Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

S99 buisn
swiyiobje uoisnioxa jeninw BuisAjeuy

Analysing mutual exclusion algorithms

using CCS

by
David Walker

LFCS Report Series

ECS-LFCS-88-45
(also published as CSR-257-88

LFCS

Department of Computer Science
University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ

January 1988

Copyright © 1987, LFCS

Analysing mutual exclusion algorithms using CCS

David Walker

Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh

December 1987

Abstract

A number of algorithms intended to ensure mutually exclusive
execution of certain ‘critical sections’ of code are studied by
representing them as CCS agents and employing an automated
tool, the Concurrency Workbench, to analyse the representa-
tions. The problem of determining whether or not each of the
algorithms does indeed preserve mutual exclusion is considered.

Introduction

Milner’s Calculus of Communicating Systems, CCS, provides a semantic
basis for reasoning about concurrent and communicating systems. In [M]
Milner describes a means of representing as CCS agents programs expressed
in a simple concurrent imperative language. The purpose of the present
paper is to report the results of an experiment in using such representations
to reason about the behaviour of a class of concurrent algorithms. The algo-
rithms considered are all intended to ensure mutually exclusive execution of
the ‘critical sections’ of a number of concurrent processes, and the particular
problem posed is to determine whether or not each of these algorithms does
indeed preserve mutual exclusion. These well-known algorithms were se-
lected for study as, in addition to their being amenable to analysis using the
technique of translation into CCS (at least as far as the problem of preserva-
tion of mutual exclusion is concerned), and their being sufficiently ‘small’ to
be tackled using the available tools, direct comparison with other methods

which have been used to analyse the algorithms would become possible. It is
possible that the technique considered here may be used to establish further
properties of the algorithms, but this question is not pursued in the present
paper.

In order that the analytical technique examined in this paper be at all vi-
able it is essential that suitable automated tools be available. In performing
the analyses reported here, I have made extensive use of the Concurrency
Workbench, a prototype automated tool for reasoning about CCS agents.
The availability of such tools by no means ensures that this technique will
be widely applicable. For in representing algorithms as CCS agents we face
the problem that the state-spaces of such representing agents are often very
large, even for simple algorithms, and consequently analyses of such repre-
sentations can involve very substantial amounts of computation. However
it is important to note that in establishing that certain of the algorithms do
indeed preserve mutual exclusion, no attempt has been made in this paper
to exploit any understanding as to why we expect this to be so. The study
of appropriate means of so doing, in particular ‘in conjunction with the use
of automated tools such as the Concurrency Workbench, remains a subject
for research.

Familiarity with CCS is assumed. Section 1 contains a brief description
of the method of translating simple concurrent algorithms into CCS used
throughout the paper (see also [M, chapter 9]). The remaining sections
contain descriptions and analyses of five mutual exclusion algorithms due,
respectively, to Dijkstra, Hyman, Dekker, Lamport and Peterson.

1. Translating imperative algorithms into CCS

In chapter 9 of [M], Milner describes a means of representing as CCS agents
programs expressed in a simple concurrent imperative language This method
underlies the translation into the language of CCS of the mutual exclusion
algorithms considered in this paper. On account of the relative simplicity
of the problem of representing these algorithm§ in CCS, it was considered

1The Concurrency Workbench is currently under development in a joint SERC-funded
project between the Laboratory for Foundations of Computer Science in the University
of Edinburgh and the Department of Computer Science in the University of Sussex. The
version of the Concurrency Workbench used in preparing this paper was version 2.2 written
by Joachim Parrow.

unnecessary to perform the translation in complete detail — the agents
obtained by doing so would be very similar to the representations considered
here. In this section we illustrate the translation method by considering how
to represent Dijkstra’s mutual exclusion algorithm [D].

It is assumed that there are n(> 2) processes and global variables

b,c : array [l..n] of boolean
k : integer,

and that initially all entries in b and ¢ have value true and the value of & is
oneof1,2, ..., n. Theit process (1< i< n) may be represented as follows:

var j : integer ;
while true do
begin
(noncritical section) ;
b[i] := false ;
L;: if k # i then begin
' c?] := true;
ifb[k] then k := 17 ;
goto L;
end
else begin
c[t] := false ;
for j:=1tondo
if (7 # ¢ and —(c[4])) then goto L;
end ;
(critical section) ;
c[t] := true;
b[i] := true
end ;

In translating into CCS, each of the array variables b and c is represented
as a family of n variables, by, ..., b, and ¢y, ..., ¢,, and each of these
variables is represented as a CCS agent.

A variable v of some type D is represented as a family of agents Vj
(d € D) with ‘access’ sorts {ready | d € D} U {writey | d € D} defined as

follows: ford € D

|7 =df ready. Vy + Z writee. Ve
e€D

Thus if the current value of the variable v is d then that value may be read
by a process which may perform the action read; (thus communicating with
Vi), and any value e of type D may be written to v by a process which
may communicate with V3 by performing the action write, . (Note that,
in general, in describing the access sort of a variable it is necessary to use
names characteristic of that particular variable, rather than simply ‘read’
and ‘write.” We will achieve this by incorporating an appropriate distinctive
part of the name of the variable into the names of the actions comprising
its access sort (see below). Although of no significance in this paper, it
is interesting to note that, as described by Milner in [M], the restriction
operator of CCS provides a pleasant means of dealing with the scoping of
variables.) '

In the present paper we need consider only program variables of type
boolean and of type 1..n. A variable b of type boolean with initial value
true may, for example, be represented as an agent Bipye as follows:

Biyrue =d¢s readirue. Btrue + Writegrue. Btrue + writegalge- Bralse
Btalse =df T€adfalge- Bralse + Writefaige. Bealse + Writetrue -Birue

The variables b; and ¢; (1 < ¢ < n) with initial value true may then be
represented as the processes Bit and Cit obtained from Byyye by relabelling
as follows:

Bit =45 Btrue[birf/readgaise, birt/readtrye, biwl/writegajge, biwt/writetrye]
Cit =g Btruelcirf/readgyjge, cirt/readsrye, ciwf/writegaige, ciwt/writegrye]

Here we use abbreviations to reduce the length of process names and action
names. Thus, e.g., B1t represents variable b; with current value true, birf
may be read “read value false from variable B1” and c3wt as “write value
true to variable C3.”

We could give a similar representation of the variable k of type 1..n.
However, as we shall see below, in order to model faithfully the assump-
tion that any read or write of a program variable is an atomic event, an
assumption that is made throughout this paper, it is sometimes necessary
(and in particular it is necessary in the case of the variable k in Dijkstra’s

algorithm) to use a slightly more complicated representation of a program
variable, and thus we shall defer doing so for the present.

It is possible to represent each of the n processes as an agent using n as
a parameter of the representation. However in order to carry out analysis
of the resulting agents using the Concurrency Workbench we must consider
a specific value of n. Thus we consider here only the case n = 3. The ith
process (i = 1, 2, 3) is represented as a process'Pi as follows:

Pl =4 biwi.P11

P11 =4 krl.P12 4 kr2.cIwt. P12 + kr3.cIwt. P12

P12 =4 get.(klrl. (blrt. put. kwl. P11 + blrf. put. P11)
+ k1r2. (b2rt. put. kwl. P11 + b21f. put. P11)
+ k1r3. (b3rt. put. kwl. P11 + b3rf. put. P11))

P13 =4 clwf.(c2rf. P11 + c2rt. P14)

P14 =4 c3rf. P11+ c3rt. P15

P15 =4 enter.exit.ciwt. biwt.P1

P2 =4 b2wi.P21
" P21 =g kr2.P23 + krl. c2wt. P22 + kr3. c2wt. P22
P22 =4 get.(k2rl. (blrt. k2v. put. P21 + blrf. put. P21)
+ k2r2. (b2rt. put. kw2. P21 + b2:f. put. P21)
+ k2r3. (b3rt. put. kw2. P21 + b3zf. put. kw2. P21))
P23 =4 c2wl.(clrf. P21 + clrt. P24)
P24 =4 c3rf.P21 4 c3rt. P25
P25 =4 enter. exit.c2wt. b2wt. P2

P3 =4 b3wl.P31
P31 =4 kr3.P33 + krl.c3wt. P32 + kr2. c3wt. P32
P32 =4 get.(k3rl. (blrt. put. kw3. P31 + blrf. put. P31)
+ k312. (b2rt. put. kw3. P31 + b2rf. put. P31)
+ k3r3. (b3rt. put. kw3. P31 + b3rf. put. kw3. P31))
P33 =4 c3wl.(clif. P31+ clrt. P34)
P34 =4 c2rf.P31 + c2rt. P35
P35 =4 enter.exit. c3wt. b3wt. P3

Some remarks concerning these representations are in order. Firstly note
that the local variables j have been omitted since they are unnecessary: the
transitions of the agents accurately describe the behaviour of the process
without the use of a counter variable. Secondly, and more significantly,
as mentioned above in order to model the assumption that in executing the

5

statement “if b[k] then k := " the read of the variable b[k] by the i** process
is an atomic action, it is necessary to use a more complex representation of
the variable k£ such as the following family of processes K1, K2, K3:

K1 =4 get.(kIrl. put. K1 + k2r1. put. K1 4 k311. put. K1)
+kwl. K1 + kw2. K2 + kw3.K3

K2 =g get.(k1r2. put. K2 + k2r2. put. K2 + k312. put. K2)
+kw2. K2 + kw3.K3 + kwl.K1

K3 =4 get.(k1r3. put. K3 + k213. put. K3 + k313. put. K3)
+kw3. K3 + kwl. K1 + kw2. K2

(I am indebted to Robin Milner for suggesting this representation.) Here,
e.g., kwl may be read “write value 1 to variable K” and k312 as “process P3
may read value 2 from variable K.” Note that if in the course of executing
the statement “if b[k] then £ := i” the i*® process has read the variable
k but not yet read the variable b[k], then on account of the ‘get’ and ‘put’
actions, no other process may access (and in particular change the value of)
the variable k. Thirdly, the noncritical section of each process is omitted
from the representation, as we are concerned principally with the problem
of mutual exclusion. And finally, the critical section of each process is repre-
sented as a pair of actions, ‘enter’ and ‘exit,’ representing entry to and exit
from the critical section respectively. (If appropriate we can replace ‘enter’
and ‘exit’ in the i*® process by ‘enter;’ and ‘exit;’ respectively to model the
execution of the critical section of that particular process.)

Thus, taking the initial value of k¥ to be 1 we may represent Dijkstra’s
algorithm in the case of 3 processes by the agent Dijkstra—3 defined by:

Dijkstra—3 =4 (P1| P2 | P3| B1t | B2t | B3t | C1t | C2t | C3t | K1)\L

where L is the set of all actions used for synchronization among the agents
in the composition. Thus the agent Dijkstra—3 has sort {enter, exit}.

2. Dijkstra’s algorithm

In this section we consider the first published solution to the mutual exclu-
sion problem, due to Dijkstra [D]. In the preceding section this algorithm
was described and a representation in CCS in the case of 3 processes pre-
sented. Before considering the analysis of this representation we consider the

6

algorithm in the case of 2 processes. The agent Dijkstra—2 below provides
a representation of the algorithm in this case.

Bif =4 blrf. BIf+ blwf.B1f+ blwt. Blt
Blt =4 blrt.Blt+ blwt.B1t 4 blwf.B1f
B2f =4 b2:f. B2f + b2wf. B2f + b2wt. B2t
B2t =4 b2rt. B2t + b2wt. B2t + b2wf. B2f
Cif =4 clif.C1f+ clwf.C1f + clwt.Clt
Clt =4 clIrt.Clt+ clwt. Clt + clwf. C1f
C2f =4 c2rf. C2f + c2wf. C2f + c2wt. C2t
C2t =g c2rt. C2t + c2wt. C2t + c2wf. C2f
K1 =4 kril.K1+ kwl.K1 +kw2.K2
+ get. (k1rl. put. K1 + k2r1. put. K1)
K2 =4 kr2.K2+ kw2.K2 +kwl.K1
+ get. (kir2. put. K2 4 k212. put. K2)

Pl =4 bIwf.Pl11
P11 =4 kr1.P13 + kr2.clwt. P12
P12 =4 get.(klrl. (blrt. put. kwl. P11 + blrf. put. P11)
+ k1r2. (b2rt. put. kwi. P11 + b2rf. put. P11))
P13 =4 cIwf.(c2rf.P11 + c2rt. P14)
P14 =4 enter.exit. cIwt. biwt. P1

P2 =4 Db2wl.P21

P21 =4 kr2.P23 + krl.cZwt. P22

P22 =4 get.(k2rl. (blrt. put. kw2. P21 + blrf. put. P21)
+ k2r2. (b2rt. Dput. kw2. P21 4 b2rf. put. P21))

P23 =4 c2wi.(clrf.P21 + clrt. P24)

P24 =4 enter. exit. cZwt. b2wt. P2

Dijkstra—2 =g4¢ (P1|P2|K1|B1f|C1{|B2f|C2f)\{b1rf, blrt, blwf, blwt,
b2rf, b2rt, b2wf, b2wt, c1rf, c1rt, clwf, c1lwt, c2rf, c21t,
c2wf, c2wt, krl, kr2, kwl, kw2, get, put, k1rl, k112, k2r1, k2r2}

The agents P1 and P2 represent the two processes, entry to and exit from
their critical sections being represented by the actions ‘enter’ and ‘exit’ re-
spectively. The agents B1f, B2f, C1f, C2f and K1 represent the program
variables b1, bz, ¢1, c2 of type boolean and & of type 1..2 respectively. (The
algorithm is described in the previous section.)

How can we express within CCS that the algorithm preserves mutual
exclusion? The solution adopted in this paper is show that Dijkstra—2 is
bisimulation equivalent to the agent X where

X =g4; enter.exit.X.

Note that this implies that mutual exclusion is preserved and that the agent
Dijkstra-2 may never reach a ‘deadlocked’ state.

Using the Concurrency Workbench the state-space of the agent Dijkstra—2
was computed?: it contains 310 states. Moreover the Workbench was used
to determine® that

Dijkstra—2 ~ X.

It is interesting to note that if in the definitions of P1 and P2 the actions
enter and exit are replaced by enter; and exit; and by enter, and exit,
respectively, then a minimal agent bisimulation-equivalent to the modified
Dijkstra—2 has 42 states.

Having met with some success we now return to considering Dijkstra’s
a,lg(;rithm in the case of 3 processes. Here we meet in a stark form perhaps
the most serious limitation of the technique discussed in this paper, namely
the problem of large state spaces. For using the Workbench it was estab-
lished that the agent Dijkstra—3 from the previous section which provides
a representation of the algorithm in the case of 3 processes has 4255 states.
The prospect of analysing such an agent without the assistance of some form
of automated tool is not an inviting one. However even with a tool such as
the Concurrency Workbench, the amount of computation required to effect
analyses such as determining whether or not Dijkstra—3 ~ X (where X =4
enter.exit.X) is substantial’. Indeed at the time of writing it has not been
possible using the Workbench to determine whether or not

Dijkstra—3 =~ X

Zusing the ‘state-space’ command.

3using either the ‘equivalent’ command, which takes two agents and (assuming that
their state-spaces are finite) determines whether or not they are bisimulation equivalent,
or the ‘minimize’ command, which takes a finite-state agent and finds an minimal (in
terms of the number of states) bisimulation-equivalent agent. ,

It is worth noting that the state-space partitioning algorithm used to determine
whether or not two agents are bisimulation equivalent runs in time which is bounded
by a small polynomial in the size of the state-spaces of the agents [KS]. This may be
compared with, e.g., the fact that the problem of determining whether or not two agent
are “failures-equivalent” is PSPACE-complete [KS].

despite the devotion of several hours of CPU time of a SUN 4 to the problem.

3. Hyman’s algorithm

The purpose of this section is to illustrate how the Concurrency Workbench
was used to analyse an algorithm which does not preserve mutual exclusion.
The algorithm considered is that published by Hyman [H] as a simplification
of Dijkstra’s algorithm of the preceding section in the case of 2 processes
(see also [K]). The following formulation of Hyman’s algorithm (with some
change of notation) is taken from [PS].

There are two processes, two variables b; and b, of type boolean with
initial value false and a variable k of type 1..2 with arbitrary initial value.
The i process (i = 1, 2) may be described as follows (where j is the index
of the other process).

while true do
begin
(noncritical section) ;
while k # ¢ do begin
while b; do skip ;

k=1
end ;
(critical section) ;
b; := false
end ;

The CCS representation of the algorithm (assuming the initial value of & to
be 1) is given below as the agent Hyman—2.

B1f
B1t
B2f
B2t
K1
K2

P1
P11
P12
P13

P2
P21
P22
P23

. Hyman-—2

=df
=df
=df
=df
=df
=df

=df
=df
=df
=df

=df
=4f
=df
=df

=df

birf. Bif + blwf. B1f + blwt. Bt
birt. Bit + blwt.Blt + biwf.B1f
b2rf. B2f + b2wf. B2f + b2wt. B2t
b2rt. B2t + b2wt. B2t + b2wf. B2f
krl. K1 + kwl. K1 + kw2.K2
kr2. K2 + kw2. K2 + kwl.K1

biwt. P11

krl.P13 + kr2. P12

b2rt. P12 + b2rf. kwl. P13
enter. exit. bIwf. P1

b2wt. P21

kr2.P23 + krl. P22

blrt. P22 + blrf. kw2.P23
enter. exit. b2wf. P2

(P1|P2|K1|B1f|B2f)\{b1rf, blrt, blwf, blwt,
b2rf, b2rt, b2wi, b2wt, krl, kr2, kw1, kw2}

The agent Hyman—2 has 71 states and a minimal bisimulation-equivalent
agent has 9 states. Using the Concurrency Workbench it was determined
that mutual exclusion is not preserved. Indeed we can exhibit a path through
the state-transition diagram of Hyman—2 which shows that it is possible for
the agent Hyman—2 to perform two enter actions without an intervening

exit action:

Hyman—2

(P1|P21|K1|B1f|B2t)\L
(P1|P22|K1|B1f|B2t)\L

(P1|kw2. P23|K1|B1f|B2t)\L

(P11|kw2. P23|K1|B1f|B2t)\L
(P13|kw2.P23|K1|B1t|B2t)\L

(exit. bIwf. P1|kw2. P23|K1|B1t|B2t)\L
(exit. b1wf. P1|exit. bB2ZwT. P2|K2|B1t|B2t)\L

(exit. BTwE. P1|exit. b2wl. P2|K2|B1t|B2t)\L

where L is the set of actions restricted in the definition of Hyman-2.

10

4. Dekker’s algorithm

In this section we consider an algorithm due to Dekker (see [PS]). There are
two processes, two variables b; and b2 of type boolean with initial value
false, and one variable k of type 1..2 with arbitrary initial value. The i**
process (i = 1,2) may be described as follows (where j is the index of the
other process):

while true do

begin
(noncritical section) ;
b; := true;

while b; do
if k = j then begin

b; := false ;
while £ = j do skip ;
b; := true
end ;

(critical section) ;

k:=17;

b; := false

end ;

The algorithm may be represented (assuming the initial value of k to be 1)
as the agent Dekker—2 below:

11

Blf =g bIrf.BIf+ blwf. B1f+ blwt. Blt
Blt =4 blIrt.Blt+ blwt.Blt+ blwf. B1f
B2f =4 b2rf.B2f+ b2wf. B2f + b2wt. B2t
B2t =g4 b2rt. B2t + b2wt. B2t + b2wf. B2f
Kl =4 kil.K1+kwl.K1+kw2.K2
K2 =g ki2.K2+kw2. K2+ kwl.K1
Pl =4 blwt.P11
P11 =df b2rf. P14 4 b2rt. P12
P12 =g krl.P11 + kr2. blwf. P13
P13 =4 kr2.P13+krl. biwt.P11
P14 =4 enter. exit. kw2. blwf. P1

P2 =4 b2wt.P21

P21 =4 blrf.P24 + blrt. P22
P22 =4 kr2.P21+ krl. b2wi. P23
P23 =4 krl.P23 + kr2. b2wt. P21
P24 =4 enter.exit. kwl. b2wf. P2

Dekker—2 =4 (P1|P2|K1|B1{|B2f)\{b1sf, blrt, blwf, blwt,
b2rf, b2rt, b2wf, b2wt, krl, kr2, kwl, kw2}

The agent Dekker—2 has 127 states and is bisimulation equivalent to X
where X =4 enter.exit.X. A minimal agent bisimulation-equivalent to the
modification of Dekker—2 with ‘enter;’ replacing ‘enter’ for ¢ = 1,2 etc., has
14 states.

5. Lamport’s algorithm

In this section we consider an algorithm due to Lamport [L] and referred
to by him as ‘the one-bit algorithm.” There are n(> 2) processes and n
variables by, ... b, of type boolean, each initially having value false. The
ith process (1 < i < n) may be described as follows:

12

var j : integer ;
while true do

begin

(noncritical section) ;

L;: b; := true

forj:=1toi—1do
if b; then begin

b; := false;
while b; do skip ;
goto L;

end ;

for j:=i+1tondo
while b; do skip ;
(critical section) ;

end ;

b; := false

As in the case of Dijkstra’s algorithm this algorithm could be represented
in CCS using the number of processes, n, as a parameter of the representa-
tion. Here, however, we consider only the cases n = 2 and n = 3. In the
case of 2 processes the CCS representation is the agent Lamport—2 below:

B1f
B1t
B2f
B2t

P1
P11
P12

P2
P21
P22
P23

Lamport—2

=df
=df
=df

blrf.B1f 4+ blwf. B1f 4+ biwt. B1t
1rt. B1t 4+ blwt.B1t + blwf. B1f
2rf. B2f 4 b2wf. B2f + b2wt. B2¢
2rt. B2t + b2wt. B2t 4+ b2wf. B2f

B

o

o

blwt. P11
b2rf. P12 + b2rt. P11
enter. exit. blwf. P1

b2wt. P21

blrf.P23 4 blrt. b2wf. P22
blrt. P22 4 blrf. P2

enter. exit. b2wf. P2

(P1|P2|B1f|B2f)\{blrf, blrt, blwf, blwt, b2rf, b2rt, b2wf, b2wt}

13

The agent Lamport—2 has 27 states and is bisimulation equivalent to X
where X =g4; enter.exit.X. Thus mutual exclusion is preserved. A minimal
agent bisimulation equivalent to the modified Lamport—2 obtained by re-
placing ‘enter’ and ‘exit’ in Pi by ‘enter;’ and ‘exit;’ for ¢ = 1, 2, has 7
states.

In the case of 3 processes the CCS representation is the agent Lamport—3
below:

B1f =g bIrf.B1f+ blwf.B1f+ blwt.Blt
Blt =4 blrt. Blt+ blwt.B1t 4+ blwf. B1f
B2f =g b2rf. B2f + b2wf. B2f + b2wt. B2t
B2t =4 b2rt. B2t + b2wt. B2t + b2wf. B2f
B3f =4 b3rf. B3f+ b3wf. B3f+ b3wt. B3t
B3t =4 b3rt. B3t + b3wt. B3t + b3wf. B3f

Pl =4 biwt. P11
P11 =gf b2rf.P12 4 b2rt. P11
P12 =4 b3rf.P13 + blrt. P12
P13 =4 enter.exit. biwf.P1

P2 =4 b2wt. P21
P21 =4 blrf.P23 + blrt. b2wf. P22
P22 =4 blrf.P2+ blrt. P22
P23 =4 b3rf.P24 + b3rt. P23
P24 =4 enter.exit. b2wf. P2

P3 =g b3wt. P31

P31 =4 blrf.P33 + blrt. b3wi.P32
P32 =4 blrf.P3+ blrt.P32

P33 =4 b2rf. P35+ b2rt. b3wi. P34
P34 =4 b2rt. P34+ b2rf. P3

P35 =4 enter.exit. b3wf.P3

Lamport—3 =4 (P1{P2|P3|B1f|B2f|B3f)\{blrf,blrt, blwf, blwt,
b2rf, b2rt, b2wf, b2wt, b3zf, b3rt, b3wf, b3wt}

The agent Lamport—3 has 237 states and again is bisimulation equivalent
to X where X =4 enter.exit.X. A minimal agent bisimulation equivalent to
the modified Lamport—3 (with ‘enter;’ replacing ‘enter’ for i = 1, 2, 3 etc.)
has 26 states.

14

6. Peterson’s algorithm

The final algorithm considered in this paper is due to Peterson [PS]. We as-
sume that there are two processes, two variables b, and b, of type boolean
each having initial value false, and one variable k£ of type 1..2 with arbitrary
initial value. The * process (i = 1,2) may be described as follows (where
J is the index of the other process):

while true do
begin

(noncritical section) ;

b; := true;
ki=3j;

while (b; and k = j) do skip ;
(critical section) ;

b; := false
end ;

The CCS representation of this algorithm (assuming the initial value of k
to be 1) is the agent Peterson—2 below.

B1f
B1t
Baf
B2¢
K1
K2

P1
P11
P12

P2
P21
P22

Peterson—2

=df
=df
=df
=df
=df
=df

=df
=g
=df

=df
=df
:df

=df

bIrf. B1f + blwf. B1f 4+ blwt. B1t
birt. Bit + blwt.B1lt + blwf. B1f
b2rf. B2f + b2wf. B2f + b2wt. B2t
b2rt. B2t + b2wt. B2t + b2wf. B2f
krl. K1 4 kwl. K1 + kw2. K2
kr2. K2 + kw2. K2 + kwl.K1

blwt. kw2.P11
b2rt. P11 4+ b2rf. P12 + kr2. P11 + kr1. P12
enter. exit. blwi.P1

b2wt. kwl. P21
b1rf. P22 + birt. P21 + krl. P21 4 kr2. P22
enter. exit. b2wf. P2

(P1|P2|K1|B1f|B2f)\{b1rf, birt, blwf, blwt,
b2rf, b2rt, b2wf, b2wt, krl, kr2, kwl, kw2}

15

The agent Peterson—2 has 33 states and is bisimulation equivalent to X
where X =g4¢ enter.exit.X. A minimal agent bisimulation equivalent to the
modification of Peterson—2 with ‘enter;’ replacing ‘enter’ in Pi (i = 1,2)
etc., has 16 states.

Acknowledgments

I am indebted to Joachim Parrow, the author of the Concurrency Work-
bench (version 2.2), to Robin Milner who prompted me to write this report,
and to Kevin Mitchell for patient ML-related assistance. This research has
been supported by a grant from the Venture Research Unit of the British
Petroleum Company.

References

[D] Dijkstra, E.W., Solution of a Problem in Concurrent Programming Con-
trol, Comm. A.C.M. 8/9 (1965).

[H] Hyman, H., Comments on a Problem in Concurrent Programming Con-
trol, Comm. A.C.M. 9/1 (1966).

[K] Knuth, D.E., Additional Comments on a Problem in Concurrent Pro-
gramming Control, Comm. A.C.M. 9/5 (1966)."

[KS] Kanellakis, P.C. and Smolka, S.A., CCS Ezxpressions, Finite State Pro-
cesses, and Three Problems of Equivalence, Proceedings of A.C.M. Sympo-
sium on Principles of Distributed Computing (1983).

[L] Lamport, L., The Mutual Ezclusion Problem Part II — Statement and
Solutions, J.A.C.M. 33/2 (1986).

[M] Milner, R., A Calculus of Communicating Systems, Springer-Verlag (1980).

16

[PS] Peterson, J.L. and Silberschatz, A., Operating System Concepts, 27¢
ed., Addison Wesley (1985). '

Postscript

Since completing this paper I have learned of some papers describing work
involving the use of automated tools to analyse mutual exclusion algorithms.
In a review paper entitled Research on automatic verification of finite-state
concurrent systems (Ann. Rev. Comput. Sci. 1987, 2, 269-290), E. Clarke
and O. Griimberg describe briefly an analysis of Lamport’s algorithm in the
case of two processes undertaken using a model-checker for the fair compu-
tation tree logic CTLF. This analysis is described more fully in Automatic
verification of finite-state concurrent systems by Clarke, E.A. Emerson and
A.P. Sistla (ACM Toplas, 8/2, 1986). In a typewritten paper entitled Design
and synthesis of synchronization skeletons using branching time temporal
logic, Clarke and Emerson describe a method of automatically synthesizing
concurrent programs from specifications expressed in the computation tree
logic CTL, and illustrate the method by synthesizing an algorithm to ensure
mutual exclusion for two processes. (See also Using branching time tempo-
ral logic to synthesize synchronization skeletons, Sci. Comput. Program.,
2, 1982.) I wish to record here my gratitude to Edmund Clarke who kindly
sent me a large number of papers describing work undertaken by him and
his colleagues, including the papers cited above.

I believe that the AUTO system developed at INRIA (Sophia Antipolis)
has been used to analyse some mutual exclusion algorithms and, in conjunc-
tion with the ESTEREL system, to analyse real-time systems.

17

Copyright © 1987, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

