LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

-

5 . . o

= & Inductively Defined Functions in

%% Functional Programming Languages

=0

-_g"<'

8 by

o 5

32 Rod Burstall

2

@ S

gt}

Q =

=5 O

23

D

(o R

1))

7]

' : ECS-LFCS-87-25

LFCS Report Series (also published as CSR-230-87)
LFCS April 1987
Department of Computer Science
University of Edinburgh
The King's Buildings

 Edinburgh EH9 3JZ

INDUCTIVELY DEFINED FUNCTIONS IN FUNCTIONAL PROGRAMMING
LANGUAGES * :

R.M. Burstall

Dept. of Computer Science
University of Edinburgh

King's Buildings, Mayfield Road

Edinburgh EH9 3JZ, Scotland, U.K.
Abstract

This paper proposes a notation for defining functions or procedures in
such a way that their termination is guaranteed by the scope rules. It uses
an extension of case expressions. Suggested uses include programming
languages and logical languages; an application is also given to the problem
of proving inequalities from initial algebra specifications.

1. Introduction

When ‘we define recursive functions on natural numbers we can ensure
that they terminate without a special proof by adhering to the schema for
primitive recursion. The schema can be extended to other data types. This
requires inspection of the function definition to ensure that it conforms to
suech a schema, involving second-order pattern matching. However if we
combine the recursion with a case expression which decomposes elements of
the data type we can use the ordinary scoping rules for variables to ensure
termination, without imposing any special schema. I formulate this proposal
for 'inductive’ case expressions in ML (Milner 1985) since it offers succinct
data type definitions and a convenient case expression. Any other

. functional language with these facilities could do as well.

" A number of people have advocated the use of initial algebras to define
data types in specification languages, see for example Goguen, Thatcher and
Wagner (1978) and Burstall and Goguen (1981). Two aspects of this have
worried me somewhat

- we do not have a really convenient way to define functions using
the unighe homomorphism property of the initial algebra

- we do not have any obvious way to prove inequations (a # b)
aboul the data elements from the equations which define the
data type.-

Induc.:ti\'re.'case expressions can be seen as a proposal for defining
functions by the unique homomorphism property, and I show how we can
prove inequations using such functions. 8

Klaerenh has for a long time stressed the use ot definitions, as opposed
to axioms, to define functions in algebraic specifications. For his treatment
see Klaeren (1983).

Apart from their use in programrhing languages they may be useful as
an ex%ension' to logical languages, say first-order predicate logic. These

L)

* To appear in Speciié.l Issue of JCSS

usually deal exclusively with total functions, so a function definition
mechanism which guarantees totality provides a rather simple extension,
whereas introducing recursive definitions involves wus in the business of
partial logics. One might argue that most functions we define are total and
when we want a genuinely partial function, say 'eval’, we can represent it by
a relation.

2. Definitions of data types and functions
A new data type is introduced in ML by giving the alternative ways of
constructing elements of that type. Thus for example the natural numbers
could be defined by
datatype nat = zero | succ of nat
and lists of natural numbers by
datatype natlist = nil | cons of (nat * natlist)

This defines the new type natlist together with the constructors

nil: natlist
cons: nat * natlist -> natlist

To define functions over such data types we resort to recursion. We use fun
to define functions, just as datatype defines types. Thus

fun rec length | = case l of
nil => zero
| cons(4, 1) => 1 + length 11

In each case a constructor on the left introduces a number of variables
which are bound by matching, for example ¢ and l1. Similarly

fun rec plus{m, n) = case m of
zero =>mn
| suce m1 => succ(plus(mil, n))

We can easily make definitions by recursion which do not terminate. But
"obvious" termination is rather common in practical programming, since
many functions are defined by primitive recursion.

ML allows fun length | = ... instead of fun rec length [= ..., but we
want to emphasise the recursion. For non-recursive functions we will drop
the rec.

3. Defining functions inductively by cases -

I would like to propose a variant of the ML case construction which
makes the termination immediate from the syntax. We will write "ind case”
for "inductive case”. The syntax of an "ind case” expression is the same as
that of a case expression.

Let us call the expression after the word case the argument of the case
expression. Now the new feature for ind case is that if a variable v
appearing on the left in the matching position inside a constructor has the
same type as the argument then not only is v declared for use on the right
but so is another special variable named $v. This $v is bound to the value
of the whole case expressioen in which the argument has been replaced by v.
The original ind case then becomes simply case. Some examples will help.

Ffun plus(m, n) = ind case m of
zero =>n
| succ ml => succ($m1)

Here the new variable $m1 represents the value of the whole ind case
expression replacing m by ml. Thus we could expand to

fun plus(m, n) = case m of
zero => "N
| suce ml => succ(ind case ml of
zero =>n
| suce m1 => succ $m1l)

Further such expansions will push the ind case expression arbiitrarily deep
in a nested case expression and enable us to calculate plus(m, n) for any
finite m. By this informal argument we see thalt since all elementis of ML
data types are finitely deep ind case expressions always terminate. This is
the advantage they have over explicit recursion.

We may also note that the $ml replaces a recursive call of plus in the
previous definition. We could think of the ind case expression in general as
standing for some anonymous recursive function applied to the argument
expression; the $§ sign then corresponds to a recursive call of this function.
This recursive call must, by our syntax, be applied to a component of the
original argument. Hence the guarantee of termination.

The length example is similarly accomplished without recursion
fun length | = ind case | of
nil => zero
| cons(d, 11) => succ $i1
Another familiar example
fun fact n = ind case n of
zero =2> SUcCcC zero
| succ ni =>n * §ni
A tree example, summing the numbers on the nodes
datatype tree = niltree | node of tree * nat * tree
{niltree and node use the constructor functions, nullary
and ternary)
fun sum t = ind case t of

niltree
I mode(tl, 1, tR)

> 0
> $t1 + 1 + $t2

The general primitive recursive scheme on natural numbers is
fun Tec f n = case n of zero => a | succ m => g(m,f m)
We can define the functional, PrimRec, in the same way with ind case
PrimRec(a,g)n = ind case n of zero => a | succ m => g(m,$m)
So f = PrimRec(a,g), and ind case will define all the primitive recursive
functions. Using higher order functionals, so that g might itself be PrimRec

we can define a wider class of functions (possibly all provably recursive ones
in Peano arithmetic). (I am grateful to John Mitchell for suggesting the

definition of PrimRec.)

Consider however an alternative definition of plus

fun rec plus(m, n) = case m of
zero =>n
| suce ml => plus(ml, succ n)

Here we apply plus recursively to ml, but with the parameter n increased to
succ n. There seems to be no way to express such definitions using ind case.
We can however "curry” the definition of plus, and then translate it (noting
that in ML fn means lambda)

plus : nat => (nat->nat)

- fumn Tec plus m = case m of
zero => (fn n. n)
suce ml => (fn n. plus m1 (succ n))

This becomes

fun plus m = ind case m of
zero => (fn n. n)
| succ m1 => (fn n. $m1 (succ n))

Another approach (slightly clunky!) is to add an explicit parameter
mechanism

ind case m parameter n of
zZero => "N
| suce m1 => $mi(succ n)

You might-think of this as syntactic sugar for the second order version.
Alternatively we can use assignment. (To do this in ML we need to use a
reference variable and use '!' to extract the value from the reference.)

Fun plus(m,mn) = let val sum = ref n in
ind case m of
zero => lsum
| suce m1 => (sum:=!'sum+1; $m1)
end

You may regard using assignment as treason to the mnoble cause of
functional programming, but after all this kind of parameterised recursion
is a mark of iterative programs and these are written neatly using
assignment. You can choose between a second order functional, as in the
previous curried version, or the traditional assignment notation. Of course
we must not allow references in the data type or circularity might ensue.

The Fibonacei function which recurses on both n-1 and n-2 also
presents a problem, but one can overcome this wusing the ML ‘'as’
construction which binds a variable to a subpattern.

fun fib n = ind case n of
zero => succ zero
| suce zero => succ zero
| succ(ml as (succ me)) => $m1l + $m2

Here m1 is a variable bound to the subpattern succ m=2.

We should say something about mutually recursive data types. ML has a
notation for this using 'and’'. For example

datatype S = c of T | a
and T = d of S

This corresponds to the signature

sorts S,T opns c:T->S, a:S, d:S->T

Similarly we can extend the ind case notation with and's to separate the
components dealing with each of the mutually recursive types. We could use

$1, $,... for the results of applying to the various types, but the type of the
variable is sufficient to discriminate, so we just use $. Thus
fun rec f s = case s of
¢ t1 => succ(g 1)
a => zero

|
and g t = case t of
d s1 => succ(f sl)

becomes
fun f s = ind case s of
¢ t1 => succ $t1

| @ => zero
and d s1 => succ $si

Of course one can use second order functionals, like maplist, to capture
primitive recursion, but they still need termination proofs and programs
using them are not very readable.

4. Syntax and semantics of ind case

Let us go over syntax and semantics a little more carefully. Skip to
the next section if this bores you.

Data types and signatures

A data type definition is of the general form

datatype s, = ¢, of t . c, of t
and ... 1
and s_ = le of tm1 l...| cmnm of tmnm

and corresponds to the signature extension

sorts s_,...,8
1 m

: - : ->

opms €y, t11 >51’ ’Clnl tml Sy

: ->s ,...,C 't ->s
ml mil m mn mn m
m m

where tij is a product of some previously defined sorts and the s HS_

o
(In fact ML allows the tij to use '->' as well as the product '*', but we shall

not use that here.)

The data type declaration binds the iypes S8, to the sorts of the initial
algebra on this signature and the comnstructors C i Com to the operations
m

of this algebra and to their inverses (when used in a pattern).

Case expressions

Case expressions are of the general form

case F_of

P =%F
1 1

| ..
| P =>F
n n

where the patterns P are formed from constructors and wvariables and

E' are expressiéns which may use the variables. The patterns are all
o? the sdme type as F_. The expressions Eo JE are all of the same type
and this is the result type of the case expression.n

The case expression is evaluated by evaluating Eo to get a value, say v,

and matching v against each pattern in turn until a match is obtained. The
corresponding expression, E'i, is then evaluated with this binding for the

variables in the pattern. This gives the value of the case expression.

The patterns must be complete in the sense that any value of the
appropriate type will match at least one of them.

The syntax of ind case is the same as that of case (leaving aside the
extension to mutual recursion which we have sketched). The semantics is
most easily made precise in terms of the ‘copy rule'.

First, if no $-—variables appear free in the E'i
ind case E of P, => E_|...| P =>F
1 1 n n

can be rewritten to the corresponding case statement, deleting 'ind'
Second, if z is a variable in Pi and

I = ind case F of P => E, lood P =>F [...| P =>F

then we may rewrite I by replacing $z in E. by Ifz/F]. For example, even 1,
writing =z for zero and s for succ, the followmg expression gives successively

ind case s z of z => true | s n => not $n
ind case s z of z => true | s n => not(ind case n of z => true | s n
=> not $n)
case s z of z => true | s n => not{ind case n of z => true | s n
=> not $n)
not(ind case z of z => true | s n => not $n)
not(ind case z of z => true | s n => not(ind case n of z => true | s n
=> not $n))
not(case z of z => true | ...)

not true

5. Equational data types

The notation used in ML to introduce a recursive data type is just a
cute way of defining a signature or more generally a signature exitension.
The data type is the initial algebra on this signature or more generally the
free extension corresponding to this signature extension. In specification
languages we may be interested in defining the initial algebra on a signature
subject to some equations. Finite strings, bags (alias multisets) and sets
are all easily definable by adding equations for identity, associativity,
commutativity and absorption. So for specification purposes let us extend
the ML syntax slightly to allow equations, introducing a keyword "under".

Using ___ as an infixed operator for appending, we define strings thus
datatype intstring = empty | unit int | intstring __ intstring
under emplty __ s = s
and s __ empty = s

and s ___ (t __ u) (s __t) _u

The data type is the initial algebra for the signature with these
equations (more generally the free extension).

We can define functions recursively on these equational data types,
using cases.

For example

fun slength s = ind case s of

empty => 0
| unit 1 =>1
| st __ s2 => $s1 + $s2

, To show that F(x) is well-defined when the type of x is an equational
data type satisfying equations L1=R1, ,..,Ln:Rn, it is sufficient to show that

F(L)) = F(R), .F(L) = F(R)

To see this suppose that E‘1 = E’2 is provable from these equations, L-z = Ri,

then there must be a sequence of expressions E"l,...,E"m with E'1 = E'1 and E2

= E' such that for each 4 in 1,...m E' = oL and E' _ = oR (or vice
m i ik i+1 ik

versa) for some k in 1,..,n and some substitution o, But then F(E’l) =
F(E’z) =..= F(E'm), i.e. F(E1) = F(Ez) Thus F has the same value for any

term in the equivalence class generated by the equations, and it is
well-defined on the initial algebra.

In our example we have to show that

slength(empty __ s)
slength(s ___ empty)
slength(s __(t__s)

slength s
slength s
slength((s __ t) __ s)

All these follow simply by expanding out the ind case statement, not even
needing an inductive proof.

6. Proving inequations

From the defining equations it is easy to prove other equations by using
the usual properties of equality, substitution, transitivity, ete. But how can
we prove inequations? This is less obvious. Do we have to show somehow
that a certain equation is not provable from the defining ones?

I want to show how inequations can be proved using another approach.
First we note that if there are no equations terms are unequal just if they
have different constructors, or (recursively) if they have the same
constructor but some pair of components are unequal. This gives us some
inequations to start off with e.g. true # false, zero # succ n.

But what if there are defining equations? We must use the basic
property of the initial algebra, the existence of a unique homomorphism to
any other algebra which satisfies the equations. Suppose this
homomorphism is f. ' Then we can prove x # y by observing that f(x) # £(y).
Now f(x) and f(y) may take their values in a data type where we already
know some inequations. If not we must apply a similar trick to that data
type until we get back to a type with no defining equations for which, as we
have seen, the inequations are immediate.

The function f, acts as a discriminator, relating the type to another one
which is already known. This is of course reminiscent of Guttag's idea of
sufficient completeness.

We will use ind case to define the initial homomorphism (the connection

is spelled out in the Appendix).

Let us consider bags as an example. Suppose "++" has been declared
syntactically to be an infixed operator. We define bags to be unordered
sequences, with possible repetitions

datatype bag = empty | nat++bag
under x++y++b = y++x++0b

It is convenient to write dxy for if x = y then 1 else O

fun count(x,b) = ind case b of
empty => 0
y++c => $e + 6xy

To ensure determinacy of this definition we check that
count(z,y++z++b) = count(z,z++y++0b)

that is that count respects the equation for bags.
We will write b_ for count{z,b), as an abbreviation.

Suppose we want to show that empty # z++empty. Since type mnat has
no equations we know that zero # succ zero. But empity = =zero and
(z++empty) = succ zero. So emply # x++empty. Note how tHis depends on
the determihistic property of count. Similarly we might show that z++b # b.
(My thanks are due to Horst Reichel for help with this example.)

But how do we know that count is sufficient to discriminate between all
unequal bags? We need to show that different bags have a different count
for some x. We wish to prove

Theorem (Vm.bx = cx) =>b=c

For the proof of this theorem we need an auxiliary definition. Assume
that "—" has been declared as an infix.

fun b—y = ind case b of
emptly => empty
| z++c =>if x = y then c else z++$¢

Thus b—y deletes one occurrence of y from b if possible, We need three
lemmas for the proof.

Lemma 1. Vx.bx = 0 => b = emply
Lemma 2. If by>0 then (b—y) = b -9

x Ty

Lemma 3 If b >0 then z++(b—z) = b
Lemma 1 is immédiate, the other two are easily proved by induction.
The proof of the theorem is then by induction on b.

For the data type set the function analogous to count would be
membership.

Notice that the initial algebra gives rise to an induction principle and
to use this we have to invent a suitable predicate to prove by induction.
This comes from the 'mo junk' property of the initial algebra. The 'no
confusion' property gives rise to inequations, and here to do proofs we have

to invent a suitable discriminant function. There is some pleasant feeling of
duality here.

We have made our data definitions in equational logic, but drawn
conclusions from them wusing inequalities and quantifiers. This is an
example of the use of two different 'institutions' in one specification
language, a trick called 'duplicity’ in Burstall and Goguen (1981) and Goguen
and Burstall (1984).

The ind case notation has some infelicities perhaps in dealing with
parameters and mutual recursion. Further ideas for these would be
welcome. Its relation with provably total functions and with unique
homomorphisms needs further theoretical work.

I hope this is enough to illustrate the technique for proving inequalities
and the usefulness of the ind case mechanism for defining total functions.

Acknowledgements

I would like to thank Joe Goguen, Horst Reichel, Robin Milner and
Andrzej Tarlecki (among others) for illuminating discussions, also the
(anonymous) referee for helpful criticism. I am grateful to SERC and BP for
support and to Eleanor Kerse for rapid scribing.

References

Burstall, R. and Goguen, J. (1981) An informal introduction to
specification using Clear. In Boyer, R. and Moore, J (editor),
The Correctness Problem in Computer Science, pages 185-213. Academic

Press.

Goguen, J. and Burstall, R. (1984) Introducing institutions.
In Logics of Programs. Springer LNCS No. 164, (eds. Clarke and

Kozen).

Goguen, J., Thatcher, J. and Wagner, E. (1978) Initial algebra approach
to the specification, correctness and implementation of abstract data
types. In Current Trends in Programming Methodology, Vol. 4,

(ed. R. Yeh) Prentice-Hall, pages 80-1409.

Klaeren, H. (1983) Algebraische spezification. Springer.

Milner, R. (1985) The Standard ML core language. Computer Science Dept.

Report, Univ. of Edinburgh.

Appendix: Ind case and the unique homomorphism

To see why ind case is a way of using initiality to define the unique
homomorphism let us start with a very simple example. We assume a type
bool with an operation not and constants ¢rue and false. Now define

datatype nat
val even m

zero | succ of nat;

ind case m of
zero => true

| suce m1 => not $ml

The signature for nat corresponding to the data type declaration is
Y = sort nat opns zero:nat, succ:nat -> nat
This defines an initial algebra
Al = T(2) (T(Z) is the term algebra on X.)
The left hand sides of the clauses in the ind case correspond to the

operations of this signature. The right hand sides define another algebra
over it as follows

A2 = sort nat = boolean
opns zero = irue
sucec b = not b

Now there is a unique homomorphism A:41 -> 42 and the value of the ind
case expression is just h(m), that is this homomorphism applied to the
expression after 'case'. So even m = h m and ewven is this unique
homomorphism.

More generally the datatype declaration uses pre-existing types and
corresponds to a signature extension rather than a signature, so we should
properly talk of a free extension of the previous algebra rather than an
initial algebra.

Of course this is a particularly simple ind case expression: the
patterns are only one operator deep and all the variables appear with a $.
However we can see from this example how to express the definition of a
unique homomorphism using ind case. We restrict ourselves to a single new
sort in ¥ (the generalisation to many sorts is obvious enough using a
mutually recursive datatype declaration but notationally cumbersome).

Algebra version

Y = soris s
opns : X, X 8 -> s,
P Cl 811 im
1
c 'S X...X 8 -> 8
n nil nm

Al = T(Z) (or properly F(U:EOHE)(AO), the free extension of Ao)

‘A2 = sorts = S

opns c (x__,...
P 1(11’ im

c {x
n(in ' nm n
1 n

h:Al —> AR is the unique homomorphism.

Functional language version

= * % *x %
datalype s c, of s, *.*s [c_of s xS

lm1 nl nm

fun h x = ind case z of
cl(xll,...,x) = E1[$x11/x11,...,$x1m1/x

| cn(xnl,...,x

lml]

im

) = En[$xn1/x11""’$xnm /xnm]

n

nm
n

Let us look at more complicated ind case expressions, first one with a

free variable, n. We have to parameterise the target algebra and the
homomorphism by n.

Functional language version

fun plus(m,n) = ind case m aof
zero => 7
| succ m1 => succ($mi)

Algebra version

> as before, 41 as before

A3 = sort nat = nat
0pNsS zero =n
sucec k = succ k

Note that the right hand sides of these definitions are to be interpreted in
the algebra of natural numbers, 4A1.

h A1 -> A3 is the unique homomorphism plus{m,n) = h_(m)
Now consider the treatment of patterns more than one deep.

Functional language version

fun f n = ind case n of
zero => zero
| sucec zero => zero
| succ(suce m) => succ $m

We need to introduce a derived signature with operators corresponding
to zero, succ zero and Am.succ(succ m).

Algebra version

¥ as before, 41 = T(X) as before

%' = sorils nat opns z:nat, sz:nat, ssinat -> nat

. Since we insisted on a complete set of patterns there is a total function
r]41] => |A1'] representing each Z-term as a X'-term; this is defined by the
matching, recursively, and will depend on the sequence of the patterns
unless they are disjoint.

A2' = sorts nat = nat
opns z = zero
sz = zero

ss 'k = succ k

h:A1' —> AR' is the unique homomorphism

f n = h'(r n), the homomorphism applied to the representation of n.

Now consider a pattern variable being used without a $§ as well as with

a $.

Functional language version

fun fact n = ind case n of
zZero =2> SUCC zZero
| succ m => (succ m)*§m

We have to retain the value of m as well as that of $m, so we use a
target algebra which supplies both these values.

Algebra version

3 as before, 41 = T(Z) as before

AR = sorts nat = nat x nat
opns zerc = (zero, succ zero)
succ(m,k) = (succ m, (succ m)*k)

h:A1 —-> A2 is the unigque homomorphism (so h n = (n,n!))
fact n = second(h n)

Summary .

We have shown how to translate initial algebra definitions of unique
homomorphisms to ind case expressions. In the opposite direction we have
shown how a number of forms of ind case expression can be viewed as
unique homomorphism - definitions, but we have not given a general
translation scheme; the examples make it at least plausible that such a
scheme could be devised. The problem is open for a formal demonstration.

