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Robert Harper Furio Honsell Gordon Plotkin
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University of Edinburgh

Abstract

The Logical Framework (LF) is a system for defining a wide class of logics. It
is based on jp general treatment of syntax, rules, and proofs in terms of a typed
A-calculus wiith dependent types. Syntax is treated in a style similar to, but more
general than, Martin-Lo6f’s system of arities. The treatment of rules and proofs
focuses on the notion of a judgement. Logics are encoded in the LF via a new
principle, the| judgements as types principle, whereby each judgement is identified
with the type\of its proofs. This allows for a smooth treatment of discharge and
variable occurrence conditions and leads to a uniform treatment of rules and proofs
whereby rules are viewed as proofs of higher—order judgements and proof checking is
reduced to typeichecking. An important benefit of our treatment of formal systems
is that logic—independent tools such as proof editors and proof checkers can be
constructed.

1 Introduction

Much work has been devoted to building systems for checking and building formal proofs
in various logical systems. The AUTOMATH project of deBruijn [4] considered first
proof checking. The problem of interactive proof construction was first considered by
Milner, et. al. in the LCF system [11]. The LCF system was adapted to type theory by
Petersson [19]. The work of Huet and Coquand on the Calculus of Constructions [7,8]
extends the AUTOMATH and LCF work to a more powerful logic. Paulson’s work on
Isabelle [18] is a general approach to proof construction based on higher-order resolution.
The NuPRL system of Constable [6] is a display—based interactive proof development
environment for type theory that includes facilities for notation extension, library man-
agement, and automated proof search.

There are a great many logics of interest (equational, first—order, higher-order, tem-
poral, type and set theories, type assignment systems and operational semantics for

*This is a slightly edited version of a paper delivered at the Second Symposium on Logic in Computer
Science, Ithaca, NY, June, 1987. Any citations should refer to the proceedings of that conference.



programming languages). Implementing an interactive proof development environment
for any style of presentation of any of these logics is a daunting task. For example,
one must implement a parser, term manipulation operations (such as substitution and
a—conversion), definitions and notation extension, inference rules, proofs, tactics, and
tacticals. Thus it is desirable to find a general theory of inference systems that captures
the uniformities of a large class of logics so that much of this effort can be expended
once and for all. _

The Logical Framework is an attempt to provide such a general theory of logics. It
is based on a weak type theory that is closely related to AUT-PI and AUT-QE [9)], to
Martin-Lof’s early type theory [14], to Huet and Coquand’s Calculus of Constructions [8],
and to Meyer and Reinhold’s A* [16]. It is able to specify both the language of a logic,
its axiom and rule schemes, and its proofs. The language of a logic is defined in a general
theory of expressions that exploits the A—calculus structure to provide binding operators,
substitution, capture, a—conversion, and schematic abstraction and instantiation.

The treatment of rules and proofs is based on the notion of a judgement [15], the
unit of assertion in a logical system. (See also Schroeder—Heister [22] for a related point
of view.) Each logic is a system for asserting basic judgements. The set of judgements
is then closed under two higher-order judgement forms that are used to specify infer-
ence rule schemes and to model discharge and variable occurrence conditions such as
arise in Hilbert systems or systems of natural deduction. Rules are viewed as the proofs
of (possibly higher—order) judgements that specify them. There is no distinction be-
tween primitive and derived rules. The extension to higher—order judgements allows
for a natural presentation of many logical systems that avoids side conditions on rules.
Judgements, rules, and proofs are represented in the LF type theory by applying what
we call the judgements as types principle whereby each judgement is identified with the
type of its proofs. Each basic judgement is represented by a base type of the LF type
theory, and the higher-order judgements are represented in a logic-independent way
by functional types. Proofs, and hence rules, are represented as terms of the LF type
theory, thereby reducing proof checking to type checking.

In Section 2 we present the type theory of the LF, along with some of its important
proof-theoretic properties. In Section 3, we introduce the LF’s theory of expressions, and
consider predicate calculus and Church’s higher-order logic as examples. In Section 4
we consider the treatment of judgements, rules, and proofs in the LF. The method is
illustrated for predicate calculus and higher-order logic. In Section 5 we compare our
work with other systems for defining logics, and in Section 6 we suggest directions for
future research.

We gratefully acknowledge the influence of Per Martin-Lof, particularly the lectures
delivered in Edinburgh in the spring of 1986. We are grateful to Tim Griffin of Cornell
University for his efforts in building a prototype implementation of the LF. We also thank
the other members of the Computer Assisted Formal Reasoning project at Edinburgh,
especially Arnon Avron and Ian Mason, for their comments and criticisms. Support for
this research was provided by the Science and Engineering Research Council.



2 The LF Type Theory

The type theory of the LF is closely related to the II-fragment of AUT-PI, a language
belonging to the AUTOMATH family. The LF type theory is a language with entities
of three levels: (1) objects, (2) types and families of types, and (3) kinds. Objects are .
classified by types, types and families of types by kinds. The kind Type classifies the
types; the other kinds classify functions f which yield a type f(z1)...(z,) when applied
to objects zy,...,z, of certain types determined by the kind of f. Any function definable
in the system has a type as domain, while its range can either be a type, if it is an object,
or a kind, if it is a family of types. The LF type theory is therefore predicative.

A number of different presentations of this system can be given. We shall describe a
version which trades off conciseness against readability. The theory we shall deal with
is a formal system for deriving assertions of one of the following shapes:

F X sig Y is a signature
Fs T context T is a context
T'Fg K kind K is a kind
TFg A: K A has kind K
Tk M: A M has type A

where the syntax is specified by the following grammar:

Signatures L = ()| T,cK | Z,e:A
Contezts ' := () |T,z:4A

Kinds K ::= Type | Iz: AK

Type Families A ::= c¢ |Ilz:AB | Az: A.B | AM
Objects M ::= c¢|z|Az:AM | MN

We let M and N range over expressions for objects, A and B for types and families of
types, K for kinds, z and y over variables, and ¢ over constants. We write A — B for
Ilz: A.B when z does not occur free in B.

The inference rules of the LF type theory appear in Table 1. A term is said to be
well-typed in a signature and context if it can be shown toseither be a kind, have a kind,
or have a type in that signature and context. A term is well-typed if it is well-typed in
some signature and context. The notion of Sn—contraction, written —4,, can be defined
both at the level of objects and at the level of types and families of types in the obvious
way. Rules (12) and (17) make use of a relation =p, between terms which is defined
as follows: M =g, N if M —, P and N —'5, P for some term P. We conjecture
that variants of rules (12) and (17) obtained by taking =4, to be fn—conversion are
admissible rules of the theory.

Since the notion of fn—conversion over K U AU M is not Church-Rosser, the order of
technical priority in which the basic metatheoretical results are proved is essential. The
following theorem summarizes these results in a convenient order (here a ranges over
the basic assertions of the type theory):



Valid Signature
F () sig
FXsig Fy K kind c¢ dom(X)
F3,c K sig
FXsig kg A:Type c¢¢dom(Z)
FX,e: A sig

Valid Context .
F X sig

Fg () context

s T context I'tx A:Type =z ¢ dom(T)

F» T, z: A context

Valid Kinds
Fs T' context
I gy Type kind
'y A: Type TI',z: Aty K kind
by z: A.K kind

Valid Elements of a Kind
FeT context c:KeX

I'tsge: K
I'kg A:Type T,z:Abs B: Type
I'by Iz: A.B : Type
'ty A: Type T'yz:Alp B: K
FFy Az:A.B:Mz: A K
'y B:Mlz:AK T N:A
'ty BN : [N/z]K
' A: K Ty K'kind K =g, K'
I'be A: K!

Valid Elements of a Type
Fe T context c:Ae€X

T'kge:A
Fe T context z:AcT
FI‘E:D:A
'y A:Type T,z: Ay M :B
ITltg Az: AM :Nz: A.B
TkFes M:Mlz:AB T N: A
'ty MN :[N/z|B
Ty M:A Thyg A': Type A=, A'

Fky M: A

Table 1: The LF Type System
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Theorem 2.1

1. Thinning is an admissible rule: if ' g a and x50 T', T context, then T, T by 5 c.

2. Transitivity s an admissible rule: if T by M : A and T,z: A, A by o, then
T',[M/z]A b5 [M/z]e. !

3. Uniqueness of types and kinds: ifT g M : A and T 5 M : A', then A =g, A,
and stmilarly for kinds. .

4. Subject reduction: if Tts M : A and M —g, M', then T s M' : A, and similarly
for types.

5. All well-typed terms are strongly normalizing.
6. All well-typed terms are Church-Rosser.

7. Each of the five relations defined by the inference system of Table 1 is decidable,
as is the property of being well-typed.

The proof of this theorem is surprisingly complicated. However, the methods devel-
oped by van Daalen in his thesis [9] can be adapted to this type theory. It is important
to note that'the Church-Rosser property, strong normalization, and the presence of type
labels are essential in the proof of decidability of the type theory. In particular, given
a signature and a context and any object (type) expression, it is decidable if the object
(type) expression is well-typed; if so, a type (kind) can be computed for it.

We shall outline only the proof of strong normalization, since, unlike the systems
dealt with by van Daalen, it can be proved independently of the other metatheoretic
results. Moreover, it yields a corollary that is useful for characterizing the terms that
are definable in the LF type theory:

Corollary 2.2 IfT 3 M : A, then Erase(M) can be typed in Curry’s type assignment
system, where Erase(M) denotes the term obtained from M by removing the type labels
from the A abstractions.

We start by defining a translation 7 of the LF types and kinds into simple types with
a base type «, and a translation ~ of LF objects and types into the untyped A terms with
a constant . These translations are extended to signatures and contexts in the obvious
way.



Definition 2.3

7(Type) = «a

r(llz: AK) = 71(4) - 7(K)

7(c) = a

7(Az: A.B) = 7(B)

7(AM) = 7(4)

r(llz: A.B) = 7(4) — 7(B)

¢ = ¢

z = z

AM = AM

MN = MN

Ilz: A.B = 7AB

Az A.M = (AyAz.M)A (y ¢ FV(Az.M))
Az:A.B = (AyAz.B)A (y¢FV(Az.B))

The precise sense in which this definition is consistent is stated in the following
lemma:

Lemma 2.4
1. IfT kg A: K, then 7(T) Frs) A : 7(K);
2. If Tty M: A, then 7(T) Fom)ramame M : 7(A).
Proof. By induction on the structure of the proof of by A: K and T by M : A. We

have only to notice that any derivation of 5 T',z : A context contains as a subderivation
a derivation of T sy A: Type. O

The translation has been carried out in such a way that the extra combinatorial
complexity in the LF terms due to the presence of type labels is not lost. We then have
the following result:

Theorem 2.5
1. If A—p, A, then A =35, AY;
2. If M — 4, M, then M —5, M.
Proof. By induction on the derivation of A — A' and M — M'. O

Now since the Curry typable terms are strongly normalizing, so too are the terms of
the LF. Moreover, it can be easily seen that A —', Erase(A), and M —', Erase(M).

A few remarks about the choice of the type theory are in order. It is essential that
the type theory be decidable, at least theoretically, for, as we shall see below, proof
checking is reduced to type checking. The use of conversion as the only counterpart of
definitional equality is due to the fact that at this stage the LF does not deal with the
issue of proof reduction and equality in the sense of Prawitz. We use n—conversion in
order to make the encoding of syntax more transparent.
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3 Theory of Expressions

The approach to formalizing the syntax of a language is inspired by Church [5] and
Martin-Lof system of arities [17]. Each syntactic category of the logic is represented
by a type. The expressions of each category are built up using expression—forming
constructors, which are formalized by suitable constants of the LF. Variable binding
operators are represented by constants whose domain is a function type, so that binding
is handled by the A—calculus of the LF. The type theory of the LF being richer than
simple type theory, our approach to syntax is more general than Martin-Lof’s. Explicit
use of this extra generality is made in the formalization of Church’s higher-order logic.

To illustrate the formalization of syntax within the LF, we consider two examples:
the language of Peano arithmetic (as defined in Schoenfield [21]) and the language of
higher—order logic [5]. The presentation of the syntax of Peano arithmetic will form a
part of its signature, Xpa, and similarly for the signature of higher—order logic, ¥gor.

In a first-order language there are two syntactic categories: the individual expres-
sions, which stand for individuals (objects in the domain of quantification), and the
formulas, which stand for propositions. These are represented in the LF by the type ¢
of individuals, and the type o of propositions. Thus Yps begins with:

t : Type
o : Type

The individual expression constructors of Peano arithmetic are formalized in Xpa by:

0 A

succ : L — L

+ L= L—
X L= L=y

Terms of type ¢ in ¥pp represent the individual expressions of Peano arithmetic.
There are no declarations for the variables of first—order logic. The variables of the
object language are identified with the variables of the LF, so that an open term of
type ¢ in Ypa, all of whose free variables are of type ¢, represents an open individual
expression. For example, in a context containing z: ¢, the term succ(z) has type ¢ as well.
This representation is defined compositionally by: z° = z, 0° = 0, succ(t)® = succ(t°),
t+ u® = +(2°)(u°), and ¢ x u® = x(t°)(u°),

Theorem 3.1 (Adequacy for Syntax, I) The correspondence ° is a bijection be-
tween the expressions of Peano arithmetic and the normal forms of type v in Tps with
all free variables of type .

Proof sketch. The translation is evidently well-defined and one-one. Surjectivity is
proved by induction on the structure of the normal forms. O
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The following are the other constant declarations for the formulas of Peano arith-

metic:
= L—>L—o0 < t—tL—0
= 0—0 A 0—0—0
V : o—s0—o0 D 0—0—o0 "
v (t—0)—o0 3 (t—o0)—o0

The formula ¢ = Vz.¢[z] is represented by the term 9° = V(Az::.¢°). This approach al-
lows a—conversion and capture—avoiding substitution to be factored out of the definition
of each individual logic, leaving it to be implemented once and for all by the framework.
This treatment of binding operators relies on the variables of the first—order language
being identified with the variables of the LF type theory. For example, if = is a variable
of type ¢, then £ = z is a term of type 0.! We can bind z by A-abstraction, obtain-
ing Az:¢.x = z, and universally quantify it by applying it to the constant V, obtaining
V(Az:t.z = z), which represents the first~order formula Vz.z = z.

In this way, each formula ¢ of Peano arithmetic is represented by a term ¢° of type o
in Ypa, all of whose free variables are of type ¢; sentences are represented by the closed
terms of type 0. An open term M of type o is an incomplete formula. Its A-abstraction
is a formula scheme. For example, the formula scheme

M = Xp:0.08:L — 0.9 D 3(P)
can be instantiated by application to a formula ¢ and a matrix ®, so that
M(V(Az: vz = z))(Az: 1.z = 1)
represents the first—order formula
Vz.x =z D dz.x = z.

Theorem 3.2 (Adequacy for Syntax, II) The compositionai translation ° is a bi-
Jjection between the formulas of Peano arithmetic and the long Bn normal forms of type
o in Ypa with all free variables of type .

Proof sketch. Similar to Theorem 3.1. [0

The role of n—conversion in the above proof is mainly to ensure that the well-typed
terms of type o in Ypa are exactly the formulas of Peano arithmetic, up to the notion
of definitional equality built in to the system. There is no intrinsic difference between
V(< (0)) and V(Az::. < (0)(z)).

The formalization of the syntax of higher-order logic makes use of the dependent
function type of the LF. Quantification in higher—order logic is over a type drawn from
the hierarchy of simple functional types with two base types ¢ (of individuals) and o (of
propositions). In order to avoid confusion with the types of the LF, we call the types of

1We freely use infix and postfix application in accordance with custom and readability considerations.



higher—order logic “sorts,” and we shall write o = 7 for the sort of functions from sort ¢
to sort 7. In the formalization of higher-order logic the collection of sorts is represented
as a type with members « and o, closed under =>. The signature Zyor, thus begins as

follows:
sorts : Type

L : sorts
o : sorts
=> : sorts — sorts — sorts

To each sort is associated the type of objects of that sort. The objects of sort ¢ are,
for the present purposes, the natural numbers. The objects of sort o are the propositions
of higher-order logic. The quantifiers range over an arbitrary sort, rather than the fixed
sort of individuals as in first—order logic. The objects of functional sort are given by
typed A terms (which we write with a capital A to avoid confusion), and there is a form
for expressing application.

obj : sorts — Type
0 : obj(e)
-succ : obj(t =)
= : Ilo:sorts.obj(o => o = o)

- obj(o = o)

A obj(o => 0 = o)

% obj(o = 0 = o)

- obj(o => 0 = o)

v Ilo: sorts. obj((o = 0) = o)

3 Io: sorts. obj((o = 0) = o)

A Ilo:sorts.IL7: sorts.(obj(¢) — obj(r)) — obj(o = 7)
ap Io: sorts.II7: sorts. obj(o = 7) — obj(o) — obj(r)

The representation of equality and the quantifiers makes use of the dependent func-
tion types of the LF. For each sort o, the equality relation for objects of sort o is written
=,; it is an object of sort 0 => ¢ => 0. Similarly, the quantifiers ranging over sort ¢ are
written V, and 3,; they are objects of sort (o = 0) = o, just as in Church’s formulation.
The A and ap forms must similarly be tagged with types, which we write as subscripts.
The A form must be tagged with both the domain and range types, unlike in Church’s
definition. The difference is minor, and we expect that analogs of Theorems 3.1 and 3.2
can be proved.

4 Theory of Rules and Proofs

The treatment of inference rules and proofs lies at the heart of the LF. The approach is
organized around the notion of a judgement [15], the unit of inference of a logic. Each
logic comes with a set of basic judgements. In first-order logic there is only one form of
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basic judgement, the assertion ¢ true that a formula ¢ is (logically) true (usually written
as - ¢ or just ¢). Sequent calculi also have one basic judgement, written T' = A, the
assertion that some formula in A is a logical consequence of all the formulas in T. In
Martin-Lof’s system of type theory, there are four basic judgements, A type, A = B,
a€ A,and a =b € A. _

. In traditional logical systems the inference rules determine the set of proofs of ba-
sic judgements, and thereby also determine the set of “correct” or “evident” [15] basic
judgements, namely those that have proofs. There are several approaches to the defi-
nition of a proof in a formal system. [21,20] Proofs are sometimes viewed as sequences
of formulas that satisfy the condition that each formula is obtained from previous for-
mulas by application of a rule. Another view is that proofs are trees satisfying certain
conditions. In any case the notion of a proof is independent of the particular rules of
inference.

We extend the notion of proof to include our view of rules as proofs of higher—order
Jjudgements. There are two forms: the hypothetical and the schematic (or general). The
hypothetical judgement J; - J, is the assertion that J, is a logical consequence of Jj,
according to the rules of the logic. It is proved by a function mapping proofs of J; to
proofs of Jz.. The schematic judgement A,.4 J(z) represents the idea of generality: the
judgement J(z) is evident for any object z of type A. It is proved by a function mapping
objects z of type A to proofs of J(z).

Rules and proofs are represented as terms of the LF type theory. The basic rules are
presented as constants in the signature of the logic, and the derived rules are complex
proofs that are A-abstracted with respect to their premises. Since rules are functions,
complex proofs are built by applying (in the sense of the A—calculus) rules to the proof(s)
of their premise(s). Rule schemes are represented as proofs of schematic judgements.
Schematic variables are identified with the variables of the LF, so that schematization
is achieved by A abstraction, and schematic instantiation by application.

If rules and proofs are terms, what are to be their types? Since a proof is viewed as
evidence for a judgement, it seems natural to identify judgements with the type of their
proofs: a judgement is evident iff it has a proof iff there is a term of that type (in the
signature of the logic). We call this the judgements as types principle, by analogy with
the propositions as types principle of Curry, deBruijn, and Howard. Here we are making
no commitment to the semantics of a logic. Instead we are merely formalizing the idea
that to make an assertion in a logical system, one must have a proof of it.

The type of proofs of a basic judgement is determined by the inference rules of
the logic. The types of proofs of the higher-order judgement forms are defined by
the LF. We define J; - J; to be J; — J,, the type of functions mapping J; to Js.
This definition is motivated by the meaning of the hypothetical judgement and the
judgements as types principle. Similarly, we define A,.4 J(z) to be Ilz: A.J(z), the type
of functions mapping objects = of type A to J(z). We write J1,...,Jp Fayay,.. 004, J
for Agy.a,---Azpia, J1 F oo (Jm b J). This incorporates and generalizes Martin-Lof’s
hypothetico-general judgements [15].

10
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$(0) $(suce(z))
¢(z)

(*z not free in any assumption, other than ¢(z), in which ¢(succ(z)) depends.)

(3E7)

(IND*)

Table 2: Some Rules of Peano Arithmetic

We take incomplete proofs to be open terms of judgement type J. They can be
completed by substitution or by A-abstraction, yielding proofs of schematic judgements.
Abstraction on judgement type variables not occurring in J yields proofs of hypothetical
judgements.

An important consequence of the judgements as types principle is that we are able
to reduce proof checking to type checking. A term M is a proof of a judgement J iff M
has type J in the signature of the logic. This reduction is the most important reason
for insisting that the type theory of the LF be decidable, for otherwise one could not
construct a mechanical proof checker for a logic.

To illustrate these ideas, we formalize an illustrative selection of rules from first—order
and higher-order logic formalized as systems of natural deduction. Returning to Tpa,
we represent the single judgement form ¢ true by introducing a family of types indexed
by the propositions:

true : o — Type

We write “¢ true” for “true(4).” For any formula ¢ (i.e., any term of type o in Tp,),
the type ¢ true is the type of proofs of ¢.

Each rule in Table 2 is represented by a constant whose type is the specification of
the rule, a higher—-order judgement. For instance, the double negation elimination rule

11



is given by:
-—E : ¢ true by, ¢ true

The judgement is schematic in propositions ¢ and hypothetical in proofs of ——¢, so if ¢
is a formula and M is a proof of ——¢ true, then -—E(¢)(M) is a proof of ¢ true.

The implication introduction rule makes use of the hypothetical judgement form
to model discharge. The formulation of DI in Table 2 takes a hypothetical proof of
¢ as premise, and discharges the hypothesis. We instead treat DI as taking a proof
of a hypothetical judgement. The general intention is that a sufficient condition for
establishing the truth of ¢ D % is to establish that ¢ is a logical consequence of ¢. The
formalization of DI, which is schematic in ¢ and %, is:

DI : (¢ truek 9 true) b4 ¢ D P true

So, for example, DI(¢)(4)(Az: ¢ true.z) is a proof of ¢ D ¢ true.
Universal elimination is given by:

VE : V(®) truetg,oa B(a) true

The rule is schematic in ®, the matrix of the universally quantified formula, and a, the
instance. Given such and a proof M of V(®) true, VE(®)(a)(M) is a proof of ®(a) true.
Substitution is modelled by applying the matrix to the instance.

Universal introduction is formalized like implication introduction. A condition for
the truth of V(®) is that ®(z) is true for arbitrary z. In Table 2 variable occurrence
conditions are used for a schematic proof of the judgement ®(z). We instead use a proof
of the schematic judgement A.:¢.®(z). The rule is given by:

VI : (A, ®(x) true) bouo V(®) true

Existential elimination uses both hypothetical and schematic judgements, and makes
use of scoping to avoid side conditions:

JE : 3(®) true, (®(z) true b4, ¥ true) Fg., o 4.0 ¥ true

Since % is bound outermost, there is no possibility that the z of the schematic judgement
form occur free in an instance.
Induction makes use of scoping and higher-order judgements:

IND : @(0) true, (®(z) true F,, ®(succ(z)) true) b, 0z, ®(z) true
The correctness of the formalization is expressed by the following theorem:

Theorem 4.1 (Adequacy for Theorems) There is a (compositionally-defined) bi-
Jjection between first-order natural deduction proofs of a formula ¢ of Peano arithmetic
from assumptions ¢y,...,0, and normal forms M of type ¢° true in Tpa, all of whose
free variables are of type v and ¢; true (1< i< mn).

12

ki



Proof. It is straightforward to prove by induction on the length of derivations, that if
Aj,..., A, Fpa A ts dertvable, then

T, z:: Ay true,...,z,: A, truebg,, M : A,y true

15 derivable, where I' contains assignments of the form z:¢ for the free object variables
x occurring in the A;’s and in M, and where M faithfully encodes instantiation and
application of rules. Surjectivity can be proved by induction on the structure of the
normal forms of type ¢ true (for ¢:0), keeping in mind the uniqueness of types and the
Church—Rosser property. [

Note that it is possible for M in the above proof to have free variables of type ¢, even
when n = 0 (i.e., when there are no assumptions) and when ¢ has no free variables.
This is true, for example, in a proof of

Vz.¢ D Jz.¢(z).

It is a peculiarity of first—order logic that the assumption that the domain of quantifica-
tion is non-empty is not made explicit in proofs.

The above proof illustrates the fact that judgements in the LF actually encode conse-
quence relations that satisfy, in view of Theorem 2.1, weak forms of thinning, transitivity,
and contraction.

We shall give two examples. In the first we present a proof of ¢ D (¢ D ¢) true
as a well-typed term in the signature ¥ps. Let z have type ¢ true, and let y have
type 9 true. Abstracting the incomplete proof z with respect to y, we obtain a proof
Ay:¢ true.z of ¢ true - ¢ true. Applying DI to this proof, we obtain the (incomplete)

proof DI{v)(¢) (Ay: ¢ true.z) of O ¢ true. Abstracting with respect to z, and applying
DI again, we obtain the complete proof

DI(¢) (¥ D ¢)(Az: ¢ true.DI(¢)(¢)(Ay: ¢ true.z))

of ¢ D (¥ D ¢) true.

In the second example we give evidence for the claim that the traditional notion of a
derivable rule has a formal counterpart in the LF. We show that in the signature £pj the
elimination rule for the universal quantifier in Schroeder—Heister’s style can be derived.
The Schroeder-Heister rule is specified as follows:

VEsg : V(®) trué, ((Az.. ®(z) true) - 9 true) true - 9 true) kg0 4.0 ¥ true.
It can be easily verified that the term

A®:1 — 0. AP 0.2p: V(@) true.dg: (A @(z) true) I ¢ true).g(Az: c.VE(®)(z)(p))
has the above type.
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With regard to derived rules, it is interesting to point out that in view of the fact that
thinning is an admissible rule of the LF type theory, judgements are “open” concepts.
This precludes an induction principle on proofs. Therefore typical admissible rules for
a given logic £, or meta rules such as the deduction theorem for a Hilbert—style presen-
tation of first—order logic, are not directly derivable in certain adequate signatures for
L.

Turning to the formalization of higher—order logic, we formalize the inference rules
in a manner quite similar to that of first—order logic. There is one judgement form, the
assertion that ¢ is true, for ¢ an object of sort o.

true : obj(o) — Type

The rules of § and n—conversion for the A—calculus appear as axioms about equality.
They are schematic in the domain and range sorts of the functions, and in the terms
themselves:

:3 : Aa:sorts,r:sorts,f:obj(a)-—-tobj(‘r),a:obj(a) a'pa',‘r(AU.T (f )’ CL) =7 f (a) true
Aa:sorts,r:sorts,f:obj(a:r) Aa,‘r(Az: obj (0) a‘pa,r(f ’ $)) =o=r [ true

Strictly speaking, the equations in the above axioms should be written using ap, for the
type of =, is obj(r = 7 = o).

The formalization of the logical rules is similar to that of first—order logic. The
universal introduction and elimination rules are formalized as follows:

VI (Az:obj(a) a'pa,o(fa -7:) true) I_a:sorts,f:obj(a:o) Va(f) true
VE : va'(f) true l“a:sox'l:s,j':c:bj(o‘::vo),a.:obj(a) a'pa,o(f, a) true

The adequacy of this representation of higher—order logic can be established by means
similar to that for Peano arithmetic.

5 Comparison with Related Work

Work in the area of proof checking began with the AUTOMATH project [4]. They
sought to build a framework for expressing arbitrary mathematical texts in a formal
way, and developed many examples, notably the formalization of Landau’s textbook
on Analysis by Jutting [12]. In contrast to the LF approach they work directly within
the type theory, using the propositions as types principle. They do not seem to have
isolated any general principles about the formalization of logic. Our work can be seen as
a development of the AUTOMATH ideas by providing a framework that keeps the meta—
and object level clearly separated. We are also concerned with supporting interactive

proof development, particularly automated proof assistance, an area that was never
considered by the AUTOMATH project.
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Paulson’s Isabelle system, as presented in [18], is a generalization of LCF to an
arbitrary logic. He is primarily concerned with theorem proving, rather than proof
checking and proof editing. Consequently his approach is quite different from ours,
particularly in the treatment of rules and proofs. Isabelle avoids the construction of
proof trees by viewing proof search as a process of building derived rules of inference.
His representation of rules is based on a direct encoding of rules and their side conditions,
using a clever algorithm due to Lincoln Wallen to enforce variable occurrence conditions.

6 Directions for Future Research

The LF system is a first step towards developing a general theory of interactive proof
checking and proof construction. Much more work remains to be done. At present we
do not treat definitions and abbreviations for an object logic. There appear to be at
least two ways in which the LF type theory might be extended to include an account of
definitional equality. One way is to add axioms for § reductions [4,23]. We have not yet
conducted a thorough analysis of such an extension. Another approach is to formalize
LF type theory as an equational theory, with a set of equations representing definitions
being included as part of the signature of the logic. These equations may be directed
to obtain a reduction relation suitable for use by the type checker, but in general this
relation will not be Church-Rosser or normalizing, and so decidability of type checking
is lost.

It would be interesting to develop a characterization of the class of logics that can be
formalized within the LF. It is clear from recent results of Avron and Mason [1,2] that
one can exploit multiple judgement forms to encode logics that ordinarily have complex
side conditions on their rules. While it appears that almost any formal system can be
represented in the LF, some representations seem more natural than others. Is there
a precise characterization of naturality in this sense? If so, what logics admit natural
representations?

In a natural representation of a logic, the variables of the object language are rep-
resented by variables of the metalanguage. This means that, for the case of first~order
logic, that the type ¢ can be viewed as the domain of quantification in a given model.
Thus a satisfactory account of our treatment of variables seems to involve a notion of
model for the LF. We have defined a class of models for which the type theory is com-
plete. It is interesting to consider the possibility of connections between the LF and
Burstall and Goguen’s institutions [10] and Barwise’s abstract model theory [3].

A general treatment of tactics is clearly desirable. The terms representing proofs
in an LF encoding of a logic can be viewed as validations (in the sense of LCF [11].)
Since the proof terms are total functions, a tactic that is validated by a proof term
has the property that any proofs of the subgoals are guaranteed to lead to a proof of
the goal (such tactics are called valid by Milner). Griffin’s implementation of the LF
demonstrates that this property can be checked automatically for a small class of tactics
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called refinement rules. Constable and Knoblock [13] carry this idea even further by
considering the possibility of proving the validity of tactics for type theory in the type
theory itself. It would be interesting to adapt these ideas to the more general setting
of the LF. In another direction we have defined a logic-independent search space that
generalizes Paulson’s higher—order resolution [18].
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