��n�m� � ��n�m�1��Pro jk�σ��

219

Since from the inductive hypothesis we know that Pro jk�σ��n�m� � σ�n�k, then rely-

ing on Definition 6.2.5 we can rewrite the above, as:

Pro jk�σ� � �Pro jk�σ���n�m�1�� � σ�n�k � Pro jk��n�1��σ�� (B.0.1)

Let us now consider the term Pro jk��n�1��σ�� in (B.0.1):

- if n � 1 � length�σ�, then from Definition 6.2.5 we have that

Pro jk��n�1��σ�� � σ�n�1�k. Hence, by substituting in (B.0.1), we have

Pro jk�σ� � �Pro jk�σ���n�m�1�� � σ�n�k � σ�n�1�k

which proves the proposition (i.e. Pro ji�σ��n�1�m�� � σ�n�1�i).

- if n � 1 � length�σ� and �n � 1� � σ is a j-path, then from Definition 6.2.5 it is

straightforward to show that Pro jk��n�1��σ�� consists of a single state, which is:

Pro jk��n�1��σ�� � σ�length�σ��k

Furthermore, since we are assuming �n�1��σ to be a j path, then from Remark B.0.1

we know that

σ�n�1�k � σ�length�σ��k

which by substitution in (B.0.1) proves that Pro jk�σ��n�1�m�� � σ�n�1�k.

- if n�1 � length�σ� and σ�n�1�� σ�n�2� � k-move, then by Definition 6.2.5 it is

straightforward to show that

Pro jk��n�1��σ�� � ��n�1��σ��0�k�Pro jk��n�2��σ�

since, again, ��n�1��σ��0�k � σ�n�1�k then

Pro jk��n�1��σ�� � σ�n�1�k�Pro jk��n�2��σ�

which substituted in (B.0.1) shows that Pro jk�σ��n�1�m�� � σ�n�1�k.

- if n�1 � length�σ� and �n�1��σ is not a j-path and σ�n�1�� σ�n�2�� j-move,

then there exist q � �0� length�σ��2� such that

σ�n�1�q�� σ�n�1��q�1�� � k-move

220 Appendix B. On the bidimensional paths

Thus, from Definition 6.2.5

Pro jk��n�1��σ� � σ�n�1�q�k�Pro jk��n�1��q�1���σ�

furthermore ���n� 1��σ��q� is a j-path hence, as a consequence of Remark B.0.1,

also σ�n�1�q�k � σ�n�1�k, by which we can rewrite the above equality as

Pro jk��n�1��σ� � σ�n�1�k�Pro jk��n�1��q�1���σ�

which substituted in (B.0.1) proves that Pro jk�σ��n�1�m�� � σ�n�1�k.

2� σ�n�� σ�n�1� � j-move. In this case, m� � m�1, hence the ��n�1��m��-th and

�n�m�-th element of the projected path are actually the same. Furthermore, since we

are assuming the n-th transition of σ to be a j-move, then, thanks to Proposition 6.2.2,

σ�n�k � σ�n�1�k, thus, relying on the inductive hypothesis:

Pro jk�σ��n�1�m�� � Pro jk�σ��n�m� � σ�n�k � σ�n�1�k

which proves the proposition also for the case σ�n�� σ�n�1� � j-move.

�

Remark B.0.2 The k-component of the last element of a path σ maps on the last ele-

ment of the σ k-projection.

map�σ� length�σ�� � k steps�σ�

We notice that Remark B.0.2 is a direct consequence of Proposition B.0.1 and Re-

mark 6.2.3.

Definition B.0.2 Given the n-th element of the k-projection of a path σ, we define

Map�1
k �σ�n�, to be the set of elements in σ which (all) map on Pro jk�σ��n�. Formally,

Map�1
k �σ�n� � �m � �0� length�σ�� : mapk�σ�m� � n�

221

Lemma B.0.4 The k-projections of two distinct elements of a path σ are in relation �

if and only if the number of k-steps in their respective prefix are in relation �

mapk�σ�k1��mapk�σ�k2��� k steps�σ�k1�� k steps�σ�k2�

�k1�k2 � �0� length�σ�� and � � �����
�����.

Proof.

(�) Let us suppose that mapk�σ�k1� � mapk�σ�k2�, then from Proposition B.0.1

k1� j steps�σ�k1��k2� j steps�σ�k2�, which means (Proposition 6.2.1) k steps�σ�
k1 � k steps�σ�k2��.

(�) By reversing (�).

�

Fact B.0.1 For any given path σ, the function map�σ�k� is monotonic.

Fact B.0.1 points out that the index on which an element σ�n� is mapped on the k-

projection of σ can only be greater or equal to the index on which any of its predecessor

is mapped. This is obviously true as a consequence of definition of k-projection of σ.

Remark B.0.3 For any path σ if σ�n�� σ�n�1� � k-move, then

mapk�σ�n�1� � mapk�σ�n��1

Remark B.0.3 points out that every k-move on a path σ is actually preserved on its

k-projection, but shifted j steps element ahead. On the other hand every j-move on σ
is deleted by Pro jk�σ�, (as a result both the source and target state σ�n� and σ�n� 1�

map on the same element of the k-projection).

Relying on the results proved so far, we now introduce a proposition which is the basis

to prove that the k-projection of bidimensional path σ is a path on component Mk.

Proposition B.0.2 Given a bidimensional path σ, the minimum element which maps

on the n-th element of its k-projection, is the successor of the maximum element which

maps on the �n�1�-th element.

222 Appendix B. On the bidimensional paths

max�Map�1
k �σ�n�1�� � min�Map�1

k �σ�n���1

�n � �1� length�Pro jk�σ���

Proof. Let us assume that m is the maximum amongst the indeces of σ which map

on the n-th element of its k-projection (i.e. max�Map�1
k �σ�n�� � m). Hence, clearly,

mapk�σ�m� � n. Furthermore, thanks to Lemma B.0.4, also �m� � m, k steps�σ �
m� � k steps�σ � m��. But with m� � m � 1, that implies k steps�σ � �m � 1�� �

k steps�σ �m�� 1 which means σ�m�� σ�m� 1� � k-move, hence also j steps�σ �
m� � j steps�σ��m�1��. From Definition B.0.1 and Proposition B.0.1, we know that

mapk�σ�m�1� � m�1� j steps�σ��m�1�� � m� j steps�σ�m��1 � n�1

which proves that the successor of max�Map�1
i �σ�n�� � m maps on the successor (n�

1) of the element it maps on (n). Relying on Fact B.0.1 we also know that �m�� � m�

1�mapk�σ�m���
 mapk�σ�m�1�, which proves m�1 being the minimum element

of σ mapping on the �n�1�-th element of its m-projection.

�

Remark B.0.4 The transition from the maximum element of a path σ whose k-projection

is n�1 and the minimum element which maps on n, is a k-move.

σ�max�Map�1
k �σ�n�1���� σ�min�Map�1

k �σ�n��� � k-move

Proof. contained in the proof of Proposition B.0.2.

�

Proposition B.0.3 The k-projection of a bidimensional path σ is a path from σ�0�k on

component Mk:

Pro jk�σ� � PathMk
�σ�0�k�

Proof. by induction on lk � length�Pro jk�σ��.

base: lk � 1. In this case Pro jk�σ� � σ�0�k hence clearly Pro jk�σ� � PathMK
�σ�0�k�.

223

induction: we assume that Pro jk�σ� � PathMk
�σ�0�k�, if lk � x � 1 and we aim to

show that, as a consequence, that holds also when lk � x�1. To prove that Pro jk�σ� �
PathMk

�σ�0�k� we need to show that

Qk�Pro jk�σ��m��Pro jk�σ��m�1��� 0 �m � �0� lk�

Let as assume (inductive hypothesis) that this is the case with lk � x � 1. Now let us

consider lk � x�1. Thus we only need to show that

Qk�Pro jk�σ��x��Pro jk�σ��x�1��� 0

holds. From Corollary B.0.4 we know that

σ�max�Map�1
k �x���� σ�min�Map�1

k �x�1��� � k-move

hence clearly Qk�σ�max�Map�1
k �x����σ�min�Map�1

k �x � 1���� � 0. Since

Pro jk�n � 1� � σ�max�Map�1
k �x��� and Pro jk�n� � σ�min�Map�1

k �n��� then

Qk�Pro jk�n�1��Pro jk�n��� 0, which proves the induction.

�

The result of the above proposition proves that, as expected, the path obtained by

application of the function Pro jk�� (see Definition 6.2.5) on a bidimensional path σ, is

a actually a path on component Mk.

Bibliography

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time

Markov chains. In R. Alur and T.A. Henzinger, editors, 8th Int. Conf. on Com-

puter Aided Verification, volume 1102, pages 269–276. Springer Verlag, 1996.

[2] A.A. Lazar and T.G. Robertazzi. Markovian Petri Net protocols with product

form solution. Performance Evaluation, (12), 1991.

[3] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-

time Markov chains. ACM Transactions on Computational Logic, 2000.

[4] C. Baier, B. Haverkort, H. Hermann, and J.-P. Katoen. Model checking

continuous-time Markov chains by transient analysis. In Proc. of Computer Aided

Verification, 2000.

[5] C. Baier, B. Haverkort, H. Hermann, and J.-P. Katoen. Model-checking algo-

rithms for continuous-time Markov chains. IEEE Trans. on Software Eng., 2003.

[6] C. Baier, J. P. Katoen, and H. Hermann. Approximate symbolic model checking

of continuous-time Markov chains. In Concurrency Theory, LNCS 1664: 146-

162, 1999.

[7] M. Bernardo. Theory and Applications of Extended Markovian Process Algebra.

PhD thesis, University of Bologna, Italy, 1999.

[8] R. Boucherie. A characterisation of independence for competing Markov chains

with applications to stochastic Petri nets. IEEE Trans. on Software Eng.,

20(7):536–544, 1994.

225

226 Bibliography

[9] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan.

Symbolic model checking for probabilistic processes. In Springer-Verlag, editor,

Automata, Languages and Programming, volume 1256 of LNCS, pages 430–440,

1997.

[10] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle

Mathematik, Bonn, 1966.

[11] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[12] E. E. E. Clarke and A. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. In ACM Transactions on Program-

ming Languages and Systems, pages 244–263, 1986.

[13] E.Clarke, M. Fujita, and X. Zhao. Representations of Discrete Functions. Kluwer

Academic, 1996.

[14] E.M Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.

ACM, 1999.

[15] F. Baskett, K.M. Chandy, R.R. Munts, and F.G. Palacios. Open closed and mixed

networks of queues with different classes of customers. Journal of the ACM,

pages 75–93, April 1975.

[16] F. Moller and C. Tofts. A temporal calculus for communicating systems. In

J.C.M. Baeten and J.W.Klop, editors, CONCUR ’90, volume 458 of LNCS, pages

401–415. Springer-Verlag, 1989.

[17] W. Feller. An introduction to probability theory and its applications. John Wiley

and Sons, 1968.

[18] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well-formed

coloured nets and their symbolic reachability graph. In 11th International Con-

ference on Applications and Theory of Petri Nets, 1990.

[19] H. J. Genrich, K. Lautenbach, and P. S. Thiagarajan. Elements of general net

theory. In Springer-Verlag, editor, LNCS, volume 84, 1980.

Bibliography 227

[20] H. A. Hansson and B. Jonsson. A framework for reasoning about time and reli-

ability. In Proc. 10th IEEE Real -Time Systems Symposium, Santa Monica, Ca.,

1989.

[21] J. Hillston. A compositional approach to performance modelling. Cambridge

Univesity Press, 1996.

[22] J. Hillston. Exploiting structures in solution: Decomposing compositional mod-

els. Technical report, Division of Informatics, University of Edinburgh, 19XX.

[23] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic

CTMC Model-Checking. In Proceedings of the Joint International Workshop

PAPM-PROBMIV, volume 2165 of LNCS. L. de Alfaro S. Gilmore, 2001.

[24] J.A. Bergstra and J.W. Klop. Algebra for communicating processes with abstrac-

tion. Journal of Theoretical Computer Science, pages 77–121, 1985.

[25] K. Jensen. Coloured Petri Nets Basic Concepts, Analysis Methods and Practi-

cal Use, volume 1 of Monographs in Theoretical Computer Science. An EATCS

Series. Springer-Verlag, 1997.

[26] K. Jensen. Coloured Petri Nets Basic Concepts, Analysis Methods and Practi-

cal Use, volume 2 of Monographs in Theoretical Computer Science. An EATCS

Series. Springer-Verlag, 1997.

[27] J.R. Burch, E.M. Clarke, D.L. Dill, and K.L. McMillan. Sequential circuit veri-

fication using symbolic model checking. In I. C. S. Press, editor, Proceedings of

the 27th Design Automation Conference, pages 46–51, 1990.

[28] J.R. Burch, E.M. Clarke, D.L. Dill, K.L. McMillan, and J. Hwang. Symbolic

model cheking: 1020 states and beyond. In Proceeding of LICS ’90. IEEE Com-

puter Society Press, 1990.

[29] J.R. Jackson. Networks of waiting lines. Operations Research, (5), 1959.

[30] L. Bernardinello and F. De Cindio. A survey of basic net models and modular net

classes. In Springer-Verlag, editor, LNCS, volume 609, 1992.

228 Bibliography

[31] L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley, 1975.

[32] L. Kleinrock. Queueing Systems, Volume II: Computer Applications. John Wiley,

1976.

[33] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling

with Generalized Stochastic Petri Nets. Wiley, 1995.

[34] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[35] M. K. Molloy. Performance analysis using stochastic petri nets. IEEE Transac-

tions on Computers, C-31(9):913–917, Sept. 1982.

[36] O. Grumberg and D.E. Long. Model-Cheking and modular verification. In Pro-

ceedings of CONCUR ’91: 2nd International Conference on Concurrency The-

ory, volume 527 of LNCS, pages 250–265. Springer-Verlag, August 1991.

[37] A. Pnueli. A temporal logic of programs. In 18th IEEE Symposium Foundations

of Computer Science (FOCS 1977), pages 46–57, 1977.

[38] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transtaions on Computers, pages 1035–1044, 1986.

[39] S. Ross. A Course on Simulation. Maxwell Macmillan International Editions,

1991.

[40] S. Donatelli and M. Sereno. On the product form solution for stochastic Petri

Nets. In Proceedings of the 13th international conference on Appplication and

Theory of Petri Nets, pages 154,172, 1992.

[41] S.Donatelli and G.Franceschinis. The PSR methodology: integrating hardware

and software models. In Proceedings of the 17th International Conference on

Application and Theory of Petri Nets, number 1091 in LNCS. Springer Verlag,

June 1996.

[42] W. J. Stewart. Introduction to numerical solution of Markov Chains. Princeton,

1994.

Bibliography 229

[43] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing,

1972.

[44] K. Trivedi. Probability and statistics with reliability, queuing and computer sci-

ence applications. Prentice-Hall, 1982.

[45] W. Henderson and P.G. Taylor. Open networks of queues with batch arrivals and

batch services. Queueing Systems, (6):71–88, 1990.

[46] W. Henderson and P.G. Taylor. Embedded processes in stochastic Petri Nets.

IEEE Transtaions on Software Engineering, (17), 1991.

