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1 Introduction

Standard ML [Mil 85| is an interactive, statically~typed programming language
that provides support for higher-order functions, user—defined abstract types, and
type-safe exceptions. The ML modules facility [Mac 85| provides the means for
organizing ML programs into units, called structures. Each structure has a well-
defined interface, called its signature, that plays a role similar to that of types
in the core language. Viewed statically, a program is a hierarchical arrangement
of interdependent structures. Support for the dynamics of program construction
is provided primarily by functors, functions from structures to structures, that
provide the means of glueing structures together to form coherent units. By
“coherent” we mean that the individual structures comprising the program are
combined so as to share information in the intended way.

A distinctive characteristic of the ML modules system is the way in which this
sharing between structures is managed. We use the word “sharing” to refer to any
of several ways that two structures can come to depend on one another. There are,
in essence, two ways in which dependency can arise. If a structure defines a type
that is used by another structure in an essential way (say, by defining a function
over that type), then the second structure can only be used in an environment in
which the first is present as well. A similar form of dependency arises when one
structure allocates a variable or defines an exception that is used by a function
in another structure. In this case the two usually must be treated as a unit,
for if the first structure is recompiled, it generates a new location on the heap
(or new exception) that cannot be accessed by the second. MacQueen’s central
observation is that both forms of dependency can be reduced to managing the
sharing of common substructures. In particular, functors which are used to build
up hierarchies of structures may require, as part of their parameter specification,



that two structures be built from the same structure, thereby ensuring that the
combination is properly coherent.

These mechanisms appear to form an adequate basis for addressing the theo-
retical problems that arise in a modular programming environment. In this paper
we address some of the more pragmatic issues involved, such as separate compi-
lation, preservation of session context, and program libraries. These issues are
traditionally taken to lie outside of the boundaries of the programming language
itself, but this seems to be inappropriate for an interactive langauge like ML.
Furthermore, recent work [Atk 81,Atk 85,Alb 85] has shown that considerable
benefits accrue from integrating these “environmental” issues into the language
proper. The key idea that we shall adapt from this work is the idea of a persistent
heap, whereby the program heap is considered to be a permanent, rather than
transient, repository of objects used by a program. Objects are accessed by a
generalized address, call a persistent identifier, or PID.

Facilities for separate compilation and so forth can be naturally viewed as
special cases of persistence. Our claim is that although a persistent heap is
adequate for our purposes, it does not appear to be necessary. In particular,
we show that the sorts of facilities that are most commonly used in a program
development environment can be implemented by techniques that, while not as
general as a full persistent heap, are considerably simpler. At the same time,
however, we demonstrate that viewing these problems from the point of view of
persistence is both natural and fruitful.

2 The ML module facility

We begin with an overview of the ML module facility [Mac 85]. Readers familiar
with [Mac 85] or [Har 86b] may safely skip to Section 3.

A structure is an encapsulated environment. The basic form of structure ex-
pression consists of a declaration between the brackets struct and end. The
declaration may define new types, exceptions, variables, or structures. A struc-
ture declared within another structure is called a substructure of that structure.
Substructures are used to express hierarchical dependency relationships among
structures, and are an essential aspect of ML’s approach to sharing. The declara-
tion embodying a structure may contain non-local references only to previously—
defined structures. This ensures that a program consists only of a collection of
structures: no stray top—level declarations that are not packaged into a structure
are allowed to participate in the construction of a program unit.

Here are some examples of structure declarations:

structure R =



struct
datatype t = ...
val f : t -> ¢t = ...
end

structure S =
struct
structure R = R
datatype ’'a tree = leaf of 'a | node of 'a tree * 'a tree
exception nonexistent : R.t
fun search(t:’'a tree,x:’a) = ...
end

The keyword structure introduces structure bindings, much as val introduces
a value binding. The structure bound to R defines a new type t and a function f
on that type. The structure bound to S imports R as a substructure, and defines
a new type 'a tree, an exception nonexistent, and a function search. Notice
that the type t defined in the substructure R of S is accessed by a qualified name,
consisting of a structure name and a component name, separated by a dot.

Hierarchical dependency of one structure on another is expressed by the use
of substructures. By binding the structure R in as a substructure, the structure
S makes its dependence on R explicit, and furthermore makes S self—contained.
Were R not incorporated as a substructure of S, the dependency of S on R would
be implicit, reflected only in the fact that the type of the exception nonexistent
refers to R, and not by the existence of any explicit reference to R within S. Such
a situation is undesirable because S can only be meaningfully used in a context
in which R is available as well, and if one does not tie the two together in some
way, then an essential coherence in the structure of the program is lost.

Structure sharing occurs when two structures incorporate the same structure
as a substructure. For example, if some structure @ were to bind in R as a
substructure, then 8 and § would be related by virtue of the fact that they both
depend explicitly on the structure R. It is crucial that both S and Q have the same
instance of R as substructure, for otherwise coherence is violated. The reason, in
this case, is that datatype declarations in ML are generative in the sense that
each elaboration of a datatype declaration defines a new type. Therefore if S
and Q do not refer to the same instance of R, their components will not have
compatible types. A similar problem would arise if R declared an exception that
is handled or raised by functions in S and Q.

It may strike the reader as peculiar that we are emphasizing the need to
maintain version control, especially in the setting that we have developed so far.
At present we are describing a static configuration of structures, but later on we



will turn to the problem of generating and updating these configurations. From
that point of view, preservation of sharing is a crucial problem.

One of MacQueen’s central observations is that the problem of dependency
between structures can be reduced to preserving appropriate sharing relationships
between structures and types. In this paper we will restrict our attention to
structure sharing. There is no loss of generality in this assumption (a type can be
taken to be a structure consisting of only the type declaration), but in practice
this is inconvenient, and the full modules system treats type sharing separately
from structure sharing. The reader is referred to [Car 85] for a discussion of type
sharing in a persistent environment.

The key to managing structure sharing is to have a suitable notion of equality
between structures that is sufficiently fine-grained as to capture the informal idea
of “versions” or “instances” of a structure during program development. Each
structure expression, when elaborated by the compiler, generates a new structure
that is distinct from all other structures previously declared. This generalizes
the generativity of data types mentioned above, and also captures the generative
character of allocations of references to the heap. Structure equality is then
defined to be in terms of a unique identifier (address or timestamp) associated
with the structure. This identifier is used as the basis for structure equality tests
in functors.

Signatures describe the interface of a structure, describing the names and
roles of the identifiers declared within a structure. This information consists of
the names of the type constructors defined in the structure, the types of the
variables and exceptions, and the signatures of the substructures. Signatures
are expressed by writing a specification between the brackets sig and end. Sig-
nature expressions are subject to an even more restrictive closure rule than are
structures: they may contain no references to any external identifiers other than
the pervasive primitives. They may, of course, be bound to identifiers using a
signature binding, as follows:

signature SIGR =
sig
type t
val f : t -> ¢
end

signature SIGS =
sig
structure R : SIGR
type ’a tree
val search : ’a tree * "a -> bool
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end

The utility of signatures lies in the relation called signature matching between
structures and signatures. Roughly speaking, if a structure satisfies the specifi-
cation given in a signature, then that structure is said to match that signature.
The exact definition of signature matching is somewhat complex, but the idea is
quite intuitive. For example, the structure S defined above matches the signature
SIGS because

1. The structure S.R matches SIGR;
2. The type S.tree is a one—-argument type constructor;

3. The variable S.search has the type given in SIGS.

This rough idea of the exact definition of signature matching suffices for our
purposes. The interested reader is referred to [Mac 85,Har 86b] for a more precise
account.

A signature SIG is said to be more general than another SIG’ if every structure
that matches SIG’ also matches SIG. For example, the signature SIGS’ obtained
by deleting the specification for search from SIGS is more general than SIGS. This
is derived from the fact that signature matching is liberal in the sense that the
structure may have “extra” components that are not specified in the signature.

A signature may be (optionally) attached to the structure identifier in a struc-
ture declaration, indicating that the structure on the right of the binding must
match the given signature. For instance, we may qualify the declaration of struc-
ture S above with the signature SIGS as follows:

structure 8 : SIGS = ... as above ...

Since the structure bound to S matches the signature SIGS, this is an acceptable
declaration.

A program consists of a set of interrelated structures, encapsulated into a sin-
gle root structure that binds the collection together into a unit. Each structure
presents a well-defined interface to the others, and sharing is controlled by sub-
structure bindings. Viewed statically, this appears to capture the idea of modular
programming. But from the point of view of the dynamics of program develop-
ment, we are lacking sufficient tools to create and modify such an arrangement
of structures. For example, if we wish to modify the code of a function in the
structure R above, then we need to recompile it and rebuild structures S and q,
using the same instance of R in both cases. It is impractical to insist that we
simply recompile the entire program, thereby recreating the static configuration
outlined above. What is necessary, of course, is some means of relinking S and Q
with the new copy of R. This facility is provided by functors.



A functor is a function that, given one or more structures as arguments, yields
a structure as result. The main use of a functor is to build a composite structure
from argument structures, as we have indicated. Consider the structures R and
S defined above. In order for S to be able to sustain a change to R, it must be
possible to rebuild S with a new copy of R replacing the old copy. To do this,
one defines a functor FS that, given a structure with signature SIGR, yields a
structure with signature SIGS. Structure S is built by applying FS to R, yielding
a new version of S with the new R incorporated as substructure. Similarly, the
structure R itself is generated by a functor, but since R lies at the bottom of the
dependency hierarchy, its functor has no parameters.!

functor FR() : SIGR =
struct
datatype t = ...
val £ : t -> ¢
end

structure R : SIGR = FR()
functor FS( R : SIGR ) : SIGS =
struct
structure R : SIGR = R
datatype ’a tree = ...
exception nonexistent : R.t
val search(t:’a tree,x:’a) = ...
end

structure S : SIGS = FS( R )

The dependence of S on R is flexible because S is built by applying FS to R. Since
FS uses R abstractly (knowing only its signature), any instance of R can be plugged
in to S by applying FS to that instance.

Now a functor may contain a sharing specification to ensure that two struc-
tures are built from a common substructure. For example, consider the structures
S and Q discussed above, each with an instance of R in common. Then a functor
to build another structure, say W, from S and Q will usually wish to require that
it be given compatible versions of S and Q, for otherwise the combination will not
be coherent. This is achieved by the sharing specification, as follows:

functor F( S: SIGS, Q:SIGQ sharing S.R = Q.R ): SIGW = ...

1 The point of defining a nullary functor for R is mainly that in general one may want to obtain
multiple instances of R without recompiling the body.

6



An application of this functor to two structures is acceptable only if the sub-
structures R of each argument are equal in the sense of having the same unique
identifier or address.

We shall limit our attention in this paper to “pure” functors, those without
non—local references to the environment. The main significance of this restric-
tion is that functors need not be represented as closures, and certain problems
related to the signature of an impure functor are avoided. Another consequence
of this restriction is that the structure resulting from a functor application can
depend only on the parameter structures, and not on any other structures in the
environment.

3 Persistence

In this section we discuss the problems of separate compilation, session preser-
vation, and program libraries in the context of the ML modules facility. The
essential observation is that each of these problems can be addressed from the
point of view of persistent data. We will focus our attention on structures and
functors as the units of persistence, as these are the fundamental units of program
in ML. A more fine-grained notion of persistence would clearly be useful for some
applications, but these issues lie beyond the scope of this paper. First, we discuss
a general notion of persistence, and discuss its interaction with sharing and its
suitability for support for program development. Then we isolate several special
cases of the general notion, each motivated by a particular, limited application,
but admitting a much simpler implementation than the most general form.

The most general notion of persistence, which we shall call object persistence,
consists of viewing all objects as existing in persistent storage, with ephemeral
storage serving only as a cache for quick access. Each object is identified by
a persistent identifier, or PID, which is the address of that object in persistent
storage. In effect, the program heap resides in persistent storage, with local
caching in ephemeral storage for the sake of efficiency. The heap is garbage
collected as usual, so that only accessible objects are preserved. In order to
ensure that all accesses to persistent data are type safe, each object must have
its type associated with it, and some sort of run—time typechecking is essential.
When types are limited to pervasive primitives like int and bool, this is a well—
understood notion. The situation becomes more interesting when user—defined
abstract types are introduced; see [Car 85| for a treatment of this problem.

It has proved fruitful to view a persistent heap as a generalized form of
database, and therefore it is normal for a program to access several persistent
heaps. This entails that persistent identifiers must be relativized to to a partic-
ular heap, and also that primitives be provided for accessing heaps. A program



connects to an address space using a primitive called connect. Access to address
spaces is mediated by a handle [Car 85|, typically a file name, that designates
the address space to the run—time support system. Thus connect(H) returns
some form of descriptor required for accessing the address space identified by the
handle H. It is assumed that all changes to the persistent store are automatically
preserved, and that any support for simultaneous access to an address space is
provided by the underlying support primitives.

In the context of ML structures and functors are persistent objects, and there-
fore they are assigned PID’s at creation time. The PID is used to mediate all
access to the structure or functor, and it is also used to define equality between
structures: two structures are equal if and only if they have the same PID. This
corresponds to the fact that structure expressions are generative, in that each
elaboration of a structure expression yields a unique structure. Functors are sim-
ililarly assigned PID’s when they are created, but since there is no equality test
for functors in ML, there is no need to be especially aware of this fact.

Notice that since we required that dependencies between structures be rep-
resented by a substructure hierarchy, it is always the case, even in a persistent
environment, that related structures cannot be separated from one another. For
example, since the structure S defined in Section 2 incorporates R as a substruc-
ture, the PID of R is bound to the local identifier R of S, thereby ensuring that
the appropriate version of R is properly associated with S in the persistent heap.

It has been observed [Car 85| that it is necessary in a persistent environment
to associate the type of a structure with the object in persistent storage in order
to ensure type safety. In the context of ML, this means that signatures must
be stored with each persistent structure, and a pair of signatures (one for the
parameter and one for the result) and the sharing specification must be stored
with each functor.?

Object persistence is the most general form that we could implement, and
therefore is adequate as the basis for supporting the needs of a program develop-
ment environment mentioned above. Session preservation is completely automatic
in such an environment since every heap is implicitly preserved and can be ac-
cessed with the connect primitive. Thus we can view a session with ML as being
initiated by connecting to a persistent address space, doing some work, and then
exiting. To return to that session at some later time, we simply reconnect to that
address space, and resume where we left off.

Of course, if all we are interested in supporting is session peristence, then a
much simpler implementation strategy is available: simply write a snapshot of
the heap to persistent storage. A session is resumed by reloading the snapshot
into a virgin ML system. This approach is rather-crude and-inefficient since-we-

2The generalization to multiple argument functors is straightforward.



have no choice but to treat the entire heap as a monolithic object, without the
possibility of treating any fragment of the heap separately, or being able to access
it alongside other heaps.

One common application of session persistence is for a special case that we
might call program persistence. The idea is to regard the significant result of a
session to be a single structure consituting the root of some program hierarchy.
For example, in the current implementation of ML, the ML compiler itself is
merely a checkpointed heap that we reload in order to compile a program. The
difficulty with this approach (aside from the aforementioned awkwardness of full
checkpointing) is that it amalgamates the programmer’s heap with the heap of
the compiler itself. Thus if a user wishes to construct an ML program, the entire
heap, including the compiler itself, must be written out as a unit.

Of course, if we were to use full object persistence, then there is a much better
solution to the problem of program persistence. Since a program consists of a
hierarchical arrangement of structures, each with a PID, then we can isolate a
program as an independent address space by exploring the set of objects accessible
from the root structure, and writing this out as a self-contained heap. Then any
program may connect to this heap and use it freely, without having to replace
the entire context as with simple-minded session persistence. Thus the problem
of program persistence is solved by having persistent structures.

In fact, it is not necessary to have full object persistence in order to implement
this strategy. All that is needed is the ability to collect together the accessible
portion of the heap as a unit, and write this to persistent storage. Copying
garbage collectors already provide this facility, since they work by consolidating
the accessible portion of the heap in a contiguous region of virtual memory. If we
define “accessible” to mean “accessible from a given structure”, then we can use
the collector to isolate that portion of the heap relevant to a given program, and
write it to persistent storage. The main difficulty that arises is that one must be
prepared to relocate this fragment of the heap when it is reloaded. But this is
quite simple, using essentially the same technique in reverse. To reload a fragment
of the heap, simply use the collector to shift the current heap in virtual memory
so provide space for the saved heap, then read the saved heap into the vacated
space, binding the address of the root to an identifier. The checkpointed heap
fragment is now accessible and available for use. Of course, this implementation
strategy is rather crude, but it is considerably easier to implement in an existing
system than full object persistence, and is much more flexible than simple-minded
checkpointing.

A similar approach to program persistence is used in Poly [Mat 85]. The idea
is that one often does not wish to load a program into an existing context, but
rather wishes to switch to the context of that program. Rather than shift the
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existing heap to make room for the imported heap, the current heap is merely
replaced by the imported heap. This approach has the advantage over simple-
minded checkpointing that it only stores the portion of the heap that is accessible
from a given program, rather than storing the entire session context. However,
it has the disadvantage that it destroys the current context. Although this is
clearly a limitation, it appears that it is not a severe one from the point of view
of program persistence.

Program persistence, however it is implemented, is supported by the intro-
duction of two primitives, import and export. The effect of export S to His to
write the fragment of the heap rooted at structure S, together with its signature,
to persistent storage, filed under the handle H. The exported heap fragment con-
stitutes an address space in its own right, which we access by using the import
primitive. The structure binding

structure S : SIG = import H

reloads the heap fragment filed under handle H, and binds to the identifier S. This
operation succeeds only if the signature associated with the structure stored at H
is no more general than SIG, which guarantees type safety.

It is important to note that sharing between two programs (structure hierar-
chies) is not preserved across calls to export and import. The reason for this is
that the structure S and all of the objects on which it depends is culled from the
context in which it resides, and written as a single entity. If some other structure
incorporates one of the components of the structure being exported, then this
connection will be lost when the structure is re-imported. For example, suppose
that S is the root structure of some program that incorporates structure R as a
substructure, and that some other structure T, unrelated to S also incorporates
R. Then after exporting S to persistent storage, and re-importing it at some later
time, the relationship between T and S no longer holds. In fact, T may not even
exist in the context into which S is imported. From the point of view of support-
ing program persistence, this is perfectly alright, since only the sharing within
a program is relevant. Sharing between programs is purely an accident of no
particular importance.

In Section 2 we discussed the role of functors as providing the means of relink-
ing programs, and therefore lie at the heart of the dynamics of program develop-
ment. The key idea.is that the dependency between structures can be expressed
functionally, provided that we have sharing clauses. A change to a program com-
ponent is made by changing the corresponding functor, recompiling that functor
(by rebinding it), and then relinking the entire program. Thus functors are the
“object modules” of ML, and functor application performs linking. Separately—
compiled program units and program libraries are naturally viewed as persistent
(pure) functors.
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Since a functor is an object, object persistence provides the means of support-
ing separately compiled program units and program libraries. But since functors
have no non-local references to the heap, they may be isolated from the rest of
the heap, much as we isolated structure hierarchies above. As a result, a simpler
implementation strategy is available for the support of persistent functors based
on the import and export primitives defined above. Here the non—destructive
form of import must be used, for otherwise there would be no structures available
to apply it to once we had retrieved it!

We extend the import and export primitives to functors as follows. The
command export F to H writes the functor F to persistent storage at handle H.
The parameter and result signatures and the parameter sharing clause are stored
with the functor at H. A stored functor is re-imported with the following variant
of a functor binding:

functor G( R : SIGR ) : SIG = import H

This bindind succeeds only if the signature stored with the functor at H matches
the given signature of G in the following sense. Suppose that the functor stored
at H has the signature (SIGR’,SIG’). Then the declaration of G succeeds only if

1. Signature SIGR is no more general than SIGR’;
2. Signature SIG is at least as general as SIG’.

Note carefully the inversion between the two conditions. Recall that we say that
a signature SIG is more general than SIG' if every structure that matches SIG’
also matches SIG. An argument to the functor G must match the signature SIGR.
If SIGR is no more general than SIGR’, then any argument to G matches SIGR® as
well, and hence is acceptable as an argument to the stored functor. Conversely,
the stored functor yields a structure that matches signature SIG’. This structure
also matches SIG if SIG is at least as general as SIG’.

It is interesting to compare our approach to persistence with the persistent
abstractions of Cardelli and MacQueen [Car 85]. Their interest is primarily with
persistent abstract data types, and the problem of ensuring type safety in a per-
sistent environment for a language with user—defined abstract types. Signatures
are similar to their existential types, and structures are similar to their implemen-
tations of an existential type. However, we do not have any notion of a value with
abstract type (which is an object that is “really” an object of the implementation
type, but is treated as having a type distinct from the hidden implementation),
and therefore most of the complications do not arise. They have no analog of
functors or functor types in their paper. They do define some primitive oper-
ations for a persistent programming language, and we can cast our operations
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on structures in their terms as follows. The command export S to H can be
expressed in their notation as extern(dynamic(S,SIG) ,H, where SIG is a signa-~
ture matched by S. The declaration form structure S:SIG = import H can be
expressed as structure S = coerce intern(H) to SIG.

4 Conclusion

The general notion of object persistence, adapted to the context of modular pro-
gramming in Standard ML, provides an adequate framework for addressing some
of the pragmatic aspects of program development such as session preservation,
separate compilation, and program libraries. Three particularly useful forms of
persistence, session persistence, structure persistence, and pure functor persis-
tence, address certain special problems that arise in a program development en-
vironment, and admit simpler implementations than a persistent heap. Whether
or not full persistence is necessary for our purposes remains unclear, though it
appears that the real advantages of persistence lie in the context of database
programming.
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