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Many valued logics in general and 3-valued logic in particular is an old subject
which had its beginning in the work of Lukasiewicz [Luk]. Recently there is a
revived interst in this topic, due to its potential applications in several areas
of computer science, like: proving correctness of programs ([Jo]), knowledge
bases ([CP]) and Artificial Inteligence ([Tu]). There is, however, a huge number
of 3-valued systems which logicans have studied throughout the years. The
motivation behind them and their properties are not always clear and their
proof theory is frequently not well developed. Our goal in this work is to try to
facilitate both the use of and the research on 3-valued logic by providing a unified
treatment, within a quite general framework, of the most important ones. These
include the 3-valued logics of Lukasiewicz, Kleene and Sobocisiski, the logic LPF
used in the VDM project, the Logic RM3 from the relevance family and the
paraconsistent 3-valued logic. We shall present a point of view from which all
these logics appear quite natural and closely related to each other. It will turn
out, for example, that Lukasiewicz 3-valued logic and RMj (the strongest logic in
the family of relevance logics) are in a strong sense dual to each other, and that
both are derivable by the same natural general construction from, respectively,
Kleene 3-valued logic and the 3-valued paraconsistent logic. We shall present
also a unique 4-valued natural logic in which all the various 3-valued systems
can naturally be incorporated.

On the more technical side, we shall provide also a proof-theoretical analysis
of all the 3-valued systems we discuss. This will include:

o Hilbert type representations with M.P. as the sole rule of inference of al-
most every system (or fragment thereof) which includes an appropriate
implication connective in its language.!

e Cut-free Gentzen-type formulations of all the systems we discuss. In the

1 RM; and its fragments with either A or V are the only exceptions.



cases of Lukasiewicz and RMj this will be possible only by employing a
calculus of hypersequents, which are finite sequences of ordinary sequents.

All the 3-valued systems we consider below are based on the following basic
structure:

o Three truth-values :T, F and L. T and F correspond to the classical two
truth values.

e An operation -, which is defined on these truth-values. It behaves like
classical negation on {7, F'}, while = 1=1.

The language of all the systems we consider includes a negation connective, also
denoted by -, which corresponds to the operation above. Most of them include
also the connectives A and V. The corresponding truth tables are defined as
follows: a A b = min(a,bd), a V b = maz(a,b), where F <1< T. We shall see
that from a certain point of view the introduction of these connectives as well
as the way they are defined are dictated by the interpretation of the operation
= as negation. '

Traditionally, the differences between the various systems are with respect
to:

e What other connectives are taken as basic. Especially: what is the official
“implication” connective of the language.

e What truth-values are taken to be designated.
Examples:

Kleene 3-valued logic: This logic has, essentially, the basic connectives we
describe above with the same truth tables. In addition its standard pre-
sentation includes also a connective = defined by

a=>b=-aVb

T is here the only designated value.

LPF: This is an extension of Kleene’s logic wich was developed within the
VDM project (see [BCJ], [Jo]). On the propositional level it is obtained
from Kleene by adding a connective A such that:

F a=1
A(“)={T a=T,F



Lukasiewicz: This was the first 3-valued logic ever to be invented. Besides the
basic 3 connectives above it has also an implication connective — so that:

4 b -aVb a>b
)\ T otherwise

Again T is taken as the only designated value.

RMj: This is the strongest logic in the family of relevance logics ([AB],[Du]).
It has both T and L as designated. Besides the basic 3 connectives above
it has also an implication connective — (first introduced in [Sob]) so that:

1l a=b=1
a—-b=<{F a>0b
T otherwise

3-valued paraconsistent logic: This logic also has both T and L as desig-
nated and has one extra implication connective D besides the three basic
ones. It is defined as follows:

an:{T a=F

b otherwise

The truth table for this connective was introduced in [dC]. The correspond-
ing logic was investigated and axiomatized in [Av3], where it is shown to
be a maximal paraconsistent logic (i.e. a logic in which contradictions do
not imply everything).

For obvious reasons, all these systems take T' as designated and none takes
F. This leads into two main directions, corresponding to whether or not we
take L as designated. The decision depends, of course, on the intended intuitive
interpretation of L. If it corresponds to some notion of incomplete information,
like “undefined” or “unknown” then usually it is not taken as designated. If,
on the other hand, it corresponds to inconsistent information (so its meaning is
something like “kmown to be both true and false”) then it does. Accordingly,
the logics below will be devided into two classes, corresponding to these two
interpretations. We shall see that each class has one basic logic from which
all the rest are derivable by general methods. We shall show also how the two
interpretations can be merged into one, coherent four-valued logic.

The above two criterions do not really suffice for characterizing the various
logics we discuss. We shall see below, for example, that LPF and Lukasiewicz 3-
valued logic have exactly the same expressive power: every primitive or definable
connective of one is also a primitive or definable connective of the other. Also
both have T' as the only designated value. The only difference is therefore with
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respect to what connectives are taken as primitive. Usually this is not taken as
an essential issue ?, unless this choice reflects something deeper. This can only
be (especially when we are dealing with “implication” connectives) a difference
with respect to the consequence relation associated with the logic. We shall
begin therefore our discussion with this crucial notion as our starting point.

1 General Considerations

The notion of a consequence relation was first introduced in [Sc1] and [Sc2]. It
is extensively used in [Ur] for characterizing many-valued logics. In what follows
we shall need, however, a generalization from [Av1] of the original definition (see
there for explanations and motivations):

Definition: A consequence relation (C.R.) on a set ¥ of formulas is a binary
relation I between finite multisets of formulas s.t:

(I) Reflexivity: A+ A for every formula A.

(IT) Transitivity, or “Cut”: if Ty + A;,A and A,T; F A,, then ry, Ty F
Aq, A,.

It is more customary to take a C.R. to be a relation between sets, rather
than multisets (which are “sets” in which an element may occure more than
once). We define, accordingly, a C.R. to be regular if it can be viewed in this
way (equivalently, if it is closed under contraction and its converse). There
are, however, logics the full understanding of which requires us to make finer
distinctions that only the use of multisets enable us to make. Examples are
provided in [Av1] and below. Another standard condition that we find necessary
to omit is closure under weakening. In what follows we shall call ordinary any
regular C.R. which satisfies this condition®

Other concepts from [Av1] that will be of great importance below are those
of internal and combining connectives. The internal connectives are connectives
that make it possible to transform a given sequent to an equivalent one that has
a special required form. The combining connectives, on the other hand, make
it possible to combine certain pairs of sequents into a single one, which is valid
iff the original two are valid. In [Av1] we characterized several logics (including
classical, intuitionistic, relevant and linear logic) in terms of the internal and
combining connectives available in them and the structural rules under which
they are closed. We repeat here the definitions of the internal negation and

?In the literature one can find a lot of different formulations of classical logic with different
choices of the primitive connectives— and they all are generally taken to be equivalent!
3The concept of ordinary C.R. coincides with the original concept of a C.R. due to Scott.
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implication and of the combining conjunction and disjunction:

Definition: Let - be a C.R.

Internal Negation: We call a unary connective - a right internal negation if

forall T, A, A:
N'AFA iff TFHA-A.

We call a unary connective - a left internal negation if for all T', A, A:
'-AA if T,-AFA.

It can easily be shown that - is a right internal negation iff it is a left one.
We shall use therfore just the term internal negation to denote both. We
shall call a C.R. which has an internal negation symmetrical.

Internal Implication: * We call a binary connective — an internal implication

if for all T, A, A, B:

I,AFAB if TFA,A—B.

Combining Conjunction: We call a connective A a combining conjunction iff
forall T, A, A, B:

THAAAB iff THA,A and TFA,B.

Combining Disjunction: We call a connective V a combining disjunction iff
for all ', A, A, B:

AVB,TFA if ATFA and B,TFA.

The following facts were shown in [Av1]:

1. = is an internal negation iff - is closed under the rules:

ATFA TFAA
TFA,-A —-ATFA"

2. A is a combining conjunction iff |- is closed under the rules:

T,AFA T,BFA T+A,A TFAB
T, ANBFA T,ANBFA T-AAAB

4This was called strong intensional implication in [Av1]. We believe that the present termi-
nology is better.



3. V is a combining disjunction iff I- is closed under the rules:
'HAA 'A,B 'ArA T,BFA
'rAJAVB THAAVEB I'AVBEA

4. — is an internal implication iff I is closed under the rules:
I'AF B, A 'kFA,,A B,T;F A,
PI“A—)B,A I‘l,rg,A-—%B'_Al,Az '

The most important of these connectives (for our present purposes) is the
internal negation. In its presence the existence of internal implication suffices for
having all the other internal connectives we have considered in [Av1] (like internal
conjunction and disjunction), while the existence of either combining conjunction
or combining disjunction suffices for having all the other combining connectives.
All the C.R.s we discuss in this work are either ordinary or symmetrical (i-e.,
have an internal negation), but not both. The only exception is, of course,
classical logic (which can, in fact, be characterized by these two properties). We
note also that for ordinary C.R. a connective is a combining conjunction iff it
is an internal conjunction, and similar relations hold for the other connectives.
This is not true in general, though.

Suppose that - is a C.R., and that - is a unary connective in its language.
How can we reasonably change - to make — an internal negation? There are
two possible directions in which a solution to this problem may be sought. One
involves weakening I, the other involves strengthening it. Specifically, call a
sequent I' - A" a version of T F A if it can be obtained from the later by finite
number of steps, in each of which a formula is transfered from one side of a
sequent to the other while removing a — symbol from its beginning or adding
one there. If we define a sequent to be w-valid iff some version of it is valid in F
then the minimal C.R. for which all w-valid sequents obtain is also the minimal
C.R. which extends I and relative to which - is an internal negation. Classical
Logic is obtained from Intuitionistic Logic in this way. Alternatively we might
try to restrict - by demanding a sequent to be strongly valid iff every version
of it is valid. Unfortunately, this is too strong: Unless — is already an internal
negation even the reflexivity condition fails for this new relation. Nevertheless, if
we demand the new relation to be a strengthening only of the single-conclusioned
fragment of the old one then under certain natural conditions we can do better:

Definition: Let - be a C.R. so that both A F =-—=4 and ——A + A (these
conditions will be called below the symmetry conditions for negation). Define
5, the derived symmetrical version of I, as follows: T' F¥ A iff every single-
conclusioned version of I' F A obtains.

Proposition:



1. F¥isa C.R..
IFTHS AthenT I A.
- is an internal negation with respect to .

IS is the maximal C.R. having the above properties.

I and 5 have the same logical theorems, i.e. for any A, - A iff 5 A.

I o

Ay,...,AnF° By,...,B,
iff for every 1 <7 <m and 1 < j < n we have:
Aiyoo A, Ajyaye oy Ay 0By, ..., m B 1A,
Aiy...;Ap,mBy,...,mBj1,mBj1,...,mB, F B;

We leave the easy proof of this proposition to the reader. We note that the last
claim in it provides an effective alternative definition of the derived symmetrical
C.R.. It is also easy to see that the symmetry conditions for negation are in fact
necessary for getting a C.R. from this construction. They are obviously satisfied
by any C.R. based on the above 3-valued semantics (with respect, of course, to
the connective — defined there).

Our next goal is to find conditions on F which insure that F° has the other
connectives we have defined.

Proposition: Let A be a combining conjunction for . Suppose also that +
is closed under the rules:
I''-AFA T,-BFA kA=A T'HA,-B
I''-(AAB)F A I'A,-(AAB) T'FA,~(AAB)

(we shall call these conditions the symmetry conditions for conjunction). Then
A is a combining conjunction for 5.

Proof: SupposeI' ¥ A, A and ' 5 A, B. We want to show that T' F5 A, AAB.
Let, accordingly, I’ C be a single-conclusioned version of I' F A, A A B. We
want to prove that this sequent is true. There are two possible cases to consider:

1. Cis AAB.
By our assumptions, I' A and I + B are both true. Hence also I F
A A B is true, since A is a combining conjunction for F.



2. -(AAB)isinI".
In this case our assumptions and the first symmetry condition for A easily
entail that T - C.

For the converse, we should show that if I' F AJAA B then I' F5 A, A and
I' +5 A, B. The proofs are again splitted into two cases. The second symmetry
condition for A is used for one of them, the other part of the definition of a
combining conjunction— for the other. Details are left to the reader.

Analogous symmetry conditions for the existence of a combining disjunction
can easily be formulated, but in the presence of an internal negation and a
combining conjunction such a connective is available anyway.

We next turn our attention to the problem of having an internal implica-
tion for F5. If — is such a connective then F5 A — Bif AFS Bif A+ B
and =B I =A. Suppose now that + has an internal implication D and a com-
bining conjunction A. Then the last two conditions are together equivalent to
(A D B)A(-B D —A). This, in turn, is equivalent to -5 (4 5 B)A(=B D —A4)
(by 5. of the last proposition). Hence the last formula provides an obvious can-
didate for defining —. Our next proposition contains natural conditions for this
candidate to succeed.

Proposition: Suppose A is a combining conjunction for F which satisfies (in
I) the corresponding symmetry conditions. Suppose also that O is an internal
implication for +- and that I is closed under the following rules:

F,A,“LB"A I‘]*‘Al,A I‘z"‘Az,"lB
P,—l(A. :)B) |— A Fl,rz }‘ A],Az,ﬁ(AD B)

(These two rules will be called below the symmetry conditions for implication).
Define:
A——)B=Dj(ADB)/\("'B:)_'A)

Then — is an internal implication for .
The proof of this proposition is left to the reader. We only note that the

naturalness of the above symmetry conditions for implication can most clearly
be seen by working out the details of this proof.

1.1 The Basic System

By collecting the various conditions at which we arrive in this section we get a
Gentzen-type system for the minimal ordinary C.R. for which all these condi-
tions obtain. This system, with or without its implicational rules, will provide
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the basis for all the formal representations of the ordinary C.R.s we present be-
low. It has a 4-valued semantics which will be discussed later. Cut-elimination

can be shown for it rather easily.

Axioms:
A= A
Rules:
I'Nd= A I'=s AA
I''—A=A I's A, --4
''A==A TI.B=A I'=> A A I'=> A,B
I'NAVB=A I'=sAJAVB I'=sAAVEB
I''=A= A I''-B = A I'=A,-A T'= A, -B

T,~(AVB) = AT, ~(AVE) = A

T''A= A I''B= A

F=>A,—I(AVB)

'=>AA T'=AB

'VAANB=AT,ANB=A I'ss AJAAB
I'-A=A TI,-B=A F ,0A I' = A,-B
I''~(AAB)= A A,~(AANB) I'= A,-(AAB)
I'sAJA BTI's>A T,A=A.B
''AD>DB=A I'sAJADB"-
I''A,-B = A '=>A,A T'= A,-B

I-(AD>B)= A

I'= A,-(AD B)

And the usual structural rules of Exchange, Weakening and Contraction.

2 Consequence Relations based on 3-valued Se-
mantics

2.1 The “Undefined” Interpretation

In this section we investigate several C.R.s in which L is taken as corresponding
to a truth gap, and so T is the only designated value. We start with the basic
relation which naturally corresponds to this interpretation. As we shall see, all
the others are essentially based on it.

Definition: Fg; is the C.R. defined by:

I' kg A iff any valuation v (in the basic 3-valued structure) which
assigns (the designated value) T to all the sentences in I' assigns it
also to at least one of the sentences in A.
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Two obvious facts about this C.R. are:
¢ Fx;is an ordinary C.R..

e - satisfies the symmetry conditions for negation, but it is not an internal
negation.

We next check how can we define operations on the basic structure so that we
get combining conjunction and internal implication, both satisfying the corre-
sponding symmetry conditions. The main conclusion is that these requirements
completely determine the truth-tables for such connectives.

Proposition:

1. The connective A which was described in the introduction (aAb = min(a, b)
where F' <1< T) is a combining conjunction for Fx; which satisfies the
symmetry conditions. Moreover, it is the only possible connective on this
structure which has these properties. Similar results hold for V from the
introduction with respect to disjunction.

2. Define a connective D on the basic 3-valued structure as follows:

an___{ b a=T

T otherwise

Then D defines an internal implication for Fx; which satisfies the symmetry
conditions. Moreover, D is the only possible connective on this structure
which has these properties.

Proof:

1. For any many-valued ordinary C.R. |- the conditions: AAB+ A, AAB\ B
and A,B I A A B (which obtain in any ordinary C.R. for which A is a
combining conjunction) entail that A A B gets a designated value iff both
A and B do. Similarly, the conditions: =A F =(A A B), =B I —=(A A B),
=(A A B) t =A,~B (which follow from the symmetry conditions) entail
that —(A A B) gets a designated value iff either =4 or B does. In the
present case these observations determine a unique truth-table for A, and
it is easy to see that the corresponding connective is really a combining
conjunction which satisfies the symmetry conditions. Similar argument
works for V. :

2. If D is an internal implication for an ordinary C.R. + then A - B D A4,
FA,AD B and A,A D B I B all obtain. These conditions entail, in a
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many-valued C.R., that A D B gets a designated value iff B does or else if
A does not. In the present case this observation alone determines 7 out of
the 9 entries in a possible truth-table for D, and reduce to 2 the number
of possibilities in each of the two remaining cases. The requirements that
~(AD B)F =B and A,-B | =(A D B) determine these two cases as well.
It is easy to see that the connective which corresponds to the resulting
truth-table really meets the requirements.

We now investigate some known logics that are obtained using the connectives
of the last proposition and the general constructions of the previous section.

2.1.1 Kleene’s 3-valued logic

This logic can now be characterized as F; in a language which has, besides -,
also the above unique combining conjunction (or disjunction) that satisfies the
symmetry conditions.

An important property of this logic is that it has no logical theorems: Fg; A
for no A in its language. This means, first of all, that no corresponding internal
implication exists in its language (since at least A — A should be a theorem for
any possible candidate —) ®. Since an internal disjunction is available it follows
also that no possible internal negation is definable (and so not only the official
- fails to be one).

The official = usually associated with this logic is not an implication connec-
tive in any sense, and it is just one out of many connectives that are definable
from = and A.

2.1.2 LPF

This logic is I x; in a language which has, in addition to Kleene’s connectives, also
the internal implication defined above. It is, of course, an ordinary conservative
extension of the original logic of Kleene, and the basic connectives of Kleene
retain in it their properties.

At the introduction we follow [BCJ] and define LPF in terms of another
connective, A. We have, however, the following relations between this connective
and our D:

AA=—(A=-A) where A=B=p; (ADB)A(BDA)

ADB=AAANA=B=-AAV-AVB.

®The same consideration will apply to any possible C.R. which is based on Kleene’s
connectives.
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These relations mean that the expressive power of the two languages are the
same. Since the C.R. associated with both is Fx;, © the two versions are equiv-
alent. The present version seems to us more natural, though, and it opens the
door to intersting observations, like the one given in our next proposition.

Proposition: The positive fragment of LPF (i.e. the {V,A,D}-fragment) is
identical to the corresponding classical one. In particular every classical positive
tautology is valid in it.

The proof of this fact is by showing that every axiom and rule of the standard
Gentzen-type representation of positive classical logic is valid in the 3-valued se-
mantics (the converse is obvious). All these rules are included in the basic system
of the previous section, the rules of which are all valid here.

2.1.3 The 3-valued C.R. of Lukasiewicz

As observed above, Fk; is not symmetrical. Nevertheless, the various symmetry
conditions concerning -, V, A obtain for it, and those concerning implication hold
for D in'the extended version. We can apply therefore our general constructions
to get the symmetrical versions of both. We shall denote the symmetrical version
of Kleene basic logic by Fwz.i and that of its extension with D by Fgur. When
we mean either we shall just use F1,;. We give first a semantical characterization

of this C.R.:

Proposition: T' 5,z A iff for every assignment, either one of the sentences
in A gets T, or one of the sentences in I gets F', or at least two (occurances of)
sentences in I'; A get L.

Proof: Suppose first that the condition holds. Let I - A be a single con-
clusioned version of I' F A and v an assignment for which all the sentences in I
get T. This means that the third possibility mentioned in the proposition does
not obtain, since at most the ancestor of A can gets L. On the other hand, each
of the other two possibilities obviously gaurantees that A gets T in case all the
sentences in I get 7.

For the converse, suppose that v is an assignment for which the condition
above fails for the sequent I' - A. If there is no sentence in I' or A which gets
1 then no single-conclusioned version of T' F A belongs to Fg;. Otherwise let
I' I A be the single conclusioned version of T' - A in which A is the unique
sentence in I' - A which gets L (if it occures in A) or its negation (if it occures

®In the case of the original LPF this is obvious from the natural deduction system presented
in [BCJ].
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in I'). The failure of the condition entails that all the sentences in I'" get T', and
so the resulting single-conclusioned version does not belong to kg, and ' - A
does not belong to Fr,;.

Our next propsition just summerizes the properties which 1, has according
to the general discussion of the previous section:

Proposition:
1. T Frux A then T' Fg; A.
= is an internal negation for Fr.;.
A and V are, respectively, combining conjunction and disjunction for k7.

F Bk 18 & conservative extension of Fyryk.

ok W N

Define:
A — B=pr(ADB)A(-BD-A)

Then — is an internal implication for & giyy.

The relation between the derived symmetrical version of |-x; and Lukasievicz
3-valued logic (which justifies the name Fp,.) is given in the next proposition
and its corollary:

proposition: — of the previous proposition is exactly Lukasiewicz’ implication.

Corollary: Ay,..., Ay bru Biff A3 — (A3 — ... = (A, — B)...) is valid in
Lukasiewicz 3-valued logic.

We show now that the difference between Lukasiewicz 3-valued logic and LPF
is only with respect to the associated C.R.:

Proposition: Lukasiewicz 3-valued logic and LPF have the same expressive
power.

Proof: We have seen already that Lukasiewicz implication is definable using
-, A and D. for the eonverse something even stronger holds: D is definable from
— alone. In fact, we have:

adb=a—(a—b)

13



It is worth to recall at this point that V is also definable from — alone, since

aVb=(a— b) —» b Hence the languages of {—,—} and that of LPF are
equivalent.

We note, finally a quite remarkable property of Fr:

Proposition: Fr,; is not closed under contraction. Hence it is not regular
(note, however, that it is still closed under weakening).

Proof: We have, e.g., that “AAA, = AAA Fwiue B is valid while “AAA Fwrue B
1s not.

The last proposition is reflected in the fact that (A - A — B) - A — B is
not a theorem of Lukasiewicz logic. Note, however, that the example we gave is
not connected with — at all, and applies also to FwLuk.

2.2 The “Inconsistent” Interpretation

In this section we investigate several C.R.s in which the meaning of L is “both
true and false”, and so L will be designated. The discussion will parallel that
of the “unknown” case, and there will be a lot of similarities. We start it, as
before, by introducing the basic associated C.R..

Definition: p, is the C.R. defined by:

I' Fpa. A iff every valuation v (in the basic three-valued structure)
which assigned either T or L to all the sentences of I' does the same
to at least one sentence of A.

Again it is obvious that F p,. is an ordinary C.R. in which — satisfies the symme-
try conditions (but is not an internal negation). Another aspect in which Fp,,
resembles g is that for Fp,. too there is exactly one possible way to define in-
ternal implication and combining conjunction (or disjunction) which satisfy the
symmetry conditions. For the combining connectives exactly the same truth-
tables do the job as before, with a very similar proof. We shall see, however,
that for the implication a new truth-table will be needed.
We shall examine now the associated and derived logics.

2.2.1 The basic 3-valued paraconsistent logic

This logic is Fpe. in the language of the usual = and A. —,A and V have in
it exactly the same properties they have in Kleene’s logic. On the other hand,
unlike Fg; (which has no logical theorems at all) Fp,. has a very distinguished

14



set of logical theorems:
Proposition: Fp,. A iff A is a classical tautology.

Proof: One direction is trivial. For the converse, suppose that v is a 3-valued
valuation. Let w be the two-valued valuation which assigns T to an atomic
variable p iff v(p) is designated. It is easy to prove by induction on the com-
plexity of A that if w(A) = T then v(4) € {T, 1}, and if w(4A) = F then
v(A) € {F,1}. It follows that if w(A) = T for every two-valued valuation w
then v(A) is designated for every 3-valued v.

An alternative proof is to note that the classical equivalences which are used
for reducing a sentence to its conjunctive normal form are valid in Fp,, in the
strong sense that both sides of each equivalence always have the same truth-
value. It is also easy to see that a sentence in such normal form is classicallly
valid if it is valid in the present 3-valued semantics.

It is important to note that despite the last proposition classical logic and
the basic Fp,. are not identical. In classical logic, e.g., contradictions entail
everythmg This is not the case for Fp,.: in general =4, A I/p,. B. This means
that Fpa. is paraconsistent in the sense of [dC]. Moreover, the basic Fp,. have
no logical contradictions : A Fp,. for no A . This entails immediately (since we
have an internal conjunction in the language) that no definable internal negation
is available. It is also possible to show that no internal implication is definable.

2.2.2 3-valued Paraconsistent Logic with Internal Implication

Like in the Fg; case, our next goal is to enrich the language of +p,. with an
internal implication. Again, demanding also the symmetry conditions for this
connective determines it completely:

o The condition A, A D B tp,, B implies that a D F = Fifa € {T, 1} (i.e.,
if a is designated).

e The conditions B Fp,, A D B and bp,e A D A imply that ¢ D b is
designated in all other cases.

e The conditions =(A D B) Fps. A and =(A D B) kp,. =B imply, respec-
tively, that F Da=Tand a DT =T

e The condition A,-B Fp,. =(A D B) implies that if a is designated and
b =1 then a D b cannot be T. Since by the second fact it cannot be F
either, it should be L.
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The above facts leads us to a single candidate: the D of the 3-valued paracon-
sistent logic of page 2. It is not difficult to show that this O does really meet
the requirements. The situation is therefore completely analogous to the one
in the case of Fg;. This is clearly reflected also in the next proposition, which
summerizes the main properties of I-p,, in the full language of the 3-valued para-
consistent logic:

Proposition: In the extended language for +p,. we have:
1. - satisfies the symmetry conditions (but again 4, A V/p,. B).

2. A and V are combining conjunction and disjunction, respectively. Both
satisfy the symmetry conditions.

3. D is an internal implication which satisfies the symmetry conditions.

4. The positive fragment of F-p,,. is identical to the corresponding fragment
of the classical, two-valued C.R..

It follows from the last proposition that Fp,. and Fg; have quite similar
properties concerning A, V,D, and the differences are all connected with their
negation connective!

2.2.3 RM3; and Sobocinski C.R..

Exactly like gy, Fpg. is not symmetrical, but all the needed symmetry condi-
tions hold for it. Hence we can apply our general construction again to get the
symmetrical versions of it in both the basic language and its extension with D.
We shall denote these versions, respectively, by Fwso.s and Fggos, and use gy
to denote either. The semantical characterzation this time (the proof of which
we leave to the reader) is the following:

Proposition: T' Fg,, A iff for every assignment, either one of the sentences
in I' gets F', or one of the sentences in A gets T, or the sequent is not empty
and all its sentences get L.

Fs.5 has the same basic properties of 1, which were described in the sec-
ond proposition of 2.1.3, and its internal implication was again known and used

before:

Proposition: The internal implication of Fgs,, defined as usual by

A—)B:Df(ADB)/\(—IB:)"IA)
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is identical to the — of RMj (i.e., it is Sobocifski 3-valued implication).

Corollary: A;,...,A, ks Biff Ay — (4 —» ... — (A4, — B)...) is a
theorem of RM;.

Proposition: The languages of RM3 and | p,. have the same expressive power.

Proof: It is enough to note that D is definable in RM; by:
adb=bV(a—1b)

The most remarkable property of Fg,;, and the main aspect in which it differs
from bt is given in the following

Proposition: kg, is a regular C.R. but it is not ordinary: Weakening fails
for it.

The last proposition entails that A — (B — A) is not a theorem of RMs.
This is & characteristic feature of a Relevance logic. RM3 is indeed the strongest
logic in the family of logics which were created by the relevantists school (see

[AB] and [Du)).

3 Merging The Two Interpretations

In this section we investigate C.R.s which are based on a four-valued structure,
in which both the “undefined” and “inconsistent” interpretations of L have a
counterpart.

Definition: The lattice KB4 consists of the four elements T, F, Ly, Lp, to-
gether with the order relation < defined by the following diagram:

T
in 1B
F

(ie: F<lyn,1p<T).
We define the operations -, V,A on KB4 as follows: V and A are the usual
lattice operations. =T'=F, -F =T, - 1y=1ly, - Llg=lpg.
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Historically a structure which closely resembles KB4 7 was first introduced
in order to characterize the valid relevant first-degree entailments (f.d.e.). These
are the theorems of the usual relevant logics (R and E - see [AB] , [Du]) which
have the form A — B where — (the “relevant implication”) occures in neither
A nor B (i.e the only connectives occuring in A or in B are -, V,A). The char-
acterization is given in the following:

Fact: A f.d.e. A — B is provable in the relevance systems R and E iff v(4) <
v(B) for every valuation v in K B4.

In [Bel] and [Be2] Belnap suggests the use of this 4-valued structure for knowl-
edge bases. He describes there the intuitive meaning of the four truth values
relative to some knowledge base as follows:

1. A proposition A has the truth value T if A can be deduced from the
knowledge base, but A cannot (i.e. A is “true only” according to the
knowledge base).

2. A proposition A has the truth value F if =A can be deduced from the
knowledge base but A cannot (i.e. 4 is “false only”).

3. A proposition A4 has the truth value Ly if neither A nor A4 can be deduced
from the knowledge base.

4. A proposition A has the valus L g if both A and —A can be deduced from
the knowledge base.

Obviously, 1y corresponds to kleene’s L while 1 g corresponds to that of p,..
We take, accordingly, T' and Lp as designated, and define the corresponding
C.R. in the obvious way:

Definition: I' Fp. A iff every valuation which makes all the sentences in T'

true (i.e. assigns to them either T or 1 g) makes at least one of the sentences in
A true.

Fpge has the familiar properties of Fg; and Fp,.: it is ordinary. - is not
internal negation for it but it satisfies the symmetry conditions. A and V are
combining conjunction and disjunction for it which satisfies the symmetry con-
ditions, and they are the only possible connectives with these properties (proof
~— as usual). Like Fg;, Fpg. has no logical theorems, and like Fp,, it is para-
consistent. As for the existence of a well-behaved internal implication and the
strength of the positive fragment the situation is exactly like in the 3-valued

"But in which only T is taken as designated and — is differently defined.
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fragments, with similar proofs:

Proposition: There is exactly one possible way to define an operation O on
K B4 so that the symmetry conditions for it obtain. It is characterized by the
following two principles:

e If a is not designated (i.e. a =Ly, F)thena D b=T.
o If a is designated (i.e. a =Lp,T) thena D b="b.

Proposition: The positive fragment of -5, in the language with O is identical
to the classical one.

The proofs of both propositions are very similar to those given in the previ-
ous cases, and we leave them to the reader.

Our next step is to introduce, by the usual method, F5_— the symmetrical
version of .. For this C.R. both weakening and contraction fail. This, and the
fact that it has all the standard internal and combining connectives, makes it a
very close relative of the Linear C.R. 8. Accordingly, the internal implication of
2., defined as usual, has a lot in common with the relevant implication of the
Relevance Logic R, and even more— with the linear implication of Girard.®.

As in the previous case, the two implications, D and —, are equivalent as far
as expressive power goes. A — B is equivalent, as usual, to (A D B) A (=B D
—A). AD B, on the other hand is equivalent this time to BV (4 — (4 — B)).

Another connection between — and D is provided by the following:

Proposition: If A and B are in the basic language (of =1, A and V) then A D B
is valid iff A — B is.

Proof: One direction is trivial. For the other we can easily prove by induction on
complexity of sequents that if A;,...,A,, By, ..., B, are all in the basic language
then if Ay,..., Ay Fpe By,..., By, then also =By,...," By, b ~Ay,...,A4,. It
follows immediately that if A D B is valid then so is A — B.

Remark: It is quite easy to see that the sentences dealt with in the last propo-
sition are exactly the valid f.d.e. of the usual relevance logics.

8Linear Logic was introduced in [Gi]. Its C.R. is characterized in [Av1]. Its connections with
Relevance Logic are explained in [Av2].

One difference is that for 5, the converse of contraction is valid, while for Linear Logic and
the standard Relevance logics it is not. RM is the most famous exception in this respect. RM I
of [Av4] is another.

19



4 Proof Theory of The Ordinary‘C.R.s

4.1 Gentzen-type Systems

In this section we provide Gentzen-type systems for the various ordinary C.R.s
we introduce above. They all are based on the basic system of section 1.1. This
system itself corresponds to the 4-valued C.R. of the last section.

Theorem:
1. T'Fg. A Mf T'F A is provable in the basic system.

2. By adding A, —A |- to the basic system we get a Gentzen-type formulation
for I Kl-

3. By adding - A, ~ A4 to the basic system we get a Gentzen-type formulation
for Fpg,e.

4. By adding both - A,—A and A, —A | to the basic system we get a Gentzen-
type formulation for classical logic.

Proof: For this proof we replace first, in the usual way, each of the pairs of
rules for (A ), (=V ), (F V) and(F —A) by a single rule (the possibility of do-
ing so is due to the soundness of weakening and contraction). The rules of the
resulting system(s) are all easily seen to be reversible for all the C.R.s under
consideration. It follows that for any given sequent we can construct a finite set
of sequents, consisting only of atomic formulas or their negations, so that the
given sequent is valid iff all the sequents in the corresponding set are, and prov-
able iff all of them are. It remains to check that a sequent of this form is valid in
one of the above C.R.s iff it is provable in the corresponding system. This is easy.

The above theorem is true for both the basic and the extended versions of
the C.R.s under consideration (i.e., with or without D) and for any of their frag-
ments. It is worthwhile to note, however, that in F g, and Fg; the Gentzen-type
system for the basic langauage has an important property which that for the
extended language lack:

Theorem: Any sequent I' F A of the basic language, which is provable in
the calculus for x; or that for g, and in which A has at most one formula,
has a cut-free proof consisting of sequents with the same property.

Proof: This time we replace only the pairs for (A F) and of (=V ) by a

single rule. In what follows we shall call single-conclusioned any proof in the
resulting systems in which all the occuring sequents have at most one formula
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on the r.h.s of the I-. “Provable” will mean provable in either the basic system
or in its extension to Fg;.

Lemma 1. The r.h.s of any sequent which occures in a proof of a sequent of the
form I' I is empty.

Lemma 2. Suppose that T' consists only of atomic formulas or their negation,
|A] > 1 and T - A. Then there exists a formula B € A such that I' - B has a
single-conclusioned proof.

The proofs of both lemmas is by an easy induction on the length of cut-free
proofs of the given sequents (Lemma 1 is needed in the proof of Lemma, 2).
Corollary: If T is like in Lemma 2, |[A| < 1 and T A is provable then this
sequent has a single-conclusioned proof.

Lemma §. For any T' there exists sets I'; (¢ = 1...n) such that:

1. For every A, T'F A is provable iff for every ¢ T'; I A is.
2. For every ¢, I'; consists of atomic formulas or negations of such.

3. There is a cut-free proof of I' + A from I'; - A in which A is the r.h.s of
all the sequents involved.

The proof of Lemma 3 is by induction on the complexity of I', using the fact that
all the r.h.s. rules of the system above are reversible and the active formulas
involved in them belong to the r.h.s of the premises. The theorem itself is an
easy consequenc of lemma 3 and the corollary above.

The last theorem shows that the single-conclusioned fragment of these formal
systems is completely independent of its multiple-conclusioned version. This is
in sharp contrast to the known Gentzen-type formulations of classical logic, in
which the restriction to at most one formula on the r.h.s of a sequent leads to
intuitionistic logic. Thus although all three logics have internal disjunction (V
in the case of Fp. and Fg;) and so can be reduced to their single-conclusioned
counterparts, only in Fp. and Fg; this can be done within the formal system.
Hence, unlike classical logic, we can take these C.R.s to be essentially single-
conclusioned. It should be emphsized again, that the above theorem is false
once D is introduced. Any proof of - AV (A D B), for example, necessarily
involves sequents in which the Lh.s. contains more than one formula.

4.2 Hilbert-type formulations
The system HBe

Defined connective: A= B =p; (ADB)A(BDA)
Axioms: I1 ADBDA
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I2 (ADBD>C)D(ADB)D(4AD0)
I3 ((AD>DB)DA4)DA
Cl AABDOA
C2 AABDB
C3 ADBOAAB
D1 ADAVB
D2 BDOAVB
D3 (ADC)D>(BD>C)DAVBOC
N1 -(AVB)=-AA-B
N2 -(AAB)=-AV-B
N3 --4A=4
N4 —-(ADB)=AA-B
Rule of Inference:

A ADB
B

Note: The first nine axioms provide a standard axiomatization of classical pos-
itive logic.

Theorem: A;,...,A, Fge By,...,B, if AyA...ANA, DB,V...VB,, is a
theorem of HBe.

Proof: It is a standard matter to show the equivalence of the Gentzen-type
system for g, and HBe.

Theorems on extensions:

1. If we add either =AV A or (A D B) D (—A D B) D B to HBe we get a
sound and complete Hilbert-type axiomatization of p,,.

2. If we add either ~A D (A D B) or (B D A) D (B D —4) D =B to HBe we
get a sound and complete Hilbert-type axiomatization of ;.

3. By adding both =AV A and —4 > (A D B) (say) to HBe we get classical
logic.

We use now the Hilbert-type formulations for proving the following impor-
tant theorem:
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Compactness theorem: Let T,S be sets of sentences such that every valu-
ation in K B4 which makes all the sentences in T true does the same to at least
one sentence of S. Then there exist finite sets I' C T, A C S such that ' g, A.
Similar results obtain for Fg;, Fp,. and classical logic.

Proof: We give the proof in the case of .. The other cases need only minor
modifications.

Suppose that T and S are sets of sentences such that no such ' and A
exist. We may assume, without a loss in generality, that S is closed under finite
disjunctions. It easily follows from the completeness theorem that T Vupe A
for every A in S. Let Ty be a maximal extension of T with this property. We
construct now a valuation v such that v(B) is designated iff Tq Fgg. B. The
theorem will follow then immediately.

By the deduction theorem (which obviously obtains here) and the maximality
of To, To /uBe C iff ToFgype. C O A for some A in S. Moreover, we have:

(1) To Yupe C iff To Fype C D B for every B.

Indeed, -suppose There exist C' and B such that both C and C O B are not
provable in Ty . Then there exist sentences D and E in S such that Ty Fxg.
C D E and Ty Fyp. (C D B) D D. The two last sentence entail E V D by
a classical positive tautology. Every positive tautology is provable also in HBe,
and so we get that To Fyg. E V D. This last sentence, however, is in S. A
contradiction.

Define now a valuation v as follows:

If TotupeC, TolW/up.-C then v(C)=T.
If TotugeC ,Tolyp. ~C then v(C) =1p.
I To/uBe C, Totppe ~C then v(C)=F.
If TolW/uBeC, TolWup.-C then v(C)=Ly.

Obviously v(B) is designated iff To Fyp. B. It remains to show that v is actually
a valuation, i.e. : that it respects the operations. Now axiom N3 insures that
for every A, v(=A) = -w(A). We show next that v(4 D B) = v(A) D v(B) for
every A and B.

case 1: Suppose v(A) € {1y, F}. This means that Ty I/gp. 4. By (1) above
and axiom N4 we have therefore that for every B, Tg Fyp. A O B but
To YruBe 7(A D B). Hence v(A D B) =T.

case 2: Suppose that v(A) € {Lp,T}, i.e.: Tg by, A. In this case Ty Fyg,
ADBiff Tolgge B, and by N4 also Ty FgBe —I(A D’ B) iff To Fyge = B.
It follows that v(A D B) = v(B).
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We show now that v(AV B) = v(A) V v(B). For this we note that D1-D3,
together with the characterization above of the non-theorems of Ty, imply that
To FuBe AV B iff either Ty Fyp. A or To Fyp. B. On the other hand N1 entails
that To Fype. 7(AV B) iff both Ty kg, A and T Fgg. =B . From these facts
the desired equation easily follows.

Similarly, by the above property of disjunction and N2 we have that Tq F 5.
—(AAB) if either Ty Fgg. A or Tg Fgpe ~B. C1-C3 on the other hand, insure
that To Fgp. A A B if both Ty by, A and Ty Fgg. B. These facts entail that
v(A A B) = v(A) Av(B).

5 Proof-theory of Lukasiewicz 3-valued Logic

5.1 A Hilbert-type formulation

A Hilbert-type formulation of Lukasiewicz 3-valued logic was first given in [Wal].
An axiomatization of the implicational fragment of this logic was provided
in [MM]. The completeness proofs given in both cases are quite complicated,
though. For the sake of completeness, and since we shall need the Hilbert-type
formulations later, I include here a new formulation and a completeness proof
for it which is much simpler than any other I was able to find in the literature. I
took a special care to provide a well-aziomatization. This means that any frag-
ment of the logic which contains — is completely axiomatized by those axioms
below which mention just the connectives of that fragment. This includes the
implicational fragment itself. I believe, by the way, that the present axiomatiza-
tion is simpler and more transparent than the one given in [MM]. It is certainly
shorter, since axiom I3 below is easily seen to be derivable from I1,I2 and 14 (we
still prefer to include it as an axiom, since together with I1-12 it provides a very
natural subsystem).

5.1.1 The system HLuk

Axioms:

I1A-B- A
I2(A-B)—»(B—C)—=(A—0C)
I3(A-B—-C)-»B—-A—-C

I4 (A—-B)—»B)—-(B—A)— A

I5 (A B) —» 4) = 4) = (B - C)) > (B - C)
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Cl ANB— A
C2 ANB—- B
C3(A—-B)—-(A—-C)— A— BAC
D1 A—-AVEB
D2 B—- AVEB
D3 (A-C)»(B—-C)—-AVB—-C
N1 (=B — -4)— (A— B)
Rule of Inference:
A A— B
B

Theorem: HLuk is sound and complete for Lukasiewicz 3-valued logic. More-

over, T Fgru A iff v(A) = T for any valuation v which assigns T to all the
sentences in T.

Notes:

1. FHLuk corresponds to (the single-conclusioned fragment of ) F k1, not to that
of I_Luk- Thus A — A — B,A }—HLuk B though A— A B,A VLuk B.
Recall, however, that the two C.R.s have the same logical theorems!

2. It is a standard task to show that a sentence is derivable from I1-I3 alone
(using M.P.) iff it has a proof without contraction in the intuitionistic
Gentzen-type implicational calculus. Since the last criterion is very easy
to apply, we shall feel free below to claim derivability using I1-I3 without
giving the formal derivation.

3. Since (A — B) — B is equivalent to AV B, Axioms I4 and I5 are just
purely implicational formulations of, respectively, the more perspicuous
propositions AVB — BV Aand AV(A— B)V (B — C).

Proof of the theorem: The soundness part is easy. The completeness is a
special case of the second claim. It remains to show that if THgz.. ¢ then there
exists a valuation which assigns T to all the sentences in T but not to ¢. Let Ty
be a maximal extension of T such that T¢ /g4 ¢. The main property of Ty is:

ToWuruw A iff To,Abgrur ¢

Define now:

1 otherwise

T Totgru A
v(A)=14{ F Tolpru A — B for every B
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Obviously v(A) = T for every A in T while v(¢) # T. It remains therefore to
show that v is really a valuation, i.e., it respects the operations. For this we
need first some lemmas.

Lemma 1: If To, A Fppux B then To,(A — C) — C by (B — C) — C.
Proof. By induction on the length of the proof of B from Ty, A. If B is in T,
or it is an axiom then To Fgru (B — C) — C since (B — C) — C is derivable
from B using only I1-I3. The case B = 4 is trivial. Finally, the induction step
follows from the fact that (B — C) — C is derivable from (D — B) — C) — C
and (D — C) — C using only I1-I3.

Lemma 2: If TO,A }"HLuk C and TO,B |_HLuk C then To,(A — B) — B I"HLuk C
Proof. By Lemma 1 we have in this case that To, (4 — B) — B Fyru (C —
B) — B and Ty,(B — C) — C Fyru (C — C) = C. Lemma 2 follows from
these facts with the help of axiom I4 and the fact that C — C is derivable from
I1-13.

Lemma §: If To Fgrur (A — B) — B then either To Fyrur A or To Frrux B.
Proof. Immediate from Lemma 2 and the above main property of Ty.

Lemma 4: For every A and B, either v(A) =T or v(B) = F orv(A — B) =T.
Proof: Applying Lemma 3 to axiom I5 we get that either Ty Fyru B — C for
every C or To Fyru (A — B) — A) — A. In the first case v(B) = F by
definition of v. In the second case v(A) = T or v(A — B) = T by another
application of Lemma 3.

Lemma 5: For every A and B, either v(A — B) =T or v(B — A) =T.

Proof. This follows from Lemma 4, the definition of v and axiom I1.

Lemma 6: If v(A — B) = v(B — A) = T then v(A) = v(B).

Proof. By definition of v and axiom I2.

We are ready now to prove that v respects the various operations:
v(A — B) =v(4) — v(B).

1. If v(A) = F then v(A — B) = T by definition of v.

2. If v(A) =T then (A — B) — B and B — (A — B) are both theorems
of Ty, by I1-I3. Hence v(A — B) = v(B) in this case, by lemma 6.

3. If v(B) =T then v(A — B) =T by axiom I1.
4. If v(A) = v(B) =L then v(A — B) = T by Lemma 4.

5. Suppose v(A) =L1 and v(B) = F. Then there exists D such that
To Vuruw A — D, while Tg Fgr.e B — D. Hence, by 12, To Varuk
A — B and so v(A — B) # T. Since neither A nor B are theorems
of Ty, it follows by Lemma 3 that T t/gru (4 — B) — B and so
v(A — B) # F. Hence v(A — B) =1 in this case.
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These 5 cases cover all possibilities and in each of them we got the required
value for v(A — B). Hence the equation.

v(AV B) = v(A) V v(B).

1. Axioms D1-D3, I2 and the definition of v immediately imply that
v(AV B) = F iff both v(4) = F and v(B) = F.

2. D1 and D2 implies that if either v(A) = T or v(B) = T then v(AV
B) = T. Conversely, if v(AV B) = T then Lemma 3 implies that
either v(A) = T or v(B) = T, since it is easy to show that AV B —
(A — B) — B is derivable from D3 using I1-I3.

These two facts suffice for establishing the required equation.
v(A A B) = v(A) Av(B).

1. From C1-C3 follows easily that v(A A B) = T iff both v(4) = T and
v(B)=T.

2. C1 and C2 imply that if either v(A) = F or v(B) = F then v(AAB) =
F'. The converse follows from the fact that v(A A B) is always equal
to either v(A4) or to v(B). Indeed, if v(A — B) = T then C3, C1 and
Lemma 6 entail that v(4) = v(A A B). Similarly, if v(B — A) =T
then v(B) = v(A A B). The claimed fact follows, therefore, from
Lemma 5.

v(=A) = ~w(A).

1. I1-13 and N1 entail that A Fgr. ~A — B. It follows that if v(A)=T
then v(—A) = F. Conversely, if v(=A) = F then To Fyru 4 —
(A — A), and so by N1 and the provability of A — A4, v(4) =T.

2. I1-I3 and N1 entail also that ~—A — A is a theorem. It follows that
if v(A) = F then Ty Fgru A — B for every B. In particular.
To Farur =—A — —(4 — A) and so, by N1 and the provability of
A — A, v(-A) = T in this case. Conversely, if v(-4) = T then
To Faruk A — B for every B and so v(A) = F.

Again these two facts suffice for establishing the required equation.

Note that in each case in the proof above we have used only the axioms
concerning — and the connective under discussion. Hence the above system is
indeed well axiomatized.
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5.2 A Gentzen-type formulation

As was emphasized above the structural rule of contraction is not valid for Fz .
A natural first attempt to construct a Gentzen-type formalism for it would be,
therefore, to delete this rule from (an appropriate version of) the corresponding
classical system. The resulting formalism is equivalent to the Hilbert-type sys-
tem which is obtained from HLuk above by dropping I4 and I5. To capture the
whole system we need to employ a calculus of Hypersequents °. We start by
recalling the definition of a Hypersequent in [Av5]:

Definition: Let L be a language. A hypersequent is a creature of the form:
I, :»A1|F2=>A2{...|I‘n:An

where I';, A; are finite sequences of formulas of L. The I'; = A, -s will be called
the components of the hypersequent. We shall use G, H as metavariables for
(possibly empty, i.e., without components) hypersequents.

The intended semantics of hypersequents is given in the following natural
generalization of the semantics of Frx:

Definition: A hypersequent G is Fp-valid if for every valuation v, there is
a component of G' which contains either a formula on its r.h.s. which gets T
(under v), or a formula on its L.h.s. which gets F, or two different occurances of
formulas which get L.

We next provide a corresponding (generalized) Gentzen-type formalism.

5.2.1 The system Gluk

Axioms:
A=A

External structural rules:
EW (External Weakening):

G|H
EC (External Contraction):

Gl=Al'=> A
GIl'=> A

10Such a calculus was first introduce in [Pot] for the modal S5, and independently in [Av5] for
the semi-relevant RM.
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EP (External Permutation):

G|y = ATy = Ay|H
G|y = ATy = AY|H

Internal structural rules:
IW (Internal Weakening):

GT = A GIT = A
GAT=A GT=AA4

IP (Internal Permutation):

Gl A,B,T,=A Gl = A A, B,A,
GIT.,B,A, T, = A GIT = AL, B, A4, A,

M (Merging):

G|y, T, T3 = Ay, Ay, Az G|y, T5,T% = A, AL, AL
G, T = Ay, AT, T = A, AT3, T = Az, Af

Logical Rules:

GLA=>A GL=AA
GIl'=A,-A G-AT=A

GrLA=>A GI,B=A Gr=A,A Gl=A,B
GT,AVB= A GT=AAVB GTSA,AVE

GIl',A= A GII',B = A Gl=AA GI'=A,B
GT,ANB=A GI',AANB=A Gl'=A,AAB

GIly= AL,A G|B,T,=A, GI,A= AB
G, T, A—>B=A,0;, OGU=AA=B"

Note: We shall assume below that an empty component of a hypersequent
is automatically omitted, unless it is the unique component of the hyperse-
quent. This involves no loss of generality, since the effect of this convention
can always be achieved by using internal weakenings and an external contrac-
tion (more generally it is always possible to derive G|T',T';,T; = A, Ay, A, from
G|T, Ty = A, A4, Ty = A, A,). In practice this convention allows us, e.g., to
have less components in the conclusion of rule M then its formulation suggests.

Soundness Theorem: Every Hypersequent which is derivable in Gluk is valid.
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Proof: By checking that every rule leads from valid hypersequents to a valid
hypersequent. The only non-standard case is rule M. Given a valuation v, there
ia again only one intersting case to note: when both I'y, 'y, I's = Ay, Az, Az and
I, T5, T3 = A}, A, A; from the premises of the rule have two occurances of
formulas which get | under v. In this case, however, the pigeon-hole principle
entails that one of the components of the conclusion will have this property as
well.

We turn now to the problem of the completeness of Gluk. It turns out
that showing completeness is relatively easy if we deal only with the {-, A, v}
fragment. We start therfore with this fragment. We shall later attack the full
system case with a completely different method.

5.2.2 Completeness of the fragment without implication

We start with the case of hypersequents which include only atomic formulas.

Definition: An atomic formula will be called special for a hypersequent G if it
occures ‘on the r.h.s. of some component of G and also on the Lh.s. of another
(not necessarily distinct) such component.

Lemma: Let GG be a hypersequent which contains only atomic formulas. The
following conditions are equivalent:

1. G is provable in Gluk.
2. G is valid

3. Some component of G contains two occurances of (not necessarily distinct)
special formulas for G.

Proof:
(1) = (2) : This follows from the soundness theorem.

(2) = (8) : Suppose that no component of G includes two occurances of special
formulas. Define v as follows: v(P) =L if P is special, v(P) = T if P
occures on the r.h.s. of some component of G but is not special, v(P) = F
otherwise. It is easy to see that none of the conditions for validity applies
to G with respect to v, and so G is not valid.

(3) = (1) : Let P and @Q be the (perhapse identical) special formulas for G which
have (together) two occurances in some component of G. By applying rule
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Mto P = P and Q = Q in the appropriate way we can get a hypersequent
from which G is derivable by using internal and external weakenings.

The Completeness Proof for the fragment without implication: We
present in what follows a set of reduction steps. Each of these step produces
from any hypersequent G to which it is applicable one or two hypersequents with
the following properties:

1. They are valid if G is.
2. G is easily derivable from them.

3. The number of connectives occuring in each of them is less than the number
of connectives in G.

Since at least one of the reduction steps will be applicable to any hypersequent
(in the language under discussion) which contain a non-atomic formula, these
reduction steps together with the previous Lemma suffice for establishing the
desired completeness result.

The reduction steps are:

® Reduce GI' = A,-A4 to G|I', A = A.

Reduce GII',—A = A to G|I' = A, A.

Reduce GII'= A,AAB to G|IT'= A, 4 and G|T = A, B.

Reduce G|T,AA B = A to G|, A = AT, B = A.

Reduce G|I' = A,AV B to G|T' = A,Al' = A, B.

Reduce G|I';AV B = A to G|I';A = A and G|T', B = A.

5.2.3 Completeness of the full system

The method of proof we use for the previous fragment does not work for the full
system since no reduction step seems to be available for formulas of the form
A — B which occure on a Lh.s. of a component. Here the lack of internal con-
traction is crucial. Because of it we cannot just assume the same side formulas
in both premises of the corresponding rule. Instead of a direct reduction we shall
rely here on the completeness of the Hilbert-type system which was proved in
the previous subsection. First we need, however, the following theorem (which
is of a major importance on its own right):
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The Cut-elimination Theorem If GI'; = A;,4 and G|A, T, = A, are
both derivable in Gluk then so is also G|I';,T'; = A4, As.

The proof of this theorem uses the “history” technique of [Av5]. Like in the
case of the hypersequential formulation of RM which was investigated there,
external contraction is the source of the main difficulties. The proof, however,
closely follows that in [Av5] and since it is rather tedious we shall not repeat it
here (the lack of the internal contraction rule somewhat simplifies the proof in
the present case, though).

Note: In the case of the fragment without implication cut-elimination is an
easy corollary of the completeness result we prove above.

Definition: Let G be a hypersequent, which is not the empty sequent. We
define its translation, ¢¢ as follows:

e if G is of the form A,,...,A, = B the ¢g is A - (4> ... > (4, -

o If G has a single nonempty component then ¢¢ is any translation of one
of its single-conclusioned versions (recall that Fr,; is symmetric!).

e If G has the form 51|5|...|S,, where the S;’s are ordinary sequents then
Pcis ¢s Vés, V...V ds,.

Lemma: G is provable in GLuk iff = ¢¢ is.

Proof: It is easy to see that if G is derivable so is ¢g. The converse is also
not difficult, using the cut elimination theorem. The most significant step is
to show that if = A; V...V A, is provable then so is = A;|...| = A,. For
this it is enough to show that in general, if G|I" = A, AV B is provable then
so is G|I' = A, A’ = A,B. This can be done by using two cuts (followed
by external contractions), if we srart from the given provable hypersequent and
AV B = A|AV B = B. The last hypersequent can be derived as follows: By
applying rule M to A = A and B = B we can infer A = B|B = A. Two
applications of the V = rule to this sequent and to its two premises give then
the desired result.

Proof of the completeness of GLuk: By the last Lemma and the complete-
ness of the Hilbert-type system HLuk it is enough to show that every theorem
of the later is derivable in GLuk. Since A — B, A = B is provable in GLuk,
the cut elimination theorem entails that if == A — B and => A are derivable in
GLuk then so is B. It remains therefore to derive the axioms of HLuk. With
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the exception of I4 and I5 these axioms are all easily derivable in the classical
Gentzen-type calculus (for ordinary sequents) without using either contraction
or cut. Hence it is enough to probide proofs for 14 and I5. Now by applying
rule M to A = A and to B = B we can obtain B = | = A|A = B.
From each of the 3 components of this hypersequent one can easily derive both
= I4 and = I5 in the classical system, without using contractions or cuts (for
example: starting from B => and the easily derived = A, A — B one can infer
(A — B) = B = A and then I4 by weakening and two applications of =>—).
Since we can independently work with each component, we can use these three
classical proofs and external contractions to obtain I4 and I5.

6 Proof-theory of RM;

Hilbert-type representations of RMj3 and its various fragments were extensively
investigated in the past. We refer the reader to [AB] and [Du] for details and
references'!. Gentzen-type formulations, on the other hand, were known so far
only for the fragments without the combining connectives'?. We remedy this
now by intoducing a Gentzen-type formulation for the full system. Again we
find it necessary to employ hypersequents in order to achieve this purpose. The
discussion closely resembles that of the previous section, and so we shall make
it as brief as possible.

The systemm GRM3

Axioms, external structural rules and logical rules: Like in GLuk.

Internal structural rules:
IC (Internal Contraction):

GIl'A, A= A GI'=> A A, A
Gr,A= A Gl= AA

IP (Internal Permutation): Like in GLuk.
Mi (Mingle):

G|F1 = A Glrg = A,
GII', T = Ay, A,

11[Av6] includes an axoimatization of the pure implicational fragment which is more perspic-
uous than those mentioned in these two resources.
12Guch a formulation appears, e.g., in [Av5], but was known long before.
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WW (Weak Weakening):

G|l'y, Ty = Ay, A,
GIFI = A1|I‘2,I" = Ag,A'

provided I'; = A, is not empty.

The Soundness of GRMS3 can easily be proved. As for completeness, the situation
is exactly like in the case of GLuk. It can rather easily be proved for the fragment
without implication, using the same method as before. The only change which
is necessary is to replace the third condition in the Lemma from 5.2.2 by the
condition:

Some nonempty component of G contains only special formulas.

We leave it to the reader to check that any hypersequent which satisfies this cri-
terion is easily derivable using WW and external weakenings, and that a sequent
which includes only atomic formulas is valid iff it satisfies this criterion. Other
hypersequents can be reduced to such hypersequents by the same reduction steps
we used. above.

For dealing with the full system we should start, as before, by proving cut-
elimination with the help of the history technique. Having done this we can use
the same method of translation as before in order to rely on the completeness of
the Hilbert-type formulations. The use of hypersequents is necessary for proving
the distribution axiom AA(BVC) — (AAB)V(AAC) * and the characteristic
axiom of RM3: AV A — B. The proof of the last formula uses, of course, the
WW rule. Other details are left to the reader.
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