sobenbue] a)ij-jobjy ul uolledliuend

LECS

Laboratory for Foundations of Computer Science

Department of Computer Science - Umiversity of Edinburgh

Quantification in Algol-like Languages

by
R. D. Tennent

ECS-LFCS-86-6

LFCS Report Series (also published as CSR-212-86)
LFCS June 1986
Department of Computer Science
University of Edinburgh
The King's Buildings

Edinburgh EH9 3JZ

Copyright © 1986, LFCS.

Copyright © 1986, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Quantification in Algol-like Languages

R. D. Tennent'

Laboratory for the Foundations of Computer Science
Department of Computer Science
University of Edinburgh
Edinburgh, Scotland.

Keywords: quantifier, syntactic sugar, Algol-like language

Abstract A general notation is proposed which may be used
to replace many specialized constructions in programming
languages and logics, including variable-declaration blocks and
quantified formulas.

In dmost every language, a user can coin names,
obeying certain rules about the contexts in which the
name is used and their relation to the textual segments
that introduce, define, declare, or otherwise constrain
its use. These rules vary considerably from one
language to another, and frequently even within a
single language there may be different conventions for
different classes of names, with near-analogies that
come irritatingly close to being exact. So rules about
user-coined names is an area in which we might
expect to see the history of computer applications give
ground to their logic.

P. J. Landin

'On leave from the Department of Computing and Information Science, Queen’s
University, Kingston, Canada.

-1-

J. C. Reynolds* has suggested as a design principle for Algol-like
languages that, except for “syntactic sugar” (i.e., language constructs
that can be defined as abbreviations in terms of more basic con-
structs), the only identifier-binding mechanism should be the lambda
expression. For example, the block form

~let I be Pin Q
may be treated, as suggested by Landin,! as syntactic sugar for the
application

(M :0.QP

where P is a phrase of type 6. As another example, if 7 denotes a
data type, the variable-declaration block

new 7var /I in C

is de-sugared by Reynolds* as
newvar[7J(\I: var[7].C)
for a suitable operator or constant newvar[r].

These two examples of syntactic sugarings are, however, dissimilar
in that Landin’s let is a general form (for phrases P and Q of arbi-
trary types), whereas the variable-declaration block is specialized to
commands C and variable-identifiers /. This would not be of concern
if the variable-declaration block were the only such specialized con-

struct; but, in fact, Reynolds*® also discusses specialized syntactic
sugarings for

® call by value and call by result,
® new array declarations,

® cscapes, and

® for iterations,

and in Reynolds® there are additional sugarings for
® class declarations, and
@ class instantiations.

Furthermore, quantification in both the assertion and the specification

languages of Reynolds® and the block expression discussed in Tennent®
would require de-sugaring as well.

This paper describes a simple and general notation comparable to
Landin’s let which can replace all of these specialized syntactic sugar-
ings without loss of readability. The resulting language is thus syn-
tactically simpler and more uniform, but still adheres to the principle
that all binding can be reduced to lambda binding, because the pro-
posed notation is definable in terms of lambda abstraction and

application.

To simplify the presentation, we avoid coercions and adopt the
type structure specified by the productions of Table 1, with the fol-
lowing abbreviations:

arrayl[0,0] = 0
arrayl[0,n+1] = explint] — arrayl,]

array[0] = array(9,1]

To describe syntax, we use rules in natural-deduction format? as in

Table 2.
The basic form of the rule for the new notation we propose is as
follows:
Metavariables
T data types
0 phrase types
Productions

7 = bool |int |real] ...

0 = expl7] expressions
| var[7] variables
| comm commands
| compl completers
- |assert assertions
10— 6 procedures

|I1(...,7:0,...) collections

Table 1. Types

Abstraction
[7:0]
P: g
AN:0.P:0—>0
Application

P:0—-6 Q:0

PQ:0

Collection Introduction

P: 0, for i=1,...,n

<11:P1,...,In:Pn>:H(Ilzel,...,l :

Collection Elimination

p:II(....1:0,...)

P.I:0

Landin’s let
[1:0]
P: 0 0 :. o

let 7 be P in Q: 0

Table 2. Syntax Rules.

Quantification
[7:07]
Pig" Q:(0—0)—0

#Q I.P:0 ,
and the construction is de-sugared by the following equivalence:
#QI.P=Q(A'I:9’.P)Q

Phrase Q is termed the gquantifier part of the construction. Note that
the de-sugared form, like that for Landin’s let, is an application, but
that it is the operand part, rather than the operator part, which is a
lambda expression.

As an example of its use, the variable-declaration block discussed
earlier may be replaced by the construct

newvarlr] I1.C ,

where C is a command and newvar[r] is a constant of type
(var[7] @ comm) — comm. It is convenient to allow quantification to
be iterated when 0"=0, as follows:

Iterated Quantification
z,....1 :61]

P:0 0: (6> 0) -0

#Q II,...,In.P:G ,
with the equivalence
#QI,....I P= #Q I e...c #Q I .P.
Then several variables of the same type may be declared at once by
the construction
newvarlr] 1,,...,I .C .
It may even be desirable to allow the data-type name 7 to be used as

a variable-allocating phrase of type (var[r] — comm) — comm so as to
permit the Algol 60-like block

#T Il,...,I .C .
n

The “quantifier” terminology derives from treating constants
foralll7] and exists[7] of type (explr]— assert) — assert as quantifiers

-5-

in the obvious way, and similarly for iterator for(Z,E,) of type
(explint] - comm) — comm, where integer expressions E, and E,
determine the iteration limits.

Many other examples may be given. To declare new (one-
dimensional) array variables, we introduce

arrayl7)(E,,E,)
of type (array[var[r]]— comm)— comm, where the integer expres-
sions E1 and E2 determine the subscript bounds, and similarly for

higher-dimensioned arrays. Note that the quantification notation makes
it clear that the bound expressions are not in the scope of the
quantifier. The operator escape of type (compl— comm)— comm

described by Reynolds?* may be used as a quantifier as follows,
escape I.C ,

in order to establish a way of exiting from command C. The block
expression

result /:7 of C

discussed in Tennent® may be replaced by
result[r] 7.C

using a constant result[r] of type (var[r]— comm)— exp[r]. Note
that this quantifier may not be iterated because comm 7 exp[7].
The class-instantiation construct

newelement /:Q in C

of Reynolds® may be replaced by

#Q I.C,
and, furthermore, may be iterated, because Q has a type of the form
(II(...) » comm) » comm. Class declaration is more problematical;
Reynolds® suggests the notation

class I(D;Cy;1,: Py ...;1 :P) in C, »
where C; and C, are commands, D is a sequence of ‘“declarations—for-
commands”, and the construct de-sugars as
let 7 be ,
A II(II: 0,,...,1,:0) — comm.
D C,;
I'<11:P1; ...;In:Pn>
in C,
where I' is a new identifier. To handle this with our quantification
notation, we first introduce a notation for

Exportation

Cicomm P:0

C export P: (§ = comm) — comm

defined by the equivalence
Cexport P = A:0 — comm.(C;I(P)) ,

where I is not free in C or P; then, we generalize the applicability of
the quantification notation to allow:

Higher-order Quantification
[7: 6]
Pig, > ...>0 =8 0:(6>6)—0

#Q I.P:0,—...—>0 —0
with the equivalence
#Q I.P = A'I].: 610 ese .)\In: enoQ(A-I: el.P(Il)..'(In)) y

where the / ; are not free in P or Q. If n=0, this reduces to the basic
rule. Using exportation and higher-order quantification (possibly
iterated), one may then write

let 7 be
D
C

(o

export

<I,:Py;...;1:P>

in C,
where D is a sequence of quantifications with result type comm.

The “call-by-value” operator

Tvalue I in C
proposed by Reynolds* is also problematical because the (first)
occurrence of [is both free and bound. Perhaps a reasonable alterna-
tive would ©be the generalized operator value[r] of type
expl7] = (var[r] = comm) — comm defined by

value[7l(BE)(P) = #71.(:=E; P))
for I not free in E or P. This could be used to simulate the effect of

Reynolds’s operator as follows,
value[7]J(1) I.C ,
and similarly for call by result.

In conclusion, it has been shown that simpler and more uniform
syntax may be designed for an Algol-like language by replacing many
specialized constructs with a general notation which is derived from
the concept of quantification in predicate logic and is definable in
terms of the more basic constructions of lambda abstraction and appli-
cation.

Acknowledgements

Financial support was provided by an operating grant from the
Natural Sciences and Engineering Research Council of Canada, and a
fellowship from the Alvey Directorate and the British Science and
Engineering Research Council. 1 am grateful to Robin Milner for
arranging the fellowship, and for his hospitality.

References

(1) P. J. Landin, “The next 700 programming languages”, Comm. ACM
9 (3), pp. 157-166 (1966).

(2) D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almquist
and Wiksell, Stockholm (1965).

(3) 1. C. Reynolds, “Syntactic control of interference”, Conf. Record
5th ACM Symp. on Principles of Programming Languages, pp. 39-
46, ACM, New York (1978).

(4) J. C. Reynolds, “The essence of Algol”, in Algorithmic Languages
(J. W. de Bakker and J. C. van Vliet, Eds.), pp. 345-372, North-
Holland (1981).

(5) 1. C. Reynolds, The Craft of Programming, Prentice-Hall Interna-
tional, London (1981).

(6) R. D. Tennent, “Functor-category semantics of programming
languages and logics”, to appear in the Proc. of the Workshop on
Category Theory and Computer Programming, University of
Surrey, Guildford, England, Sept. 16-20, 1985 (D. Pitt, Ed.),
Lecture Notes in Computer Science, Springer.

