LECS

L UOISIOA
TN plepuels Jo sdnuewss ayl

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

The Semantics of Standard ML
Version 1

by

Robert Harper Robin Milner
Mads Tofte

ECS-LFCS-87-36
LFCS Report Series (also published as CSR-244-87)

LFCS August 1987
Department of Computer Science
University of Edinburgh

The King's Buildings Copyright © 1987, LFCS
Edinburgh EH9 3JZ

Preface to Version 1

Great care has been taken to make this document clear, accurate and complete.
Despite this we have called it “Version 17, since we expect to amend it for various
reasons.

 First, neither the greatest clarity nor the greatest accuracy is possible in a
document of this complexity without feedback from readers. We therefore en-
courage readers to send us suspected errors, and to indicate points which are not
clear to them. Although we do not intend to turn this document a pedagogic
exposition, we shall willingly add short illuminating comments.

Second, the design of ML, Modules — particularly the grammar — is still some-
what experimental, even though it is considerably refined from its original form.
As a result of experimental use it may be changed or extended, and these changes
or extensions will be defined in later versions of the present document.

Third, though the ML Core Language is more stable — simply because it has
been subjected to more experiment — changes here may also occur. Wherever
possible they will be “upwards compatible” — that is, the validity and semantics
of existing programs will be preserved. One change is at present under discussion,
and (for reasons of human resource) we are not delaying the issue of this document
to include it. The proposed change is to the exception facility; it will not only
add power but will also simplify the language — in particular, it will unite the
notions of handler and match. This simplification is so significant that it deserves
consideration even though it slightly violates the principle of upwards compatible
change. But if it is adopted it will be possible to automate the necessary small
modifications to existing programs. ¢

Version 1 treats the ML Core Language and its Input/Output facilities as
defined in Standard ML by Robert Harper, David MacQueen and Robin Milner
(Report ECS-LFCS-86-2, Edinburgh University, Computer Science Department),
but incorporating the changes defined in Changes to the Standard ML Core
Language by Robin Milner (Report ECS-LFCS-87-33). As explained above, the
Modules part of the language described here is considerably refined from that
presented by MacQueen in ECS-LFCS-86-2.

Any future Version of this document will indicate precisely how it differs from
its predecessor. ‘

The Semantics of Standard ML
Version 1

Robert Harper Robin Milner
Mads Tofte
Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, Scotland

August 13, 1987

Contents

1 Introduction

2 Syntax of the Core

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Reserved Words 0 i it it ittt i e
Special constants,
Comments it iiinnnenn
Identifiers e e e
Lexical analysis i i,
Infixedoperators
Derived Forms
Grammar e e e e e e e e e e e
Syntactic Restrictions

3 Syntax of Modules

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Reserved Words i i i i i it it i e e
Identifiers i e e e e e e
Infixed operators,
Grammar for Modules
Syntactic Restrictions
Pure Functor Forms ueen...
Closure Restrictions v....

4 Static Semantics for the Core
4.1 SimpleObjects i i i i it et
4.2 Compound Objects v v v i i ittt i et
4.3 Projection, Injection and Modification
44 Typesand Typefunctions
45 TypeSchemes. i ..
4.6 Closure i i it ittt it e e e e e
4.7 Type Environments and Well-formedness
48 InferenceRules0t iiennenne..
4.9 Further Restrictions,
4.10 Principal Environments
5 Static Semantics for Modules
5.1 SemanticObjects
52 Comsistency i i it e e e e e e e e
53 Wellformednesst inini...
54 Cyclefreedomt
5.5 Admissibility e
5.6 TypeRealisation
5.7 Realisationt ennn..
5.8 Signature Instantiation.
5.9 Functor Signature Instantiation
5.10 Enrichment e
5.11 Principal Signatures,
5.12 Inference Rules i i ittt
5.13 Functor Matching. v,
6 Dynamic Semantics for the Core
6.1 Reduced Syntax0 innnn...
6.2 SimpleObjects
6.3 Compound Objects v i v i it e s
6.4 BasicValues.t
6.5 BasicExceptionsini...
6.6 CloSUreS . . . v v v v v it it e e e e e e e e e e e e e e
6.7 InferenceRules i iinee..
7 Dynamic Semantics for Modules
7.1 Reduced Symtaxt
7.2 Compound Objects i i i i i i i e it et e e
7.3 InferenceRules ueenunene..

21
21
21
23
23
24
24
25
26
33
33

34
34
35
35
36
36
36
36
36
37
37
37
38
45

46
46
46
46
47
48
49
49

A Appendix

B Appendix: Full Grammar of the Core

C Appendix

D Appendix

: Derived Forms

: The Initial Static Basis

¢ The Initial Dynamic Basis

63

70

73

1 Introduction

This document provides a complete formal description of Standard ML.

To understand the method of description, at least in broad terms, it helps to
consider how an implementation of ML is naturally organised. ML is an interac-
tive language, and a program consists of a sequence of top-level declarations; the
execution of each declaration modifies the top-level environment, which we call a
basis, and reports the modification to the user.

In the execution of a declaration there are three phases: parsing, elaboration,
and evaluation. Parsing determines the grammatical form of a declaration. Elab-
oration, the static phase, determines whether it is well-typed and well-formed
in other ways, and records relevant type or form information in the basis. Fi-
nally evaluation, the dynamic phase, determines the value of the declaration and
records relevant value information in the basis. Corresponding to these phases,
our formal description divides into three parts: grammatical rules, elaboration
rules, and evaluation rules. Furthermore, the basis is divided into the static ba-
sis and the dynamic basis; for example, a variable which has been declared is
associated with a type in the static basis and with a value in the dynamic basis.

In an implementation, the basis need not be so divided. But for the purpose
of formal description, it eases presentation and understanding to keep the static
and dynamic parts of the basis completely separate. This is further justified
by programming experience. A large proportion of errors in ML programs are
discovered during elaboration, and identified as errors of type or form, so it follows
that it is useful to perform the elaboration phase separately. In fact, elaboration
without evaluation is just what is normally called compilation; once a declaration
(or larger entity) is compiled one wishes to evaluate it — repeatedly — without
re-elaboration, from which it follows that it is useful to perform the evaluation
phase separately.

A further factoring of the formal description is possible, because of the struc-
ture of the language. ML consists of a lower level, called the Core language (or
Core, for short) and an upper level concerned with programming-in-the-large,
called Modules. The Core is a complete language in its own right, and its embed-
ding in the full language is simple; therefore each of the three parts of the formal
description is further divided into two — one for the Core, and one for Modules.

The Core provides many phrase classes, for programming convenience. But
about half of these classes are derived forms, whose meaning can be given by
translation into the other half which we call the Bare language. (There are no
derived forms for Modules). Thus each of the three parts for the Core treats only
the bare language; the derived forms are treated in Appendix A. A full grammar
for the Core including derived forms is presented in Appendix B.

In Appendix C and D the initial basis is detailed. This basis, divided into
its static and dynamic parts, contains the static and dynamic meanings of all
predefined identifiers.

The semantics is presented in a form known as Natural Semantics. It consists
of a set of rules allowing sentences of the form

At phrase = A'

to be inferred, where A is often a basis (static or dynamic) and A’ a semantic
object — often a type in the static semantics and a value in the dynamic semantics.
One should read such a sentence as follows: “in the basis A, the phrase phrase
evaluates — or elaborates — to the object A"””. Although the rules themselves
are formal the semantic objects, particularly the static ones, are the subject of a
mathematical theory which is presented in a succinct form in the relevant sections.
This theory, particularly the theory of types and signatures, will benefit from a
more pedagogic treatment in other publications; the treatment here is probably
the minimum required to understand the meaning of the rules.

The robustness of the semantics depends upon theorems. Some of these are
stated but not proved; others are presented as “claims” rather than theorems —
often they have been proved for a skeletal language, and although we are confident
of their truth their proofs in the context of the full language will present an in-
teresting challenge to a computer-assisted proof methodology, to attain complete
certainty.

2 Syntax of the Core
2.1 Reserved Words

The following are the reserved words used in the Core. They may not (except =)
be used as identifiers. In this document the alphabetic reserved words are always
shown in typewriter font.

abstype and andalso as case do datatype else
end exception fn fun handle if in infix
infixr let local nonfix of op open orelse
raise rec then type val with withtype while
¢ *©1 {43 ., 5 o0
?

b= = >

2.2 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded by a
negation symbol (7).

A real constant is an integer constant, possibly followed by a point (.) and
one or more digits, possibly followed by an exponent symbol E and an integer
constant; at least one of the optional parts must occur, hence no integer con-
stant is a real constant. Examples: 0.7 +3.32E6 3E™7 . Non-examples:
23 .3 4.E5 1E2.0 .

A string constant is a sequence, between quotes ("), of zero or more printable
characters, spaces or escape sequences. Each escape sequence is introduced by
the escape character \ , and stands for a character sequence. The allowed escape
sequences are as follows (all other uses of \ being incorrect):

\n A single character interpreted by the system as end-of-line.
\t Tab.

\"¢ The control character ¢, for any appropriate c.

\ddd The single character with ASCII code ddd (3 decimal digits).
\ll n

\\ \

\f --f\ This sequence is ignored, where f - -f stands for a sequence
of one or more formatting characters.

The formatting characters are a subset of the non-printable characters includ-
ing at least space, tab, newline, formfeed. The last form allows long strings to be
written on more than one line, by writing \ at the end of one line and at the
start of the next.

Var (value variables) long
Con (value constructors) long
Exn (exception names) long
TyVar (type variables)

TyCon (type constructors) long
Lab (record labels)

Strld (structure identifiers) long

Figure 1: Identifiers

2.3 Comments

A comment is any character sequence within comment brackets (* *) in which
comment brackets are properly nested. An unmatched comment bracket should
be detected by the compiler.

2.4 Identifiers

The classes of identifiers for the Core are shown in Figure 1. We use var, tyvar to
range over Var, TyVar etc. For each class X marked “long” there is also a class

LongX = StrId* x X

If z ranges over X, then longz, or stridy.---.strid;.z, k > 0, ranges over LongX.
These long identifiers constitute the only link between the Core and the language
constructs for Modules; by omitting them, and the open declaration, we obtain the
Core as a complete programming language in its own right. (The corresponding
adjustment to the Core static and dynamic semantics is simply to omit structure
environments SE.).

An identifier is either alphanumeric: any sequence of letters, digits, primes
(*) and underbars (_) starting with a letter or prime, or symbolic: any sequence
of the following symbols

PR e s+ -/ <= > 2 @\ 7 ¢t]

In either case, however, reserved words are excluded. This means that for example
? and | arenot identifiers, but ?! and |=| areidentifiers. The only exception
to this rule is that the symbol =, which is a reserved word, is also allowed as
an identifier to stand for the equality predicate. The identifier = may not be
re-bound; this precludes any syntactic ambiguity.

A type variable tyvar may be any alphanumeric identifier starting with a
prime; the subclass EtyVar of TyVar, the equality type variables, consists of

those which start with two or more primes. The other six classes (Var, Con, Exn,
TyCon, Lab and StrId) are represented by identifiers not starting with a prime;
the class Lab is also extended to include the numeric labels 1 2 3 ...

TyVar is therefore disjoint from the other six classes. Otherwise, the syntax
class of an occurrence of identifier 1d in a Core phrase is determined thus:

1. Immediately before “.” —i.e. in a long identifier — or in an open declaration,
td is a structure identifier. The following rules assume that all occurrences
of structure identifiers have been removed.

2. At the start of a component in a record type, record pattern or record
expression, td is a record label.

3. Elsewhere in types id is a type constructor, and must be within the scope
of the type binding or datatype binding which introduced it.

4. Elsewhere id is an exception name if it occurs immediately after raise, at
the start of a handler rule hrule, or within an exception declaration or
specification.

5. Elsewhere, ¢d is a value constructor if it occurs in the scope of a datatype
binding which introduced it as such, otherwise it is a value variable.

It follows from the last rule that no value declaration can make a “hole” in the
scope of a value constructor by introducing the same identifier as a variable;
this is because, in the scope of the declaration which introduces id as a value
constructor, any occurrence of :d in a pattern is interpreted as the constructor
and not as the binding occurrence of a new variable.

By means of the above rules a parser can determine the class to which each
identifier class belongs; for the remainder of this document we shall therefore
assume that the classes are all disjoint.

2.5 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a special
constant or an identifier. Comments and formatting characters separate items
(except within string constants; see Section 2.2) and are otherwise ignored. At
each stage the longest next item is taken.

2.6 Infixed operators

An identifier may be given infix status by the infix or infixr directive ,
which may occur as a declaration; this status only pertains to its use as a var or

a con within the scope (see below) of the directive. If #d has infix status, then
“ezp, id exp,” (resp. “pat, id pat,”) may occur — in parentheses if necessary —
wherever the application “/d{1=ezp,,2=ezp,}” or its derived form “id(ezp,, ezp,)”
(resp “id(paty, pat,)”) would otherwise occur. On the other hand, non-infixed
occurrences of td must be prefixed by the keyword op . Infix status is cancelled
by the nonfix directive. We refer to the three directives collectively as fixity
directives.
The form of the fixity directives is as follows (n > 1):

infix (d) id;---id,

infixr (d) idy---id,
nonfix tdy---1d,

where (d) is an optional decimal digit d indicating binding precedence. A higher
value of d indicates tighter binding; the default is 0. infix and infixr dictate
left and right associativity respectively; association is always to the left for differ-
ent operators of the same precedence. The precedence of infix operators relative
to other expression and pattern constructions is given in Appendix B.

The scope of a fixity directive dir is the ensuing program text, except that if
dir occurs in a declaration dec in either of the phrases

let dec in --- end

local dee¢ in --- end

then the scope of dir does not extend beyond the phrase. Further scope limitations
are imposed for Modules.

These directives and op are omitted from the semantic rules, since they effect
only parsing.

2.7 Derived Forms

There are many standard syntactic forms in ML whose meaning can be expressed
in terms of a smaller number of syntactic forms, called the bare language. These
derived forms, and their equivalent forms in the bare language, are given in Ap-
pendix A.

2.8 Grammar

The phrase classes for the Core are shown in Figure 2. We use the variable atezp
to range over AtExp, etc.

AtExp atomic expressions
ExpRow expression rows

Exp expressions
Match matches
Mrule match rules
Handler handlers
Hrule handler rules
Dec declarations

ValBind value bindings
TypBind type bindings
DatBind datatype bindings
Constrs datatype constructions
ExnBind exception bindings

AtPat atomic patterns
PatRow pattern rows

Pats patterns

Ty type expressions
TyRow type expression rows

Figure 2: Core Phrase Classes
The following conventions are adopted in presenting the grammatical rules,
and in their interpretation:
o The brackets () enclose optional phrases.

e For any syntax class X (over which z ranges) we define the syntax class
Xseq (over which zseq ranges) as follows:

rseq = I (singleton sequence)
(empty sequence)
(zy,:--,z,) (sequence, n >1)

(Note that the “:-” used here, meaning syntactic iteration, must not be
confused with “...” which is a reserved word of the language.)

o Alternative forms for each phrase class are in order of decreasing precedence.

o L (resp. R) means left (resp. right) association.

10

e The syntax of types binds more tightly that that of expressions.

o Each iterated construct (e.g. match, handler, --

-) extends as far right as

possible; thus, parentheses may be needed around an expression which ter-
minates with a match, e.g. “fn match”, if this occurs within a larger match.

The grammatical rules for the Core are shown in Figures 3, 4, 5 and 6.

atexp

exprow

exp

match

mrule
handler

hrule

Figure 3:

(op)longvar
(op)longeon

{ (ezprow) }

let dec in ezp end
(ezp)

lab = exp (, ezprow)

atexp

exp alerp

ezp, id ezp,

exp : ty

ezp handle handler
raise longezn with ezxp
fn mateh

mrule (| match)
pat => exp
hrule { |1 handler)

longexn with match
? => exp

value variable
value constructor
record

local declaration

expression row

atomic
application (L)
infixed application
typed (L)

handle exception
raise exception
function

Grammar: Expressions, Matches and Handlers

11

dec

valbind

typbind
datbind
consirs

exnbind

val valbind

type typbind

datatype datbind

abstype datbind with dec end
exception eznbind

local dec; in dec; end

open longstrid, --- longstrid,,

decy (;) dec,

infix (d) idy---id,
infixr (d) idy---id,
nonfix tdy---id,,

pat = ezp (and valbind)
rec valbind

tyvarseq tycon = ty (and typbind)

value declaration
type declaration
datatype declaration
abstype declaration
exception declaration
local declaration
open declaration (n > 1)
empty declaration
sequential declaration
infix (L) directive
infix (R) directive
nonfix directive

tyvarseq tycon = constrs (and datbind)

(op)con (of ty) (| constrs)

ezn (: ty)(= longezn) (and eznbind)

Figure 4: Grammar: Declarations and Bindings

atpat =

(op)var

longcon

{ (patrow) %

(pat)
patrow = ...

lab = pat (, patrow)
pat . atpat

(op)longecon atpat
pat; con pat,
pat : ty

wildcard
variable
constant
record

wildcard
pattern row

atomic

construction

infixed construction
typed

(op)var(: ty) as pat layered

Figure 5: Grammar: Patterns

12

2.9

ty u= tyvar type variable

{ (tyrow) ¥ record type expression
tyseq longtycon type construction

ty -> ty function type expression (R)
(ty)

I

tyrow lab : ty (, tyrow) type-expression row

Figure 6: Grammar: Type expressions

Syntactic Restrictions

No pattern may contain the same var twice. No expression row, pattern
row or type row may bind the same lab twice.

No binding valbind, typbind, datbind or eznbind may bind the same identi-
fier twice; this applies also to value constructors within a datbind.

In the left side tyvarseq tycon of any typbind or datbind, tyvarseq must not
contain the same tyvar twice. Any tyvar occurring within the right side
must occur in tyvarseq.

Every non-local exception binding — that is, not localised by let or local
— must be explicitly constrained by a type containing no type variables.

13

3 Syntax of Modules

For Modules there are further keywords and identifier classes, but no further
special constants and at present no further derived forms. Comments and lexical
analysis are as for the Core.

3.1 | Reserved Words

The following are the additional reserved words used in Modules.

eqtype functor include open sharing
sig signature struct structure

3.2 Identifiers

The additional syntax classes for Modules are Sigld (signature identifiers) and
Funld (functor identifiers); they may be either alphanumeric — not starting with
a prime — or symbolic. The class of each identifier occurrence is determined by the
grammatical rules which follow. Henceforth, therefore, we consider all identifier
classes to be disjoint.

3.3 Infixed operators

In addition to the scope rules for fixity directives given for the Core syntax, there
is a further scope limitation: if dir occurs in a structure-level declaration strdec
in any of the phrases

let strdec in --- end

local strdec in :-- end
struct strdec end

then the scope of dir does not extend beyond the phrase.

One effect of this limitation is that fixity is local to a generative structure
expression — in particular, to such an expression occurring as a functor body. A
more liberal scheme (which is under consideration) would allow fixity directives
to appear also as specifications, so that fixity may be dictated by a signature;
furthermore, it would allow an open or include construction to restore the
fixity which prevailed in the structures being opened, or in the signatures being
included. This scheme is not adopted at present.

14

3.4 Grammar for Modules

The phrase classes for Modules are shown in Figure 7. We use the variable strezp
to range over StrExp, etc. The conventions adopted in presenting the grammatical

StrExp structure expressions
StrDec structure-level declarations
StrBind structure bindings

SigExp signature expressions
SigDec signature declarations
SigBind signature bindings

Spec specifications

ValDesc value descriptions

TypDesc type descriptions
DatDesc datatype descriptions

ExnDesc exception descriptions
StrDesc structure descriptions
SharEq sharing equations

FunDec functor declarations
FunBind functor bindings

FunSigExp functor signature expressions
FunSpec functor specifications
FunDesc functor descriptions
Program programs

Figure 7: Modules Phrase Classes

rules for Modules are the same as for the Core. The grammatical rules are shown
in Figures 8, 9 and 10.

It should be noted that functor specifications (FunSpec) cannot occur in pro-
grams; neither can the associated functor descriptions (FunDesc) and functor
signature expressions (FunSigExp). The purpose of a funspec is to specify the
static attributes (i.e. functor signature) of one or more functors. This will be
useful, in fact essential, for separate compilation of functors. If, for example, a
functor g refers to another functor f then — in order to compile g in the absence
of the declaration of f — at least the specification of f (i.e. its functor signa-
ture) must be available. At present there is no special grammatical form for a
separately compilable “chunk” of text — which we may like to call call a module —

15

containing a fundec together with a funspec specifying its global references. How-
ever, below in the semantics for Modules it is defined when a declared functor
matches a functor signature specified for it. This determines exactly those functor
environments (containing declared functors such as f) into which the separately
compiled “chunk” containing the declaration of ¢ may be loaded.

strexp = struct sirdec end generative
longstrid structure identifier
funid (strdec) functor application
let strdec in strezp end local declaration
strdec = dec declaration
structure sirbind structure
local strdec; in strdec, end local
empty
strdec; (;) strdecy sequential
strbind = strid (: sigexp) = strezp (and strbind)
sigexp = sig spec end generative
stgid signature identifier
sigdec 1= signature sighind single
empty
sigdec, (;) stgdec, : sequential
sighind = sigid = sigexp (and sighind)

Figure 8: Grammar: Structures and Signatures

3.5 Syntactic Restrictions

e No binding strbind, sigbind, or funbind may bind the same identifier twice.

e No description valdesc, typdesc, datdesc, ezndesec, strdesc or fundesc may
describe the same identifier twice.

16

spec

valdesc
typdesc
datdesc
exndesc
strdesc

shareq

val valdese value

type typdesc type

eqtype typdesc eqtype

datatype datdesc datatype

exception ezndesc exception

structure strdesc structure

sharing shareq sharing

local spec; in spec, end local

open longstrid, --- longstrid,, open (n > 1)

include sigid, --- sigid,, include (n > 1)
empty

spec, (;) spec, sequential

var : ty (and valdesc)

tyvarseq tycon (and typdesc)

tyvarseq tycon = constrs (and datdesc)
ezn : ty (and ezndesc)

strid : sigezp (and strdesc)

longstrid, = --- = longstrid,, structure sharing
(n>2)

type longtycon, = --- = longtycon,, type sharing
(n>2)

shareq, and shareq, multiple

Figure 9: Grammar: Specifications

17

fundee 2= functor funbind single

empty
fundec, () fundec, sequence
funbind = funid (spec) (: sigezp) = strezp functor binding
(and funbind)
Junsigezp u= (spec) : sigexp functor signature
g
funspec u= functor fundesc functor specification
funspee, ;) funspec,
fundese = funid funsigezp (and fundesc)
program = sirdec structure-level declaration
stgdec signature declaration
fundec functor declaration
program, (;) program, sequence

Figure 10: Grammar: Functors and Programs

3.6 Pure Functor Forms

The grammatical forms of functor bindings, functor signature expressions and
functor applications which are treated in the formal semantics to follow, and
which we shall call pure forms, differ slightly from those given in the foregoing
grammatical rules, which we shall call applied forms. The pure forms are given
in Figure 11.

strexp u=funid (strezp) functor application

funbind = funid (strid : sigexp) (: sigexp') = strexp functor binding
(and funbind)

funsigezp = (strid : sigexp) : sigexzp' functor signature

Figure 11: Functor forms defined in the Semantics

These pure forms are more tractable in the semantic theory, since they treat
functors as functions of a single structure argument. On the other hand the ap-
plied forms given in the grammar (Figure 10) are more suitable for programming,
since they allow a functor to take merely a (named) type or value as argument.
These applied forms are mandatory in programming. Their semantics in terms

18

of the pure forms is given by translation, as follows. The applied form of functor
application,
funid (strdec)

is translated to the pure form
funid (struct strdec end)

which “wraps up” the strdec as a structure. On the other hand the applied form
of functor binding,

funid (spec) (: sigexp) = strezp
is translated to the pure form

funid (X :8ig spec end) (: sigezp') = let open X in sirezp end

(where X is a structure identifier not previously occurring in the functor binding)
which “wraps up” the spec as a signature, but compensates in the body to allow
direct reference to members of spec. The form of sigezp’ depends on the form of
sigexp. If sigezp is simply a signature identifier sigid, then sigezp' is also sigid;
otherwise sigezp must take the form sig spec, end , and then sigezp' is

s8ig local open X in spec; end end
Finally, the applied form of functor signature expression,
(spec) : sigexp
is translated to the pure form
(X : sig spec end) : sigexp'

where sigezp' is obtained from sigezp exactly as for functor binding above.

3.7 Closure Restrictions

The semantics presented in later sections requires no restriction on reference to
non-local identifiers. For example, it allows a signature to refer to external sig-
nature identifiers and (via sharing or open) to external structure identifiers;
it also allows a functor to refer to external identifiers of any kind.

However, in the present version of the language, apart from references to
identifiers bound in the initial basis By (which may occur anywhere), it is required
that signatures only refer non-locally to signature identifiers and that functors
only refer non-locally to functor and signature identifiers. These restrictions ease
separate compilation; however, they may be relaxed in a future version of the
language.

More precisely, the restrictions are as follows (ignoring reference to identifiers
bound in By):

19

e In any signature binding sigid = sigexp , the only non-local references in
stgezp are to signature identifiers.

e In any functor description funid (spec) : sigexp , the only non-local ref-
erences in spec and sigezp are to signature identifiers, except that sigezp
may refer to identifiers specified in speec.

e In any functor binding funid (spec) (: sigezp) = strezp , the only non-
local references in spec, sigexp and strexp are to functor and signature iden-

tifiers, except that both sigezp and strezp may refer to identifiers specified
in spec.

In the last two cases the final qualification allows, for example, sharing constraints
to be specified between functor argument and result.

20

4 Static Semantics for the Core

Our first task in presenting the semantics — whether for Core or Modules, static
or dynamic — is to define the objects concerned. In addition to the class of
syntactic objects, which we have already defined, there are classes of so-called
semantic objects used to describe the meaning of the syntactic objects. Some
classes contain simple semantic objects; such objects are usually identifiers or
names of some kind. Other classes contain compound semantic objects, such as
types or environments, which are constructed from component objects.

4.1 Simple Objects

All semantic objects in the static semantics of the entire language are built from
identifiers and two further kinds of simple objects: type constructor names and
structure names. Type constructor names are the values taken by type construc-
tors; we shall usually refer to them briefly as type names, but they are to be
clearly distinguished from type variables and type constructors. Structure names
play an active role only in the Modules semantics; they enter the Core semantics
only because they appear in structure environments, which (in turn) are needed
in the Core semantics only to determine the values of long identifiers. The simple
object classes, and the variables ranging over them, are shown in Figure 12. We
have included TyVar in the table to make visible the use of & in the semantics to
range over TyVar.

a or tyvar € TyVar type variables
t € TyName type names
m € StrName structure names

Figure 12: Simple Semantic Objects

Each o € TyVar possesses a boolean equality attribute, which determines
whether or not it admits equality — in which case we also say that it is an equality
type variable. Eacht € TyName has an arity k > 0, and also possesses an equality
attribute. We denote the class of type names with arity k by TyName(®.

4.2 Compound Objects

When A and B are sets Fin A denotes the set of finite subsets of A, and A L
denotes the set of finite maps (partial functions with finite domain)from A to B.

21

The domain and range of a finite map, f, are denoted Dom f and Ran f. A finite
map will often be written explicitly in the form {a; > by,:--,a; — b}, k > 0;
in particular the empty map is {}. We shall use the form {z — e ; ¢} — a form
of set comprehension — to stand for the finite map f whose domain is the set of
values z which satisfy the condition ¢, and whose value on this domain is given
by f(z) =e.

When f and g are finite maps the map f + g, called f modified by g, is the
finite map with domain Dom f U Dom g and values

(f + g)(a) = if @ € Dom g then g(a) else f(a).

The compound objects for the static semantics of the Core Language are shown
in Figure 13.

T € Type = TyVarU RecType U FunType U ConsType
(r1,-++,7) or 7®) € Typet
(a1, 0) or a®) € TyVark
¢ € RecType= Lab L Type
7 — 7' € FunType = Type x Type
ConsType = UkZOConsType(k)
7®)t € ConsType® = Type* x TyName*)
0 or Aa®).7 € TypeFen = UysoTyVar® x Type
o or Vol®.r € TypeScheme = Up>oTyVar® x Type
S or (m,E) € Str= StrName X Env
(0,CE) € TyStr= TypeFcn X ConEnv
SE € StrEnv = StrId 33 str
TE € TyEnv= TyCon A3 TyStr
CE € ConEnv= Con™ TypeScheme
VE € VarEnv = (VarU Con) 28 TypeScheme
EE € ExnEnv=Exn3 Type
E or (SE,TE,VE,EE) € Env = StrtEnv x TyEnv X VarEnv x ExnEnv
T € TyNameSet = Fin(TyName)
CorT,E € Context=TyNameSet x Env

Figure 13: Compound Semantic Objects
Note that A and V bind type variables. For any semantic object A, tynames A

and tyvars A denote respectively the set of type names and the set of type variables
occurring free in A.

22

4.3 Projection, Injection and Modification

Projection: We often need to select components of tuples — for example, the
variable-environment component of a context. In such cases we rely on variable
names to indicate which component is selected. For instance “VE of E” means
“the variable-environment component of E” and “m of S” means “the structure
name of §”.

Moreover, when a tuple contains a finite map we shall “apply” the tuple to
an argument, relying on the syntactic class of the argument to determine the
relevant function. For instance C(tycon) means (TE of C)tycon.

A particular case needs mention: C(con) is taken to stand for (VE of C)con.
The type scheme of a value constructor is held in VE as well as in TE (where it
will be recorded within a CE); thus the re-binding of a value constructor is given
proper effect by accessing it in VE rather than TFE.

Finally, environments may be applied to long identifiers. For instance if
longeon = strid;.---.stridg.con then E(longcon) means

(VE of (SE of ---(SE of (SE of E)strid,)strids---)stridy)con.

Injection: Components may be injected into tuple classes; for example,
“VE in Env” means the environment ({},{}, VE,{}).

Modification: The modification of one map f by another map g, written
f + g, has already been mentioned. It is commonly used for environment modi-
fication, for example E + E'. Often, empty components will be left implicit in a
modification; for example E+VE means E+({},{},VE,{}). For set components,
modification means union, so that C + (T, VE) means

((Tof C)UT, (EofC)+VE)

Finally, we frequently need to modify a context C by an environment E (or a
type environment TE say), at the same time extending T of C to include the type
names of E (or of TE say). We therefore define C @ TE, for example, to mean
C + (tynamesTE,TE).

4.4 Types and Type functions

A type 7 is an equality type, or admits equality, if it is of one of the forms
e «, where o admits equality;
e {laby — 11, ---, lab, — 1,}, where each 7; admits equality;

o 7(Ft, where t and all members of 7(¥) admit equality;

23

o (r')ref.

A type function 8 = Aa(®).r has arity k; it must be closed — i.e. tyvars(r) C af*)
— and the bound variables must be distinct. Two type functions are considered
equal if they only differ in their choice of bound variables (alpha-conversion). If ¢
has arity k, then we write ¢ to mean Aa(®).a(¥)t (eta-conversion); thus TyName C
TypeFcn. 8§ = Acal¥).r is an equality type function, or admits equality, if when
the type variables of*) are chosen to admit equality then r also admits equality.

We write the application of a type function 8 to a vector 7(¥) of types as 7(¥4.
If § = Ao®.r we set 7019 = 7{r(¥) /oM} (beta-conversion).

We write 7{8(¥) /t(*)} for the result of substituting type functions (%) for type
names $*¥) in 7. We assume that all beta-conversions are carried out after substi-
tution, so that for example

(r®){Aa®) .7 /t} = r{r(¥) [a¥)}

4.5 Type Schemes

A type scheme o = Va(%).7 generalises a type 7', written o > 7', if ' = 7{r(¥) /a(¥}
for some 7(¥)| where each member 7; of 7(¥) admits equality if oy does. If o' =
VAW.r! then o generalises o', written o > o', if o > 7' and ¥ contains no free
type variable of 0. It can be shown that o > o' iff, for all 7", whenever o' > 7"
then also o > 7".

Two type schemes o and o' are considered equal if they can be obtained from
each other by renaming and reordering of bound type variables, and deleting type
variables from the prefix which do not occur in the body. It can be shown that
oc=0'iff 0 > ¢' and ¢' > 0.

We consider a type 7 to be a type scheme, identifying it with V().r.

4.6 Closure

Let 7 be a type and A a semantic object. Then Clos,(r), the closure of 7 with
respect to A4, is the type scheme Va(*).7, where o(*) = tyvars(r) \ tyvars A. Com-
monly, A will be a context C. We abbreviate the total closure Closg(7) to
Clos(7). If the range of a variable environment VE contains only types (rather
than arbitrary type schemes) we set

ClossVE = {var — Closs(7) ; VE(var) =7}

with a similar definition for Clos4CE.

24

4.7 Type Environments and Well-formedness

A type environment takes the form
TE = {tycon; — (6;,CE;) ; 1<i <k}
and is well-formed if it satisfies the following conditions:

1. Either CE; = {}, or 0; has the form t; and each CE;(con) has the form
Vol®) (1 — o)1), The latter case occurs when tycon; is a datatype con-
structor; it is conveniently distinguished from an ordinary type constructor
by possessing at least one value constructor.

2. If tycon, is a datatype constructor different from ref, so that TE (tycon;) =
(t;, CE;) with CE; # {}, then t; admits equality only if, for each CE;(con) =
Val®) (1 — a(®)t;), the type function Aal®).r also admits equality. Further-

more, as many such #; as possible admit equality, subject to the foregoing
condition.

This ensures that the equality predicate = will be applicable to a con-

structed value con(v) of type 7(¥¢; only when it is applicable to the value v
itself, whose type is 7{r(¥) /a(¥)},

3. Different datatype constructors are bound to different type names; i.e., if
i # j and TE(tycon;) = (t,CE;) and DomCE; # § and TE(tycon,) =
(tj» CE;) and Dom CE; # @ then t; # t;.

All type environments occurring in the rules are assumed well-formed.

For any TE as above, Abs TE is the type environment {tycon; — (61,{}),---}
in which all constructor environments CE; have been replaced by the empty map.
The effect is to convert each tycon; into an ordinary type constructor.

25

4.8 Inference Rules

Each rule of the semantics allows inferences among sentences of the form
At phrase = A'

where A is usually an environment or a context, phrase is a phrase of the Core, and
A’ is a semantic object — usually a type or an environment. It may be pronounced
“phrase elaborates to A’ in (context or environment) A”. Some rules have extra
hypotheses not of this form; they may be called side conditions.

In the presentation of the rules, phrases within single angle brackets () are
called first options, and those within double angle brackets (()} are called
second options. To reduce the number of rules, we have adopted the following
convention:

In each instance of a rule, the first options must be either all present
or all absent; similarly the second options must be either all present
or all absent.

Although not assumed in our definitions, it is intended that every context
C =T, FE has the property tynames E C T. Thus T may be thought of, loosely,
as containing all type names which “have been generated”. It is necessary to
include T as a separate component in a context, since tynames F may not contain
all the type names which have been generated; one reason is that a context T, E
is a projection of the basis B = (M, T), F, G, E whose other components F and
G could contain other such names — recorded in T' but not present in E. Of
course, remarks about what “has been generated” are not precise in terms of the
semantic rules. But the following precise result may easily be demonstrated:

Let S be a sentence T, FE b phrase == A such that tynamesE C T,
and let ' be a sentence T',E'} phrase' = A' occurring in a proof
of S; then also tynames E' C T".

Atomic Expressions C |- atezp => 71

C(longvar) > 7
C t longvar = 7

(1)

C(longecon) > 7
C + longecon = 7

(2)

(CF ezprow = o)
C I { (ezprow) } = {}{+ o) in Type

(3)

26

Ctdec=FE CoErexp=>r

Cl let decin ezpend =1 (4)
Chrexp=r 5
Ck(exp) =7

Comments:

(1),(2) The instantiation of type schemes allows different occurrences of a single
longvar or longcon to assume different types.

(4) The use of @, here and elsewhere, ensures that type names generated by
the first sub-phrase are different from type names generated by the second

sub-phrase.
Expression Rows C I exprow = p
Cherp=r (C F ezprow = o) (6)
C Flab = ezxp (, exprow) => {lab — 7}(+ g)
Expressions Chemp=r
Cl atexp =7)
Cl atexp =71
Clhexp=r1'—r1 Ctl atezp = 7' ®)
C |- exp atexp = 7
Clhezxp=r Chty=r ©)
Clezp: ty=r
Clherxp=r C t handler = 1 (10)
C I~ exp handle handler = 7
C(longezn) =1 Clhexp=>r7 (11)
C I raise longezn with ezp = 7'
C I+ match = 7 -
C I\ fn match =7 (12)
Comments:

(7) The relational symbol I is overloaded for all syntactic classes (here atomic
expressions and expressions).

27

it e

(9) Here 7 is determined by C and ty.

(11) Note that 7' does not occur in the premises; thus a raise expression has
“arbitrary” type.

Matches |C F match = 7|
Cl mrule =7 (C F match = 1) (13)

C F mrule (| match) =1
Match Rules C F mrule = 7|
C I pat = (VE,7) C+VE}l exp =1’ (14)

Cl pat=>ezp =7 —1
Comment: This is the only rule by which new free type variables can enter the
context. These new type variables will be chosen, in effect, during the elaboration
of pat (i.e., in the inference of the first hypothesis). In particular, their choice

may have to be made to agree with type variables present in any explicit type
expression occurring within ezp (see rule 9).

Handlers |C \ handler = 1|
C | hrule =1 (C F handler = 1) (15)

C | hrule { || handler) = 1
Handle Rules |C F hrule = 1|
C(longezn) =1 Ct match=>71"— 71 (16)

C I longezn with match = 7

Clhexp=>r1
17
CF?=>exp =1 (17)
Declarations A |C F dec = E|
C I valbind = VE (18)
C | val valbind = Clos¢cVE in Env

28

C | typbind = TE

C I type typbind => TE in Env (19)
C ® TE |- datbind = VE,TE V(t,CE) € RanTE, t ¢ (T of C) (20)

C |- datatype datbind = (VE,TE) in Env

C ® TE |- datbind = VE,TE V(t,CE) € RanTE, t ¢ (T of C)
Co(VE,TE)\ dec = E (21)
C - abstype datbind with dec end => E + AbsTE

C I eznbind = EE (22)

C - exception eznbind => EF in Env
Ct decy = Ey CoE l dec; = E, (23)

C I local dec¢y in dec; end = E,
C(longstrid,) = (my, E;) - C(longstrid,) = (my, E,) (24)
C - open longstrid, --- longstrid, = E; + --- + E,,

CthH = {} in Env (25)
Ct decy = E; CHE;| | deey = E, (26)

C I~ dec; (;) dec; = E; + E,

Comments:

(18) Here VE will contain types rather than general type schemes. The closure of
VE is exactly what allows variables to be used polymorphically, via rule 1.

(20),(21) The side condition is the formal way of expressing that the elabora-
tion of each datatype binding generates new type names. Adding TE to
the context on the left of the I captures the recursive nature of the bind-
ing. Recall that TE is assumed well-formed (as defined in Section 4.7). If
tynames(E of C) C T of C and the side condition is satisfied then C & TE
is well-formed.

(22) No closure operation is used here, since EE maps exception names to types
rather than to general type schemes.

29

Value Bindings [C'F valbind = VE|

C pat = (VE,1) Clezp=r1 (C I valbind = VE")

27
C I- pat = exp (and valbind) = VE (+ VE') (27)
C +VE I valbind = VE (28)
C t rec valbind = VE
Comments:
(27) When the option is present we have Dom VENDom VE' = § by the syntactic
restrictions.

(28) Modifying C by VE on the left captures the recursive nature of the binding.
From rule 27 we see that any type scheme occurring in VE will have to be
a type. Thus each use of a recursive function in its own body must be
ascribed the same type.

Type Bindings C I typbind = TE

tyvarseq = ol¥) Chty=r1 (C F typbind = TE)
C |- tyvarseq tycon = ty (and typbind) =
{tyeon — (Aa®).7,{})} (+ TE)
Comment: The syntactic restrictions ensure that the type function Aa(®.7 satisfies
the well-formedness constraints of Section 4.4 and they ensure tycon ¢ DomTE.

(29)

Data Type Bindings C I datbind = VE,TE

tyvarseq = o¥) C,a®t |- constrs = CE (C F datbind = VE,TE)
C | tyvarseq tycon = consirs (and datbind) =
ClosCE(+ VE), {tycon — (t,ClosCE)} (+ TE)

Comment: The syntactic restrictions ensure Dom VE N Dom CE = @ and tycon ¢
DomTE.

(30)

Constructor Bindings C,t t constrs = CE

(Chty=1) ((C,r} constrs = CE))
C,7F con (of ty) ({ | constrs)) =
{eon — 1} (+ {econ — 7' — 7}) ((+ CE))
Comment: By the syntactic restrictions con ¢ Dom CE.

(31)

30

Exception Bindings |C F exnbind = EE |

(ClHity=r) ((C I eznbind = EE))

C - ezn (: ty) ((and eznbind)) = (52)
{ezn s unit} (+ {ezn — 7}) ((+ EE))
C(longezn) = (Ckty=r1) ((C F exnbind = EE)) (33)

C | ezn (: ty) = longezn ((and eznbind)) =
{ean 1> 1} ((+ EE))

Comments:

(32),(33) No matter which of the options are present, given C and eznbind there
is at most one EFE such that C | eznbind = EE.

Atomic Patterns C \ atpat = (VE, 1)

GF = @) (59

C + var = ({var — 7},7) (35)

C/(longeon) >

C I longeon = ({},7) (36)
(C F patrow = (VE, g)) (37)
C F { (patrow) } = ({}{(+ VE), {}(+ o) in Type)

C F pat = (VE, 1) (38)

Ctr (pat) = (VE,7)

Comments:
(35) Note that var can assume a type, not a general type scheme.

Pattern Rows C t patrow = (VE, p)
39
Ck...=({})o (39)
C + pat = (VE,7) (C & patrow = (VE',9) lab ¢ Domp) (40)

C - lab = pat (, patrow) = (VE(+ VE"), {lab — 7}{+ a))
Comment:

(40) By the syntactic restrictions, DomVE N DomVE' = 0.

31

Patterns C | pat = (VE, 1)

C - atpat = (VE, 1)
C I atpat = (VE, 1)

C(longcon) > 1" — 71 C I atpat = (VE,7')

C - longcon atpat = (VE, 1)

C I pat = (VE,7) Ctty=r
Ct pat : ty= (VE,7)

C var = (VE,71) (Ckty=r1)
C \ pat = (VE',1)
C F var(: ty) as pat=> (VE +VE',7)

Comments:

(44) By the syntactic restrictions, DomVE N Dom VE' = 0.

Type Expressions

tyvar = o
C I tyvar = «

(C | tyrow = o)
O+ { (tyrow) } = {}(+ @) in Type

tyseq =ty,;--ty, Chity;=n(1<i<k)
C (longtycon) = (0, CE)

(41)

(42)

(43)

(44)

Chity=>r

C | tyseq longtycon = (kg

Chty=r Chty =7
Chty->ty=>r—r

Chty=r
CH(ty)=>r

Comments:

(47) Recall that for 7(¥1§ to be defined, # must have arity .

32

(45)

(46)

(47)

(48)

(49)

Type-expression Rows C F tyrow = p

Chty=r1 (Cl tyrow = o)
Clklab : ty (., tyrow) = {lab — 7}{(+ g)

Comment: The syntactic constraints ensure lab ¢ Dom g.

(50)

4.9 Further Restrictions

There are a few restrictions on programs which should be enforced by a compiler,
but are better expressed separately from the preceding Inference Rules. They are
as follows:

1. The reference value constructor ref may occur in patterns with polymor-
phic type, but in an expression it must always elaborate to a monotype,
i.e. a type containing no type variables. This restriction will be relaxed
in future Versions, but some restriction will always be necessary to ensure
soundness of the type discipline.

2. For each occurrence of a record pattern containing a record wildcard, i.e. of
the form {lab;=pat,,---,lab,=pat,,,. . .}, the program context must deter-
mine uniquely the domain {laby,---,lab,} of its record type, where m < n;
thus, the context must determine the labels {lab,, 1, ,lab,} of the fields
to be matched by the wildcard. For this purpose, an explicit type con-
straint may be needed. This restriction is necessary to ensure the existence
of principal type schemes.

3. In a match, the sequence of patterns pat,, -+, pat,, must be irredundant and
exhaustive. That is, each pat; must match some value (of the right type)
which is not matched by pat; for any 7 < j, and every value (of the right
type) must be matched by some pat;. The compiler must give a warning on
violation of this restriction, but should still compile the match.

4.10 Principal Environments

Let C be a context, and suppose that C - dec = FE according to the preceding
Inference Rules. Then E is principal (for dec in the context C) if, for all E' for
which C - dec = E', we have E > E'. We claim that if dec elaborates to any
environment in C then it elaborates to a principal environment in C. Strictly,
we must allow for the possibility that type names which do not occur in C, are
chosen differently for E and E'; the stated claim is therefore made up to such
variation.

33

5 Static Semantics for Modules

5.1 Semantic Objects

The simple objects for Modules static semantics are exactly as for the Core. The
compound objects are those for the Core, augmented by those in Figure 14.

M € StrNameSet = Fin(StrName)
N or (M,T) € NameSet = SttNameSet x TyNameSet
Y or (N)S € Sig= NameSet x Str
® or (N)(S,(N")S') € FunSig = NameSet x (Str x Sig)
G € SigEnv = Sigld 33 sig
F € FunEnv=Funld 3 FunSig
Bor N,F,G,E € Basis=NameSet X FunEnv X SigEnv x Env

Figure 14: Further Compound Semantic Objects

The prefix (), in signatures and functor signatures, binds both type names
and structure names. We shall always consider a set N of names as partitioned
into a pair (M, T) of sets of the two kinds of name.

It is sometimes convenient to work with an arbitrary semantic object A, or
assembly A of such objects. As with the function tynames, strnames(4) and
names(A) denote respectively the set of structure names and the set of names
occurring free in A.

We shall often need to change bound names in semantic objects. For example,
we sometimes require that N N N' = §§ in a functor signature. More generally,
for arbitrary A it is sometimes convenient to assume that all nameset prefixes
N occurring in A are disjoint. In that case we say that we are disjoining bound
names in A.

For any structure S = (m, (SE,TE,VE, EE)) we call m the structure name
or name of S; also, the proper substructures of S are the members of Ran SE and
their proper substructures. The substructures of S are S itself and its proper sub-
structures. The structures occurring in an object or assembly A are the structures
and substructures from which it is built.

The operations of projection, injection and modification are as for the Core.
Also, we frequently need to modify a basis B by an environment E (or a structure
environment SE say), at the same time extending Nof B to include the type names
and structure names of E (or of SE say). We therefore define B® SE, for example,
to mean B + (names SE, SE).

34

5.2 Consistency

A set of type structures is said to be consistent if, for all (6;, CE;) and (6,, CE,)
in the set, if §; = 6, then

CEl = {} or C’Ez = {} or CEl - CEz

A semantic object A or assembly A of objects is said to be consistent if, after
disjoining bound names, for all S; and S; in A and for every longstrid and every
longtycon

1. If m of S; = m of S,, and both S;(longstrid) and S;(longstrid) exist, then

m of Si(longstrid) = m of Sy(longstrid)

2. If mof S; = mof S;, and both S;(longtycon) and S, (longtycon) exist, then

0 of Sy(longtycon) = 0 of Sy(longtycon)

3. The set of all type structures in A is consistent

As an example, a functor signature (N)(S, (N')S') is consistent if, assuming
first that NN N' =0, A = {S,1, 52} is consistent.

We may loosely say that two structures S; and S, are consistent if {S;, S} is
consistent, but must remember that this is stronger than the assertion that S is
consistent and S, is consistent.

Note that if A is a consistent assembly and A' C A then A' is also a consistent
assembly.

5.3 Well-formedness

Conditions for the well-formedness of type environments TE are given with the
Core static semantics.

A signature (N)S is well-formed if, whenever (m, E) is a substructure of S
and m ¢ N, then N N (names E) = §. A functor signature (N)(S, (N")S') is well-
formed if (N)S, (N')S’ and (N U N")S' are well-formed, and names(N")S'N N C
names S (the latter condition is satisfied automatically for user-defined functors).

An object or assembly A is well-formed if every type environment, signature
and functor signature occurring in A is well-formed.

35

5.4 Cycle-freedom

An object or assembly A is cycle-free if it contains no cycle of structure names;
that is, there is no sequence

Mg,y Mp—1, Mg = Mg (k > 0)

of structure names such that, for each ¢ (0 < ¢ < k) some structure with name
m; occurring in A has a proper substructure with name m;,,.

5.5 Admissibility

An object or assembly A is admissible if it is consistent, well-formed and cycle-free.
Henceforth it is assumed that all objects mentioned are admissible; in particu-
lar, the admissibility of each semantic object mentioned is taken as a condition
throughout the semantic rules which follow. (In our semantic description we have
not undertaken to indicate how admissibility should be checked in an implemen-
tation.)

5.6 Type Realisation

A type realisation is a map o1y : TyName — TypeFcn such that ¢ and o1y(t)
have the same arity, and if ¢ admits equality then so does p1y(2).
The support Supp @1y of a type realisation @ty is the set of type names t for

which o1y(t) # t.

5.7 Realisation

A realisation is a function ¢ of names, partitioned into a type realisation oy :
TyName — TypeFcn and a function pgy : StrName — StrName. The support
Suppy of a realisation ¢ is the set of names n for which ¢(n) # n. The yield
Yield of a realisation ¢ is the set of names which occur in some p(n) for which
n € Supp p.

Realisations ¢ are extended to apply to all semantic objects; their effect is
to replace each name n by ¢(n). In applying ¢ to an object with bound names,
such as a signature (NV)S, first bound names must be changed so that, for each
binding prefix (N),

" NN (Suppp U Yieldp) =0 .

5.8 Signature Instantiation

A structure S, is an instance of a signature ¥; = (IN;)S;, written £,>8,, if
there exists a realisation ¢ such that ©(S;) = S, and Suppw C N;. A signature

36

22 = (Nz)Sz is an instance of 21 - (Nl)Sl, written 21222, if 21232 and Nz n
(namesX;) = 0. We claim that X, >3, iff, for all S, whenever £,>S then ;> S.

5.9 Functor Signature Instantiation

A pair (S,(N")S") is called a functor instance. Given ® = (N;)(S1,(N})S1), a
functor instance (3, (IV;)S3) is an instance of ®, written ®>(S,, (NV3)S}), if there
exists a realisation ¢ such that p(Sy, (IN7)S]) = (Sz, (N;)S;) and Suppp C N;.

5.10 Enrichment

In matching a structure to a signature, the structure will be allowed both to
have more components, and to be more polymorphic, than (an instance of) the
signature. Precisely, we define enrichment of structures, environments and type
structures by mutual recursion as follows.

A structure S; = (my, E1) enriches another structure S; = (mg, E;), written
Sy~ Sz, if

1. mlzrﬁz
2. E, > E,

An environment E; = (SE,,TE,,VE,, EE,) enriches another environment E; =
(SEz, TE,,VE,, EEz), written E; > E,, if

1. Dom SE; D Dom SE;, and SE,(strid) > SE;(strid) for all strid € Dom SE,
2. DomTE; O DomTE,, and TE,(tycon) > TE;(tycon) for all tycon € DomTE,
3. DomVE; D DomVE;, and VE,(var) > VE;(var) for all var € DomVE,

4. Dom EE; DO Dom EE,, and EE,(ezn) = EE,(ezn) for all ezn € Dom EE,

Finally, a type structure (61, CE;) enriches another type structure (8, CE;), writ-
ten (01, CE]_) - (02, CEz), if

1. 01 - 02
2. Either CE; = CE; or CE, = {}

5.11 Principal Signatures

Let B be a basis, and suppose that B |- sigezp => S according to the rules below.
Then (N)S is principal (for sigezp in the basis B) if (N of B) N N = @, and for
all 8! for which B | sigezp => S' we have (N)S>S'. We claim that if sigezp
elaborates to any structure S in B then it possesses a principal signature in B.

37

5.12 Inference Rules

As for the Core, the rules of the Modules static semantics allow sentences of the
form

A& phrase = A’

to be inferred, where in this case A is either a basis, a context or an environment
and A' is a semantic object. The convention for options is as in the Core semantics.

Although not assumed in our definitions, it is intended that every basis B =
N,F,G,E in which a program is elaborated has the property that names F U
namesG U names E C N. This is not the case for bases in which signature
expressions and specifications are elaborated, but the following Theorem can be
proved:

Let S be an inferred sentence B - program = B' in which B satisfies
the above condition. Then B’ also satisfies the condition.

Moreover, if §' is a sentence of the form B" - phrase = A occurring
in a proof of S, where phrase is either a structure expression or a
structure declaration, then B” also satisfies the condition.

Finally, if T, E phrase = A occurs in a proof of S, where phrase is
a phrase of the Core, then tynames E C T

Structure Expressions B |- strexp = S

B |- strdec = E m ¢ (N of B) U names E (51)
B |- struct strdec end = (m, E)

B(longstrid) = S

52
B |- longstrid = S (52)
B |- strezp = S
B(funid)>(S",(N')S") , S > S"
Nof B)nN'=
(N of B) 0 (53)

B & funid (strezp) = S'

B |- strdeec = E B@®EL strexp= S
B | let strdec in strexp end = S

(54)

Comments:

(51) The side condition ensures that each generative structure expression receives
a new name. If the expression occurs in a functor body the structure name

38

will be bound by (N') in rule 95; this will ensure that for each application of
the functor, by rule 53, a new distinct name will be chosen for the structure
generated.

(53) The side condition (N of B) N N' = § can always be satisfied renaming
'~ bound names in (N')S’ thus ensuring that the generated structures receive
new names.

The realisation ¢ for which ¢(B(funid)) = (S",(N')S') is uniquely deter-
mined by B(funid) and S, since S > S" can only hold if the type names
and structure names in S and S” agree. Recall that enrichment > allows
more components and more polymorphism, while instantiation > does not.

Sharing specified in the declaration of the functor funid is represented by
the occurrence of the same name in both components of B(funid), and
this repeated occurrence is preserved by ¢, yielding sharing between the
argument structure S and the result structure S’ of this functor application.

(54) The use of @, here and elsewhere, ensures that structure and type names
generated by the first sub-phrase are distinct from names generated by the
second sub-phrase.

Structure-level Declarations | B | strdec = E |
Cof Bl-dec=E E principal in (C of B) (55)
Bt dec = E

B |- strbind = SE (56)

B F structure strbind = SE in Env
B |- strdec; = E; B @ E, |- strdecy = E, (57)

B |- local strdec; in strdec; end => E,
BF = {} in Env (58)
B St'rdCC]_ = E]_ Bo E1 - Strd662 = E2 (59)

B |- strdecy (;) strdec; = E;, + E,

Comments:

(55) The side condition ensures that all type schemes in E are as general as
possible and that all new type names in E admit equality, if possible.

39

Structure-level Bindings | B - strbind = SE|

Bt strezp = S (Bt sigezp=>S', S > S')
((B + names S - strbind = SE))

" BF strid (: sigezp) = strezp ((and strbind)) => {strid — S{")} ((+ SE))
Comment: If present, sigexp has the effect of restricting the view which strid

provides of S while retaining sharing of names. The notation S{') means S', if
the first option is present, and S if not.

(60)

Signature Expressions B |- sigexp = S
Bt spec = E (61)
B | sig spec end = (m, E)
S
B(sz.ngl)_S (62)
Bt sigid = S
Comments:

(61) In contrast to rule 51, m is not here required to be new. The name m
may be chosen to achieve the sharing required in rule 84, or to achieve the
enrichment side conditions of rule 60 or 95. The choice of m must result in
an admissible object.

(62) The instance S of B(sigid) is not determined by this rule, but — as in rule 61
— the instance may be chosen to achieve sharing properties or enrichment

conditions.
Signature Declarations B |- sigdec = G
B} sighind = G (63)
B |- signature sighind = G
- 64
B+ ={} (64)
B | sigdec; = Gy B + Gy |- sigdec, = G» (65)

B |- sigdec, (;) sigdec, = G1+ G;
Commenits:

(65) A signature declaration does not create any new structures or types; hence
the use of + instead of @.

40

Signature Bindings B |- sighind = G

B |- sigezp = S (N)S principal in B (Bt sigbind = G)
B - sigid = sigezp (and sigbind) = {sigid — (N)S} (+ G)
Comment: The principality condition ensures that the signature found is as gen-

eral as possible given the sharing constraints present in sigezp. The set N is
determined by the definition of principality in Section 5.11.

(66)

Specifications B spec = E
C of B |- valdesc = VE (67)
B |- val valdesc = ClosVE in Env
C of B |- typdesc = TE (68)
B I- type typdesc = TE in Env
Cof BF typdesc = TE V(8,CE) € RanTE, 0 admits equality (69)
B - eqtype typdesc = TE in Env
C of B+ TE - datdese = VE,TE (70)
B |- datatype datdesc = (VE,TE) in Env

C of B |- ezndesc = EE (71)

B |- exception ezndesc = EE in Env
B |- strdesc = SE (72)

B |- structure strdesc => SE in Env
B |- shareq = {} (73)

B |- sharing shareq = {} in Env
B - spec, = E4 B + E; |- specy = E, (74)
B |- local spec; in spec, end = E,
B(longstrid,) = (m1, E,) --- B(longstrid,) = (my, E,) (75)
B |- open longstrid, --- longstrid,, = Ey + --- + E,,
B(stgid,)>(m1, E1) -+ B(stgid,)>(mn, Ey) (76)
B - include sigid, --- sigid,, = E1 + -+ E,

(77)

Bt = {}inEnv

41

B |- spec; = E B + E; |- spec; = E,
B |- spec, (;) spec, = Ey + E,

(78)
Comments:
(67) VE is determined by B and valdesc.

(68)—(70) The type functions in TE may be chosen to achieve the sharing hypote-
sis of rule 85 or the enrichment conditions of rules 60 and 95. In particular,
the type names in TF in rule 70 need not be new. Also, in rule 68 the type
functions in TF may admit equality.

(71) EE is determined by B and ezndesc and contains monotypes only.

(76) The names in the instances may be chosen to achieve sharing or enrichment
conditions.

Value Descriptions |C F valdesc = VE|

Chty=r1 (CF valdesc = VE)

79
C |- var : ty (and valdesc) = {var — 7} (+ VE) (79)
Type Descriptions C I~ typdesc = TE
tyvarseq = o¥ (C | typdesec = TE) arityd = k (80)
C |- tyvarseq tycon (and typdesc) = {tycon — (0,{})} (+ TE)
Comment: Note that any 0 of arity k may be chosen.
Datatype Descriptions C F datdesc = VE,TE
tyvarseq = o(®) C, o)t - constrs = CE (C V- datdesc = VE,TE) (81)
C | tyvarseq tycon = constrs (and datdesc) =
ClosCE(+ VE), {tycon — (t,ClosCE)} (+ TE)
Exception Descriptions |C F exndesc = EE|
Chiy=r tyvars(r) =0 (C} ezndesc = EE) (82)

C I ezn : ty (and ezndesc) = {ezn — 7} (+ EE)

42

Structure Descriptions | B - strdesc = SE |

B |- sigexp = S (Bt strdesc = SE)

B |- strid : sigexp (and strdesc) = {strid — S} (+ SE) (83)
Sharing Equations Bt shareqg = {}
m of (B(longstrid,)) = --- = m of (B(longstrid,,)) (84)

B |- longstrid, = --- = longstrid,, = {}

B(longtycon,) = --- = B(longtycon,,)
(85)
B |- type longtycon, = --- = longtycon,, = {}

Bt shareq, = {} Bt shareq, = {} (86)

B} shareq, and shareq, = {}
Comments: .

(84) By the definition of consistency the premise is weaker than
B(longstrid,) = --- = B(longstrid,,)

Two different structures with the same name may be thought of as repre-
senting different views.

Functor Specifications B\ funspec = F
B} fundesec = F (87)

B I- functor fundesc = F
BF =0 (58)

B |- funspec, = F; B + F; - funspec, = F3

B |- funspec, (;) funspec, = F; + F; (89)
Functor Descriptions B |- fundesc = F
B |- funsigezp = & (B F fundesc = F) (90)

B |- funid funsigezp (and fundesc) = {funid — ®}(+ F)

43

Functor Signature Expressions B |- funsigexp = @

B | sigezp = S (IN)S principal in B
B & {strid — S} I sigezp' = S’
N' = names S’ \ ((N of B) U N)

91
B |- (strid : sigezp) : sigezp' = (N)(S,(N")S") (91)
Functor Declarations B |- fundec = F
B I funbind = F (92)
B |- functor funbind = F
93
B ={} (%3)
B |- fundee; = Fy B + Fi - fundec, = F3 (94)
B | fundec, (;) fundec, = Fy + F,
Functor Bindings B funbind = F
B |- sigexp = S (N)S principal in B
B @ {strid — S} I- strezp = S’
(B @ {strid — S} I sigezp' = S", S' >~ S")
N'=namesS'\ ((N of B) UN)
((B F funbind = F)) (95)

B & funid (strid : sigezp) (: sigezp') = strezp ((and funbind)) =
{funid — (N)(S, (N)S'())} {{(+ F))

Comment: Here (IN)S is required to be principal so as to be as general as possible
given the sharing constraints in sigezp. Since @ is used, any structure name m and
type name t in S acts like a constant in the functor body; in particular, it ensures
that further names generated during elaboration of the body are distinct from m
and t. The set N' is chosen such that every name free in (N)S or (N)(S, (N')S")
is free in B.

Programs BV program = B’

B |- strdec = E
B |- strdec => (names E, E) in Basis

(96)

44

B - stgdec = G

97
B | sigdec => (names G, G) in Basis (97)
B |- fundec = F (98)
B | fundec => (names F, F) in Basis
B |- program, = By B + By |- program, = B, (99)

B - program, (;) program, => B; + B,

5.13 Functor Matching

As pointed out in Section 3.4 on the grammar for Modules, there is no phrase
class whose elaboration requires matching a functor to a functor specification.
But a precise definition of this matching is needed, since a functor g may only be
separately compiled in the presence of specification of any functor f to which ¢
refers, and then a real functor f must match this specification. In the case, then,
that f has been specified by a functor signature

®; = (N1)(S1, (N7)S))
and that later f is declared with functor signature
Dy = (N2)(S2, (IV2)S3)

the following matching rule will be employed:
A functor signature ®; = (N;)(S;,(NN3)S;) matches another functor signa-
ture, ®; = (Nyp)(S1,(N])S)), if

1. rFhere is a realisation ¢, Suppp C Ns, such that pS; < Sy

2. Assuming that Yieldp N N; = @, there is a realisation ¢', Supp ' C N],
such that ¢'S] < ¢S]

The first condition ensures that the real functor signature ®, for f requires the
argument strexp of any application f(strezp) to have no more sharing, and no
more richness, than was predicted by the specified signature ®,. The second con-
dition ensures that the real functor signature ®,, instantiated to (oS3, (N3)©Ss),
provides in the result of the application f(strezp) no less sharing, and no less
richness, than was predicted by the specified signature ®,.

45

6 Dynamic Semantics for the Core

6.1 Reduced Syntax

Since types are fully dealt with in the static semantics, the dynamic semantics
ignores them. The Core syntax is therefore reduced by the following transforma-
tions, for the purpose of the dynamic semantics:

43

o All explicit type ascriptions “: ty” are omitted.

e Any declaration of the form “type typbind” or “datatype datbind” is re-
placed by the empty declaration.

o A declaration of the form “abstype datbind with dec end” is replaced by
“dec”.

e The Core phrase classes typbind, datbind, constrs, ty and tyrow are omitted.

6.2 Simple Objects

All objects in the dynamic semantics are built from identifier classes together
with the simple object classes shown (with the variables which range over them)
in Figure 15.

a € Addr addresses
e € Exc exceptions
b € BasVal basic values

{FAIL} failure

Figure 15: Simple Semantic Objects

Addr and Exc are infinite sets. BasVal is described below. FAIL is the result
of a failing attempt to match a value and a pattern or of a failing attempt to
handle an exception with a handle rule. Thus FAIL is neither a value nor an
exception, but simply a semantic object used in the rules to express operationally
how matching proceeds.

6.3 Compound Objects

The compound objects for the dynamic semantics are shown in Figure 16. Many
conventions and notations are adopted as in the static semantics; in particular

46

S
m

Val = {:=} U BasValU Con U (Con X Val)u
Record U Addr U Closure

r € Record = Lab 33 Val
[e,v] or p € Pack = Exc X Val
(match, E,VE) € Closure =Match X Env x VarEnv
mem € Mem = Addr 3 Val
excs € ExcSet = Fin(Exc)
(mem, excs) or s € State = Mem X ExcSet
(SE,VE,EFE) or E € Env = StrEnv X VarEnv x ExnEnv
SE € StrEnv = Strld 3 Env
VE € VarEnv= Var 2 Val
EE € ExnEnv=Exn 5 Exc

Figure 16: Compound Semantic Objects

projection, injection and modification all retain their meaning. We generally omit
the injection functions taking Con, Con X Val etc into Val. For records r € Record
however, we write this injection explicitly as “in Val”; this accords with the fact
that there is a separate phrase class ExpRow, whose members evaluate to records.
We take U to mean disjoint union over semantic object classes.

Although the same names, e.g. E for an environment, are used as in the
static semantics, the objects denoted are different. This need cause no confusion
since the static and dynamic semantics are presented completely separately. An
important point is that structure names m have no significance at all in the
dynamic semantics; this explains why the object class Str = StrName x Env is
absent here — for the dynamic semantics the concepts structure and environment
coincide.

6.4 Basic Values

The basic values in BasVal are the values bound to predefined variables. These
values are denoted by the identifiers to which they are bound in the initial dynamic
basis (see Appendix D), and are as follows:

abs floor real sqrt sin cos arctan exp 1n
size chr ord explode implode div mod
0\ ¥ + - = <> < > <K= >=
std_in std_out open_in open_out close_in close_out

47

input output lookahead end_of_stream

The meaning of basic values (almost all of which are functions) is represented by
the function

APPLY : BasVal x Val — ValU Pack
which is detailed in Appendix D.

6.5 Basic Exceptions

A subset BasExc C Exc of the exceptions are bound to predefined exception
names. These exceptions are denoted by the identifiers to which they are bound
in the initial dynamic basis (see Appendix D), and are as follows:

ord chr div mod / * + - floor sqrt exp 1n
io_failure match bind interrupt

The exceptions on the first line are raised by basic functions of the same name,
and io_failure by certain of the basic input/output functions, as detailed
in Appendix D. The exceptions match and bind are raised upon failure of
pattern-matching in evaluating a match or a valbind, as detailed in the rules to
follow. Finally, interrupt is raised by external intervention.

In a match of the form pat, => exp, | ... | pat, => ezp, the pattern sequence
paty, ..., pat, should be irredundant and exhaustive. That is, each pat; must
match some value (of the right type) which is not matched by pat; for any ¢ < 7,
and every value (of the right type) must be matched by some pat;. The compiler
must give warning on violation of this restriction, but should still compile the
match. Thus the match exception will only be raised for a match which has
been flagged by the compiler. The restriction is inherited by derived forms; in
particular, this means that in the function binding var atpat, --- atpat, (: ty)
(consisting of one clause only), each separate atpat; should be exhaustive by
itself.

For each value binding pat = ezp the compiler must issue a report (but still
compile) if either pat is not exhaustive or pat contains no variable. This will (on
both counts) detect a mistaken declaration like val nil = exp in which the user
expects to declare a new variable nil (whereas the language dictates that nil is
here a constant pattern, so no variable gets declared). However, these warnings
should not be given when the binding is a component of a top-level declaration
val valbind; e.g. val x:: 1 =exzp; and y =ezp, is not faulted by the compiler at
top level, but may of course generate a bind exception.

48

6.6 Closures

The informal understanding of a closure (match, E,VE) is as follows: when the
closure is applied to a value v, match will be evaluated against v, in the en-
vironment F modified in a special sense by VE. The domain DomVE of this
third component contains those function identifiers to be treated recursively in
the evaluation. To achieve this effect, the evaluation of match will take place not
in E + VE but in F + RecVE, where

Rec : VarEnv — VarEnv

is defined as follows:

¢ Dom(RecVE) = DomVE
o If VE(var) ¢ Closure, then (RecVE)(var) = VE(var)

o If VE(var) = (match', E',VE') then (Rec VE)(var) = (match', E',VE)

The effect is that, before application of (match, E,VE) to v, the closure values
in RanVE are “unrolled” once, to prepare for their possible recursive application
during the evaluation of match upon v.

This device is adopted to ensure that all semantic objects are finite (by con-
trolling the unrolling of recursion). The operator Rec is invoked in just two
places in the semantic rules: in the rule for recursive value bindings of the form
“rec valbind”, and in the rule for evaluating an application expression “ezp aterp”
in the case that exp evaluates to a closure.

6.7 Inference Rules
The semantic rules allow sentences of the form
s,Al phrase = A', s

to be inferred, where A is usually an environment, A’ is some semantic object and
s,s' are the states before and after the evaluation represented by the sentence.
Some hypotheses in rules are not of this form; they are called side-conditions.
The convention for options is the same as for the Core static semantics.

In most rules the states s and s’ are omitted from sentences; they are only
included for those rules which are directly concerned with the state — either re-
ferring to its contents or changing it. When omitted, the convention for restoring
them is as follows. If the rule is presented in the form

Ay - phrase; = A} A, phrase, = A)
Ay & phrase, = A,
A& phrase = A’

49

then the full form is intended to be
80, A1 |- phrase; = A}, s, 81, A | phrase, = A}, s,
Sn—1, An | phrase, = Al ,s,
8o, A I phrase = A', s,

(Any side-conditions are left unaltered). Thus the left-to-right order of the hy-
potheses indicates the order of evaluation. Note that in the case n = 0, when
there are no hypotheses (except possibly side-conditions), we have s, = so; this
implies that the rule causes no side effect. The convention is called the state
convention, and must be applied to each version of a rule obtained by inclusion
or omission of its options.

A second convention, the exception convention, is adopted to deal with the
propagation of exception packets p. For each rule whose full form (ignoring side-
conditions) is

81, A1 - phrase; = A}, s} Sn, An - phrase, = A}, s,
s, A - phrase => A, s

and for each k, 1 < k < n, for which the result A} is not a packet p, an extra rule
is added of the form

81, A1 - phrase; = A, s] sk, Ax b phrase, = p', &'
s, A |- phrase = p', s’

where p' does not occur in the original rule.! This indicates that evaluation of
phrases in the hypothesis terminates with the first whose result is a packet (other
than one already treated in the rule), and this packet is the result of the phrase
in the conclusion.

A third convention is that we allow compound variables (variables built from
the variables in Figure 16 and the symbol “/”) to range over unions of semantic
objects. For instance the compound variable v/p ranges over Val U Pack. We
also allow z/FAIL to range over X/FAIL where z ranges over X; furthermore, we
extend environment modification to allow for failure as follows:

VE + FAIL = FAIL.

Atomic Expressions Et atexp = v/p

E(longvar) = v
E + longvar = v

(100)

1 There is one exception to the exception convention; no extra rule is added for rule 112 which
deals with handlers, since a handler is the only means by which propagation of an exception can
be arrested.

50

longcon = stridy.---.stridy.con

101
E longcon = con (101)
(E + ezprow = r) (102)

E + { (exprow) } = {}(+ r) in Val
Et dec = E' E+E'F exp=v (103)

E | let dec in exp end = v
Elexp=v
104
El(ezxp) =>v (104)
Comments:
(101) Constructors denote themselves

Expression Rows E - ezprow = r/p
Etbexp=v (E & exprow = r) (105)

E - lab= ezp (, ezxprow) = {lab — v}({+ r)

Comment: We may think of components as being evaluated from left to right,
because of the state and exception conventions. '

Expressions Et exp=v/p

E - atexp = v
E I atexp = v

(106)

E & exp = con con # ref E - atexp => v

107
E I ezp atexp = (con,v) (107)
$,El exp = ref,s s',E | atexp = v, s" a ¢ Dom(mem of s") (108)
s, E - exp atezp = a, " + {a — v}
s,EtFexp= :=,s & El atexp= {1+ a, 2 v},s" (109)
s, E |- exp atexp = {} in Val, s" + {a — v}
Etrexp=b EI atexp=>v APPLY(b,v) = v' (110)

E |- exp atexp = v'

51

E |- exp = (match,E',VE) E - atezp = v
E' + RecVE, v} mateh = o'

111
E - exp atexp = v' (111)
Etexp=v

12

E | exp handle handler = v (112)

ElFexp=p E,pt handler = v (113)

E - ezp handle handler = v

E(longezn) =e EtF exp=>v (114)
E |- raise longezn with ezp = [e,v]

(115)

E |- £n match = (match, E,{})

Comments:

(108) The side condition ensures that a new address is chosen. There are no
rules concerning disposal of inaccessible addresses (“garbage collection”).

(107)—(111) Note that none of the rules for function application has a premise in
which the operator evaluates to a constructed value, a record or an address.
This is because we are interested in the evaluation of well-typed programs
only, and in such programs ezp will always have a functional type, so v will
be either a closure, a constructor, a basic value or :=.

(112) This is the only rule to which the exception convention does not apply. If
the operator evaluates to a packet then rule 113 must be used.

(115) The third component of the closure is empty because the match does not
introduce new recursively defined values.

Matches E,v - match = v'/[p
E,vF mrule = o'
. 6
E,v - mrule { | match) = v’ (116)
E,v I mrule = FAIL (117)
E,v |- mrule = [match, {}]
!
E,v - mrule = FAIL E,v | match = v (118)

E + mrule | match = o'

52

Comment: A value v occurs on the left of the turnstile, in evaluating a match.
We may think of a match as being evaluated against a value; similarly, we may
think of a pattern as being evaluated against a value. Alternative match rules
are tried from left to right.

Match Rules E,v F mrule > v'/p/FAIL

v pat = VE E+VEL exp =0

119
E,vl pat=> exp = v' (119)
v F pat = FAIL
0
E,vl pat => ezp = FAIL (120)
Handlers E,pt handler = v/p
" E,pt hrule = v
12
E,pt hrule { || handler) = v (121)
E,pl hrule = FAIL
E,pt hrule = p (122)
E,pt hrule = FAIL E,pF handler = v (123)
E,plt hrule || handler = v
Handle Rules E,pt hrule = v/p/FAIL
E(longezn) # e (124)
E,[e,v] I longezn with match => FAIL
E(longezn) =e¢ E,vF match = ' (125)
E,le,v] I longezn with match = o'
ElF exp=v (126)

E,pF? =>exp = v

Comments:

(126) This form of handle rule handles all exceptions.

53

Declarations El dec= E'[p

E I valbind = VE

127
E |- val valbind = VE in Env (127)
E - eznbind = EE (128)
E |- exception eznbind = EF in Env
Eldecy=E, E+E & dec; = E, (129)
E | local deey in decy; end = E,
E(longstrid,) = E; --- E(longstrid,) = Ey (130)
E I open longstrid, --- longstrid,, = E; + -+ + Ej
131
E} = {} in Env (131)
E ‘- dee; = E; E+ E, - decy = E, (132)
E - decy (;) dees = Ey + E;
Value Bindings E + valbind = VE [p
Etremp=v wvkpat=>VE (E} valbind = VE') (133)
E |- pat = ezp (and valbind) = VE (+ VE')

Elexp=>v v pat = FAIL (134)

E | pat = ezp (and valbind) => [bind, {}]
E - valbind = VE (135)

E |- rec valbind = RecVE
Exception Bindings E - eznbind = EE[p
e excsof s s'=s+{e} (¢, E F exnbind => EE, s") (136)
s,E I ezn (and eznbind) = {ezn — e}(+ EE), s'(!)

E(longezn) = e (E + eznbind = EE) (137)

E |- exn = longezn (and eznbind) = {ezn — e}{+ EE)
Comments:

(136) The two side conditions ensure that a new exception is generated and
recorded as “used” in subsequent states.

54

Atomic Patterns v I atpat = VE /FAIL

— 138

vk _={} (138)

139

v - var = {var — v} (139)

longcon = stridy.---.strid,.con v = con (140)

v I longcon = {}

longcon = strid;.---.stridy.con v # con (141)
v I longecon = FAIL

v={}{+r) in Val (r | patrow => VE /FAIL) (142)

v F {{patrow)} = {}(+VE /FAIL)
v pat = VE (143)

vk (pat) = VE
Comments:

(141) Any evaluation resulting in FAIL must do so because rule 141 or rule 149
has been applied.

Labelled Patterns r - patrow = VE [FAIL
S0 (144)
r(lab) I pat => FAIL (145)
r I lab = pat { , patrow) = FAIL
r(lab) - pat == VE (r \ patrow => VE'/FAIL) (146)

r I lab = pat (, patrow) = VE(+ VE'/FAIL)

Comments:

(145),(146) For well-typed programs lab will be in the domain of r.

55

Patterns v I pat = VE /FAIL

v - atpat = VE /[FAIL

147
v - atpat = VE /FAIL (147)
longecon = stridy.---.stridy.con # ref v = (con,v')

v' I atpat = VE [FAIL (148)

v I longcon atpat = VE /[FAIL
longcon = stridy.--.stridg.con # ref v # (con,v") (149)

v I longcon atpat = FAIL

s(a)=v s,v I atpat = VE [FAIL,s (150)

s,a - ref atpat = VE /FAIL,s
v F pat = VE /FAIL (151)

v F var(: ty) as pat = {var — v} + VE/FAIL

Comments: -

(149) Any evaluation resulting in FAIL must do so because rule 141 or rule 149
has been applied.

56

7 Dynamic Semantics for Modules

7.1 Reduced Syntax

Since signatures are mostly dealt with in the static semantics, the dynamic se-
mantics need only take limited account of them. Unlike types, it cannot ignore
them completely; the reason is that an explicit signature ascription plays the
role of restricting the “view” of a structure - that is, restricting the domains
of its component environments. However, the types and the sharing properties
of structures and signatures are irrelevant to dynamic evaluation; the syntax is
therefore reduced by the following transformations (in addition to those for the
Core), for the purpose of the dynamic semantics of Modules:

e Any specification of the form “type typdesc”, “eqtype typdesc”, “datatype
datdesc” or “sharing shareq” is replaced by the empty specification.

e The Modules phrase classes typdesc, datdesc and shareq are omitted.

7.2 Corﬁpound Objects

The compound objects for the Modules dynamic semantics, extra to those for the
Core dynamic semantics, are shown in Figure 17. An interface I € Int represents

(strid : I,strezp(: I'), B) € FunctorClosure
= (Strld x Int) x (StrExp(xInt)) x Basis

(IE,vars, ezns) or I € Int=IntEnv X Fin(Var) x Fin(Exn)

IE € IntEnv = Strld 35 Int

G € SigEnv = Sigld 3 Int
F € FunEnv = Funld 33 FunctorClosure

(F,G,E) or B € Basis = FunEnv x SigEnv x Env
(G,IE) or IB € IntBasis = SigEnv x IntEnv

Figure 17: Compound Semantic Objects

a “view” of a structure. Specifications and signatures will evaluate to interfaces;
moreover, during their evaluation, structures (to which a specification or signature
may refer via “open”) are represented only by their interfaces. To extract an
interface from a dynamic environment we define the operation

Inter : Env — Int

57

as follows:
Inter(SE,VE,EE) = (IE,DomVE,Dom EE)

where
IE = {strid v Inter E ; SE(strid) = E} .

An interface basis IB = (G, IE) is that part of a basis needed to evaluate sig-
natures and specifications. The function Inter is extended to create an interface
basis from a basis B as follows:

Inter(F,G,E) = (G, IE of (Inter E))

A further operation
l: Env X Int — Env

is required, to cut down an environment E to a given interface I, representing
the effect of an explicit signature ascription. It is defined as follows:

~ (SE,VE, EE) | (IE, vars, ezns) = (SE',VE',EE')
where
SE' = {strid — E | I ; SE(strid) = E and IE(strid) = I}
and (taking | now to mean restriction of a function domain)
VE'=VE | vars, EE' = EE | exns.

It is important to note that an interface is also a projection of the static value &
of a signature; it is obtained by omitting the structure names m, type functions 0
and type environments TE. Thus in an implementation interfaces would naturally
be obtained from the static elaboration; we choose to give separate rules here for
obtaining them in the dynamic semantics since we wish to maintain our separation
of the static and dynamic semantics, for reasons of presentation.

7.3 Inference Rules

The semantic rules allow sentences of the form
s, Al phrase = A', s'

to be inferred, where A is either a basis or an interface basis or empty, A’ is some
semantic object and s,s’ are the states before and after the evaluation represented
by the sentence. Some hypotheses in rules are not of this form; they are called

58

side-conditions. The convention for options is the same as for the Core static
semantics.

The state and exception conventions are adopted as in the Core dynamic
semantics. However, it may be shown that the only phrases whose evaluation
may cause a side-effect or generate an exception packet are of the form strezp,
strdec, strbind or program.

Structure Expressions B} strexp = E
B | strdec = E

152
B |- struct strdec end = E (152)
B(longstrid) = E (153)

B | longstrid = E

B(funid) = (strid : I, strexp'(: I'}, B')
Bt strezp=>E B'+ {strid — E | I} |- strexp' = E' (154)
B | funid (strezp) = E'(| I')
1

B |- strdec = E B+ E |- strezp = E (155)

B |- let strdec in strezp end = E'
Comments:

(154) Before the evaluation of the functor body, strezp', the actual argument, E,
is cut down by the formal parameter interface, I, so that any opening of strid
resulting from the evaluation of strezp' will produce no more components
than anticipated during the static elaboration.

Structure-level Declarations | B |- strdec = E|
Eof Bl dec= F
Bl dec=FE (156)
B |- strbind = SE (157)
B |- structure strbind = SE in Env
Bt strdec1 = E1 B+ El + Strd662 = Ez (158)
B |- local strdee; in strdec; end = E,
' 159
Bt = {}inEnv (159)

59

B | strdeey = E; B + E; | strdecs = F,

B |- strdec; (;) strdec; = E; + E; (160)
Structure Bindings | B - strbind = SE|
B |- strezp = E (Inter B |- sigezp = I)
ind = S
((B F strbind = SE)) (161)

B |- strid (: sigezp) = sirexp ((and strbind)) =
{strid — E(| I)} ({(+ SE))

Comment: As in the static semantics, when present, sigexp constrains the “view”
of the structure. The restriction must be done in the dynamic semantics to ensure
that any dynamic opening of the structure produces no more components than
anticipated during the static elaboration.

Signature Expressions IB |- sigexp = 1

IB | spec = I
162
IB}- sig spec end = I (162)

IB(sigid) = I
IB | sigid = I (163)
Signature Declarations IB |- sigdec = G
IB | sighind = G (164)

IB |- signature sighind = G
16
IBF ={} (165)
IB |- sigdec, = G, IB 4+ G |- sigdec, => Go (166)
IB |- sigdec, (;) sigdec, = G; + G»

Signature Bindings IB I~ sigbind = G
IB | sigexp = I (IB - sigbind = G) (167)

IB |- sigid = sigezp (and sighind) = {sigid — I} (+ G)

60

Specifications IB |- spec = I

F valdese = vars
IB - val valdese = vars in Int

F ezndesc = ezns
IB |- exception ezndesc = ezns in Int

IB |- strdesc = IFE
IB |- structure strdesc = IF in Int

IB |- spec; = I) IB+ IE of I |- spec, = I,
IB |- local spec, in spec, end = I

IB(longstrid,) =1, --- IB(longstrid,) =1I,
IB |- open longstrid, --- longstrid, = I + --- + I,
IB(stgid,) =1, --- IB(sigid,) =1,

IB | include sigid, --- stgid,, = I + -+ + I,

IBF = {yinInt

IB |- spec; = I IB + IE of I I specy, = I
IB |- spec, (;) specy, = I + I,

Comments:

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(171),(175) Note that varsof I; and eznsof I; are not needed for the evaluation

of spec,.
Value Descriptions |- valdesc = vars|
(F valdesc = vars) (176)
F var (and valdesc) => {var} (U vars)
Exception Descriptions |- ezndesc = exns|
(F ezndesc = exns) (177)

F ezn (ezndesc) = {ezn} (U ezns)

61

Structure Descriptions |IB | strdesc = IE|

IB \- sigezp => I (IB I strdesc = IE)

IB |- strid : sigezp (and strdesc) => {strid — I} (+ IE) (178)
Functor Bindings B F funbind = F
Inter B |- sigezp = I (Inter B + {strid — I} I- sigezp' = I")
((B F funbind = F)) (179)
B\ funid (strid : sigezp) (: sigezp') = strexp ((and funbind)) =
{funid > (strid : I, strexp(: I'), B)} {(+ F))
Functor Declarations B\ fundec = F
B+ funbind = F (180)
B | functor funbind = F
BF S0 (181)
B | fundec, = F; B + Fi - fundec, = F3 (182)
B |- fundec, (;) fundec, = F; + F,
Programs B - program = B’
B - strdec = E
B |- strdec = E in Basis (183)
Inter B - sigdec = G
B - sigdec = G in Basis (184)
B} fundec = F
5
B | fundec = F in Basis (185)
B F program, = B, B + B, - program, = B, (186)

B |- program, (;) program, => B; + B,

62

A Appendix: Derived Forms

Several derived grammatical forms are provided in the Core; they are presented
in Figures 18, 19 and 20. Each derived form is given with its equivalent form.
Thus, each row of the tables should be considered as a rewriting rule

Derived form = Equivalent form

and these rules may be applied repeatedly to a phrase until it is transformed
into a phrase of the bare language. See Appendix B for the full Core grammar,
including all the derived forms.

In the derived forms for tuples, in terms of records, we use 7@ to mean the ML
numeral which stands for the natural number n.

Note that a new phrase class FvalBind of function-value bindings is intro-
duced, accompanied by a new declaration form fun fvalbind . The mixed forms
val rec fvalbind , val fvalbind and fun valbind are not allowed — though the
first form arises during translation into the bare language.

The following notes refer to Figure 20:

e In the equivalent form for a function-value binding, the variables wary,

.-, var, must be chosen not to occur in the derived form. The condition
m,n > 1 applies.

¢ In the two forms involving withtype , the identifiers bound by datbind and
by typbind must be distinct. Then the transformed binding datbind' in
the equivalent form is obtained from datbind by expanding out all the
definitions made by typbind. More precisely, if typbind is

tyvarseq, tycon, =ty, and --- and tyvarseq,, tycon, =ty,

then datbind is the result of simultaneous replacement (in datbind) of
every type expression tyseq; tycon; (1 < i < n) by the corresponding
defining expression

ty;{tyseq;/tyvarseq;}

o The abbreviation of val it = ezp to ezp is only permitted at top-level,
i.e. asa program .

63

Derived Form

EXPRESSIONS ezp

Equivalent Form

O {}
(ezp, , --- , ezp,) {1=ezp,, ---, Mi=ezp,}
#lab fn {lab=var, ...} => var

raise longezn

raise longezn with ()

case erp of match

(£fn match) (ezxp)

if ezp then ezp, else exp,

case ezxp of true => expy
| false => ezp;

erp; orelse exps

if exp, then true else ezp;

erp; andalso ezxp,

if ezp, then exp, else false

(exp; ; +-+ ; exp, ; exp) case exp; of (1) =>
case ezrp, of () => exp
let dec in let dec in
erp; ; -+ ; erp, end (expy ; -+ ; ezp,) end

while ezp; do ezxp,

let val rec var = fn () =>
if ezp; then (exps;var()) else ()
in var() end

lezp, , --- , ezp,]

erpy :: +*+ . exp, :: nil

Figure 18:

Derived forms of Expressions

64

(n>2)
(var new)

(var new)

(n > 0)

Derived Form

HANDLING RULES hrule

Equivalent Form

| longezn => exp

| longezn with () => exp

PATTERNS pat

QO {}
(pat, , +-- , pat,) {1=pat,, --- , =pat,} (n > 2)
[pat, , --- . pat,] paty :: --- :: pat, :: nil (n > 0)
LABELLED PATTERNS patrow

| 1d{:ty) (as pat) (, patrow) | id = id(:ty) (as pat) {, patrow) |
TYPES ty

‘ tyl koaee X tyn l {1:ty1’ Tt ﬁ:tyn} | (nZ 2)

Figure 19: Derived forms of Handling rules, Patterns and Types

Derived Form

Equivalent Form

FUNCTION-VALUE BINDINGS fvalbind

(op)var atpat,,---atpat,, (:ty) = exp,
[{op)var atpat,,---atpat,,(:ty) = ezp,
I e e
| (op)var atpat,,---atpat,,, (:ty) = ezppy,
(and fvalbind)

(op)var = £n var;=> .-+ fn var,=>
case (vary, -+, var,) of
(atpatyy ,--+, atpaty,)=>ezp; (: ty)
| Catpatay -+, atpaty,)=>ezpy(: ty)
| e
| Catpatyy .-+, atpatmy)=>exp,(:ty)
(and fvalbind)

DECLARATIONS dec

fun fvalbind

val rec fvalbind

datatype datbind withfype typbind

datatype datbind' ; type typbind

abstype datbind withtype typbind
with dec end

abstype datbind
with type typbind ; dec end

exp

val it = exp

Figure 20: Derived forms of Function-value Bindings and Declarations

65

B Appendix: Full Grammar of the Core

In this Appendix, the full Core grammar is given for reference purposes. Roughly,
it consists of the grammar of Section 2 augmented by the derived forms of Ap-
pendix A. But there is a further difference: two additional subclasses of the
phrase class Exp are introduced, namely AppExp (application expressions)
and InfExp (infix expressions). The inclusion relation among the four classes is
as follows:

AtExp C AppExp C InfExp C Exp

The effect is that certain phrases, such as “2 + while --- do --- ”, are now dis-
allowed.

The grammatical conventions are exactly as in Section 2, namely:
e The brackets () enclose optional phrases.

e For any syntax class X (over which z ranges) we define the syntax class
Xseq (over which zseq ranges) as follows:

TSeq = (singleton sequence)
(empty sequence)
(z1,'+-,2,) (sequence, n >1)

(Note that the “--” used here, a meta-symbol indicating syntactic repe-
tition, must not be confused with “...” which is a reserved word of the
language.)

e Alternative forms for each phrase class are in order of decreasing precedence.
o L (resp. R) means left (resp. right) association.
o The syntax of types binds more tightly that that of expressions.

¢ Each iterated comstruct (e.g. match, handler, ---) extends as far right
as possible; thus, parentheses may be needed around an expression which
terminates with a match, e.g. “fn match”, if this occurs within a larger
match.

The grammatical rules are displayed in Figures 21, 22, 23 and 24.

66

atezxp

exprow

appexp

infexp

exp

match

mrule
handler

hrule

(op)longvar
(op)longcon
(ezprow)
#lab

0O

(ezpy , -~
Lezp, , -
(ezp, ; +

. ezp,)
., ezp,]
; exp,)

let dec in exp; ; -

(exp)

lab = exp (, exprow)

atezp
appezp atexp

appezp
infexp id infexp

infexp

exp : Lty

erp andalso exp
erp orelse exp

exp handle handler

; exp, end

raise longezn (with ezp)
if ezp then ezrp; else ezxp,

while exp, do ezpe
case ezp of match
fn match

mrule { | match)
pat => exp
hrule (|| handler)

longezn with match

longezn => exp
? => exp

value variable

value constructor
record

record selector

0-tuple

n-tuple, n > 2

list, n >0

sequence, n > 1

local declaration, n > 1

expression row
application expression

infix expression

typed (L)
conjunction
disjunction
handle exception
raise exception
conditional
iteration

case analysis
function

Figure 21: Grammar: Expressions, Matches and Handlers

67

dec

valbind

fvalbind

typbind
datbind
constrs

exnbind

val valbind

fun fvalbind

type typbind

datatype datbind (withtype typbind)

abstype datbind (withtype typbind)
with dec end

exception eznbind

local dec; in decs end

open longstrid, --- longstrid,,

decy (;) decy

infix (d) ¢dy---id,
infixr (d) id;---id,
nonfix tdy:--1d,

exp

pat = exp (and valbind)
rec valbind

(op)var atpat,,---atpat,, (:ty)=exp;
| (op)var atpat,,---atpat,,(:ty)=ezp,
| e

|{op)var atpat,,,--atpat,,, :ty)=ezpn,
(and fvalbind)

tyvarseq tycon = ty (and typbind)
tyvarseq tycon = constrs (and datbind)
(op)con (of ty) (| constrs)

ezn (: ty)(= longezn) (and eznbind)

value declaration
function declaration
type declaration
datatype declaration
abstype declaration

exception declaration
local declaration

open declaration, n > 1
empty declaration
sequential declaration
infix (L) directive, n >1
infix (R) directive, n > 1
nonfix directive, n > 1
expression (top-level only)

m,n>1
See also note below

Note: In the fvalbind form, if var has infix status then either op must be present,
or var must be infixed. Thus, at the start of any clause, “ op var (atpat, atpat')
--” may be written “(atpat var atpat') ---”; the parentheses may also be dropped
if “:ty” or “=” follows immediately.

Figure 22: Grammar: Declarations and Bindings

68

wildcard
variable
constant
record

O-tuple
n-tuple, n > 2
list, n >0

wildcard
pattern row
label as variable

atomic

construction

infixed construction
typed

layered

type variable

record type expression
type construction

tuple type, n > 2
function type expression

atpat =l
(op)var
longcon
{(patrow)
O
(paty , -+, pat,)
[pat, . - . pat,
(pat)
patrow = ...
lab = pat (, patrow)
1d(:ty) (as pat) (, patrow)
pat = alpat
(op)longcon atpat
pat; con pat,
pat : ty
(op)var(: ty) as pat
Figure 23: Grammar: Patterns
ty = tyvar
{(tyrow)}
tyseq longtycon
tyy * -k ty,
ty -> 1y
(ty)
tyrow = lab: ty(, tyrow) type-expression row

Figure 24: Grammar: Type expressions

69

C Appendix: The Initial Static Basis

We shall indicate components of the initial basis by the subscript 0. The initial
static basis is

By = (MO’TO)aFO,GOaEO

where
o My = 0
e Ty = {bool,int,real,string, list,ref,instream,outstream}

« Fo = {}
@ Go - {}
L4 Eo = (SE(), TEQ, VEo, EEo)

The members of Ty are type names, not type constructors; for convenience we
have used type-constructor identifiers to stand also for the type names which are
bound to them in the initial static type environment TE;. Of these type names,
list and ref have arity 1, the rest have arity 0; all except instream and
outstream admit equality.

The components of Ej are as follows:
e SEy = {}

e VE, is shown in Figures 25 and 26. Note that Dom VE; contains those iden-
tifiers (true,false,nil, ::) which are basic value constructors, for reasons
discussed in Section 4.3.

o TE, is shown in Figure 27. Note that the type structures in TFE, contain
the type schemes of all basic value constructors.

e Dom EE, = BasExc , the set of basic exceptions listed in Section 6.5. In
each case the associated type is unit , except that EE,(io_failure) =
string .

70

NONFIX

INFIX

map +— Vaf. (a— f) — Precedence 7 :
alist — Blist / +— real % real — real
rev — Va. alist — alist div +— int * int — int
not +~ bool — bool mod + int * int — int
“ + num — num * > num * num — num
abs +— num — num Precedence 6 :
floor i+ real — int + — num * num — num
real + int — real - = num * num — num
sqrt +— real — real “ = string # string — string
gin ~ real — real Precedence 5 :
cos +» real — real — Va.a * alist — olist
arctan +— real — real Q@ — Va.alist % alist — alist
exp + real — real Precedence 4 :
In +— real — real = +— Vn.n * n — bool
size + string— int <> +— Vnp.n % n — bool
chr > int — string < +— num * num - bool
ord +— string — int > +— num % num —— bool
explode + string — stringlist | <= ~ num * num —— bool
implode > string list — string| >= +— num * num —— bool
! = Vo. aref — a Precedence 3 :
ref — Va. o — aref := — Vea. aref * o — unit
true +— bool o — VYafy. (B—17) * (a— f)—
false +— bool (a— 1)
Notes:

¢ In this table we have adopted the convention that the type variable n pos-
sesses the equality attribute, but that other type variables do not.

e An identifier with type involving num stands for two functions — one in
which num is replaced by int in its type, and another in which num is
replaced by real in its type. In the case that both types can be inferred
for an occurrence of the identifier, an explicit type constraint is needed to

determine which type is intended.

e The type schemes associated with pre-defined value constructors or con-
stants are given in Figure 27 which shows the initial static type environ-

ment.

Figure 25: Static VE,, except for Input/Output

stdin + instream
open_in > string — instream
input + instream * int — string
lookahead +> instream — string
close_in > instream — unit
end of stream +» instream — bool

stdout > outstreanm
open_.out +— string — outstream
output +» outstream * string — unit
close.out + outstream — unit
Figure 26: Static VE, (Input/Output)
unit = { A().{}, {1}
bool ++ { bool, {true — bool, false —+ bool} }
int +— { int, {¢ — int ; ¢ an integer constant} }
real — { real, {r — real ; r a real constant} }
string — { string, {s — string ; s a string constant} }
list +— { list,{nil — Vea.alist, : — Vo.a % alist — alist} }
ref > { ref, {ref — Va.a — aref} }
instream + { instream, {}}
outstream + { outstream, {}}

Figure 27: Static TE,

72

D Appendix: The Initial Dynamic Basis

We shall indicate components of the initial basis by the subscript 0. The initial
dynamic basis is
BO = K 0 GO) EO

where
o Fo = {}
s Go = {}

L] Eo = E6+Eg

E|, contains bindings of identifiers to the basic values BasVal and basic exceptions
BasExc; in fact Ef = SE},VEy, EE} , where:

. SB) = {)
e VE|, = {id — id ; id € BasVal} U {:=:=}
e EEy = {id — id ; id € BasExc}

Note that VEj is the identity function on BasVal; this is because we have chosen
to denote these values by the names of variables initially bound to them. The
semantics of these basic values (most of which are functions) lies principally in
their behaviour under APPLY, which we describe below. On the other hand the
semantics of := is provided by a special semantic rule, rule 109. Similarly, EE;
is the identity function on BasExc, the set of basic exception names, because
we have also chosen to denote these exceptions by the exception names initially
bound to them. These exceptions are raised by APPLY as described below.

E{ contains initial variable bindings which, unlike BasVal, are definable in
ML; it is the result of evaluating the following declaration in the basis Fy, Go, Ej.
For convenience, we have also included all basic infix directives in this declaration.

infix 3 o

infix 4 = <> < > <= >=
infix 5 Q

infixr 5 ::

infix 6 + -~

infix 7 div mod / *

fun (F o G)x = F(G x)

73

fun nil e M =M
| (x::L) e M=x::(L @ M)

fun 8 ~ 8’ = implode((explode s) @ (explode s’))

fun map F nil = nil
| map F (x::L) = (F x)::(map F L)

fun rev nil = nil
| rev (x::L) = (rev L) @ [x]

fun not true = false
| not false = true

fun ! (ref x) = x

We now describe the effect of APPLY upon each value in BasVal. We shall
normally use ¢, r, n, s to range over integers, reals, numbers (integer or real),
strings respectively. We also take the liberty of abbreviating “APPLY(abs, r)”
to “abs(r)”, “APPLY(mod, {1 — ¢,2 — d})” to “ mod d”, etc. .

“(n) returns the negation of n.
abs(n) returns the absolute value of n.

floor(r) returns the largest integer ¢ not greater than r; it returns the
packet [floor,{}| if ¢ is out of range.

real(?) returns the real value equal to ¢.
sqrt(r) returns the square root of r, or the packet [sqrt,{}] if r is negative.
sin(r) , cos(r) return the result of the appropriate trigonometric functions.

arctan(r) returns the result of the appropriate trigonometric function in
the range 4+ /2.

exp(r) , In(r) return respectively the exponential and the natural logarithm
of r, or an exception packet [exp,{}] or [1n,{}] if the result is out of range.

size(s) returns the number of characters in s.

74

o chr(s) returns the ’th ASCII character — or the packet [chr,{}] if none
exists.

e ord(s) returns the ASCII ordinal number of the first character in s, or the
packet [ord,{}] if s is empty.

e explode(s) returns the list of characters (as single-character lists) of which
s consists.

¢ implode(L) returns the string formed by concatenating all members of the
list L of strings.

o The arithmetic functions /,*,+,- all return the results of the usual arith-
metic operations, or exception packets such as [+,{}] if the result is out of
range.

e imod d, ¢ div d return integers r,q (remainder, quotient) determined by
the equation d X ¢ + r = ¢, where either 0 < r < d or d < r < 0. Thus the
remainder has the same sign as the divisor d.

o The order relations <,>,<=,>= return boolean values in accord with their
usual meanings.

e v; = vy returns the boolean value of v; = vy, where the equality of values
(=) is defined recursively as follows:

— If v;,v; are constants (including nullary constructors) or addresses,
then v; = v, iff v; and v, are identical.

— (cony,v1) = (cong,vy) iff con,, con, are identical and v; = v,.

— ry = ry (for records ry,r;) iff Domr; = Domr, and, for each lab €
Domry, r1(lab) = ry(labd).

The type discipline (in particular, the fact that function types do not admit
equality) makes it unnecessary to specify equality in any other cases.

e v; <> v, returns the opposite boolean value to v; = v,.

It remains to define the effect of APPLY upon basic values concerned with in-
put/output; we therefore proceed to describe the ML input /output system.
Input/Output in ML uses the concept of a stream. A stream is a finite or
infinite sequence of characters; if finite, it may or may not be terminated. (It may
be convenient to think of a special end-of-stream character signifying termination,
provided one realises that this “character” is never treated as data). Input streams
- or instreams — are of type instream and will be denoted by s ; output streams

75

— or outstreams — are of type outstream and will be denoted by os . Both these
types of stream are abstract, in the sense that streams may only be manipulated
by the functions provided in BasVal.

Associated with an instream is a producer, normally an I/ O device or file;
similarly an outstream is associated with a consumer. After this association has
been established — either initially or by the open_in or open_out function — the
stream acts as a vehicle for character transmission from producer to program, or
from program to consumer. The association can be broken by the close_in or
close_out function. A closed stream permits no further character transmission;
a closed instream is equivalent to one which is empty and terminated.

There are two streams in BasVal:

e std_in: an instream whose producer is the terminal.
e std_out: an outstream whose consumer is the terminal.

The other basic values concerned with Input/Output are all functional, and the
effect of APPLY upon each of them given below. We take the liberty of abbrevi-
ating “APPLY(open_in, s)” to “open_in(s)” etc., and we shall use s and n to
range over strings and integers respectively.

e open_in(s) returns a new instream is , whose producer is the external file
named s . It returns exception packet

[io_failure, "Cannot open s"|
if file s does not exist or does not provide read access.

e open_out(s) returns a new outstream os , whose consumer is the external
file named s . If file s is non-existent, it is taken to be initially empty.

e input(is,n) returns a string s containing the first n characters of is R
also removing them from ¢s. If only k < n characters are available on s,
then

— If 4s is terminated after these k characters, the returned string s con-
tains them alone, and they are removed from s .

— Otherwise no result is returned until the producer of ¢s either supplies
n characters or terminates the stream.

e lookahead(ss) returns a single-character string s containing the next
character of is, without removing it. If no character is available on #s then

~ If is 1is closed, the empty string is returned.

76

- — Otherwise no result is returned until the producer of ¢s either supplies
a character or closes the stream.

close_in(is) empties and terminates the instream s .

end.of stream(is) is equivalent to (lookahead(is)="") ; it detects the
end of the instream 1s .

output(os,s) writes the charactersof s to the outstream os , unless os is
closed, in which case it returns the exception packet

[io_failure, "Output stream is closed"]

close_out(os) terminates the outstream os .

7

Copyright © 1987, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

