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Abstract

This report describes the Environment for Formal Systems, EFS, that allows a user
to interactively define the syntax and inference rules of a formal system and to construct
proofs in the defined system. The EFS supports two AUTOMATH-like formalisms for
encoding logics: the Edinburgh Logical Framework and the Calculus of Constructions.
Facilities are provided for the definition of notational abbreviations and the construction
of goal-directed proofs. New goal-directed rules can be interactively defined and checked
for validity. The EFS was implemented with the Cornell Synthesizer Generator.

1 Introduction

This report describes the EFS, an Environment for Formal Systems, that supports the
definition of formal systems and the construction of proofs in systems so defined. The EFS
is an interactive environment that employs a declarative, rather than a procedural, style of .
definition. In particular, the EFS provides features that allow a user to

e define the syntax and inference rules of a formal system,

define notational abbreviations,

construct “bottom-up” proofs,

construct goal-directed “refinement” proofs,

define new refinement rules that are checked for validity at declaration time,

e organize theories in a hierarchical structure.

*This work was supported in part by NSF grant no. MCS-83-03327, NFS /ONR grant no. DCR-85-14862,
International Computers Limited and the British Science and Engineering Research Council. The author’s
e-mail address is tgg@svax.cs.cornell.edu




The EFS supports two AUTOMATH [dB80] related formalisms for encoding logical systems:
the Edinburgh Logical Framework [HHP87] and the Calculus of Constructions [Coq85,CH85].
These systems employ similar typed A-calculi with dependent types to encode expressions,
rules and proofs, albeit using quite different approaches. Readers are assumed to be some-
what familiar with these systems. An EFS user can choose to work in the type system of
the Edinburgh Logical Framework or in that of the Calculus of Constructions. )

Outline of report. The report is organized as follows. The remainder of this section
provides some background and motivation for this work. Section 2 is a user’s guide to the
EFS. It starts with a brief overview of the Cornell Synthesizer Generator and then proceeds
to illustrate the EFS by developing a fragment of first-order logic. Section 3 discusses
related work and draws some conclusions. Appendix A contains a complete list of the
built-in refinement rules. Appendix B contains an EFS file developed using the Calculus of
Constructions type system. A fragment of the logic S4 is developed in Appendix C following
the presentation of [AAMBS87|. This report is essentially the same as [Gri87] except for the
addition of appendix C and the correction of a few minor errors.

Background. Many of the features of the EFS were inspired by those of the Nuprl
system, developed at Cornell under the direction of Bates and Constable [Bat79,BC83,BC85]
and fully documented in [Con86|. Indeed, the EFS was implemented as a means of exploring
issues related to a reimplementation of Nuprl. Nuprl is an interactive environment that
supports the construction and verification of proofs in a formal system closely related to
Martin-Lof’s intuitionistic type theory [Mar82]. Nuprl can be used, among other things,
to develop programs from formal specifications. Nuprl contains many novel features that
we believe are essential in supporting the interactive construction and verification of proofs
regardless of the formal system involved. These include a syntactic definition mechanism for
notational abbreviations, a structure-oriented proof editor that supports goal-directed proof
construction, a meta-language facility for programming proof search routines, and a library
facility for storing constructed objects and maintaining dependency relations.

Goals. The design and implementation of systems that support the interactive construc-
tion and verification of proofs is becoming an important area of research in computer science.
Given this, our goal is to provide high-level, logic-independent tools for the specification and
generation of Nuprl-like environments (as characterized by the features outlined above). In
the conclusion we will discuss to what extent the EFS represents progress toward achieving
this goal. ,

Representation. The EFS relies on AUTOMATH-like representations of mathematical
constructs to provide the necessary level of abstraction that permits a high-level declarative
definition of a formal system. The pioneering work of the AUTOMATH project [dB70,dB80|
made substantial contributions to the development of machine verification of mathematical
proofs. (It should be noted that when we speak of AUTOMATH we are actually refer-
ring to a large family of related languages PAL, AUT-68, AUT-PI and others, see [vD80]).
AUTOMATH was designed to be a framework general enough to encode most mathematical



constructions while making as few logical commitments as possible. As de Bruijn colorfully
stated it in [dB8O) :

The AUTOMATH system is like a big restaurant that serves all sorts of food :
vegetarian, kosher, or anything else the customer wants. The languages are not
. tied to any logical system : hardly any logic has been built in.

Among the many achievements of the AUTOMATH project was the complete translation
and automated checking of Landau’s Grundlagen by Jutting [Jut77] and the development of
a metatheory [vD80] that proved the internal consistency of many of the languages of the
AUTOMATH family.

The Calculus of Constructions (CC) extends the expressive power of AUTOMATH with
notions from Matin-Lof’s 1971 theory of types [Mar71] and Girard’s second-order types
[Gir71]. The emphasis of this approach can be summarized in the propositions as types
principle (see also Curry and Howard [CF58,How80]). Unlike AUTOMATH, the Calculus
of Constructions is also meant to be a higher-order programming language where programs
can be viewed as proofs of their specifications (as in Nuprl). See Mohring [Moh86] for an
example of program development and Coquand and Huet [CH85] for an extensive treatment
of mathematics development in the Calculus of Constructions.

The Edinburgh Logical Framework (LF) recently proposed by Harper, Honsell and Plotkin
[HHPS87] offers a clearly defined methodology for encoding a formal system presented in nat-
ural deduction [Pra71] style. The LF framework was inspired by Martin-Ldf’s treatment of
judgements [Mar85] and Schroeder-Heister’s treatment of higher-order rules. The LF pro-
vides a well-defined theory of syntax similar to that of Church [Chu40] as well as an approach
to encoding rules and proofs that can be summarized in the judgements are types principle.
A judgement is identified with the type of its proofs. Basic judgements are defined as con-
stants while hypothetical and schematic judgements are modeled with the function space
type constructor. See Avron and Mason [AAMS87| for extended examples. The develop-
ment of a fragment of first-order logic in Section 2 closely follows the presentation given in
[HHPS87].

A thorough comparison of these systems (CC and LF) is beyond the scope of this report,
although it is hoped that the EFS will serve as a tool to facilitate such a comparison. We
note here only this — that if one is interested in the algorithmic content of a (constructive)
logic, an encoding in the Calculus of Constructions can utilize the evaluation mechanism of
the EF'S for the execution of proofs.

Implementation. The author has implemented the EFS with Cornell Synthesizer Gen-
erator [RT85]. The Synthesizer Generator is a tool for building full-screen language-based
environments from high-level specifications. The Generator was originally designed for im-
plementing language-based environments for programming languages. We hope that this
report will help to demonstrate its usefulness in a much wider range of applications. The
EFS is among the sample specifications included with the distribution of the Synthesizer
Generator, Release 2.0.

b)



2 The EFS — A User’s Guide

This section is a user’s guide to the EFS. For the sake of completeness, it begins with a
brief overview of the Synthesizer Generator and outlines some of the features common to all :
editing environments implemented with the Generator. The EFS is then illustrated through
defining a fragment of first-order logic.

Synthesizer Generator Generated Editors. The Synthesizer Generator takes as
input a specification written in the Synthesizer Specification Language (SSL) and produces
as output a language-based editing environment. An editor specification consists of a series of
declarations that define a context-free grammar, display information, parsing rules, context-
sensitive constraints, and editor-specific commands. An attribute grammar formalism is
used to define context-sensitive constraints. The editor produced is a full-screen editor with
many features resembling those of Emacs [Sta81]. All generated editors share a common
user interface that is extended with editor-specific commands declared in their specification.
The reader is referred to the Synthesizer Generator Manual by Reps and Teitelbaum [RT85]
for a complete description of SSL as well as the language-independent commands and how
they are invoked.

What distinguishes editors created by the Synthesizer Generator from text editors is
that each edited file contains a derivation tree of the context-free grammar defined in the
editor’s specification. The editor supports multiple buffers, where each buffer contains a
single derivation tree. Interacting with the editor amounts to modifying a derivation tree.
Each derivation tree is attributed according to the attribute equations of the specification.
Attribute values are incrementally updated to achieve a consistent attribution after each
modification [DRT81,Rep85]. Such editors have been referred to as a “spread-sheets for
trees”.

Each editor provides the same set of language-independent commands for manipulating
trees, such as cutting and pasting subtrees and for moving from one subtree to another.
One subtree, called the current selection, is highlighted in each buffer and represents the
users focus of interest. The language-specific commands defined in a specification are called
transformations. The current selection determines which transformations are applicable.

A derivation tree may contain “holes” that represent unexpanded nonterminals of the
grammar productions. These “holes” are often displayed as <X> (where X is the unexpanded
grammar symbol) and are referred to as placeholders. Many transformations are applicable
only when the current selection is a placeholder and we will refer to the act of invoking such
a command as “inserting a template”.

Throughout this report we will use the following conventions regarding type styles. The
ttalic style will indicate the name of a command. Typewriter style will be used to indicate
the EFS display. Since attribute values contribute to the display of a derivation tree, and are
not themselves selectable, we will use boldface type to distinguish selectable placeholders
when a displayed object contains attribute values containing placeholders.



Command | Template

apply < term > (< term >)

lambda \ <id>:<term>.< term >
Pt PI<id>:<term>.<term>
- > < term > —— >< term >

bore ?

type TYPE

§) (< term >)

Figure 1: Templates for basic terms

The command alternate-unparsing-toggle allows the user to toggle between two different
display forms of a derivation tree. The display choice is persistent between a write and a
read of a file. Most often this is used to elide the display of a subtree. We will indicate below
the constructs that have multiple display forms.

EFS Terms. Those EFS terms not containing definition instances (see below) will be
referred to a baste terms. In the following grammar e ranges over basic terms and = over
identifiers:

e:==z| (e) | e(e) | \z:e.e | PI z:e.e | e-->¢ | TYPE.

The language described in [HHP87] is defined by a grammar comprised of three levels corre-
sponding to values, types and kinds. We have collapsed these levels into one and implemented
a type inference mechanism that sorts out values, types and kinds. The “-->” constructor
has been added for the non-dependent function space (A-->B represents PI x:A.B when x
is not free in B). The similarity of the languages employed in the LF and CC type systems
allows us to use the same grammar for both. It is hoped that the translations to the EFS
syntax are obvious.

Placeholders for terms and identifiers are displayed as <term> and <id> respectively.
Commands for inserting templates at a <term> placeholder are shown in Figure 1. In ad-
dition, there are commands for formating terms. The newline command moves the current
selection to the next line, while the indent command moves to the next line and indents one
tab stop. Basic terms and identifiers can also be typed directly and parsed when the current
selection is a <term> or <id> placeholder. A “?” parses to <term>. Entering “? --> ?”
will result in the expression <term> --> <term> being inserted.

Error Messages. The EFS displays error messages when various correctness constraints
are violated. These messages are (hopefully) self-explanatory and they will not be explicitly
discussed below.



EFS Version 1
Using Type System : LF
<optional comment lines>
chapter,
chapter,

chapter,,
BOTTOM OF FILE

CHAPTER <id>
<optional comment>
<optional import list>
BEGIN

<declaration>
END

Figure 2: An EFS file and a chapter template.

Files and Chapters. Figure 2 illustrates an EFS file and an EFS chapter template.
Each file consists of a list of named chapters. Comment lines can be entered directly at the
<optional comment> placeholder. This placeholder can be removed with the no-comment
command. The user can choose the CC type system by selecting the LF and invoking the CC
command, or the inverse with the LF command. Although the examples developed below
use LF type system, all the features of the EFS described apply within the CC system as
well. Error messages are reported in French when using the Calculus of Constructions type
system. ,

Each chapter contains a list of declarations. A chapter template is shown in Figure 2.
The <optional import list> placeholder can be removed with the no-imports command or
expanded to an identifier list template with the tmports command. This provides a simple
mechanism for structuring files as hierarchically dependent chapters.

Chapters can be “opened” or “closed” by selecting a chapter’s name and invoking the
alternate-unparsing-toggle command. The open display mode is the default. In the closed
display mode the entire declaration list of a chapter is displayed as “...” to indicate the



elision.
Declarations. Each chapter contains a list of declarations. Each declaration occurs in
the context of a set of environments. There are four such environments :

b

e The constant environment associates constants with their types and is extended by a
constant declaration.

o The value environment associates a name with a value of some type. It is extended by
a value declaration or a refinement.

o The definition environment associates a name with a syntactic template.

e The rule environment associates a name with a user-defined refinement rule.

The initial value of any environment at the beginning of a chapter is the union of all
environments of the same type exported by the chapters named in the import list. The
active environments at any declaration in a chapter are the initial environments augmented
by the declarations that precede it in the chapter. The environments exported from a chapter
are those in effect after the last declaration.

The remainder of this section is devoted to describing the declaration templates that are
obtained from the <declaration> placeholder by invoking the appropriate command.

Comments. The <declaration> placeholder can be transformed to a template that
provides a way to enter text into a chapter. Comments can extend for any number of lines.
The string “**” is appended to the front of each comment line.

Constants. A constant declaration associates an identifier with a type. The constant
command transforms a <declaration> placeholder to a template and is displayed as:

CONSTANT <id> : <term>

A constant declaration is well-formed if both the identifier and term are complete, the
identifier is unique in the current environment, and the term is a well-formed type expression.
A binding is not added to the constant environment unless the constant declaration is well-
formed.

We begin our implementation of first-order logic with a declaration of a few syntactic
constants and the basic judgement form as shown in Figure 3. (The definition of first-order
terms and rules used in this section follows closely the one given in [HHP87).)

Definitions. Given the constant declarations above, the mathematical expression “Vz.3y.z =
y” would be represented as ‘

ForAll(\x:i.Exists(\y:i.Equality(x) (y)))

Representing mathematics in this notation would quickly become unmanageable. Even if
our primitive constructs were nicely displayed, we would still require some mechanism for
defining notational abbreviations.



CONSTANT o : TYPE

CONSTANT i : TYPE

CONSTANT Absurd : o

CONSTANT Equality : i --> (i --> o)
CONSTANT And : o --> (o --> o)
CONSTANT Implies : o --> (o --> o)
CONSTANT ForAll : (i --> o) --> o
CONSTANT Exists : (i --> o) --> o

CONSTANT True : o --> TYPE

Figure 3: Constant declarations.

Definition declarations allow for the interactive creation of new templates that function
as notational abbreviation for terms. The declaration style has been taken from the defi-
nition mechanism that has proved to be indispensable in the Nuprl system (although the
implementations differ). The <declaration> placeholder can be transformed to a definition
declaration by the definition command:

DEFINITION <id>
<lhs> == <term>

The left-hand-side defines the new template as abbreviating the term on the right-hand-
side. A completed definition declaration has the form :

DEFINITION defname
81 <V1> 82 <Vz> ... 8, <Vp,> 8p41 ==

The s; are strings (possibly null) and the <v;> designate parameters. (This is the only
place where the angle brackets do not signify a placeholder, but are used here so that we are
able to distinguish parameters from surrounding text.) Figure 4 contains defined templates
for the constants of Figure 3.

The left-hand-side of a definition declaration can be entered in its entirety and parsed. If
an s; is to contain any character from the set {~,<,>} it must escaped with the ~ character



DEFINITION eq
<a> = <b> == Equality(a) (b)

DEFINITION and
<a> & <b> == And(a) (b)

DEFINITION implies
<a> => <b> == Implies(a)(b)

DEFINITION not
~“<a> == (a => Absurd)

DEFINITION all
all <x>.<a> == A11(\x:i.a)

DEFINITION some
some <x>.<a> == Exists(\x:i.a)

DEFINITION true
<a> true == True(a)

Figure 4: Definitions for basic constants.




on entry. The tokens {"n,~t, “b} have special meaning on the left-hand side of a definition
declaration . The “t moves to the current left margin on the next line, while "t and ~b
move the current left margin left and right one indentation stop respectively. For exa.mple,
the left-hand side of the definition declaration

DEFINITION let
let <x> = <a> : <b>
in
<c>
ni == (\x:b.c)(a)

was produced by typing
let <x> = <a>:<b>"nin“"t"n<c>"b"nni

when the <lhs> placeholder was selected.
Invoking a definition is accomplished in one of two ways:

1. Typing “@defname” when positioned at a <term> placeholder. This will result in the an
instance of this definition with all of the <v;> replaced by <term> or <id> placeholders.

2. Typing “@(defname t;,t3, ... ,t;)” when positioned at a <term> placeholder. Here
the t; represent terms or definition invocations. This will result in an instance of the
definition with the first k slots filled in with the t; from left to right.

For example, typing “@and” in the context of the definitions of Figure 4 will cause the
following template

<term> & <term>
to be inserted. Whereas typing “@(and A (@(implies B)))” will result in the term
A & (B => <term>)

being inserted. Currently, there are no facilities for updating the parser to recognize these
defined terms, leaving this as the only method of entering them.

Invoking a definition that contains a binding variable will result in a template with all
binding variable slots replaced by <id>. For example, invoking the all definition of Figure 4
will produce the template all <id>.<term>. All definition instances are treated as “first-
class citizens” in the land of terms. The definition mechanism insures that the left-hand side
inherits the binding structure of the right-hand side. The procedures for computing the free
variables of a term, substitution, and a~-conversion can work directly on a definition instance
without expanding the definition. For example, the term

\w:i.(\x:i.all w.x = w) (w)

10



DEFINITION hypi
<j1> |- <j2> == j1 --> j2

DEFINITION hyp2
<j1>,<j2> |- <j3> == ji --> j2 |- j3

DEFINITION hyp3
<j1>,<j2>,<j8> |- <j4> == j1 --> j2,j3 |- j4

DEFINITION rule-schemel
(<A>) .<J> ==PI A:0.J

DEFINITION rule-scheme?2
(<A>,<B>) .<J> ==PI A:0.(B).J

DEFINITION rule-scheme3
(<A>,<B>,<0>) .<J> == PI A:0.(B,C).J

Figure 5: Definitions for judgement forms.

would B-reduce to the term
\w:i.all w’.w = w’

where the instance of the definition all has been a-converted to avoid capture.

It may be necessary to ascertain which definition a term is an instance of. Selecting a
definition instance d and invoking the alternate-unparsing-toggle command will change its
display to [name:d] where name is the definition’s name. This is particularly useful for
differentiating between instances of two definitions having the same display.

We are now ready to continue our implementation of first-order logic. Figure 5 contains
templates declarations for a few judgement forms and Figure 6 contains a some inference
rules.

Values. A value declaration allows the user to name a well-formed term. A <declaration>
placeholder can be transformed by the value command to the template:

VALUE <id> == <term>
¢ <term>

The displayed attribute <term> is the inferred type of a term inserted at the <term> place-
holder and is recomputed whenever the term is modified. For example, a partially completed
value declaration might look like this :

11



CONSTANT AndIntro :
(A,B).A true,B true |- A & B true

CONSTANT AndElim :
(A,B,C).
A & B true, (A true,B true |- C true) |- C true

CONSTANT IméliesIntro :
(A,B). (A true |- B true) |- A => B true

CONSTANT ImpliesElim :
(A,B). A => B true,A true |- B true

CONSTANT OrIntroLeft :
(A,B) .A true |- A | B true

CONSTANT OrIntroRight :
(A,B).B true |- A | B true

CONSTANT DoubleNeg : (A).""A true |- A true

Figure 6: Inference rules.

12



VALUE h == \A:o.""’A
T 0 ==> 0

VALUE g == \A:0.A & h(A)
: 0 -=>o0

VALUE Iff == \A:0.\B:o.(A => B) & (B => A)
t0-->0-->0

Figure 7: Value declarations.

VALUE f == \x:0.\y:o0.<term>
: 0 =-=> 0 --> <ternm>

After completing the term its type is updated :

VALUE f == \x:0.\y:0.And(x) (y)
10 -->0-->0

The binding is not added to the value environment until the identifier and term are complete
and the term is found to be well formed. All value declarations are required to have unique
names. Figure 7 exhibits a few examples.

Evaluation of terms. The EFS provides a facility for the evaluation of terms. Terms
can be evaluated to normal form or to display normal form. A term is reduced to normal
form by expanding all value names and definitions and contracting all 8 and n redexes.
A term is reduced to display normal form by expanding all value names and non-normal
definitions and and contacting all # and 7 redexes. Definitions are normal by default, but a
user may want certain definitions, such as the let construct defined above, to be expanded in
display normal form. In such cases the definition declaration’s name should be selected and
the the alternate-unparsing-toggle command invoked. This adds NORMAL Yes to the display.
Selecting the Yes and transforming it to No will have the desired effect.

The <declaration> placeholder can be transformed with the normal command to the
template

NORMALIZE <term>
==> <term>
<term>

or with the eval command to the templé.te

13



EVALUATE <term>
==> <term>
<term>

In each case the result of evaluation is displayed along with its type. For example, given the
declarations of Figure 7 we have :

NORMALIZE \W:o.g(W)
==> \W:o0.And(W) (Implies(Implies (W) (Absurd)) (Absurd))
o -->o0

whereas with the eval command we obtain

EVALUATE \W:o.g(W)
==> \W:o.W & ~°W
o -=>o0

which does not expand the definitions and and not.

Refinement. Figure 8 contains two “bottom-up” proofs using some of the declarations
of Figures 3-6. Clearly this is not an ideal method for construction proofs.

The EFS supports a goal-directed method of constructing terms that adopts the notion
of a refinement from Nuprl. Using the Nuprl notation, we write a goal as H >> G, where His
a well formed context binding identifiers to type expressions and G is a type expression. An
achtevement of a goal H >> G will be any term a such that a has the type G in the context
H. Implicit here is the type system (CC or LF) and the constant and value environments
active at the point of the refinement. In a refinement, the user states a goal to be achieved
and applies refinement rules to decompose it into (usually simpler) subgoals in such a way
that achievement of the subgoals entails achievement of the original goal. Figure 9 displays
the general form of a refinement rule R. The e; represent arguments to the rule R. The :**
subgoal is represented as H; >> G; with an achievement a;. Note that in the case G represents
a judgement, H can be taken to represent an assumption list and a to represent a proof that
G holds.

Appendix A contains a complete description of the basic refinement rules provided by
the EFS. It should be emphasized that the subgoals of each rule are automatically computed
when a refinement rule is invoked.

The refinement command transforms a <declaration> placeholder to insert the template:

REFINEMENT <id> :
Display achievement : Yes
>> <term>

<refinement>
[achievement = <term>]

14



VALUE First ==
\A:0.\B:o.
ImpliesIntro(A & B) (A)

(\p: (A & B true).

AndE1im(A) (B) (A) (p) (\a:A true.\b:B true.a))
: PI A:0.PI B:o.A & B => A true

VALUE Excluded-Middle ==

\A:o.

DoubleNeg(A | ~A)

(ImpliesIntro(~(A | ~A)) (Absurd)
(\pt:"(A | ~A) true.
ImpliesElim(A | ~A) (Absurd)
(p1)
(OrIntroRight(A) ("A)
(ImpliesIntro(A) (Absurd)
(\p2:A true .
ImpliesElim(A | ~A) (Absurd)
(p1)
(OrIntroLeft(A) (TA) (p2))))))

PI A:o.A | "A true

Figure 8: Two bottom-up proofs.

H> G [a]

By R with e;... e
Hy >> G [a:]
Hy >> G [a.]

H, >> G, [a,]

Figure 9: General form of a refinement rule.

15



REFINEMENT simple :

Display achievement : No
>>PI A:0.A true --> A true
<refinement>

REFINEMENT simple :
Display achievement : Yes
>>PI A:o.A true --> A true
By introx*
A:o
hi:A true
>> A true
<refinement>
[achievement = \A:0.\h1:A true.<term>]

REFINEMENT simple :
Display achievement : Yes
>>PI A:o.<term> --> A true
By intro*
A:o
hl:<term>
>> A true
<refinement>
[achievement = \A:o.\hi:<term>.<term>]

REFINEMENT simple :
Display achievement : Yes
>>PI A:0.A true --> A true
By intro*
A:o
hi:A true
>> A true
By hypothesis
[achievement = \A:o0.\hi:A true.hi]

Figure 10: Successive stages of a simple refinement proof.

16




The <term> is a placeholder for the initial goal (having no assumptions). Refinement rules
can be inserted at any <refinement> placeholder with the appropriate command. Trans-
forming the Yes to a No with the no command results in deleting the achievement term from
the display. ;

Figure 10 contains four successive steps in a refinement named simple. In the first step
only the goal has been completed. The rule intro* (see appendix A) is applied in the second
step resulting in one subgoal, A true in the context A:o;h1:A true. The third step (removal
of A true from the goal) demonstrates that the top-level goal can be modified at any time
and that these changes will propagate through the refinement. The forth step completes the
refinement with the hypothesis rule. Notice that the achievement is built incrementally as
the refinement is constructed. The completed refinement has the effect of binding simple
to the achievement \A:o0.\h1:A true.hil in the value environment.

Selecting the name of a refinement and invoking the alternate-unparsing-toggle command
will elide all but the name and goal of the the refinement. Selecting any rule instance and
invoking the alternate-unparsing-toggle command will elide the display of that subtree in the
refinement rooted at the rule. In both cases the display is replaced with “...” to indicate
the elision.

User-defined Refinement Rules. The refinement rules described in appendix A are
sufficient for building a term of any legal type. However, they not quite adequate since a
user will surely want refinement rules tailored to the specific logic being developing.

The EFS provides a facility for the declarative definition of user-defined refinement rule
schemes. In these rule declarations the user must specify the goal, subgoals, and arguments
to a rule as well as a term that achieves the initial goal given achievements of the subgoals.
The validity of each rule is automatically checked at declaration time with respect to the
environments active at the point of declaration. That is, the type-checking and type-inference
mechanisms of the EFS are used to verify that the type of the achievement matches the goal.

Figure 11 displays the general form of a user-defined rule declaration. Here H >> G and
the Hy >> Gj represent the goal and subgoals respectively, where G and the G are terms and
H and the H; are contexts. The v; are variables that represent argument parameters while
the P; are terms that represent the types of these parameters. The s; are strings as in the
definition declarations described above. The a; are variables that represent the achievement
of the subgoal H; >> G; while a is a term that represents the achievement of the rule R.

The actual subgoals and achievement of a given rule instance within a refinement are
computed by means of pattern matching. The actual goal and argument types are matched
against the patterns in a rule’s declaration. The bindings of the context H of a rule declaration
indicate which variables must be instantiated by pattern matching when the rule is invoked.
The term G and the terms P; and G, must be patterns. In the following grammar p ranges
over basic patterns and z over variables :

p:==zx| (p) | p(p) | p-->p | TYPE.
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REFINEMENT RULE R

H>>G

By R 81 <v1:P1> 82<vaiP2> ... 8y <VuiPp> 85y ;
Hy >> G [a;] '
Hy >> G [az]

Hn >> Gn [an]
[achievement = al

Figure 11: General form of a user-defined refinement rule.

A pattern is either a basic pattern or a definition instance that contains no binding variables,
or a definition instance that expands to a pattern. The expansion of a definition instance
involves a textual replacement of arguments for parameters as well as reducing 8 and 7-
redexes of the of the definition’s right-hand side. For example, if A and P are variables
then A & all x.P(x) is a pattern since A is a pattern and the definition and contains no
binding variables and the term all x.P(x) macro expands to A11(\x:i.P(x)) which in
turn n-reduces to the pattern A11(P).

Figure 12 contains three user-defined refinement rules derived from constants given in
Figure 6. When a user-defined rule is invoked in a refinement the current goal and the
types of the actual arguments are matched against the patterns of the rule to obtain a
substitution. This substitution is then applied to the rule’s subgoals and achievement to
arrive at the actual subgoals and achievement of the refinement step. For example, in the
rule and-elim the context declares A, B and C to be variables that must be instantiated
when a rule is invoked. If and-elim is invoked in a refinement with goal W true and an
argument el of type X & Y true, it will produce a subgoal W true in a context extended
with the bindings hi:X true and h2:Y true, where hi and h2 are new variables. If e2 is
the achievement of this subgoal then the rule states that the term

AndElim(X) (Y) (W) (e1) (\h1:X true.\h2:Y true.e2)

will be the achievement of the initial goal.

Figure 13 illustrates the use of the rules of Figure 12 in a refinement named proofi.
It should be emphasized again that the subgoals and achievement terms are automatically
instantiated when a rule is invoked. The refinement proo£1 is completed after using only six
rules and has the effect of binding the name proof1 to the refinement’s achievement term

\X:0.\Y:0.

18



REFINEMENT RULE and-intro
A:o;
B:o
>> A & B true
By and-intro
>> A true [a]
>> B true [b]
[achievement = AndIntro(A) (B)(a) (b)]

REFINEMENT RULE and-elim
A:o;
B:o;
C:o
>> C true
By and-elim with <w:(A & B true)>
a:A true
b:B true
>> C true [c]
[achievement = AndElim(A) (B) (C) (w) (\a:A true.\b:B true.c)]

REFINEMENT RULE implies-intro
A:o;
B:o
>> A => B true
By implies-intro
a:A true
>>B true [b]
[achievement = ImpliesIntro(4)(B)(\a:A true.b)]

Figure 12: User defined refinement rules.
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REFINEMENT proofl :

Display achievement : No

>>PI X:0.PI Yio. X &Y => Y & X true
By intro*
X:0;
Y:o

>>X &Y =Y & X true
By implies-intro
hi:X & Y true
>>Y & X true
By and-elim with hil
h2:X true
h3:Y true
>>Y & X true
By and-intro
>> Y true
By hypothesis
>> X true
By hypothesis

Figure 13: Using user-defined rules.

20



ImpliesIntro(X & Y)(Y & X)
(\hi:X & Y true.
AndE1lim(X) (Y) (Y & X) (h1)
(\h2:X true.\h3:Y true.
AndIntro(Y) (X) (h3) (h2)))

in the value environment.
Invoking a user-defined rule named R is accomplished in one of two ways:

«©

1. Typing “R” when positioned at a <refinement> placeholder.

2. Typing “R t;,t2, ... ,t;” when positioned at a <refinement> placeholder. Here the
t; represent terms. This will result in an instance of the refinement rule R with the
first k£ argument slots filled in with the t; from left to right.

The declaration of a user-defined rule is constructed in the following manner. The <dec-
laration> placeholder is transformed by the rule command to insert this template:

REFINEMENT RULE <id>
<optional context>
>> <term>
By <id><optional arguments>
<optional subgoals>
[achievement = <term>]

The <optional context> can be removed with the no-contezrt command or replaced with a
context template with the contezt command. The <optional arguments> placeholder can be
removed with the no-args command or replaced with a <rule args> placeholder with the args
command. The rule argument can be typed directly and parsed while selecting the <rule
args> placeholder. The same conventions apply as in the heft-hand side of a definition with
regard to the special tokens {*,<,>, ™ n,~t, b}. The <optional subgoals> placeholder can
be removed with the no-subgoals command or repaced with subgoal list template with the
subgoals command. Each subgoal template has the form

<optional assumptions>
>> <term>  [<id>]

where the <optional assumptions> placeholder can be removed with the no-assumptions
command or replaced with a context template with the assumptions command.

3 Related Work and Conclusions.

Reps and Alpern [RA84| introduced a scheme for representing goal-directed proofs as an
attribute grammar having one grammar production for each refinement rule and having
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the relationship between goals and subgoals defined by attribute equations. Proof editors
implemented using this scheme allow for a flexible style of interactive proof construction.
Goal-directed proof trees can pass through inconsistent states and contain incomplete terms.
For example, a proof can proceed even when the initial goal is incomplete. The Reps-Alpern
approach has been used with good results by the author in previous implementations and
by Brian Ritchie in Burstall’s IPE [Bur86]. »

We feel that our main contribution is in extending the Reps-Alpern approach while
maintaining the flexible proof editing model that makes it so attractive. First, we have
devised a general scheme for implementing editors with the Synthesizer Generator in such
a way that the collection of templates available to the user can be interactively extended.
Second, this scheme was applied to the specification of the EFS to provide the definition
and the user-defined refinement rule facilities. Thus, the set of syntactic templates and
refinement rules are not fixed at editor specification time. Rather than write a new SSL
specification for every formal system that we wish to implement, we can instead define such
systems interactively and at a higher level of abstraction using the EFS (assuming, of course,
that the formal system we wish to implement can be encoded with the EFS tools using one
of the two type systems that it supports). The EFS syntactic definition mechanism is an
improvement over Nuprl’s in that substitution, a-conversion and free variable checks can be
performed directly on definition instances without expansion.

A great deal is gained by utilizing an AUTOMATH-style representation for formal sys-
tems. Routines such as substitution, a-conversion and free variable checks, are taken care
of once and for all by the in the implementation of a A-calculus in the EFS. It is not neces-
sary to write hand coded routines that check whether expressions or proofs are well formed.
Instead, this is handled by the type checking and type inference mechanisms of the typed
A-calculus that have been implemented as a part of the EFS. Rather than writing low-level
procedural descriptions of syntax, rules and proofs, the EFS user is able to specify these in
a declarative fashion using a high-level notation.

The Synthesizer Generator greatly simplified the task of implementing the EFS. Imple-
menting it from scratch would have been a large undertaking involving the coding of routines
related to buffer management, object display, object manipulation, evaluation and propaga-
tion of context sensitive constraints, and many other facilities required to support such a
system. The Generator “factors out” many such language-independent concerns, leaving the
specification writer to concentrate on the language-dependent aspects.

An analogy between the Synthesiser Generator and AUTOMATH suggests itself in that
both abstract away from the details of their domains (language-based editors and mathe-
matical formalisms respectively) to provide elegant descriptive frameworks. The extent to
which we have made progress toward the goal outlined in the introduction could surely be
measured by the mileage we get out of these abstractions.

The EFS has been used to define several systems including sorted and unsorted first-
order logics, Church’s higher-order logic [Chu40,HHP87], a fragment of type theory [Mar82],
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a Hoare-style logic and the modal logic S4 [AAMS87]. In addition, the EFS has been used
to define several small programming languages utilizing the ideas of Landin [Lan66,Lan65]
and Reynolds [Rey81] for representing programming language constructs using a A-calculus.
Thus, at least to some extent the EFS can be used to interactively define editing environments
for programming languages. The time required for the interactive definition of the basic
constructs in each of the examples mentioned above was on the order of hours rather than
weeks or months. .

Perhaps the biggest drawback of the EFS is its lack of a programmable meta-language.
Systems such as Nuprl [CKB85], Edinburgh LCF [GMW79], or the Calculus of Constructions
implementation described in [CH85], use the programming language ML as a meta-language
to support facilities for writing very general proof search routines. It should be noted,
however, that the user-defined refinement rules represent a very restricted class of tactics.
The EFS provides a high-level notation for declaring such tactics, as well as a mechanism
for verifying their validity at declaration time. Future work will address the incorporation
of a meta-language into an EFS-like system.

Another possible drawback of the EFS concerns the question of efficiency. Even if we
ignore the issue of tactics, it is not yet clear that the EFS would be able to support the kind
of very large theory building that has been pursued in the Nuprl system [How86,How87].
Two areas of future work will address this problem. First, the current EFS is a prototype
and represents work in progress — considerable speedup can be gained from the redesign
of its SSL implementation. Second, the Synthesizer Generator project is currently direct-
ing substantial effort toward increasing the efficiency of generated editors (see for example
[Hoo87]).

Finally, it should be noted that our insistence upon supporting both the LF and CC sys-
tems, and not tailoring the implementation of the EFS to the particulars of any one system,
may well have prevented us from more fully exploiting the potential of either approach.
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4 Appendices
A Refinement Rules

This appendix lists the built-in refinement rules of the EFS. These rules are divided into two
groups. The names of the bastc rules appear on the transformation menu when positioned
at a <refinement> placeholder. The extended rules require the user to type a special symbol
(1) and an argument at the <refinement> placeholder.

We use a Nuprl-style notation to represent a refinement rule R as in Figure 9. In an
actual EFS refinement only the achievement of the initial goal can be displayed. With each
rule the condition(s) of its valid application is(are) stated. The only conditions not stated
explicitly are those concerning the form of a goal or an arguments type — these conditions
are implicit in the presentation of the rules. By the condition A = B we mean that A and
B are affn—equal. The condition “x:A in H” means that the binding x:A occurs in the list
H. The condition H |- a:A means that the term a has type A in the context H. Implicit in
these conditions are the type system (CC or LF) and the constant and value environments
active at the point of the refinement. The metavariables h and h; represent fresh variables.

Basic Rules.

e named-hyp
Conditions : x:G*inHand G = G’

H> G [x]
By hypothesis <x>

e hyp
Conditions : x:G’inHand G = &
Note : This rule selects the last such x in H.

H> G [x]
By hypothesis

e intro
H >> PI x:A.B [\x:A.e]
By intro
H,x:A >> B [e]
H> A -->B [\h:A.el
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By intro
H,h:A >> B [el

intro*
Invoking this rule is the same as repeatedly invoking intro until the goal type is not of
the form PI x:A.Bor A --> B.

-->analysis
Condition : H |- e:A --> B

H> G [e2[e(e1)/h]]
BY analysis of <e>

H> A [e1]

H,h:B >> G [e2]

pi-analysis
Conditions: H |- e : PI x:A.B, Hl-el : A , A=A

H> G [e2[e(el)/h]]
By pi-analysis on <e> with <el>
H,h:Ble1/x] >> G [e2]

cut
Condition : H |- A:TYPE

H> G [(\h:A.e2) (e1)]
by cut with <A>

H> A . [e1]

H,h:A >> G [e2]

fact
Condition : H |- el:A

H> G # [(\h:A.e2)(el1)]
BY fact <el>

H,h:A >> G [e2]
def

33
1

Condition: G’ is G with outermost instance of definition expanded.
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H> G - [el
By expanding definition <i>

H> G [e]
hyp-def
Condition: j:A in Hand A’ is A with outermost instance of definition “i” expanded.
H> G [e[j/h]]
By expanding definition <i> in <j>
H,h:A’ >> G [el
eval

Note : G’ is the display-normal-form of G.

H> @G [el
By evaluation
H> & [e]

hyp-eval
Condition: j:Ain Hand A’ is the display-normal-form of A

H> G [e[§/n]]
By evaluation <j>

H,h:A’ >> G [el
equiv

Condition: G = G?

H> G [e]
By equivalence with <G’>

H > @6’ [e]
explicit

Conditions: H |- e:G’,G = G’

H> G [e]
BY explicit use of <e>

gen
Condition : H |- e1:A and e2(el) = G and h:A in H
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H> G [e[ei/h]]
By gen with <h> <el>, <e2>
H >> e2(h) [e]
Extended Commands. These rule must be entered by typing ! j when when the cursor
is positioned at the <refinement>. The j should be variable of H.

e lj
Condition : H |- hj:A; --> A; -=> ... -=> A,.
H> C [en[j(e1) (e2)...(e(n-1))/h]]
BY analysis of <j>
H > Al [ el]
H >> A2 [ e2]
H >> A(n-1) [e(n-1)]
H,h:An >> C [en]
o !j
Conditions : j:PI x1:A1. ...PI xm:An.BinHandH |- ei:Aifori=1,..,n.
H > G [e[j(e1)(e2)...(en)/nh]]
By pi-analysis* on <j> with <el>,<e2>, ... ,<en>
H,h.B[el,e2,...,en/x1,x2,...,xn] >> G [el
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B A sample file using the CC type system

This appendix contains a short EFS file developed using the Calculus of Constructions type
system. It develops a few examples that are taken from Coquand and Huet [CH85]. The'
reader is invited to compare the refinement style, in the EFS, to the “bottom-up” style of
proof construction in the presentation of Coquand and Huet.

| EFS - Version 1

Using Type System : CC

*¥% This file contains a demonstration of the EFS using the
**% Calculus of Constructions type system.

CHAPTER Basic-Definitions
BEGIN

** Higher Order Judgements

DEFINITION hypl
<jl> |- <32> == jl1 --> j2

DEFINITION hyp2
<§1>, <42> |- <33> == 31 ——> j2 |- 33

DEFINITION hyp3
<jl>, <32>, <33> |~ <j4> == jl --> j2, j3 |- j4

DEFINITION hyp4
<31>, <32>, <j3>, <§4> |- <35> == 31 --> 32, 33, j4 |- 35

** Schematic types

DEFINITION schemel
(<t>) .<j> == PI t:TYPE.J

DEFINITION scheme2
(<t1>, <t2>).<j> == PI tl:TYPE.(t2).]

DEFINITION scheme3
(<t1>, <t2>, <t3>).<j> == PI tl:TYPE.(t2, t3).J

DEFINITION scheme4
(<t1>, <t2>, <t3>, <t4>).<3> == PI tl:TYPE.(tl, t2, t3).t4

DEFINITION tschemel
(<x>:<t>) <> == PI x:t.j

DEFINITION tscheme2 .
(<x1>:<tl>, <x2>:<t2>).<j> == PI xl:tl.(x2:t2).]

DEFINITION tscheme3
(<x1>:<tl>, <x2>:<t2>, <x3>:<t3>).<j> == PI xl1:tl.(x2:t2, x3:t3).J

DEFINITION tschemed
(<x1>:<tl>, <x2>:<t2>, <x3>:<t3>, <x4>:<t4>) .<j> == PI xl:tl.(x2:t2, x3:t3, x4:t4).]

END CHAPTER Basic-Definitions
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CHAPTER Equality

** Leibniz’s equality.

Import Chapter(s) : Basic-Definitions
BEGIN

VALUE Equality == \A:TYPE.\x:A.\y:A.PI P: (A -—> TYPE).P(x) -—> P(y)
: PI A:TYPE.A --> A --> TYPE

DEFINITION eqg
<el> = <e2> in <T> == Equality(T) (el) (e2)

REFINEMENT eq-is-reflexive :
Display achievement : No
>> (A).(x:A).Xx = x in A

By intro*

A : TYPE;

x : A;

P : (A -—> TYPE);
hl : P(x)

>> P(x)

By hypothesis

REFINEMENT RULE eg-is-reflexive
T : TYPE;
e : T
> e = e in T
By eg-is-reflexive
[achievement : eg-is-reflexive(T) (e)]

REFINEMENT eqg-is—-symmetric :

Display achievement : No .
>> (A).{x:A, y:A).x =y in A |-y = X in A
By intro
A : TYPE
>> (x:A, y:tA).x =y in A |-y = x in A
By intro
x : A
>> (y:A).Xx =y in A |-y = x in A
By intro
y ¢ A
> x =y in A |-y = x in A
By intro

h4 : x =y in A
>> y = x in A
By expanding definition eq in h4
h5 : PI P: (A ——> TYPE).P(x) —> P(y)
>> y = x in A
By pi-elim on h5 with \z:A.z = x in A
hé : X = x in A ~--> y = x in A
>> y = x in A
By ~—>elim on hé
>> x = x in A
By eg-is-reflexive
h7 : y = x in A
>> y = x in A
By hypothesis
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REFINEMENT eg-is-transitive : SrE

Display achievement : No
>> (A).(x:A, y:A, z2:A).x =y in A, y=2 in A |- x =2z in A
By intro*

A : TYPE;
X : A;
y * A;
z : A;

hl : x =y in A;
h2 : y = z in A;
P : (A -—> TYPE):;
h3 : P(x)
>> P(z2)
By expanding definition eq in hl
h9 : PI P: (A —> TYPE) .P(x) —--> P (y)
>> P(z)
By pi-elim on h9 with P
hl0 : P(x) --> P(y)
>> P(z)
By ——>elim on hl0
>> P(x)
By hypothesis
hll : P(y)
>> P(z)
By expanding definition eq in h2
hl2 : PI P: (A --> TYPE).P(y) -—> P(z)
>> P(z)
By pi—-elim on hl2 with P
hl3 : P(y) —--> P(z)
>> P(z)
By ——>elim on hl3
>> P(y)
By hypothesis
hl4 : P(z)
>> P(z)
By hypothesis

REFINEMENT eqg-of-application :
>> (A).(x:A, y:A, £:(A —> A)).x =y in A |- £(x) = £(y) in A

REFINEMENT RULE eq-is-symmetric

T : TYPE;
el : T;
e2 : T

> el = e2 in T
By eg-is—-symmetric
> e2 = el in T [p]
fachievement : eg-is-symmetric(T) (e2) (el) (p)]

REFINEMENT RULE eg-is—transitive

T : TYPE;
el : T;
e2 : T

>> el =e2 in T
By eq-is-transitive with <e3 : T>
> el = e3 in T [pl]
> e3 =e2 in T [p2]
[achievement : eg-is-transitive(T) (el) (e3) (e2) (pl) (p2)]
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REFINEMENT RULE substitution

A : TYPE;

el : A

>> Q(el)
By substitution with <e2 : A> over <Q : A ——> TYPE>
>> e2 = el in A [pl]
>> Q(e2) [p2]

[achievement : pl(Q) (p2)]

FETTNER,

REFINEMENT RULE eg-of-application

T : TYPE;
g:T-—>T;
el : T;

e2 : T

>> g(el) = g(e2) in T
By eg-of-application
> el =e2 in T [pl]
[achievement : eqgq-of-application(T) (el) (e2) (g) (pl)]

END CHAPTER Equality

CHAPTER Product

** Definition of conjunction and related rules.
Import Chapter(s) : Basic-Definitions

BEGIN

VALUE And == \A:TYPE.\B:TYPE.PI C:TYPE. (A --> B ——> C) —-> C
: TYPE --> TYPE ——-> TYPE

DEFINITION and
<a> & <b> == And(a) (b)

REFINEMENT and-intro :
Display achievement : No
> (A, BY.A, B |-A &B
By intro*

A : TYPE;

3: (A -——>B ——> C)
>> C
By ——>elim* on h3
>> A

By hypothesis
>> B

By hypothesis
h7 : C
>> C

By hypothesis

REFINEMENT and-elim :
> (A, B, C).A & B, (A, B|-C) |-C
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REFINEMENT RULE and-intro
A TYPE;
B TYPE
> A & B
By and-intro
>> A [a]
>> B b}
[achievement : and-intro(A) (B) (a) (b)]

REFINEMENT RULE and-elim

A : TYPE;
B : TYPE;
C : TYPE
>> C
By and-elim <w : A & B>
a : A;
b : B
>> C [e]

[achievement : and-elim(A) (B) (C) (w) (\a:A.\b:B.c)]

END CHAPTER Product

CHAPTER Implication

** Implication is defined in terms of -——>,

** we do not need to define intro and elim rules
** for => since we get these "for free" with the
** into and -->elim rules of the EFS.

Import Chapter(s) : Product,Equality

BEGIN

DEFINITION implies
<a> => <b> == g --> b

DEFINITION iff
<a> <=> <b> == (a => b) & (b => a)

REFINEMENT RULE iff-intro
A TYPE;
B TYPE
>> A <=> B
By iff-intro
i:A
>> B [b]

>> A [al
[achievement : and-intro(A => B) (B => A) (\i:A.b) {\j:B.a)]
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e . ** The refinement iff-test demonstrates the iff-intro
*% and eq-is-symmetric refinement rules defined above.
** Note that the achievement term is displayed.

REFINEMENT iff-test :
Display achievement : Yes
>> (A).(el:A, e2:A).(el = e2 in A) <=> (e2 = el in A)
By intro
A : TYPE
>> (el:A, e2:A).(el = e2 in A) <=> (e2 = el in A)
By intro
el ¢+ A
>> (e2:A).(el = e2 in A) <=> (e2 = el in 3)
By intro
e2 : A
>> (el = e2 in A) <=> (e2 = el in A)
By iff-intro
h4 : (el = e2 in RA)
>> (e2 = el in A)
By eg-is-symmetric
>> el = e2 in A
By hypothesis
hd : (e2 = el in A)
>> (el = e2 in A)
By eg—is-symmetric
>> e2 = el in A
By hypothesis

ACHIEVED WITH iff-test =
\A:TYPE.\el:A.\e2:A.
and-intro ((el = e2 in A) => (e2 = el in A))
({(e2 = el in A) => (el = e2 in A))
(\hd: (el

e2 in A).eg-is-symmetric(A) (el) (e2) (h4))

(\h4:(e2 = el in A).eg-is—-symmetric (A) (e2) (el) (h4))

END CHAPTER- Implication

CHAPTER Quantifiers
Import Chapter(s) : Basic-Definitions,Equality
BEGIN

** ag with implication, we get the intro and
** elim rules of "all" for free.

DEFINITION all
all <x>:<a>.<b> == PI x:a.b

VALUE Sigma == \A:TYPE.\B:A --> TYPE. (C). ((x:A}.B(x)
: PI A:TYPE. (A ——> TYPE) ——> TYPE

DEFINITION exists
Exists <x>:<a>.<b> == Sigma (a) (\x:a.b)
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REFINEMENT exists-intro :
Display achievement : No

>> (A). (B:A —-> TYPE, a:A).B(a) |- Exists x:A.B(x)
By intro*

A : TYPE;

B : A --> TYPE;

a : A;

hl : B(a):;

C : TYPE;

h2 : ((x:A).B(x) |- C)

>> C

By pi-elim on h2 with a
h7 : B(a) |- C
>> C
By ——>elim on h7
>> B(a)
By hypothesis
hg : C
>> C
By hypothesis

REFINEMENT exists-elim :
>> (A, B).(P:A ——> TYPE).Exists x:A.P(x), ((y:A).P(y) |- B)

.o

REFINEMENT RULE exists—intro
T TYPE;
P T --> TYPE
>> Exists x:T.P(x)
By exists-intro with <w : T>
>> P(w) [p]
[achievement : exists—-intro(T) (P) (w) (p)]

REFINEMENT RULE exists—elim

A TYPE;

B TYPE;

P A --> TYPE

>> B
By exists—elim with <w : Exists x:A.P(x)>
h : A;
P

>> B [px]
[achievement : exists-—elim(A) (B) (P) (w) (\h:A.\p:P (h).pr)]

REFINEMENT exists—example :
Display achievement : No
>> (A) .Exists f:A --> A.all a:A.f(a) = a in A
By intro
A : TYPE
>> Bxists f£:A —-> A.all a:A.f(a) = a in A
By exists—intro with \z:A.z
>> all a:A.a = a in A
By intro
a: A
> a = a in A
By eg-is-reflexive

END CHAPTER Quantifiers

34




CHAPTER Fix-Point-Theory .
Import Chapter(s) : Equality,Product, Implication,Quantifiers
BEGIN

VALUE FixPt == \A:TYPE.\f: (A --> A) .\x:A.f(x) = x in A
: PI A:TYPE.(A —-> A) --> A ——> TYPE

VALUE Commute == \A:TYPE.\f: (A -—-> A).\g: (A ——> A).all a:A.g(f(a)) = £(g(a)) in A
: PI A:TYPE.(A -—-> A) --> (A ——> A) --> TYPE

VALUE Unique ==
\A:TYPE.\P: (A ——> TYPE) .\x:A.P(x) & all y:A.P(y) => x =y in A
: PI A:TYPE. (A -—~> TYPE) --> A ——> TYPE

VALUE Iterate ==
\A:TYPE.\f: (A ——> A).\g:(A -——> A).
PI P: ((A —-—> A) —-> TYPE).
P(f) -~-> (PI h: (A ——> A).P(h) ——> (P{\x:A.f(h(x))))) —> P(qg)
: PI A:TYPE.(A ——> A) --> (A —-—> A) ——> TYPE

DEFINITION fix
<f> has fixed point <a>:<A> == FixPt (3) (f) (a)

VALUE Fix2 == \A:TYPE.\f: (A —-> A).\a:A.f has fixed point a:A
: PI A:TYPE. (A -—-> A) ——> A ——> TYPE

DEFINITION unique-fix
<f> has unique fixed point <a>:<A> == Unique (A) (Fix2 () (£)) (a)

DEFINITION comm
<f> commutes with <g> over <A> == Commute (A) (£) (g)

DEFINITION iter
<g> is an iterate of <f> over <A> == Iterate(d) (f) (g)

VALUE Compose == \A:TYPE.\f:(A —> A).\g: (A ——> A).\a:A.f(g(a))
: PI A:TYPE. (A ——> A) -——> (A ——> A) ——> A ——> A

REFINEMENT RULE iter—-elim
A TYPE;
£ A ——> A;
g A --> A
>> P(q)
By iter-elim with <w : (g is an iterate of f over A)> and <P : (A --> A) ——> TYPE>
>> P(f) [pl]
h : A-——>A;
p2 : P(h)
>> P (Compose (A) (£) (h)) [p3]
[achievement : w(P) (pl) (\h:A ——> A.\p2:P(h) .p3)]

REFINEMENT Lemmal :
Display achievement : No
>> (A).(f:A --> A, g:A ——> A).
g commutes with £ over A & Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A '
By intro .
A : TYPE
>> (£:A --> A, g:A -—> A).
g commutes with f over A & Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
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By intro
£f : A ~-->A
>> (g:A --> A). .
g commutes with £ over A & Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
By intro
g : A -—>A
>>

g commutes with f over A & Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
By intro
h4 : g commutes with £ over A & Exists x:A.g has unique fixed point x:A
>> Exists y:A.f has fixed point y:A
By and-elim h4 i
h5 : g commutes with f over A;
hé : Exists x:A.g has unique fixed point x:A
>> Exists y:A.f has fixed point y:A
By exists-elim with hé
h7 : A;
h8 : g has unique fixed point h7:A
>> Exists y:A.f has fixed point y:A
By exists—-intro with h7
>> f has fixed point h7:A
By expanding definition £ix
>> £(h7) = h7 in A
By expanding definition wunique-£fix in h8
h9 : g has fixed point h7:A &
all y:A.g has fixed point y:A => h7 =y in A
>> £(h7) = h7 in A
By and-elim.h9
hl0 : g has fixed point h7:3;
h1ll : all y:A.g has fixed point y:A => h7 =y in A
>> £(h7) = h7 in A
By cut with g(£(h7)) = £(h7) in A
>> g(£(h7)) = £(h7) in A
By eg-is—transitive with f£(g(h7))
>> g(£(h7})) = £(g(h7)) in A
By expanding definition comm in hS
hl2 : all a:A.f(g(a)) = g(f(a)) in A
>> g(£(h7)) = £f(g(h7)) in A
By pi-elim on hl2 with h7
hl3 : f£(g(h7)) = g(£(h7)) in A
>> g(£(h7)) = £(g(h7)) in A
By eg-is—symmetric
>> £(g(h7)) = g(£(h7)) in A
By hypothesis
>> f(g(h7)) = £(h7) in A
By eg-of-application
>> g(h7) = h7 in A
By expanding definition fix in hl0
hl2 : g(h7) = h7 in A
>> g(h7) = h7 in A
By hypothesis
hl2 : g(£(th7)) = £(h7) in A
>> £(h7) = h7 in A
By pi~elim on hll with £(h7)
hl3 : g has fixed point f£(h7):A => h7 = £(h7) in A
>> £(h7) = h7 in A
By ——>elim on hl3
>> g has fixed point £(h7):A
By expanding definition fix
>> g(£(h7)) = £(M7) in A
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By hypothesis
hil4 : h7 = £(7) in A
>> £(h7) = h7 in A
By eg-is-symmetric
>> h7 = £(h7) in A
By hypothesis

REFINEMENT comm-is-reflexive :
Display achievement : No
>> (A:TYPE, f£f:(A —~—> A)).f commutes with f over A
By intro v ,
A : TYPE . ’
>> (£f: (A —> A)).f commutes with f over A
By intro
£f: (A —>A)
>> £ commutes with £ over A
By expanding definition comm
>> all a:A.f(f(a)) = £(f(a)) in A
By intro
a : A
>> f(f(a)) = £(£(a)) in A
By eqg-is-reflexive ‘

REFINEMENT LemmaZ2 :
Display achievement : No
>> (A).(f:A ——> A, g:A -——> A).
(g is an iterate of f over A) => (f commutes with g over A)
By intro
A : TYPE
>> (f:A --> A, g:A —-> A).
(g is an iterate of f over A) => (f commutes with g over A)
By intro
£f :A-->A
>> (g:A --> A).
(g is an iterate of f over A) => (f commutes with g over A)
By intro
g: A -->A
>> (g is an iterate of f over A) => (f commutes with g over A)
By intro
h4 : (g is an iterate of f over A)
>> (£ commutes with g over A)
By expanding definition comm
>> (all a:A.g(f(a)) = f£(g(a)) in A)
By intro
a : A
>> g(f(a)) = £(g(a)) in A
By iter—elim with h4 and \z:(A —-> A).z(f(a)) = £(z(a)) in A
>> f(f(a)) = £(£(a)) in A
By eg-is-reflexive
hé : A —> A;
h7 : hé(f(a)) = £(h6(a)) in A
>> f(h6(f(a))) = £(£(hé6(a))) in A
By eg-of-application
>> h6(f(a)) = £(h6(a)) in A
By hypothesis

REFINEMENT Lemma3 :
Display achievement : No

>> (A).(£:A ——> A, g:A ——> A).(f commutes with g over A) => (g commutes with f over A)'
By intro
A : TYPE

>> (£:A --> A, g:A --> BA).(f commutes with g over A) => (g commutes with f over A)
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By intro
f :A-->A
>> (g:A ——> A).(f commutes with g over A} => (g commutes with f over A)
By intro
g: A—>A
>> (£ commutes with g over A) => (g commutes with f over A)
By intro
h4 : (f commutes with g over A)
>> (g commutes with f over A)
By expanding definition comm
>> (all a:A.f(g(a)) = g(f(a)) in &)
By intro
a : A
>> f(g(a)) = g(f(a)) in A
By expanding definition comm in h4
hé : (all a:A.g(f(a)) = £(g(a)) in A)
>> f(g(a)) = g(f(a)) in A
By pi-elim on hé with a
h7 : g(f(a)) = f£(g(a)) in A
>> f(g(a)) = g(f(a)) in A
By eg-is~symmetric
>> g(f(a)) = £(g(a)) in A
By hypothesis

Display achievement : Yes
>> (A).(f:A ——> A, g:A —-> A).

g is an iterate of f over A & Exists x:A.g has unigue fixed point x:A

REFINEMENT Andrews Lemma :

=2
Exists y:A.f has fixed point y:A
By intro
A : TYPE

>> (£:A ~-> A, g:A ——> A).
g is an iterate of f over A & Exists x:A.g has unique fixed point x:A
Exists y:A.f has fixed point y:A
By intro
f :A-—->A
>> (g:A --> A).

i
v

g is an iterate of f over A & Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
By intro
g : A —>A
>> g is an iterate of f over A & Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
By intro
h4 : g is an iterate of f over A & Exists x:A.g has unique fixed point x:A
>> Exists y:A.f has fixed point y:A
By and-elim h4
h5 : g is an iterate of f over A;
hé : Exists x:A.g has unique fixed point x:A
>> Exists y:A.f has fixed point y:A
By cut with f commutes with g over A
>> £ commutes with g over A
By fact Lemma2
h7 : (A).(f:A ——> A, g:A ——> A).
(g is an iterate of f over A) => (f commutes with g over A)
>> £ commutes with g over A
By pi-elim* on h7 with A, f, g

h8 : (g is an iterate of f over A) => (f commutes with g over A)
>> £ commutes with g over A
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By -->elim on h8
>> (g is an iterate of f over A)
By hypothesis
h9 : (f commutes with g over A)
>> £ commutes with g over A
By hypothesis
h7 : £ commutes with g over A
>> Exists y:A.f has fixed point y:A
By fact Lemmal
h8 : (A).(f:A -—> A, g:A ——> A).
g commutes with f over A &
Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
>> Exists y:A.f has fixed point y:A
By pi-elim* on h8 with A, f,g
h9 : g commutes with £ over A &
Exists x:A.g has unique fixed point x:A =>
Exists y:A.f has fixed point y:A
>> Exists y:A.f has fixed point y:A
By -—->elim on h9
>> g commutes with £ over A & Exists x:A.g has unique fixed point x:A
By and-intro
>> g commutes with £ over A
By fact Lemma3
h1l0 : (A).(f:A ——> A, g:A --> A).
(f commutes with g over A) => (g commutes with f over A)
>> g commutes with f over A
By pi-elim* on hl0 with A,f,qg
hll : (£ commutes with g over A) => (g commutes with f over A)
>> g commutes with £ over A
By ——>elim on hll
>> (£ commutes with g over A)
By hypothesis
hl2 : (g commutes with f over A)
>> g commutes with £ over A
By hypothesis
>> Exists x:A.g has unique fixed point x:A
By hypothesis
hl0 : Exists y:A.f has fixed point y:A
>> Exists y:A.f has fixed point y:A
By hypothesis

END CHAPTER Fix-Point-Theory

END OF FILE
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C An LF presentation of S4

This appendix contains an EFS file that develops a fragment of S4 following the LF presen-
tation given in [AAMS87]. This file was created in one afternoon by Furio Honsell. "

EFS - Version 1

Using Type System : LF

** This is a specification of the modal logic S4

** taken form the LFCS report "Using typed lambda

**%* calculus to implement formal systems on a machine"
** by A. Avron, F.Honsell and I.Mason.

CHAPTER Basic-Defs
** Logic independent definitions are listed in this chapter.
BEGIN

DEFINITION hypl
<j1> |- <j2> == j1 --> j2

DEFINITION hyp2
<j1>,<32> |- <33> == j1 ——> j2 |- 33

DEFINITION hyp3
<jl>,<j2>,<33> |- <j44> == j1 --> 32,33 |- 34

DEFINITION hyp4
<j1>,<32>,<33>,<j4> |- <35> == j1 --> 32,733,374 |- j5

DEFINITION schil
(<a>:<t>) .<j> == PI a:t.j

DEFINITION sch2
(<al>:<tl>, <a2>:<t2>).<j> == PI al:tl.(a2:t2).3

DEFINITION sch3
(<al>:<tl>, <a2>:<t2>, <a3>:<t3>).<j> == PI al:tl.(a2:t2, a3:t3).j

DEFINITION sch4
{(<al>:<tl>,<a2>:<t2>,<a3>:<t3>,<ad>:<t4>) .<j> == PI al:tl. (a2:t2, a3:t3, ad:t4).j

END CHAPTER Basic-Defs
CHAPTER Natural_ Deduction_ S4
** Two judgements are declared in this signature : valid and taut.
*%* The first induces the consequence relation of validity in S4 frames.
** The second one plays only an auxiliary role .
Import Chapter(s) : Basic-Defs
BEGIN
CONSTANT o : TYPE
CONSTANT £f : o

CONSTANT implies : o ——> o ——> o
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CONSTANT box : o ==> ©

DEFINITION implies
<eld>==><e2> == implies(el) (e2)

DEFINITION box
[1<el> == box(el)

CONSTANT taut : o ——> TYPE
CONSTANT valid : o —> TYPE !

DEFINITION Taut
<el> taut == taut (el)

DEFINITION Valid
<el> valid == valid(el)

CONSTANT CC : (A:o).A taut |- A valid
CONSTANT R : (A:o, B:o).(A taut |- B valid),A valid |- B wvalid
CONSTANT Impinv : (A:o, B:o).({[]A valid |- B valid) |- ([]A==>B) valid
CONSTANT ffel : (A:o0).ff taut |- A taut
CONSTANT dbel : (A:0).((A==>ff)==>ff) taut |- A taut
CONSTANT Impint : (A:o, B:o).(A taut |- B taut) |- A==>B taut
CONSTANT Impelt : (A:o, B:o).(A==>B) taut,A taut |- B taut
CONSTANT boxin : (A:o).A valid |- []A valid
CONSTANT boxel : (A:o).[]A valid |- A valid
END CHAPTER Natural Deduction S4
CHAPTER Derived-rules
*% In this chapter construct a few derived rules by means of
*%* refinement. Only basic (built-in) refinement rules are used.
Import Chapter(s) : Natural Deduction_S4

BEGIN

REFINEMENT R3 :
Display achievement : No

>> (A:o, Bio, C:0).(A taut,B taut |- C taut) |- (A valid,B valid |- C valid)
By fact R
hl : (A:o, B:o).(A taut }{- B valid),A valid |- B valid
>> (A:o, B:o, C:o). (A taut,B taut |- C taut) |- (A valid,B valid |- C valid)
By intro
A : o0
>> (B:o, C:0).(A taut,B taut |- C taut) |- (A valid,B valid |- C valid)
By intro
B : o
>> (C:o0). (A taut,B taut |- C taut) |- (A valid,B valid |- C valid)
By intro
CcC: o0
>> (A taut,B taut {- C taut) |- (A valid,B valid |- C valid)
By intro
h5 : (A taut,B taut |- C taut)

>> (A valid,B valid |- C valid)
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By intro
hé : A valid
>> B valid |- C valid

By pi-elim* on hl with B,C
|- € valid),B valid |- C wvalid

h7 : (B taut

>> B valid |- C valid
By ——>elim on h7

>> (B taut

By intro

h8 : B taut

>> C valid

|- C valid)

By pi-elim* on hl with A,C

h9 : (A taut
>> C valid

By -->elim* on h9

>> (A taut
By intro
hl0 :
>> C valid

A taut

|- C valid),A valid |- C valid

|- C wvalid)

By ——>elim* on h5

>> A taut

By hypothesis

>> B taut

By hypothesis
C taut

hll :
>> C valid

By pi-elim on CC with C

hl2 :

>> C valid

By ——>elim on hl2
>> C taut

By hypothesis

hl3 :

C taut

>> C valid
By hypothesis

>> A valid

By hypothesis

hl0 : C valid
>> C valid

By hypothesis
B valid |- C valid
|- C valid

h8 :
>> B valid
By hypothesis

|- € valid

C valid

** Using a proof of the above higher order judgement a
** proof of Modus Ponens for "valid" judgements can be given.

REFINEMENT Impelv :

Display achievement : No

>> (A:o, B:o).(A==>B) valid,A valid |- B wvalid

By intro*

A : o;

B : o;

(A==>B) valid;
A valid
valid
fact R3
hS : (A:o,
B valid
By pi-elim* on h5 with A==>B,A,B
hé : (A==>B taut,A taut
>> B valid

B:o,

C:0). (A taut,B taut

|- B taut)
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By —-—>elim* on hé6
>> (A==>B taut,A taut |- B taut)
By pi-elim on Impelt with A
h7 : (B:o).(A==>B) taut,A taut |- B taut

>> (A==>B taut,A taut |- B taut)
By pi-elim on h7 with B
h8 : (A==>B) taut,A taut |- B taut

>> (A==>B taut,A taut |- B taut)
By hypothesis

>> A==>B valid

By hypothesis
>> A valid

By hypothesis
h7 : B valid
>> B valid

By hypothesis

END CHAPTER Derived-rules

CHAPTER Refinement-rules

**% This chapter contains a few refinement rules defined
**% using the constants of Chapter Natural-deduction-S4
** or the derived rules of Chapter Derived-rules.
Import Chapter(s) : Derived-rules

BEGIN

REFINEMENT RULE box-intro
X:o0
>> [1X valid

By box-intro

>> X valid [prl
[achievement : boxin(X) (pr)]

REFINEMENT RULE box-eliml

A : TYPE;
X : o
>> A

By box-eliml with <prl : []X valid>
hl : X valid
>> A [pr2]
[achievement : \hl1l:X valid.pr2 (boxel (X) (pxl))]

REFINEMENT RULE box-elim2
X : o0
>> X valid
By box-elim2
>> [1X valid [pr]
[achievement : boxel (X) (pr)]

REFINEMENT RULE imp~intro-v
A : o;
B : o
>> []A==>B valid
By imp-intro-v
hl : []A valid
>> B valid [prl]
[achievement : Impinv(A) (B) (\hl:[]A valid.prl)}]

43



REFINEMENT RULE imp-elim-v

X : o; v

Y : o

>> Y valid
By imp-elim-v with <e : X==>Y valid>
>> X valid [pr]

[achievement : Impelv (X) (Y) (e) (pr)]

** Here is a refinement proof of one of the classical

** axioms in the Hilbert-style presentation of S4.

** In this refinement we use all of the refinement rules
** defined above.

REFINEMENT A5 :
Display achievement : No :
>> (A:o, B:0o).[] (A==>B)==>([]A==>[]B) wvalid
By intro¥*
A o;
B o
>> [] (A==>B)==>([]A==>[]B) valid
By imp-intro-v
h3 : [] (A==>B) valid
>> ([]A==>[]B) wvalid
By imp-intro-v
h4 : []A valid
>> []B valid
By box-eliml with h3
hS : (A==>B) wvalid
>> []B valid
By box-intro
.>> B valid
By imp-elim-v with h5
>> A valid
By box-elim2
>> []A valid
By hypothesis

** For the sake of comparison, we prove A5 again without
** using the user-defined refinement rules but only
** basic built-in rules.

REFINEMENT AS5-proof2

Display achievement No

>> (A:o, B:o).[] (A==>B)==>([]A==>[]B) wvalid
By intro*

A : o;

B: o

>> [] (A==>B)==>([]A==>[]B) wvalid
By fact Impinv
h3 : (A:o, B:o).([]A valid |- B valid) |- ([]A==>B) valid
>> [] (A==>B)==> ([]A==>[]B) valid
By pi-elim* on h3 with (A==>B), ([1A==>[]1B)

h4 : ([] (A==>B) valid |- ([]A==>[]B) valid) |- ([] (A==>B)==>([]A==>[]B)) wvalid

>> []1 (A==>B)==>([]A==>[]B) valid
By -->elim* on h4
>> ([] (A==>B) valid |- ([]A==>[]B) wvalid)
By intro
h5 : [] (A==>B) wvalid
>> ([JA==>[]B) valid
By pi-elim* on h3 with A, [IB
hé : ([]A valid |- []B valid) |- ([]A==>[]1B) wvalid
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>> ([]A==>[]B) valid
By -->elim* on hé
>> ([]A valid |~ []B valid)
By intro
h7 : []A valid
>> []B valid
By pi-elim on boxel with A==>B
h8 : []A==>B valid |- A==>B valid
>> [1B valid
By ——>elim on h8
>> []A==>B valid
By hypothesis
h9 : A==>B valid
>> [1B valid
By fact Impelv
hl0 : (A:o0, B:o). (A==>B) valid,A valid |- B valid
>> [1B valid
By pi-elim* on hl0 with A,B
hll : (A==>B) valid,A valid |- B valid
>> []IB valid
By ——->elim* on hll
>> (A==>B) valid
By hypothesis
>> A valid
By pi-elim on boxel with A
hl2 : {]A valid |- A wvalid
>> A valid
By —-->elim* on hil2
>> []1A valid
By hypothesis
hl3 : A wvalid
>> A valid
By hypothesis
hl2 : B valid
>> []1B valid
By pi-elim on boxin with B
hl3 : B valid |- {]B valid
>> []B valid
By -->elim on hl3
>> B valid
By hypothesis
hl4 : []B valid
>> []B valid
By hypothesis
h7 : ([1A==>[]1B) valid
>> ([]1A==>[]B) wvalid
By hypothesis
h5 : ([] (A==>B)==>([]A==>[]B)) valid
>> [1 (A==>B)==>([]A==>[1B) valid
By hypothesis

END CHAPTER Refinement—rules

END OF FILE
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