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MODELS OF SELF-DESCRIPTIVE SET THEORIES

BY
Marco Forti & Furio Honsell
ABSTRACT

This paper is about Set Theory as it was originally intended: i.e.
as a theory of the extensions of properties. We investigate, and prove
relatively consistent to ZF, several restrictions to Frege’s incon-
sistent Comprehension Principle in Set Theory different from Zermelo’s
"Limitation of Size" Principle.

More precisely we discuss models for highly self referential and
self descriptive Set Theories. In these theories many interesting
classes such as the membership relation or the class of all sets are
themselves sets but sets are nonetheless closed under interesting
operations (e.g. intersection, union and power set). We deal also with
models of non purely set theoretical theories for the foundations of
Mathematics.

Our models carry naturally a peculiar topological structure. In
fact any of them can be viewed as a »-compact x-metric space which
coincides with the space of its closed subsets equipped with Hausdorff’s
#-metric. The comprehension properties of these models are a consequence
of this topological structure.

Ideas and techniques in the theory of non-well-founded sets play a
crucial role in this paper. Techniques similar to these have been widely
used also in the theory of transition systems. In fact, the analogy of
"sets as processes" establishes a correspondence between many concepts
in these two areas, e.g. f-admissible relations and strong bisimul-
ations, greatest f-admissible relation and strong observational
congruence. We hope therefore that this paper might be of inspiration to
the theory of process algebras, and many of the constructions developed
in this paper might be fruitfully carried to that domain.

To appear on

"Partial Differential Equations and the Calculus of Variations.
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Marco Forti (Cagliari) and Furio Honsell (Edinburgh)

dedicated to Ennio De Giorgi on his 60*’h birthday

Introduction

It is well known that Zermelo-Fraenkel set theory has a limited
self—descripéive power. In fact most of the basic set-theoretic
relations, operations and properties (e.g. membership, union, sethood)
cannot be represented as sets since the classes which correspond to them
are too large.

Many attempts have been made to define set theories consistent
relative to ZF, which allow as sets many interesting classes having the
size of +the wuniverse. Apart from W.V.0.QUINE’s NF [16], whose
consistency strength is still unknown, we can mention the theories (all
equiconsistent with ZF) considered by A.CHURCH [1], H.FRIEDMAN [111,
E.MITCHELL [14], and A.OBERSCHELP [15]. These, however, are in some
sense unsatisfactory, since each of them is not closed under some basic
construction.

A very interesting class of set-theoretical models, closed under
many basic operations but still possessing a lot of large sets, was
introduced by R.J.MALITZ in his thesis [13]. Unfortunately, he

considered only wellfounded universes, thus utterly weakening the actual



power of his construction. In fact the most interesting properties of
the models he defined depended on a conjecture which is now almost
completely disproved (see section 2).

However, by simply performing Malitz’s construction inside a non-
wellfounded universe verifying a suitable "Free Construction Prin-

1

ciple", the first author [7] succeeded in proving the consistency,

relative to ZF, of the axiom schema GPK. This is a general "Positive
Comprehension Schema", which postulates the existence of the set
{x | #(x)} for any non-negative formula ¢ (for a precise definition of

the generalized positive comprehension GPK, see [7] and section 3
below).

On a different ground, wider self-referential power can also be
achieved by considering non purely set-theoretic foundational theories.
in these théories basic objects such as properties, relations and
operations are considered as primitive notions and are not identified
with their usual set-theoretic reductions. We refer in particular to the
work inspired by E.DE GIORGI and developed since the late seventies by
him and several researchers attending his Seminar on Logic and
Foundations at the Scuola Normale Superiore, Pisa (see [2], [3], [41).

In this paper we discuss in depth, from topological and set-
theoretical viewpoints, the constructions of [7]. Using techniques from
the theory of infinitary trees we provide a number of counterexamples to
Malitz’'s conjecture. We also generalize the construction of [7] to
universes with (univérse-many) urelements. The models thus obtained
provide a suitable environment for modelling theories for the
Foundations of Mathematics like [2], [3], [4]. In section 3 we explore
the possibility of modelling significant sublists of the strong axioms
of [2,8VI]. Theorems 3.3 and 3.4 are first results in this direction; a

more detailed account of this will be given in [10].



It is well known that comprehension principles entailing the
existence of universe-sized sets are often inconsistent with prin-
ciples of choice (see [6]). In the last section of this paper we
discuss various classical choice principles in connection to our models.
We obtain inter alia the relative consistency of the axiom of choice gnd
of the well-ordering principle with respect to the generalized positive
comprehension schema GPK plus an axiom of infinity.

Finally the authors would like to express how deeply they are
indebted to Ennio De Giorgi for his constant help and encouragement

throughout their set-theoretic and foundational research.

1. The Basic Construction

We work in a non-wellfounded Zermelo-Fraenkel like set theory with
" urelements. We assume the axiom of choice and, instead of the axiom of
foundation, a suitable free construction principle.

The axioms of our set theory are the following:(1>

ZF; - Pairing Pair, Union Un, Power-set PS, Replacement Rpl, and
Infinity Inf as in Zermelo-Fraenkel’s theory ZF.
AC - Zermelo’s axiom of choice.

WE - Weak Extensionality with respect to a (possibly empty) set U of
atoms, i.e.
(x e U — teg x) & (3xeU Vt tex ) &

(x e U & yeU & Vt(te x & tey).— .x=y)

FC - Unique Free Construction with respect to a set U of atoms, i.e.

1 por definitions and standard results on set theory we usually

refer to [12]; when we adhere instead to the notations of [2] or [8],
we shall mention it explicitly.



Given a function f: X —— P(X) u U such that f(a) = a for any

a€ Xn U, there is a unique function g: X —— T verifying

2>

f(x) if f(x) € U
g(x) =y .
g(f(x)) otherwise.

i

The axiom FC generalizes the free construction axiom X1 of [8] to
set theories with atoms. A straightforward modification of the argument

in the proof of Theorem 3 of [9] yields:

THEOREM 1.0
Given any model & of ZF; + WE there is, up to isomorphism,
exactly one (inner) model % of ZF; + WE + FC with the same atoms and

the same well~-founded sets of R,

Thereforé, as far as relative consistency and mutual inter-
pretability are concerned, our theory ZF; + WE + FC is equivalent to
ZF. The same holds for any extension of both theories obtained by
adding any large cardinal axiom or any choice principle, in particular
AC (cfr [91).

An easy consequence of the axiom FC is the absence of nontrivial
atom-preserving <-homomorphisms. This property of atomic rigidity,
analogous to the rigidity property implied by the axiom of Foundation,

will be of some importance in the sequel, so we formulate it explicitly:

AR - If T is transitive and h: T— 8§ verifies hi(x) = x for
x € TnlU and h(x) = h(x) for x e T\U, then h is the

identity on T.

In particular, AR implies the following axiom of strong

2> e denote by é(x) the image of x under the function g; more

generally, we put throughout the paper x(y) = {v | 3uey (u,v)ex}.



extensionality up to atoms:
SextA - If two transitive sets are e€-isomorphic under an isomorphism
which leaves any atom fixed, then they are equal.

€3>
In

In defining our models, we shall use topological notions.
fact we need a uniform topology with a nested uniformity basis madeﬁup
by equivalences. To this aim, we fix a regular cardinal » and we assume
that the set U of the atoms carries a x-hypermetric, i.e. a disfance

* *
d: U} — R, where R is any nonstandard model of the real numbers

with cofinality », satisfying the following properties:

(i) d{a,b) = 0 iff a = b;
(ii) d(a,b) = d(b;a) =2 0 for all a,b e U;
(iii) d(a,b) = max {d(a,c),d(b,c)} for all a,b,c € U.

We are interested only in the uniform structure induced by d. Ve
‘assume *R to be a model of the reals only for sake of suggestivity.
Actually, all that is needed is simply an ordered set of type 1+7,
with cof n* = X

Therefore we fix a strictly decreasing x-sequence <£a | a< » >
with infimum 0, and we define for any ordinal a < »x the a-equiv-

alence %a on U by

a=~_b iff d(a,b) < ¢ for any B < a. (1.1)

a B

Thus *o and ~, are respectively the trivial equivalence v?

and the equality. Moreover, the chain < ~ g | a s x > is weakly

decreasing and continuous (i.e. %a < NB whenever a > B, and ~a

= i {%a I a<a } for limit r), and generates the uniformity 4

€37 We shall only sketch some of the topological arguments in this

paper. All properties we shall state and use are straightforward
modifications of standard results and methods of the theory of metric
and of compact spaces. We refer to [H5], where also a detailed treat-
ment of general uniform spaces can be found.



associated to d, which is therefore either discrete or of weight .

Note also that the above defined sequence is made up of equival-
ences by virtue of the hypermetric inequality (iii), which implies that
the set of all balls of any fixed radius is a partition of U. However,
this condition is restrictive only for ¥ = ®, since in the uncountaple
case any #-distance d verifying the usual triangular in- equalit& can
be replaced by a uniformly egquivalent one satisfying the hypermetric
inequality (iii). Actually, it is easy to see that it is possible to
define such a #-hypermetric for any uniform space having a nested
uniformity basis of uncountable cofinality x. Only when x = @, i.e.
when U is metrizable, one has to check the sup~- plementary condition
that no pair of different points can be connected by a finite set of
arbitrarily small non-disjoint balls (see [18] for more details about
¥-metric spaées).

Following [7], we extend inductively on a the equivalences =

o
to the whole universe V by
X~ ¥ iff V3<o Vsex VYVuey 3tey Ivex s ~ g t & u ~g Ve (1.2)
Note that the sequence < 4 >a<x is now strictly decreasing and
continuous. Moreover, ®o is again the trivial relation Vz, but ~

is no more the equality (e.g. all ordinals greater then bt are x-
equivalent, see [13]). However, we can extend the distance d to V2

by putting

£ if Jakx x»~»_ y & x % y
d(x,y) = { “ @ a1 (1.3)

0 otherwise

thus obtaining a pseudo-x-hypermetric, which verifies only conditions
(ii) and (iii) above.
In order to obtain the corresponding x-metric space we need to

single out Jjust one point from each ball of radius zero, but we can



neither invoke the axiom of choice nor simply take the quotient, since
many O-balls are proper classes., We cannot even apply Scott’s trick as
in [13], since we are working in a non-well-founded universe; we use
here instead the method of [7], the axiom FC playing the role of X1 in
the presence of urelements. 9

-First of all we intoduce the x-membership ex on V by

Va < # 3z € y X~ 2,

X €_ 5y iff or equivalently (1.4)

¥ ’ 1 3
Ix ~y X Ay ~, ¥ x' €y,

Both ¥x-membership and #~-equivalence on Vv have nice topolog-

ical characterizations, namely

LEMMA 1.1
Two points x,v € V\U are x-equivalent iff they have the same
closure (considered as subsets of V), and the a-members of any point

x € V\U are precisely the ordinary members of its closure.

PROOF

By the first definition of x-membership, any x-member of x is the
limit of a »-sequence of members of x, hence belongs to the closure of
x; conversely, any point of the closure of x is such a limit, and the
second assertion of the lemma follows.

Moreover, by the second definition of #-membership, #-equivalent
sets have the same x-members, hence the same closure. On the other hand,
although the closure y = x of a given set x is possibly a proper
class, nevertheless it satisfies in toto the condition (1.2) for being

#-equivalent to x; the lemma is thus completely proved.

Q.E.D.

By the above lemma, if the closure of any set were itself a set,



then the closed sets together with the atoms would be a complete set of
representatives for the x-equivalence classes. Apparently, this is not
the case, but our goal can be achieved if we restrict ourselves to a

suitable subspace.

LEMMA 1.2 o

| ‘Suppose that the set X meets all r-equivalence classes, i.e. that

fof any y € V there is x € X such that x ~ A »
Then there are a unique transitive set N and a unidﬁe function

g: X— N verfying the following conditions:

(i) X ~, g(x) for any x € X;
(ii) X~ ¥ iff g(x) = g(y) for any x,y € X;
(iii) xe,y iff g(x) € g(y) for any x,y € X.
Therefore N is a transitive set of representatives for the

x~equivalence classes, and x-membership agrees on N with ordinary
membership; thus N provides a sort of “transitive collapse" of the

“quotient structure” (V/  ,€ / ).
x p”

PROOF

Note that X = U, since any atom is the only member of its
#-equivalence class; define the function f: X — P(X)uU by f(u) = u
for ue U and f(x) = Xnx for x € X\U.

Let g X —> N be the unique function, given by the axiom FC,
which is the identity on U and equal to éof on X\U., By definition
g has transitive range and is the identity on U: therefore, in proving
(i)-(iii), we can restrict ourselves to consider only sets.

We shall prove by induction on a that x ~ g(x) for any a < ux:
note that the assertion is trivial for a = 0 and that the limit steps
are true by definition.

Assume now t o g(t) for any t € X and pick x € X\U: then



g(x) = g(Xnx) = {g(t) | teX & texx}. First pick sex: by hypothesis

there is some ¢t € X with t ~, S and surely ¢ €, X hence

g(t) € g(x). Conversely, pick g(t) € g(x): since t €, X t is the
limit of some x-sequence in x, hence there is sone SEX such that

s~ t. In both cases we have s o g(t), whence x ® g(x).

4

The implication g(x) = g(y) == x e Y is an immediate

consequence of (i), and the remaining part of (ii) follows from the fact

that #»~equivalent sets, having the same closure, have the same image

under f,
Finally, what we have shown above, namely that g(y) =
= Nn {g(x) | xexy}, is a mere rephrasing of (iii).

Up to now, we have only used the existential part of the axiom FC,
The uniqueness of g and N follows from the rigidity property AR,

which is a consequence of the uniqueness part of FC.

Q.E.D.
We obtained the set N starting from a set X where all
x-equivalence classes were represented. But the role of X in FC is

merely that of a parameter set for defining the real membership on the
set one is looking for.

Therefore all that we need in order to get N is a set which
parametrizes all r-equivalence classes, i.e. a set Y together with a
mapping T: V~-— Y inducing the identity on U and verifying x ~p Y
whenever T(x) = 1(y).

Then we can put  f(y) = {zeY | 3u,v ue v & t(u)=z & v(v)=y} for
ye WU and f(y) =y for ye U; taking the function g given by
the axiom FC and putting o = geT we obtain a functidn which satisfies
conditions (i), (ii), and (iii) for all X,y € V and has therefore the

same range N.

There are several ways of defining such a mapping T, and we
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choose one that gives supplementary information about all "quotients"
V/wa for a s .
We fix functions TQ:U — U for o s » in such a way that

X~ Ta(x) for any x € U and any a < ¥; we extend them inductively

to V by putting, for x e V\U ,

'To(x) = To(u) for some u € U,
Ta+1(x) = Ta(X) = { Ta(y) | yex } for any a < x, and

Tl(x) = <Ta(x)>a<h = { (a,Ta(x)) | a<r } for limit A,

Note that we can impose to the original Ta’s the supplementary
condition that Ta(x) = Ta(y) whenever X %, ¥ thus getting a
sequence of choice functions for the a-equivalence classes of U; but we
can as well take all Ta’s to be the identity on U, in order to make our
construction.independent of the axiom of choice.,

In any case we obtain

LEMMA 1.3
(i) If Ta(x) = Ta(y), then x Vi

(ii) If x ¥y ¥ implies 7a(x) = Ta(y) for x,y € U, then the same

holds for any x,y € V.

Laay A , - - <4
(iii) Ta(V) is a set and ITa(V)I < expa+1(lra(v)|) for any o = .
PROOF
(i) We proceed by induction on a, assuming x,y € U since (i)
is true by definitioﬁ for x,y € U, and the hypothesis 1is never true

when x e U and y € WU.

4> we define inductively the iterated exponential exp({x) in the

usual way: expo(x) = i, exp (%) = ZeXPa(”) and, for limit A,

O+ 1
exp.(#) = sup {exp (x) | a<i}. We also put :1 = exp (8 ) = exp (0)
A o a a’ o w+d
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The case a=0 is trivial. For limit a it suffices to recall
that the equivalences R’B are a decreasing and continuous sequence,

hence X~ _ ¥y iff x ~_ y for all pB<a, whereas, by definition,

a B

Ta(X) = Ta(y) iff TB(X) = TB(y) for all B<a.

Finally, assume (i) true for a and Ta+1(x) = Ta+1(y), .13e.
%a(x) = %a(y); then we have that for any s € x there is some ¢ € y
such that Ta(s) = Ta(t) and symmetrically, hence x “orr U

(ii) We proceed inductively on da, and once more both the initial
and the limit steps are straightforward.

Assuming (ii) true for a and x a1 7 with x,y € U, we have
for any s € x some ¢t € y such that s o t , hence Ta(s) = Ta(t),

and symmetrically starting from ¢t € y.

Hence '7a+1(x) = %a(X) =7 (y) =7 (v).

o O+ 1
(iii) Again we proceed by induction on a, the assertion being
trivial for a = 0, and we put x, = I%Q(U)I and v, = I%Q(V)I.
Since Toer = %a on WU, we have %a+1(V\U) < ?(%Q(V)), hence
v < X + Zva <  exp (% ) by induction hypothesis.

a+ 1 a+ 1 a+ 2 a+1

- - n -
For limit a, we have Ta(V\U) = B<aTB(V), hence

1 lal
v, < X, + B<a vy S x, + (expa(xa)) £ expa+1(xa),

since, by induction hypothesis, vB < expa(xa) for any B<da.

Q.E.D.
We can summarize the preceding results as follows:

THEOREM 1.4

Suppose that the set U of all urelements carries a #-hypermetric
structure, let < ~ >asx be the chain of equivalences on the universe
V associated to it according to (1.1)-(1.2), and let U be the
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generated uniformity.
Then there are a unique transitive set N = N)(ﬂ) and a unique

projection o: V —> N verifying the following conditions:

(i) X~ o(x) for any x € V;
(ii) o(x) = o(y) iff x I 4 for any x,y € V; ;
(iii) o(x) € o(y) 1iff x €, ¥ for any x,y € V.

In particular x-membership agrees on N with ordinary membersgip.

The eguivalences < ~,n N? > x B2F€ 2 nested basis for a unifor-
mity on N, compatible with the x-hypermetric obtained by restricting
(1.3) to N. In the corresponding uniform topology, o(X) is the
closure of X for any subset X of N. Therefore N is the disgjoint

union of its clopen subsets U and N\U, the latter being exactly the

set of all closed subsets of N.

PROOF

The assertions about o are merely a restatement of the above
lemmata. Moreover, since %x is the equality on N, the distance
defined by (1.3) verifies also condition (i), hence is a #-hypermetric
on N, whose induced uniformity admits the equivalences vy B8 a basis.

It remains to prove that, whenever X € N, o¢(X) is the closure of X
in N, for the remaining assertions are easy consequences of this fact.

Given any set x € WU , denote by X its closure in V, and if
X s N put X =xn N, thus % is the closure of x in N.

By Lemma 1.1, X 1is saturated w.r.t. the equivalence Ny hence

in particular x 2 é(?). Then, if x ¢ N, we have

6(%X) € x n N=x = 6(x) € o(x);

o(x) = {o(y) | ye x} = {o(y) | yex}

therefore both inclusions are equalities, whence o(x) = .

Q.E.D.
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Since MU is precisely the set of its closed subsets, it is

natural to consider on it the Hausdorff x-metric

h(x,y) = max { sup inf d(s,t); sup inf d(t,s) }
sex tey tey sex

By means of (1.1)-(1.3) it is easy to compare the distancés: d
and  h, and obtain h(x,y)+ s d(x,y) = h(x,y), where 52 = g :
hence d and h are uniformly equivalent.

The same conclusion is reached by comparing the product distance
of pairs dz((x,y),(u,v)) = max {d(x,u), d(y,v)} with the distance
d between the same pairs (intended a la Kuratowski) considered as
subsets of N; hence N x N 1is a closed uniform subspace of N, and the
same is true for any power N,

If we consider general function spaces, the situation is not so
nice. However, from Theorem 1.4 and the above remarks, we can conclude
that a function (or relation) graph belongs to N iff it is a closed
subset of the product space Nx N in particular all continuous
functions with closed domains belong to N,

Moreover the uniformity induced by N on any function space is
given by the Hausdorff distance of the graphs; in particular, on spaces
of functions with the same domain, it agrees with the uniformity of
uniform convergence.

Since the situation becomes neater when the space N is x-compact,
we shall give a topological characterization of the function spaces
which are members of N (Lemma 3.1) only after dealing with #-compactness

in section 2.

We conclude this section with some useful remarks.
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REMARK 1.5
For A € U, define the cumulative hierarchy 1(A) =a€grd Ha(A) of
the sets wellfounded over A by putting
o (4) = 4, o,,,(4) = I (4) v P(0_(4)), and I, (4) =a\<}k o,(4)

for limit A,

In particular Ha = Ha(ﬂ) is the set of all well founded sets of
rank less than a.

Call x a-isolated if it is the only element of its wa—class, and
let Uﬁ be the set of all a-isolated points of U.

It is easily seen by induction on 8 that any X € HB(U&) is
(a+B8)-isolated: in particular any wellfounded set of rank less than a is
a~-isolated (cfr. [7], [13]). It follows that N = avx H”(Ua).

On the other hand all ordinals greater than o are a-equivalent to
each other, hence in particular II n N = H” .

More generally one has that the elements of Ha(A) are pairwise
(B+a)-inequivalent whenever the elements of A are pairwise B-inequiv-
alent. Hence, putting X = IUVwaI and v_ = lNﬁ(ﬂ)/%al, one

a a

obtains the inequality expa(x for any o,8 < &.

3) < v3+a
Better estimates can be obtained by observing that if <Sa | a<a>

(A limit) dis an increasing sequence of sets of representatives for the

a-equivalence on N, then all elements of ?(agl Sa) are pairwise
A-inequivalent, and ?(Sa) is a set of representatives for the

(a+l)-equivalence on MU.

Therefore

) sup {vala<l}

v = 2 4+ x and v, = 2

o+ 1 a+1 A (A limit)

H
In particular we obtain that, if =« A for x> a> B, then

<
a+ 1

= > o
va :)a+1 for any a B
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REMARK 1.6
If there are no urelements, i.e, U = @, the model Nﬁ = Nﬁ(@) is
exactly the same as the one introduced in [7]. This is more

comprehensive than the corresponding model Mx of [18], which contains
only the representatives of the n—equivaleﬂce classes of wellfounded
sets.

Restricting the construction of Theorem 1.4 to all Wellfoﬁnded
sets, we can obtain a transitive collapse N;f of the model Mx with
the »-membership €, Similarly, we can perform our construction only
for the class II{U) of all wellfounded sets over the atoms. However,
in view of the x~compactness results of the next section, the full model

Nx seems more interesting.

REMARK 1.7

If we consider models N = N&(U) for o any limit ordinal, as in
[7] and [13], the uniformity of N has then weight v = cof a and
will therefore never be v-compact or even v-bounded, when a is singular
(see section 2).

Moreover, stopping the construction of Nﬁ(ﬂ) at a < x amounts
to starting it with a set of atoms isometric to the quotient space U/AvOt
(which is either discrete or has weight » = cof a). On the other hand,
proceeding up to a > ¥ is equivalent to starting with a discrete set
of atoms, which can even be assumed pairwise l-inequivalent.

The only interesting possibility is therefore to take, instead of
the basic x-sequence <8a>a<x , & new A-sequence <€é>a<l , where A is
any limit ordinal of cofinality x.

In this way the uniform structure of U is preserved, and all

wellfounded sets of rank less than A are now present in Nl(ﬂ)' However,

in view of the results of the next section (Theorem 2.7), Cauchy comp-
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leteness is preserved only for # = cof A = @. Moreover, #-compactness
is lost for singular A, and with it many intefesting comprehension

properties of the model (see section 3).

2. Cauchy completeness and x-compactness ;

As pointed out before, most of the interesting features of our
models depend on additional topological properties, which, for

x-hypermetric spaces, can be characterized as follows:
DEFINITION 2.0

Let N be a x#hypermetric space:
N is Cauchy complete iff any Cauchy x-sequence of N converges in N;
N is x-bounded iff there are less than x balls of any fixed radius;

N is w-compact iff any x-sequence in N has a convergent x-subsequence.

It is easily seen that the above definition of #-compactness is

equivalent to each of the following classical properties:
(1) any open cover of N has a subcover of cardinality less than x;

(ii) any strictly descending #-chain of closed sets has non-empty

intersection.

Moreover, any ¥~compact x-metric space is both #-bounded and
Cauchy complete, but the converse implication can fail for uncountable
#, e.g. for the tree T’ defined in the proof of Lemma 2.3 (see also
[131).

We shall see below that #~boundedness, Cauchy completeness and
x#-compactness of the space N = Nﬁ(ﬂ) can be obtained by combining the
same properties of the subspace U of all atoms with suitable

combinatorial properties of the cardinal x.
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We begin by considering »-boundedness:

LEMMA 2.1
N = N?(ﬂ) is x-bounded iff U is x-bounded and x 1is strongly

inaccessible.,

_PROOF

First of all, N is the disjoint union of its clopen subsets U
and MU, and MU includes the set Hx of all hereditarily well-
founded sets of rank less than », by Remark 1.5.

Since any point x €« Ihx is oa-isolated, the x-boundedness of N
vields both that U is #-bounded and that :1a < x for any a < ¥x;
therefore the given condition is necessary.

On the other hand, by Lemma 1.3, the number of distinct a-equiv-
alence classés in the whole universe V does not exceed expa+1(xa) y
where xq is the number of a-equivalence classes in U, and ”a <
when U 1is x-bounded.

Therefore, if # is inaccessible, the number of ea—balls in the

whole universe is strictly less than 2, for expn(t) < X whenever

both ¥ and n are less than .

Q.E.D.
We shall now investigate the notion of Cauchy completeness.
LEMMA 2.2
Let x = »*  be a successor cardinal. Then N = N?(%) is not

Cauchy complete.

PROOF

We define a "universal" Zl—ary tree T of subsets of #+1 in the
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6>

following way:( for o < x, put

Ia = { Arat+ y | 0 =5y <A},
Ta = {xu {2} I xe P(r-a) & xn IB = 0 VB<a },
and, for x,ye T = ayx T, put

x <T ¥ iff Aoa<xe x \ {#} = y n rA-a.

Clearly (T,<T) is a tree of height ¥, whose a'® level is Th;
it is a universal Zl—ary tree, since any of its nodes has exactly 21
immediate successors and any of its branches of limit length has exactly
one immediate successor; hence any 2l—ary tree is (isomorphically)
embeddable into T, and the embedding can be taken level-preserving.

Moreover, recalling that all ordinals 2 a are a-equivalent, whereas
those < a are pairwise a-inequivalent, we get that, for any x € Ta

and any y € T, x <,, ¥ holds iff x y. Hence there is a natural

T

correspondence between w-branches of T and Cauchy #-sequences of

e
AQ+ 1

elements of T.

Let S be the set of all bounded strictly increasing d-sequences
{with a < x) of elements of the lexicografically ordered set @ =
= {sslm | Jm Vn>m s = 0o } of all eventually 0 sequences of ordinals
less than A, and arrange S in a tree by inclusion.

S is a classical A-ary tree of height # without any #»-branch,
and it is homogeneous in the sense that it is isomorphic to each of its
full subtrees obtained by taking all successors of any node.

Let T’ be a suﬁtree of T isomorphic to 8; and let X be the

a*®™ level of T?, i.e. the set of all nodes of T’ corresponding to

¢®> Recall that a partially ordered set (T,<T) is a tree iff the
predecessors of any element (node) x € T are wellordered by <T, their
order type (length) being the level of x.

T is x~ary iff any node of T has at most » immediate successors
and any branch of limit length at most one.
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a-sequences of S, The x-seguence < is Cauchy, and in fact

x >
a O X

X X for a < 3, as can be seen by considering, through any

B
s€x,,8 branch of T’ of length greater than 8.

.
a  Ad+2

But the sequence <xa> cannot have a limit, since otherwise,

putting x = lim X, and picking some s € Xx, we would find for any
< e 3 - ’

a X elements Sq Xy verifying s, %ka+1 S, and these would

constitute a #-branch of the tree T’.

Q.E.D.

LEMMA 2.3
Let # be inaccessible and assume that x —}- (x):.CG) Then the

space N = Nx(ﬂ) is not Cauchy complete.

PROOF

In orde£ to reach our conclusion, we follow closely the argument
used in the case of a successor cardinal.

We define a tree T of subsets of x+1 by putting, for any

infinite cardinal A < x,

I, ={71 rsy<a’},
Tl = {xu {2} | xe P(A) & VEKL xn IE = 0 },
and, for x,y € T = U T
! ! A<k A

€62  Recall that the partition property u — (Jt)2 holds iff given

any partition of all doubletons from x» into two “parts, there is a
#-sized subset of # all of whose doubletons belong_to the same part.

It is well known (cfr.[12]) that x—> (x) is equivalent to
the binary tree property, saying that any binary“tree of cardinal =«
has a #-branch, and that it implies that » is strongly inaccessible.

For a strongly inaccessible cardinal x», the property x» — (&)
is also equivalent to the tree property (which says that any tree o
size x all whose levels have sizes less than # has a x-branch), as
well as to weakly compactness (which says that any x-complete filter
over a x-complete field 3 of subsets of » is included in a #-
complete ultrafilter on J).

We include ® among the strongly inaccessible cardinals.
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x <T ¥y iff < x \ {#} = y n A,

Clearly (T,<T) is a tree of height #, whose at? level is T; 3

a
*

any node of Tk has exactly 2l immediate successors and any branch of
limit length in T has exactly one immediate successor.

‘Since, as above, for any x € Tl and any y e T, X y holds

<r
iff X %y ¥ there is again a natural correspondence between
#-branches of T and Cauchy #»-sequences of elements of T.

Assume now that «# is weakly, but not strongly inaccessible. Then,
for some A < » , x is less than ZX, and one can embed isomorphically
into T any #-ary tree of height x.

Define a tree S§ in the following way:
put @ = {(l{a) | a<A<x & A is an infinite cardinal}, and let S = Q((’J
be the set of all finite sequences of elements of @.

Given s = <(lo,a0),...,(lm,am)> and t = <(p0,Bo),..,,(pn,Bn)>
put s < t iff m=n, li = By for izm, a, = Bi for i<m and a < Bm.

Clearly S becomes a #-ary tree of height x# without any x-branch.
In fact any node of S has exactly # immediate successors and the whole
tree § is isomorphically embeddable into the subtree of all successors
of any of its nodes.

Let T’ be a subtree of T isomorphic to S, and let Xy be the

a®® level of T’: the very same argument of the previous lemma now

works and proves that the wx-sequence <Xa>a<x is Cauchy, but cannot
have any limit.
Finally, if # 1is strongly inaccessible, then by hypothesis there

is a binary tree S of height » without any #»-branch. Let T’ be a

subtree of T isomorphic to S8, and put

X, = { t e T’nT; | t has ¥ successors}.
o

Since x is strongly inaccessible, all levels of T have size less
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than #, hence any element of X has successors in each XB with BA>aqa.

Therefore <Xa> is again a Cauchy »-sequence without limit.

aqc #
Q.E.D.

A criterion for Cauchy completeness can now be given, namely:

"LEMMA 2.4
Suppose that the atom space U is x-bounded. Then N = N*(ﬂ)> is
Cauchy complete iff both x — (u): (i.e. » is strongly inaccessible

and weakly compact) and U 1is Cauchy complete.

PROOF

By the lemmata above, the given conditions are necessary for Cauchy
completeness. They are also trivially sufficient when #-sequences of
urelements afe considered.

Thus assume ¥ — (x)z and let <Xa>a<x be any Cauchy x»-sequence
in MU: we can suppose w.l.o.g. that x ~q X3 whenever d < B8 < ¥,

a

_ x
Put §={xe N | X4 *a %3 Ya<B<x }.

Define the function f:8§ — P(S)uU by setting

fix) = {y e 8 | Ya € Xqut Va<xz } if x is eventually outside U,
f(x) = lim X otherwise (the limit exists in U by hypothesis).
Let g be the unique function given by the axiom FC. We claim

that g(y) *o Yo for all a <x and all y 8. Then, in particular,

g(x) = lim Xy o and we are done.
Our claim is trivial for o = 0, and easily verified for any limit
A< x, provided it holds for all a < A. Moreover, it holds by

definition if x is eventually atomic: so we only need to prove the
induction step from a to a+l when all yd’s are non-empty sets.

By definition, we have, for any such y € S,
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g(y) = g(f(y)) = {g(z) | z€ S & Vy<x z<=y, . )

hence, by induction hypothesis,

g(z) g Zgq € 7, for any g(z) € g(y).

a a1
Conversely, given t e Yoy * Ve need to find z € § such that

)

t and zZ. €y for all 7<#. Then t gl(z) by

&a,za 7 X! “a Za Ya
induction hypothesis, hence Yow1 “ast g(y), and our goal is achieved.
In order to find the #-segquence z,'we define a tree T = agx Ta

as follows:
Tﬁ = {a} x {Ba(x) | x = ya+1}, where Ba(x) = {zeN | z *ax},
and (a,A) <T (8,B) iff a< B8 & A=z B,

Any node of T lies on a x¥-branch, since its successors constitute a
tree of height # with levels of size less than #, by our hypotheses.

Pick a #x-branch <(7,07) | 7<% > of T through (a,Ba(t)). Any
x-sequence 2z such that 27 € y?+1 N Cy for all y<x 1is now suitable for

our purposes.

QoE.D:

We are now able to state the main result of this section, which

generalizes to the present context Theorem 4.4 of [7]:

THEOREM 2.5
The space N = Nx(ﬂ) is #x-compact iff both x — (x): (i.e. x

is strongly inaccessible and weakly compact) and U 1is ix-compact.

PROOF
As in Lemma 2.4, the conditions are obviously necessary.

Thus assume ¥ — (x)z and let <Xa>a<x be any #x-sequence in N.

Arrange the pairs (a,xa) in a tree T in the following way: suppose

the levels T of T are already defined for & < p <&, consider the

s



23

7-equivalence classes of all elements Xy such that (a,xq) is not yet
arranged at any level & < y and, for each class, put in T} the pair
(B,XB) having the least index 8.

Given (a,xa) at level & and (B,xB) at level y, put

(a,x ) <p (B,XB) iff both & < 7 and x, ~g5 x,.

.It is immediate to verify that T becomes a tree whose rth level

is indeed TY' Since the elements of the a'" level of T are pairwise
o~-inequivalent and N 1is #-bounded by Lemma 2.1, T 1is a tree of size
¥ with all levels of size less than x, hence of height =x. It has

therefore a »xbranch, since by hypothesis x» has the tree property.

By definition, the second components of any #-branch of T
constitute a Cauchy #»-subsequence of the original sequence, which is
convergent since N is Cauchy complete by Lemma 2.4: the proof is thus

complete.

Q.E.D.

Clearly, when the atom space U is discrete, it is #-compact iff its
size is less than #. Hence if |U| < #, then N”(%) is x-compact iff =«
has the partition property.

On the other hand, a #-metric space 1is x-compact iff it is
uniformly isomorphic to a closed subspace of the "universal" space 2%
of all #x-sequences of 0’s and 1's, equipped with the first difference

#-hypermetric di(x,y) = €a iff a = min {8 | Xg ® yB}.

2%,

A

It follows that if Nk(ﬂ) is »x-compact, then |U]

We conclude this section with some remarks about Cauchy

completeness.
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REMARK 2.6

The space Né(ﬂ) is Cauchy complete whenever U is a complete
metric space, since the argument of the proof of Lemma 2.4 works without
the »-boundedness hypothesis for # = @, In fact,‘using the notation of
that proof, given ye & and ¢t € Y1 one can always pick a sequerce
z € § with z = t verifying z € Yoot for all m € w.

On the contrary, x-boundedness is a necessary condition for Céuchy
completeness for any uncountable x#, as we shall show below.

Assume U #-unbounded and let A be a set of »x pairwise
a~-inequivalent atoms for some a < &, We shall assume, for sake of

simplicity, that the elements of A are already l-inequivalent.

For a € A, consider the "generalized ordinals" a, defined by
a, = a, 8o = 8 Y {aa} and a, zayl a, for limit 2A.

It is easy to verify that generalized ordinals built wup over

different atoms from 4 are pairwise 2-inequivalent. Moreover

a, %q 8g and  a, { S a; for a < 8.
Put Aa = ogA a,s Ia = Aa+1\Aa and define a tree T = ayx Tﬁ
by Ta = { XUIx | nga & XﬂIB #= @ VB<a } and
s <T t iff Jokx s € Th & s n Aa = £t n Aa'

Clearly T is a tree whose a®? level is Ta and any node of T has
exactly 2% immediate successors. Therefore one can embed in T the tree

S defined in the proof of Lemma 2.3. Since for s,t € T one has

8 &a+1 t iff g n Aa = t n Aa s

the argument of the proof applies and gives a non-convergent Cauchy

x-sequence.
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REMARK 2.7

Let » be a strongly inaccessible weakly compact cardinal, and let 2
be any limit ordinal of cofinality w=.

According to the last part of Remark 1.7, we can build up the
model N&(ﬂ) so as to include allhwellfounded sets of rank less than!l.
Then'we can fix an increasing #-sequence <7a>a<n of ordinals cofinal
in X and use the 7a—equivalence instead of ~a

If # = cof A = w, we can easily modify the initial argument of
Remark 2.6 so as to obtain that Ni(ﬂ) is Cauchy complete iff its atom
space U is.

On the other hand, if A > 2 = cof A > w, we can argue as in the

proofs of Lemma 2.2 and 2.3. Namely, the x-sequence < 7 can

>
a "<
replace the ordinals less than x» in defining suitable trees of parts of
A+l1, so0 as to provide inside Ni(%) counterexemples to Cauchy

completeness.

Summing up all results on Cauchy completeness we obtain the

following general criterion:

THEOREM 2.7

Ni(ﬂ) is a Cauchy complete metric space 1iff 2 has countable
cofinality and U is Cauchy complete.

If A has uncountable cofinality x, then the space Nl(ﬂ) is Cauchy
complete iff A — (1)2 (hence A = %) and U is both Cauchy complete

and x-bounded.

In particular the models Nﬁ of [7] are complete iff either

cof a= ¢ or a— (a)z.
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REMARK 2.8

In his thesis [13], R.J.Malitz calls crowded a x-metric space where
any x-sequence has a Cauchy x-subsequence. Clearly, crowdedness implies
#-boundedness, whereas x-compactness is equivalent to the conjunction of
crowdedness and Cauchy completeness.

'Many' of the most relevant properties of the models Mb_ of _[13]
depend on the existence of some ordinal a such that M& is both crowded
and Cauchy complete (such ordinals are called Malitz ordinals in [T]),
and Malitz conjectured that all regular uncountable cardinals have this
property. However, since the counterexamples employed for the negative
parts of the above theorems make use only of wellfounded sets, they
apply also to Malitz’' models. Therefore, if » 1is Malitz, then
o — (u)i.

On the contrary, a free construction principle (although not
necessarily FC) plays the essential role in proving the positive parts
of Theorems 2.5 and 2.7. Thus all that one obtains from the argument of
Theorem 2.5 is that Mﬁ is crowded if and only if a — (a)z°

Malitz himself proved that M@, unlike our N&, is not Cauchy comp-
lete. His argument can easily be carried out for any ordinal of count-
able cofinality, following the pattern of the proof of Theorem 2.7. The
gquestion as to whether Malitz cardinals exist at all is still open. As a
matter of fact, the opinions of the authors are split in conjecturing an
answer to this question. A positive solution would yield that the corres

ponding Mﬁ has many of the comprehension properties of our models Nh(ﬂ).

3. Comprehension properties of x-compact models

As we noticed in the first section, it is easier to study functions

and function spaces in the model Nx(ﬂ) when this is a #-compact space.
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In fact most properties of compact metric spaces have perfect analogues
for any uncountable ». E.g. the graph of a function f is closed in the
product topology if and only if f is continuous and dom f is closed,
and in this case f 1is a closed uniformly continuous map; the
#—-compact-open topology on the space of all continuous functions Eis
induced by the uniformity of uniform convergence; a set of contiﬁuous
functions with the same domain is closed in the x-compact-open topology

iff it is equicontinuous, etc..

We summarize the results which are relevant in determining the
comprehension properties of our models in the following lemma, and we
refer to Chapter 8 of [56] for detailed proofs and more information on

this topic (see in particular [5,8.2.4-10]1).

LEMMA 3.1
Let N = N”(W) be x-compact. Then

(i) A function f belongs to N iff it is continuous and its domain
is clqsed, and in this case f 1is a closed uniformly continuous map.
More generally, if A £ N, a function g: A—> N 1is #-equivalent to a
function f e N iff it is uniformly continuous on A (the domain of f

being then the closure of A in N).

(ii) For any X € N\U and any Y < N, the space YXn N with the
induced uniformity is precisely the set U(X,Y) of all wuniformly
continuous functions from X into Y with the uniformity of uniform

convergence (which induces the x-compact-open topology).

(iii) A set F ¢ NX belongs to N iff F is equicontinuous and X is
closed. In particular, if 1Yl > 1, then U(X,Y) = YXn N belongs to N

iff X ie closed and discrete, i.e. iff 1X| < », and then UY(X,Y) = YX.
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PROOF
(i) Since N is x-compact, the graph of f is closed in NxN iff f is
continuous and dom f is closed; moreover any subset of N is closed iff
it is #-compact, hence any continuous function maps closed sets onto
closed sets, and is uniformly continuous on any closed set. ;
. On the other hand, if g is uniformly continuous on A4, then it has

a unique uniformly continuocus extension to A4, whose graph is clearly

the representative of g in N.

(ii) As in the ordinary compact case, it is easy to see that if the
space X is wx-compact, then the Hausdorff distance of the graphs induces
on the space U(X,Y) of all (necessarily uniformly) continuous functions
from X into Y both the uniformity of uniform convergence and the
#-compact-open topology. Since U(X,Y) = YXn N by (i) above, (ii)

follows.

(iii) By Ascoli’s theorem extended to x-compact x-metric spaces, if X is
#-compact, then a closed set F c YX is #x-compact iff F is equi~
continuous and {f(x) | feF} has x-compact closure for any x€X. Since
in this context closed and »-compact are synonyms, we conclude the first
assertion.

As to the second one, the condition is obviously sufficient, for
then the points of X are a-isolated for some da, hence the set of all
functions on X is equicontinuous.

To prove the converse, let x be a cluster point of X, pick two
different points Z,s 2, in ¥, and, for any y € X put fA(y) = z
if ¥ * g X fa(y) =z, otherwise.

Clearly, <fﬁ>a<u is a #-sequence of uniformly continuous
functions on X whose pointwise limit is not continuous; hence it cannot

have any uniformly convergent subsequence. Therefore U(X,Y) is not

x—-compact.
Q.E.D.

o -
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We shall now illustrate the selfdescriptive power of a »-compact
model N = Nx(ﬂ). As pointed out before, these models are closed under
many basic operations. Simultaneously many interesting large classes are
closed subsets of N, hence they belong to N,

We begin by stating a theorem which transposes to the presgnt
situation, where urelements are allowed, all the assertions of Theofem 4
of [7 §4.2].

Following [7], we define the class GPF of the generalized positive
formulae as the least class which includes the atomic formulae and is
closed under conjunction, disjunction, existential and universal
quantification as well as under the following rules of bounded

quantification (which, strictly speaking, are non-positive):

if ¢ is GPF, then both Vx(xey — ¢) and Vx(6(x) — ¢) are

GPF, where 6 is any formula with exactly one free variable.

The Generalized Positive Comprehension Principle GPK is the axiom
schema (denoted by Comp(GPF) in [7]) which postulates the existence of

the set {x | ¢} for any generalized positive formula ¢,
GPK - 3IxVy (yex ¢« ¢) where ¢ is GPF and x is not free in ¢.

Since the formula 2z = (x,y) is GPF, the generalized positive
comprehension principle GPK yields both the existence of many
fundamental graphs (e.g. membership, inclusion, identity, singleton and
power-set maps, projections, permutations and all natural manipulations
of n-tuples, etc.) and the stability under many basic operations (e.g.
union, intersection;‘ cartesian product, domain, range, inversion,

composition and fibred product of graphs, etc.).

In the light of the above remark, the strength of the following

theorem will now be evident.
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THEOREM 3.2

Assume that N = Nﬁ(ﬂ) is #x-compact. Then

(i) any subset of N of size less than » belongs to N together with
its complement w.r.t. N. Both the product of less than x elements of

i

N\U and the intersection of arbitrarily many of them belong to N.
(ii) N satisfies the Generalized Positive Comprehension schema GPK.

(iii) The "cumulative cardinals” Cop = {xeN | Ixl<ar } belong to N
for any cardinal x < x, whereas no '"Frege-Russell cardinal"

fy = {xeN | Ixl=r} belongs to N for » > 1.

PROOF

First of all, any set X & N of size less than x is well-spaced,
i.e, its points are all a—-isolated for some a < ¥, hence X is both
clopen and discrete.

Now the first part of (i) is immediate. The second one follows
directly from Lemma 3.1, any function on X being uniformly continuous
and any set of functions on X equicontinuous. The last assertion of (i)

is obvious, since any intersection of closed sets is closed.

In order to prove (ii), we make use of an analogue of the classical
Bernays’ theorem for Gédel—Bernays class theory, proved in [T7,84.1].

Namely, GPK holds in N provided that the following sets belong to N:
(1) I = {(x,y)eN® | x=y} and E = {(x,7)eN’ | xey};

(2) X '= {(x,5)eN® | (y,x)eX}, Q(X) = {(x,y)eN* | Vzex ((x,y),z)eX},
{X,Y}, x(v), and XxY = {((x,57),2)eN* | (x,2)eX & (y,z)eY},

for all X,Y in N;

(3) X(Y) = {zeN | VyeY (y,z)eX} for any X € N and any Y £ N.

Since a w¥-sequence of pairs (Xa’yd) converges to (x,y) iff both
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lim X, = X and lim Yo = it is easy to check that the identity I

1 and X¥Y whenever X and Y are closed.

is closed, as well as X

Moreover, any fiber }(y) = {z ]| (y,2)eX} is closed provided X is
closed; this yields (3), for X(Y) = n {}(Y) | yeY}.

On the other hand, if both X and Y are closed, hence ¥-com-
pact, then also X(y) = ﬁz(X n YxV), being the image of a x—compadt set
under the continuous map P2 (second projection), is x»-compact, hence
closed.

In order to obtain (ii), it remains to prove that E and Q(X)

are closed.

Let (xa,ya) be any #»x-sequence in E, and suppose that
(x,y) = lim (Xa’yd)° We may assume w.l.o.g. that Xy a1 X and
Yo “as1 7} s%nce Xy € Yy o there is for any a<x some S, Y such that
Xy g Sy Then lim sa = lim X, = X belongs to y and so E 1is
closed.

Finally, let (x,¥) be the limit of a #-sequence (Xa,ya) in

(X), and assume again that Xy “ae1X and Vo “aes T} pick =z € x
and, for any a, z, € X, such that Zy%q 2 by definition
((Xa’yd)’za) € X for any dq, hence also ((x,¥%),2) € X, and we are
done.

It remains to prove (iii): +to this aim, assume that we are given a
x-sequence X, such that lxal < A and Xy “qr1 ¥ for any a < .

By considering the quotients modulo a-equivalence, we get

Ix/%al = Ixa/%al < » for any oa<x. If |x| 2z A, consider any subset y

of x of size A: éince A< the elements of y are pairwise
B~-inequivalent for some B<¥, hence ly/NBl > A, contradiction.
Finally, for fixed i<z, let X, = {aty | »<a }.
Clearly, lim Xy = 1lim {a} = {x} (where =z = lim a = » U {7}).

Hence no Frege-Russell cardinal greater than 1 is closed.

Q.E.D.
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Although compact N”(%)’s are highly self-referential, never-
theless interesting open relations, like non-identity, and discon-
tinuous operations, like binary intersection, fail to be elements of the
model . The most serious self-descriptive deficiencies of these models
are ultimately due to the fact that full function spaces in general are
not elements. In fact the set XYnN = U(Y,X) of all uniformly contiﬁuous
maps from Y into X is not closed whenever |Ylzx and [XI>1.

However these deficiencies appear only if we continue to focus on
the wusual set theoretic reductions of the fundamental mnotions of
operation and relation. We shall show now that, assuming a non purely
set theoretic foundational framework like the Ample theory (theory A) of
[2], many of these deficiencies can be partially amended.

It was with this in mind that we assumed urelements in our models.
These have pléyed no role up to now. We intend here to activate them as
relations, operations and gqualities, not withstanding the fact that many
of these notions do not have a corresponding set (graph, extension) in

the model. This method is similar to that of Oberschelp [15].

We assume for the rest of this section that # is an uncountable
strongly inaccessible weakly compact cardinal and that the space U of
the urelements is isometric to the universal »-compact space 2% of all
x#-sequences of 0’s and 1’s, endowed with the first-difference hyper-
metric (see section 2).

Since the mapping x » x U {#}x{0,1} provides an isometry of o ¥
onto a closed subspace L of N, we can fix an isometric inner labelling
of the atoms by elements of L, say £: U— L. We fix also a uniformly
isomorphic embedding of N = N”(ﬂ) into U, which will be denoted by j.
Note that both £ and Jj, being continuous, belong to N. Further
conditions on the embedding j will be specified later.

From now onwards, we assume the reader acquainted with the
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definitions and the notation of [2], which we shall adopt without
further explanation for lack of space. In particular we shall deal
freely with the over 200 distinguished objects of the Ample theory,
which will be denoted by the names of the corresponding constants.,
Similarly, we shall refer to any axiom of the seventeen groups
constituting the theory A by simply quoting the reference numbér it
received in [.‘7‘..].(7>

Our goal is to extend the set-theoretic structure (N,€) to an
Ample structure with domain N} An ample sgtructure is a first order
relational structure capable of accomodating the interpretation of the

constants and predicates of the ample theory. The fundamental predicates

of the theory A are:
X is a quality, X enjoys the gquality y;
x is a relation, x is in the relation z with y;
x is an operation, y is the result of the operation z on x;

z is the pair with first component x and second component y.

If the axionms 1.A-J hold, the ample structure is uniquely

<73 We modify slightly the formulation of the axioms 1.K and 17.F of

[2], in order to make it closer to the common use and meaning of the
objects involved. Namely, we do not reduce the quality of being a
g~-r-structure to the simple extensional condition given in
[2):consequently we take in the corresponding axiom only a one-sided
implication (as done in [2] for the quality gquniv):

1.K - qqrs & implies that © = (q,r), qqual q, grel r and, if for
some y yrx, then gx.

On the other hand, we replace the functional relation rbid by an
operation bid which associates to any paﬁr (x,¥) and to any relation r
the proposition “xry®>. This seems to represent better the act of

bidding some opinion.

17.F - gop bid, if y rval bid then ﬁprop ¥, and x rdom bid iff

x=((u,v),r) and qrel r. !

(due to a misprint, the axioms on proﬁositions received in [2] the
number 16 instead of 17).
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determined by the interpretations of the distinguished constants and of
the ternary predicate x is in the relation z with ¥y (see [2, 81
Appendix]).

We call natural an ample structure with domain N if its structure
of collections is standard, i.e. if the extension of the quality chll
is N n P(N) and the relation rcoll is the true membership restricted
to N. We proceed now to sketch a first extension of (N,€) to a natural
ample structure with universe N.

In the rest of this section, we shall use square brackets to
denote the usual set-theoretic codification & la Kuratowski of pairs and

n-tuples, namely

[x,v1 = {{x},{x,5}} and [x se0erx 5x

. 1 = [[xi,..-,xn],xn 1.

+1 +1

The standard notation (x,y¥) and (X1""’Xn) will be reserved
for denoting primitive pairs and n-tuples.

Similarly, we shall distinguish between (ordinary) graphs and
products, which are collections of primitive pairs or n-tuples, and
K -graphs or k-products, which are built up & la Kuratowski and marked
by a subscript k. For instance;, the x-product of A and B is

A X B = {[a,b] | acA & beB}, and is therefore distinct from the

ordinary cartesian product A x B = {(a,b) | acA & beB}.
First of all, we put

Coll = N\U,
Sys = {j(x) | x < NXKN & Ixl<x }, and

Card = {j(A) | A a Von Neumann cardinal <»x } u {j(x)}.

We interpret the elements of Coll as collections with the ordin-
ary membership €. We interpret those of Sys as systems, with the
natural rule stating that, for the system § = j(x), uSv  holds iff

[u,v] € j(x). Finally we interpret the elements of Card as cardinals,
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with r\== JiCx) intended as the size of any large collection (the
quality gsmall meaning having size less than #). The standard cardinal
operations and ordering (on small cardinals, i.e. below %) are
transferred by means of Jj.

In particular the collection of the natural numbers is N = 3(9),
with, 0 = j(6), 1 = j({6}), =l = j(J ' (mulS H(m}), and n = j(o)

Moreover, in accord with the axiom 9.B of [2], we define the
natural pair of x and y by (x,y) = J({[1,x]1,[2,y]}), and similarly the
n-tuple (xi,...,xn) = j({[l,xil,...,[n,xn]}).

Before proceeding we remark that Coll and Card are closed, hence
are collections themselves, whereas Sys is not. We could have chosen as
systems the images of all closed subsets of NxKN} thereby obtaining a
closed collection, but we prefer to deal only with small systems. So
doing we aliow for the greatest manageability of systems, which is a
typical feature of the theory A.

In order to encode qualities, relations and operations as suitable
definable subsets of U we proceed as follows.

Given a set A ¢ P(N), define the Godel closure &£(A) of A as
the least superset of A which is closed under all Godel operations (we

can take only the operations x !

s X*Y,.%(Y) considered in the proof of
Theorem 3.2, together with the complement MX).

Let @ = 8£(N) be the Goédel closure of N, 1let o: Q-——*K U be an
injective kx-mapping, and put & = {[e¢(x),¥y] | yexe@}.

Let R = ?(NXN) n €L(Nu{d}) be the set of all binary graphs
belonging to the Gédel closure of Nu{g®}, let P2 R-—~%K U be an
injective x-mapping, and put ¥ = {[#(x),y] | yexeR}.

Let F = NEN n €€(Nu{&,%}) be the set of all functional graphs
belonging to the Gddel closure of Nu{%,¥}, and let x: F‘——%K U be an

injective k-mapping.
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The domains N, @, R and F Dbeing overlapping, one can have more
than one atom associated to a given set by the encoding functions ¢, wu,
x, and j (e.g. each of them is defined at any closed functional graph).
We assume that the ranges of ¢, », x, J are pairwise disjoint leaving
uncovered a large part of U. On the other hand, we assume that there’is
some uniform definable combinatorial rule connecting the labels of atoms
which correspond to the same set via different encodings. Since we set
no topology on @, R and F, we have no topological constraints on ¢, ¥,
x; further conditions on them will be specified later on.

Now we put

Qual = ¢(Q),  Op, = x(F), Rel = y(R),

and we interpret g = ¢(X) as a quality whose extension is X (hence gx
holds iff xeX), f = x(Y) as an operation and r = p(Z2) as a
relation whose graphs are Y and Z, respectively (hence y=fx holds iff
(x,y) € ¥ and xry iff (x,y) € Z ).

We have thus determined the interpretation all basic predicates of

the ample theory. More specifically, we have an ample structure

% = <N; Qualo, P ; Relo, P, ; Op,; P,; P 2>

0
where P = Xgo ka{w(X)}, P, = xga XXK{w(X)}, P, = ng XVK{X(X7}
and P4 = {[X;y’j({[lyx]’[zi.V]})] | x, 7 € N}.

In order to complete the definition of the ample structure mo we
have to give the interpretation of each constant of the ample theory.
Since there are more than two hundred constants to interpret, it would
be cumbersome to list explicitly all the corresponding assignements in
the model Wo, We prefer to explain instead the general idea underlying
our definitions, namely that of interpreting any constant of the theory

as the '"qualified urelement"” associated to the subset of N which

naturally codes the corresponding mathematical concept.
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In doing this, we make use of the fact that a quality exists in ﬂo
iff its extension belongs to @ (i.e., iff it is e-definable). This can
be obtained, in many cases, by a suitable choice of the labels of the
objects which have to enjoy that quality. E.g. one can settle in this
way the interpretation of all "descriptive" qualities like gqual, grel,
qgop, . grefl, etc., by choosing a priori suitable definable subsets.of U
onto which ¢, #, x have to map the graphs and extensions enjoying the
corresponding properties.

Similarly, a relation (an operation) exists iff its graph belongs
to R (resp. F); this can again be obtained by imposing suitable
connections between the functions Jj, £, v, X (in this way are easily
settled, among others, the operations invop, invrel).

In particular any closed subset of N is the extension of a quality,
and any closed set of pairs is the graph of a relation and also of an
operation when it is functional. It follows that all small qualities,
operations and relations are present in N.

According to our initial stipulations, we interpret the fund-~-
amental structures of collections, systems and cardinals in the natural

way, namely:

gcoll = ¢(Coll) rcoll = w(E);

gsys = ¢(Sys) rsys = p({((x,5),8)eN’xSys | [x,¥lej *(s)});
qcard = ¢(Card) rcard = zp({(x,y)eCard2 | j_i(x)sj-i(y)}).

The intended interpretation of most constants is determined by
the corresponding axioms of the ample theory, once the fundamental
structures of qualities, relations, operations, collections, systems,

and cardinals are given. E.g.:

p(N\I), id = x(I), P = x({(A4,P(4)) | A4 € M\U}),

rnid

x({((x, J(X)),y) | [x,75]eX & X is a functional kx-graph }).

psys
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Other constants which are not uniquely determined by the
fundamental structures, like qgrs, quniv, gprop, will be interpreted
below in a natural way.

In fact, all qualities, relations and operations involving only
collections, systems and cardinals, like those introduced in Chapters?II
and IV of [2], exist in Mo since all the corresponding subsets beloﬁg to
§. Moreover, the comprehension properties stated in Theorem 3.2 yield
all axioms of the groups 4-8, 13 and 14 of [2]. Similarly there are all
relations connecting qualities, for their graphs belong to R, and all
operations not involving other operations, for their graphs are elements
of F.

Therefore the following axioms of [2] are directly satisfied by the

natural interpretation sketched above:

1.ABC, F, HIJ 2.ABCD, FG, IJ
4 .ABCDE 5.ABCDE 6 . ABCDEF 7.ABCD 8.ABCDE 9.AB

10.A 11.EFG 13 .ABCDEFGHI 14 . ABCDEF

Being careful in mapping graphs which are reflexive, symmetric,
etc. onto previously determined definable subsets of U, we can satisfy
also the axioms 3.ABCDE. Paying similar attention in mapping qualities
relations and operations of any cardinality Aa<u, we get 12.A. A
suitable choice of a set of less than » g-r-structures, including those
which are explicitly postulated by the ample theory, yields 1.K.

We can satisfy also the axioms 16 .ABCD by the following inter-

pretation of the qualities ginac and quniv:

(i) a cardinal Jr) < ’\ is inaccessible iff A is a strongly

inaccessible Von Neumann ordinal;

(ii) a collection v is a universe iff R < VI = A < & is

inaccessible and, for any X ¢ V, if |1X! < A, then X belongs to V as
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well as J(X), o(X), w(X), and x(X) (whenever they are defined).

Finally, for sake of simplicity, we trivialize the structure of
propositions by allowing only two of them, the true proposition t and
the false proposition f (t and f being two new atoms). In this way we
easily obtain the validity of the axioms 17.ABCDEFG (recall that we have
replaced the relation rbid of [2,8V.2] by the corresponding operation
bid). ’

Thus we are left with the problem of assigning a graph in R to each

of the relations

rrel, rop; rdom, rval, rginc, rexteq, (3.1)
and one in F to each of the operations

eval, eoprest, hat, graph, dom, img. (3.2)

The natural assignement is possible for the operation graph,
since only continuous operations with closed domains can have a graph in
N, and we can arrange x so that the set {(x,x(x)) | xeNnF} belongs to
@, hence to F. We can also choose x in such a way that the closures of
the domain and of the image of each operation are encoded by suitable
#-subsequences into the label of the atom corresponding to the operation
itself. Moreover, we can make distinguishable those operations whose
domains and/or images are closed. In this way one finds in Op0 also the
natural interpretation of the operations dom and img; one can even
discover when a given collection includes the domain of an operation,
thus getting all trivial restrictions.

Unfortunately, one cannot find within Relou Op0 the natural full
interpretation of the remaining constants (3.1-2). One can find instead
homologous operations and relations acting on gualities of pairs.
Therefore, using the correspondence between the images of the same graph

under ¢, ®» and x, we decide to interpret the constants above as acting



40

in the natural way only on relations and operations whose graphs belong
to Q.
Having thus completely defined the natural ample structure mo, we

see that all axioms of the theory A hold in it, but
1.DE 2.EH 10.C 15.CE (B)

Moreover, introducing the qualities grequa and gopqua (of being a
relation and an operation corresponding to a quality of pairs), the

given interpretation of the constants (3.1-2) satisfies the axioms

1'D0Eo ’ Z.EOHo s 10.00 ) 15'C0Eo (Bo)

obtained by restricting the corresponding axioms of A to relations and
operations enjoying grequa and qopqu&.(8>

Let A0 be the axiomatic theory resulting from A by replacing the
axioms (B) by their weakenings (Bo)' It is then straightforward to
complete the proof of the following theorem (see also [10], where

constructions similar to the one sketched above are developed in full

details).

THEOREM 3.3
The ample structure mo is a model of the theory Ao'
Moreover the following supplementary axioms of extensionality,

comprehension and stability hold in ﬁd:

I The fundamental structures of qualities, relations and oper-

ations are extensional.

II Any system has a graph, any collection is the extension of a

€8> Therefore, e.g., the axioms 1.Do and Z.H0 are

leDo - (x,¥) rrel r iff both grelqua r and Xxry.
2.H0 - eval  z iff =z = (f,x), qopqua f and f 4 x. In this case
eval(f,x) = fx.
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quality, any quality of pairs 1is associated to a relation, and any
functional relation to an operation. Moreover all qualities and

relations have characteristic operations.

I1I The collections are closed under union, intersection, cartesian
product, power-set operator and power, the qualities and the relaﬁiwns
are closed under negation and disjunction, the relations and the
opérations under composition, fibred and tensor product and restriétion
to any collection. ®’

The self-referential power of the theory A is seriously weakened by
the above restrictions of the axioms 1.DE and 2.EH. In fact, the
operations cannot have a complete internal description, since the
absence of objects such as rop and eval is provable, as well as that of
many other ;elations and operations which could replace them in
describing the actions of all operations. However one can deal freely
with relations and relational pairs inside mo, since the characteristic
operations of the full relations rrel, rginc and resteq are elements of
Opo.

This lack of self-description is partially balanced by the strong
axioms of extensionality, comprehension and stability I, II and III.
Actually the wide stability of the model ﬁo goes even beyond the

properties III above, which are for themselves already inconsistent with

the full theory A, the Antinomy II of [2,8VI.6] being derivable from

9> fThe axioms I-III are particular cases of the "strong axioms" of
[2,8VI]. We list here those which hold in woz SA.1 CA.13.2 DC

AS.1-3 AO0.3 AQ.1 AR.1,2,4,5 NF.1,4-6 R.1,2,4-6 ¢C.1-3,3" sI.

Many more axioms could be satisfied by imposing that suitably
chosen subsets of @, R, F have definable images. However the
following axioms cannot be made valid in mo:

RA.1-2 TA.1-2 CA.4-7,11,12,14,15 AR.3 NF.2,3 C.4,4%.
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A+ 111, %9

We conclude this section by expanding mo to a model R’ of a very
highly self-descriptive theory A?. Namely, we will give below an
extensive interpretﬁtion to the relations and operations (3.1-2), whose
domains had been restricted in defining the model mo. In doing this, 'we
need to qualify only a finite number of new atoms. Any definable
operation acting directly on relations (like domrel, invrel, etc.) ﬁill
then have a definable extension, which treats correctly all new
relations and still belongs to Opo.

The same argument entails that also the operations graph, dom and
img are still available. It cannot work, however, for relations and
operations, 1like rginc, hat and both restrictions, which act on
relational or. functional pairs.

Going again through the constants of the theory A, we see that we
have to reinterpret, together with the relations and operations (3.1-2),

only the four operations
cext, syext, gecard, birest (3.3)
Therefore we pick two finite sets of new atoms

Rel1 = {ri,...,r } and Op

11 1 = {fi,'..,fa},

which will be used to interpret the constants (3.1-3), and we put

rdom = r rval = r rop = r rrel = r
1 2 3 4

rginc = r rexteq = r and r = pr 3
g B - ! 6 12=~n n

(10> In fact, it has recently been shown by G.LENZI (personal com-
munication) that both theories
A + any two operations have a composition and

A + any two relations have a composition + there is a diagonal
relation rdiag s.t. x rdiag y iff y = (x,x)

are inconsistent.
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eval = f1 bid = f2 hat = fé oprest = f;

birest = fs cext = fé syext = f% gcard = f;.

Since self-description in the theory A is mostly obtained by

means of relations, it seems appropriate to pick a third set of atoms

} to interpret the negations of Fogeeeyt .(11)

Rel . = {r_  ,..0,1_ 11

-1 -1 11

We go now to extend mo to a new natural ample structure

™' = <N; Qual , P ; Rel’, P]; Op’, P]; P>

where Rel’ = Relo u Rel1 U Rel_1 ’ Op’ = OpO U Op1 ’ and
11 11 5 8
} 2. P 2.
P2 - PZU nyi anl{{rn}u ngl (N \Gn)xk{r—n} ’ P3 - P3U mgi FmXK{fm}

We interpret the constants (3.1-3) as stipulated above and the
remaining onés by extending in the natural way the interpretation given
in mo. Thus we have only to specify the external graphs Gn and F; of
the new operations and relations.

Due to the simultaneous presence of many Jlarge and many non-
wellfounded small collections, providing a model of the whole ample
theory A would require particular devices, not only of technical nature.
Moreover we want to preserve as much as possible of the properties of
comprehension and stability of our previous model ﬁo. Last but not
least, we are looking for a honest compromise between easy definability
and wide applicability of the fundamental operations and relations.

Therefore we decide to maintain the full self-descriptive power of

the most important objects, which are

rop, rdom, rval, rrel and eval, bid,

€117 ye shall obtain at once the operation notr providing the neg-

ation of any relation and satisfying the axiom AR.1 of [2,§VI], namely
notr = x({(»(X),»(N*\X)) | XeR} v {(r_,r_ ) | -llsnsll})
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by defining their graphs in such a way that the axioms 1.DE 2.EH 17.FG
are satisfied.

We slightly weaken instead the actions of the relations rginc,
rexteq and of the operations oprest, birest, hat on pairs involving
themselves or other objects r o, f;. ,

.Let A’ be the axiomatic theory resulting from A by replacing the

axioms 10.C and 15.CE by

10.C%: gpreo rginc. If (r,x) rginc (r’,x’), then trx == tr’x’,

The converse implication holds whenever r, r’ belong to Relo.

15.C% : If f is an operation belonging to Ch%, then oprest is
defined at (f,C) for any collection C.
If r is a relation belonging to Relo, then birest 1is defined

at (r,(C,D)) for any pair of collections C,D.

15.E°: Like 15,E with the addition: provided f = hat, bid, eval.

Then, by suitably choosing the graphs F;, Gn, one can prove

THEOREM 3.4

The natural ample structure %’ is a model of the theory A’ plus

the following axioms of extensionality, comprehension and stability:(12)
I The fundamental structures of qualities, relations and oper-

ations are extensional.

IT? Any system has a graph, any collection is the extension of a

quality, any quality of pairs is associated to a relation and any

functional relation to an operation.

(12 Having replaced the stability axiom III of Theorem 3.3 by the

weaker axiom III’, the strong axioms R.4 and AR.2,4 are no more
valid in %. However % verifies still the axioms SA.% CA.13.2 AS.1-3
DC A003 AQtl AR.1’5 NF.1’4"6 Rc1,295,6 C-1—3,3 .
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III’ The collections are closed under union, intersection, cartesian
product, power-set operator and power, the qualities are closed under

negation and disjunction and the relations under negation,

SKETCH OF PROOF
We only have to define the graphs F; (1=sms8) and G’n (1<n<b), sihce
1

G ~ is to be taken equal to G
i2-n n

and ¢ = G_.n G_.

6 B 7
(a) The domains and codomains of all relations T as well as the
ranges of all operations f; are easily determined a priori (e.g. the

range of eval is N, that of cext is MU, etc.).

Hence the graph G’2 of rval is completely determined.

(b) The operations cext, syext and gcard have to be reconsidered only
on relational pairs (rn,x), since  at any other pair the previous
definition wgrks. An easy inspection shows that the operation cext
({hence a fortiori syext) can be made undefined in all critical cases,
while gcard takes on at the corresponding arguments only the value .

Therefore the graphs F; are determined for 6<ms<8.

{(c) In order to complete the graph of rdom, we need only to fix the
domains of the operations f; 3smz5, since dom bid is known and

dom eval = U D where Do =fﬂquif}xdom f and D , = {eval}an.

n{® n n+

According to the axioms 15.C°’DE’ we put

dom fé ReloxC’oll2 U {(rn,(O,D)) | CxD =2 dom rnxcod rn}

dom f; Opox Coll u {(fm,C) | ¢ =2 dom f;}

dom f {(£,0) | £=f ,f ,f & *(C)eN} U {(£,0) | C=dom f m=1,2,3}

3
Since any collection is closed, C 2 dom f holds iff the closure
of the domain of f is included in C. Therefore the above definitions
are wellposed, since the closure of dom fm is easy to specify also

when the domain itself is yet unknown, provided the atoms f@ are
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suitably chosen (e.g. as limits of everywhere defined operations).

(d) Now the graph of rdom is completely defined, while those of the
operations fs' f4 and fg have unique natural definitions once the dom~-
ains are fixed according to (c). Thus G1 and Fg, F;, F% are settled.

(e) We define G% by stating that (r,x) r. (r’',x?) holds iff either
(ryx) = (r’,x’) or the extensions of the relational pairs (p,x),

(r’,x’) are already completely determined by the preceding stipul-

ations and ¢trx == tr’x’,

(f) Finally we define the graphs of the remaining objects by an

inductive procedure involving all of them at once. Namely, we put

F = U FY  (m=1,2) and ¢ = U ¥
m 3 m +n . *n
i<® i<W

(n=3,4)

Cid
+n

>

where the six sequences of graphs @ (n=3,4) and Fﬁi (m=1,2) are

defined by induction on i€e 1in the following way:

a<®’ {((x,¥5),f)eN*x0p™ | fx=y }

()
H

0> Aﬁ\(Nszp’) u U (Mgraph f)x{f} u U (M(dom f x rng f))x{f}

-3 f€0p” fEOP’”
G:,O) = {((x,5),r)eN*xRel" | xry }
697 = N \(N*xRel’) u {((x,5),r)eN"xRel™ | xr_y }

F {((£,x),¥) | ((x,y),f)eG;i)}

Cid _ 1> NER)
F2 = G4 x{t} v G_4 x{f}
Ci+vdd | Cid Cid Cid
G3 = G3 U F1 x{fl} U F2 x{fz}

G102 661 U ((dom F{Y xMINFLP)x{£,} u ((dom BV xNINF, "7 )x{£,)

-3 -3

Ci+dd Cid 4 Cid Cid>,\-1

G4~ = G4- v DQS Gin x{rin} v (Gi:n ) X{ri(iz-n)}
. . 4 . L

G(1+1) = G(l)u U G(l)x{r } U (G(].)) 1x{r }

-4 -4 n=3 n tn Fn +C(12=-nd
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(We have set above Rel" = {r:tn | n=3,4,8,9}, Rel"' = Rel’\Rel",
Op" = {f1’f2}’ Op'"' = Op’\Op". We have also denoted by r_ the

negation of the relation r € Rel" ).

(g) In order that the axioms 1.DE 2.EH 17.FG hold with the
assignements (f), it suffices that Gnu Gan N for n=3,4, . ‘or
equi?alently that dom f;= dom F; for m=1,2.

To this aim, we assume that J has been choosen in such a way that

one can assign to each object x a weight w(x) verifying

w(x) = 0 for x & N°u Rel"u Op",
wix) = 1 for x € Rel"u Op",
wix,y) = w(ix) + wly) for (x,y) e N°.

Let (x,¥) be a pair of least weight not belonging to G;U G_4.

Then x = {(u,v), y=r with ke{3,4,8,9} and {(u,v) & Gku G

.
Therefore k=4,8, since w(x,y) > w(u,v), and we can assume w.l.o0.g.
that y = r, and (u,v) 1is a pair of least weight outside G3U Gia.

Then u = (s,t), v = fm with me{1,2} and s € dom f;\dom F;.

If m=1, then s = (fh,z) with bhe{l1,2} and =z = dom fh\dom Fh.
It follows that ((z,t),fh) & G3u Gts, contradicting the minimality of
(u, v).

If m=2, then s = ((a,b),r) & G;U 614, contradicting the minim-
ality of (x,¥).

The sketch of the proof is thus concluded.

Q.EeDo

We conjecture that the theory A + I,II’°,III* is consistent, too.
Actually, one can give an inductive simultaneous definition of the
graphs F; (1<msb) and Gin (32ns9), thus expanding the anple

structure %’ to one where all fundamental constants (3.1-3) have a

natural interpretation. However it is by no means obvious that one can
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then assume the strong wellfoundedness property of the encoding of pairs
which is needed in order to apply to this wider context the concluding

argument (g) sketched above.

4, The axiom of choice

It is well known, since a celebrated result of SPECKER’s [17], - that
the axiom of choice can be inconsistent with set theories admitting
large sets: we refer to [6] for a short but exciting review of some
negative results.

We shall briefly discuss here how our models behave w.r.t. various
kinds of choice principles. It is worth noticing, in view of the above
remark, that we obtain inter alia the consistency of the well-ordering
principle rélative to GPK, the generalized positive comprehension
principle. As it is done in most classical analyses of universal choice
principles, we consider here in particular the axioms studied in [9]. We

phrase them below in a form suitable for set theories with a universal

set Vi
WoV : The universe V can be well-ordered.

E : The universe V has a choice function.

H : Any equivalence has a set of representatives.

F : Any relation with domain V includes a function with domain V.

DCC : Let R be a relation and X a set such that, for any subset Y of X,
there is some xX with YRx; then there is a X-valued function f

defined at all ordinals and verifying f(B)Rf(B) for any ordinal B.

DCCQ: the same as DCC for ordinals less than a.
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DC : Let R be a relation and X a set such that for any x€X there is
yeX such that xRy: then there is a function f verifying

f(n)Rf(n+l1) for any integer n.

We shall also consider the ordering principle
LoV : The universe V can be linearly ordered.

It is easily seen that the generalized comprehension principlé GPK

yvields the implications
WoV — E , H— F — E and LoV — ACfin

(ACfin is the axiom of choice for any set of finite sets).
E.g. given a relation R with domain V, consider the equivalence
R = {((x,5),(x,2)) | xRy & xRz}

Any set of fepresentatives for @ is clearly a function with domain V
which is included in R.

On the other hand, GPK does not yield either WoV — F or
WoV — DCC (see Theorem 4.3 below); while both implications hold in
Godel-Bernays class theory, even without foundation.<13)

Since in this context urelements are an inessential complication,
we shall cdnsider U= 0 throughout this section. The models N”(ﬂ)
are thus the same as the models Nﬁ of [T7]. Moreover, since we are
interested in the connections between strong principles of comprehen-

sion and choice, we restrict our attention to #-compact models. There-

fore we assume that » — (x)z throughout this section.

13> The exact stregth of the axiom H is still unknown, even in pure

set theory without urelements, when the axiom of foundation fails.

Clearly H follows from WoV and implies F, but the converse
implications are open. The authors can only prove that H is
strictly stronger than both E and DCCOrd (see [9-1II1).
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Before proceeding we state in the following lemma a topological

property of Nﬁ which will be useful in the sequel.

LEMMA 4.0

Any accumulation point of N” is complete, i.e. it has 2
a-equivalent points for any o < .

PROOF

Let x be an accumulation point of N = Nx' There is an accumulation
point y belonging to x, otherwise x would be a set of size less than #
of isolated points, which would therefore be all a-isolated for some
a<#: hence x would be (a+l)-isolated.

For fixed o<k, let Ba be the set of all points of N which are

a-equivalent to y. Pick an injective »-sequence <y8>8<x of elements of

Ba converginé to y and, for any subset s of x, put
x_ = (x\ B, v iyt vyl Bes}.

The sets x_ are clearly o- (indeed at least a+l) equivalent to x.

QOE.D.

We begin by defining in Nﬁ a linear ordering of the universe.

LEMMA 4.1

There is a closed subset O of Ni such that
(i) O is reflexive, antisymmetric and transitive;
(ii) if x %a vy, then either B(x,aa) X B(y,aa) or B(y,aa) X B(x,ea)v

is included in O.

PROOF
Let <a be a linear ordering of the set Ba of all closed sa-balls

of N. Since Ba is a partition of N”, it is possible to choose a
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H-sequence < <a | a<x > 1in such a way that, given b <a b?’, if ¢, ¢’

are any £B—balls (B>a) included in b, b’ respectively, then ¢ <B c’.
Define 0 = {(x,y) | x=y or 38 B(x,eB) <B B(y,sB) } o then o
verifies (ii) by construction and (i) since all <a 's are linear
orderings (note that if B(x,eB) <B B(y,eB) holds for some 8, then it
holds for any B for which they are different). |
Therefore we only need to prove that O is closed. Let Xy y_. be

a

#-sequences such that, for any a < x, Xy Nq X Yo “a 7 and

then x = y; otherwise for some B

(XG,Yd) € 0. If for all a Xy %q Vo

B(x,eB) <B B(y,eB), hence in any case (x,y) € O.
Q.E.D.

We shall show now that neither O nor other relations on N” can be
wellorderingé. Note that the statement of Lemma 4.2 below refers to
external true wellordrings. We shall see later that if » = @ the above

defined relation O is a wellordering in the sense of N@.

LEMMA 4.2

There are no (standard) closed well-orderings of Nx .

PROOF‘ %’

Assume N = N” wellordered and fix an (external) indexing of N by
ordinals, say N = {Xa | a<A}. The corresponding graph belongs to N iff

it is closed, i.e. iff whenever aL < B for any t<x and x = lim Xy o

¢ L ¢
y = lim XB , also x = y.
1= )
Assume that the given wellordering is closed. Then lim Xy = X,
o ann ¥ 4
since any two convergent x-subsequences of <Xa>a<n have the same limit.
14>

This proof is essentially due to Malitz [13].
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Now pick another x»#~sequence converging to X, o whose indices are

greater than », which exists since X, is a complete accumulation point

of N. Let <x7 >L<” be any #x-subsequence of it with increasing indices
: L
7, in the fixed indexing: then we would have X7 < x7 whenever (s,
L v
whence x? s x, = lim XY ’ and simultaneously X, < xy for any?L,
¢ v ¢

since x < yL for any «<ux.
Therefore no closed wellordering of N can exist.

Q.E.D.

Since all o-sequences for a<x are elements of Nﬁ s any internal
wellordering of N” would be a real wellordering when # is uncountable.
Hence WoV fails in N” for any uncountable x.

This is alsoc a consequence of the following theorem, which

summarizes the main choice properties of our models:

THEOREM 4.3

(i) The axioms LoV and VaDCCa (hence also ACfin) hold in Nx and

the axioms F and DCC (hence also H) fail in N”for any #.

(ii) The axiom WoV (hence also E) holds, whereas the axiom DC fails

in N_.
@

PROOF
(i) The set 0 of the above lemma witnesses that N#Fﬂ LoV.

Taking into account that the ordinals of N? are exactly those which
are less than », we get immediately NxFﬂ VaDCCa , since all functions
of size less than x» belong to N” .

In order to prove the failure of DCC, let x=xv {x} be the
closure of & in N& , put c= 2 x {0,1} and consider the closed

relation R ¢ P(C)xC defined by
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(a,1-i)ex
(x,(a,1)) € R iff oax{0,1} € x, {a,i)egx and '{ or
i=20

(c,(#,1)) €« R for i = 0,1.

Any function in N” which is defined at all ordinals less than &
must be uniformly continuous and defined at x. ;

.Let f: A — C verify f(a)Rf(a) for any a<x (hence A includes
%). Then f£(0) = (0,0) , and f proceedes by taking alter- nately all
values (a,0) and (a,1), with a increasing without any Jjump.

Therefore, by continuity, both (#,0) and (#,1) have to be taken as
values of f at ;, so f is not a function.

Note that the same relation R pro&ides a counterexample also for
the axiom F, since any continuous function included in R should
associate to ‘C both (#,0) and (%,1).

The fact that dom R is not the whole universe is easily settled,

18>
So we can use

since there is a projection of Nk onto any closed set.
such a projection onto ®P(C) and transform R into a relation with
universal domain.

In order to find in N a projection of N onto the closed set A4,
working from outside we associate to each a-ball Ba meeting 4 a point
O(Ba) € BanA, in such a way that G(BB) = O(Ba) whenever BB is a
B-ball (with B8>a) to which O(Ba) belongs.

For x#A, let a+l be the least (necessarily successor) ordinal

such that x is (a+l)-inequivalent to each element of A, and put

18> Note that we can easily obtain from the existence of projections

another choice~like property of N} , namely that the injective

ordering of cardinalities is coarser than the surjective one.

In fact, if j: A — B is an injective continuous mapping and
both A and B are closed, then by #-compactness J is a homeomorphism
between 4 and A’=j(A). If p is a continuous projection of N onto 47,
then j-1°p|B is a projection of B onto A.

We do not know whether the converse property holds in Nx'
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p(ix) = a(Ba(x)). Since, for x,y € A and zeA, X® ¥y~ 2 implies
r(x) ~ r(¥) >y B we extend pr by the identity on A and obtain a
continuous projection of N” onto A.

(ii) We get the wellordering principle in N& by showing that any closed
set has a least element w.r.t. the ordering O of Lemma 4.1. )

Let A< N¢ be closed and, for any n<w, let Bn be the ieast
n-ball meeting A (least in the ordering induced by 0). By definition of
0, the balls Bn are a descending chain under inclusion, which has
non-empty intersection by Cauchy completeness.

Again by definition of O, the unigue point lying in the inter-
section of all balls Bn is the least element of 4 (and belongs to A as
limit of a sequence of points of A).

The proof that DC fails in N@ could be omitted, since DC 1is

equivalent to DCC for x=w. However it is easy to verify that the closed

relation
S = {((n,0),(n,1)) | new} v {((n,1),(n+1,0)) | neo} u {0} x {0,1}

does not admit a continuous function f with closed domain verifying

f(n)Sf(n+l) for any new, since f(®) should be simultaneously 0 and 1.

Q.E.D.
Finally Nﬁ verifies the axiom of strong extensionality
Sext - Transitive €-isomorphic sets are equal.
This is a consequence of AR and of the fact that N? is a

transitive set without urelements.
Therefore we can considerably improve the consistency results of

[7] by putting together Theorems 3.2 and 4.3, so as to obtain

COROLLARY 4.4

(i) Con(ZF) == Con(GPK + Sext + Inf + WoV).
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(ii) Con(ZFC + 3x>e x — (x)z) == Con(GPK + Sext + SInf + LoV + VaDCC,

where Inf is the usual axiom of infinity
Inf - 3Iw (2 e w & (xe w — xu{x} € w)),
while 8Sinf is some strong axiom of infinity, e.g.

Sinf - Va 3u>a u is a strongly (hyper-hyper-...) Mahlo cardinal.

We conjecture that VaDCCa in (ii) above can be replaced by AC, but
at present we do not even know whether the axiom of choice holds in Ni

for some uncountable #.
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