Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Functor-Category Semantics of
Programming Languages and Logics

by
R.D.Tennent

LECS Report Series ECS-LFCS-86-3

May 1986
LFCS

Department of Computer Science
University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ




Functor-Category Semantics of
Programming Languages and Logics

R.D. Tennent!

Laboratory for the Foundations of Computer Science
Department of Computer Science
University of Edinburgh
Edinburgh, Scotland.

Abstract A category-theoretic technique for denotational-
semantic description of programming languages has recently been
developed by J.C. Reynolds and F.J. Oles. The first application
was an “abstract” description of stack-oriented storage
management in Algol 60-like programming languages. A more
recent application has been to obtain a model of Reynolds’s
“specification logic” that is non-operational and wvalidates certain
intuitively-true axioms; this application required ideas from
topos theory. This paper is an introduction to the Reynolds-
Oles technique and its applications. A novel feature of the
presentation is the systematic use in functor categories of
analogues to conventional domain constructions.

In designing a programming language, the central
problem is to organize a variety of concepts in a
way which exhibits uniformity and generality.
Substantial leverage can be gained in attacking
this problem if these concepts can be defined
concisely in a framework which has already
proven its ability to impose uniformity and
generality upon a wide variety of mathematics.

J.C. Reynolds

'On leave from the Department of Computing and Information
Science, Queen’s University, Kingston, Canada. :



1. Motivations

1.1. Stack Implementability

Every programming-language implementor understands
how to use a stack to manage storage for suitable program-
ming languages. @ However, semanticists have found it
difficult to capture an abstract notion of stack-
implementability.  Informally, a language is stack-
implementable when it follows a last-in/first-out storage-
allocation discipline and does not have “dangling references”,
that is to say, de-allocated variables are inaccessible. It is
straightforward to describe last-in/first-out storage allocation
using conventional denotational-semantic techniques
[e.g., Tennent 1981]; however, verifying that there are no
dangling references is very difficult [Milne and Stra-
chey 1976, Tennent 1983, Halpern et al. 1983].

One difficulty is that state argumients of semantic valua-
tions and procedure values range over a single ‘“global”
domain of states of unbounded size, rather than “local”
domains of states of exactly the appropriate size; another
problem is that environments bind identifiers to values that
apparently can access any part of a (global) state. What is
needed is a suitable way of indexing semantic domains by
stack-depths or, for statically-typed languages, by state
“shapes” specifying the “size” of each component of a stack.

1.2. Non-Interference in Specification Logic

Specification logic [Reynolds 1981a, 1982] is a program-
ming logic for Algol 60-like languages with procedures. It
is essentially a multi-sorted first-order theory with Hoare
triples {Py} C {P,} as atomic formulas and conventional log-

ical operators such as conjunction, implication, and universal
quantification. = However, additional atomic formulas are
needed to express certain kinds of assumptions about free
identifiers, notably the “non-interference” formula C # E,
which is defined to be true just if every (terminating) exe-
cution of command C preserves the value of expression E
invariant.




-3 -

If this were to mean merely that the value of E after
execution of C is the same as its initial value, there would
‘be no semantic difficulty. However, C # E is intended to
be interpreted in the stronger sense that throughout any ter-
minating execution of C, the value of E remains the same as
when the execution started. This cannot be specified in a
conventional denotational-semantic description in which com-
mand meanings are functions or relations from initial-states
to final-states, and so Reynolds [1981a] was forced to adopt
an ‘“‘operational” style of description for commands, using
sequences of (intermediate) states. This is undesirable
because it distinguishes between command meanings that fol-
low different execution-paths, even if their ‘“externally-
observable” behaviour is identical.

A non-operational specification would be possible if one
could specify which states are ‘“‘allowable” for a command
execution; for then the non-interference formula C # E
could be interpreted as being true just if every terminating
execution of C (within the allowed set of states) can also
take place when the allowed set of states is further res-
tricted to that subset for which E has the value it had ini-
tially. Again, it seems desirable to be able to parameterize
semantic descriptions with respect to “local” constraints on
what states are representable or allowed.

2. Functor-Category Semantics

In this section, we present the basic idea of a technique
due to J.C. Reynolds [1981b] and F.J. Oles [1982,1985]
which provides solutions to the problems of semantic
description outlined above. Consider a phrase Z that con-
ventionally would be interpreted so that [[ZIl is a function
from a suitable domain of environments Env to a suitable
domain of meanings M; that is,

[Z]

Env M

Suppose that x is an object that specifies some “local” aspect
of storage structure. For example, for describing stack-
oriented storage management, x would specify the stack-



-4 -

depth or state-shape; for describing non-interference, x
would specify the set of allowed states. In logic, objects
such as x are known as “possible worlds”. Then, both the
valuation function and the semantic domains should be
“parameterized” with respect to possible worlds x:

[Z]x

Env(x) M(x)

This allows the environments and meanings to be tailored to
whatever constraints on the local states might be appropri-
ate. For example, the command meanings in a stack-
implementable language might, as usual, be state-to-state
functions, but the states should have just the correct depth
or shape (as specified by x), and the environments should be
constrained not to allow dangling references.

But of course the valuation functions and semantic
domains for different possible worlds cannot be arbitrarily
different from one another. To arrive at the appropriate
uniformity condition, suppose that y is another possible
world and that f:x —y specifies how to “change” from x to
y. For example, if possible worlds are stack-depths, there
would be a (unique) f for every y such that x <y. Or, if
x and y are sets of allowed states and y is to be a subset
of x (for example, the subset for which some expression has
some value), f would be the function inserting y into x.

It is reasonable to require that, for any possible world
x, there is a “null” change-of-possible-world id :x—x and
that, if f:x—y and g:y—z are changes-of-possible-worlds,
there is a composite change f;g:x — z such that composition
is an associative operation. In short, possible worlds and
changes-of-possible-world must form a category X.

Now, every X-morphism f:x—y induces a change-of-
meaning M(f): M(x) = M(y). For example, if f describes an
increase in stack-depth, then the M(f) for commands maps
every command meaning ¢ for the “small” stacks to a com-
mand meaning for the “larger” stacks: this would leave the
new part of the stack unchanged while changing the old
part of the stack like c¢. Similarly, Env(f) should do the
same kind of thing component-wise for environments.



-5-

It is reasonable to require that these induced mappings
on semantic domains should preserve identities and compo-
sites. In short, Env and M must be functors from X, a
category of possible worlds, to a suitable category of
semantic domains:

x Env(x) M(x)
f l Env(f) l 1 M)
y Env(y) M(y)

Finally, the condition that ensures uniformity of the
valuations is that [Z]] must be a natural transformation
from Env to M; that is, the following diagram should com-
mute for every phrase Z and X-morphism f: x — y:

x Env(x) 20 )

f l Env(f) M(f)
y Env(y) M(y)
i [zly Y

Note that this picture reduces to the conventional one when
X is the trivial (one-object and one-morphism) category.

To summarize, the basic idea of the Reynolds-Oles tech-
nique is to move from categories of domains and functions
to functor categories X => D whose objects are the functors
from a (small) category X of possible worlds to a category
D of semantic domains, and whose morphisms are the
natural transformations of these functors.

3. Some Categories of Possible Worlds

In this section, we describe the categories of possible
worlds that have been used to date in applications of the
functor-category approach.

A category of possible worlds suitable for interpreting
specification logic for a programming language without



-6 -

variable declarations [Tennent 1985] is as follows. The
objects are sets X,Y,.., interpreted as the sets of states
allowed by the reasoning context; the morphisms from X to
Y are the injective functions from Y to X. Intuitively, such
a function maps every element of Y to the element of X
that it represents; elements of X not in the range of the
function are ‘“‘unreachable” when executing in the more-
restricted possible world. Composition of morphisms is just
functional composition. An important kind of morphism in
this category is “restriction to a subset”: for X' a subset
of X, the morphism [X':X— X 1is simply the insertion
function from X' to X.

The category of possible worlds used by
Oles [1982,1985] to model stack-implementable languages can
be described as follows. The objects are again sets, now
interpreted as the sets of states representable by the run-
time stack; the morphisms from X to Y are pairs f,Q where
f is a function from Y to X and Q is an equivalence rela-
tion on Y such that

x < vy _9 vy

is a product diagram (in the category of sets and functions),
where ¢ maps every element of Y to its Q-equivalence class.
Intuitively, f extracts the small stack embedded in a larger
one, and Q relates large stacks with identical ‘“‘extensions”.
This is just the category-theoretic way of saying that larger
stacks are formed from smaller ones by adding independent
components for local wvariabless The composition (in
diagrammatic order) f,Q;g,R: X — Z of morphisms f,Q: X—Y
and g,R:Y—Z has as its two components: the functional
composition of f and g, and the equivalence relation on Z
that relates z;,z; € Z just if they are R-related and Q relates
g(zy) and g(z;). An important kind of morphism in this
category is “‘expansion by a set”: if V is a set, then the
morphism XV:X — XXV has as its components: the projec-
tion function from XXV to X, and the equivalence relation
that relates <xjvy> and <x,v,> just if vj = v,.



-7 -

To allow for both expansions of state sets (e.g., to inter-
pret variable declarations) and restrictions (e.g., to interpret
non-interference formulas), the category of possible worlds
must combine the properties of the two categories already
described. The objects are pairs X,X' such that X is a set
(interpreted as the set of representable states), and X' is a
subset of X (interpreted as the subset allowed in the
present context). A morphism from X,X' to Y,Y' is a pair
of the form f,Q having the properties described in the
preceding paragraph and the additional property that AY") be
included in X'; intuitively, the small state embedded in an
allowed large state must itself be allowed. Composition of
such morphisms is as described in the preceding paragraph.
For any object X,X' in this “combined” category, there are
both restriction morphisms [X": X,X' — X,X" for any subset
X" of X', and expansion morphisms XV:X, X' — XXV, X'XV
for any ‘set V; their definitions should be evident.

4. Meaning Functors

In this section, we discuss how to define meaning func-
tors [[0]l from categories X of possible worlds to categories
D of domains for each of the phrase types 0 for an Algol-
like language and logic; these functors are generalizations of
the ‘“‘semantic domains” in a conventional denotational-
semantic definition. Two categories of semantic domains are
of particular interest: Set is the usual category of sets and
(arbitrary) functions, and Pdom [Reynolds 1977] is the
category of “pre-domains™: directed-complete posets and
continuous functions. The first of these is appropriate for
“logical” phrase types, such as assertions and specifications,
and the second for ‘“‘computational”’ phrase types, such as
expressions and commands. Both are Cartesian-closed and
there are obvious embedding and forgetful functors between
them.

It is sometimes possible to define meaning functors by
using, for each component of the object part, the
corresponding conventional-semantic domain with the usual
“global” set of states replaced by a “local” set determined
by the possible world. But this point-wise approach is
inadequate for procedures and specification formulas, and it



-8 -

turns out to be much simpler consistently to use functorial
analogues to the “domain constructions” of the conventional
approach.

For example, there is a product operation F; X F, on
functors F; and F, which is derived point-wise from the
product in D: for any X-object x and X-morphism f:x —y,

(Fy X F)Xx) = Fy(x) X Fy(x)
and

(Fy X F)X(f) = Fi(H X F)(f)

Similarly, if, for any domain D and function f on domains,
D | denotes D augmented by a new element | (a new least

element if the domain is a poset) and f| denotes the exten-

sion of f to the augmented domains that maps 1 to 1,

then, for any functor F, there is a “lifted” functor F n

such that | (x) = F(x) , and F () = F(f),. These opera-

tions will also be used on contravariant functors, yielding
contravariant functors.

The functorial analogue to the function-domain construc-
tion is more sophisticated. To motivate this, consider that a
procedure defined in possible world x might be called in
any world y accessible from x wusing an X-morphism
f:x—y, and it is the storage structure determined by y
which should be in effect when the procedure is executed.
This suggests that the meaning of a procedure defined in
possible world x must be a suitably-uniform family of func-
tions, indexed by X-morphisms f:x—y. So, for functors F,

and F,, F;—F, is defined to be the functor whose object
part is determined by



(F; — F,)(x)
={mell fix—y . F, (0 —-F,(y |
for all X-morphisms f:x—y and g:y— 2z,

F@;;m(fie) = m(); Fle) } ,

where the arrow in F,(y) — F,(y) denotes exponentiation in
D. '

Intuitively, a procedure meaning in possible world x is a
family of functions (indexed by the changes of possible
world from x) from the F ;domain appropriate to the

“changed” possible world, to the F,-domain appropriate to

that world. Furthermore, such a family must satisfy a
natural-transformation-like uniformity condition: commuta-
tivity in D of all diagrams of the form

Fy ™22 py)
Fl(g:y—>z)l Fg:y—2)

F.(2) ~ F,(2)
m(fig:x — z)

This construction will also be used on contravariant
functors; the appropriate uniformity condition is obtained by
reversing the vertical arrows. In either case, the effect of
F,— F, on morphisms is defined as follows:

(F, = F)f:x—=y)Xm € (F, = F)x)Xg:y—2) = m(fig) ,

so that F; = F, is always covariant.

If D is Set, the functor category X=D is Cartesian-
closed for any X [Goldblatt 1979], and the construction just
described is the exponentiation operation in that category.



- 10 -

Oles [1982] has shown that this is also the case if D is
Pdom when the (F; — F,)(x) are ordered point-wise.

We need another exponentiation-like operation, analogous
to the construction of domains D, ---> D, of partial functions

in conventional semantics [Plotkin 1985]. For (covariant)
functors F| and F,, the object part is defined by

(F| > F,)(x)
={mell frix—>y . F,(»-—>F,» |
for all X-morphisms f:x—y and g:y— z,
F,(g) ;s m(fig) = m(p) ; Fg)
whenever m(f) has a defined result }

‘The uniformity condition for this construction only requires
commutativity of

F(y) -- mf:x2y) F,(y)
Fl(g:y—*z)l le(g:y-—)z)

FI(Z) —————————————— > FZ(Z)
m(fig: x — z)

when the result of the mapping along the top of the
diagram is defined. For contravariant functors, the wvertical
arrows are reversed and commutativity is required only
when the result of the mapping along the bottom of the
diagram is defined. In either case, the morphism part of
F,-->F, is defined in exactly the same way as that for

F,—F,.
If D is Set, this construction yields a “representation of

partial morphisms” for a “domain structure” that makes
X =D a partial Cartesian—closed category [Moggi 1986] for



- 11 -

any category X, and also if D is Pdom when the
(F--> F,)(x) are ordered pointwise.

To construct the meaning functors for an Algol-like
language using the above operations on functors, we start
with functors that are analogous to ‘‘primitive” domains.
We need (contravariant) constant functors V_ such that, for

all X-objects x, V,_(x) is the set of values of data-type 7;

for example, Vg ... (x) would be {truefalse}. Also needed

is a “states” functor S such that S(x) is the set of states
allowed in possible world x. For the categories of possible
worlds described in Section 3, this functor is contravariant;
for example, if X is the “combined” category described
there, S(f,Q: X, X' = Y,Y") is evidently the restriction of the
“projection” function f€ Y — X to domain S(Y,Y) = Y and
co-domain S(X,X) = X'. Then, the meaning functors [6]
for phrase types 0 are defined in Table 1, where U denotes
the (covariant) constant functor that maps X-objects to any
one-element set. (We have simplified the presentation here
by ignoring the fact that the appropriate category of
domains is sometimes Set and sometimes Pdom.)

When X is the trivial category, these definitions yield
the domains used in conventional denotational semantics.
But, in general, meanings are X-morphism-indexed families of
functions. For assertions, expressions, commands, acceptors
and variables, such meanings are more complex than those
in [Reynolds 1981bl, [Oles 1982] and [Tennent 1985], but
are more convenient because it is not necessary to use the
morphism parts of meaning functors to define the families
of functions “implicitly”.

Note that assertions must always be properly truth-
valued, but the meaning functors for expressions (including
Boolean expressions) allow for non-definedness of evaluation.
See [Tennent 1986] for a discussion of Hoare-style program-
ming logics when the values of terms may be “‘undefined”.
The uniformity condition for — ensures that, during the
evaluation of an expression or assertion at some state, its
sub-expressions are evaluated at that same state (or an
expansion of it); that is, there are no side effects to non-
local wvariables, even ‘“‘temporary” ones. The uniformity



-12 -

0 [e1
assertions S— VBoo1ean
expressions S-V,,

(of data-type 7)
commands . S-> S

acceptors V. XS-->8§
(for data-type 7)

variables (V X8-->8)x(§—V_ )
(of data-type 7)

procedures [6,I1— 16,1
(of phrase-type 6, —6,)

specifications U--->U
(i.e., formulas)

Table 1. Meaning Functors

condition for ---> allows command execution in any possible
world to be less-defined than in less-restricted possible
worlds, but ensures that, when such execution is defined, it
is consistent with execution in the less-restricted worlds.

Similarly, specification meanings are essentially
X-morphism-indexed families of ‘“‘partial elements”, which



- 13 -

are either undefined (interpreted as ‘false’”) or defined
(interpreted as ““true’); furthermore, if ¢ is such a family
and t(f:x—1y) is true (i.e., defined) then the uniformity
condition for --> requires t(f;g) to be true for all g:y— z.
Thus, t is (the characteristic function of) a “sieve on x”,
and the meaning functor for specifications is the truth-value
object in the topos X => Set [Goldblatt 1979].

Many variations are possible. If the language has non-
deterministic commands, a ‘“relational”-style semantics could
be given by adopting SXS--->U as the meaning functor for
commands, where here U would be contravariant. Program-
ming languages with jumps require ‘“‘continuation” semantics;
for example, the meaning functor for commands would be
C—C, where, for any (contravariant) functor A for
“answers”, C, the functor for command continuations, would
be S—->A in the deterministic case, and SXA--->U in the
non-deterministic case.

5. Semantic Valuations

In this section, we present “‘semantic equations” for typ-
ical logical and programming-language constructs. We begin
by considering the purely-logical forms of specification. As
one would expect, the valuation for specification conjunction
(for any category X of possible worlds) is

S, & S,lxuf = [[S,Ixuf and [S,Ixuf ,

where here, and throughout this section, x is an X-object, u
is an environment appropriate to x and to the free
identifiers of the phrase, and f:x—y is an X-morphism
with domain x. The analogous treatment of specification
implication does not work in general. It is known from
topos theory [Goldblatt 1979] that the following non-
classical semantics is needed:



- 14 -

S, = S,lxuf
= for all g:y—z, if [[S,Ixu(f;g) then [S,Ixulf;g)

The “implicit quantification” over changes of possible world
is needed in general to satisfy the uniformity condition on
specification meanings.

The wvaluation above provides a solution to a difficulty
‘that Reynolds [1982] had with the interpretation of
specification  logic: showing the soundness of certain
intuitively-true axioms which use non-interference formulas
and implications as assumptions. One of these is the Strong
Constancy axiom. Consider, first, the following weaker
axiom:

C # P = {P} C {P}

It asserts that if an assertion P is true before executing a
command C, and is not interfered with by the command,
then it will be true after execution of the command. This
does not take advantage of the strong interpretation of
non-interference: the assertion P is true throughout the exe-
cution, not merely after it.

To take full advantage of the non-interference assump-
tion, first use the axiom of Specification Conjunction to
obtain

C# P & {P)} C{P} = {Pand Py} C {P and P}

Then strengthen this by weakening the second assumption,
as follows:

C#P&{Pt={pP}} C{P} = {Pand Py} C {P and P}

where {P} is an abbreviation for {true} skip {P}; ie, P
holds for all (allowable) states. Intuitively, this axiom



- 15 -

(called “Strong Constancy”) asserts that, if P holds before
executing C and C preserves the truth of P throughout the
execution, then it is possible to assume that P is a “local”
mathematical fact in reasoning about C, because all states
that might be encountered during any such execution of C
must satisfy P. However, using the classical interpretation
of the logical connectives, the axiom is invalid because P
- might not satisfy all allowable states.

With the non-classical interpretation of implication given
above, one merely considers the change of possible world
which is the restriction to the subset of states that satisfy
assertion P. The second assumption of the axiom then
ensures that P, will hold after execution of C (where, by

hypothesis, P and Py hold before). The axiom of Leftside
Non-Interference Composition [Reynolds 1982] also uses

non-interference and implication formulas as assumptions,
and can be validated in the same way.

The  wvaluations for  equivalence and  universal
quantification are similarly non-classical:

[z, =y Z,Ixuf

= for all g:y—z, [ON(F)Z, Ixu) = [01(f;e)IZ,Ixw)

IV I:0.Slxuf

= for all g:y—z and m € [0]lz, [SIz[Env(fighu [I:m]Gd,) ,

where Env is the appropriate environment functor, con-
structed as the product of the meaning functors for the free
variables, and [u|I:m] denotes the environment that is like
u except that the I component is m. In general, these
interpretations validate intuitionistic, rather than classical,
logical rules.

The valuations for procedural abstraction and application
are as follows:



_ 16 -
[IAI: 0.Z1xuf(m € [01ly) = MZIY[Env(H@W) |I:m]

[Q@)Ixu = [QIxulid J(IZTxw)

These are also applicable with any category of possible
worlds.

Direct-semantic valuations for some of the forms of
command and the atomic formulas of specification logic are
given in Table 2. In the equation for sequential composi-
tion, the semi-colon on the right denotes composition of par-
tial functions (in diagrammatic order). The valuation for
the non-interference formula is only applicable when the
category of possible worlds has restriction morphisms. It
asserts that execution of command C in possible worlds for
which the value of expression E is invariant is not less
defined than unconstrained execution of C, because the uni-
formity condition on command meanings already ensures
that the equation holds when execution in the constrained
world terminates. Non-interference for assertions is similar.

Valuations for variable-declaration blocks may be given
along the lines laid down in [Reynolds 1981b] and
[Oles 1982]. Let X be the “combined” category of possible
worlds of Section 3. We first define “‘expansion” functors
exp,: X — X for each data-type 7 as follows:

exp (X,X) = XXV,X'XV where V = V(X,X) ,
and
exp,(f,Q: X,.X' = Y,Y) = f.Q_

where f <ygvy> = <f(yo) Vo>

‘For any X-morphism f,Q: X,X'—Y,Y", the following diagram
commutes:



- 17 -

[C;;Collxuf = IC Dxuf ; IC,Ixuf
[ADxuf<v,y,>, if [Elxufy, = v € V, (),

[A :=_ Elxufy, = '
undefined, otherwise

[{Py} C {P,}Ixuf
= for all y, € S(y), if [Pyllxufy, and [Cllxufy, = y, € S()

then [P, Dxufy,

[C #_ Elxuf
= for all g:y—2z and v € VT_L(Z),
S(z) ; ICIxu(fsg) = [Clxu(figslZ) 5 S(Z,)

where Z, = {z, € S(2) | [Elxu(f;g)z, = v}\

Table 2. Commands



- 18 -

XV (X,X")

)'®.¢ =~ exp (X,X")
7.0 l l exp,(£Q)
Y,y ~ exp (V.Y
XV (Y,Y")

Then, the expression and acceptor components of a ‘“‘new”
variable of data-type 7 in an expanded possible world
exp,{X,X') should be e (X,X) and a(X,X) such that, for
every X-morphism g,R:exp (X,X) — Z,Z',
e (X, X)g.R)zy € Z) = v where <xgv> = glzp) ,
and
a (X, X)Ng,R)<v,, z5 € Z'>
z,, if z, € Z
for the z; € Z such that g(z;) = <xyv,> and zyRz,

where <xgvy> = glzy),

undefined, otherwise.

In the definition of a,, the state z; satisfying the two condi-
tions must exist and be unique by the “‘product” property
of X-morphism g,R. Intuitively, the effect of assigning a
value v, to the acceptor is to replace the old value Vg In
the appropriate component of the stack by v,, without
changing more-local components (ensured by using R) or
more-global components (i.e., x,); however, if the resulting
state happens to be disallowed in the current possible
world, the assignment fails to terminate.



- 19 -

Then, a block command declaring a local 7-variable may
be interpreted as follows:

[new I:7 in Cllxufy,

yy  if [CI(exp (x))
[Env(XV, ()W) | I: <a (x).e (x)>]
(exp,(P)
<YoVo~

= <y;v;> € Sexp,(y)

undefined, otherwise,

where v, is a “standard” initial value for variables of type
T.

A similar valuation may be used for a form of block
expression in which the wvalue of the local variable after
execution of command C is used as the value of the whole
construct:

[result I:7 of Cllxufy,

vy, if [CH(exp (x))
[Env(XV, (x)W) | I: <a (x).e (x)>]
(exp, (fil{y})
<y0,v0>

= <ypv;> € lygh X V (%),

1, otherwise.

Side effects to non-local variables are prevented by the res-
triction to a possible world z in which y,, the initial state,

is the only allowed state:



- 20 -

x " =~ exp,(x)
f l 1 expr(f)
y xV.(y) exp, ()
o) [ 1 exp, (lyo)
~ €]
Z XVT(Z) CXPT 4

It would be reasonable for a compiler to warn the program-
mer if identifiers other than I had free command-like
occurrences in C. But to deem this a syntactic error would
create the same kind of difficulty that Reynolds [1978] had:
syntactic well-formedness would not be invariant with
respect to beta equivalence.

6. Discussion

There have been just two applications of the functor-
category technique to date, but it seems very likely that
others will be found. ‘“Invariancy” properties can be
difficult to prove with conventional denotational-semantic
descriptions [Milne and Strachey 1976], and possible-world
semantics provides a new and flexible tool for such prob-
lems.

Acknowledgements

Gordon Plotkin suggested that meaning functors should
be constructed systematically, and Eugenio Moggi helped
with the realization of this suggestion. Financial support
was provided by an operating grant from the Natural Sci-
ences and Engineering Research Council of Canada, and a
fellowship from the Alvey Directorate and the British Sci-
ence and Engineering Research Council. I am grateful to
Robin Milner for arranging the fellowship, and for his hos-
pitality.




- 21 -

References
[Goldblatt 1979]

R. Goldblatt, Topoi, The Categorial Analysis of Logic,
North-Holland (1979, 2nd edition 1984).

[Halpern et al. 1983]

J.Y. Halpern, A.R. Meyer and B.A. Trakhtenbrot, “The
semantics of local storage, or what makes the free-list
free?”’, Conf. Record 1Ith ACM Symp. on Principles of
é’rogramming Languages, pp. 245-257, ACM, New York
1983).

[Milne and Strachey 1976]

R.E. Milne and C. Strachey, A Theory of Programming
Language Semantics, Chapman and Hall, London, and
Wiley, New York (1976).

[Moggi 1986]

E. Moggi, “Categories of partial morphisms and the
Xp—calculus”, this volume.

[Oles 1982]

F.J. Oles, A Category-Theoretic Approach to the Semantics
of Programming Languages, Ph.D. dissertation, Syracuse
University (1982).

[Oles 1985]

F.J. Oles, “Type algebras, functor categories and block
structure”, in Algebraic Methods in Semantics (M. Nivat
and J.C. Reynolds, eds.), pp. 543-573, Cambridge
University Press (1985).



- 22 -

[Plotkin 1985]

G.D. Plotkin, ‘“Types and partial functions”, lecture
notes, Computer Science Department, University of
Edinburgh. |

[Reynolds 1977]

J.C. Reynolds, “Semantics of the domain of flow
diagrams”, JJACM 24 (3), pp. 484-503 (1977).

[Reynolds 1978]

J.C. Reynolds, “Syntactic control of interference”, Conf.
Record 5th ACM Symp. on Principles of Programming
Languages, pp. 39-46, ACM, New York (1978). |

[Reynolds 1981a]

J.C. Reynolds, The Craft of Programming, Prentice-Hall
International, London (1981).

[Reynolds 1981b]

J.C. Reynolds, “The essence of Algol”, in Algorithmic
Languages (J.W. de Bakker and J.C. van Vliet, eds.),
pp. 345-372, North-Holland (1981).

[Reynolds 1982]

J.C. Reynolds, “Idealized Algol and its specification
logic”, in Tools and Notions for Program Construction
(D. Néel, ed.), pp. 121-161, Cambridge University Press
(1982); also Report 1-81, School of Computer and
Information Science, Syracuse University (1981).

[Tennent 1981]

R.D. Tennent, Principles of Programming Languages,
Prentice-Hall International, London (1981).



-23 -

[Tennent 1983]

R.D. Tennent, ‘“Semantics of interference control”,
Theoretical Computer Science 27, pp. 297-310 (1983).

[Tennent 1985]

R.D. Tennent, “Semantical analysis of specification logic
(preliminary report)”, in Logics of Programs 1985
(R. Parikh, ed.), Lecture Notes in Computer Science,
Vol. 193, pp. 373-386, Springer (1985).

[Tennent 1986]

R.D. Tennent, “A note on undefined expression values in
programming logics”, submitted for publication. |



