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1. Introduction

In the beginning, C. A. R. Hoare (1969) created a programming
logic for specification triples of the form {P} C {P;}. And Hoare’s
logic is good (for simple imperative programming languages without
procedures or jumps). It is both sound (Hoare and Lauer 1974) and,
independently of how the vexed question of its completeness might be
answered, usable (Reynolds 1981a), providing a framework for rigorous
specification, development, and verification of practical programs.

Many attempts have been made to extend Hoare’s logic to
languages with procedures or jumps. The “specification logic” of
J. C. Reynolds (1981a, 1982) is perhaps the most important of these,
because its generality, usability, and coherence have been clearly
demonstrated. The aim of the research described here is to do the
same for its soundness.

Specification logic is essentially a many-sorted first-order theory,
with Hoare triples as atomic formulas and conventional logical connec-
tives, such as conjunction, implication, and quantification. There are
some additional atomic formulas to permit expression of certain kinds
of assumptions about free identifiers, such as non-interference. A
fairly conventional semantics for specification logic is outlined in
Reynolds (1981a); however, there are two problems with this model.

The first difficulty is that commands are interpreted in an
undesirably operational way: command meanings are functions from
an initial state to the (possibly infinite) sequence of all states encoun-
tered during execution of the command. This kind of interpretation is
undesirable because it distinguishes between commands Wwhose
“externally-observable” behaviour is identical. But it seemed to be
necessary in order to interpret non-interference formulas: C # E asserts
that the value of expression E is invariant throughout any (terminat-
ing) execution of command C.

The second difficulty is that Section 11 of Reynolds (1982) pro-
poses two axioms, Strong Constancy and Leftside Non-interference
Composition, which are intuitively true and seem to be very desirable
or essential for verifying certain kinds of programs, yet which are
invalid relative to the interpretation in Reynolds (1981a).

This paper describes a new approach to capturing the intended
interpretation of specification logic. The rest of this introduction gives
an informal (and simplified) presentation of the model.

The first idea is adapted from the treatment of block structure
described by Reynolds (1981b) and Oles (1982, 1985): the semantics
of a phrase is a suitably-related family of environment-to-meaning
functions for different sets of allowable states. For example, the
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semantics of a command for any state-set X is a continuous function
from environments appropriate for X to partial functions (or binary
relations) on X. For a control structure such as C1 ;Cz, the meaning

for any state-set is expressed as a function of the meanings of the
immediate constituents C1 and C2 for the same state-set. This ensures

that “intermediate” states between the executions of C1 and C2 will

also belong to that state-set, without requiring that these intermediate
states be explicit in command meanings. A specification now becomes
a predicate about state-sets as well as environments. In logic, this is
known as “possible-world” semantics; here, each state-set is a possible
world.

A satisfactory interpretation of C # E for any possible world X is
then definable as follows. For any value v that E might have, let X

be the subset of X for which the value of E is v; then C# E if and
only if, for all v, any terminating execution of C in X whose initial
state is in X, is also a terminating execution of C in X .

Consider now the proposed axiom of Strong Constancy
(Reynolds ‘1981a):

C#P & ({PA=>{P} C{P})=>{Pand P} C {Pand P} |,

where C is a command, P, P, and P, are assertions, and the static-

assertion specification {P} is equivalent to {true} skip {P}. Intuitively,
if P holds before executing C and C does not interfere with P, then,
while reasoning about C, it should be possible to treat P as a ‘“local”
mathematical fact. However, {P} holds just if assertion P is true at
all allowable states, not merely those that might be encountered while
executing C. So Strong Constancy is invalid according to a conventional
interpretation. There is a similar problem with the proposed axiom
scheme of Leftside Non-interference Composition.

The essence of the solution proposed here is to adopt a
non-classical interpretation of specification implication, inspired by
Kripke’s (1965) semantics for intuitionistic logic (Dummett 1977,
van Dalen 1983). The reason for interpreting specification logic as an
intuitionistic theory is to take advantage of what McCarty (1984) has
termed axiomatic freedom,

the recognition that. intuitionistic logic allows axioms which are classically

false but mathematically efficient to be consistent with powerful theories.

In fact, the equivalences, axioms, and rules presented by Reynolds are
intuitionistically acceptable. (Reductio ad absurdum is not the correct
name for rule R10 in Reynolds 1981a.) Furthermore, Reynolds has
shown that if the classical but non-intuitionistic law --S=>3S were
added to specification logic, then a formula asserting non-termination
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of a simple assignment command would be derivable; this shows that
the only models possible for a classical version of specification logic
would be trivial ones in which commands do not terminate unless
they leave the state unchanged. Reynolds’s example is reproduced in
an Appendix to this paper.

The new interpretation of the implication connective is essentially
as follows: define S, =S, to be true for X just if, for all subsets X'
of X, S, holds for X' whenever S, holds for X. The implicit
quantification over restricted possible worlds is needed in general to
preserve the monotonicity of specification interpretation in the following

sense: if any specification S holds for possible world X, then S holds
for any more-restricted possible world X'

To see how this interpretation of the implication connective helps
with Strong Constancy, let X' be the subset of state-set X for which P
holds, and suppose that execution of C in X can map initial state x,
to final state x,, where x, satisfies both P and Po' Then assumption
C # P ensures that the execution from x, to x; can also take place in
X', so that x, satisfies P. Furthermore, with the new interpretation of
implication, assumption {P}=>{P,} C {P,} ensures that x, also satisfies
P, because, by definition, P holds for all states in X'. This validates
Strong Constancy.

Similarly, consider the following weak form of the axiom scheme
of Leftside Non-interference Composition (Reynolds 1982):

C#E & U#E=>{P} C{PrD=>{P} C {P} ,

where I is a command identifier with a command-like free occurrence
in command C, P, and P, are assertions, and E is an expression. Sup-
pose again that execution of C in possible world X can map x, to x,,
where x, satisfies P,. Let X' be the subset of X for which E has the
same value as it does at x, Then assumption C # E ensures that the
execution from x, to x, can also take place in X'. Because of exam-
ples like (Ac:comm. skip)(c), it does not in general follow from
C # E that I # E; however, in possible world X' execution of / cannot
interfere with E, so that, using the new interpretation of implication,
the second assumption ensures that x, satisfies P,. The same approach
may be used to validate the stronger form of the axiom given in
Reynolds (1982) involving all identifiers having command-like free
occurrences in C.

In order to treat procedures and variable declarations, the model
described formally in the rest of this paper is based on the category-
theoretic formulation of possible-world semantics (Goldblatt 1979). In
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this framework, possible worlds and changes of possible world form a
category, X, and “semantic domains” are replaced by functors from X
to either S, the usual category of sets and functions, for “logical”
phrase types, or a category D of directed-complete posets and continu-
ous functions for the “computational” phrase types. Then each
phrase, Z, of the language is interpreted as a natural transformation,
[Z]l, from an appropriate “environment” functor, Env, to an appropri-
ate “meaning” functor, M, so that, if x and y are possible worlds and
fix—y is a change of possible worlds, the following diagram com-
mutes in S or D:

x Env(x) — 2% a0
f J Env(f) l | J M(f)

Env(y) — s M(y)

g Y T >

2. Syntax

The type structure for the language is given in Table 1. For
simplicity, we have avoided coercions and conventional variables (but
retained acceptors, which are the “updating” components of variables).
Informally, a data type, 7, denotes a set of values appropriate for
some acceptor or expression, whereas a phrase type, 0, o, B or v,
denotes a set or poset of meanings appropriate for some kind of
phrase. Assertional phrase types and specifications are distinguished
from ordinary phrase types because meanings of ‘“logical” phrases need
not be computable. All phrase types except specifications are bindable;
i.e., their meanings are denotable by identifiers.

The abstract syntax of the basic language of specification logic is
given in Table 2. A type assignment, w, is a function from a finite
set of identifiers, dom(w), to (bindable) phrase types. The notation
(;1:B) denotes the type assignment 7' such that

dom(#’) = dom(wr) U {I} , and

B, if I' = I,
(") =
w(I'), otherwise,
and similarly for ('rr;II:B1 ;...;In:Bn). The same kind of mnotation
will be used for extending environments.
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Metavariables

RXWWRR T

Productions

0 u= T-exp
| r-acc
| comm

16— 6

o = assert
|B— «

B = 0|o
v ou=

B
| spec

data types

ordinary phrase types
assertional phrase types
bindable phrase types
general phrase types

expressions
acceptors

commands

ordinary procedures

assertions
assertion procedures

specifications

Table 1. Phrase Types
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<@@m;I:BFB> u=1 identifier
<ThFO-0> u= N:0.<(w;I:0)F0> ordinary abstraction
<ThFO> = <7 b0 —=20>(<7kF6>) ordinary application

<wrhkB—oao> u= N:B.<(m;I:B)F o> assertional abstraction

<rhlo> u= <wkB-a>(<7wl B>) assertional application
< | assert> := true|false constants
|not <= I assert> negation

| <ar I assert> and < | assert> conjunction
|VI:7.<(w;I:7-exp)} assert>  universal quantification
|D, (<7} T-exp>) definedness

: : <wl 7-exp> = <ml 7-exp>  equality

<7l comm> := skip null
| <7 F comm> ; <7} comm>  sequencing
| <7k 7-acc> = <wt 7-exp>  assignment
|new 7 var I,I' in variable declaration

<(w;I:7-acc;I': -exp) F comm>

< |- spec> := absurd absurdity
| <7 I spec> & <} spec> conjunction
| <7 spec> => <= | spec> implication
|VI:B.<(mw;I:B)} spec> quantification
| <7k y> = <mhy> equivalence

|[{<7 I assert>} <7l comm> {<w | assert>} Hoare-triple
| <7} comm> # , <mF 7-exp> expression non-interference

| <7 F comm> # < } assert> assertion non-interference

Table 2. Abstract syntax

The phrase-class meta-variable <w | y> ranges over well-formed
phrases having type y when the types of their free identifiers are
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given by 7. Productions for expressions and acceptors (other than the
“generic” ones for identifiers and applications) and more complex con-
trol structures, such as conditionals, recursion and loops, are omitted.
Jumps will be discussed briefly in Section 6. A “variable” declaration
binds a pair of (distinct) identifiers to suitably-related acceptor and
expression meanings, respectively.

Assertions are conventional first-order formulas over the data
types, but non-terminating and partially-defined expressions (not asser-
tions) are allowed, so there are also “definedness” predicates D (-) for
each data type 7.

The productions for specifications show that the specification
language of Reynolds has been augmented by

(i) a constant absurd, which never holds (even for the null state-set,
unlike the static-assertion specification {false} used for this pur-
pose in Reynolds 1981a, 1982); and

(ii) an atomic formula for equivalence of phrases.

There should be no difficulty adding logical operators for disjunction
and existential quantification, but there seems to be no reason to do
so. The negation of S is definable as S=>absurd, and {P}, the static-
assertion form of specification, is definable as {true} skip {P}. The
“good-variable” specification and non-interference specifications for
acceptors and procedures are also definable; see Reynolds (1982).

3. A Category of Possible Worlds

In the introduction, possible worlds were simply sets of allowable
states, and changes of possible world were restrictions to subsets. But
if the programming language has variable declarations, it must also be
possible to expand the set of states, as in Reynolds (1981b) and
Oles (1982, 1985). The appropriate generalization seems to be the fol-
lowing category. The objects are pairs X,X' such that X is a set
(interpreted as the set of representable states), and X’ is a subset of X
(interpreted as the subset allowed in this possible world). A mor-
phism from X,X' to Y,Y" is a pair f,Q having the following properties:

(i) f is a function from Y to X;
(ii) Q is an equivalence relation on Y;

(iii) the following is a product diagram in the category of sets and
functions:

x <L vy 2 _vyp

where ¢ maps elements of ¥ to their Q-equivalence class; and
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(iv) f(Y") is a subset of X'

The composition f,Q ; g,R: X,X' > Z,Z’ of morphisms f,Q: X, X' —Y.,Y’
and g,R:Y)Y' = Z,7Z' has as its two components: the functional compo-
sition of f and g, and the equivalence relation on Z that relates
zyz, € Z just if they are R-related and Q relates g(z,) and g(z,).

. For any object X,X' in this category, there is a restriction mor-
phism [X": X,X' = X,X" for any subset X” of X', and an expansion
morphism XV: X X' — XXV, X'XV for any set V. The restriction mor-
phism [X " has as its components: the identity function on X, and the
universal binary relation on X. The expansion morphism XV has as
its components: the projection function from XXV to X, and the
equivalence relation that relates <x,v,> and <x,v,> in XXV just if

Vy =V

0 1°

4. Semantic Domains and Functors

In this section we define the “semantic domains” for our model.
We begin by defining a number of constructions in categories of sets,
(Scott) domains, and functors. Let S be the usual category of sets
and functions. Let D be the category of directed-complete partial
orders and continuous functions (Reynolds 1977); the objects of this
category will be termed domains, whether or not they have least ele-
ments. Throughout, “id ” will denote the identity morphism on object

€6,

x and “;” will denote composition of morphisms or functors in
diagrammatic order.
For any domains D and D', we define new domains as follows.
(i) product
D X D' is the Cartesian product of D and D', ordered component-
wise.
(i) lifting
D is (an isomorphic copy of) D augmented by a new least ele-
ment, denoted | .
(iii) exponentiation
D— D" is the poset of all continuous functions from D to D/,
ordered point-wise.
(iv) partial exponentiation
D~>D'" is the poset of all continuous partial functions from D to
D', ordered point-wise.!

'The following definitions are from Plotkin (1985): a partial function from D to
D' is continuous just if the inverse image of any Scott-open subset of D' is Scott-
open in D, where a subset U of a domain D is Scott-open just if, for every uw € U,
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We also use exponentiations in category S: if S and S’ are sets, S— S
is the set of all functions from S to S, and S~>S is the set of all
partial functions from S to S'.

We now define analogues of set and domain constructions in
categories of functors. For any (small) category X, let X=>D be the
category of all functors from X to D, with all natural transformations
as the morphisms, and similarly for X=S. We use the following
notation for products of families of sets. Suppose S'(i) is a set
(domain) for each i € S; then Ili € S.5'() denotes the set of functions
f from S to the union of the (underlying sets of the) S'(i) such that,
for all i €S, f(i) € S(i). Let F and F' be functors from X to D, x
and y be X-objects, and f:x—y and g:y-—z be X-morphisms. Then
the four constructions needed are as follows.

(i) product

(FXF)x) = F(x) X F'(x) , and

(F X FY)(<dd'> € F(x) X F(x)) = <F(AH@,F(d)>
(i) lifting

F (x) = [F()] , and

L if d = L
F (P eF () -
F()(d) in F _L(y), otherwise.

(iii) exponentiation
(F - F)(x)
={mellf:x—>y.Fiy) - FQG) |
for all f:f—yand g:y—z, F(g);m(figd = m(f) ; F(g) }
ordered pointwise, and

(F = F)()(m € (F— F)(x))(g) = m(f;g)

d €U whenever u S,d, and, for every directed subset S of D, if lub(S) € U then

d €U for some d € S. The “point-wise ordering” on partial functions is as follows:
<, o pg iff. for all x € D, if f(x) is defined, then g(x) is defined and f(x) <, g(x).
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(iv) partial exponentiation
(F~>F)(x)
={mellfix—>y.FG)~F(y) |
for all fix—y and g:y—z, F(g); m(fig) = m(p) ; Fg)
whenever m(f) gives a defined result }

ordered pointwise, and

(F~>F)()im € (F=>F)x)(g) = m(fig)

For functors to S, the — and ~» constructions are defined in the
same way, but are based on the exponentiations for S, rather than D,
and the sets are not partially-ordered. Note that if X is the trivial
(one-object and one-morphism) category, each of the constructions on
functors reduces to the corresponding construction on domains or sets.

We also use some of these constructions on contravariant functors
from X to S or D. The product and lifting operations construct con-
travariant functors in the obvious way, but we define the morphism
parts of the exponentiation operations always to yield covariant func-
tors; for example, if F and F' are contravariant functors from X to S,

(F ~F)(x)
= {mellf:x—>y.F(3)>F(y) |
for all frx—y and g:y—z, F(g) ; m(f) = m(fig) ; F(g)

whenever m(f;g) gives a defined result } , and

(F~>F)m € (F~>F)x))g) = m(fig)

These constructions will be used to construct meaning functors
[yl for the phrase types y of our language from the following
“primitive” functors, where X is the category of possible-worlds
defined in Section 3:

(i) S is the contravariant functor from X to D defined as follows.
For any X-object X,X', S(X,X') = X', and for any X-morphism
[Q: XX - Y)Y, S(fQ) is the restriction of the function f€Y = X
to Y’ and X'. This is the only functor that depends directly on
details of category X.
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(ii) For every data type 7, [[7]l is the contravariant constant functor
from X to D such that, for every X-object x, [rllx is the
discretely-ordered domain of values of type 7.

(iii) T is the contravariant constant functor from X to S such that, for
every X-object x, T(x) is the set {true, false}.

(iv)U is the (covariant) constant functor from X to S such that, for
every X-object x, U(x) is any singleton set.

(v) F is the (covariant) functor from D to S that forgets partial-
orderings and treats continuous functions as arbitrary functions.

(vi) E is the (covariant) functor from S to D that embeds sets into
the category of domains by discretely ordering them and treating
arbitrary functions as continuous functions. Note that E;F' is the
identity functor on S.

We can now define functors [0]: X =D, and [oll0spec]l: X —S
as in Table 3. If X is the trivial category, these definitions yield the
domains used in conventional denotational semantics. But, in general,
meanings are X-morphism-indexed families of functions. For assertions,
expressions, commands and acceptors, such meanings may appear to be
more complex than those in Reynolds (1981b), Oles (1982) and Ten-
nent (1985), but they are actually more convenient because it is no
longer necessary to depend on the morphism parts of meaning functors
to define families of functions “implicitly”.

Finally, for any type-assignment = with w([)=w, for every

identifier 7 € dom(w), we define a (covariant) functor [#]: X =D as
the product of the [« I]], where it is understood that, for any of the

w, that is an assertional (rather than ordinary) phrase type,
[z l: X— S is first composed with the embedding functor E to obtain
a functor from X to D.

5. Semantic Valuations

We may now interpret the phrases of the language as natural
transformations from environment functors to meaning functors:

(<7 6>1: (=1 - [16]
I<7Fa>1: ([71;F) = (ol

[<w I spec>1: (I71;F) - [specll

where [#1,001: X » D, [all,[specll: X =S, and F:D — S are the func-
tors defined in the preceding section.

We begin with the purely-logical fragment of the specification
language. The key facts are that, for any category X, the functor
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Y Lyl functionality
T-eXp S—0rl, X—D
comm S~>S X-D
7-acc [rIxS~>S X-D
0—0 el — o1l X—-D
assert S;F)->T X—-S
o= o [l = [o'1l X—S

6—a (o7 = o] X-—S

spec U~»U X—S

Table 3. Meaning Functors

category X =S is a topos (with truth-value object U~>U), and intui-
tionistic logic may be interpreted in any topos (Goldblatt 1979). The
resulting valuations are given in Table 4, where, for convenience, the
identity function and the empty function on a singleton set are
denoted by true and false, respectively. Here, and throughout this
section, x is an X-object, f:x —y is an X-morphism with domain x,
and u is a suitable environment; for example, here u € ([7];F)(x)
where 7w is the type-assignment component of the phrase-class of the
phrase being interpreted. Note the “implicit” quantifications over
changes of possible world in the valuations for implication,
quantification, and equivalence.

In contrast, the logical operators in assertions may be treated
“classically”, as in Table 5, where y, € S(y). The equality operator is

the “strict” one (yielding false if either operand is undefined) for rea-
sons discussed in Tennent (1986), but the “strong” equality would
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[absurd]lxuf = false
IS, & S,Ixuf = [[S,Iwf and [S,Txuf

LS, => S, Tuf

= for all g:y— z, if [[S,Ilxu(f;g) then [S,Ixu(f;g)

IV1: B.SThuf

= for all g:y—z and m € [Blz, [ST=(([=I;F)(f;g)w); I:m)(Gd)

[z, =, Z, leuf
= for all g:y—z, (IyI(f;e)Z,Ixw) = DyI(f;e)AZ,Ixw))

Table 4.  Specifications

also be possible; each can be defined from the other using the
definedness predicates (Scott 1967, 1979).

For procedures, the key facts are that, for any category X, the
functor categories X =S and X =D are Cartesian-closed with product
X and exponentiation — (Goldblatt 1979, Oles 1982), and the typed
lambda calulus may be interpreted in any such category (Lam-
bek 1980, Scott 1980). The resulting valuations (for ordinary pro-
cedures) are as follows:

AL : 0. ZTxuf(m € [0]ly) = MZIy([7Ilfu;1:m)
AT = [PTuCid Y(IATw)

Assertional procedures may be treated in a similar way. For
identifiers, [ITlxu = u(l).
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[truelxufy, = true [falsellxufy, = false
[not Plxufy, = -~([PIxufy,)
[P, and P,Iufy, = ([P, Ixufy, and [[P,Ixufy,)

IVI: 7. Plloufy,

= for all m € [7-explly, [PIN({[7T:F)(N@); 1: m)Gd )(y,)
[D,(B)Ixufy, = (LEDxufy, #= 1)
[Z, =, E Dy,

= (LE Ieuy, = v, € [7lly) and ([E,Txuy, = v, € [rlly)
and (v, = v,)

Table 5. Assertions

Valuations for the commands (other than the variable-declaration
block) and for the Hoare-triple and expression-non-interference forms
of specification are given in Table 6. In the equation for sequential
composition, the semi-colon on the right denotes composition of partial
functions (in diagrammatic order). Assertion non-interference is simi-
lar to expression non-interference, except that v ranges over the set
{true, false}. "

For new-variable declarations, we must first define “expansion”
functors exp,: X — X for each data type 7 as follows:
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IC,; C,Iwuf = [C,Tnuf; [C,Tus

[Alxuf<v,y,>, if [Elxufy, = v € [rLy,
[A := Eleufy, =

undefined, otherwise

[{P,} C {P}xuf
= for all y, € S(y),

if [Pyllxufy, and [Clxufy, = y, € S(y) then [P, Teufy,

[C #_ Elbxuf
= for all g:y—z and v € (Ir]l2) ,
S(z) ; [Chau(fig) = [CIxfigilz) 5 8(z)

where Z = {z € 8(2) |[Elxu(f;g)z, = v}

and

Table 6. Commands

exp, (X, X') = XXV, X'XV

where V = [[T]](X 1Xl) ?
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exp,(f,Q: X, X' = Y,Y) = [0,
where [, <yovo> = <fydvy>

and <y,,v,>0 <y,v,> iff y,Qy, .
For any X-morphism f,Q: X,X" —Y,Y", the following diagram commutes:

XX XV, (X,X") =~ exp,(X,X")
/Q J exp, (,Q)
Y)Y = eXpT(Y,Y')

XV, (Y,Y")
Then, the expression and acceptor components of a “new” variable of
data type 7 in an expanded possible world exp (X,X) should be
e, (X,X") € [[T-expli(exp,(X,X")) and a (X,X) € [7-accll(exp (X,X)) such
that, for every X-morphism g,R: exp (X,X") = Z,Z',
e, (X, X)(g,R)z,€Z) = v
where <x,v> = g(z,) ,
and
a (X, X)(g,R)<v,, z, € Z'>
z, if z, € Z'
for the z, € Z such that g(z,) = <xyv,> and z Rz,
where <x,v,> = g(zo) )

undefined, otherwise.

In the definition of a,, the state z, satisfying the two conditions must

exist and be unique by the “product” property of X-morphism g,R.
Intuitively, the effect of assigning a value v, to the acceptor is to

replace the old value v, in the appropriate component of the stack by
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v,, without changing more-local components (ensured by using R) or
more-global components (i.e., xo); however, if the resulting state is

disallowed in the current possible world, the assignment fails to ter-
minate.

Finally, the block command may be interpreted as follows:
[new 7 var I,I' in Cllxufy,

y;, if [Cli(exp,(x))
7 IKIrIx)@); I: a (x); I e,(x))
(exp, ()
<YoVo>

= <y, v;> € S(exp, ()

undefined, otherwise ,

where v, is the “standard” initjal value for variables of type 7.

6. Formal System and Soundness

The purely-logical part of the formal system presented by Rey-
nolds (1982) is essentially (the negative fragment of) many-sorted
intuitionistic predicate logic with equality; however, occurrences of the
static-assertion specification {false} should be replaced by the new con-
stant absurd to allow for possible worlds in which the set of allowed
states is empty. The non-logical axioms and derived rules are dis-
cussed in considerable detail by Reynolds and will not be repeated
here; however, we have distinguished between assertions and (Boolean)
expressions to allow the latter to be partial, so that axioms which use
Boolean expressions as assertions must be slightly modified. For exam-
ple, the while axiom would become

{p and e=true} c {p} => {p} while e do ¢ {p and e=false} ,

where true and false are Boolean constants. Also, axioms or formulas
involving variables must be modified to suit our restricted language.
For example, the equivalence defining the ‘“‘good-variable” formula
becomes

gv,(AE)
= VI:7-exp.VI':7-exp—assert. A#I' = {I'U)} A:=_I{I'(E)}

spec

where A € <wlF 7-acc>, E€ <wl 7-exp>, and [ and I' are distinct
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identifiers not in dom(w).
Our main result is the following

Theorem (soundness): for S € <=} spec>, [SIxuf=true for
all X-objects x, environments u € [[#]lx and X-morphisms
fix—y whenever S:w is derivable.

The proof is tedious but for the most part straightforward. The
axioms of Strong Constancy and Leftside Non-interference Composition
can be treated essentially as discussed in the introductory section. We
present a detailed proof of only the “good-variable” property of
newly-declared variables, which is needed to validate the axiom for
variable-declaration blocks.

Consider any X-object x and let x' be exp,(x). Consider any
ey € [7—expllx’ and p € [7-exp — assert]lx’, and let a be a (x) and e, be
e 1("); i, <ae > is the new variable in the expanded possible world.
Consider any X-morphism f:x'—y and any initial state y, € S(y).
Suppose that ey(f)(y,) = v € [rlly and a(f)<v,y,> =y, € S(y). Then,
from the definitions of @, and e,, we obtain that e,(f)(y,) = v.

Now, define the “constant” expression-meaning e, € [7-expllx’ such
that, for all f:x'—y and y, € S(y), e (f)(y) = v. Then, using
Lemma 1: for all p € [T-exp — assert]], and e € [r-expllx’, if

e(A(y,) = v then p(id )(e)((y) = pGd e )()(y),
we obtain
p(d_)(e, )(H(y,)
- PG e )N, by lemma 1
= p(id_)(e )(F)(y,)
by the assumption that a # p and the obvious fact that a#e,
= p(d )e)(A(y,) by lemma 1,
which is the desired result.
To prove lemma 1, let g:y—z be the restriction morphism [{y},
so that S(z) is the singleton set {y}. Then, using

Lemma 2: for all e€[r-expllk, if e(f)(y)=v then
[r-expll(f; g)(e) = [r-expli(f; g)(e,),

we obtain
()P
= p(id_)(e)(f)(S(g)y) by the definition of g
= p(d_)(e)(f; g)(y) by the definition of [assert]]
= [assertl(f; g)(p(id )(e))(Gd )(y,)
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= p(f; e)[lr-expll(f; g)(e))(id )(y,) by the definition of —
= p(f; ) m-expll(f; g)e))(d )(y,) by lemma 2
= p(id_)(e )(f)(y) as with e.

To prove lemma 2, consider any A:z—w and w, € S(w); then,

[r-expll(f; g)(e)(r)(w,)

= e(f; g5 W(wy)
e(/)(S(g; h)w,) by the definition of —
= e(f)(y,) because g = [{y,}
v
e, (f)(y,) by the definition of e,
= [7-expll(f; g)(e )(R)(w,) as with e.
This completes the proof of the good-variable property.

It should be straightforward to extend the interpretation to control
structures such as conditionals, loops and recursion. Jumps would
require continuation semantics for commands: for any contravariant
functor A for “answers”, the functor for command continuations
would be-C = S~>A, and [[comm]] would be re-defined as C—C.
The Hoare-triple form of specification would then be re-interpreted

along the lines described by Reynolds (1981a, Section 4.2.3), and simi-
larly for non-interference specifications.

i

7. Concluding Remarks

Specification logic is an Algol-like (Reynolds 1981b) programming
logic. It is statically-typed. It avoids making references explicit. It
treats substitution, binding and scope correctly. It includes the laws
of the (typed) lambda calculus as a sub-system. It requires expres-
sions to be side-effect-free. It distinguishes between the logic for data
types and the logic for phrase types. It provides ‘“generic” facilities
such as quantification and non-interference uniformly for all relevant
phrase types. And, finally, we have shown here that it “obeys a
stack discipline” (though this operational terminology is inappropriate
for logical phrase types) in that ‘“local” changes to storage structure,
such as state-set expansions and restrictions, can be allowed for by
using possible-world  semantics without making the worlds explicit in
the logical language.

The only unsatisfactory aspect of specification logic is the incon-
venience of having to deal explicitly with non-interference and good-
variable assumptions. The most promising approach to avoiding these
inconveniences (and also to optimizing the implementation of call-by-
name) is that of Reynolds (1978).
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Appendix

The following example, from a personal communication to the
author by J. C. Reynolds, demonstrates the undesirable consequences
of adopting full classical (rather than intuitionistic) logic as the logical
basis for specification logic.

From the rules for assignment, skip, and statement compounding,
one derives

gv(x) = {x=3} skip;x:=4 {x=4} .

By mathematical-fact introduction, static implication, and consequent
weakening:

gv(x) & {x=3} = {x=3} skip;x:=4 {false} .
Let S be the formula {x=3} skip; x:=4 {false}. Then,
gv(x) & -S & {x=3} => absurd ,
and, since absurd implies anything,
gv(x) & -S & {x=3} => {true} skip {false} .
Now, Strong Constancy gives us
skip # (x=3) & ({x=3} = {true} skip {false})
= {x=3} skip {false}
and so, since skip # (x=3), we get
gv(x) & ~S = ({x=3} skip {false} .

However, by assignment, gv(x) => ({false} x:=4 {false}, so that state-
ment compounding gives us
gv(x) & S => ({x=3} skip;x:=4 {false} ,

ie., gv(x) & =S = S, so that gv(x)=>--S. Finally, with classical
logic, we get gv(x)=>S, which means that an assignment like x:=4
does not terminate if x initially has a value other than 4.




