LECS

01607 [eJausy) uo doysyIopn

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Workshop on General Logic

Edinburgh, February 1987

Editors: A. Avron
R. Harper
F. Honsell
l. Mason
G. Plotkin
ECS-LFCS-88-52
LFCS Report Series (also published as CSR-264-88)
LFCS May 1988
Department of Computer Science
University of Edinburgh
The King's Buildings Copyright © 1988, LFCS

Edinburgh EH9 31Z

CONTENTS

Forward
Workshop Timetable

Papers

A Framework for Defining Logics

Hoare’s Logic in the LF

The Logical Theory of Constructions
Delta Lambda Calculus

Conseéluence Relations

Using a Type Checker as a Proof Checker
Terminating General Recursion

The Metatheory of the LF Type System
A Search Space for LF

Implementation of Substitution in the AUTOMATH
Programme

Partial Inductive Definitions
Representing Modal Logic in the LF
The B Pre-logic

On the Meaning and Construction of Martin-Lof’s
Theory of Types

The independence of Peano’s Fourth Axiom from
Martin-Lof’s Type Theory without Universes

Inductively Defined Sets in Martin-Lof’s Set
Theory

Author

R Harper

I Mason

P Aczel

N de Bruijn
A Avron

T Coquand
B Nordstrom
F Honsell

G Plotkin

L Jutting

L Hallnas

A Avron

J R Abrial
R Backhouse

J Smith

P Dybjer

No.

oo =~ O Ot

10
11
12
14

15
16
17
18

19

20

Foreword

This is a collection of papers and notes from the Workshop on General Logic held
in Edinburgh in February 1987. The workshop was organised by the Laboratory
for the Foundations of Computer Science of the University of Edinburgh. The
Laboratory was founded in 1986 with significant financial support from the UK
Alvey Directorate, the UK Science and Engineering Council and Industry. Its
principal aim is to develop the foundational theory of Computer Science. This
work is reflected in the development of systems which are rooted in sound theory.
Through the Laboratory’s Programme of Industrial Interaction these theories
and systems are used and developed in an industrial environment. This gives
Industry early access to leading edge technology in Software Engineering and the
researchers in LFCS benefit from feedback on the usefulness and applicability of
their work in practical environments.

The workshop started on Monday morning and lasted five days. It covered
frameworks for defining varieties of logics, with an aim to developing a very
general environment for proof checking, editing and discovery. Research along
these lines by various people has been proceeding particularly strongly in the
last year or so, and it was felt - as seems to have turned out the case - to be a
particularly appropriate time to organise a workshop bringing together logicians
and computer scientists. The workshop was organised with formal lectures in
the morning, a brief lecture in the afternoon and then informal discussions and
demonstrations of various computer systems. The systems demonstrated were :

1. The Edinburgh Logical Framework, demonstrated by T. Griffin of Cornell.

2. The System B, demonstrated by J.R. Abrial. Project sponsored by BP; joint
project with PRG, Oxford. Carroll Morgan, Paul Gardiner, Mike Spivey.

3. The Centaur System, demonstrated by Laurent Hascoet of INRIA.
4. The L.P.E., demonstrated by Claire Jones of Edinburgh University.

We wish to thank George Cleland, Joan Ratcliff and Eleanor Kerse for their help
with the organisation and their performance of the arduous task of ensuring
the smooth day-to-day running of the workshop. We also particularly thank
Robin Milner for hosting the Workshop party. Finally we thank the participants
who were so kind and enthusiastic as to travel at a not particularly convenient
time of year- sometimes at short notice - and contribute enthusiastically to the
success and usefulness of the workshop. We also wish to thank the Science and
Engineering Research Council who provided generous financial support.

Workshop on General Logic

23-27 February 1987

23 February
09.15 R Harper 1 | A Framework for Defining Logics
10.30 P Martin-Lof 2 | The Logics of Judgements
11.30 T Griffin 3 | An Implementation of an Environment for the
Edinburgh LF
14.00 I Mason 4 | Hoare’s Logic in the LF
24 February
09.00 P Aczel 5 | The Logical Theory of Constructions
10.30 N de Bruijn 6 | Delta Lambda Calculus
11.30 A Avron 7 | Simple Consequence Relations
14.00 T Coquand 8 | Using a Type Checker as a Proof Checker
25 February
09.00 | P Schroeder-Heister | 9 | Quantified Higher-level Rules and their Application
to Logic Programming
10.30 B Nordstrom 10 | Terminating General Recursion
11.30 F Honsell 11 | The Metatheory of the LF Type System
14.00 G Plotkin 12 | A Search Space for LF
26 February
09.00 E Robinson 13 | Categorical Models for the LF Type System
10.30 L Jutting 14 | Implementation of Substitution in the AUTOMATH
Programme
11.30 L Hallnas 15 | Partial Inductive Definitions
14.00 A Avron 16 | Representing Modal Logic in the LF
14.30 J R Abrial 17 | The B pre-logic
Two case studies using B:
- a set theory
- a generalised substitution calculus
27 February
09.00 R Backhouse 18 | On the Meaning and Construction of Martin-Lof’s
Theory of Types
10.30 J Smith 19 | The Independence of Peano’s Fourth Axiom from
Martin-Lof’s Type Theory without Universes
11.30 P Dybjer 20 | Inductively Defined Sets in Martin-Lof’s Set

Theory

A Framework for Defining Logics*

Robert Harper Furio Honsell Gordon Plotkin
Laboratory for Foundations of Computer Science
University of Edinburgh

Abstract : |

The Logical Framework (LF) is a system for defining a wide class of logics. It = |
is based on a general treatment of syntax, rules, and proofs in terms of a typed
A—calculus with dependent types. Syntax is treated in a style similar to, but more
general than, Martin-Lof’s system of arities. The treatment of rules and proofs
focuses on the notion of a judgement. Logics are encoded in the LF via a new
principle, the judgements as types principle, whereby each judgement is identified
with the type of its proofs. This allows for a smooth treatment of discharge and
variable occurrence conditions and leads to a uniform treatment of rules and proofs
whereby rules are viewed as proofs of higher—order judgements and proof checking is
reduced to type checking. An important benefit of our treatment of formal systems
is that logic-independent tools such as proof editors and proof checkers can be
constructed.

1 Introduction

Much work has been devoted to building systems for checking and building formal proofs
in various logical systems. The AUTOMATH project of deBruijn [4] considered first
proof checking. The problem of interactive proof construction was first considered by
Milner, et. al. in the LCF system [11]. The LCF system was adapted to type theory by
Petersson [19]. The work of Huet and Coquand on the Calculus of Constructions [7,8]
extends the AUTOMATH and LCF work to a more powerful logic. Paulson’s work on
Isabelle [18] is a general approach to proof construction based on higher—order resolution.
The NuPRL system of Constable [6] is a display-based interactive proof development
environment for type theory that includes facilities for notation extension, library man-
agement, and automated proof search. _

There are a great many logics of interest (equational, first-order, higher—order, tem-
poral, type and set theories, type assignment systems and operational semantics for

*This is a slightly edited version of a paper delivered at the Second Symposium on Logic in Computer
Science, Ithaca, NY, June, 1987. Any citations should refer to the proceedings of that conference.

programming languages). Implementing an interactive proof development environment
for any style of presentation of any of these logics is a daunting task. For example,
one must implement a parser, term manipulation operations (such as substitution and
a—conversion), definitions and notation extension, inference rules, proofs, tactics, and
tacticals. Thus it is desirable to find a general theory of inference systems that captures
the uniformities of a large class of logics so that much of this effort can be expended
once and for all.

The Logical Framework is an attempt to provide such a general theory of logics. It
is based on a weak type theory that is closely related to AUT-PI and AUT-QE [9], to
Martin-Lof’s early type theory [14], to Huet and Coquand’s Calculus of Constructions [8],
and to Meyer and Reinhold’s A [16]. It is able to specify both the language of a logic,
its axiom and rule schemes, and its proofs. The language of a logic is defined in a general
theory of expressions that exploits the A—calculus structure to provide binding operators,
substitution, capture, a—conversion, and schematic abstraction and instantiation.

The treatment of rules and proofs is based on the notion of a judgement [15], the
unit of assertion in a logical system. (See also Schroeder—Heister [22] for a related point
of view.) Each logic is a system for asserting basic judgements. The set of judgements
is then closed under two higher-order judgement forms that are used to specify infer-
ence rule schemes and to model discharge and variable occurrence conditions such as
arise in Hilbert systems or systems of natural deduction. Rules are viewed as the proofs
of (possibly higher—order) judgements that specify them. There is no distinction be-
tween primitive and derived rules. The extension to higher-order judgements allows
for a natural presentation of many logical systems that avoids side conditions on rules.
Judgements, rules, and proofs are represented in the LF type theory by applying what
we call the judgements as types principle whereby each judgement is identified with the
type of its proofs. Each basic judgement is represented by a base type of the LF type
theory, and the higher—order judgements are represented in a logic-independent way
by functional types. Proofs, and hence rules, are represented as terms of the LF type
theory, thereby reducing proof checking to type checking.

In Section 2 we present the type theory of the LF, along with some of its important
proof-theoretic properties. In Section 3, we introduce the LF’s theory of expressions, and
consider predicate calculus and Church’s higher-order logic as examples. In Section 4
we consider the treatment of judgemerits, rules, and proofs in the LF. The method is
illustrated for predicate calculus and higher-order logic. In Section 5 we compare our
work with other systems for defining logics, and in Section 6 we suggest directions for
future research.

We gratefully acknowledge the influence of Per Martin-L&f, particularly the lectures
delivered in Edinburgh in the spring of 1986. We are grateful to Tim Griffin of Cornell
University for his efforts in building a prototype implementation of the LF. We also thank
the other members of the Computer Assisted Formal Reasoning project at Edinburgh,
especially Arnon Avron and Ian Mason, for their comments and criticisms. Support for
this research was provided by the Science and Engineering Research Council.

2 The LF Type Theory

The type theory of the LF is closely related to the II-fragment of AUT-PI, a language
belonging to the AUTOMATH family. The LF type theory is a language with entities
of three levels: (1) objects, (2) types and families of types, and (3) kinds. Objects are
classified by types, types and families of types by kinds. The kind Type classifies the
types; the other kinds classify functions f which yield a type f(z)...(z,) when applied
to objects z;,...,z, of certain types determined by the kind of f. Any function definable
in the system has a type as domain, while its range can either be a type, if it is an object,
or a kind, if it is a family of types. The LF type theory is therefore predicative.

A number of different presentations of this system can be given. We shall describe a
version which trades off conciseness against readability. The theory we shall deal with
is a formal system for deriving assertions of one of the following shapes:

F X sig 3. is a signature
Fe I’ context T' is a context
T'tg K kind K is a kind

T A: K A has kind K
F'FeM:A M has type A

where the syntax is specified by the following grammar:

Kinds K ::= Type | lIz:AK

Type Families @ A ::= ¢ | Ilz:A.B | Az:A.B | AM
Objects M ::= c¢|z| Az:AM | MN
Signatures T = ()| Z,e:K | Z,c: A
Contexts ' := () |T,z:4

We let M and N range over expressions for objects, A and B for types and families of
types, K for kinds, z and y over variables, and ¢ over constants. We write A — B for
ITz: A.B when z does not occur free in B.

The inference rules of the LF type theory appear in Table 1. A term is said to be
well-typed in a signature and context if it can be shown to either be a kind, have a
kind, or have a type in that signature and context. A term is well-typed if it is well-
typed in some signature and context. The notion of Bn—contraction, written —~ gy, Can
be defined both at the level of objects and at the level of types and families of types in
the obvious way. Rules (12) and (17) make use of a relation =, between terms which
is defined in the following way: M =g, N iff M —, P and N -, P for some term
P. We conjecture that variants of rules (12) and (17) obtained by taking =g, to be
pn—conversion are admissible rules of the theory. '

Since the notion of fn—conversion over KU AU M is not Church-Rosser, the order of
technical priority in which the basic metatheoretical results are proved is essential. The
following theorem summarizes these results in a convenient order (here a ranges over
the basic assertions of the type theory):

Valid Signature
F () sig
X sig tg K kind c¢ dom(X)
F X,c: K sig
FXsig kg A:Type c¢ dom(X)
FX,c A sig

Valid Context
a ontex S sig

Fs () context
Fs T context I'lyx A:Type z ¢ dom(T)

g T, z: A context

Valid Kinds
s T context
T' by Type kind
'ty A:Type TI,z:Alyg K kind
'y IIz: A.K kind

Valid Elements of a Kind
a ements of a b5 T context c:K €3

T'bye: K
'ty A:Type T,z:Alx B: Type
'y Iz: A.B : Type
'y A:Type T',z:Als B: K
T'by Az:A.B:1lx: A K
'ty B:Nlz:A K T+gN:A
'ty BN : [N/z]K
I'rp A: K Tz K'kind K =g, K'
F'ks A: K'

Valid Elements of a Type
Fa T context c:Ae€X

'kgec:A
FeT context z:AeT
I'kepz:A
Tty A: Type I'yz: Ay M : B
kg Ax: AM :Nlz:A.B
'y M:lIz:A.B Tk N: A
I'tyx MN :[N/z]|B
TFxM:A Tty A': Type A=g, A
Tk M: A

Table 1: The LF Type System
4

)
)
®)

(@

(5)

(6)
(7

(®)

(9)
(10)
(11)
(12)

(13)
(14)
(15)
(16)
(17)

Theorem 2.1

1. Thinning is an admissible rule: if T by a and gy T', T context, thenT',T' Fx s .

2. Transstivity is an admissible rule: sf T' by M : A and T',z: A,A Fy a, then

T,[M/z]A Fg [M/z]a. A

. 8. Uniqueness of types and kinds: if T -y M : A and T Fx M : A, then A =4, A,
and stmilarly for kinds.

4. Subject reduction: if Ty M : A and M —'gy M, then T 5 M' : A, and similarly
for types.
5. All well-typed terms are strongly normalizing.

6. All well-typed terms are Church-Rosser.

7. Each of the five relations defined by the inference system of Table 1 is dectdable,
as s the property of being well-typed.

The proof of this theorem is surprisingly complicated. However, the methods devel-
oped by van Daalen in his thesis [9] can be adapted to this type theory. It is important
to note that the Church-Rosser property, strong normalization, and the presence of type
labels are essential in the proof of decidability of the type theory. In particular, given
a signature and a context and any object (type) expression, it is decidable if the object
(type) expression is well-typed; if so, a type (kind) can be computed for it.

We shall outline only the proof of strong normalization, since, unlike the systems
dealt with by van Daalen, it can be proved independently of the other metatheoretic
results. Moreover, it yields a corollary that is useful for characterizing the terms that
are definable in the LF type theory:

Corollary 2.2 IfT Fx M : A, then Erase(M) can be typed in Curry’s type assignment
system, where Erase(M) denotes the term obtained from M by removing the type labels
from the A abstractions.

We start by defining a translation 7 of the LF types and kinds into simple types with
a base type o, and a translation ~ of LF objects and types into the untyped A terms with
a constant 7. These translations are extended to signatures and contexts in the obvious
way.

Definition 2.3 *

7(Type) = a

'rgl'iz: AK) = r1(A)—7(K)

7(Az: A.B) _ 7(B)

T(AM) = 7(4)

I(H:c:A.B) = 7(A) — 7(B)

i —

MN = MN

Ilz: A.B = =AB

AriAM = (gizM)A (y¢FV(iz.H))

Az:A.B = (Aydz.B)A (y ¢ FV(Az.B))
The precise sense in which this definition is consistent is stated in the following
lemma:

Lemma 2.4
1. IfT I—;; A: K, then 7(T) k5 A: 7(K);
2. IfTtg M : A, then 7(T') Fy(z) rama—a M: 7(A).
Proof. By tnduction on the structure of the proof of Ty A: K and T s M : A. We

have only to notice that any derivation of 5 I,z : A context contains as a subderivation
a derivation of I' s A: Type. [

The translation has been carried out in such a way that the extra combinatorial
complexity in the LF terms due to the presence of type labels is not lost. We then have
the following result:

Theorem 2.5
1. If A—p, A", then A g, A';
2. If M —p, M', then M 5, M".
Proof. By induction on the derivation of A — A' and M — M'. O

Now since the Curry typable terms are strongly normalizing, so too are the terms of
the LF. Moreover, it can be easily seen that A —'s, Erase(A), and M —'gy Erase(M).

A few remarks about the choice of the type theory are in order. It is essential that
the type theory be decidable, at least theoretically, for, as we shall see below, proof
checking is reduced to type checking. The use of conversion as the only counterpart of
definitional equality is due to the fact that at this stage the LF does not deal with the
issue of proof reduction and equality in the sense of Prawitz. We use n—conversion in
order to make the encoding of syntax more transparent. -

6

3 Theory of Expressions

The approach to formalizing the syntax of a language is inspired by Church [5] and
Martin-Lof system of arities [17]. Each syntactic category of the logic is represented
by a type. The expressions of each category are built up using expression—forming
constructors, which are formalized by suitable constants of the LF. Variable binding
operators are represented by constants whose domain is a function type, so that binding
is handled by the A—calculus of the LF. The type theory of the LF being richer than
simple type theory, our approach to syntax is more general than Martin-Lof’s. Explicit
use of this extra generality is made in the formalization of Church’s higher—order logic.

To illustrate the formalization of syntax within the LF, we consider two examples:
the language of Peano arithmetic (as defined in Schoenfield [21]) and the language of
higher—order logic [5]. The presentation of the syntax of Peano arithmetic will form a
part of its signature, Xps, and similarly for the signature of higher—order logic, Lgor.

In a first—order language there are two syntactic categories: the individual expres-
sions, which stand for individuals (objects in the domain of quantification), and the
formulas, which stand for propositions. These are represented in the LF by the type ¢
of individuals, and the type o of propositions. Thus Xps begins with:

t : Type
o : Type

The individual expression constructors of Peano arithmetic are formalized in p, by:

0 A

succ : t— 1L

+ L= L
X R e X

Terms of type ¢ in Tpa represent the individual expressions of Peano arithmetic.
There are no declarations for the variables of first—order logic. The variables of the
object language are identified with the variables of the LF, so that an open term of
type ¢ in Ypu, all of whose free variables are of type ¢, represents an open individual
expression. For example, in a context containing z:¢, the term succ(z) has type ¢ as well.
This representation is defined compositionally by: z° = z, 0° = 0, succ(t)° = succ(t°),
t+u® = 4(t°)(uv°), and ¢ x u° = x(t°)(v°),

Theorem 3.1 (Adequacy for Syntax, I) The correspondence ° is a bijection be-
tween the ezpressions of Peano arithmetic and the normal forms of type v in Tp, with
all free variables of type ¢.

Proof sketch. The translation is evidently well-defined and one-one. Surjectivity is
proved by induction on the structure of the normal forms. [

The following are the other constant declarations for the formulas of Peano arith-
metic:

= ! t—>Lt—0 < L—=i1—o0
o o—o0 A 0o—+0—o0
V : o—o0—o0 D 0o—0—o0
V : (t—0)—o 3 (¢—0)—o0

The formula ¢ = Vz.¢[z] is represented by the term ¢° = V(Az:¢.4°). This approach al-
lows a—conversion and capture-avoiding substitution to be factored out of the definition
of each individual logic, leaving it to be implemented once and for all by the framework.
This treatment of binding operators relies on the variables of the first—order language
being identified with the variables of the LF type theory. For example, if z is a variable
of type ¢, then £ = z is a term of type 0.! We can bind z by A-abstraction, obtain-
ing Az: .z = z, and universally quantify it by applying it to the constant V, obtaining
V(Az:t.z = z), which represents the first~order formula Vz.z = z.

In this way, each formula ¢ of Peano arithmetic is represented by a term ¢° of type o
in Xpa, all of whose free variables are of type ¢; sentences are represented by the closed
terms of type 0. An open term M of type o is an incomplete formula. Its A-abstraction
is a formula scheme. For example, the formula scheme

M = X¢:0.08:L — 0.9 D (D)
can be instantiated by application to a formula ¢ and a matrix ®, so that
M((V(Az:i.z = z))(Az: t.2 = 1)
represents the first—order formula
Vz.z =z D dz.z = z.

Theorem 3.2 (Adequacy for Syntax, II) The compositional translation ° is a bi-
Jection between the formulas of Peano arithmetic and the long Bn normal forms of type
o tn Tpp with all free variables of type .

Proof sketch. Similar to Theorem 3.1. [

The role of n—conversion in the above proof is mainly to ensure that the well-typed
terms of type o in Xp, ate exactly the formulas of Peano arithmetic, up to the notion
of definitional equality built in to the system. There is no intrinsic difference between
V(< (0)) and V(Az:e. < {0)(z))-

The formalization of the syntax of higher-order logic makes use of the dependent
function type of the LF. Quantification in higher-order logic is over a type drawn from
the hierarchy of simple functional types with two base types ¢ (of individuals) and o (of
propositions). In order to avoid confusion with the types of the LF, we call the types of

1'We freely use infix and postfix application in accordance with custom and readability considerations.

higher-order logic “sorts,” and we shall write o0 => 7 for the sort of functions from sort o
to sort 7. In the formalization of higher-order logic the collection of sorts is represented
as a type with members ¢ and o, closed under =>. The signature Tgor thus begins as

follows:
sorts : Type

L : sorts
7] : sorts
= : sorts — sorts — sorts

To each sort is associated the type of objects of that sort. The objects of sort ¢ are,
for the present purposes, the natural numbers. The objects of sort o are the propositions
of higher—order logic. The quantifiers range over an arbitrary sort, rather than the fixed
sort of individuals as in first-order logic. The objects of functional sort are given by
typed A terms (which we write with a capital A to avoid confusion), and there is a form
for expressing application.

obj : sorts — Type

0 : obj(e)

succ : obj(e=> 1)
= : Ilo:sorts. obj(o => o => 0)

: obj(o = 0)

obj(o => 0 = o)
obj(o = 0 = 0)
obj(o = 0 = o)
Ilo: sorts. obj((o = 0) = o)
Ilo: sorts. obj((o = 0) => o)
: Ilo:sorts.Il7: sorts.(obj(c) — obj(r)) — obj(o = 1)
ap : Ilo:sorts.II7:sorts.obj(o =>) — obj(c) — obj(r)

<y < >

The representation of equality and the quantifiers makes use of the dependent func-
tion types of the LF. For each sort o, the equality relation for objects of sort o is written
=,; it is an object of sort o => o => o. Similarly, the quantifiers ranging over sort ¢ are
written V, and 3,; they are objects of sort (¢ = 0) = o, just as in Church’s formulation.
The A and ap forms must similarly be tagged with types, which we write as subscripts.
The A form must be tagged with both the domain and range types, unlike in Church’s
definition. The difference is minor, and analogs of Theorems 3.1 and 3.2 can be proved.

4 Theory of Rules and Proofs

The treatment of inference rules and proofs lies at the heart of the LF. The approach is
organized around the notion of a judgement [15], the unit of inference of a logic. Each
logic comes with a set of basic judgements. In first—order logic there is only one form of
basic judgement, the assertion ¢ true that a formula ¢ is (logically) true (usually written

9

as I ¢ or just ¢). Sequent calculi also have one basic judgement, written I' = A, the
assertion that some formula in A is a logical consequence of all the formulas in . In
Martin-Lof’s system of type theory, there are four basic judgements, A type, A = B,
a€ A,anda=be€ A.

In traditional logical systems the inference rules determine the set of proofs of ba-
sic judgements, and thereby also determine the set of “correct” or “evident” [15] basic
judgements, namely those that have proofs. There are several approaches to the defi-
nition of a proof in a formal system. [21,20] Proofs are sometimes viewed as sequences
of formulas that satisfy the condition that each formula is obtained from previous for-
mulas by application of a rule. Another view is that proofs are trees satisfying certain
conditions. In any case the notion of a proof is independent of the particular rules of
inference.

We extend the notion of proof to include our view of rules as proofs of higher-order
judgements. There are two forms: the hypothetical and the schematic (or general). The
hypothetical judgement J; I J; is the assertion that J; is a logical consequence of Jj,
according to the rules of the logic. It is proved by a function mapping proofs of J; to
proofs of J,. The schematic judgement A,., J(z) represents the idea of generality: the
judgement J(z) is evident for any object z of type A. It is proved by a function mapping
objects z of type A to proofs of J(z).

Rules and proofs are represented as terms of the LF type theory. The basic rules are
presented as constants in the signature of the logic, and the derived rules are complex
proofs that are A-abstracted with respect to their premises. Since rules are functions,
complex proofs are built by applying (in the sense of the A-calculus) rules to the proof(s)
of their premise(s). Rule schemes are represented as proofs of schematic judgements.
Schematic variables are identified with the variables of the LF, so that schematization
is achieved by A abstraction, and schematic instantiation by application.

If rules and proofs are terms, what are to be their types? Since a proof is viewed as
evidence for a judgement, it seems natural to identify judgements with the type of their
proofs: a judgement is evident iff it has a proof iff there is a term of that type (in the
signature of the logic). We call this the judgements as types principle, by analogy with
the propositions as types principle of Curry, deBruijn, and Howard. Here we are making
no commitment to the semantics of a logic. Instead we are merely formalizing the idea
that to make an assertion in a logical system, one must have a proof of it.

The type of proofs of a basic judgement is determined by the inference rules of
the logic. The types of proofs of the higher—order judgement forms are defined by
the LF. We define J, I J; to be J; — J;, the type of functions mapping J; to J,.
This definition is motivated by the meaning of the hypothetical judgement and the
judgements as types principle. Similarly, we define A,., J(z) to be lz: A.J (z), the type
of functions mapping objects = of type A to J(z). We write Jy,...,Jn FoiAn, oA, J
for Az ay---Azpia, J1 b -+ (Jm b J). This incorporates and generalizes Martin-Lof’s
hypothetico-general judgements [15]. ‘

We take incomplete proofs to be open terms of judgement type J. They can be

10

(¢)

b o | 'p
(—1 -'1E) ——Jq—s (DI) m
. é[z] Vz.$|z]
) g E) /2]

(*z not free in any assumption on which ¢ depends.)
(¢)
dz.¢lz] ¥
¥

(*z not free in ¢ or any assumptions on which ¥ depends.)
(¢())
#(0) 9(succ(z))
¢(z)

(*z not free in any assumption, other than ¢(z), in whicfz @(succ(z)) depends.)

(3E%)

(IND)

Table 2: Some Rules of Peano Arithmetic

completed by substitution or by A-abstraction, yielding proofs of schematic judgements.
Abstraction on judgement type variables not occurring in J yields proofs of hypothetical
judgements.

An important consequence of the judgements as types principle is that we are able
to reduce proof checking to type checking. A term M is a proof of a judgement J iff M
has type J in the signature of the logic. This reduction is the most important reason
for insisting that the type theory of the LF be decidable, for otherwise one could not
construct a mechanical proof checker for a logic.

To illustrate these ideas, we formalize an illustrative selection of rules from first—order
and higher-order logic formalized as systems of natural deduction. Returning to Xp,,
we represent the single judgement form ¢ true by introducing a family of types indexed
by the propositions:

true : o — Type

We write “¢ true” for “true(4).” For any formula ¢ (.e., any term of type o in pa),
the type ¢ true is the type of proofs of ¢.

Each rule in Table 2 is represented by a constant whose type is the specification of
the rule, a higher—order judgement. For instance, the double negation elimination rule

11

is given by:
-=E : --¢ truely, ¢ true

The judgement is schematic in propositions ¢ and hypothetical in proofs of ——¢, so if ¢
is a formula and M is a proof of ——¢ true, then -—E(¢)(M) is a proof of ¢ true.

The implication introduction rule makes use of the hypothetical judgement form
to model discharge. The formulation of DI in Table 2 takes a hypothetical proof of
¢ as premise, and discharges the hypothesis. We instead treat DI as taking a proof
of a hypothetical judgement. The general intention is that a sufficient condition for
establishing the truth of ¢ D 1 is to establish that 1 is a logical consequence of ¢. The
formalization of DI, which is schematic in ¢ and ¥, is:

oI : (¢ true'I'- Y true) Fg.09:0 ¢ D ¢ true

So, for example, DI(¢)(¢)(Az: ¢ true.z) is a proof of ¢ D ¢ true.
Universal elimination is given by:

VE : V(®) truetlg. o4, ®(a) true

The rule is schematic in @, the matrix of the universally quantified formula, and a, the
instance. Given such and a proof M of V(®) true, VE(®)(a)(M) is a proof of &(a) true.
Substitution is modelled by applying the matrix to the instance.

Universal introduction is formalized like implication introduction. A condition for
the truth of V(®) is that ®(z) is true for arbitrary z. In Table 2 variable occurrence
conditions are used for a schematic proof of the judgement ®(z). We instead use a proof
of a schematic judgement A_:t.®(z). The rule is given by:

VI : (Ag.®(z) true) Fg.—, V(®) true

Existential elimination uses both hypothetical and schematic judgements, and makes
use of scoping to avoid side conditions:

dE : 3(®) true, (®(z) true b, ¢ true) Fg.voy0 ¥ true

Since ¥ is bound outermost, there is no possibility that the z of the schematic judgement
form occur free in an instance.
Induction makes use of scoping and higher-order judgements:

IND : &(0) true, (®(z) true b, ®(succ(z)) true) Fg,—oz. B(z) true
The correctness of the formalization is expressed by the following theorem:

Theorem 4.1 (Adequacy for Theorems) There is a (compositionally-defined) bi-
Jection between first—order natural deduction proofs of a formula ¢ of Peano arithmetic
Jrom assumptions ¢,,...,¢, and normal forms M of type ¢° true in Tp,, all of whose
free variables are of type ¢« and ¢ true (1 <i<mn)

12

Proof. It is straightforward to prove by induction on the length of dertvations, that if
Ajy..., A, Fpa A is derivable, then

T, z:: Ay true,...,z,: A, true g, M : A,y true

ts derivable, where ' contains assignments of the form z:. for the free object variables
x . occurring in the A;’s and in M, and where M faithfully encodes instantiation and
 application of rules. Surjectivity can be proved by induction on the structure of the
normal forms of type ¢ true (for ¢:0), keeping in mind the uniqueness of types and the
Church—Rosser property. 0O

Note that it is possible for M in the above proof to have free variables of type ¢, even
when n = 0 (i.e., when there are no assumptions) and when ¢ has no free variables.
This is true, for example, in a proof of

Vz.¢ D Jz.¢(z).

It is a peculiarity of first—order logic that the assumption that the domain of quantifica-
tion is non-empty is not made explicit in proofs.

The above proof illustrates the fact that judgements in the LF actually encode conse-
quence relations that satisfy, in view of Theorem 2.1, weak forms of thinning, transitivity,
and contraction.

We shall give two examples. In the first we present a proof of ¢ D (¢ D ¢) true
as a well-typed term in the signature Xps. Let z have type ¢ true, and let y have
type ¥ true. Abstracting the incomplete proof z with respect to y, we obtain a proof
Ay: ¢ true.z of ¢ true ¢ true. Applying DI to this proof, we obtain the (incomplete)
proof DI(¥)(#) (Ay: ¢ true.z) of ¢ D ¢ true. Abstracting with respect to z, and applying
DI again, we obtain the complete proof

DI(#)(¥ D ¢)(Az: ¢ true.DI(¥)(4)(Ay: ¢ true.z))

of ¢ O (¢ D ¢) true.

In the second example we give evidence for the claim that the traditional notion of a
derivable rule has a formal counterpart in the LF. We show that in the signature p, the
elimination rule for the universal quantifier in Schroeder-Heister’s style can be derived.
The Schroeder-Heister rule is specified as follows:

VEsg : V(®) true;{(A.., ®(z) true) I ¢ true) truet ¢ true) by, yp:.0 ¥ true.
It can be easily verified that the term

A®: L — 0.Ayp: 0.Ap: V(®) true.dg: ((A &(z) trué) ¢ true).g(Az: . VE(®)(z)(p))
has the above type.

13

With regard to derived rules, it is interesting to point out that in view of the fact that
thinning is an admissible rule of the LF type theory, judgements are “open” concepts.
This precludes an induction principle on proofs. Therefore typical admissible rules for
a given logic £, or meta rules such as the deduction theorem for a Hilbert—style presen-
tation of first—order logic, are not directly derivable in certain adequate signatures for
L. .

Turning to the formalization of higher-order logic, we formalize the inference rules
in a manner quite similar to that of first—order logic. There is one judgement form, the
assertion that ¢ is true, for ¢ an object of sort o.

true : obj(o) — Type

The rules of # and n—conversion for the A—calculus appear as axioms about equality.
They are schematic in the domain and range sorts of the functions, and in the terms
themselves:

B : Aa:sorts,r:sorts,f:obj(a)—bobj(r),a:obj(a) a'pa,r(Aﬂ.T(f)’ a) = f (a') true
Aa:sorts,r:aorts,f:obj(a:r) Aa,r(Az: Obj (0‘)- apa,r(f ’ z)) o=t f true

Strictly speaking, the equations in the above axioms should be written using ap, for the
type of =, is obj(r = 7 = o). |

The formalization of the logical rules is similar to that of first-order logic. The
universal introduction and elimination rules are formalized as follows:

VI @ (Azobi(o) @Ps,o(f; Z) true) Fousorts, f:obj(o=o) Vo(f) true
VE : Va(f) true |_a:sorts,f:obj(a::»o),a:obj(a) a'pa,o(f] a') true

The adequacy of this representation of higher—order logic can be established by means
similar to that for Peano arithmetic.

5 Comparison with Related Work

Work in the area of proof checking began with the AUTOMATH project [4]. They
sought to build a framework for expressing arbitrary mathematical texts in a formal
way, and developed many examples, notably the formalization of Landau’s textbook
on Analysis by Jutting [12]. In contrast to the LF approach they work directly within
the type theory, using the propositions as types principle. They do not seem to have
isolated any general principles about the formalization of logic. Our work can be seen as
a development of the AUTOMATH ideas by providing a framework that keeps the meta—
and object level clearly separated. We are also concerned with supporting interactive

proof development, particularly automated proof assistance, an area that was never
considered by the AUTOMATH project.

14

1

k-4

Paulson’s Isabelle system, as presented in [18], is a generalization of LCF to an
arbitrary logic. He is primarily concerned with theorem proving, rather than proof
checking and proof editing. Consequently his approach is quite different from ours,
particularly in the treatment of rules and proofs. Isabelle avoids the construction of
proof trees by viewing proof search as a process of building derived rules of inference.
His representation of rules is based on a direct encoding of rules and their side conditions,
using a clever algorithm to enforce variable occurrence conditions.

6 Directions for Future Research

The LF system is a first step towards developing a general theory of interactive proof
checking and proof construction. Much more work remains to be done. At present we do
not treat definitions and abbreviations for an object logic. There appear to be at least two
ways in which the LF type theory might be extended to include an account of definitional
equality. One way is to parameterize the system by axioms for 6 reductions [23,4]. We
have not yet conducted a thorough analysis of such an extension. Another approach is
to formalize LF type theory as an equational theory, with a set of equations representing
definitions being included as part of the signature of the logic. These equations may
be directed to obtain a reduction relation suitable for use by the type checker, but in
general this relation will not be Church~Rosser or normalizing, and so decidability of
type checking is lost.

It would be interesting to develop a characterization of the class of logics that can be
formalized within the LF. It is clear from recent results of Avron and Mason [1,2] that
one can exploit multiple judgement forms to encode logics that ordinarily have complex
side conditions on their rules. While it appears that almost any formal system can be
represented in the LF, some representations seem more natural than others. Is there
a precise characterization of naturality in this sense? If so, what logics admit natural
representations?

In a natural representation of a logic, the variables of the object language are rep-
resented by variables of the metalanguage. This means that, for the case of first—order
logic, that the type ¢ can be viewed as the domain of quantification in a given model.
Thus a satisfactory account of our treatment of variables seems to involve a notion of
model for the LF. We have defined a class of models for which the type theory is com-
plete. It is interesting to consider the possibility of connections between the LF and
Burstall and Goguen’s institutions [10] and Barwise’s abstract model theory [3].

A general treatment of tactics is clearly desirable. The terms representing proofs
in an LF encoding of a logic can be viewed as validations (in the sense of LCF [11].)
Since the proof terms are total functions, a tactic that is validated by a proof term
has the property that any proofs of the subgoals are guaranteed to lead to a proof of
the goal (such tactics are called valid by Milner). Griffin’s implementation of the LF
demonstrates that this property can be checked automatically for a small class of tactics

15

e

A

called refinement rules. The work of Constable and Knoblock [13] carries this idea even
further by considering the possibility of proving the validity of tactics for type theory in
the type theory itself. It would be interesting to adapt these ideas to the more general
setting of the LF. In another direction we have defined a logic-independent search space
that generalizes Paulson’s higher—order resolution [18].

References

[1] Arnon Avron. Simple Consequence Relations. Technical Report, Laboratory for
the Foundations of Computer Science, Edinburgh University, 1987. In preparation.

[2] Arnon Avron and Ian Mason. Case Studies in the Edinburgh Logical Framework.
Technical Report, Laboratory for the Foundations of Computer Science, Edinburgh
University, 1987. In preparation.

[3] J. Barwise and S. Feferman, editors. Model-Theoretic Logics. Perspectives sn Math-
ematical Logic, Springer-Verlag, 1985.

[4] Nicolas G. de Bruijn. A survey of the project AUTOMATH. In J. P. Seldin and
J. R. Hindley, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda
Calculus, and Formalism, pages 589-606, Academic Press, 1980.

[5] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[6] Robert L. Constable, et. al. Implementing Mathematics with the NuPRL Proof
Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[7] Thierry Coquand. Une théorie des constructions. Thése de Troisitme Cycle, Uni-
versité Paris VII, January 1985.

[8] Thierry Coquand and Gérard Huet. Constructions: a higher—order proof system
for mechanizing mathematics. In B. Buchberger, editor, EUROCAL ’85: European
Conference on Computer Algebra, pages 151-184, Springer-Verlag, 1985.

[9] Diedrik T. van Daalen. The Language Theory of AUTOMATH. PhD thesis, Tech-
nical University of Eindhoven, Eindhoven, Netherlands, 1980.

[10] Joseph Goguen and Rod Burstall. Introducing Institutions. In E. Clarke and D.
Kozen, editors, Logics of Programs, pages 221-256, Springer-Verlag, 1984.

[11] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh LCF: A
Mechanized Logic of Computation. Volume 78 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Heidelberg, 1979.

16

[12] L. S. Jutting. Checking Landau’s Grundlagen in the AUTOMATH System. PhD
thesis, Eindhoven University, The Netherlands, 1977.

[13] Todd B. Knoblock and Robert L. Constable. Formalized metareasoning in type
theory. In Proceedings of the Symposium on Logic in Computer Science, pages 237—
248, 1986. .

[14] Per Martin-Lof. An intuitionistic theory of types: predicative part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium, ’78, pages 73-118, North-
Holland, Amsterdam, 1973.

[15] Per Martin-Lof. On the Meanings of the Logical Constants and the Justifications of
the Logical Laws. Technical Report 2, Scuola di Specializzazione in Logica Matem-
atica, Dipartimento di Matematica, Universita di Siena, 1985.

[16] Albert Meyer and Mark Reinhold. ‘Type’ is not a type: preliminary report. In Pro-
ceedings of the 138th ACM Sympossum on the Principles of Programming Languages,
1986.

[17] Bengt Nordstrom, Kent Petersson, and Jan Smith. An Introduction to Martin-Léf’s
Type Theory. University of Goteborg, Goteborg, Sweden, 1986. Preprint.

[18] Lawrence Paulson. Natural deduction proof as higher—order resolution. Journal of
Logic Programming, 3:237-258, 1986.

[19] Kent Petersson. A Programming System for Type Theory. Technical Report 21,
Programming Methodology Group, University of Goteborg/Chalmers Institute of
Technology, March 1982.

[20] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Almquist & Wiksell,
Stockholm, 1965.

[21] Joseph R. Schoenfield. Mathematical Logic. Addison-Wesley, Reading, Mas-
sachusetts, 1967.

[22] Peter Schroeder-Heister. A natural extension of natural deduction. Journal of
Symbolic Logic, 49(4), December 1984.

[23] Séren Stenlund. C'bmbinators, A-terms, and Proof Theory. D. Reidel, Dordrecht,
Holland, 1972.

17

Hoare’s Logic in the LF, a case study
Ian Mason
Laboratory for Foundations of Computer Science
Department of Computer Science, Edinburgh University, EH9 3JZ

Contents

1. Introduction
2. The Subject Matter
3. Version One .
3.1. The Basic Types
3.2. The While Language
3.3. Hoare’s Triples
3.4. The Judgements
3.5. The Rules Concerning
3.6. The Hoare Rules and Axioms
3.7. The Adequacy Theorems
4. Version Two ce
4.1. Non-Interference Axioms and Rules
4.2. The Axioms and Rules of Hoare Revisited
4.3. The Adequacy Theorems Repaired
5. Version Three .
5.1. The Rules of the Judgement QF

5.2. The Rules and Axioms of Third Version of Hoa.re s Loglc

5.3. The Adequacy Theorems Revisited
6. Conclusions
7. Acknowledgements
8. References

~ O Ot Ut Ot Ot W W N

[e ol o o T
D O Ut i i N N e

§2 The Subject Matter 2

1. Introduction

In this working paper we describe several attempts at defining a simple version of
Hoare’s logic in the LF. This is used as a framework for discussing certain issues that are
raised. We give three different attempts at formulating Hoare’s logic in the LF, only two
of these are successful. Both successful versions suggest certain desiderata concerning the
nature of tacticals in the LF and how they can be used in faithfully presenting logics.

2. The Subject Matter

We begin by describing the logic, in the traditional fashion, that we will be studying.
Our description here is based closely on that in [Apt, 1981]. Let r denote a first order
language with equality, the meta-variables z,y,z denote or range over the variables of 7,
the meta-variables s,? denote or range over the terms or ezpressions of 7, the meta-variable
e is used to denote a quantifier-free formula or boolean ezpression of 7, and, finally, p,q,r
denote or range over the formulas or assertions of 7.

Let W denote the least class of programs such that
1. for every variable z and expression t, z: =t € W; and

2. if S1, 83,53 € W then S; ; S; € W, and for every boolean expression e of 7, we have
that if(e, S1,5;) € W and while(e,S;) € W.

The elements of W are called while programs, and we take their interpretation to be
understood. The basic formulas of Hoare’s logic are objects of the form {p}S{q} where p, g
are assertions and S is a while program. The intuitive meaning of an asserted program,

{p}s{q},

is as follows: whenever p holds before execution of S and S terminates, then ¢ holds
after execution of S. Hoare’s logic is a system of formal reasoning about these asserted.
programs. Its axioms and proof rules are the following.

Axiom 1: Assignment Axiom
{pt/z]}z: = t{p}.

Rule 2: Composition Rule

{p}S1{r}, {r}S2{q}
{p}S1; Sa{q}

Rule 3: If Rule
{p A e}S1{q}, {p A —e}S2{q}

{p}it(e, S1,5:2){q}

§3 Version One 3

Rule 4: While Rule (s A }5{p}
{p}while(e, S){p A —e}

The final rule involves some notion of a consequence relation for the assertion lan-
guage. The usual approach is to assume a background first order theory, T, for example
Peano arithmetic, and a proof system for the assertion language, for example the usual
- natural deduction system. The rule in question is the following.

Rule 5: Consequence Rule

p=>p, {p1}S{n}, a1=>¢
{r}s{q}

Here p => p; and ¢; = ¢ are assumed to follow from the background first order theory
using the proof system for the assertion language. As usual, p[t/z] stands for the result of
substituting ¢ for the free occurences of z in p.

3. Version One

3.1. The Basic Types

We begin the first version by fixing a finite first order language, r. Relative to 7 we
have the following basic types, /, is the type of identifiers or memory locations of the while
language, 1, is the type of first order terms in the language r, b, is the type of boolean
expression or equivalently quantifier free first order formulas in the language r, o, is the
type of first order formulas in the language 7, w, is the type of while programs over 7 and
finally k., is the type of hoare triples over . We omit explicitly mentioning the dependence
on r whenever possible, thus we write [rather than [,.

« !l : TYPE
«t : TYPE
=0 : TYPE
«b : TYPE
s w : TYPE
«h : TYPE

It is important to notice that we are, by necessity, distiguishing between the variables
of the first order logic, which are simply the variables of the LF, and the variables of the
while language. This is because the latter are not substitutive. The variakles of 1 and o
are the variables of the LF. Also note that since the LF does not have subty pes we must
distinguish between the boolean expressions and the first order formulas. The force of this
distinction is somewhat diminished by an identification «,

sa : b—o,

§3 Version One 4

it is supposed to be the obvious identification of boolean expressions and quantifier
free formulas. Later we shall state some axioms which attempt to force this identification
to be the obvious one. The next operation is the bang which takes an identifier to its
contents.

s! >4

In other words if z:/ then z! (which we will write instead of the awkward !(z)) is the contents
of z. It can thus be thought of as an evaluation mechanism. The logical constants on terms
are as follows:

ne; o, for each constant symbol ¢ € 7.
o fi 1 imi >, for each n-ary function symbol f € 7.
n+1, ¥'s

Now for the logical constants on formulas:

=R, : §—1i-—...— 11— o for each n-ary relation symbol R € r.
n‘;'s

s=, : i—(i—0)

«=>, : o0—(0o—0)

=", 1 0—0

«V : (f—>0)—o0

However to make things more readable we include all the usual logical constants,
either as new constants (as we do here) or as defined objects, which we do when it comes
to proofs.

s A, : 0 (0—0)
=V, : 0—(0o—0)
«»3 : ({—0)—o0

As our notation suggests we will use infix notation whenever appropriate. Thus
rather than write V (z1)(z2) we will use the more standard notation of £; V z3. These
operations, of course, have analagous versions in the case of boolean expressions. These
tedious duplications are forced by our inability, on the face of it, to have subtypes in the

LF.

« Ry, : i—1i—...— {— b for each n-ary relation symbol of 7.

v

n s

sy : §— (i —b)
e=>, : b—(b—0b)
- T M b—)b

Again to make things more readable we include all the usual logical constants, either
as new constants or as defined objects, whichever is most convenient at the time.

k.

§3 Version One 5

s Ap 2 b (b—d)
= Vy ¢ b—(b—0b)

The o and b versions of the same operation can be identified at the level of definitions
in the current implementation of the LF. By this we mean that we can use the same symbol
for both variations, commonly called overloading. Although in the current implementation
it is the user that does the overloading not the editor itself. In what follows we will also
- do this, thus we will write £ A y in either of the cases when the operands are of type o or
b. Context will always prevent confusion.

3.2. The While Language

We now add constants that correspond to the constructs of our while language, they
are simply the curried versions of the constructs described in the informal introduction.

=ass : [— ({— w), denoting ass(z)(¢) by z: =¢.

» 8seq : w — (w— w), denoting seq(w;)(w2) by wy ; ws.

»if : b— (w— (w— w)), denoting i£(b1)(w1)(wz) by i£(b1, w1, ws).
» while : b — (w — w), denoting while(b;)(wy) by while(by, w1).

3.3. Hoare’s Triples

The syntax of the Hoare triples is easily taken care of by a single constant.

« triple : o — (w— (0 — h)), denoting triple(o;)(w;)(oz2) by {o1}wi{o2}.

3.4. The Judgements

The following are the judgements of our first version, they correspond to judgement
TRUE or more appropriately provable sentences in the respective classes of expressions.

«bp : h— TYPE
- I""b . b — TYPE
at, : o0o— TYPE

Again we can use the definition mechanism to hide the distinction between these three
judgements. Thus we shall omit the subscript leaving context to do its job.

3.5. The Rules Concerning o

The rules concerning the identification « are straight forward and so we shall not
make any undue fuss. -

ey : gy (Fz)— (Fafz)
coy : gy (Fa(z)) — (F2)
sagg : g...p 5 (Fo(R(zi,...,2,))) = (F Ro(zy,...,2,)) for R € rU{=}.

§3" Version One 6

soagp : M. Mz (B Ro(z1,...,20)) = (F a(Re(z1,...,24))) for R e ru{=}.

For ease of use it is probably also useful to include, as either new constants or derived
terms, the following:

sos 0 Igyullz,s F (a(xl = 3'2) @z = 32)
sag : Iz F (a(—'Z) L —1&(9:)))
. a7y ! nr,l:bnb,;b - (a(b]_xbz) L4 (a(bl)xa(bg))) for x € {/\ ,» vV, =>}.

Clearly, given the usual interpretation of the logical constants, c; and oz imply
as,...,cr but the converse, even with the addition of oz and oy is false due to our
inability to force b to be inductively generated by the relevant constants. In this sense it
could hardly be said that we are formalizing the syntax.

3.6. The Hoare Rules and Axioms

We omit the rules of first order logic, the interested reader is refered to [Harper,
Honsell and Plotkin, 1986]. We continue with the rules of Hoare, they are the obvious
analogs of the informal rules given the preceeding setting.

= Ass Hz:lnt:inp:i-—m

 {p(t)}z: = t{p(=)}
. Comp : Ila:ollpiollciolluy:wllwg:w
F{a}wi{d} = + {b}wa{c} — F {a}w1;wa{c}
» If ¢ ILlle,0lles 0l w0 g w
F{er A afe)}wi{es} = F{e1 A —ax(e)}wa{es} — + {er}if(e, w1, wa){ez}
< While : IMLllsollu,e
F{f A ale)}wi{f} —» +{f}while(e,w1){f A —c(e)}

« Con : Ilgolly,.0lls:01ls, 011y, 0

Fai=>a— Fb=>b— F{a}wi{b1i}— F {a}w,{b}

-

§3 ~ Version One 7

3.7. The Adequacy Theorems

We now state the adequacy theorems for syntax and semantics that should hold in
any successful internalization of Hoare’s logic in the LF. Beginning with the adequacy for
syntax, which is stated for each separate syntactic category. We begin with some notation.
Let I'" be the following context, for m,n € N:

m _ e o .
rn _{yo""“; m-i,zo-l,...,zn.l}.

Theorem (Adequacy for Syntax): In the above LF signature and in the context
' we have the following facts concerning syntax:

I: All well formed long 87 normal forms of type ! are LF variables of type /, and hence
are among the zg,...,2z,. .

i: There is a compositional bijection, r;, between well formed long fn normal forms of
type 1 and terms of the assertion language built up from the set of identifiers Z and
the logical variables 7. '

b: There is a compositional bijection, 7, between well formed long 87 normal forms of
type b and quantifier free formulas of the assertion language built up from the set of
identifiers Z and the logical variables 3.

o: There is a compositional bijection, r,, between well formed long A1 normal forms of
type o and formulas of the assertion language built up from the set of identifiers
(which if they occur must occur free) and the logical variables 3.

w: There is a compositional bijection, r,,, between well formed long 8n normal forms of
type w and the while programs of r built up from the set of identifiers Z and the logical
variables y (which do not occur in the left hand side of any assignment statement).

h: There is a compositional bijection, 7, between well formed long fn normal forms of
type h and asserted programs (i.e. Hoare triples) built up from the set of identifiers
% and the logical variables §. Where again no variable from § can occur in the left
hand side of any assignment statement.

Remarks:

e Actually there is a minor problem in the statement of the result for w and hence
for h. This arises because in the informal description of the while language there is no
distinction between Sp ; (S1;S2) and (So ; S1) ; S2 where as these are quite distinct from
the point of view of the LF internalization. Perhaps the simplest solution to this minor
technicality is to be somewhat more precise in the informal description, incorporating this
distinction there. Thus the second clause in the informal description should be restated
as

2. if S3, 52,53 € W then (S;; S2) € W, and for every boolean :xpression e of 7, we have
that if(e, S1,52) € W and while(e, S;) € W.

e Long 81 normal forms (see [Jensen and Pietrzykowski, 1976] for a definition) have
been chosen, rather than #n normal forms, so as to overcome the difficulty of deciding

§,3m ‘ Version One ’ 8

which bound variables may occur in the set of first order formulas built over Z and §.
Since both A-expressions and formulas are only considered upto a-equivalence and also
since V(M) occurs in long fn normal form if M = Az.N where N is of type o we can
define 7,(V(Az.N)) to be Vz7,(N).

Outline of Proof: We begin by defining, recursively, the collections of long 87 normal
forms of, in the context I']', the syntactic categories in question. In what follows N7
denotes these forms for the category =z.

s N*=2z0]|...|2Zn.
s N*=yo|...|ym | ci| N™| fi N™... N for all constants ¢ and s-ary functions
s, -

. 8 times
symbols in 7.

« N*=RyN™...N* | N* =, N* | - N* | NJ* =, N} for any s-ary relation in 7.
(A
& times
« N* =R,N™...N™* | N™ =, N* | = N™ | N™* =, N* | V(\ym41:8.N*11) for
N’

8 ?imeg
any s-ary relation in 7.

« N = NP:= NP | (N2 N7) | i2(N, N2, N) | while(N7, N 7).
« NP = {N}ND{NT}.

The compositional bijections, for each category, are then defined inductively on the
above categories in the obvious fashion. 0]

Now we proceed to the adequacy for semantics. In the case for b and o there is very
little difference between the results here and those stated in [Harper, Honsell and Plotkin,
1986]. The only remark needed to be made is that the identifiers are taken to behave like
constants. Thus we shall concentrate on the novel case of h.

Theorem (Adequacy for Semantics): There is a compositional bijection between
proofs of a Hoare triple {p}S{q} from assumptions rg,...,r, (in the assertion language)
and assumptions {po}So{qo},- - -, {P:}S:{q:} (concerning asserted programs) and well formed
PBn normal forms of type

Fr {p}S{q}

in the above signature and in the context I where
I'=T7 U{wj: Fo rjvit b {p:}Si{a:} ogice0gist,

and I'" is adequate for the syntax of objects involved.

Unfortunately this theorem is false under this internalization, the rule Ass is in fact
erroneous. We give two exaiaples of this failure, one at the level of locations and the
other at the level of LF terms. They are essentially the same example, viewed at different
levels of abstraction, and provide us with two different (though essentially equivalent)
motivations for the solution we shall present. Take 7 to be the language of arithmetic.

83 Version One 9

Example 1. In the context
I'={z:, y:1}

we have the following instance of the assignment axiom Ass,

{~(z! = D}y: = 1{~(a! = yD)}.

- Now z and y are simply LF variables that are declared to be of type I. No other assumption
about them has been made. Consequently it is reasonable to assume that they both denote
the same physical location or identifier /. In this case the axiom states that

{‘1(10! = 1)}10. = 1{'1(101 = lo!)},

and since it is reasonable to assume that —(lp! = 1) is a definite possiblity we arrive at a
somewhat unfortunate state of affairs.

Example 2. Suppose I' = {y:l} is the current context and take the following instanti-
ation of the assignment axiom, :

A88(y) (1) (Au.~(y! = u)).

This term inhabits the following type

F{-y!= 1)}_y= = 1{~(y! = yD}.

Which one would have hope was uninhabitable.

The problem in the first example, intuitively, is that

{P(t)}z: = t{P(a!)}

can be false because the assignment z: = ¢ can‘alter the meaning of the predicate AzP(z).
Thus the simplest solution to this problem is to axiomatize the relevant notion of non-
interference. This solution is some sense however hides the source of the problem, since
a casual glance reveals no crucial differences between our interpretation here and the
informal description we began with. There is a crucial difference however because our
version is inconsistent unlike the informal one.

One point that can be made here is that the LF cannot handle meta-variables in the
way they are commonly used in describirg logics. The reason that the inconsistency does
not arise in the informal version is that, in essence, the operator p[t/z] is call by value; it
replaces all occurences of the value of the meta-variable z (which is a variable of r) by the
value of the meta-variable ¢ (which is a term of 7). In contrast to this, substitution in the
LF, ' .

(AzP2))()

takes place at the level of the meta-variables (i.e. the variables of the LF) and not at the
. level of their values. In this sense LF substitution could be called call by name.

]

83 Version One 10

Perhaps a clearer explaination can be given by examining when the two notions of
substitution, 1. p[t/z] and 2. (Az.P(z))(t), coincide and when they differ. To make
the following discussion more readable we omit the bang operator, ! , since neither its
presence nor its absence has any bearing on the phenomenon we are considering. The first
and most obvious difference between these two operators is that they apply to different
sorts of objects. The first form has as its arguments — a formula, a variable and a term.
The second form has as arguments (in the notation of the LF) a function from terms
to formulas and a term. To make this explicit we shall write Subl(p, z,t) = p[t/z], and
Sub2(P,t) = P(t).

One way of unifying the picture is to decompose the first form of substitution,
Subl(p, z,t), into two separate operations. Given a formula p we first form the func-
tion, Az.p, from terms to formulas, we then apply this function to the given term ¢. Thus
we conclude that

Subl(p, z,t) = p[t/z] = (Az.p)(t) = Sub2(Az.p, 1),

hence the first form of substitution can be considered as a special case of the second.

Similarly we can express the second form of substitution, Sub2(P,t), in terms of the
first, but in this case we need a side condition. Sub2(P,t) can be also be decomposed into
two operations. Given P we first obtain a formula by applying P to a new variable z, we
then replace all occurences of this new variable by the supplied term t. By a new variable
we mean a variable that does not occur free in P. This is the same, in the LF, as saying
that the variable does not occur free in VP. In this case we can conclude that

Sub2(P,t) = P(t) = (P(z))[t\ z] = Subl(P(z),z,t) when z¢& FV(VP).

It is imporatant to notice that in the Hoare triple

{P(t)}z: = t{P(=!)}

free occurences of z in P(xz!) are bound by the assignment operator z: = t, this is not
true of those occurences in P(t). Thus in example 2. we have a clear case of a variable
being captured, in the right hand side, during the process of substitution. Thus in one
sense a-conversion should take place. This however would not be in the spirit of Hoare’s
logic, since we want to reason about the identifier z not some a-conversion of it. Thus the
assignment axiom can be correctly stated, informally, as

= Ass ‘ Hm:lnt:inp:i—*o

2@ FV(YP) > F {p(t)}a: = t{p(a)}.

We now put this new found knowledge into practice.

§4 Version Two 11

4. Version Two

The easiest solution to this problem of formalizing the corrected version of the as-
signment axiom is to incorporate syntactic notions explicitly into the theory. We do this
by adding three new judgements concerning non-interference along the lines of [Reynolds,
1978].

«# : l— (I TYPE)
« i : l— (§ — TYPE)
« 4, : !— (o— TYPE)

As per usual we will identify a judgement with the type of its evidence, which in this
case consists of its proofs. The intuitive meaning of the judgements can be explained,
again using infix notation, as follows:

» z#y isinterpreted as meaning that z and y denote distinct identifiers or locations.
As we have already mentioned, because we have no constructors or constants of type
l, terms of type ! must Bn reduce to LF variables.

» zff;it is interpreted as meaning that no assignment to the location denoted by z
effects the value of the term denoted by . This of course is equivalent to saying that
the location or identifier denoted by = does not occur in the term denoted by t.

» zfl,e is interpreted as meaning that no assignment to the location denoted by z
effects the value or meaning of the formula denoted by e. Again this is equivalent to
saying that the location or identifier denoted by z does not occur freely in the formula
denoted by e (Note that it cannot occur bound).

Again we will omit the subscripts in favor of context.

4.1. Non-Interference Axioms and Rules

It is a simple task to axiomatize the above notions, and we present one such here.
s o : Iza =zfe;, for each constant ¢ in 7.
s ﬁl : Hz:lny:l z # y— 3ﬂy!

ooy ¢ Mgilley. . T 3Ilzg afity — zfits — ... — zfit, — z§f(t1,22,...,ts), for
each n-ary operation in .

. gSR : Ht1 :intgzi see Ht,.:ina::l xﬂtl g xﬂtZ - ... xutn - EﬂR(tl,tg, LR ’tn)» for
each n-ary relation in r U {=}.

- ﬂ4 HE | PN | P xﬁe - .’tﬂ—le
» ﬁ5x : Hc1:oncz:onm:l z“el — zfles — zfler xeq for x € {A » V ’=>}'
[ﬁﬁ . Hf;;‘—»onm:lny:i (Zﬂy - xﬂf(y)) - zﬁVf

That we have captured the correct notion is expressed in the following proposition.
Its proof is an easy induction.

»

84 Version Two 12

Proposition: Suppose that I' = {zo:l, z;:l, 2z;:20 # z;}icr and T (¢ : o). Then the
following are equivalent

1. T'F zo¢
2. FV((}S) C_; {.’t,‘},‘ej.

We should point out that to correctly formalize more complex versions of Hoare’s logic,
for example one in which recursive procedure calls were allowed, it would be necessary to
incorporate the notion on non-interference anyway. Thus in the long run we have not payed
such a high price. The notion of non-interference is a syntactic one, and to axiomatize it
as we have done above relies heavily on the existance of the type . Thus we are provided
with another, perhaps more compelling, reason why the Hoare’s logic variables cannot be
identified with the variables of the LF. The above proof system for non-interference has a
very special property that we shall discuss in detail later. Put crudely if a non-interference
judgement can be proved, then there is, in a strong sense, a unique such proof. But let
us not digress from the immediate problem at hand, namely repairing the inconsistency
in our first version.

4.2. The Axioms and Rules of Hoare Revisited

Using the non interference judgement we can formulate the correct version of the
assignment axiom as follows:

« ASS : MMMy, ziVp— F {p(t)}z: = t{p(z))}

The remaining rules are the same as in the inadequate version and so we do not waste
space repeating them here.

4.3. The Adequacy Theorems Repaired

In this version the adequacy theorem for syntax remains the same, however we modify
the definition of ' so that it includes the assumption that all distinct LF variables of
type ! denote distinct locations or identifiers. Explicitly define I'* as follows

= {yoii,...,ym:,Zol, ..., @nil, 2; 5:%5 # 24, 2] ;2% # Tito<igign
The adequacy theorem for semantics is then identical to the false one in the preceeding
section. The only difference now is that it is true.

Theorem (Adequacy for Semantics): There is a compositional bijection between
proofs of a Hoare triple {p}S{q} from assumptions rg,...,r, (in the assertion language)
and assumptions {po}So{go},. .., {p:}St{g:} (concerning asserted programs) and well formed
Bn normal forms of type

Fr {p}S{q}

in the above signature and in the context I' where

T =T3 U{w;: b, rj v bFn {pi}Si{ei} }ogs<a0<its

§5 Version Three 13

and .
m . oy * epe. , . ..
Ty = {yoit,..., Um0, %ol ..., 2n:l, 2; j:2; # T4, 2] ;%5 # Tito<i<i<n-

is adequate for the syntax of objects involved.

The fact that there is a compositional bijection depends heavily on the following fact
concerning the non-interference proof system.

. Proposition (Uniqueness): Suppose there are well formed LF terms z, ¢, P and P;
such that

0.I'™*kFz : |
1.T?Fe : o
2.TP Py : zfe,
3. TPFP, : zfe.
Then Py and P; have the same 87 normal forms.

This is important since if there were distinct proofs of a non-interference judgement
then the extra parameter to the Ass axiom would force the mapping to identify different
Bn normal forms.

5. Version Three

The third method of representing Hoare’s logic is to utilize the method of using
judgements to interpret or implement subtypes. In the case of Hoare’s logic there is only
one problematic subtype, that of the boolean expressions b. In this example we introduce
a new judgement QF over o, whose interpretation is that of a formula being quantifier-free.

«QF : o— TYPE

The two program constructions if and while now take a extra argument, namely a
proof, equivalently an element of the QF judgement, that their o argument is quantifier
free. We shall discuss the advantages and disadvantages of this approach after we have
described it fully.

« IF : II..,QF(e) = w — w — w, denoting IF(e)(p)(w1){ws) by if(e, w1, ws),.
« WHILE : II..,QF(e) » w — w, denoting WHILE(e),(w;) by while(e, wy),.

5.1. The Rules of the Judgement QF

Axiomatizing the syntactic notion of being quantifier free, as in the case of non-
interference, presents no problems.

2 QFip ¢ Iy Tl X, QF(R(t1,t2,...,ts)), for each n-ary relation in rU{=}.
= QF; Helzo QF(el) - QF(—'el)
« QFsy @ II,.00L.;., QF(e1) — QF(ez) — QF(erxez) for x € {A, V,=}.

§5 Version Three 14

Just as in the case of the proof system for non-interference, this proof system has the
property (which we will discuss in more detail when we come to the adequacy theorem for
syntax) that proofs are in a sense unique.

Proposition (Uniqueness:) Suppose there are well formed LF terms e, Py and P,
such that

1.T e : o
2.T? Py : GF(e),
3.T™F P : GQF(e).

Then P, and P; have the same 87 normal forms.

5.2. The Rules and Axioms of Third Version of Hoare’s Logic

In this final version the rules need only be modified so as to take into account the
extra argument to the if and while constructs. We state them here in there entirety for
reason of emphasis.

- Hl : Hz:lnt:s'np:i—vo
zfVp — F {p(t)}z: = t{p(z!)}

«Hy Hel:oneg:ones:onwuwnwg:w

F {ei}wi{es} = F {es}wz{es} —= I {e1}ws;wa{es}

« H3 : nc:onel:oHcg:onI:wnwz:wnp:QF(e)

F{exr A ejwi{es} = F {e1 A ~e}wa{ea} — F {e1}if(e, w1, ws)p{ea}

s Hy Hc:onel:onwlzwnp:ﬂl-'(e)

b {e1 A e}wi{e;} = F {e1}while(e, wy)p{—e1}
«Hy He1:oHe'l:oHeg:oHe;:onl:w
Fey=>el = Fehy=>e2— F{e}wi{eh} = F {ei}wi{ez}

5.3. The Adequacy Theorems Revisited

In this third version the only syntactic categories which have changed (other than
the elimination of b) are w and h. Consequently we need only state the adequacy theorem
for syntax for these two categories, since the previous adequacy theorem for syntax is still
applicable to the remaining categories. As before define

m . . oy . . . e . * o . PP
TP = {yoit,. .., ymib, Toil, .. o, Bnil, 20, %5 # T4, 2] 11%5 F# Tito<i<i<n

§6 Conclusions 15

Theorem (Adequacy for Syntax): In the above LF signature and in the context
'™ we have the following facts concerning syntax:

There is a compositional bijection between well formed fn normal forms of type w
and the while programs of 7 built up from the set of identifiers Z and the logical
variables y (which do not occur in the left hand side of any assignment statement).

There is a compositional bijection between well formed 87 normal forms of type A
and asserted programs (i.e. Hoare triples) built up from the set of identifiers Z and
the logical variables §. Where again no variable from % can occur in the left hand side
of any assignment statement.

That there is a compositional bijection relies heavily on the uniqueness theorem for
the QF judgement, since if there were distinct proofs then the extra parameter to the if
and while operations would force the mapping to identify different 87 normal forms.

Theorem (Adequacy for Semantics): There is a compositional bijection between
proofs of a Hoare triple {p}S{q} from assumptions ro,...,r, (in the assertion language)
and assumptions {po}So{go},.. ., {P:}St{q:} (concerning asserted programs) and well formed
pBn normal forms of type

Fn {p}S{q}

in the above signature and in the context I' where
P =T U{w;: b, rj, v ba {pi}Si{ei} o< ica0<i<ts

and
m .. oa . B . LI
TP = {yoit,..., ym:%5, Zoil,. .., znil, 2 j:2; # 25, z; ;i Ty # Ti}o<i<j<n

is adequate for the syntax of objects involved.

6. Conclusions

Thus we have presented two distinct versions of Hoare’s logic, both somewhat more
complex than the informal description. The question then arises as to which one is better
or more faithful. In this conclusion we shall try to argue that the third version has the
potential to be the most faithful. If we translate the uniqueness properties for the non-
interference and quantifier-free judgements into properties concerning the search space,
we notice that they assert that these spaces are linear. Consequently it would be desirable
for the LF to provide tacticals which automatically construct the proofs. Note that such
a tactical is no more complex in nature that the already implemented Pi-Intro*, [Griffin,
1987]. It would however be more complex than those found in [Schmidt, 1983]. If this were
the case then both judgements, QF and §, could be hidden from the user. In the case of the
third version this would result in a system almost identical to the informal description.
The only difference being the presence of the type [and the associated function !. The
third version also exemplifies a useful technique for implementing syntactic subtypes as
judgements rather than distinct types. If the proof system for these judgements have
the uniqueness property, then they have a distinct methodological advantage over the
proliferation of types method.

88 References 16

7. Acknowledgements

This paper, such as it is, could not have been written without the numerous helpful
comments and suggestions of Furio Honsell. Gordon Plotkin also helped “show the fly the
way out of the fly-bottle”, as did Arnon Avron, Tim Griffin and Bob Harper.

8. References

s Apt, K.R. Ten Years of Hoare’s Logic: A Survey— Part 1. A.C.M. Transactions on
Programming Languages and Systems. Vol. 3, No. 4, October 1981, pp 431-483.

« Griffin, T. So It Doesn’t Whistle. To appear.

» Harper, R., Honsell, F., and Plotkin, G. A Framework for Defining Logics. Pro-
ceedings of the Second Annual Conference on Logic in Computer Science. Cornell,
1987.

» Jensen, D.C., and Pietrzykowski, T. Mechanizing w-order Type Theory through Uni-
fication. Theoretical Computer Science. Vol 3. 1976. pp123 171.

» Reynolds, J.C. Syntactic Control of Interference. Conference Record of the Fifth
Annual Symposium on Principles of Programming Languages, Tucson, 1978.

» Schmidt, D. A Programming Notation for Tactical Reasoning. Department of Com-
puter Science Internal Report No. CSR-141-83, Edinburgh University, 1983.

‘* Lcmg Tm%wm |

"]—é Wt)’eyy_@v\&‘ \}V\ =\ PV@(/h»(cJ\QJ;L
LkSe:{/I/\,Q C_esm&ﬂvv(rfév oMW vt vnemtk a
«Povw\aﬁ Qamﬁwv\t]e %\/ i e bbesnaktics
ol { mafhemokciams } wll ok

Soflware emguneans
th wnse . o
2 %"""*‘IQ Qa”‘ﬁ"‘aﬁe eﬂ)&é—ﬂ
‘ Cme oL CYW VTIME |
- Anlematta |
Nuyprl

Qm WW\«Q L Uy shenldd |
Le % . S@n&%’ﬂaﬁe '

Neod o %PWM!
Nepd - W&u(wfg U cohicdy <

v ,Mmaﬁe can b %J*} |
wmplementad ard the W pl ernonforhion
easdy chrd/l.gée,d

- ¢ 9. Edmbugh LF
rvmad Loanguage = /nCerpreded

(i)

.
-
.

The :DWQQGPWGVJQ °£ R notian
" FovmoQ Syshem ”

Ity formall Moo Sy | afagad

é.5. Lol o< {%MMS

o Akcow s & M‘ic/?év JPacy
¢ Somilne netiny reudid omill

¢ Lomreal A/W%%a{ |
Made WSWS la‘(j Ht“)Wt

2. Fomalipation, of Logoc

FFodt ovolee Cope
Lnd oadte ce

3. Fomal Languape frr albiomalics

n

e.5. [ncpix P TabsenaZica
Sevsdte r7

4. Hibet's Melamathomatics

FM&Q S@S@m GQTV mmg |
-.—_'F(SYM&Q LﬁMS““(f‘Q fWM“/d\S
ek U3 (M’évpre/(%
Fowkism and Hdbed s PVC‘@WH
5 Towki's maltemalical $ermantics
£ mea_,é Sy.fk&lfnf e 5MC

/Dc,r(_ P W

" Modem Medbermakicol Lowe
‘ Acomalic e
Covavre dFet-
ano& %SVWZZ\%
Maothematreal S emankics

Formoel Lomgueger 7

W_ % Feovmal &;}S@%S
R-M. Smiblyav 196/
YOC'?77/7%//€LZIZ("21
L]
{ Sg?@n ;2 gawmﬁo-n el s
/UW 78(444:(/“’3 M‘n:
, /)th/e.éy orumeratle rehadion s
Tumiversal machene
Lumirveral Feormel rycléon

SN My
(i) o mvebaes W&gw =)

 Formal Syslems & 4 Cunry

| ¢ /4%\"%& .S‘(yxkgm /}QM/ZZ%
%‘v B loinins '; Hecrems -

© ShlemeTs have /f“u:/cvm
Plais--,8)

it N,

W&SLA‘V\:
£.9. /'C;D a=6eA /4@%{

€ &\j/?fﬁ&?éms ave ellen
€« gﬁ«kjs cé/ 5(7%449/& (S:7Waa§c qyx/am
& 74&}777.!“”’) &%@4%% (Oé 5"9!//@‘445)
reblove Co /i %;IMM@ '
“ort / o
€. Syafaiic Cmultyee. /ZZA el L9 8l s
' ' Fé’%a[Hemmean- 1 ,
=X Aot Spban
R

/N\Q &/\méw\(«jl\ [~ Mﬂm
c:{r /%MO\Q S\ljsk?zm /‘\O(C CbQS o

¢ Mawy sofs

G f:DeF&»M Sev’ts

¢ Hisher onler solls

6 Vm&ﬁe LW? d}’&rdé?}vhs

ARITIES (R k)
-?-mrn>o Risee, Rn=0

[n] = (08 o) s e amby o
| n-placc ‘PlA/V\C_\TT’V_S

Lol=0) s e amkyy CEC b rocts
ch‘s L\(’ng_

a/l/g(M'ﬂpv\tS Lze a/vul’fe_s
Ckl5 - »[:knja/wc(
"\QA’ g ob)ecks) as Va.QMes

[o] has ‘QM‘Q/Q O
[_-V_] [ng\m;) lhas QM&Q (

(Ri-- k) (wﬂ;\ Semg Ri70) has lowed 2.

SIGNATURE
= fict ot comstand ngkul;
each of Seme Wﬂ'

-~ Vamobles
X", Y", . o£a/m/(’3 [l
X, Y ciavw(/(j [o]

Expressions of ead ok,

6‘0) éc‘t eX prQSSuﬂ'\

= %fréssdm og,a,u’/‘”b o)

I- (¢) &/Gv:j c.ms(f’wa't oV umo\é&

éﬁ ik y [o] s oun oLjéc-k RAPIeSIton
(¢ /7[) 70 (s A condlzn o Varad

% Q/M/k] [”1:7 Q/M(4(3°--,Q,,‘
ave object €hprESTENnS e
T Pl
74 jﬁ/m 4 J'ad[é;\f/ﬂr&m‘w\,\

(@) I F s a colnt of aut
(Ry - k) and 7[",).,,{ 7(21 e
e?c/rE’SsLWJ ,./ anliy Rir--, R
//%fé’éf&'veé/j mn

P({ID"'/‘?[}"/

s am ob jecd EXNFTSSCom

I /% a s an cdject EAIESTCon
’ and K> Xn 4 @ W*Wn

g 2
| (X()"’/ J(n} a .

IS an ,c/,;are.mlm ?/ a./,[/‘? [k/-;-kh).

fov c=0--_~n Y, X¢
Com & W/ZMW! ('\’:r%z')“-
/7[7 = =()(,,...)X,,)a %ﬁ/wé (Ri-Ra)

b o anty CAT for c=to2”
/%%"‘ F{£is o 7tn)
is Ho veslt of com omeourdy sulibb
711('/5\/)((Z/V/él//g’l/(;:/)'“,."’. -~

(champoy Sound anioblep when nécesany)
%\ /\/L (A”"’? Aﬁ) M 74 (én--u é/?c.)

whih ahpe vnthinr & sadelibe o, Y ko

- ConvenLicns

(¢) /(ﬁ/w% o(——cwwgam Wﬂ»@sxo&qj

(2) Use ramdansS covenlions

€.5 . Qé’aé /‘W._ L2 £)
(£x) 4 S (e N
(agé) %\» 3((6\—)4)(%)4)

| a6
Mere s b, = Save

[23 (=(c<)), (1), (t1)

A vaowk of de Bruijn
. nuwbers
eq (Lk)v-) \7/7((R(’XJquﬂ 3—1[7?15(’){,5)4,\;5]

(wv)
b/x
‘// < ?)VUZUJS»@ 3'7‘7/3(2,1,?3:
-—l 4
QQ(’L::U) Yy
S@—ij ,1‘;‘{(;)
(%, %)
V’;(lV(RCS)/}Z) >34 ’/2;
—
R(%u,v) v
S(%9,4,v)

- Eadd &xpmsobn Qa’ 3/“ s@majfw"e

Q. Mp/rmw\es a MW—-JW @%ofm
M)‘qcm |

A ((A nz:: ’ (CMJMn»:.A(Fk)Fe.fl b=o >
¢ A, s Re set of closed expressims

ooy [77] Q' (wp 2
ﬁwﬁmfj

M

é’ CM . A xA X . XA,\-*»A"
th(t C («P, @.n m) = -Po(%_nm,am)
= (‘du"‘) ‘:’n)‘?(@,((j,,-..,‘jn),.. .)3”.('40)-«.,%5
& Ué = (xn ’Xm> X¢ € A G-Q ":(_
¢ F{'QA ’ Ak+k‘x - X Ak#k — /4& "k, ---
o L F’k/‘l{?[i)lg) — —
('Xn'",'xk) F[(gn...}gm) 7[’/ [fx,)...,?;é) g,,...,q@) ,
. (‘dl3""‘/kn)]et(”\'l»“'%/:f“"v'f/t‘.))

, O]——Q ‘

e
V\;&\
o O‘Lj&j &x
FVGSSoo‘V\S ’

/4'x
/hww\s and s
W o bl be w:{

/W

docleceton
“ slyt

Yt

Q,Lé
. fasd
Yvalh /Aa a
(2 9 ¢
vy '€ 4

Q
;---,44,,4 ~4
e
J /4" /qué

=
TPt d Xt X2 |
1 Ao howe omifiat Ko b mmzw

ﬁssmn ,a'l(wv\ 'hrb@: | i

fa : Q
: b /-A
a/-a o] Yy

a/vu(f [
MNQQS (:f ;o:\,sf;\f(sswn.s?(wz})[7

:FA AR fx;uf/ifu

=y FAES %‘/xf%%
FFas a2b 7 & ok
T- rlles (5a 5 Tz
T T Le (/Z’/ (x)(AT 2 X)

- ’mﬁes

- Q - fasd
| A [9 6{/—6 £ a)
 ra>b Ha>b) L b
V-rndos
F T g#%g
| | aSSlenfﬁt% -
LY _

MMD é@l’e —L,g—,l/’ 3’ o=
(ém Q/Zfo AMM Wa’&(a/é"ﬁ/(

a =54 means QA has Coamonicak
volewo 4
\ 2 X=29 FAF) =304 @Pm,é/w&
| A conclbnt of
| f‘é-—vﬂ({/ % o
4 g) /L[@) = c ‘/ﬁ 7[’ of ety £
| Fap(e. a) Sy L ET

o Adtiations
aef S
e - (q € ‘713 - ... —a;é—a#

. F 700 = o) > =)

5 p > Ao(%r. %))

: o | o tm et
S'u’anojtm

S‘(gméce§ M?

O [F]
1,3 7, = L]
-f—).,:)g,JV)D [Z.]
3 (1)
| /2 72 19e1
j} 3()7——1/ %/6/ 4 %Ze g%mrzi&f;
Topm Famarhn et ‘}/%‘W
oed — mﬁ?g 5 —
s, Se€eI—] -—;23&:%} %z
{ +.eT>7>7 & v, > e F>F>F (=

F (T - FEX&) DO }(gfo(X(w))

La-aic
x> Ty) 27 ()
= /— /V(Xéfog) > 7v ()
7y (x4-9)> () .
_ IL F(x) > F(9) 2 (79I >57(9)) 577 (x=y)
T (x2y) 2 T (%) 2> 77 ()

F 7o (%) > F(9) D 7 (% 9)
F F(x) D7 (y) 2 7 (xery)
T (xey) 2 F(2) 5 (P(%) 5 75(7)

> (7r(y) 2 77(3)) = M (2)

O ———

7 o Mes .
——_/— (T - (k@) = 7;(%*(?}) |
VoL Tl kt) o T(x) 2)
A I3 #x)) 2 (Ix) 2 7(X6) SP Tk
1 7 (3ekt) 530y (KD Z Fl) ST

A ———————,

L 7 (Fr(x=x))

F{(T6 2 F k) DT (1l (r=y 2 (K0 >
X(9)

|

¥

. Vo - g ucX

Il

F75(Vaby (Se9-56) = x=1))
/L 7;, (V’X -7 S(A’)'—‘-Q)

F7v (¢x Zro==)
/L7‘7(V’?V9 (’X?‘- S(y) = S(”""‘W)

Shfhuﬂﬂ/m% %v . |
F (T 2 F k=) D 7 (A(s)

S0 2 7+(ke) 75 (H5)))
> 7v (b X))

a @.@_ \Bm@w

"AUTOMATH (1967

LANGUAGE FOR MATHEHMATICS

W RVT VG- | } FEASIRLE
6

MACH INE CHECICING

UNLIKE JSTANDARD (O&IC

AT THAT Time , THE
AVTOMATH PRoJECT Took

ABBREVIATIONS <SERIcUSLY

THESE - BASIC REQUIREMENTS

FORCED US INTo

INVENT/NG THINES LIKE .

¢ PRoPosiTIONS AS TYPES.

¢ NATURAL DEDUCTION
(EXTENDED WITH CORJECT
VARIABLEY)

¢ DePTH REFEREBMLE SY/'TEM

¢ N_-TYPED - caLcuvLus

«“THE AUT FAMILY

SEMIPAL (wo Tyres)

- N

\ . srEmIpaL PA L

\ / ((8TH CENTURY)

AUT 68 (0™ cenni

AVT.QE - NTI

L |IF ROURBAK| cawn
WRITE 17, THEN WE

CAN WRITE) T

AND OUR (CHEcCcRE R
CARY (CHECK |T

.'NO ATTEMPT To MAKE

PROOF FEINDING AUTOMATIC

APART FROM TYyPE CHECKS

THAT 1S A xivdD ofF PRo V/ING
ACTIVITY Too !

| PHLLOJOPH)/ . PROOR FR/VD)ILG
1§ A HARD JoB. IT DESERVES
SERIOUS PROFESSIONAL EFFORTYS.

"RUT THE EefICIENCY
RERQRUVIRE P ENTY OF

PROOF FINDIN G- SHouL D
NEVIZE R INFLUEBNMNCE OUR
CHECKRIMNG JYyJSTEM

| QAOFLE CHARACTEILITICS !
NOT TIED To STAMDARD

LOoét1C A/ub' JET '77-:5::&)4

ME\,/ LOGIC AL INMNFERENCE
RULES CAN BE

DERIWWED AND APPLIED
JUST LIKE MATH. THEBOREMS

'Tu-(é‘ AvuTomaeTH JSYyJST& M
(AN HANDLE THINGS

WNICH ARB UvALly w~voT
CONSIDERED To BE

MATHEMATICS, BT

WHICH NEVERTHELESS

MAXE SENSE

ALL MATH JTudenTs CAN LEARMN
o HANDLE THE SYSTEM

Y

LAyouT OF AUT Rooks

INTRO D,
O‘F' VAR A BLE

é—_—.——

<

/
ASJUMP.
TioMS

THE
DesriRE
To TREAT

THESE

EQUALLY,
LEADJ To

PROPOLITIONS
— As TYPES

ey

 AUT LINES
{oNTEXTY L \DENTIFIERD

< DERIMITION D L TYPE)

BY M. ABTTRACTION WE
CAN (AT CLEATT /N JoRME

OF THE AJT LANGUAGES)

REPLACE. THE LINE

By AN EQUIVALENT
ONE , WitTH ErrTy

CONTEXT

EXANPLE

X:A>
.P:-:- T : C

EQUI vaLENT TO
q += Ex:A]B oy [xA] C

ANALO 6OousLy Wi TH
PRIMOATIVE’ LiveS

- NExT vrer

ELIMINATE ALL

PEFINITIOVNAL Lives

LBADs T AUT S

SINGLE . LINE AUI‘OMATH

THI® (S yservL FReoR
LAMEUAGRE THEORY

(’UEDERPELT '??3,);

NOT For THE PRACTICE. oOF
WRJ TTwve MATHEMMATICS,

AUT Book AS J/NcLE TREE

A - TYPED M. TREE
SYITEH A

TN,

b5 A A (1985)

TREEBS ReERESENTIINV G-
"AUT. I?oo_KS IN ALL THEIR
‘ T DETAILS

- DIFFRERENCE WITKH A
»G/E’TT""G FRomM AUT. Boor
Te A-TREE, we FRcT

ELI\mmivATE AL - DER M TI10ML
LINVE O

PASSI/WWE FRor AUT Book
T AA TREE , Wa

Do wneT 3

DELTA REDvCTIOM

Y).f(A) s
WE REPLACE 7& Ry ITs
' - WAS
DEFIiM\TION. | THA

xX: T
T lie e x e x

"WE REPLACE

L LCAD
by

"~ LAMDA TREE

x

T >

e ‘ A~
\ _'_ (BINARY
| TREE

BINMARY MODES
lreeLED A R T

T'v

T o©0R VARIABLE

ND FREE VARARLES
O CONSTANTS APART

e

FRom T

VARIABLES cAN BE

IND I1CATED
[, BY MNAME OF ENDPOINT

O% ARRoW

2. BY DEPTH REFERENCE

INTERPRETATION

(@

[X:o?] Q

(Dors
REPLACE D

By x)

(RS

CAUTOMATH

TWO WAYS To TReAT
FUNCTIONALITY N

4. X:PA>
- .@ =

!DEM‘IFlf.‘Zj
LATER 3@(
)
S O INSTANTIATI OV

2. THe 'APPLICATION' oOF
x CALCULYS

A | E x PRE $f10V
{AS F [/ Represenvrme
' 1 THE FuaLCTIOM

M THE TRAMSITION

Koh AUT. BPook To

‘ {
WA THE INITAMNTIATIONS ||
| o
"BeCOME APPLICATIONS (

DELTA REDUCTIONV

"BECOMES (

LocAal BETA Reductom ¥

 TYPE OF A JUBTREE

RepLacenevT o©OF
RIGHTMOST

END POINT
BY TS TYPE

va
AT- PAIR
CAN GIVE R'SE
T TO REDUCTION

rOSTOMERS

(ORRECTNESS OF A
LANBDATREE

{ sywracmic CORRECTNEY
As T":, t’s , greevy ARROWS |

9 $EMICORRECTNMESS

3. T CORRECTNVNESS

IN SEMICOBRECT TREE

THERE 1§ To EVERy

A - ~vope A MATCH I NG~

T - NodE .

"TREE |\S (ORRECT

\FF FoR ALL

- RoveH skeTeq .

¢SCI TI<>LC ' X4 X2 ETEY
KN@M—E DGE WA 1TV & m
FrRame LiST |

TRY TO GET THE FIRST
JITEM O©F "REST To "THE

Le FT.

Y < > ... ¢> [-

NOW PUT THIS PA\R

IN RNOWLRODGE FRAME

AFTER CHECK)WV G
THe SEMICoRRECTNVESYS
oF WwWHaT (£ I 17T

IF WAITI~vC LtST EmPTy
THEeEN JvsT S eET T 2.

AUT BOox AS LANBDA
TREE

™\

T
- ART
DEFW!TMNAL THIS F
LINE NEEDWNOT
| | RE CoRRECT
("T sSegms TO | BuT CAN
! RE W'SE TO Ef:ﬁ’;f_r
ADMiT TH!S AFTER DELTA
JN THE $)DE RedDucTioN
E .
L’N S Too »

S

@P?r IS WHAT AN '» Do ks)

& > e <> < P> ...

Now oneex P
AND SHIRT <P> TO THE LEFT

€< DO . < D T

SENICorrseT IFF WaIT/W G
LeT 18 Enery

.o <
< > < >
CORRE CT |FF

P S '&y"‘fj

I§ CoRRECT,

"THERE S A SimePe€
ALEORITHI) WITH THE
FoLLoWIN & RFRECT

| IUPUT . A,%!y JYNTA’CT/C
CORRECT TREE

OUT PUT E!THERL., Seric

A-NODE WITHouT MATCHING .

g{i FuLL LIST ©OF ™M
(n= #F of Als) PARS
C‘-(Fl: 2 QJ)

ALGORITHN WoRKS IV
LYWNEAR TiImEe

VKEFERENCE :
N.C. do BRVIIMV. Gsura-:&Au-z.nuc;

.A'u-ron AT H By Means o/
A LANBDA. TYPED LAMDBDA

caLCcuvLuS,

IN .
MATH- LoélC . & THEoRmTICAL

COoOrPUTER SCIENCE

LECTURE NMNOTES /W~ PURE
AMD APPLIED MA&TH,

MARceL. DEKKER
NBw VeRK - BASE L IQ&?_

- Simple Consequence Relations

Arnon Avron

February 20 1987

1 Introduction

This paper has several purposes. From a very general perspective it aims to help
clarifying questions like: What is a logic? What is a formal inference system?

What are the differences between the usual kinds of formal systems and what is

common to them? Are they the only possible useful ones? What is so special
about the usual connectives and how does one characterize them? etc. At a
first glance these questions seem to have only (?) philosophical interest. Their
practical importance is immediately realized, though, when one is trying to design
a general framework for implementing systems of logic on a computer. This is
exactly what the current Edinburgh LF-system (see [HHP)) is. The present paper
resulted from an attempt to solve basic problems which were encountered while
developing this system. Our point of view is therefore a completely practical
one, and we do not claim to solve the deep problems that exist concerning the
foundations of logic and the meanings of the logical constants.

Another purpose paper, intimately connected with the first, is to suggest
new methods for representing logics, that might make search for proofs, proof
checking and implementation easier. The new notions and representation methods
introduced in it, as well as various characterizations of more familiar ones have
already contributed to the further development of the LF system and I hope it
will be of help for any future effort at the same direction.

Because of the general nature of the ideas discussed below it is very difficult to
trace the origin of each of them or to give credit. Nevertheless, I like to mention
at least the papers [Scl], [Sc2] of Scott, in which the notion of a consequence
relation (of the type dealt with here) was first introduced (as well as many other
important ideas), [Ha], [Be] and above all — ([Gen]). Exactly like Hacking in
[Hal, I see my paper just as a collection of footnotes to this brilliant work of
Gentzen.

2 The Notion of a Consequence Relation

2.1 Axiomatic Systems

Traditionally a “formal system” is understood to include the following compo-
nents:

1. A formal language L with several syntactic categories, one of which is the
category of “well formed formulae ” (wff).

2. An effective set of wifs called “axioms”.

3. An effective set of rules (called “inference rules”) for deriving theorems from
the axioms.

The set of “theorems” is usually taken to be the minimal set of wffs which includes
all the axioms and is closed under the rules of inference.

Systems of this sort have many names in the literature. Here we shall call
them Aziomatic systems (or, sometimes: Hilbert-systems for theoremhood). Un-
doubtly they constitute the most basic kind of formal system and so their impor-
tance cannot be denied. One can argue that in fact all other, more complicated
deduction formalisms reduce to systems of this sort. This is true, though, for every
recussively-defined system. Take for example the wifs in the propositional calcu-
lus. One can regard them as the “theorems” of the axiomatic system in which the
“wffs” are strings of symbols, the “axioms” are the propositional variables and
the “inference rules”- the usual formation rules.! The concept of theoremhood in
systems of the above sort is not sufficient, therefore, to characterize the notion of
a Logic. It is too broad a concept. On the other hand the notion of theoremhood
of wifs is at the same time also too narrow to characterize what a logical system
concerning these wils is all about.

Let as make our last point clearer by a few very simple examples. Take what
is known as Kleene’s 3-valued logic. It has 3 “truth-values”: 1,0 and -1, of which
1 is taken as the only designated one. The operations corresponding to the usual
connectives are: ~a = —a,a Vb = maz(a,b),a A b = min(a,b). Suppose that L is
the language of propositional calculus where the wifs are defined as usual. It is
immediate then that no wif is a theorem of this logic (i.e. there is no wff that gets
a designated value under all assignments). The notion of theoremhood seems to
be vacuous for this logic. One might ask therefore in what sense it is a “logic”.

On the other hand, consider the case in which we take both 1 and O to be
designated. It is easy then to see that a wif is a theorem of the new logic iff it is a

1In some recent systems of typed constructive mathematics this resemblance is taken rather
seriously and both “proposition” and “theorem” are taken as (different) “judgements” so that
there is no significant difference between possible proofs of these “judgements”!

classical tautology. From the point of view of theoremhood there is no difference
between this logic and the classical, two-valued one. But are they really the
same? Obviously not, a major difference is, e.g. , that the “new” 3-valued logic is
paraconsistent: It is possible for inconsistent theory to be non-trivial in this logic.
(it is possible, e.g. , for p and —p to be both “true” while ¢ is “false”).

2.2 Consequence Relations

Both examples above show that sets of “logical truths” are not enough for char-
acterizing logics. The second example indicates that what is really important
is what wffs follow from what theories. Indeed, in modern treatments of logic
? another concept, that of a consequence relation (C.R.) is taken as the most
fundamental concept of logic. Logic might be defined, in fact, as the science of
consequence relations. Unfortunately, the notion of a C.R. has in the literature
several (similar, but not identical) meanings. We shall define first the one which
we are going to use here (which is rather general) and then discuss some possible
reasonable variations.

Definition A consequence relation (C.R.) on a set }° of formulas is a binary
relation - between finite multisets of formulas s.t:

(I) Reflexivity: A A for every formula A.
(II) Transitivity, or “Cut”: if I‘1 F Al,A and A,rz F A, then Pl,rg (o Al,Az

2.3 Remarks and variations

1. We use above the notion of a “multiset”. By this we mean ”sets” in which
the number of times each element occurrs is significant, but not the order
of the elements. Thus, for example, [A, A, B] = [A, B, A] # [A, B]. In this
example we use [-] to denote a multiset. We shall also use “,” for denoting
the operation of multisets-union (so [4, A, B],[A, B] = [4, 4, B, A, B]), and
omit the “[]” whenever there is no danger of confusion.

It is more customary to take a C.R. to be a relation between sets, rather
then multisets. This is undoubtly more intuitive and so preferable wherever
possible. We define, accordingly, a C.R. to be regular if it can be taken to
be between sets. There are, however, logics the full understanding of which
requires us to make finer distinctions that only the use of multisets enable us
to make. Examples are: Relevance logics, Girard’s Linear logic and the finite
valued logics of Lukasiewicz (see examples below). It is possible, of course,

2See, e.g. [Sc1],[Ur],[Ga],|Ha).

to go one step further and to take C.R.’s to be between sequences of formulas
(as Gentzen himself did). This, however, will considerably complicate the
transitivity condition (II}, and the need for it seems to be very rare indeed.
We choose, therefore, not to be so general (at least in the present paper).

. We define a C.R. to be a relation between finite (multi)sets. This means
that we are assuming compactness for all the logics we consider. This rules
out many “model-theoretic logics”. Our excuse for this elimination is that
we are primarily interested in formal systems that can (at least in principle)
be computerized. Now effective rules with infinite number of premises are
possible, but the amount of information needed for applying such rules in
any particular case should always be finite. Accordingly, we believe that
any effective presentation of such rules should be within the scope of our
framework. This issue is opened to further investigations, though!

. In most definitions of a C.R. that one can find in the literature there is a
third condition besides the two formulated above. This is the weakening
condition, according to which if I' - A then also (i) ©,T + A and (ii)
I'F A,©. (Some times only condition (i) is demanded, especially when one
is interested only in a single-conclusioned C.R., i.e. if ' F A then A consists
of a single formula). Again, this is a very natural restriction but it fails for
many systems. In fact it fails for every system for non-monotonic reasoning,
as well as some C.R. based on Relevance logics and Linear Logic.

In the sequel, a C.R. which is regular and is closed under weakening will be
called ordinary.

. The above definition of a C.R should more accurately be taken as a defi-
nition of a simple C.R.. In [Ga] there is another requirement: uniformity.
This means that - should be “closed under substitutions”. This condition
involves the inner structure of wffs and so is a little bit vague. Although the
meaning of it is quite obvious in particular cases, it is less obvious how to
define it in general. One might ask: substitutions of what for what? In or-
der to provide a precise definition (and for other reasons as well) one should
define a C.R. to be a ternary relation I' -z A where T and A are as before
and 7 is a finite set of variables of the language. (It is assumed, therefore,
that some of the syntactic categories of the language include special sub-
categories of variables for these categories). For example: Vz¢ -4, ¢(y/z)
intuitively means that for every formula ¢ and any individual term ¢ which
is free for z in ¢, #(t/z) follows from Vz¢. The use of this general notion
of a C.R. requires extending the cut condition to some version of resolution
(i.e.: unification should be incorporated), and it involves delicate problems

concerning substitutions. We prefer therefore to postpone treating these
problems to the second part of this paper, and here we treat only simple
C.R’s.

3 Some Examples of Abstract Consequence Re-
lations

3.1 Classical Propositional Logic

Truth: ® A,,...,A, F¢ By,..., By, iff for every valuation which makes all the
A;’s true makes one of the B;’s true as well.

Validity: 4 Ay,..., A+, By,...,Bn, iff any substitution of sentences for atomic
propositional sentences which makes all the A;’s tautologies does the same
to one of the B;’s.

Reduction: Al,...,An |"‘,- Bl,...,Bm iﬁA]J\Az/\"‘/\An — B1VBzv"'VBm
is a tautology.

If we limit ourselves above to the case m = 1 we get the single-conclusioned
counterparts of these three C.R.’s. It is not difficult to see that in this case
all three are in fact identical. In the multiple-conclusioned case, however, the
“validity” C.R. differs from the other two, and is the minimal C.R. which extends
the single-conclusioned one.

3.2 First-order logic

Let Ay,..., A, and B be formulas of some first-order language L (i.e. they may
contain free variables).

Truth: A,,...,A, F; B iff B is true in every model relative to any assignment
which makes all the A;’s true.

Validity: A;,...,A, , B iff B is valid in any model (for L) in which all the
A’s are valid (by “valid” we mean: true relative to all assignments).

The above are examples of two important single-conclusioned C.R.’s which are
frequently associated with first order logic. Unlike the propositional case, they are
not identical. Vzp(z) follows, for example, from p(z) according to the second, but
not according to the first. On the other hand, the classical deduction theorem

Sthe name “Truth-functional” might, perhaps, be better.
4the name “Tautological” is also possible.

holds for the first but not for the second. The two consequence relations are
identical, though, from the point of view of theoremhood: +, A iff ; A (and
in fact if all formulas of I' are closed then ' -, A if T I, A). Both C.R.s
defined above can be extended to multiple-conclusioned C.R.’s in more than one
interesting way, but we need not go into the details.

3.3 Propositional Modal Logic

Truth: Ay,...,A, I, B iff for any frame and for any valuation in this frame, B
is true in every world in this frame in which all the A;’s are true.

Validity: Ay,...,An, F, B iff B is valid (i.e. true in all worlds) in every frame
relative to any valuation which makes all the A4,’s valid.

Again we consider here two important single-conclusioned C.R.’s. The situation
concerning them is similar to that in the previous case: A, 0A but A i/, D A.
The deduction theorem obtains for I; but not for -, . Again the two C.R.’s are
identical as far as theorems are concerned.

3.4 Three-Valued Logic

Assume again a propositional language with the connectives —,V,A. Let corre-
sponding operations on the truth-values {-1,0,1} be defined as in section 2.1. We
define now 5 different C.R.’s based on the resulting structure. In these definitions
v denotes an assignment of truth values to formulas which respects the operations,
I'= A]_,...,Am and A = Bl,...,Bn.

KI: Tk A iff v(B;) = 1 for some 1 or v(4;) € {—1,0} for some j.
Pac: T Fpq. A iff either v(B;) € {1, 0} for some ¢ or v(A4;) = —1 for some j.
Lt: T Fr A iff for some i,j v(B;) =1 or v(4;) = —1 or v(B;) = v(4,) = 0.

Sob: T' Fse A iff either v(B;) = 1 for some ¢ or v(4;) = —1 for some j or
v(4s) = v(B;) = 0 for all i, 5.

Luk: T Fru A iff either v(B;) = 1 for some i or v(A4;) = —1 for some 5 or at
least two formulas in I', A get 0 (under v).

Notes:

1. gy corresponds to taking 1 as the only designated value, and so it is the
obvious C.R. defined dy Kleene’s 3-valued logic. As remarked above, it has
no theorems.

2. Fpqc corresponds to taking both 1 and O as designated. As noted above,
it has the same set of theorems as classical propositional calculus, but it is
paraconsistent (P,—P l/p,. Q).

3. Ay,..., Ap b By,y..., By iff for every v, v(A; A A3 A ... A A,) < v(B V
B, V...V B,). This C.R. also has no theorems. In fact if ' -z, A then both
I and A are none-empty.

4. Ay,...,Apbsp Biff Ay — (A3 — ... = (4, — B)...) is valid when —
is defined as in Sobocifiski 3-valued logic, (See [Sob] or [AB], pp. 148-9).
Moreover, A1,...Apn Fsop Biy...Bp iff Frag, A1 — (A2 — ... = (A —
(Bi+...+By))...) %, where RM; (the 3-valued extension of RM- see [AB]
or [Du]) is the strongest in the family of logics created by the Relevantists
school. Weakening fails for this C.R. on both sides (this is our first example
of this sort!).

5. Ay...,Ap Fru Biff Ay - (42 —» ... - (4, — B)...) is valid in
Lukasiewicz three-valued logic. (using negation, it is easy to give a cor-
responding interpretation for every sequent). Its main property is that
contraction fails (on both sides). It is therefore completely necessary to
work with multisets within this C.R. .

6. The classical C.R. (our first example) can also be characterized in the
present framework by : T I A iff for every v either v(4;) = —1 or v(B;) = 1
or at least one formula in I' U A gets 0 (the proof of this claim uses known
proof-theoretical reductions). Note that this C.R. is not the union of Fg;
and Fp,. For example, if we takeI' = {CV~-P,PVR},A = {C,S,RA-S}
then classically I' - A, but this is not the case if we interpret - as either
}—Pac or I”Kl !

All the consequence relations described above were defined in abstract terms,
using semantics. The rest of this paper is devoted to various methods for syntac-
tically characterizing consequence relations. It is possible, of course, for a C.R. to
be defined directly in syntactical terms, and often this is (or was) the case. Thus,
the two kinds of modal C.R.’s given above were in use (at least for important
special cases) much before the above semantic description was known!

5A+Bd=ef—nA-—+B. Bi+---+ B, 9! | in case n=0.

4 Classification of C.R. according to their Basic
Connectives

Our main object in this section is to provide a syntactical characterization of some

-propositional C.R.’s in terms of the connectives which are definable in them. We
examine for this purpose two classes of connectives which are important in the
present framework and see what rules they should obey. All these connectives and
rules will be found to be quite familiar. (In fact, the set of primitive connectives
of practically any seriously investigated logic forms (more or less) a subset of the
set of the general connectives introduced below). We then use these connectives
for characterizing several well-known logics.

4.1 Intensional connectives

The main group which we discuss is that of intensional connectives relative to a
given C.R.. They can be characterized as connectives that enable one to transform
a given sequent to an equivalent one which has a special required form. By
“equivalent” here we mean just that one sequent obtains iff the other does (but
in most important cases it can be interpreted in a much stronger sense).

In what follows assume I to be a fix C.R., all riotions defined are taken to be
relative to I-.

Intensional Disjunction: We call a binary connective + an intensional disjunc-
tion if for all T, A, A, B:

'FA,A,B if THFA,A+B .

Intensional Conjunction: We call a binary connective o an intensional con-
junction if for all T, A, A, B:

I',A,B-A iff T, AocBFA .

Intensional Negation: We call a unary connective — a right intensional nega-
tion if for all T, A, A:

I'AFA iff THA-A.
We call a unary connective - a left intensional negation if for all T, A, A:

THA,A iff T,—AFA.

Since - is a right intensional negation iff it is a left one, we therefore use
the term sniensional negation to mean either.

8

Intensional Implications: We call a binary connective — a weak intensional

implication if for all A, B:
A+-B iff HFA—B.
We call a binary connective — an intensional implication if for all T, 4, B:

T,A+B if TFA—B.

We call a binary connective — a strong intensional implication if for all
I'A,A,B:
F''ArA,B if THFA,A— B.

Intensional Truth: We call a 0-ary connective T an intensional truth if for all

T, A:
T'HFA if T,THA.

Intensional Falsehood: We call a 0-ary connective | an intensional falsehood

if for all T', A:
TFA if THA,L.

Proposition: The following are immediate consequences of the above defini-

tions:

1.

If - has a (primitive or definable) intensional disjunction then any sequent
I' F A such that A is not empty is equivalent to a sequent of the form:
I' F A. If I has also an intensional falsehood then this is true for any
sequent.

- If - has a (primitive or definable) intensional conjunction then any sequent

I' F A such that T is not empty is equivalent to a sequent of the form:
Al A. If - has also an intensional truth then this is true for any sequent.

If F has intensional disjunction, conjunction, falsehood and weak implica-
tion or intensional disjunction, implication and falsehood then for all T,A
there is A such that T | A is equivalent to - A. Problems concerning such
consequence relations can therefore be reduced to problems about theorem-
hood of formulas. -

If - has a right (left) intensional negation then any sequent is equivalent to
one in which the left (right) hand side is empty. If in addition it has also
an intensional disjunction (conjunctxon) then every non-empty sequent is
equivalent to one of the form - A (A).

. If I has a strong implication then every sequent in which the right-hand

side is not empty is equivalent to one with the left-hand side empty.

9

4.2 Characterizing the Intensional Connectives by Gentzen-
Type Rules

In the previous subsection we have introduced several intensional connectives.
Their definition can be split into two rules that are the converse of each other. In
each case one of the two rules does not have what Gentzen has called “the sub-
formula property”. In this subsection we describe a uniform method for deriving
rules with the subformula property which characterize the same connectives. All
the rules we shall find are quite standard in Gentzen-type systems. As an exam-
ple, we treat the case of strong implication in detail. We then list the rules which
are obtained for the other connectives by using the same method.

The definition above directly entails that — is a strong implication iff I is
closed under the rules:

T,AFB,A THFA—- B,A
'trA—- B,A I'SAF B,A

The first of these rules already has the subformula property. The second does
not. In order to find an appropriate substitute for it we use the reflexivity and
transitivity of I-. The reflexivity condition, applied to a formula with — as the
principal connective yields:

A—-BFA—B.
Hence the second condition above implies that:
A A—- B}l B.

Taking A — B to be the principal formula in the last sequent, we proceed next
to eliminate the others using cuts. Suppose, accordingly, that T'; + Ay, A and
B,T2 - A;. Then two cuts of these two sequents with the last sequent above
result with I';,T'2, A — B F A;, A;. We obtain, therefore, that in order for — to
be a strong implication relative to I this relation should be closed under the rule:

'hFA,,A B, T.F A,
I‘l,I‘z,A — B Al,Az)
Conversely, the closure of I- under this rule implies the provability of A, 4 — B
B,and soif ' A — B, A thenalsoT', A+ B, A (using a cut).
By using the same analysis we get the following
Proposition: '

1. — is a strong intensional implication iff |- is closed under the rules:
T,AF B,A I'hFA,,A B,TF A,
'-rA—-B,A T, I';,A— BF A A, °

Similarly we can show:

10

2. + is an intensional disjunction iff I is closed under the rules:

'HA,B,A AT;FA, B,[T,}A,
THA+B,A I',T:0 A+ Bl Ay A,

3. o is an intensional conjunction iff I is closed under the rules:

I'+-A;,,A T:-A;,,B T,ABFA
I‘l,rzi‘AhAz,AOB F,AOB"A.

4. — is an intensional implication iff - is closed under the rules:

I'A- B 'iFA,,A B, T3FA,
T'HA— B I‘I,I‘z,A'—)Bl_A]_,Az)

5. L is an intensional falsehood iff |- is closed under the rules:

'A

A, L Lk

6. T is an intensional truth iff I is closed under the rules:

TFA

kT T,TFA '

7. The following conditions are equivalent:

(a) — is an intensional negation.

(b) - is a right intensional negation.
(c) — is a left intensional negation.
(d) F is closed under the rules:

ATFA TFrAA
TFA,-A -ATFA"

The following observations are immediate from these characterizations. They are
familiar facts about the connectives of classical logic. The foregoing discussion
and the examples at the end of this section show, however, that they are not
peculiar to classical logic or to truth-functional connctives.

o If has an intensional negation - and an intensional disjunction + then (as
in classical logic) it also has intensional conjunction and strong implication,
defined by —(—A + —B) and ~A + B respectively. Similar results obtain
if - has an intensional negation and either an intensional conjunction or a
strong intensional implication.

1

o If - has a strong intensional implication — and an intensional falsehood L
then it also has an intensional negation, defined by A — L.

o If - is closed under weakenings and has theorems (i.e. formulas A such that
k- A), then each of these theorems is an intensional truth. (For having
theorems it suffices, e.g. that I has a weak intensional implication, since
then A — A is a theorem for every A.) If such I has also an intensional
negation then the negation of each theorem is an intensional falsehood.

4.3 The combining connectives

The function of the intensional connectives is to enable certain operations on a
single sequent in order to transform it to some desirable form. We now study
connectives that have a different function: To enable the combination of two
sequents into a single one. one which contains exactly the same information as
the original two. In the list above of the rules for the intensional connectives
there are, of course, rules that take two sequents and return a single one. The
resulting combination is not reversible, though: the premises cannot always be
recovered from the conclusion. Indeed, one cannot expect the ezact combination
of any two sequents always to be possible. It ts possible, though, in one important
case: When the two sequents to be combined are identical in all formulas except
perhaps the two that are actually connected by the combining connective. Now
there are three possible positions that these exceptional formulas might occupy
and according to them we get the following three combining connectives:

Combining Conjunction: We call a connective A a combining cdnjunction iff
forallT,A, A, B:

THA,AAB iff THA,A and TFA,B.

(In this case both exceptional formulas are succedents).

Combining Disjunction: We call a connective V a combining disjunction iff
forallT,A, A, B:

AVB,TFA if ATFA and B,TFA.

(In this case both exceptional formulas are antecedents).

SThe connectives we discuss are usually called “extensional” by the relevantists, while Girard
calls them “additive” (see [Gi]). We find the term “combining” more suggestive.

12

Combining Implication: We call a connective D a combining implication iff
forallT,A, A, B:

ADB,T+HA if TFHA,A and B,TFA.

(In this case the exceptional formulas are on different sides of I).

The choice of these three connectives was guided by tradition. Obviously, there
are three other possibilities. Thus we could characterize the “Sheffer stroke” by:

T,AIBFA iff THFA,A and TFA,B.

It is not difficult, indeed, to carry the analysis below to either this connective
or to the others. We shall be satisfied, though, with the above three. (Note,
by the way, that if an intensional negation is available then the existence of one
combining connective entails the existence of the rest).

By using exactly the same method we have above applied for investigating the
intensional connectives we can now show:

1. V is a combining disjunction iff I is closed under the rules:

THAA THA,B ' ArA T,BFA
'-A,AvVB TFA,AVB ', AvBt A

2. A is a combining conjunction iff I is closed under the rules:

T,AFA T,BFA THFAA TFA,B
T,ANBFA T,AABFA TFA,AAB

3. D is a combining implication iff I- is closed under the rules:

T,AFA THA,B 'A,A B,TFA
TFA,ADB TFA,A>B TFA,ADB

It is easy to see that relative to an ordinary C.R. (i.e. regular and closed under
weakenings) a connective is a combining disjunction (conjunction, implication)
iff it is an intensional disjunction (conjunction, strong implication). This is not
the case in general, though, as the examples of Linear Logic and Relevance Logic
below show.

13

4.4 Characterization of some Known Logics

As the title suggests, we shall try to use the various notions introduced so far for
characterizing several well-known logics. We shall examine these logics according
to three criteria:

e Regular or not.
e Closure under weakening.

o The intensional and combining connectives which are available in them.

“Multiplicative” Linear Logic: 7 This is the logic which corresponds to the
minimal C.R. which includes all the intensional connectives (half of them
will do, of course). It is possible to delete the intensional truth and false-
hood to get the minimal C.R. which includes the others. (The system is
conservative with respect to this fragment). In both versions the system is
neither regular nor closed under weakenings.

Propositional Linear Logic (without the “exponentials” and the propositional
constants T and F): This is the minimal consequence relation which con-
tains all the connectives introduced above. Again— it is neither regular
nor closed under weakening. It is important to note that its intensional
connectives behave quite differently from its combining ones!

R~ -the Intensional Fragment of the Relevant Logic R: 8 This corresponds
to the minimal C.R. which contains all the intensional connectives (the in-
tensional truth and falsehood are again optional) and is elosed under con-
traction. It is still not regular since the converse of contraction (and so
also weakening) fails for it. (A word is in order here of what C.R. asso-
ciated with R~ we have in mind, since there is more than one candidate.
The answer is: that which the standard Gentzen type formulation of this
system defines. An equivalent definition is: A;,...,A, Fg. Bi,..., B, iff
Ay — (Ay —» ---(An = By +---+ By)...) is a theorem of this system,
where A+ Bis~ A Band (A, — B;+---+ B,,) is ~ A, in case m = 0.
The last interpretation is the one we have in mind also with respect to the
other systems in the Relevance/Linear family).

R! without Distribution: This corresponds to the minimal C.R. which con-
tains all the connectives which were described above and is closed under
contraction. 1 and T are again optional.

see |Gi].
8See [AB] or [Du].

14

RMI-~: ® this corresponds to the minimal regular C.R. which contains intensional
negation, disjunction, conjunction and strong implication.

RM.: 1° This corresponds to the minimal regular C.R. which includes all inten-
sional connectives described above.

In contrast to Linear Logic and R~, RM-~ is not a conservative extension of
RMI-. This means that the addition of the intensional truth (or falsehood)
to RMI~, forces new sequents in the language of this system to obtain. The
reason is that the intensional constants bring with them part of the power
of weakening. This happens to be harmless in the context of Linear logic
and R, but together with the converse of contraction, (which is available, of
course in every regular C.R. but can also be taken as a very special case of
weakening) it causes sequents like A, B => A, B to be provable. This is true -
in fact for every regular C.R. which has an intensional implication: Starting
with = T, T, two applications of (—=>) give T — 4,7 — B = A, B. But
since T,A => A is provable,so are A=> T — A and B = T — B. Hence
two cuts give A, B = A, B (In order to get a cut-free representation of this
system it is necessary to add the following “mingle” rule: from 'y = A
and 1‘2 = A2 infer 1‘1, 1"2 = Al, Az)ll.

RM* without Distribution: 12 This corresponds to the minimal regular C.R.
which has all the connectives described above. It is not closed under weak-
ening. Again, the intensional constants here are optional.

Classical Propositional Logic: This of course corresponds to the minimal or-
dinary C.R. which has all the above connectives. Needless to say, there is no
difference in it between the combining connectives and the corresponding
intensional ones.

Intuitionistic Logic: It is a common belief that the main difference between
classical and intuitionistic logic is that the later is essentially single-conclusioned
while the former is essentially multiple-conclusioned. (The origin of this
belief is the way in which Gentzen has formulated his sequential version of
intuitionistic logic. That version differs from his formalism for classical logic
only by limiting sequents to have at most one formula in the succedent.)
Assuming for a moment this belief is true, it is straightforward to define

“see [AB] pp. 148-9 and [Av1].
10This is the intensional fragment of the system RM? (see [AB] or [Du]). Without the propo-
sitional intensional constants this is Sobocinski 3-valued logic (see 2.4 above), also called RM T f.:
in [Av1].
11For a proof and for more information about this system see [Av2]. "’
12gee [AB] or [Du].

15

for the single-conclusioned case the notions of a regular and an ordinary
C.R., the combining connectives and the intensional conjunction, implica-
tion, truth and falsehood (but not strong implication!). It is easy then to
see that:

The usual single-conclusioned C.R. associated with intuitionistic
logic is the minimal ordinary single-conclusioned C.R. which has
intensional implication and falsehood and combining disjunction
and conjunction.

We proceed now to offer what we believe to be a deeper analysis, in which
we need not treat intuitionistic logic differently from the other logics we
have considered so far. What we seek therefore is a multiple-conclusioned
conservative extension of the above single-conclusioned C.R., which has the
same types of basic connectives. The unique solution to this problem is easy
to find once we recall that for ordinary C.R. a combining disjunction is also
an intensional one. Accordingly, we define:

A1y-.-yAp brpe By,..., By, iff there is a proof of B;v---V B,
from A;,..., A, in one of the usual formalisms for intuitionistic
logic.

It is easy now to see that:

F 1t is the minimal ordinary C.R. which has intensional disjunc-
tion, conjunction, falsehood and implication. 13

It is illuminating to compare this to the following possible characterization
of classical logic:

The standard C.R. associated with classical logic is the mini-
mal ordinary C.R. which has intensional disjunction, conjunction,
falsehood and strong implication.

According to these two characterizations classical and intuitionistic logic differ
mainly with respect to their mplication connective, while their disjunctions are
the same! Indeed, it is easy to show that exactly the same sequents which involve
only V,A and L are valid in both (note that there are no theorems, i.e. sequents
of the form I A, among these sequents!). There is however another crucial differ-
ence between the two logics that is somewhat hidden in these characterizations:

13This characterization corresponds to Maehera’s multiple-conclusioned, cut-free Gentzen-type
formulation of Int. logic which appears in ch. 1 of [Tak].

16

Intustionistic logic does not contain any intensional negation: There is no sen-
tence N(p) in the {V,A,—, 1}-language (in which only the atomic formula p
occurs) such that p, N(p) - and - p, N(p) are both valid. (This is an immediate
consequence of the disjunction property of I-;,;). The usual definition of —A as
A — 1 works well when — is a strong implication (as is in the classical case) but
" not otherwise. This fact might explain why the rules for negation look so nasty
compared to the other rules in the context of intuitionistic natural deduction,
and why authors like Prawitz and Schroeder-Heister prefer to take 1 rather than
negation as a primitive connective of intuitionistic logic. 14

4.5 On the Meanings of the Propositional Connectives

There is a long tradition, originated already in Gentzen ([Gen]), about the in-
troduction and elimination rules of Natural Deduction as providing the meanings
of the propositional connectives. The famous [Pri] has forced the followers of
this tradition to be more careful about this issue, and so today the emphasis
is usually put on the tniroduction rules as those which define the meaning of a
connective. Concerning the elimination rules the general principle is taken to be
that one should not be able to get more out of a formula than the introduction
rules can put into it. This principle was used, e.g., by Schroeder-Heister in [SH]
for developing an explicit method for deriving the (unique) elimination rule for a
connective from the corresponding set of introduction rules. 1%

This all is very nice. Unfortunately, it does not seem to work beyond the realm
of intuitionistic logic. A particularly important connective that seems to escape
this type of characterization is the negation. One illuminating fact about it in this
respect is that intuitionists usually raise the above principle to attack the excluded
middle, why relevantists (like Dunn in [Du] p. 152) use it for justifying their
rejection of the disjunctive syllogism. Neither the intuitionists nor the relevantists
reject both laws, though.

The intuitionists usually try to avoid the problem of characterizing negation
by introducing instead as primitive a (quite artificial) constant for intensional
falsehood, and then defining (even more artificially) negation as A — 116, As we
show above, this might work well in the context of elassical logic, but in no way
defines an appropriate negation in the intuitionistic case (nor is there any other
way of defining a decent negation in the context of intuitionistic logic).

14See [Pra2] and [SH].

15For more explanations about this tradition—see [Sud2] and the extensive literature cited
there.

16 should admit that I do not believe that in an ordinary discourse, when someone denies
something, he means that what he denies implies “der false”. ..

17

The present paper suggests another method of taking rules as defining the
meaning of connectives. It had the following two main properties:

o The meaning of a connective is always something which is relatsve to some

C.R..

o What defines a connective is not a set of “introduction rules” but a single
rule which is reversible.

The reversible rule which defines a connective might introduce it in either
of the succedent or the antecedent of a sequent. In the first case it usually
corresponds to an “introduction” rule of N.D., in the second—to an elimination
rule. There is no priority therefore, at least in this context, to introduction
rules over elimination rules. Indeed, the combining disjunction, for example, is
characterized by what is usually taken as the elimination rule for disjunction.
(We are prepared to argue, in fact, that actual uses of disjunctions are usually
made when one wants to infer something from them without being in a position
to assert either of the disjuncts!)

5 Uniform Representations of C.R’s

The notion of a C.R., as defined in the first section and exemplified in the second
is an abstract one. We have seen above several ways, semantical as well as syn-
tactical, of defining or characterizing C.R.’s. However, in order to use a certain
abstract C.R. in practice one needs a concrete way of representing it. This is
usually done by using a formal system 7. There are two basic demands that such
representations of a C.R. |- should meet. These are:

Faithfulness: If the representation can be used to show that T' - A then this is
actually the case.

Effectiveness: If someone uses the representation to show that I' - A then it
can mechanically be checked that he really does so.
There is also a third property that we would like an adequate representation
of I to have, but is not always achievable:

Completeness: Whenever T' - A the representation can be used to show this.

Note: If we accept Church’s thesis, then the effectivity demand means that the
set of of sequents that can be shown to hold by a formal representation is an r.e.

7In fact, Hodges ([Ho],p.26) defines a formal system (or a “formal proof calculus”) to be “a
device for proving sequents in a language L.”

18

set. Completeness can in principle be achieved, therefore, only if the represented

C.R. is r.e.. Otherwise we can only expect a partial representation.
| As was emphasized several times above, we understand a C.R. I to be an
abstract relation, and so whenever we write a sequent I' A this is a meta-
claim about . Now it is important to realize that while dealing with a C.R.
I the premises of a sequent are no less important than the conclusions. A full
representation of - should reflect this. Hence it should include in its language
a formal counterpart “I' - A” for each T' I A, so that officially the system can
show that ' - A iff “T' A” is derivable in it. Obviously, the most direct
way of achieving such a formal counterpart for each abstract sequent is to have
in the formal language a formal symbol which directly corresponds to . We
shall use henceforth “=” to denote such a symbol, reserving “-” to denote (in
the metalanguage of our discussion) the represented C.R. 18, Accordingly we
shall call creatures of the form I' == A “formal sequents”. In order to unify
our treatment of the usual various formal systems, we shall assume below that
such a formal symbol alway exists. If officially it does not, then this assumption
means at- worst that we are considering an eztended language in which it does,
and an eztended formal system in which the connections between the old one
and I are made a part of the formal machinery (while in the original system
they should be explained in the meta-language). For example, an explanation in
the metalanguage of the form: “A;,...,A, F B iff there is a proof of B from
4A;,...,A,” will be translated (in the extended system) to: “From a formal proof
of B from A,,...,A, infer A;,..., A, = B”. (formulas, formal sequents and
proofs (in the original system) of formulas from other formulas will all be formal
objects of such an extended formal system, possibly with different types!) This
might look a little bit complex, but it is absolutely necessary (in some form or
another) for a real full representation (that can, e.g. be computerized). Anyway,
in the usual cases a much simpler translation will be provided below. It will allow
us to regard Hilbert-type systems for provability, natural deduction systems and
Gentzen type systems all as aziomatic systems (see 1.1) in which the “theorems”
are formal sequents.

5.1 Using Axiomatic Systems for Representations

The oldest way of representing a C.R. - is by using an axiomatic system (see 1.1)
which have the same language L (i.e. the same well- formed formulas) as . Now
axiomatic systems are designed to prove theorems, and so they can be used only
indirectly for representing C.R.’s . There are two main methods for doing this:

181t is also customary to use |= for the C.R. and |- for its formal counterpart.

19

The Interpretation Method: One defines a correspondence between sequents
of L and sets of wifs of L so that I" - A iff at least one of the sentences of the
corresponding set (or perhaps all of them) is a theorem of the corresponding
axiomatic system. Usually, the corresponding set is just a singleton, and so
every sequent is translated into some formula of the language. Such a trans-
lation is straightforward if - has the needed intensional connectives. This
was really the case for all the logics that were investigated in previous stages
of the development of mathematical logic (like classical and intuitionistic
logics) and so it suffices at these stages to concentrate on the notion of theo-
remhood while doing logic. An interpretation using intensional connectives
has the property that the interpretation of the formal sequent = A is just
A. This should not always be the case, though. A famous example for this is
Godel interpretation of classical logic within intuitionistic logic. An example
in which the interpretation does not use just singletons may be provided by
the intuitionistic pure implicational C.R.. Here A;,...,A, } By,..., B, iff
for some i, Ay — (A2 — ... — (A, — B;)...) is a theorem (of intuitionistic
logic).

The Extension Method: Here we say that A;,...,A, F B iff B is a theorem of
the axiomatic system which is obtained by adding 4,,..., 4, to the axioms
of the given one. This second method is the origin and the prototype of
what is known as Hilbert-type systems. In the next subsection we shall treat
this type of systems in detail. For the time being let us just mention two
properties of every C.R. - that can be represented using this method: First,
such a C.R. is single-valued. Second, it is what we call above ordinary, i.e:
closed under weakenings (on the left) and relates sets (rather than multisets)
of formulas.

5.2 Hilbert Type Representations

If one uses an axiomatic system AS together with the extension method in order
to show that A,;,...A, F B than one should provide a proof of B in the new
axiomatic system AS + {4,,...4,}. Of course, we do not seriously mean that
we are using an infinite number of new axiomatic systems. We just use one which
each time is (temporarily) augmented by a finite number of axioms in order to
derive some sequent. If we want both to make this explicit and to unify our
handling of this “infinite number” of axiomatic systems, then we should work
directly with formal sequents. What we get is the following aziomatic system for
sequents:

20

Axioms:

1. A= A for every A.

2. = A wherever A ié an axiom of AS.

Rules:

'=> A4

'A—,IT';—A- (wea.kemng)

Fiy=A4,....,T,= A,
I'y,...T'n=B

. where

is (an instance of) a rule of AS.

The main fact to note concerning this sequential system is that all the “ac-
tivity” is made on the right-hand side of the =. Besides the structural rule of
weakening and the axioms which reflect the reflexivity condition— the set of wifs
on the left-hand side of a conclusion of a rule is always the union of the left-hand
sides of the premises. This is, in fact, the main thing that is common to all
“Hilbert-type formalisms” that can be found in the literature. Accordingly we
can define this kind of formalism quite generally as follows:

Definition: A Hilbert-type system for consequence in the language L is an ax-
iomatic system the “formulas” of which are formal sequents of L and:

1. The axioms includes A = A for all A. All the other axioms are of the form
= A.

2. With the possible exception of cut and weakening, the set of formulas which
appear on the left-hand side of a conclusion of a rule is the union of the sets
of formulas which appear on the left-hand side of the premises. (We shall
call this property the left-hand side property).

21

If we take axioms as rules with O premises then Hilbert representations can be
characterized as those systems which have besides the basic reflexivity and tran-
sitivity rules only structural rules and/or rules with the left-hand side property.
It is important to realize in what ways does this definition of a Hilbert-type
. representation really generalizes from the above Hilbert-type system which was
derived by the extension method. There are, in fact three new issues involved:

e The above system was ordinary. In the general case we deal, however, with
multisets. We have not demand, though, that the multiset of formulas on
the left-hand side of a conclusion should be the multiset unsion of the Lh.s.
of the premises. We require these multisets only to be identical as sets. This

ules lik
allows for rules like T4 TFB

T'AAB
(which characterizes the combining conjunction and are important in the
context of, e.g., linear and relevance logics).

e The.system above has the property that whenever its rules allow (for some
A,Ty,...,T;) the inference of A = B from I'y = A4,,...T, = A, then for
all T...,T, we may infer I'{,...,T}, = B from I'} = A;,..., T, = A,.
We shall call Hilber type systems with this property pure . In such systems
we can just take all these inferences to be instances of the schema:

Aj... A,

—5
Obviously pure systems are the most frequent type of systems that one
finds in practice. As we shall see, this is true also for natural deduction and
Gentzen- type systems, so we delay the discussion of this crucial property
until we have it defined also for the other types of systems. For the moment
let us give only one quite famous example of an impure system. Take some
normal modal logic with the associated truth C.R. (see 2.3). A standard
Hilbert-type representation will have some axioms and the following two
general rules of inference:

I''h=A4 I'r==A— B
I'h,I's= B
= A
= 0A°

The first one (M.P) is pure %, the other is not. Hence this Hilbert-type
system is impure. (The material-implication — of S4, say, is an intensional

191t should be clear from the definition above what the definition of a pure rule is, and so we
omit it here and elsewhere.

22

strong implication relative to this C.R. and so it is quite common to repre-
sent this C.R. by using the interpretation method, applied to the standard
axiomatic system for S4-theorems).

e In the general definition of a Hilbert-type system we allow cut to be one
of the primitive rules. This is unnecessary for pure systems, since they are
always closed under this rule (this can easily be proved by induction on
the length of the proof of that premise of the cut in which the cut formula
occurrs on the left). It is true also for many impure systems, like that
for modal logics described above. This might explain why the cut is never
discussed in the context of Hilbert-type systems, and I believe that this
state of affairs should be taken as normative: A reasonable Hilbert-type
formalism should always allow cut-elimination.

Hilbert-type systems, as defined above, always represent a single conclusioned
C.R.. There is nothing in the discussion above that depends on this feature,
though. A natural generalization will be, therefore, to remove this limitation and
to allow multiple-conclusioned Hilbert-type systems. (In the last section we shall
present a practical use of such a system.)

Remark: It is a common belief that Hilbert-type systems have only to do with
provability, not with deducibility. ?° Sometimes this belief is expressed just be-
fore the author proceeds to prove a deduction theorem about deducibility in some
Hilbert-type system...The reason for this belief are partially historical: In the
past logicians happened to be interested mainly in proving logical theorems and
used for this Hilbert-systems for theoremhood, i.e. axiomatic systems. Thus most
textbooks about modal logics present them as axiomatic systems and are quite
confused about what amount to a deduction from assumptions in them. This
confusion is due to the fact that there might exist more than one reasonable way
to define a C.R. which is compatible with a given axiomatic system (i.e.: has the
same set of theorems). The pure one, obtained by the extension method, is al-
ways a candidate, but they might be more. We have seen already the example of
the impure Hilbert-type representations of the truth C.R. in normal modal logics
(the pure extension, by the way, corresponds to the validity C.R.), and we shall
see more below. What makes this phenomenon possible is that in Hilbert-type
system a proof of a sequent => A always consists of sequents with the same form.
This allows for a certain degree of freedom while deciding what other sequents
should be taken as valid!

20gee, e.g., [sudl] pp. 134-5.

23

5.3 Natural-Deduction Representations

The next type of formal systems that we are about to examine is natural- deduc-
tion . We start with a very general definition of this type of systems which closely
resembles that given above for Hilbert-type formalisms:

Definition: A Natural-deduction system in the language L is an axiomatic Sys-
tem such that:

1. The formulas are formal sequents of L.
2. A=> A is an axiom for each formula A.

3. All the other rules (including O-premises rules!) has the following property:
The set of formulas that appear on the left hand side of their conclusion is
a subset of the union of the left-hand side of the premises.

If we compare this definition to that of Hilbert-type systems we see that the only
difference is that in N.D. (Natural-Deduction) systems we allow certain formulas
of the left-hand side of a premise of a rule to disappear (or to “be discharged”)
from the left-hand side of the conclusion.

The notion of “prre” system can now be generalized to N.D. systems as follows.

Definition: We call a N.D. system “pure” if whenever T' = A can be derivable
from I'; = A,,...,I', = A, then there are sub-multisets Ty, T AL LAY
of I'y,...,Tn, Ay, ..., A, (respectively) and a submultiset A’ of A such that:

for every I'f,...,T1, Al,..., A" we can infer

'1',...,I‘::=>A’, '{,...,AZ
from
(T Ty = AL AY), ..., (Th,TL = AlLLA") .

~ Pure N.D. systems are again the most usual kind of N.D. systems. In such
systems we can take all the inferences to be applications of rules of the form:

T3] .. [T
Ay A,
AI

(where the T} etc. are like in the above definition). A well known example of a
N.D. which is not pure is Prawitz N.D. system for S4 (see [Pral]). In this system
one can infer I' = [JA from I' = A only iff all the formulas in T begin with a,
and so this rule is impure.

24

There are important differences that should be noted between pure Hilbert
systems and pure N.D. systems. While using pure Hilbert systems one can (and
does) write down in a proof-tree of a sequent only the r.h.s of the sequents which
participate in that proof. He can then quite easily find out at the end which .
sequent was actually proved, by just looking at the root and the leaves of the
tree. One need not know for this what intermediate sequents were proved before
the final one was derived. Moreover: One can check each part of the proof
separately without needing to examine what happens before that part. All these
are not true for N.D. proofs—not even pure ones. Here one is forced to keep track
at each stage of a proof of what sequent was actually derived in it. This is the case
whether actually formal sequents are employed while implementing the system or
other devices are used for this goal. Whatever the method is, the fact remains
that N.D. systems are essentially sequents calculs.

Since natural-deduction systems enable us to manipulate sequents and not
only formulas, they provide us within the formal machinery an access to methods
of proofs that necessarily belong to the meta-theory in the case of Hilbert-type
systems.- An obvious example of this ability is the deduction theorem. For many
Hilbert-type systems this is an important meta-theorem which is extensively used
for indirectly showing that something is provable, without actually proving it. In
natural deduction systems this method of proof is usually incorporated into the
system as one of its rules. The ability to do such things is the main source of
power for N.D. systems and their crucial advantage over Hilbert-type systems.

At this point a natural objection may be raised against our definition of natural
deduction systems: According to our presentation, every Hilbert-type system is
a N.D. system, but not vice versa. This seems to render as pointless the frequent
problem of finding a natural-deduction presentation for a C.R. to which a Hilbert-
type representation is known. Something essential seems to be missing: the notion
of introduction and elimination rules which [Sud1], for example, takes to be the
second major component (besides the possibility of discharging assumptions) of
natural deduction systems. I was unable, though, to find a sufficiently general
definition of this notion which will not rule out from the class of N.D. formalisms
systems that are taken to be such in the literature. In fact the very first N.D.
representation of classical logic in [Gen] included as axiom the excluded middle,
which cannot be characterized in terms of introduction and elimination rules. It
really seems that almost only intuitionistic logic, together with a careful choice of
the basic connectives, admits single-conclusioned N.D. representation consisting
only of matching introduction and elimination rules. (The truth is, however,
that some fragments of Linear and relevance logics admit such as well, but the
corresponding C.R. is not ordinary). As for classical logic, the only way to do
so is by using multiple-conclusioned N.D. systems, but this certainly is not the

25

standard procedure!

In my opinion, therefore, the demand for using matching introduction and
‘elimination rules belongs to the methodology of constructing good N.D. represen-
tations, not to their definition. This raise the question what makes one formal
. representation of a C.R. better then another. These can be judged according to
the following two criterions:

e ease of finding (and also checking) proofs of sequents.

o usefulness for (constructively) showing significant properties of the repre-
sented C.R. (An example of such a property in many logics is Craig’s inter-
polation theorem).

Past experience indicates that in the context of N.D. systems the above two
goals are best achieved by first formulating such a system using introduction
and (matching) elimination rules. Then using these rules for defining a notion
of a “normal proof” with nice properties, and finally proving a “normalization
theorem” to the effect that every proof can be converted into a normal proof
of the same end sequent. This method seems to be successful only when the
connectives involved are intensional ! and when the represented C.R. can be
characterized in terms of them— as in the examples of the last section. The
method is even more limited if we confine ourselves to single-conclusioned C.R.‘s.
The ezact characterization of the C.R.’s to which this method is applicable is an
interesting topic which we are not going to pursue here. Let us just mention that
some authors, especially those with intuitionistic tendencies, believe the method
of introduction and elimination rules, as well as the concept of a normal proof, to
be of a crucial philosophical importance. They believe, accordingly, that there are
deeper reasons for the success of this method than the above description suggests.
The interested reader is referred to the enormous literature on the subject like:
[Pral], [Pra2], [Sud2], [SH] and (of course!) the original paper of Gentzen ([Gen]).
(We shall return to this issue in the next subsection as well.)

A final point which we like to discuss in this subsection is the status of the cut
rule in the context of N.D. systems. It can easily be checked that the definition
we gave above does not exclude cut from being one of the rules of a N.D. system.
For pure N.D. system its eliminability is as easy to show as for pure Hilbert-type
systems (with the same method of proof). For impure systems it might be less
easy and should not be taken for granted. Let us give an example of such a
system for which cut-elimination is true but not completely trivial: Consider the

21To a lesser degree—also to combining connectives. The resulting N.D. system is usually im-
pure, though, when the combining connectives are not also intensional—as is the case in relevance
and linear logics.

26

{—, O} fragment of the N.D. system for S4. It is immediate that in this system
we have that -——[JA F 0OA and that DA F OOA. It is not, at first glance,
obvious that -—~[JA - (10 A, since because of the side conditions on the (= 0O)
rule, the proofs of these two sequents cannot directly be combined to produce
. a proof of the third. (This is strongly related to the fact that normalization
fails for this version of the system- see [Pral]). The system does admit cut-
elimination, though, but this requires at least some efforts. It is not inconceivable
that more complicated impure N.D. systems might offer more serious difficulties
while proving cut- elimination, or even that it just may fail for them!

5.4 Gentzen-Type Representations

As we argue above, already pure N.D. systems essentially carry us from proofs
of formulas to proofs of sequents. The next obvious step is therefore to take full
advantage of the use of sequents by allowing the rules of a system to make signif-
icant changes also in the antecedent of a sequent:

Definition: A Gentzen-type representation of a given C.R. - in a language L is
an axiomatic system such that:

1. The formulas of it are formal sequents of L.
2. A formal sequent T' => A is a theorem iff ' |- A.

The concept of a pure representation can be naturally extended to Gentzen
-type representations as follows:

Definition: We call a Gentzen-type system pure if whenever its rules allow the
inference of I'y = Ap from I'; => Ay,...,I'r, = A, then there are subsets I, Al
of I';, A; (respectively) such that for every I'Y, AY we can infer TY,... , Tp,Th =
Ay AL, LAY from T, T = ALAY (i=1,...,n).

The definition of pure Gentzen-type systems and of pure N.D. systems are very
close, the only difference being with respect to the possible existence of I’y and the
possibility (unless we deal with a single-conclusioned C.R.) for A} to be empty.
Accordingly we can, if we wish, use for pure rules almost the same notation that
is frequently used for N.D. systems, but in which symmetry is restored between
what is allowed to be a premise and what is allowed to be a conclusion. In fact

27

pure rules in Gentzen systems may be written as follows:
LA
A A,

T2l
An

(where the I'}, Al (0 < ¢ < n) are like in the definition above).

Examples:

1. the standard V— elimination rule of intuitionistic (single- conclusioned)
N.D. system, usually written as '

[B]

[A]
Av 1

o

will have in Gentzen-type Systems the form:

(4] [B]

C C

[AVB]
C

And in classical logic just the form: (when ¢ is the empty set):

[4] [B]

$ ¢

[AvB]
¢

The introduction rule in this context will be just:

A B
AVEB’

2. The usual antecedent rule for the conjunction is:

[4, B
C
[A A B]
C

28

in the intuitionistic case, 2 while in classical logic we can replace C above
with the empty set. For both systems the succedent rule for conjunction is
just:

A B

AAB

In my opinion, it is just a historical accident that people are used to write
the full sequents involved while doing proofs in Gentzen-type system, while more
economical methods are used for N.D. systems. Repeating passive formulas again
and again is really what make the use of Gentzen-systems tedious. It is highly
desirable therefore to develop methods for avoiding it in practical implementations
of such systems. A promising recent contribution in this direction is Girard’s
concepts of proof-nets (see [Gi]). The use of tableaux systems can also be regarded
as a method of this kind.

To summerize: in pure Hilbert system the rules ?® are of the form

Ay, ... A,
A .

In pure N.D. systems they have the form:
[PI] e [I',,]

A1 An
A

And in pure Gentzen-type systems:

[Ta] .. [Tl
Ay oA,
[T]

A

22This reminds the form which some rules take in Schroeder-Heister’s calculus of higher-order
rules. More on the connection between this calculus and Gentzen type calculi can be found in
[Av3].

23The notion of a “rule” is ambiguous in papers discussing topics of the kind dealt with in
the present one, since it has both a global and a local meaning. Thus one can talk about the
global rule of adjunction which permits the inference of A A B from A and B for every A and B
(here A and B are metavariables), and can also (as in [SH]) regard any inference of A A B from
particular A and B as application of a local rule which allow inferring A A B from A and B for
these particular A and B . We have tried our best here to formulate our definitions and claims
to be independent of the interpretation of the term “rule” (but at least for axiomatic systems we
usually have in mind the global interpretation).

29

A major fact about Gentzen-type systems, even pure ones, is that unlike pure
Hilbert-type and N.D. systems, the transitivity (= cut) is never obvious. In
the previous types of systems it was a direct result of the asymmetry in rules
between antecedents and succedents. In Gentzen-type systems this asymmetry
is abolished, and so the cut-rule should either be taken as an explicit rule (as
frequently it should) or else be proved admissible. This explains the fact that
cut-elimination which is crucial for every formal system, was (and is) investigated
only in the context of Gentzen-type systems.

Usually, a Gentzen-type representation of a C.R. has the following form: It
has as axioms the reflexivity axioms A = A (sometimes it suffices to take only
a subset off these and then derive the rest). The rules are then divided into two
groups:

e Structural rules, which operate on the multisets, but do not change the
formulas in them (though it may add or delete some). Frequent examples
are: weakening, contraction, anticontraction, mingle (from I'y = A, and
T'; = A, infer I'y,T'y = A,, A;) and, of course, cut.

e Rules concerning the constants of the language. Usually they are divided
into succedent rules, which specify how a logical constant may be introduced
in the succedent of a sequent, and antecedent rules, which do the same for
the antecedent. '

In order to judge how good a given Gentzen-type presentation of a given C.R.
is, we should apply exactly the same criterions as we did for N.D. systems. How-
ever, since we allow more in Gentzen-type systems we are usually entitled to
demand more. Hence we usually should expect it to be easier to demonstrate
the validity of a formal sequent in a Gentzen-type formalism than it is in a cor-
responding N.D. system. Also we can expect nice proof theoretic properties to
hold. such properties are usually proved by induction, the major step of which
is showing that the various rules preserve the property under discussion. Usually
the cut rule is the major obstacle while providing such a proof. A very good ex-
ample for this is the important subformula property. This property is preserved
by all the rules we found as characteristic for the various intentional and com-
bining connectives. It is preserved also by all the structural rules considered in
the last section—except cut. If we delete cut from the set of rules of each of
the systems we discuss in the last section we get therefore formal systems with
the subformula property. The cut-elimination theorem (which obtains for each
of those systems) mean that these new systems are still representations of C.R.’s
and that the C.R.’s they represent are identical to the original ones.

30

Note: Since the antecedent and succedent rules completely specify how a con-
nective can be introduced into sequents, it can be argued that they operationally
define that connective. This claim is strongly related to the analogous claim con-
cerning introduction and elimination rules in N.D. systems. I believe that a much
. better case can be made to this claim in the present context than in the previous
one.?* Nevertheless, I still think that it is tenable only for special types of connec-
tives. After all, the rules of Gentzen-type systems (or even N.D. systems) do not
necessarily treat one connective at a time. The following rule, e.g. is frequently a
useful one (see next section),but it treats two:

I‘1=>A1,-1A I‘2=>A2,ﬁB
1‘1, I‘z = Al, Az,—‘(A A B)

In systems with rules like the last one we might be forced to say that the var-
ious connectives are simultaneously defined by the set of the rules (taken as a
whole). This does not seem to be very helpful, though. (The distinction between
antecedent and succedent rules is not so sharp, by the way. In modal logics, for
example, we frequently have rules which introduce new connectives on both sides
of a sequent, like the following rule of the minimal normal modal logic K:

As,...,A,= B
OA4s,...,04,= 0B

It might be claimed that this rule completely defines the box in the context of K,
but such a claim might be more difficult to swallow than similar claims for more
regular rules. Note that rules like the last one is not available in N.D. formalisms!)

5.5 Three Degrees of Impurity

In the previous subsections a great deal of importance was attached to what we
call pure systems, The most general definition of which was given while discussing
Gentzen-type representations. Now the reasons for the importance of pure sys-
tems is due to the fact that they are relatively easy to implement in an economical
way, and it is easy also to check proofs in them. 25 However, there are also known
representations which are not pure. Our purpose now is to try to identify the
most usual forms that impurity may take. We assume, accordingly, that we are
dealing with a formal system of one of the types described above. Moreover,
we assume that the inference rules leading from sequents to sequents are given

243ee, in relation to this claim the first chapter of [Ga] and the paper of Hacking [Ha].

25Every ordinary, pure single-conclusioned N.D. system can, e.g., quite easily be implemented on
the Edinburgh LF, which is a general proof-development environment, based on a general Logical
Framework which was developed in the computer science department of Edinburgh university.

31

by some global rule-schemes of the form described after the definition of a pure
Gentzen-type system (in the last subsection), but that there are side conditions
on the applicability of some of these schemes which make them impure. We shall
examine three possible ways in which this might happen:

- Level 1: At this level the side conditions are related to the structure of the mul-
tisets of the side-formulas (T}, A} above). Examples of such side conditions
are:

e Demanding that there be no side formulas. In Hilbert-type systems
rules with this conditions are usually known as rules of proof. The best
known example is the necessitation rule in traditional formulations of
normal modal logics. Other example is the adjunction rule of many
relevance logics (from A and B infer A A B) which frequently is taken
to be only a rule of proof.

¢ Demanding, in a multiple-conclusioned C.R., the antecedents of the
conclusion and the hypotheses of a rule to be singletons. Examples are
"the rule for the [in the Gentzen-type system for the minimal normal
modal logic K (see above) and the succedent rule for the intuitionistic
implication in the multiple-conclusioned Gentzen-type version which
we mention in section 4.4.

¢ Demanding all the hypotheses of a rule to have ezactly the same side-
formulas. Examples are provided by the rules for the combining con-
nectives in section 4.3.. For logics without contraction or weakening,
like relevance logics and linear logic, these rules are impure (and this
explains why Girard has found (in [Gi]) the “multiplicative” fragment
of his logic, which is pure, to be better understood than the “additive”
one, which is not).

Level 2: Here an applicability of a rule might depend also on the structure of
the side-formulas. Examples are:

e The introduction rule for the O in Prawitz N.D. system for S4. This
rule permits the inference of ' = OA from I' = A only if all the
formulas in T' begin with OJ.

e The introduction rule for V in the N.D. systems for classical and in-
tuitionistic logics. Here one can infer I' = VzA from I' = A only
if z does not occur free in T'. (This is not the whole story, though,
since this rule might become pure in the context of non-simple C.R.’s.
There are in fact no problems to deal with this kind of impurity in the
Edinburgh LF!).

32

Level 3: Here an applicability of a rule might depend not only on its potential
premises, but also on their proofs. A possible example may be provided by
an attempt to base a N.D. system on the following version of the deduction
theorem in classical first-order logic: 26 I' - A — B iff there is a proof of B
from I'; A in which no inference of VzC from C is made in which z is free
in A and C depends on A (in that proof).

The third level of impurity carries us, in fact, beyond the class of uniform
systems 27, with which we were dealing so far. The main properties of uniform
systems are that they treat exactly one C.R., and that once a sequent was derived
in them one can completely forget about how it was derived while using it for
deriving other sequents. For systems of the third level of impurity this is no
longer the case. Such systems are very inefficient in the time and space required
for proof checking. It is advisable, therefore to avoid the use of such systems.
In the next section we shall suggest some possible methods for doing this when
uniform representations are not available or the available ones are inefficient.

6 Non-Uniform Representations

As we have seen in the previous section, all the standard proof systems are exam-
ples of uniform representations of consequence relations. However, if we accept
that a formal system is essentially a device for deriving correct sequents (of a
C.R. in which we happen to be interested) then there is no reason to limit our-
selves to uniform formal systems. I believe that this observation might open
the door to a new area of investigations with a wealth of promising possibilities.
To demonstrate the potential of non-uniform representations we shall describe
now two methods of developing such representations together with examples of
their applicability. We hope that other efficient methods will be developed in the
future.

6.1 Treating Several Consequence Relations Simultane-
ously '

A major feature of uniform representations is that they treat only a single C.R..
In mathematics it is often much more efficient to simultaneously solve several

26See, e.g., in [Men]. This theorem is true for the pure Hilbert type system for validity which
is presented there.

27A formal definition of a uniform system will be identical to that of a Gentzen-type system
and was already given in 5.4.

33

related problems. The problems of representing related consequence relations
should not be an exception in this respect. A good example for this is provided
by the two C.R.s which we have associated with modal logics in 3.3 . Obviously,
there are strong connections between them. On the other hand it is difficult
to provide a nice pure representation of either, since each lacks some important
- properties (which the other has). It is reasonable, therefore, to try to represent
them together in one formal system. This really can be done (at least for natural
modal systems like 54,7, K4 and so on). Examples of rules of the resulting
system in the case of §4 are:

', A AT B, A I'yAl, B 'HA HA
'+rvOA THA—-B,A T+,OA—=B TF, A H A"

In this system F; is taken as multiple conclusioned while |-, as single conclusioned.
All the impurities of the usual representations are eliminated in the combined
one (or—depending on the meaning of “pure” in this context— are reduced to
impurities of the first degree - see 5.5.)

It is worth noting that a suitable variation of this system was actually used
by the author in order to solve the problem of efficiently internalizing S4 in the
computerized Edinburgh LF system (see [AHM]).

6.2 Higher-Order Sequents

We start with the following observation: Uniform representations are axiomatic
systems in which the wffs are formal sequents. Past experience shows that it has
frequently been useful to extend such a system to a multiple-conclusioned one
even if the ultimate interest remained proving theoremhood of wffs. It is natural
therefore to try applying the same process in the present case. This naturally
leads us to consider “hypersequents” which are sequents of sequents. It might
be enough to start by considering only one-side hypersequents . Can they be
useful? The answer is “yes”, and in what follows we provide two examples which
demonstrate this claim.

In order to understand the examples, let us return to the five 3-valued conse-
quence relations of 3.4. It is not difficult to provide uniform, cut free Gentzen-type
presentations of the first three. It is enough, e.g., to take as logical rules for all of
them the usual rules for the (combining) V and A, as well as the obvious rules for
=V, =A and =~ (on both sides). The systems will differ then only with respect
to the axioms (P = P (P atomic) will be axioms for all. In addition we have
P,=P =g, =pac P,~P and -P,P =1; =Q,Q). For the other two we should
work with hypersequents, though! The needed changes are:

1. We should work with multisets of sequents, both sides of which are multisets
of formulas.

34

2. We should add the ezxternal structural rules:
External Contraction
(1= Ag),...,(Ta= A,)
(T=A),(T1 = A1),...,(Tn = A,)

External Weakening

T =A),T=A),T=A),..., (T, = A,)
(T = A),(T1=> A1),...,(Tn = A,))

3. We replace the six — rules by the usual two rules for internal negation.

4. Internal weakening is not a rule in the case of |- 5,; while internal contraction
is not a rule in the case of 1.

5. The logical rules and the permitted internal structural rules should be re-
formulated so that “side-sequents” are allowed. For example V => takes the
form:

(4,T = A), (T1 = A4),... (B,I'=A), (T, = A),...
(AvB,T = A),(T1 = Ay),..., (T, = A),...)

6. Instead of the deleted internal structural rules we should add:

For kg, The following weaker versions of weakening (with possible side-

sequents):
(T1=> A1) (T2=Ay)

(T1,T7 = Ay, A;)
I'y,Ty = A, A,
(I‘1 = Al), (Pg, IV = Az, A')
For kp.: We add the following splitting rule (again with possible side-
sequents):

(rla r2, PS = Ala A2; A3) (rll: 12,1'\13 = Ai’ '2, Ag)
(T1,T > Ay, AY), (T2, TS = Aq, AY), (T3, T = As, Af) ’

Notes:

1. The proofs that by this method we really get sound and complete repre-
sentation in which cut-elimination is admissible are not too difficult, since
easy reduction steps are available. It is much harder, yet possible, to prove
the same properties if we add internal implication to both (getting the full
systems RMj and Lukasiewicz L3, respectively). We shall present all these
proofs in a forthcoming paper.

35

%@

2. Cut-free Hypersequential calculi were first introduced in [Pot] and, inde-
pendently, in [Av2]. In the forthcoming paper mentioned above we shall
extend the method to other Logics (e.g. the system LC of Dummet) and
supply all the proofs.

3. It is possible, of course, to consider further iterations of the above procedure.?
The examples we have given should suffice for clarifying the main idea,
though.

7 Acknowledgements

I like to thank Furio Honsell and Ian Mason for the encouragement they have
given me while working on this paper and for a lot of stimulating discussions
and helpful comments. This paper would have never been written without them.
Thanks also for the other participants of the LF project: B. Harper and G. Plotkin
for their comments and help. '

8 References

[AB | Anderson A.R. and Belnap N.D., Entailment vol. 1, Princeton Univer-
sity Press, Princeton,N.J., 1975.

[AHM | Avron A., Honsell F. and Mason I. Using judgements to implement
logies on a machine, Technical Report, Laboratory for the Foundations of
Computer Science, Edinburgh University, 1987. (In preparation).

[Avl]| Avron A. Relevant entatlment: semantics and formal systems, J.S.L. vol.
49 (1984), pp. 334-342.

[Av2]| Avron A. A constructive analysis of RM, to appear in the J.S.L.

[Av8 | Avron A. Gentzenizing Schroeder-Heister’s Natural eztension of natural
deduction, to appear.

[Do] DoXen K. Sequent-systems for modal logic, J.S.L., vol. 50 (1985), pp. 149-
168.

[Du | Dunn J.M. Relevant logic and entailment, in: Handbook of Philosoph-
ical Logic, Vol IT], ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht,
Holland; Boston: U.S.A. (1984).

281n the literature one can already find uses of sequents of arbitrary degree of nesting in [sH]
and [Do).

36

)

[Ga | Gabbay D. Semantical investigations in Heyting’s intuitionistic
logic , Reidel: Dordrecht, Holland; Boston: U.S.A. (1981).

[Gen | Gentzen G. Investigations into.logical deduction, in: The collected
work of Gerhard Gentzen, edited by M.E. Szabo, North-Holland, Ams-
terdam, (1969).

[Gi]| Girard J.Y. Linear Logic, to appear in T.C.S.

[Ha | Hacking I. What is logic, The journal of philosophy, vol. 76 (1979), pp.
285-318.

[Ho | Hodges W. Elementary predicate calculus, in: Handbook of Philosoph-
ical Logic, Vol I, ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht,
Holland; Boston: U.S.A. (1983).

[HHP | Harper R., Honsell F., and Plotkin G., A Framework for Defining Log-
tcs, Proceedings of the second annual conference on Logic in Computer
science, Cornell, (1987).

[Men] Mendelson E. Introduction to Mathematical Logic, Princeton, Van
Nostrad,(1964).

[Pot | Pottinger G. Uniform, Cut-free formulations of T, S4 and S5, (abstract),
J.S.L., vol. 48 (1983), p. 900.

[Pral] Prawitz D. Natural Deduction, Almqvist&Wiksell,Stockholm (1965).

[Pra2 | Prawitz D.Ideas and results in Proof theory, in: J.E. Fenstad (ed.),
Proceedings of the second scandinavian Logic symposium, North-
Holland, Amsterdam, pp. 235-307, (1973).

[Pri | Prior A.N. The runabout inference-ticket, Analysis, vol. 21 (1960), pp.
38-39.

[Sc1 | Scott D. Rules and derived rules, in: Stenlund S. (ed.), Logical theory
and semantical analysis, Reidel: Dordrecht (1974), pp. 147-161.

[Sc2] Scott D. Completeness and aziomatizability in many-valued logic, in:
Proceeding of the Tarski Symposium, Proceeding of Symposia in Pure
Mathematics, vol. XXV, American Mathematical Society, Rhode Island,
(1974), pp. 411-435,

[SH] Schroeder-Heister P. A natural extension of natural deductionJ.S.L., vol.
49 (1984), pp. 1284-1300.

37

L4

[Sob] Sobocifiski B. Aziomatization of partial system of three-valued calculus of
propositions, The journal of computing systems, vol 11. 1 (1952), pp. 23-55.

[Sudl | Sundholm G. Systems of deduction, in: Handbook of Philosophical
Logic, Vol I, ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht,
Holland; Boston: U.S.A. (1983).

[Sud] Sundholm G. Proof theory and meaning, in: Handbook of Philosoph-

ical Logic, Vol III, ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht,
Holland; Boston: U.S.A. (1984).

[Tak | Takeuti G. Proof theory, North-Holland, Amsterdam, (1975).

[Ur.] Urquhart A. Many-valued Lagi'c, in: Handbook of Philosophical Logic,
Vol III, ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht, Holland;
Boston: U.S.A. (1984).

38

Contents

1

2

Introduction

The Notion of a Consequence Relation

2.1 AxiomaticSystems
2.2 ComsequenceRelations
23 Remarksand variations

Some Examples of Abstract Consequence Relations

3.1 Classical Propositional Logic
3.2 First-orderlogic.
3.3 Propositional Modal Logic
3.4 Three-ValuedLogic.o . ..

Classification of C.R. according to their Basic Connectives
4.1 Intensional connectives

4.2 Characterizing the Intensional Connectives by Gentzen—Type Rules
4.3 The combining connectives
4.4 Characterization of some Known Logics
4.5 On the Mearings of the Propositional Ponnectives
Uniform Representations of C.R’s

5.1 Using Axiomatic Systems for Representations
5.2 Hilbert Type Representations
5.3 Natural-Deduction Representations
5.4 Gentzen-Type Representations
5.5 Three Degreesof Impurity
Non-Uniform Representations

6.1 Treating Several Consequence Relations Simultaneously
6.2 Higher-OrderSequents
Acknowledgements

References

39

18
19
20
24
27
31

33
33
34

36

36

TR. CoquanDd

WIMS‘;

MJM w 8§
.t Rase o satinal " agrssdakion of RigRen-ok
N. DcBnm’r'\.. Auk 4 (14)

sYni’cfx : Hhe one oF Avke maFh

Nz x|)) O [(MmN
. koo a‘u.-»l Jowb(fw.a (einde)
Prp ol Ty
. A we boe B do B comliem %-J
. | c . l l‘ h 'u b
| &T‘ T &ﬂ;w % |
dechone By : Tpe

wolid coback . § walisl
TRl K — [x: A N

i _sarlie

P E A { whel
uAFER — € O A (A B
O ARBie Fre (AR : &
Lre B TheA - T B : fu /] s‘

. Fl—t:h,f‘i—b:u,h-.-s-» F-t: R

&
Mwmwm e compultn & ueed
- Reum aAAGM %M
e
. prosduck e Grue T . 00— o
quaskificakion aven Gypae
&»MW%&T‘“M ‘
. bt o th e o th iy g

ol,,_g,»&»mv&m . &'AMF&%
wealiga by with o Gy - chacken

Oomra

w;kum A"-;‘Y‘) B:(A\M., !:A) PB(A —

e AT} (B TR (x: AV Ly: &) AxB
Huek '8 tnse wotia . ‘

Ao ke appnend

g.,Lmuzgu..mw.g,.,
whe s e

u&.‘«u& uaw Ham:—@aw«.a
(% &) .. A)A

"Lol.» -?..oJ“ ﬁJ&a

A:Tgne , (U A, R R, E:(MYR Repe

e (xR Cy:AY (ROyuy) (Rly, o) EOxy) |

thanvo (x:A\(\I:A\ (Z:A\(Rlu)a\\ (Nva, 8\\ R (*, S)

L

inen CeMGAy CROG Y RCEGD, ()

- (x:A) (ROx, {60)) R(x, 1Y)

bour CAY (Cy:AY CROy, Bty RUy, xy) R(A, %)

T ?%x €Ex)

“

RFEXPF RTINS0 R o 0 o ol ok e R i R e o o e o ol e e e e o e e e ok o ok S i R SR sl o o K o ol e ofe e ok R it K R S R ok
ERBRERRERR R RE R RRER R BN LR R LB TR RR AR AR R RR B E R AR E TR BB RE AR KA AR BT BN B AR RNk A Nk RN h Rk R R DGR
* 2

. x®
= tfhe - steve - Feb 21 10:33 - exemple5.ML A
*t L 3

&
EEBREEERRAE LSRR B RE R ERRRRR R AR RRRER B RS R AR R RS R RN R RN R TR R R R R FTRRERRR R R R R R RR R Rk Rk Rk kR Rk kRt fon
REEBERRRERRB MR EBEREARERE AR BB RN RN BN R BB RRRR AR B R R R BRI R RERR RN R Rk Ra kR Rk Rk pRk Rk ki kkkrkpghssn

(* Tarski where we say that we consider the set
{x \in A/ x R f(x)}
in the usual set notation. Notice the way that we express that
M is the LEAST upper bound. This is expressed as a RULE with
nested implication and universal quantification *)

(* The data *)

Dec‘l HPO" "Pl"Op";
Dec1"A""Type";Decl1"R""(A)(A)Prop";Decl1"E""(A)(A)Prop";
Dec“ "fli II(A)A" ;Dec‘l llMl' NAII ;

(* the axioms, actually, inference rule *)

Decl "eq" "(x:A)(y:A)(R(x,y)}(R(y,x)})E(x,y¥)}";

Decl "trans” "(x:A)(y:AY(zZ:AY(R(y,z))(R(x,y)})R(x,2)}";

Decl"incr" "(x:AY(Y:AY(R(X, Y)R(E(X).F(y))";

Decl"upp” "(x:AY(R(X, F(x)))R(x,M)":

Decl"low” "(xAY((Y:AY(R(Y.F(y)))R(y . x)JR(M,x)";

Decl"H" "(x:A)(E(x,F(x)))PO";

G ((?xl);)(?xl)E B BLT0 @)

?2x1 : A ’ .
____________________________ ’\)\;';_, Lﬁ: t—\d\/%

7x6 : (?7x3)((?x3)f)R ppe—

?x5 @ ((?x3)F)(?x3)R’
?7x3 : A

P (((MTYE)((M)T)R
2x5 : ((M)F)(M)R

2x11 @ ((M)F)(M)R
?x5 ¢ ((M)F)(M)R

?x13 ¢ (xL:AY(x2:((xD)F}(xIRY((M)F)(x1)R

Introduction de X0

Introduction de X1
?7x20 @ (?x17)(X0)R
?x19 : (MTF)(?x17)R
?7x17 : A

jai trowve

la reponse est :

(COO(ExL Lx2. (x2)(((x2)(x1)upp) (M) (x1)incr)((M)F)((x1)F)(x1)trans)((M)Ff)Tow) ((M)F)(M)incr)((M)f)upp){((Lxl.Lx2.(
x2}(((x2)(xDyupp) (M) (xL)ince) ((M)F)((x1)f)(x1)trans)((M)F)Tow)((M)F)(M)eq)(M)H

Timing compile-0.9s (0.8s+0.0s+0.0s+0.0s+0.1s) run-3.9s

*)

HREBEREERERBREERSRRKR BB R REEERRRERR R MR RR R RN R R ARk B e R AR R AR Rk kR RNk R Rk Rp Rk ARk Rk RNk kR
"

LE

%
** tfhc - steve - Feb 21 10:34 - Logic.ML >
*t % %

e
BREEERREEERERRRERRRRERR R L ERRR KRB RN R RERRRBRRRRRE R RRE R R RRERR R R AR R R R Rk R Rk Rk kR kR R R R Rk R o
ddkdk Rk kR kR Rk Rk kR Rk R dRRE R R R R R R R R R R kR R R R R kR R Rk R R R RNk R Rk kR Rk e R Rk kR RN Rk kR Rk R kR Kk kR

(* The conjonction in second-order minimal calculus *)

fun DEF ¢ s = (eval c;Egal s) ;

Decl "p""Prop";Decl "q" "Prop";

Goal "(p)((p)g)g";AUTO();SAVEL"cut";

Goal "((p)a)(p)q";AUTO();SAVEL"cutl";

fun CUT h = (LET ("cut(""h"")") "1";SOLVE "1");
DEF"(r:Prop)((p)(q)r)r""and";

(* un exémp1e : la construction des projections *)
Goal"(and(p,q))p";INTRO "h1";SIMPLIFY"h1"["h11","h12"];AUTO();SAVELl"pl";
Goal"(and(p,q))q":INTRO "h1":SIMPLIFY"hi"["h11"."h12"];AUTO();SAVEL"p2";
Goal"(p)(q)and(p,q)":INTRO"h1";INTRO"h2" ;REDUCT();AUTO();SAVE1"intro_and";
(* the equivalence *)

eval "and((p)g.,(g)p)";Egal”equiv";

{(* how to prove an equivalence *)

Goal"((p)g)((g)plequiv{p.q)";INTRO"h1";INTRO"h2";
REDUCT():SOLVE"intro_and" ;AUTO();SAVEl"equiv_intro";

Goal "(p)(equiv(p,q))q";
SAVE1l"equivl";fun TAC_equivl h = (SOLVE "equivl":SOLVE h);

Goal "(p)(equiv(q,p))a";
SAVE1"equiv2";fun TAC_equiv2 h = (SOLVE "equiv2";SOLVE h);

(* the equivalence is transitive *)

Decl "r* "PPOD";

Goal "(equiv(p,q))(equiv(g,r))equiv(p,r)";

INTRO"h1";INTRO"h2";SIMPLIFY "h1" ["h12","h11"];SIMPLIFY "h2" ["h22","h21"];
SOLVE"equiv_intro";

INTRO"h3";SOLVE"h11";SOLVE"h21";SOLVE"h3";PAS();
INTRO"h3";SOLVE"h22";SOLVE"h12" ;SOLVE"h3" ; AUTO();

SAVE1"trans_equiv";

Goal "(equiv(qg,r))(equiv(p.q))equiv(p,r)";
INTRO"h1";INTRO"h2" ;SOLVE"trans_equiv" ;AUTO();SAVEL"transi_equiv";

Abs"p";

(* the inclusion *)

Dec1"A""Type"”;Dec1"P""(A)}Prop":Decl"Q""(A)Prop":

DEF "(x:A){(P(x))Q(x)" "inclus";
Dec1"R""(A)Prop”;Goal"(inclus(A,Q,R))(inclus(A,P,Q))inclus(A,P,R)}";
INTL["h1","h2"];REDUCT(); INTLI{"x","h3" J;SIMPLIFY"h1"[];SIMPLIFY"h2"[];
AUTO();SAVE1"trans_inclus";
"Abs"R";Abs"Q";Goal"inclus(A,P,P)";REDUCT();AUTO();SAVEL"ref_inclus";
Dec1"Q""(A)Prop";DEF"[x:AJand(P(x),Q(x))""inter";

Goal"inclus(A,inter(A,P,Q),P)";
REDUCT() ; INT1["x","h1"]; SIMPLIFY"h1"["h11","h12"];AUTO();SAVEL1"int1l";

Goal"inclus(A,inter(A,P,Q),Q)";
REDUCT();INT1["x","h1"];SIMPLIFY"h1"["h11","h12"];AUTO();SAVEL"int2";

Dec1"R""(A)Prop”;Goal"(inclus(A,R,P))(inclus(A,R,Q))inclus(A,R,inter(A.P,Q))";
INTL["h1","h2"];REDUCT();INT1["x","h3"];REDUCT():SOLVE" intro_and";
SIMPLIFY"h2"[];SOLVE"h3" ;SIMPLIFY"h1"[];SOLVE“h3" ;AUTO();SAVEL"inter least";

Abs"R" ;Goal" (x:A)(P(x))(Q(x))inter(A,P.Q,x)":

ANELL A, L, I [PRCUUL L J5OURVE HHLEU_dlg [TAUTUL) SDAVEL INTEr_1ntro-;

Abs"Q":«
DEF "(p:Prop)((x:A)(P(x))p)p""exists";

Goal"(x:A)(P(x))exists(A.P)":
INTL["x","h" J;REDUCT(};AUTO():
SAVE1"witness";

Abs"A";

DEF "(p:Prop)p" "abs"

HEREERREERRRRR R R RBRBRRERRRK KT ERREBRCRBBRERRRRRRR AR R AR R RR R RGNk RR R R R kbR R h bRk Rk R ARSI BRR

BERERRBE SRR R R R LR ERER LSRR R R B R RN LT R R R AR RRR R R R R B R LR L ERER AR AR RN SRR TR B ERRREREEE R R REERRRERERENRRRR ML RER

% !

i tfhc - steve - Feb 21 10:33 - Scott.ML

* R hd

LEd
L
* R

BEBRRRDBRREERREREREEEBERERREREEERB U BB R RR AR R RRoRf s rRoRddRRRRkormidden Rk ki kkbRagwkkkkrkRr Rk rRND
BEBRRRBRERRER BB ABBRRR AR RRRERBERERBRERERREREE BB RN ERRRRAREERRERRRRR R R R R pmkkddeRkRchuk kR R RRrpkRkk Rk kbR ann

Dec'l "Al' "Typelt ;
Dec1"R""(A)(A)Prop";

LET"[P:(A)Prop][x:A][y:AlJexists(A,inter(A,P,inter(A,R(x),R(y))))""confluent";

Goal"(P:(A)Prop)(x:A)(y:A)(z:A)(P(2))(R(x,z))(R(y,z))confluent(P,x,y)}";
INTLL"P","x","y","2","h1","h2","h3"];REDUCT();AUTO(};SAVE"confluent_intro";

fun ELIM_confluent s z hl h2 h3 =
(SIMPLIFY s [z,"a"];SIMPLIFY "a" [h1,"a"];SIMPLIFY "a" [h2,h3]) ;

LET"[P:(A)Prop](x:A)(P(x))(y:A)(P(y))confluent(P,x,y)""directed";

Decl"f""(A)A"; :
LET"[P:(A)Prop][x:AJ(Q: (A)Prop)((y:A)(P(¥))Q(f(y)))Q(x)""Image";

Goal"(P:(A)Prop)(x:A)(P(x))Image(P,f(x))}";
INTL["P","x","h1"];REDUCT() ;AUTO();SAVE"Image_intro";

fun ELIM_Image s z hl = SIMPLIFY s [z.,h1];
Decl "Incr""{x:A)(y:AY(R(x,y))R(F(x),f{y))}":

Goal"(P:(A)Prop)(directed(P))directed(Image(P))";

INTL["P", "h1"];REDUCT(); INTL["x","h2","y","h3"];
LET"[u:A]confluent(Image(P),u.y)""P1";EGAL"P1(x)":ELIM Image”h2""x1""h21";
REDUCT();ELIM _Image"h3""y1""h31";LET"h1(x1,h21,y1.h3L)""1";
ELIM_confluent"i1""z""h4""h5""h6" ;AUTO();SAVE" Temmel";

Deci"Lim""((A)Prop)A";

Dec1"Upperb""(P:(A)Prop)(x

AY(P(x))R(x,Lim(P))";
Decl"Least" "(P:{A)Prop)(x:A)(

(x))
Y:AY(P(¥))IR(y,x))R(Lim(P),x)";

Goal"(P:(A)Prop)R(Lim(Image(P)),F(Lim(P)))";
INTRO"P";SOLVE"Least"; INTL["x","h1";LET [u:AJR(u, f(Lim(P)))""P1" ;EGAL"P1(x)" ;
ELIM_Image"h1""x1""h11" ;REDUCT();AUTO();SAVE"Temme2" ;

—~—

P
(

LET "[x:A](p:Prop)p""empty";
fun ELIM_empty s = SIMPLIFY s [];

Goal"directed(empty)”;
REDUCT(); INT1["x","h1","y","h2"1;ELIM empty"h1";AUTO();SAVE" 1emme3d";

LET"Lim(empty)""bottom";

Goal"(x:A)R(bottom,x)";
INTRO"x" ;EGAL"R(Lim(empty),x)" :PAS();INT1["y","h1"];ELIM _empty"h1" ; AUTO():
SAVE"minimum";

LET"[x:AJ(P:(A)Prop)((x:A)(P{x))P(f(x)))(P(bottom))P(x)""Approx";
fun ELIM_Approx s = SIMPLIFY s [] ;
Goal"Approx(bottom)";REDUCT();AUTO();SAVE"Approx_bottom";

Goal"(x:A)(Approx(x))Approx(f(x))";
INT1["x","h1"];REDUCT(); INTL["P",”h2","h3"];PAS();ELIM Approx "h1";AUTO();
SAVE"Approx_stable";

Goal"(x:A)(Approx(x))R(x,f(x))";

INTIE"x","h1"] LET"[u:AJR(u, f(u))""P1";EGAL"PL(x)";ELIM Approx "h1l";
REDUCT(); PAS();REDUCT();INT1["y","h2"];RED"h2";REDUCT(); AUTO();
SAVE"propositionl";

Dec1"Ref""(x:A)R(x,x)";
Dec1"Trans""(x:A){(y:A)(z:A)(R(y.z))(R(x,y))R(x,2)";

Goal"directed(Approx)";

REDUCT(); INTL1["x","h1","y","h2"];ELIM_Approx"h2";PAS();SOLVE"minimum";
SOLVE"x";SOLVE"Ref";PAS();INT1["z","h3"];ELIM confluent"h3""t""h4""h5""h6";
PAS();SOLVE"Incr";PAS();SOLVE"Trans";SOLVE"propositionl";PAS();SOLVE"Incr";
AUTO():SAVE"proposition2";

Goal"(P1:(A)Prop)(P2:(A)Prop)(inclus(A,P1.P2))R(L m(P1),Lim(P2))";
INTI["P1","P2","h1"]:RED"h1";SOLVE"Least" : INTL["x"."h2"]:SOLVE"Upperb"

PIM Ry Y e I SHING T
Dec1"Cant""(P:(A)Prop)(directed(P))R(F(Lim(P)),Lim(Image(P)))";

‘Gaa1"andQR(Lim(Approx),f(Lim(Approx))),R(f(Lim(Approx)),Lim(Approx)))";
PAS();PAS();SOLVE"Cont";PAS();PAS();REDUCT();INTL["x","h1"];
ELIM_Image"h1""x1""h11";PAS();PAS();AUTO2();

SOLVE"Least" ;INT1["x","h1"];PAS();SOLVE"propositionl";PAS();SOLVE"Incr";
SOLVE"Upperb" ;AUTO(); SAVE"theoremel";

e o o 2 o e o o ol ot ok 2 3 e e o ok o of ol e Sk ok e o ol oo ok ok o o K A e sl e A o o K o o ol kol ol e sl ol ol A ok ok SN0 26 ol o e R 3 R ol ok e A ol o O 3 356 3 o ok S Sk oK I K o ok ol R S ol ok ol ok o ok ol e sk o e ke A ek Kk e ok R Rl
X X
A Y .
bl tfhc - steve - Feb 21 10:34 - classique.ML o
L xRk
58
##***#**#z#*****#*#**********#*#******#*####***********#****************t******#t*****#*********#**************

62308 300 30 ofe 3 K ol 36 A o ok e s 3 2k e e o i 3 s e dle a8 I 3k ko ol ok S e el ot o ol ot ok oK ke Ak S ole ol e o ke ofe ot o ok 2 ol ol e o oic okt R ok e e ol o e sl 3 ale ol oK i koK 36 ol ok e ofe sl R ol e ol A ofe ol o ole e Sk i ke sk sk ol sk ok Ak ol ok ol ok O ek
(* classical logic. Uses Logic *)

fun PRIM c s = (Goal c;SAVELl s) ;

PRIM "(p:Prop)(((p)abs)abs)p" "cl1";

DEF "[p:Prop](p)abs” "not";

DEF "[p:Prop][q:Prop](not(p))(not(q))abs” "vel";

Goal "(p:Prop){q:Prop)(p)vel(p,q)";
INT1["p","g","h1"];REDUCT ();INTI["h2","h3"]; s
LET_INTRO"h2(h1)""1";AUTO();SAVEL "or_introl"; :

Goal "(p:Prop)(g:Prop)(q)vel(p.q)";
INTIE"p","q","hl"];REDUCT ();INTI{"“Z","hS"];
LET_INTRO"h3(h1)""1";AUTO():SAVEL "or_intro2";

fun TAC_cl h = (SOLVE"c1";INTRO h) ;

Goal "(p:Prop)(q:Prop)(r:Prop){(p)r)({q)r)(vel(p,q))r":
INTL["p","q","r","h1","h2","h3"];RED"h3"; TAC_c1"h4";
SOLVE"h3";

REDUCT(); INTRO"h5" ; SOLVE"h4" ; SOLVE"h2" ; SOLVE"h5" ;AUTO2();
REDUCT();INTRO"h5" ;SOLVE"h4" :SOLVE"h1" ;SOLVE"h5" ;AUTO();
SAVE1l"case";

fun ELIM_vel hil = (SOLVE "case”;SOLVE hl);

Goal "(p:Prop)(q:Prop)(vel(p,q))vel(qg,p)";
INT1["p","q","h1"];SOLVE"case" ;SOLVE"hi";
INTRO"h2" ;SOLVE"or_introl";SOLVE"h2";AUTO2();
INTRO"h2";SOLVE"or_intro2" ;AUTQ(};SAVE1"sym_vel";

Goal "(p:Prop)equiv(vel(p,p),p)";
INTRO"p";SOLVE"equiv_intro”; INTRO"h1";SOLVE"or_introl";SOLVE"h1";AUTOZ2();
INTRO"h1";SOLVE"case™ ; SOLVE"h1" ;AUTO() ; SAVE1" idem_vel";

Goal "(p:Prop)(vel(p,p))p":

Goal "(p:Prop)(q:Prop){vei(p,q))(not(p))q";
INT1["p","q","h1","h2"];TAC_c1 "h3";RED"h1";SOLVE"h1" ;REDUCT();
INTRO"h4" ;SOLVE"h3" ;AUTO() :SAVE1"vel_eliml";

Goal "(p:Prop)(q:Prop)(vel(p.,q))(not(q))p";
INTL["p","q","h1","h2"]:TAC_c1 "h3";RED"h1";SOLVE"h1";SOLVE"h2";
REDUCT();INTRO"h4" ;SOLVE"h3" ;AUTO();SAVE1"vel eTlim2";

Decl1"A""Type";Deci1"P""(A)Prop":

DEF "not((x:A)not(P(x)))" "E":

Goal "(x:A)(P(x))E(A,P)";

INT1{"x","h1"];DUP REDUCT {():INTRO"h2";LET_INTRO"h2(x,h1)""1";AUTO();
SAVE1"witness";

Goal"(p:Prop){{x:A)(P(x))p)(E(A.P))p";
INTL["p","h1","h2"];TAC_c1"h3" ;RED"h2" ;RED"h2" ; SOLVE"h2" ;

INTRO"x" ;REDUCT() ; INTRO"h4" ;LET_INTRO"h3(h1(x,h4))"" 1" ;AUTO();SAVEL"eTim_E":
fun ELIM_E h1 x h2 = (SOLVE "elim_E";SOLVE h1;INT1 [x,h2]);

Abs "A":

30 3K o o e A6 o o ke 3 ol ol ol o 86K e o o ol e ol e s ol 0 R i o e ok e ol ol ol o ok o ok ol S sl sk ol o ol o e iR e o o o 3 o ol ok A R sl o o o s o s ol ok ol ol ok i oAe ok ol o ok e A o ofe ol st e ol ode o e ok R ke e AR K R B R R R e ke
*

2]

B
** tfhc - steve - Feb 21 10:34 - set.ML o
EE 2 EEd

»
B L R R L P e T L L I L PR PP T T P T T e
A e 00 e s 3 s ok o o o 3 ok cle ole 6 o s ol sk o e ok e ol e ok At e ofe ok o i ok e ol ol e ok e s ok ol B o St ot ol ok ok afe ale ol a6 ok o e ol e e ol ale afe e st sle ofe o ol ke o i 3 3 ok o i e 3K e Sl ol e ok ale ok ske e e ol 3k ofe ok afe s s ol o s ofe e e ol ke ok ok e R R

(* this file must contain the beginning of set theory, up to the
definition of functions, and the definition of ordinals. Uses
classique *)

PRIM "((V)Prop)Vv" "tau";

PRIM "(P:(V)Prop)(E(V,P))P(tau(P))" "choix";

PRIM "(P:(V)Prop)(Q:(V)Prop)((x:V)equiv(P(x),Q(x)))=(tau(P),tau(Q))" "S7":

PRIM "(V)(V)Prop" "mem";

S5 200 3t e ol 3 0 o8 ol A o ol 306 0 R S o o oA e K Sk 86 sS4 S0 o SN o 300 0 B o0 08 o6 o B ke ok e i 3Kk R ok o o6 A0l S K ok I I R R 3K K K S K ok e 8 ol e ol o o e o ok ok ook e s ok 3R ok o o Sk K ok e o o ok e ol Sl e ok o R R R
L

L * %
*x tfhe - steve - Feb 21 10:34 - inclusionl ML b
*# * R

*
e e o e o ol e ol R o e e AR o ol Sk ofe e oft st ol ofe e e o OB K oK kOO AR R e s K o afe ok o ol ofe e ol o ofe ok ol sl o 3R ol cHe e o Sk ofe e o B ol e ol e ol ol cle o sl ol e ol ol ot e ol o o SR ok i sl ol o6 i 06 e o sie oK St iRl ol ok ol e sl e ol sl sk ol ok dle ok sl ol ole ok ke ok
kR R R R Rk kR Rk kR kR BB Rk kR kiR ek kg Rk RNk kR Rk Rk kR Rk Rk ke ke ck ke ke nk Rk kR kR BN Rk E

(* the inclusion. Uses set. *)
DEF "[x:V][y:V]{z:V)(mem(z,x))mem(z,y)" "inclus";

Goal "({x:V)inclus(x,x)";
INTRO"x" ;REDUCT() ;AUTO();SAVELl "propositionl";

Goal "(x:V)(y:V)(z:V)(inclus(x,y))(inclus(y,z))inclus(x,z)";
INTl["x" , lly'l , "Z" ’"hltl , !Ithl];REDUCT() : INTI[“U" ’"h3"];RED"hI";RED"hZI';
AUTO();SAVELl "proposition2";

PRIM "(x:V)(y:V)(inclus(x,y))(inclus(y,x))=(x,y)" "ext"; i !

Goal "(x:V)inclus(x,x)";
INTRO"x" ;REDUCT();AUTO():SAVEL "reml";

Goal "(x:V)(y:V)(=(x.,y))inclus(x.y)";
INTLL"x","y","h1"];SIMPLIFY"h1"[];SOLVE"reml" ;AUTO();SAVELl "rem2":

Goal "(x:V)(y:V)(=(x.y)}inclus(y,x)";
INTL["x","y","h1"];LET_INTRO"[u:V]inclus(u,x)""P0O";
EGAL"PO(y)" :SIMPLIFY"h1"[]J;REDUCT();SOLVE"reml";AUTO();SAVEL "rem3";

PRIM "(V)(V)V" "upair”:
PRIM "(x:V)(y:V){u:V)(mem(u,upair(x,y)))vel(=(u,x),={u,y))" "axl_upair";
PRIM "(x:V)(y:V)(u:V)(vel(=(u,x).=(u.y)))mem(u,upair(x,y))" "ax2_upair":

Goal "{(x:V)(y:V)=(upair(x,y).upair(y.x))":
INTL["x","y"];SOLVE"ext";

REDUCT();INT1["u"."h1"];MATCH_MP “axl _upair" "hl" "1";
SOLVE"ax2_upair";SOLVE"sym_vel";SOLVE"1";AUTO2();

REDUCT(); INT1["u","h1"];MATCH_MP “"ax1_upair" "h1" "1";
SOLVE"ax2_upair";SOLVE"sym_vel" ;SOLVE"1";AUTO();SAVEL"comm_upair";

DEF "[x:V]upair(x,x)" "singl";
(* les regles qui suivent sont des regles de simplification *)

Goal "(x:V)(y:V)(mem(y,sing1(x)))=(y,x)}";
EXPAND "singl1";INTA["x","y","h1"];MATCH_MP "ax1_upair" "h1" "1";
SOLVE"case" ; SOLVE"1";AUTO();SAVELl"remarquel”;

Goal "(x:V)mem(x,singl(x))":
INTRO"x";EXPAND"sing1";SOLVE"ax2_upair";SOLVE"or_introl" ;SOLVE"ref_=";
AUTO();SAVE1"remarque2";

Goal "(x:V)(X:V)(inclus(singl(x).X))mem(x,X)";
INTL["x","X","h1"];SIMPLIFY"h1"[]:SOLVE"remarque2" ;AUTO();
SAVEl"remarquel";

Goal "(x:V)(y:V)(=(singl(x),singl(y)))=(x.y)";

INTL ["x","y","h1"];SOLVE" remarquel”;

LET_INTRO "[u:VImem(x,u}" "PO";EGAL "PO(singl(y))":SIMPLIFY"h1"[];
REDUCT();SOLVE"remarque2" ;AUTO();SAVE1l "remarqued";

Goal "(x:V)(y:V)mem(x,upair{x,y))";
INTI["x","y"];SOLVE"ax2_upair";SOLVE"or_introl” ;SOLVE"ref_=";AUTO();
SAVE1"remd" ;

Goal "(x:V)(y:V)mem(y,upair(x,y))";
INTI["x","y"];SOLVE"ax2_upair";SOLVE"or_intro2" ;SOLVE"ref_=";AUTO();
SAVE1"rem5";

Goal "(x:V)(y:V)}(X:V)(inclus(upair(x,y),X})mem(x,X)";
INTLIL"x", "y","X","h1"];SIMPLIFY"h1"[];SOLVE"remd" ; AUTO();
SAVE1"remarque6"”;

Goal "(x:V)(y:V)(X:V)(inclus(upair(x.y).X))mem(y,X)";
INTIL"x","y","X","h1"];SIMPLIFY"h1"[]; SOLVE " rem5" ;AUTO();
SAVE1"remarque7";

Goal "(x:V)(y:V)(=(x,y))inclus(x,y)":
INTI["x","y","h1"];SIMPLIFY"h1"[]:SOLVE"propositionl” ;AUTO();
SAVE1"rem§" ;

Goal "(x:V)(y:V)(=(x,y))inclus(y.x)":
INTI["x","y","h1"];LET"[u:V]inclus(u.x)}""PO" :EGAL"PO(y":

TR VIR PR AV LR I R ALY AR V] "
A/ [L4 A/

SAVE1"rem7";
<
fun ELIM_egal h hi h2 = (MATCH_MP "rem6" h h1;MATCH_MP "rem7" h h2;ENLEVE h);

Goal "(xE‘V)(y:V)(yl:V)(=(s1‘ng1(x).upair(y,yl)))and(=(y1.x).=(y,x))";
INTl[llx"’"y"’"ylﬂ'"hlllj;ELIM_ega‘I Ilhlﬂ I|h11ll llhlz'l;

MATCH_MP "remarque6" "h12" "1";MATCH_MP "remarque7" "h12" "11";
MATCH_MP "remarquel" "1" "r";MATCH_MP "remarquel” "T11" "ri";
SOLVE"intro_and" ;AUTO();SAVE1l "remarque8";

LR L R L R e T T T]
% » *H

*h tfhc - steve - Feb 22 10:35 - instant.ML o
#® LR S
a

Aol s oot o o e s e e o ol o e o oK R o ol e e o ol S o R e e o e o o K e At o R i o e Sl T AR S S e 6 30 0 o8 4 46 6 o0 ot e o R A e ol R o o o e Rl o e oo R R ol ol e e e e R o R A
o6 20 e e e e ok A6 a0 sl e e R e ol e o S ol o e e Sl sl ol o ol sl e e e e e ok o o 6 Sl 3 o o o e ole e R sl sl s e ol ole o o ol e e ol ole o o o e o ok o o6 ok S ol 0ok o ol ol e ol ofe ol o die ol e ske ale o6 ofe ofe ol e dle sl ofe sde st e e i sl o oM ke e e R ek

(* definition of instants, following Russell and Wiener *)

Decl "A" "Type";Decl "P" "(A)(A)Prop":
Decl "dec" "(x:A)(y:A)or(P(x,y),not(P(x,y)))":

fun LET sl s2 = (eval s2;Let (! C) s1) ;
LET "S" "[x:A][y:AJand(not(P(x,y)).not(P(y.x)))";

Decl "hypl" ”

(x:A)(y: PAY(P(x,y))(S(y,2))P(x.2)";
Decl "hyp2" "(x:A)(y

A)(z)P(
AY(Z:AY(S(x,y))(P(y,2))P(x,2)";

Goal "(x:A){(y:A)(S(x,y))S(y.x)";
INTL["x","y","h"1;RED"h" :SIMPLIFY"h"["h1", "h2" J:REDUCT();AUTO();
SAVE"sym_S*;

fun ELIM_S h1l

(RED h:SIMPLIFY h 1)
fun ELIM_not h = (RED h:SIMPLIFY n []):

Goal" (x:A)(y:AY(z:A)(S(x.y)){S(y.z))S(x.2)";
INTL["x","y","2","h1" ,"h2"];REDUCT() ;PAS():LET"1""dec(z,x)" ;SIMPLIFY"1"[];
Step();Step();Step();
INTRO"h3";REDUCT(); INTRO"h4" ;ELIM_S"hi"["h11","h12"];ELIM_not "h1i2";
SOLVE"hyp2";Step();Step();AUTO2():LET" 1" "dec(x.z)":SIMPLIFY"1"[1;
Step():Step():Step():

INTRO"h3" ;REDUCT(); INTRO"h4" ;ELIM_S"h1"["h11","h12"];ELIM not "h11";
SOLVE"hypl";SOLVE"sym_S";AUTO():

SAVE"trans_S":

™ *
. tfhe - steve - Feb 22 10:02 - categoriel.ML o
EE * o

#**t*tt**t#**t******#*********#***#t***#******#*********#****#*****#*t**#*********#**********************
f&******%*******************#******#****#********#*****#*****************************t****************#********

(* un exemple avec des categories *) n TR Y‘rg”XWV‘@”LT~ﬂ1A;?Vv\»

Dec1"Obj""Type";Dec1"Hom""(A:0bj)(B:0bj)Type";
Dec1"comp""(A:Obj)(B:Obj)(C:Obj)(f:Hom(A.B))(g:Hom(B,C))Hom(A,C)":
Dec1"id""(A:Obj)Hom(A,A)";
Dec1"Rel""(A:Obj)(B:Obj)(f:Hom(A,B))(g:Hom(A,B))Prop";

Dec1"assoc""(A:Obj)(B:Obj)(C:Obj)(D:Obj)(f:Hom(A,B))(g:Hom(B,C))(h:Hom(C,D))\
\Rel(comp(comp(f,g),h),ComD(f.ComD(g,h)))"3

Decl"cong""(A:Obj)(B:Obj)(C:Obj)\
\(f:Hom(A,B))(g:Hom(B.C))(fi:Hom(A,B))(gl:Hom(B,C))\
\(ReI(f,fl))(Rel(g,gl))\
\Re](comp(f,g),comp(fl,gl))";

Decl"ref""(A:Obj)(B:Obj)(f:Hom(A,B))Rel(f,f)";
Decl“trans""(A:Obj)(B:Obj)(f:Hom(A,B))(g:Hom(A,B))(h:Hom(A,B))\
\(Re1(h,f))(Re](g,f))Re](g.h)";
Dec?"1dl""(A:Obj)(B:Obj)(f:Hom(A,B))Rel(comp(id(A),f),f)";
Dec1“1d2""(A:Obj)(B:Obj)(f:Hom(A,B))Rel(comp(f,ﬁd(B)),f)";

Decl"T""0bj";Decl"nil""(A:0bj)Hom(A.T)" ;
Decieq_nil""(A:0bj)(f:Hom(A,T))ReT(f nil(A))":

Dec]"f""Hom(T,T)":Goal“Re1(f.id(T))";

Abs"f": :
Dec]“B""Obj“:Decl"f""Hom(B,T)";
Decl"mono""(A:Obj)(g:Hom(A,B))(h:Hom(A,B))\
\(Re1(comp(g,f),comp(h.f)))Re1(g,h)";
Dec1"g""Hom(T,B)";Gca]“Re](comp(g,f),id(T))":

Goal"Rel(comp(f,g),id(B))";

vvvva*TTTTNT"*‘**‘****.***‘******************‘***

=R k%
ko « tfhc - steve - Feb 22 10:02 - monoide.ML **
Akt

* %

:***#******************#***********************************#***#****t**#***###**##********#**************#*****
4

*****************************#***#*#**#**********#**********************#***t****#*##*#************************

(* This example shows
.how to represent a first-order signature
.how to deal with equality *)

Dec'] "G" IlTypell:

Decl "Eq" "(G)(G)Prop":

Decl "f" "(G)(G)G"; (* composition *)
Decl "e" "G"; (* element neutre *)

Decl "trans" "(x:G)(y:G)(z:G)(Eq(y,z))(Eq(x,z))Eq(x,y)“;
Decl "ref" "{(x:G)Eq(x,x)";

Decl "assoc" "(x:G)(y:G)(z:G)Eq(f(x,f(y.z)),f(F(x.y).z))":
Decl "idl® "(x:G)Eq(f(e.x),x)":
Decl "id2" "(x:G)Eq(f(x.e).x)";

Decl "cong" "(x:G)(y:G)(z:G)(t:G)(Eq(y.t))(Eq(x.z))Eq(f(x,y).f(z.t))":
Decl1"x""G";Decli"y""G";Decl"z""G":

Goal "Eq(f(x.f(f(e,y),z)),f(f(x.y),F(z.e)))":

SOLVE "trans";SOLVE "assoc":;SOLVE "trans”:SOLVE "assoc":

SOLVE "trans":SOLVE “"cong";SOLVE "assoc":SOLVE "ref";SOLVE "trans":
SOLVE "1id2";SOLVE "trans”;SOLVE "cong";SOLVE "cong";SOLVE "id2":
SOLVE "ref";SOLVE "ref":SOLVE “ref";AUTO():

(*
j'ai trouve
la reponse est :

((Z)((y)(E)f)(X)aSSOC)(((9)(Z)((y)(x)f)aSSOC)((((Y)(E)(X)aSSOC)((Z)Pef)(Z)((y)((e)(X)f)f)(Z>(((YJ(E)f)(X)f)COHQ
)((((Z)((Y)(X)f)f)idz)(((((x)idZ)((y)Pef)(y>(X)(y)((e)(X)f)CONQ)((Z)ref)(l)((y)(X)f)(Z)((y)((e)(X)f)f)cong)(((Z
\((y)(X)f)f)Pef)((Z)((Y)(X)F)f)((Z)((y)(X)f)f)((Z)((y)((8)(X)f)f)f)tranS)((Z)((Y)(K)f)f)((Z)((y)((E)(X)f)f)f)((
e)((Z)((Y)(x)f)f)f)tranS)((Z)((y)((E)(x)f)f)f)((6)((Z)((y)(X)f)f)f)((Z)(((y)(e)f)(X)f)f)tranS)((6)((2)((y)(X)f)
f}:i((Z)(((y)(e)f)(X)?)f)(((e)(Z)f)((y)(X)f)f)traHS)((Z)(((y)(e)f)(X)f)f)(((e)(Z)f)((y)(X)f)f)(((Z)((Y)(e)f)f)(
x)f)trans

)

val 11 = ["ref", "assoc”,"idl","id2","trans"];

val 12 = ["assoc","id1","id2"];

fun tacl RESOLVE 11:fun tac2 ()

RESOLVE 12;

() = =
fun tac3 () = SOLVE "cong":fun tac4 () SOLVE "ref";

fun tach () (tac2 ORELSE (tac3 AND (Dup tac5)) ORELSE tac4) ():
vzl tac = tacl AND tac5s:

Fun TAC () = LOOP tac () handle fail with

“RESOLVE" =>
{prs "j'ai trouve\nla reponse ast : \n"iimp (!COM))
s => raise fail with s;

Goal "Eq(f(x,f(F(e,y).z)),F(f(x,y),f(z,e)))";
TAC():

e)f)(x)aSSDC)(((e)(l)((y)(X)f)aSSOC)((((Y)(e)(x)aSSOC)((Z)Pef)(z)((Y)((e)(x)f)f)(z)(((Y)(e)f)(x)f)COHQ
Y)(X)f)f)fdz)(((((X)idZ)((y)ref)(y)(X)(y)((e)(x)f)cong)((Z)Fef)(Z)((Y)(X)f)(z)((Y)((e)(x)f)f)coﬂg)(((z
)f)fef)((Z)((Y)(x)f)f)((l)((Y)(X)f)f)((Z)((y)((e)(x)f)f)f)traﬂs)((Z)((y)(x)f)f)((Z)((y)((e)(x)f)f)f)((
)(X)f)f)f)trans)((l)((Y)((e)(x)f)f)f)((e)((Z)((y)(x)f)f)f)((l)(((Y)(e)f)(x)f)f)trans)((e)((z)((Y)(X)f)
((Y)(e)f)(x)f)f)(((9)(Z)f)ﬂ(Y)(X)f)f)traﬂs)((l)(((y)(e)f)(x)f)f)(((e)(Z)f)((Y)(X)f)f)(((Z)((y)(e)f)f)(

Timing compile-0.1s (0.0s+0.05+0.ls+0.05+0.05) run-1,3s
*)

S

b\

7 G s chollnges
i kel [iuebing \Fm&gg,:mﬁ:w
oty gl o the malic bgunge ?
of,mwww(w\
.mrgra-g‘? - ey smag s * bl
fro uminioling @ o
e A malinkion o ke

Terminating General Recursion

Bengt Nordstrom
Department of Computer Science
University of Goteborg/Chalmers

S-412 96 Goteborg
Sweden

First Draft, February 1987

Abstract

In Martin-Lof’s type theory, general recursion is not available. The only
iterating constructs are primitive recursion over natural numbers and simi-
larly defined inductive types. The paper describes a way to allow a general
recursion operator in type theory (extended with propositions). A proof rule
for the new operator is presented. The addition of the new operator will not
distroy the property that all well-typed programs terminate. An advantage
of the new program construct is that it is possible to separate the termination
proof of the program from the proof of other properties.

1 Introduction

Martin-Lof’s type theory [1,7,?] is a programming logic for a functional program-
ming language. There is a formal system in which it is possible to express not
only programs and their specifications but also derivations of programs. Versions
of type theory have been implemented in Géteborg [4], Cornell [5] and Cambridge
[6]. Using these systems it is possible to use the computer to check the correctness
of program derivations. »
Type theory relies heavily on the identification between types, propositions
and specifications.
The judgement
ac A

can be read as:

1. a is a construction for the proposition A
2. a is a solution of the problem A
3. a is a program which satisfies the specification A

4. ais an implementation of the abstract data type specification 4 [8].

It is a theory for total correctness, that a € A means that the program a terminates
with a value in A. Compared with other functional languages it has a very rich
type structure in that the type system can be used to completely express the task
of the program. For instance, the type of a program solving Fermat’s last theorem
is

Z
(Tz € N).{n € N|n > 2&3z,y,£ € N.z" + y" = 2"}
Wether there is an element in this type only God (and Fermat) knows.

If the type structure is very strong, the program forming operations may seem a
little weak, since general recursion is not available, only primitive recursion. From
a metamathematical point of view, this is not a serious problem. We know that
primitive recursion together with higher order functions give us a way to express
all provably (in Peano’s arithmetic) total functions. This, however, gives no relief
to a programmer who really wants to write down a program! From a programming
methodological point of view, it forces the programmer to prove the termination
of the program at the same time as the program is derived. It is often convenient
to be able to separate the termination proof from the rest of the correctness proof.
Another serious problem is that it forces the programmer to in some sense estimate
the number of iterations the program will make. This information is not always
available, an example of this is the lambo-function. (This introduction will be
expanded later).

The purpose of this paper is to show that it is possible to extend type theory
with an operator for general recursion, while still not giving up the requirement
on termination.

2 The Syntax of Type Theory

Expressions in type theory are built up from constants and variables using appli-
cation and abstraction. An expression which cannot be applied to an argument
is called saturated. For instance, in the Natural Induction rule below, p, N, d,

C(0), e(z,y), C(succe(z)), z, y, natrec(p,d,e), C(p) are saturated. The expression
C is unsaturated, it expects one (saturated) argument, the expression e expects
two saturated arguments and, finally, the primitive constant natrec expects two

saturated arguments and one unsaturated argument which expects two saturated

arguments.
If z is a variable and e is an expression then

I.c

will denote the abstraction of e with respect to z.

3 Primitive Recursion and Matematical Induc-
tion
Consider the rule for natural induction in type theory:

Natural Induction:

peN d € C(0) e(z,y) € C(succ(z)) [z € N, y € C(z)]
natrec(p,d,e) € C(p)

The rule can be read in the following way: We may draw the conclusion
natrec(p,d,e) € C(p) if p € N, d € C(0) and if e(z,y) € C(succ(z)) under the
assumptions that z € N and y € C(z).

Using currying, we can slightly rewrite the rule as:

Natural Induction’:

pEN de C(0) e(z) € C(z) — C(succ(z)) [z € N]
natrec(p, d,e) € C(p)

So the problem C(p) is solved by the program natrec(p, d, €) if d solves the problem
C(0) and e(z) is a “step-function” taking a solution of the problem C(z) to a
solution of the problem C(succ(z)). The justification of the rule is based on the
semantics of type theory and the computation rule for the primitive recursion
operator natrec:

If the value of p is 0 then the value of natrec(p,d,e) is the value of d which
solves the problem C/(0).

If the value of p is succ(0) then the value of natrec(p, d, €) is the value of ¢(0)(d)
which solves the problem C(succ(0)) since

e(0) € C(0) — C(succ(0))
and
d e C(0).

If the value of p is succ(succ(0)) then the value of natrec(p, d, €) is the value of
e(succ(0))(e(0)(d)) which solves the problem C(succ(0)) since

e(succ(0)) € C(succ(0)) — C(succ(succ(0)))
and
e(0)(d) € C(succ(0)).

In general, if the value of p is succ(a), then the value of natrec(p,d,e) is the
value of e(a)(natrec(a,d, e)) which solves the problem C(succ(a)) since

e(a) € C(a) — C(succ(a))

and
natrec(a,d, e) € C(a).

4 Course - of - values recursion and Complete
Induction

In course — of — values recursion we have a step-function e(z) which takes a solution
of all problems C(0), C(succ(0)),...,C(z) to a solution of the problem C(succ(z)).
How can we express this? We want to have a function e(z) which as argument
takes a list or a tuple {go,91,-..,9z) , Where g; € C(7). A convenient way to express
this is that the argument of e(z) is a function g such that g(i) € C(7) for ¢ < =.
This is an element in a Cartesian product of a family of types, i.e.

e(x) € (I1 €() — Clsuce(z))

i<z

where [];<, C(?) is the type of functions & such that b(f) € C(7) for ¢ < z.
We can also express the requirement on the step-function e(z) as:

e(z,y) € C(succ(z)) [z € N, y(2) € C(2) [z < 1]
So we obtain the following rule:

Course-of-values Induction 1:

peN d € C(0) e(z,y) € C(succ(z)) [z € N, y(2) € C(2) [z < 1))
covrec(p,d, €) € C(p)

where covrec is a new primitive constant which is computed in the following way:

The value of covrec(p,d, e) is obtained by first computing the value of p. If the
result is O then the value of covrec(p, d,€) is the value of d. If the result is succ(a),
then the value of covrec(p,d,e) is the value of e(a,z.covrec(z,d,e)), where z.e is
the notation for the abstraction of e with respect to the variable z.

So if the value of p is O then the value of covrec(p,d,e) is the the value of -
d which solves the problem C(0). If the value of p is succ(0), then the value of
covrec(p, d, €) is the value of €(0, z.covrec(2, d,e)). But €(0,y) € C(succ(0)) if y is
a function such that y(z) € C(z), for z < 0. But z.covrec(z,d, €) is such a function
since covrec(0,d, e) € C(0).

If the value of p is succ(succ(0) then the value of covrec(p,d, €) is the value of
e(succ(0), z.covrec(z,d,e)) but e(succ(0),y) € C(succ(succ(0))) if y is a function
such that y(2) € C(z) for z < succ(0) . And z.covrec(z,d,e) is such a function
since covrec(0,d, e) € C(0) and covrec(succ(0),d,e) € C(succ(0)) .

We can simplify the rule for course-of-values induction if we instead have a
step function e(z) which takes a solution of all problems strictly smaller than z to
a solution of C(z) . We can then drop the second premise:

Course-of-values Induction 2:

pEN e(z,y) € C(z) [z €N, y(z) € C(2) [2 < 7]
rec’(p,e) € C(p)

where the value of rec'(p, e) is computed by computing the value of e(p, z.rec'(z, €)).
We get the rule for complete induction if we take away some of the constructions
in the previous rule:

Complete Induction:

PEN C(z)true [z € N, C(z)true [z < ztrue])
C(p)true

5 General Recursion and Well-founded Induc-
tion

There is nothing in the rule for course-of-values induction which is particular to
the set of natural numbers. The reason the rule works is that N is well-ordered
by <. We can generalize the rule to an arbitrary set A which is well-ordered by a
relation <4. The computation rule becomes a little simpler if we change the order
of the arguments:

Recursion rule:

Well-ordered(A4, <4) pEA e(z,y) € C(z) [z € A, y(z) € C(2) [z < z]]
rec(e,p) € C(p)

with the following computation rule for rec:
The value of rec(e, p) is the value of e(p, rec(e)).
Notice that we get the ordinary fixpoint operator by defining

Y(e,p) = rec(z.y.e(y, z),p)

because then Y(e) is a fixpoint of e, i.e. e(Y(e)) = Y(e), i.e. e(Y(e))(p) = Y(e)(p)

since

Y(e,p)
rec(z.y.e(y, z), p)
(z.y-e(y, z)) (p, rec(z.y.€(y, z)))

- e(y,z) [z := p,y = rec(z.y.e(y,)))
e(rec(z.y.e(y, z)), p) |
e(Y(e),p)

Y(e)(p)

iom 4o

where
—+; stands for “computes in one step to”

e[z := a,y := b] stands for the expression obtained from e by simultaneous substi-
tiution of the variable z with @ and the variable y with b.

So we get the fixpoint operator by swapping the arguments of the first argument
to rec. If we try to formulate the previous rule using the Y-combinator directly we
get the following

Wrong recursion rule :

Well-ordered(A4, <4) pEA e(y.z) € C(z) [y(2) € C(2) {z< z], z € 4]
Y(e;p) € C(p)

which doesn’t make sense since the first argument of e depends on the second.

6 A simple example: The termination of quick-
sort

The scheme which will be used for solving recursion equations is that if

f(2) = e(z,)

is a recursion equation then it can be solved by defining
J = rec(e)

where we in e have abstracted the two variables z and f. This is correct provided
that the requirements on the parameters hold as expressed by the recursion rule.
In the simple case that the family C(z) type [z € A] does not depend on z, the
requirements are that in the equation f(z) = e(z, f), f is a function from A to C,
z is an element in A and f must only be applied to arguments smaller than z on
the right hand side of the equation. These requirements are exactly those which
are used by programmers of functional languages in informal termination proofs.

Let’s look at a termination proof of quicksort. The recursion equations for
quicksort are:

quick(nil) = nil
quick(cons(a,s)) = quick(less(s,a)) cons(a, quick(gt(s,a)))
where nil is the empty list and cons(a, s) is the list with a as the first element
and the list s as the rest, less(s,a) is the list obtained from s by taking away all
elements which are greater than a and gt(s,a) is the list where all elements of s

strictly smaller than a have been removed. To solve the equations we have to first
rewrite them using the listcases- expression: ?

quick(p)= listcases(p,
nil,
a.s.(quick(less(s, a)) < cons(a, quick(gt(s, a)))))

This equation can be solved by making the definition:

quick= rec x . y . listcases(x,
nil,
a.s.(y(less(s, 2)) O cons(a, y(gt(s, a)))))
In order to show that quick terminates it is enough to show that 2

quick € List(4) — List(A)

In order to show thﬁis we have to show that

1The primitive constant listcases is used to express pattern-matching over lists. The value of
listcases(p, d, €} is computed by first computing the value of p. If the value of p is nil, then
the value of listcases(p, d, ¢) is the value of d. If the value of p is cons(a, s) then the value of
listcases(p, d, €) is the value of ¢(a,s).

2The meaning of a € A is that the computation of a terminates with a value in A.

listcases(x,
nil,
as.(s(less(e, a)) <> cons(a, v(etls,)R List(4)

under the assumptions that z € List(4), y(2) € List(A) [z € List(A), z < z] for
some well founded relation <.

This can be shown by induction over z. The base case is trivial. If z =
cons(a, s) we have to show that

y(less(s, a)) < cons(a, y(gt(s,a)))) € List(A)

which holds if _

y(less(s,a)) € List(A)

y(gt(s,0)) € List(4)
since the concatenation operator { takes two lists to a list. But this follows from
the induction assumption if we can find a wellordering < on List(A4) such that

less(s, a) < cons(a, s)

and
gt(s,a) < cons(a, s)

but this holds if we define < to be
a<b=Fa<y#b

where #a is the number of elements in the list @ and <)y is the usual order on
natural numbers.

Theorem 1 Allsterating constructs in type theory can be reduced to pattern match-
ing and the general recursion operator rec.

Proof outline: For instance, if we define 3
natrec(p, d, e) = rec(z.y.natcases(z, d, z.¢(z,y(2))), p)
The value of natrec(p, d, €) is then the value of

natcases(z, d, z.e(z,y(2))) [z := p,y := rec(z'.y'.natcases(z', d, z.¢(z,y'(2)))]
= natcases(p, d, z.¢(z, rec(z'.y .natcases(z', d, z.e(2,'(2))), 2)))
= natcases(p, d, z.e(z, natrec(z, d, €))) (1)

3The primitive constant natcases is used to express pattern-matching over natural numbers. The
value of natcases(p, d, e} is computed by first computing the value of p. If the value of p is 0,
then the value of natcases(p,d, ¢) is the value of d. If the value of p is succ(a) then the value of
natcases(p, d, ¢) is the value of ¢(a). A more readable syntax for the natcases-expression would
be

casespof0 : d,succ(z) : e'endcases

where all free occurrences of the variable z becomes bound in the expression e'.

If the value of p is O then the value of 1 is the value of d. If the value of p is succ(a),
then the value of 1 is the value of e(a,natrec(a,de)). So we have shown that natrec
as defined above is computed in the same way as the traditional primitive recursion
operator in type theory.

The listrec-operator and the w-rec-operator can be defined similarly. O

7 Remark

The general framework within which this is expressed is the logical theory pre-
sented by Martin-Lof in Siena 1983. This is the first draft of the paper: more
examples have to be added (for instance the lambo-function and binary search)
and the propositional function which expresses wellordering has to be made pre-
cise.

References

[1] P. Martin-L&f. An intuitionistic theory of types: predicative part. In Logic
Colloquium ’73, North-Holland, 1975.

[2] P. Martin-Lof. Constructive Mathematics and Computer Programming. In
Sixth International Congress for Logic, Methodology, and Philosophy of Sci-
ence, pp. 153-175. North-Holland, 1982.

[3] P. Martin-Ldf. Intuitionistic Type Theory. Studies in Proof Theory, Lecture
Notes, Bibliopolis, Napoli, 1984.

[4] K. Petersson. A Programming System for Type Theory. Programming
Methodology Group report 9, 1982, University of Goteborg and Chalmers
Universtiy of Technology, Goteborg, Sweden.

[5] R. Constable. Implementing Mathematics with the Nuprl Proof Development
System, Englewood Cliffs: Prentice Hall.

[6] L. Paulson. Natural Deduction Proof as Higher-Order Resulution. University
of Cambridge Computer Laboratory. Technical Report No. 82

[7] L. Paulson. Constructing Recursion Operators in Intuitionistic Type Theory.
J. Symbolic Computation(1986) 2, 325-355.

[8] B. Nordstrom, K. Petersson.The Semantics of Module Specifications in Martin-
Lof’s Type Theory. Programming Methodology Group report. 1984.

The LF _——W Syatiun

n a %o‘z\w& .s%’kzm for Ami\&uéy
avediows o} Mo alale

T K
T A:K
ThH YA

“fR’Q'M K= /I;Vre. }-Trz.:A. K
|

¢ | Tx:A.8 | A B | AM
'x-‘ ¢ I/\‘:(_:A."’l } M N

4 >
"n 'si

M

]

)
1\
W

S>= A: K) a: A

U

6"4:"";6"\4

q
1l

ZZA

\AJ-'\W s\’M)wm)\ ww\rc\d'(o'\m

7.

A = B Ty
- TETK:P&.B ‘TLH.Q
q. ’l"\x:A}';;_-:_ M B
Tl’;—-u: Ax:A T ﬁx:A.B
o, Tz M:TxBA T NB
} l’z" MN - AL*N]
—_ . ! ~ (
43 M AK Th K Ko< K
{
ThH A:K
A4, T‘l—i‘ﬂiA ‘T‘tz- A:T»“{ A=A
Th M A
EE AN RV hewr do we Aediwa =~
1 coupuand Roswn ol Py - conadion (p)
ey A=A W FAOAS A
\,a‘(K M\mw
3. A= A yw A ca'\«vfs.\,\ A

fo K MW‘*QA’\Q"‘,

Ttxé, 5 JAortwnr o QA\M\/AR.Q\C‘" \%
A andh K e Qoo d Roarern wirt
(2, ‘K — YedumKiom

A \A‘“//L
N /

Mnfortionadely Bic jn wel Fhe cane

j.e.

Az AL (f\x:B,d)x. | x4 Fv Bd
/5 \(‘\
A AC Ax:B. C
4 &= =

4
3 <=> 4 AA oM o\.zM \)\,oMq\»\

W/&bj’ AN m Loare g,
'WA%M we Lurc %o\,\ud.ﬁ-cz;\ ?

st ol \Mo\oytwal > Wo\o‘&wﬁv"z
T M:A 1.
wad wa basas o{, o LF Md’ax{o\« eL

a a\,\\re)u\ Wzﬂmu neRaXion amd o‘, e
wder umon wWadh K o Rosted

Rde 4
T']—Z x: A 5) A e 1!
Tl"’i d . A A«(d-A e 2

'Tﬁ\i.sﬂ nm am adumusable rule
T = H:A TT— Tt
il oEm WS

/

‘ o
T',T‘ | A
Zo

&L‘\WV\%] <\,\MQ,Q.,UM\AJ},>
S(xw\z\,t\wud& ade olem cou e\ A ‘
\wo \)\'Oog, o‘, e A—U\A\m&f\%&\:} 0\, a vl G
A.o\uz \O\ﬁ J\MAMJLOM oM ﬂl& %M o\,
%o*wwu&cu oL \/\,oo‘/\ [\ A-)J\.Q,CXQA-& A Vvale
~ oMy a,o\n.a\uAXQ. skw\& Ron 2>
Ea. @) subsihivng o) squdn v F o
ww\rAM g \TID o The o\J-)\A\M&’\Lt)
OQ/ S H., wmaawadkom e z\.o\ AN |
™ e, &A%M&. A’\ﬁY\ud(/u)\,Q o&/ FolL
) /(A- M. TTAR:O @w- (A)~>Twa (B))

Hilbek—FolL = Thae (A>R)

fd&'w b oamcthon adulsmible wale o Mo
SyATA

T\-—H:’V‘A T‘;Z’A:,QA — U:V

T AL*m] = VL] vIm]

OIS ‘r)cér (

L’OMTWCX\ 22V}

- Q\A-Q&’\C\&% o \NLOALX\\,\AY ww
MJIA ox, \)'“002/
‘ ~elle Vo <o &po\;‘m

_ Zx)ﬁz,\/«uh! wak o o wodX am Yre LF
- ,\DYL\M)JC’U) 04\/ S\””&\A)\()\ »Q,Dﬂr\',c,,s
.M H‘.\\l)%*'} N.b.

_ ik asul M?\’M AN OMA o‘,
T Aeﬁ\w“f % WIS O |

\u%u}(eomaluii ¢ &M\?MJA?

i LF Tyre Sysem Aeci Aty

Cbeobr amkh hate Tadko (linewods)
toom e Jdue el mﬁmm

e folowrua wde b adwmismble

T meA T e
Tl A
pevided TV mG o FVIA} ¢ T
, Qom‘\fm‘\'sh\} v Coulanls {A\ < Z‘_:
T 2 o subseqwences o&,—r'a»w\f'_’\,ub.

Smp@./\e\/\;\,\;_pa/ (A VTeHATH)

(Ploo -

I)(\/'Lcuyuzjb.} C‘O\N\\-Q):Co\j—z.o\
Acadaitls dea do be proved Kk

T+ w et o arvvuwme W vwle Ao
Aie K)CI’Y\WM\&’&) am \)wo\nc 5.

» ad War s oo \,O‘L e 0\&0‘\\%& /\»\\A”Cz_\»\ o%‘
O\»IA orarme wmetaPiectell e el Xox Yoo m.\a\p_a\
:»P‘\zm,)mék ax Amwkr\z; , dave dreen Aonved

Free vaniadler o ewladls i Me perd Tmw

r 2-Fol
‘A douwvalle a\ah} J{_
. —7
eﬁdl\-v\ P, S § é:T7 o% <L e Z"Fou

1= 31 Pa (VE?Qx>

Mok - a o © Ko adigua 0‘7 a
W weeded

\M.,NM. "t’ooQA» /\M, A«b\c)«, \.J\OOXA ale
— Stheua Norwm alirali em M redmdion)

oL ok 2X PeeAinsui
= Qoo Romen Yon covied exPariohs

e Rean vwmdonlam Aw 0"/ Re

by Bie wmows apdeetic }\«quwm.

40

“M{

v.r‘?u/\.z
7(_:A GT -
7 A =L L
o [~]

11,

ok o] M drdsion ARgerithu
A (o7, Tvpe) Sk Q(*‘;_’K)

Z oK

A (lgzy Twe) ek (13 ATe)
A (T AbrTy) ded A (Th ATy

O (T AK) dude A (Th k)

O (T A s o (ThE ATye)

WSy t?._ () “*V(‘ﬂ A

12,

2 (TTh B) dedd A (Th ATye)
dede O (TeA by BTy

T . ,
2l (¢) wWowm Kl ¢ K e 2L

onbeedi 2T ()
N0 YR AR
2T (%) wkem A g xAET

2L

’RL\MM)“’;A

Tipe Xadvds i alrhadions A

Tw ovden X ddde s of Mhe Jope
2D (A) cmavpy K

we Weid
D'h.ouq)\)O‘b\'ﬂﬂ\h‘?’mo\/\ , o\, A and K

cond Mo\wsa oL Uouvmal forun

For Mae a&&\(o‘u.)&\,\lv\ o Ve Veoved Aoumd Al
Cow \RXT we \weed

/.L) Sw\fb\,cc)\' Re du X o ‘rﬁ.eo‘m»z\
g T vV P \ u--s‘r;,_‘u‘
&RM_ Tl’i U' AV

e A" wly ervantial
e Mooy .

2) SN
2) A K

15.

4.

TC\.L AL o\, ﬁwv(om\w}/ \)“"’V \m,),

EO& 5‘/?,0\? '\) o‘Z)\MAXuQ—-oxL o\ CAM o

be e a)ﬁ'va\ w«ha Ma
ar a wuﬂ@w X V&Ada\A Bk

4 TR M A

o UanTigre (M) cam e T o ML
where \)\M‘\'\»X‘{Lﬂ) Avm oy e
JW\.& R, AR o{, \"‘

Treol (4 Pletkin)

Alawne v: KA — 61\/\4\/\&"’1’%%
e (e) = |
T (TeAK) = 2(A) = 2 (K)
v (d) = x
2 (WAL B) = 2 (B)
z (A H) = T (A)
2(MxA.B)=2(A) = 2(B)

Fak

J‘ A W\’\ngl A

o 2 (A) = = (&)
A K MV K' |

Pram 2 (K) = 2 (K')

_‘)ﬁmtw
~% AvM —— W'd'\f‘/\-ao\)'MX \
c = c |
T = <
x = x
o= AW
v - W
~ ____H,_/
TaA B = Il A DB
— e\~
Ax:AT = ()\w Ax.“’\)/\ \4?‘\/(})\%‘“\)
—~— L |
Ao RB = Oy 2 B)A 1é Fv (G A)

15,

(Pwké‘ziow
T A K ik .t.ICF') A e (K)
TERCA @ FH e (A)

| é,(‘l")x:A) =T T CT'), ii"tCA)

’5,_,,:&. L“A A Xl o dudiom ow ook
,r\,g,n ’ﬁ":o(——>°<-"‘7°<

)
\ o~ e /\/‘
V‘(——(z\ﬂ ™ — ln
X1

16.

TOwANYS SEANC -
SPACES Fin T HE

ED InD Unék LOétC n(
FrAMEwIRe ,1

COnvon . 0T (4,

| w
PRooF chewe [evinivg [DIsCoveny

THE SOCIAL FRAREWINIC

N ATHRENATICIRNS AvD SOFTWANE
ENGINEE LS

| |

LOGICIANS
) |
I
TRE

ARTIFIGAL INTELIGEWTIIA
\LINGUISTS

Conrur SCICNT:S!.S

PROOF LIsTS

@

A CALCUWS OF PROBLEMS

Wokk W LF exrewser
Wit H A:e BT>C o
€ FUMCTOWAL TYPES , poT ayuwaeé

AS av ADBReviaTww. ALSO, FomieT

TE SlewaATURE ~#D Allow |
OECLARRAT 14ns A:.NT c‘c:%m{fx ‘ Ko

PROBLEMS are T'F A
suck ot ' F A Thpe

i

{
i
1

- SOLyTIowS ame oByears M

St THAT T-' F 1A

(wie 10entier ve 1o

='°Z)

" THE CALCULYUS @

mn T,<AT kA

>T

ST T xArT
T A®B
—j
T T, x:A D
TF B
| | 2 A
~»E T'EFB T 2CFEA
_ T A
\ (e $:0=2Cav T)

TE T =2:C() A

T FA
(€ #:chtj) v T awe THe:B)

- Sowrnes®

/

CONTRTURE THE CALCOWS IS (ommier

6

® f ¢

fﬂ? SEA RCH -SPACE VIEwW

¥

s GOALS ~ PROBLEMS

¢

% RULES ~ OPERATORS

¥ (ReFmE neaT RULES,

¢ PRINITIVE TACTICS)

&

s OPERATORS

¥ NORDAUSATION TFA#TD
' I
%,; T;X.’A' F B

r (Ave ogwe hlﬂé’)
SINPLE
PRIDOE TFEA 3
*oUT /6\ (8:8%(w?)
5 |

. T LB _Cz:C FA

giCllﬂJé(TdRF CAV ALWAYS NORNAUSE
1 — leePS CORNPLETENESS.,

A DERIVED OPERATIR @
M IDOLE - 0UT
TFA

T'FCE) rz:D(EFA

(whewn { TT C(;)—? D(})

1y v T?M/oll't?

CONIJECTYURNRE Fonr JUOEENREATS oI

Tis Forhr 1w | weew omcy wiF
THE DEAMVED OPERATONR

FURTHER OPE NATORS

ToP-DONW BOTTON -UP_
THA T HA
" (mmv (wa=¥ %

T+ ClE) _‘ T’ z: D(%) }-A

- N
k3
;'..-
~ \

&

EXAHPLE

TW = PROPLOEIC
IV (LUPES . 5T ;rgo(?-*Q)"’ U’Q)

TEHITT A>(3>5A4)

AB:o
l NORNALUSATION
T R:o,Bo F AD(B>A)

T 4 , Tor-dwwv ov OT
with PP A , Q> BOA

"+ A> (B>R)

NORNALISATION

TAFB>A

| I ToP-Pewasr o4 OL
wik P B, QA

T A FBoA '

| NORFALIS ATIONV

T;A,B - A pruninve

INTRIMCTIIN RULES Fon
" UNARY TUDEEARENTS

- C(x5) - i T($(}
Iap_ 291\/” | ow
(F -
‘["}ﬂ. g £) (lF' HI-B({))’

NownaL FOneF(T—' - E('Z'; ii))

M;E RENOVES WNIFO FRIf RATCHIN G
KAV ONE A LWACS pestricr

10 TRE TéP-Ddwa srenaron !
-~ WHATEVER T Ay ﬁe‘M‘/

%WHAT ABOUT MUCTIANY

Jaﬂ&‘ﬂebn?

> wHAT ABOuT LNOUCTIVELY pERIvED

CPEAATONS (SEVFRA__I_: svct B 2wmo
i OCCURS 70 &)

E_!A M PLES

@3:[: P 4Q "'eqo ‘PDQ
. OPERATOR | T FAST
i l
TA I
vl . ';:(P(X) h’:(—w Vix:¢. POx)

0PERATON T F Ve F(X)

|

T xe b F®
— EL PG ,;:e-m “31.1)
" 0PERATOR T F 3x:¢ F(®»

It (F Tke:e)

F l‘F(f)

ELINIVATION RULES

FIRST FORH

§X@Ahn€ﬁ
Q&
FT&
FLA-o FoG H
H
O pERATIN
" F H
l (JIFDG v T’)
T§F=>6¢ FHH

’ \
/
/

THE T2:GFHH

=13
P(y)
[3.- ¢
P.'é-n; Q:e 3)(:(P(X) Q __
Q
“OPERATON
T"EQ

I (wInc Row]")

T', y: (xFw) FQ

3 = POV
|

P, G Vx:¢ PO Q

&
OPERATOA

TF
2 (lF x: Ve F&))
I IS v ‘p)

Te:LfW)r@

&

}__l ITNESSES ANP UNIFICATION

T oA Do woTr SuUrey Ex TN

JNEForraren (tice ON /4}
BUT LEAVE gfEw WITH ypuiANe
(AN BE FIU60 N LATER

BY SUBSRWIWA, FUESSER PERHAL
BY VUNIFICATIOV.

T+ $)

T, V3:B(® F C(z3)

'ggknﬁé
a: 33_ Vx ﬂ(&}) F VY dy R y)

a 33 Vx 726”)))(.'(F 3y 203y)

a: 3;{ IV Ry y) x: C,y: Ry y) FIuh

— X4y, b Va Rixy), Vi FROLYJ
'

""“-\/)(-‘(/ ?: L} v&%/ Vyi:ﬁ V)(l.‘(/ 7?()(/’3)

PRINIT)VELY SOLV ATBLE

AS X'Px ywme 10)y)
Yy

Avp R(xy)

AND PROPERLY So AS
TG, — Fyi
‘./-x‘ C/g:‘l P — '..x: C

”ia“UWFnaan/cé‘ ' -
a: ¥y de Nhoy) +dy Vullsy)

|

a: Vg Ax /U”)/'V;':t F Vo D;y?

e l/y 3147?(”;%{: xe FRGyY

e, gy aig gy Vnt:e Mbyy)
R o)
NOT Pricainvery sobVABLE

AS THE UWNMIFICATIIN
X X

4> ¥

IS ANeT “PREPEN. A3

NN / y: e

Iwmplementrarion & Substibaien

{

m Ha

AUTERATH \eriQ icarmow Cro q rawm

RUTOM ATH

Vﬁr\. e;m‘:b n

?"bﬁt’own

@b&.‘% | JX- TN

L S..\K'E l':hs

s Bruijn Proclenecliing
48T . wew ‘ e&&s abb\e
(i (¢ waacre "‘*"{
deecidalic)

.ZQho“wM - siwu\&ﬁus Q.;“w; tw

\9)1 -147¢ Burcouahs Rlqel
—g...\"‘\{:..s WG Oy 0&'—‘5‘
- inferachive

- \iy (20,000 fines)

G ad. \we" How iS Su‘at\‘“u\‘h“
e‘u” .

)
L wa r\‘- w‘a%'\"‘a‘ .
\a 8¢

:

3

AVTO I ATYH
Basted on . Dt?%-.:n.u..

2. \-C‘\ﬂ*\“s '

. ﬂf}h‘cqh‘ou R ‘-‘Q:u:ﬁou] . S.rg.h.ggh'.u

i dlx,, . %) 2 D

Ry oo ¥g
“'“ ch"“‘3 ab) ’ sa‘o“ h. D

. n?e\-' cetiow of euv.c\-:em teo Arguw anta e-fco\uc)n‘ﬂ
(Mx:0.8C) > s; - |

Difficuiries with Substitution
. Y .ovnverg:on.
Q. Cepy§n5 .
Sg\q\-‘gag . de Beuijn iudcgg;,

(%o Na X, %) xvgx‘((y,;x)

"\ “0 ¥

sz

‘\J

())m..((oa;)

X Qetr\:\-ich La hﬁ\m}.&

(PAL -SeE™\® AL)

wRriablen o,\, 2,7, " ?
Congyonds *.; " a, e, ' €
ex?_ ce ESiowd
¢ vaelow\ &Y |
o8 I
\ - - Seawnwot Rz .« O™ W ''e
! ; ? (“) e.' o ‘\ X ‘vgnkl-ovm
Cimulian gous Supshiveiis® o gt
, .‘e _‘: . e" . ‘”%. % & ggc\nu-w
Yo | |
S _ \ = %;
sg ®¢ p(scP)
, = € -
Thiw S S » . T

€

& reducrion
A a (?eeN.Mugc\\'eh %?—\T()
e(®Y 7 o bt

eh

Zand\e ven ‘mplementakrion

Contextrs Cunctrions T Ww — T,

k2o 'T; is the sev R Ferws

"'"r?"m"-3.»3'*5“"'“-»'" R, R0, C

CQ“‘,;*‘ r‘ e ve o s u

C swhould e \'v\\-u-rrc.rc-\ wW. .4

@rua\u‘o..s own Canvliwyj

Extevsiown: Y

A
Cukv\-\‘\ns : T“

Wﬂ-u?ro\-e.h‘ou-. T_(C,) € "r‘
- TOPG), v) 0 demlC)2 g
TC,M e { > W' *

: ® den(T)e &
X (e\ﬂ,r)z P CI(R,T))

R

EYCH o)

Afr\:cah‘on A & - SO(Q“G_\'\'On

Bl T T gt g i R e 377

I(eth), ™) >"

T(aw, 8 ™)

E: A-calculus ¥

NariaW\ea . 0,,,2,73,...
(T)‘ Gpplicarion: (qs)
abﬁ?c.ch’ou: MA.Q
Substivution r {: ® %
n
¢ . ¥ S ;'E
A
2 v O !.\ A s \t.%
\ ° (b a(QC) (5 ‘ S C)
Ugdating iy S x%c —\5 8.8, ¢

“
k
o e . e AB \ @ (e
| \ni 2% 1
rewmains O uh G = (uil8uzc)

Ha' xec—;u Bu oG

Twuw's 4, u“ u*” . i“‘: u:... 284w t
!A":"‘ ewetlaw
“, - " ST wrlewm
* ¢ 2
2. S“ u,/ = { A R
U: Rew<clam
.5°s" _g~ "
) A 3 s Rem =) ﬂ “’h
S [

Rrraducker (An.8c) > So®

Ny 'l

(rawer: Herg ithe conteiut sheuld S Qrvadad)

TN ERRI2S

Zownd \enver iy f\w%\'e&\'o\q 3
"W (T xw)
Cowntex\s ?"”H‘\, Cuwmetions ™ s (T a-t)

2 dowml(P) Cinive

» ° (A)C)e(‘,h) o e C

C shoulad \vo \nterpreved wer k. O

O‘aua&:eu: Cw Cownserxyy:

Exvrension: ik

(placing extrra dievs: o+ .)
Cubrtiug .“‘

L"G—w‘ e v(u: e Cindd eutriar)
"

s A ‘\,:Q,“w.‘gv. H (ect w dﬁ (‘-‘))
ks ?ﬂ,t) ¢ dow

(Lt emding the dowain Yo)

imtwpeavaren Tee,r)e T e

bC-v
| U ‘1(% Y; t") |
1 Py} ® Y XY
AT -& K 4 \cdcw(f‘))1 <6, ‘7
\ i ; pf dew ()

T(r2),T) = (TR, T) TISS))
T(2A.8,0)= AT(R,C), T(8,e' ™)
Tuw's 1. T(UL A, C) = UL TR, c*"T)
ere I(UGA P) U, T(AFT)
2. T(A C)z=s" 1T(p,T)

} (eev %o
whare ‘Bc—:(u'e')

A?f\.’ca Fon to ‘3

vedaction

1%,
T e e<>(}c¢>€¢>¢ (ag’

IAZ T'¢ 2A1A2)

S YA T 5~L)e}< 3¢3¢3%¢> ARV P

€
than T((ABY) > o+ (A2)

® ¢ o <)£>é‘)r‘)g f()()‘\()<‘o‘7 R

oc: I I(A,0) 2 T(AALAL, T

N '(‘I'"

W\ o -:((ag,\,r‘) 2T (®, ,s:.'“r.‘r')

Cowmbivation £ T & 1T

Twis i awdsue-mu.c.
Talkes Sowe XHiwne,

Cowm b wation oe Zovwd\even

“implementakiong .'» |

{T\nt Sew-¢
ﬂgcev Wi\ cepear,
Meveover:

Qo typing (o0 variautes owmsvents suel

expeesrions) Cowv Ye \'m-g\ww"“‘ “iivy
\‘l\fs “V\‘Q‘rs

(e

Discus sion aQ re Sl

\'. L avndlevan \mg\twuhwcq
S adequate +o descr e subiriVvution "
' | b [el
Q. Zawnd laven i@ \mn anbe # 0w o
3 cétﬂuoh. Yo &b\m\... owutiida
‘Q"Wﬁh U O rediriow
3. 'Zcu.d.\wm \'m?\w QA-atio w do@A
wav fcﬂ\y{eg Co@y ‘“’3‘ avnd ‘araloce
tediness ‘e requited wewery Sgpece.

4. A3 vo aspacks oR ecreuu»s-

3 hove we \erd Packs.
The RTo AT elhhecher 5 vatbher Soed

(’.r o ProQrem ever (o Yyeers o\d.

LS. Jutting

‘."\,.Q Harthewarey €
Cﬂh'\h\‘“; Seite e
- LAwiv., & TCG&\».\QJ? » Clndhew.
| NQ‘QM\%MQ

v

: Partial inductive definitions
_ by
Lars Hallnis
Swedish Institute of Computer Science
Box 1263, 163 13 Spanga, Sweden

Lét us assume that f is a function defined by a set of equations E:
fO)=a
f(n+1) = g(h(n+1),f(n))

f(n) is defined if we can compute f(n) in E into a unique canonical value in a finite number of steps

using usual rules of substitution. One could say that f(3) in this case is totally defined since given
an equation f(3) = g(h(3),f(2)) f(3) is at least partially "defined" in some sense even if we cannot
compute a unique canonical value in a finite number of steps. This distinction is basically motivated
from an intensional point of view. It is somehow a matter of definability. When we write down the
equations in E we intend to define a certain function and if we read E with this act of intent in mind

"f(n) is undefined" ought simply to mean that there is no equation f(n) = ... in E. The situation is

‘]‘,
;
!

defining f by primitive recursion. Somehow this not only consists of an act of intent, but also a

similar when it comes to define semantics for formal languages and the like. Take the usual

situation: we define True(A) by recursion on some wellfounded relation. This corresponds to

proof that this act totally fulfills the given intentions. That is of course something much more
complex than just writing down your intentions. But just as in the case with a function f there is a
basic difference between bein,; partially defined and not being defined at all. This intensionally
based distinction is perhaps of interest when we focus on the definitions themselves rather than the
abstract objects they should present. So we do not just consider partial definitions in the sense that
the definition does not cover the whole universe U, but also objects in U that are only partially
defined by the given definition. The question of isolating total fragments that one can believe in
seems often enough to have very little to do with the basic intuitions on how to define True(A) for a

1

‘e

given A of some form. So perhaps the basic theory with its syntax and semantics may be simpler if
g'wc accept partial objects in defining propositions. We know that the problems concerning
establishing that certain theories really has a totally defined notion of truth as a basis is not a formal
matter, but a question of belief. The question is if not the task to present a fomal language with its
syntax and semantics in a certain sense is a "formal" matter and hence elementary?
In this note I will try to discuss some aspects of part;ally defined propositions based on an attempt
to interpret a certain class of eventually non monotone inductive definitions as partial inductive
definitions. The basic interpretation studied here is closely connected with work in general proof
| theory done by Martin-L&f,Prawitz and Schroeder-Heister (See [M1,3],[Pl,2,3,4],[SH1,2,3])7and

generalizes Aczels characterization of monotone inductive definitions (See [A]).

o

ial in i initi

T

- Syntax

Let U be a given universe of agtoms a,b,c. . . Intuitively we may think of U as a universe of
propositions.

If E is a class of clauses over U and atoms in U and e is an atom in U, then E =3 e is a ¢lause over
U.

Let Clause(U) denote the class of clauses over U. Let F,E.. . . denote classes of clauses and

atoms and let A,B,... denote an arbitrary clause or atom.

| The level of a clause or atom A is given as follows:

level(a) =0

level(E =) = max(level(©) | Ce E} +1

level(E) = max{level(C) | Ce E}

Syntactically then a partial inductive definition is a class P of clauses over some universe U.
Monotone inductive definitions corresponds to partial inductive definitions of level < 1. See the

interpretation given by Aczel in [A].

Semantics

To give a semantics in this context means to explain what predicate Def(P) a given definition P
defines. The standard interpretation of monotone inductive definitions gives the following
characterization of Def(P):

(*) e e Def(P) iff there is a clause E => e in P such that E ¢ Def(P).

It seems reasonable to think of (*) as giving the basic intuitions concerning the interpretation of
inductive definitions. Intuitively (*) says that e satisfies Def(P) iff there is éclausc E=e inP
such that all C e E "satisfy" Def(P). The question is now how to interpret this "satisfy" when
level(C) > 1. The intuition behind the interpretation given here is simply that "E = e satisfies
Def(P)" means that "e follows from E in P". More precisely we think of P as implicitly defining a
consequence relation + and thereby give a local meaning to "follows from". The meaning of "C
follows from E in P" - E-p C - will be given by a calculus of sequents generated by P in a uniform
manner. For the motivation of the different rules we need the notion of a total object relative to |-.

Intuitively the class of total objects w.r.t. |- is the class of objects for which - make sense as

"follows from".

A predicate C is a totality candidate w.r.t. Pand I if it satisfy the following conditions:
()if ee C and (E=>c)e P,then ECC

() if E=e¢)e C,then EU(e) cC

(iii) if Ae C,then F- A and G,A+ B implies F,GI B for all F and G.
Let T(P) = U(C | C isa totality candidate).

Clearly T(P) is a totality candidate and thus the largest totality candidate.

A relation | is called a consequence realtion if it satisfy the following:

Let F,E be short for F UE and F,C short for Fu {C}.

FFE will be short for ...FiC...(Ce E).

= _FEFe
FFE=e

FIE FelC
FE=e | C

=}

The |- = rule explains the meaning of "E => e holds in P" namely that e follows from E in P. The
=> |- rule explains what it means to assume E = e. If E = e holds, then e follows from E.

If E = e is a total object this means that if E follows from F anything that follows from F,e must
follow from FE=>e:F-E and FE} e implies F+ e and given F,el- C this implies F} C.
A consequence relation |- is called P - closed if it satisfy the following conditions:
let Dee)={E| (E= e) € P} andlet F.D(e)+- C be short for .. .F.El- C... (E € D(e)).

FIE
Fl e

Fp

where (E=>¢) e P

F,D(e)}- C

PF Fol O

- The P rule explains the meaning of "¢ holds in P" namely that there is a definitional clause E=> ¢
such that definiens E holds in P. The P - rule explains what it méans to assume e. If e holds, then E
holds for some definitional clause E = ¢ . So assume e is a total object and that e holds beacuse E
holds for E =>e in P. Then F-E and D(e)} C implies FI- C.

So to assume an object C does not only mean that we assume C holds, but also that the meaning P
gives to C make sense.

Now let Fp be the smallest P-closed consequence relation containing all F.el- e.

Proposition 1.1 Ep e iff there is a clause E = € in P such that Fp E.
Proof: trivial.

Solet Def®) = (e | Fpe}.

Clearly this interpretation will cover also the standard interpretation of monotone inductive
definitions. p will satisfy the usual conditions on reflexivity and monotonicity, but not necessarily
transitivity. SMCC Fp is implicitly defined by P itself this eventual lack of transitivity shows that
the meaning P gives to various objects is not allways the intended one. Note that there is a sharp
distinction between F,AFp B and kp A B. To assume something holds given a certain definition
is not the same as adding new clauses to a given definition. |

Let us call P total if T(P) = Clause(U) U U.

Consider the definition P consisting of the single clause (a = b) =>a. This definition gives the
general structure of paradoxes like Russell's paradox and provide a simple example of partial

objects: Fpa and Epa=b

a e b Fb

aa==>b}F0 =k
®F)

a b
e (b =)
_I—_a::b P

Fa (+P)

But not =p b since D(b) = . So there is no totality candidate C relative to P and Ep such that
ae C.

Letus call A false in Pif {A} Fp B for all B. P will then be referred to as a complete definition if

for all a inU either Epa orais false in P.

So (a = b) = a also give a simple example of a complete definition which is not total.

p ition 1.2
(i) If P is complete, then p C or Cis false in P for all C.
(i) P is total and complete iff =p means "if. . .then...".
Proof:

(i) By a simple induction on C.

~ Assume C is E= e, thenif Fpe by monotonicity EFpe. Soassune e is false in P. If p E

FE el C
E=el C

If some Ce E isfalsein P, then Ckp e, so by monotonicity CEkp e.

(ii) Assume that P is total and complete, If Fp Cand kpF, then kp C since P is total. So
assume that =p F implies p C.If FpF, then kp C and by monotonicity Fi=p C.If kp F does
not hold, then F Ep C follows since P is complete.

Assume that F=p Cis equivalent with kp F implies kp C. If F FpC forallC'e G,GkEpC
and not F=p C, then p F and not =p C. This is absurd since Fp Fimplies =p G and thus

Fp C. Trivially P has to be complete since if not kp C by assumption {C} Ep C' forany C'.m

Let P be given by

= T(p) (p a given propositional variable)

(TX) = T(Y)) = TX - Y) (X,Y propositional sentences)

Clearly P is complete. A slight modification of a standard argument for cut elimination in the
implication calculus shows that P also is total. Let P' be the definition we get from P by deleting
=T(p) and adding T(p) = T(p) for all propositional variables p. P' is clearly total, but not
complete. T(p) does not hold and T(p) is not false in P'. P' gives a definition of a notion of logical
truth in the implication calculus while P defines truth for the interpretation where only p is given the

truth value true.

The natural operator Pp : P(U) — P(U) associated with P is given as follows:

If ee X, then X is e-¢losed.
If X is C-closed for all Ce E implies ee X, then X is E = ¢ - ¢losed.
Pp(X) = (e | there is a clause E = e in P such that X is C~closed for all C e E}.

p ition 1.3
(i) If P is total and complete, then Def(P) is the smallest fixed point of ®p.

(ii) If ®p has a fixed point X, then Def(P) < X.

Proof: »

(1) First note that if P is total and complete, then Ep C is the same as saying that Def(P) is closed
under C. We use induction on C to see this:

Assume Ep E = e. If Def(P) is closed under all C € E, then by IH kp E and since P is total we
have e € Def(P).

If on the other hand Def(P) is closed under E = ¢ we may assume Fp E and by IH it follows that
Def(P) is closed under all C € E, so e € Def(P). Since P is complete this means FpE = e.

So assume e€ Def(P), then =p E for some (E = €) € P which means that Def(P) is closed under
all C € E, so e € Pp(Def(P)). If ¢ € Pp(Def(P)), then Def(P) has to be closed under all C € E for
some (E => e¢) € P thus Ep E, so e € Def(P).

Now let X be another fixed point of @p. Define Fi-xC to hold iff if X is closed under all

C' e F, then X is closed under C. Then -y is a P - closed consequence relation:

Clearly }y is a consequence relation.

If FxE for some (E = ¢) € P, then if X is closed under all C e F we have e e Pp(X) =X, so
Frxe.If FE'}xC forall E'e D(e) and X is closed under all C'e Fu { e }, then since X =

= ®p(X) there must be some (E' = €) € X such that X is closed under all C' € E, and thus X is
closed under C. Since Ep is the smallest P - closed consequence relation we have Def(P) ¢ X.

(ii) Follows from the argument for (i). m

We will think of a property over U as a partal inductive definition over U. Thus to prove by

induction that P is "included" in P' means simply to prove that Ep' is P-closed.

2N 1 ion - 1
Let P be a partial inductive definition. The basic associated natural deduction calculus NP is given

by the following rules:
assumptions C
£
e
=1 E= e

..C...(Ce€E) E>=e

= E
e
Pl ...C... (CeE)
e
for(E=>e)in P
B
PE e c... E'€ D(e)
C

A deduction of C from F in NP is as usual built up from assumptions using the rules of inference.
E = e is the major premise in => E inferences and e the major_ premise in PE inferences. A cut in a

deduction is an atom or a clause which is the conclusion of an application of a I inference and at the

8

same time the major premise of a E inference. If a deduction D ends with a E inference, then we
may follow major premises of E inferences upwards in D - until we reach a cut - the maincutof D -
or an assumption. The branch we followed in D is called the main branch of D . We have the
following rules of contraction for eliminating cuts:

B
é .C... (CeE)
C... TE=. contr -
e ‘e
c'. .. c.
e c... contr :

If D has a main cut let Con(D) denote the contraction of D at this cut.

Given this notion of contraction we define what it means for a dedﬁction D to be normalizable.
If D is an assumption, then D is normalizable.

If D ends with a I inference, then D is normalizable if the premisedeductions of this inference are
all normalizable.

If D ends with a E inference, then D is normalizable if D has no main cut and all minor deductions
along the main branch are normalizable or D has a main cut and Con(D) is normalizable.

D is said to be normal if D is cut free. If all deductions in NP are normalizable, then if there is a

deduction of C from F in NP there is also a normal deduction of C from F in NP.

Proposition 2.1 F =p C iff there is a normal deduction of C from F in NP.

Proof: If F -pC, then we have a proof in a certain cut free calculus of sequents. The standard
translation of proofs in such a calculus into deductions in a system of natural deduction gives us a
normal deduction of C from F. We argue by a simple induction on the given proof. Let us just

consider a case in the induction step to illustrate how this translation is carried out:

. assume our proof ends with an application of the PE rule. By IH we have normal deductions

of C from E' for all E' e D(e), so

e C..
C

gives us a normal deduction of C from F.e.

So assume we have a normal deduction D of C from F in NP. It follows then easily by induction
on the lenght of this deduction that Fi=p C.

If D = C, then obvously F EpC.

D ends with an application of the = I or Pl rule, then it follows directly from IH that F=p C.
If D ends with a = E or PE inference, then it has a main branch since it is normal. D will then

have one of the two following forms:

E=e ...C'... (C'eB)
e
. C'
e é'.
cl
c

In the first case by IH FepCand Fp C'forC'e E, so F EpC. In the second case we have

10

E!

¢

Apply IH to this deduction and we have F,E' p Cfor E'e D(e) and thus Fp C.»

So the property of being a total definition corresponds to the normal form property of NP:

if FEp A and G,A kp B, then we have normal deductions of A from F and B from G,A. Put
these deductions together and we have a deduction of B from F,G. The normal form property
assure that there is a normal deduction of B from F,G thus F,G Ep B.

One may conversely interpret the normal form theorem as stating that the definition shown by the
introduction rules of a natural deduction calculus is total.

The NP calculus is a formal one in the sense that the rules can be given a semantical motivation
based on P only if P is a total definition. So the "real" calculus is to be thought of as embedded in
NP. We will consider a calculus NT(P) based on the notion of a total object:

assumptions C
2
e

=1 E= e

provided E = e is in T(P)

.C...(CeE) E=e¢e
e

11

...C... (CeE)

Pl
e
for(E=e)in P
where ¢ is in T(P)
e C... EeDe)
PE G

The notions of contraction, cut, normalizability etc. . . are formulated as for NP.

Proposition 2.2 If D is a deduction of C from F in NT(P) and F consists of total objects, then C is
also a total object.

Proof: By induction on the lenght of D .

If D is just an assumption, then we are done.

If D ends with an I inference, then by definition of NT(P) C has to be a total object.

So assume D ends with an E inference.

..é...(CeE) E=e
e

By IH E = e is a total »bject and thus e is also a total object.

H C... EeDe

12

By IH e s a total object, so if E'is in D(¢), then E' has also to be a total object. By IH then C has

to be a total object. =

Proposition 2.3 If FuU {C} consists of total objects, then

() if FEp C, then there is a deduction of C from F in NT(P),

(ii) if there is a deduction in NT(P) of C from F, then FEp C.

Proof:

(i) By an easy induction on the lenght of the proof of F =p C. In order to apply IH in the - = and
+ P cases we use the fact that if E = e is in T(P), so are all objectsin E U {e} and if e is in T(P)
and E = e is in P, then all objects in E are in T(P).

(i1) So assume there is a deduction D of C from F in NT(P).

If D consist of just an assumtion then clearly Fl=p C.

Assume D ends with an I inference. consider the PI rule as an example:

Since e is total, then E consists of total objects. So by IH F FpE.Thus Fkpe.

Assume D ends with an E inference:

..C...(CeE) E>e
e

Since F consists of total objects by proposition 2.2 EuU {E = e} consists of total objects. Thus
we may apply IH to get FEp E and Fi=p E =» €. Clearly F.E =p e. Now E consists of total
objects and thus FEpe.

¢ C ... E'e€D(e)
C

Using proposition 2.2 we see that e is a total object, each E' will consists of total objects. So we

may apply IH to get Fpe and FEkpC...So Fe Ep C and since e is a total object we have
FEpC. =

13

3 Clauses as types

}NP is a system of natural deduction in the usual sense, so we may consider some notion of
realizability similar to the one studied by Martin-L6f and others in the tradition of Curry and
Howards. So we think of clauses and atoms as types and the objects realizing these types will be
. descriptions of the structure of deductions giving the clauses and atoms as conclusions:

assumptions x:C

x}/ ; (CeBE)

b(x'. .)se

A AX...%x...):E=e

Ap aE> e »:C... (CeE)
a(b...):.e

O a:C... (CeE)

x A5 .. (C'eE)
. (E' D(e))

aie Bx..):C. ..
[Ax...5x..)...]a:C

[1]

An object is called canonical if it is of the form (a. . .) or the form Ax. . .b(x. . .). The

computation rules for non canonical objects are as usual based on the rules of contraction:

14

. c:C..
bx...)e .
AX...Mx...):E=>e c:C... cont)
' Ax. . .5(x...Xc...)e bc...)ce
x/é a;C'.
a:C'. .. . contr
(a...):e x...):C... :
[Ax...5x...)...](.):C ba ..):C

As usual these computationrules preserve types. So we have what corresponds to partial

correctness: if a realizes C and can be computed into a canonical object b, then also b realizes C.

15

W4Nin f com ili validi

Tait introduced an elegant and powerful method for proving normalization in systems of typed
A~calculus by giving an intensional notion of computability for terms. (See [T]). This method was
adopted for proving normalization in systems of natural deduction by Martin-L&f. (See [ML1]).
Usually this notion of computability is defined by recursion on some wellfounded relation. This
means that in order to give such an intensional notion of computability our systems must be built up
in a certain syntactically wellfounded manner. It seems to me that the mere possibilty of defining ?
such a notion should not depend on syntactical properties of the rules of a given system. What
should be important is that we are concerned with an interpretation of these rules based on the

notion of substitution that is in terms of a system of natural deduction or a system of A-terms. So let

us consider a general notion of computability and validity as given by a partial inductive definition:

B
e
=1 E>e
1s valid if
B

e

is valid for all valid deductions of clauses in E.

(E=e) C (C €E)
e

is valid if all the premise deductions of . . .C. . . are valid.
A deduction D on => E or PE form is valid if it has a main cut and Con(D) is valid.

Let V be the class of clauses associated with this inductive definition.

16

P ition 4.1
if FyD and D is on = E or PE form, then D reduces to some D’ on = I or PIform such that
EyD’.

Proof: If FyD this can only be beacuse =y Con(D), so in finitely many steps we must reach some
D’ such that D’ is on = I or Pl form and =yD’ .=

Let us write |-y/C for "there is a deduction D of C from F which is valid" .

p ition 4.2

Fye iff there is a clause E = e in P such that -yE.

Proof: Assume ye. So we have a deduction D of e from some F which is valid. Now if D is not
already on (E =» e) form for some E it must reduce to such a deduction D’ according to 4.1. By
definition it then follows that there are valid deductions of the clauses in E, so yE.

And trivially if we have valid deductions of the clauses in E for some E = e in P, then we may

apply the PI nile to form a valid deduction of e.m

Prawitz has used such a general notion of validity as a central concept in discussions on a
foundation of a general proof theory. (See [P1,2,3]). But his notion is based on recursively defined
concepts and so not directly an example of a partial definition.

Let us form a definition V' by adding the following clauses to V:

all assumptions C satisfy V'

if D is on E form have a cut free main branch and all minor deductions along the main branch are
normalizable, then D satisfies V'.

This means we add a base to V. V' is Martin-Lfs notion of a computable deduction seen as a

partial inductive definition.

Proposition 43 If kyD ,thenD is normalizable.

Proof: A simple induction on V. Let us say that a clause E => D is normalizable if D is
normalizable provided all C e E are normalizable. Then let be the consequence relation given by
“ifall Ce E are normalizable, then C' is normalizable". What we have to show is that is V'
closed. We have to inspect the various cases. Let us as an example consider the case where D

17

.ends with a PI inference. What we have to show is that F+- D provided F D '.... for premise
deductions of D . Clearly if all clauses and atoms in F are normalizable, then D", . .. are all
normalizable and so is then D by definition. On the other hand assume F,D(D X C holds and that
all clauses and atoms in F,{D } are normalizable, then clearly all deductions in D(D) are

normalizable and thus C holds. =

Proposition 4.4 If V' is a total and complete definition, then ky+D for all deductions D .
Proof: This is proved in the usual way using the fact that if V' is a total and complete definition,
then kv simply means "if. . .then...".

Thus by induction on the lenght of D we prove:

if A,B,C,...satisfyV' then

ABC. ..

(o satisfy V"

Since V' is total and complete V' corresponds exactly to the what we intended in writing "if. .
.then. . ." in our informal presentation of V'. Thus it easy to see that the induction goes through in

the usual way. (See Martin-L6f [ML1] and Prawitz [P1] for canonical examples of such proofs). m

For A-terms we have the corresponding notion of computability:

Assume we have defined a .suitablc one step reduction procedure for non canonical objects ¢ — ¢'.
(a...)is computable if a. . . are all computable,

Ax.. .b(x...) is computable if b(c. . .) is computable for all computable c. . . of appropriate type,
a non canonical object ¢ containing a redex is computable if ¢' is computable for ¢ — ¢'.

Let us say that a clause C is realized by c if ¢ : C holds.

4.4 Proposition
18

.. If Cis realized by a computable object ¢, then C is realized by a computable canonical object c'.
Proof: Any appropriate notion of a one - step reduction based on the contraction rules should
satisfy: |
ifa:Canda—b,thenb:C.

If ¢ : C and c is a computable non canonical object, then clearlyc — ... — ¢’ wherec'isa

computable canonical objectand ¢’ : C.m

19

g“Lct U be a universe of propositional variables. Let Prop be the class of propositional sentences built
up from U using the connectives L,A,v,—. As interpretations of the propositional variables we will
consider partial inductive definitions over U. The semantics of Prop will iteslf be given in terms of a
partial inductive definition over Prop:
TX),T(Y) = TXAY)
TX) = TXVvY)
TY) = TXvY)

(T(X) = T(Y)) = TX-Y)
So if P is an interpretation, then P& A iff p A for A in Prop.
This propositional logic is generalized in the sense that it covers a lot of different interpretations.
First of all it covers standard classical propositional logic:
consider the interpretations P consisting of clauses =>p. Then it is easily to see that T,P is a total
and complete definition thus:
TPEpiff =p isinP
T,PE= AAB iff TPEA and TPEB
T,PEAVB iff TPEA or TPEB
T,P=A—B iff if T,PE A, then T,PE B.
If P consists of all clauses p => p, then T,P gives the standard interpretation of logical
consequence in intuitionistic propositional logic.
Consider all interpretations P where we have clauses = p and p = p such that P does not contain
two clauses with the same conclusion. The we will have a certain three valued logic where p = p
means that the truthvalue of p is not known. (See [H2] for a discussion of this type of
interpretations in connection with non monotonic reasoning).
And of course we will have a lot of interpretations that will give a non standard interpretation of
implication.
It is easy to see how to also consider predicate logic in this manner. Partial inductive definitions will

then define predicates over a given Herbrand universe.

20

When we think of the semantics of a formal system as given by a partial inductive definition we
think of the semantics in iteslf as something elementary given. The true complexity of the semantics
enter into the picture when we try to isolate the total objects of the definition. A canonical example
that illustrates this situation is of course the syntax and semantics of naive set theory:

Prop(1)

(Prop(A),Prop(B)) => Prop(AAB)

(Prop(A),Prop(B)) = Prop(AvB)

(Prop(A),Prop(B)) = Prop(A—B)

{Set(a) = Prop(A(a)) | a €U} = Prop(VxA(x))

{Set(a) = Prop(A(a)) | a €U} = Prop(3xA(x))

(Set(a),Set(b)) = Prop(a=b)

(Set(a),Set(b)) = Prop(aeb)

{Set(a) = Prop(A(a)) | aeU} = Set({x | Ax) })

(True(A),True(B)) => True(AAB)

True(A) = True(AvB)

True(B) = True(AvB)

(True(A) = True(B)) = True(A—B)

{Set(a) = True(A(a)) lae U} = True(VxA(x))

(Set(a),True(A(a))) = True(3xA(x)) (ae U)

{Set(a) = (True(ae b) = True(ae c¢),True(ae c) = True(ae b)) lae U} = True(b=c)

(Set(a), True(A(a))) = True(ae {x | AX)})

Where U is a large enough universe of expressions.

The usual distinction between sets and classes will here be embedded in the distinction between total
and partial objects. What wé get here is a view of set theory as a language which is very different

from set theory as an axiomatic description of the universe of sets.

The syntax and semantics of Peano arithmetic can be given as a partial inductive definition in the
following manner:
(True(A),True(B)) = True(AAB)
True(A) = True(AvB)
21

) Truc(B) = True(AvB)
(True(A) = True(B)) = True(A—B)
= True(N(O))
True(N(a)) = True(N(s(a))) (ae U)
(True(N(a)), True(A(a))) = True(@xA(x)))
(True(A(0)), {True(N(a)) = (True(A(a)) = True(A(s(a)))) | ae U}) = True(VxA(x))
True(a=a) (ae U)
, Trﬁc(a=b) = True(s(a)=s(b))
Note that True(0=s(0)) = 1 will hold. This follows by an application of the P | rule.
This definition is then a total definition.

22

bl

A

5

References:
[A] Aczel P. An introduction to inductive definitions, in:Handbook of mathematical logic, ed.J.
Barwise(North Holland, Amsterdam 1977)
[H1] Halln#s L. On normalization of proofs in set theory (to appear in Dissertationes Mathematicae)
[H2] Hallnids L. A note on non monotonic reasoning, in: Proceedings of the 1987 workshop on the
frame problem (Morgan Kaufmann Publishers, Inc, Los Altos 1987)
[M1] Martin-Lof P. Haupsatz for the intuitionstic theory of iterated inductive definitions, in:
| Proceedings of the second scandinavian logic symposium ,ed. J.E. Fenstad (North Holland,
Amsterdam 1971)
[M2] Martin-Lof P. Constructive mathematics and computer programming, in: Logic,Methodology
and Philosophy of Science VI, ed. L.J. Cohen, J.Los, H. Pfeiffer and K-P.Podewski
(North Holland, Amsterdam 1982)
[M3] Martin-L&f P. On the meanings of the logical constants and the justifications of the logical
laws (Preprint Dept. of mathematics, University of Stockholm 1984)
[P1] Prawitz D. Ideas and results in proof theory,in: Proceedings of the second scandinavian logic
symposium, ed J.E. Fenstad (North Holland, Amsterdam 1971)
[P2] Prawitz D. Towards a foundation of a general proof theory, in: Logic.Methodology and the
Philosophy of Science IV, ed. P. Suppes(North Holland, Amsterdam 1973)
[P3] Prawitz D. On the idea of a general proof theory, Synthese 27, 1974
[P4] Prawitz D. Remarks on some approaches to the concept of logical consequence, Synthese
62, 1985
[S1] Schroeder-Heister P. Untersuchungen zur regellogischen deutung von
aussagenverknupfungen, Dissertation, Bonn 1981
[S2] Schroeder-Heister P. A natural extension of natural deduction, Journal of symbolic logic Vol
50 number 1, 1985
[S3] Schroeder-Heister P. Judgements of higher level and standa dized rules for logical constants
in Martin-L&f's theory of logic, manuscript, 1985
[T] Tait W. Intensional interpretation of functionals of finite type, Journal of symbolic logic
32,1967

23

E jf—"«),‘ ~ R ! l . - VTN CEL AN,
. Totornng lizime SG___gml S§ om __the LI /""‘“’“” ﬂ‘l

¥

i

£ Fae “m-’mw.c,
._,._.JL). Ty Hil heat :__tkpcmjm.my.h'hom P $4
m——— 77 4 p "

Axiowms . .. Sud.____ADBDO A e
s Aol D (ADB) D (A _
sy (A AB) D WBOA) I
e gwy. . OADA . e e
e 48 DOIADB)DLBADOR) . e
—— o Sy 6O A D AGA e e e e e e e —

I | B 4 1Y ¥) ipem A('m;; (Mg hem LC,%_{L({_/,qﬂ?“’US

v ks b s e e v e ————— S —————— e [P,

[b) T/sL fl“ﬁ'i o fz : T;LL",, the ____!71'7‘4«-\ . alvie
mpetEssitation ts be by a ...anle 0‘/ gl .
. /) v
EA be oA b LIA) | o
27 "o 'A"ﬂ ri B
frty Jq- t’w{m: o and 7 L1y wevd O
which Ay,

Semartical (Wapae W’mf /54
t

vy A ane all tawe - 0 e R

t

(() 7he xttamd o This . (st pPig (9T LY heact
4¢l 47 iom de)ined 67 S Be L systen abet (&l 1ver e ke
L) 2wles ji‘:, o af;m{wb/.'{f?)
Commamt 1 col f’ﬂfm?zb+q+:’r.'w ! Ap-n, AAE B 1// B vald
A iy, £4- whidh A, iy Am o aC all vald
i (rmf..:{ Y Cm ol wdnlds b the _,m.IKLa.ﬂhc). : |

[

|

;b.LﬂL‘Q thﬂ'ﬂ

thop ngm €

- Y,__g;)w,.f___,,ﬂ.é,_h |

AN e _,,.L,:”.,m,..ﬁ mmu.u;(N 41/,'_144
R he

2T Tt/ al

mwa{__/ - — «-) e

.l)c,‘,j,l'm&.._.,”..a:. m_../..l_q_;m\u}

. e gt S ———. ot

U ((.) A A AT LIS //V) . g Aal
U _,,,.m(, :

(U) I[,_,.,__..A l/“&/...». MJ:
- J...‘._afNA 2.0.. ——

L7 {_’2"'.7,.‘.'0:’.,’7 mgdal SO

N X A Ve & A AR, AN e e e e e
— we . L heve .. thim: e et
@)-L) L [Al LI awnn//‘,,,.. *HMJI then -

e r, Ak £ /3} t'/{ I JZ‘ ADB. o

pete V_MW_M:LQ)M Lmplies
14)

)
_0[e ﬁ)l;/l‘t\
Feem . to . be

L’?vp l[es . .. ,(){(.II 154

dlr

I A ¥ g;u, I/V‘-/bh"'.

Iﬂ;i/7

wp——

_P’La, u,’wl"g__ /\/m‘hqf\ﬂ

beca m._-_ff -7

Cdwy,) emd

2h)
I Y) B

Jho ke

Sy Fgpsy

» u W(u (,hvh ’!0' 1_}_:_{_4"/5 " «4
) #tasie 4 A1 the wpnal anles joz
(Imme Higg & | addibien
- mtagdnctizy -—-—-A) P vided All

{epwl T gne (M-’C%(,

-
A~ 2liningtiom: E-A/i
- Ll s 4

AI!‘AM‘) Homns .

(Q

Nl‘&-tvm all

_viagey e 4 _,_ucqo‘r

tm . whith A A‘Lp&w.ls ait

the

4.5 T hm) fesmg

o
ow o

Ah h’fl't~/«>,ﬁwcf,'w-y/

6w U~ h ith A

WY Y7 S "’://'UC,{_

Cegsantially, modal

/

i T mteamal (2iw. the Hylbeat = f‘}

¢ !i«}ff&tw
/ j ey - —v

Ip)
T ——

d

Thy e (S aqthn ,i‘,("n«p/e : We &_’-r_’a_/sy.___

—-——-—‘b’([t i A m(m-\ tmi)__/,___:a 14 ej_pn__e(.uf__fa _the twe AL Atme e
o /‘E,,..) . '('l‘te__.,___w

to =, 7t £ zl'm_f;uzl! anmt .-f’p mile. /Aﬂf,_,,...___01/»..1{504;7 Ao i ﬂ,i&/‘z._*: N S

‘___.a.ilq:f;..ezs_~___.m._waf.//a.d ahove _Malid (12185)20m Adr_ ¢

mitd . Bhe_ Tdaa,” J\Mﬁ_?m et _eada. e _mtramaliae. /"
Bl dr __mtd fvelid s o nde b _vithieme .. _fhe A / //l‘\ tin
omnteted _wybhthe % 7 hnh:t',f?_w.o/;_,.__.,../z ! R

e Tl __aesal tim f“’ o iiamatare S
/

- S .m,,..,_“_‘fu,e,;,,__.dﬁ ""t"”e“‘" e e e

veli 2 x { >f
e eomemreeesereen e e e HE LS '(b ;,/,

et e c. A{ velid A= tahe A .. . e
) A A X alid _ADBDA) I

A B

(- @ s’/’M,i/m/; ,/"(//Sne/] _

_ | B | B A tane (A6 ~ (fawe A = tare B)
v 0

v

Ko, 2 X vald (458) 2leatid A Eald D)
Wee . T vald A = vanl OA

It (s ,,‘._..(4f7(§) thon, ol e ﬂ,(hn'«.? systadic amd/en Tiaanfic
Consi daantieny) that: S e
(‘-.) A.l, vee D l— »__ l'{[_thne .,._,..I)U‘T’I'S Q . 1o ‘é CJd o5 Hhat

. v fane . /‘. X e AL R C 7 tane B
e X 4, A ™ OF

{L Ao, o A * f - Cthae @iyt DAt £ L6

EE ﬂ/ B NN, 'f!”/\

@ . PR Y ! Va '-’f"\ AJ N X-.;, \f\r’?‘i'.’-‘\ AA - 1 1ra ,n‘ 4

A 7 He J Y
__.é—f.f.q-m_&m'o hé (0w aam Ariy ‘Nfﬁ'?ﬁ r ..{ the]{G‘!M p- 0 W
1
'
shalt N gmors Caih Ci..f.ih!l’n{).tl'o'ﬂ-" i _k,:A,.nt__{;l/_g.« <)

— M‘Ql\f)h _ﬁm\e"_,_ﬁwwﬁl’?j e have that Ehtne____i¢ a_ teqm F
£ T

e ..m~'(‘ M Jf\. -t —A1/-M——'-—)‘—x’\— VH“/{ A&\ - ’34 A _iﬂ_‘__- e ..‘ — .o) 9 ’ t.!'._'lC.An“)‘t;.,.j{!..‘.'(_._c—
;l[, ey A gA ._m_,,,_._._Sﬂ:._{.’LaM.z A wrhi ¢h A,,{;, --.._.“_).,A Y XY _.__V_‘tl,i[_.__ﬁ'/‘u"

tw AVEan _ winaid _,Ln_x,,__._f.k.ix,.w.m{i.um..:.-w, PSS Oy SN ¢ PAPRREI S 7 V2
!

PR

o tant L e tme @y well o

L The problaas . with TWDSY ___am] . b sdlarieme

e A mndnaal = ded et ..M.??rf{m. 117 V'S S .u,';//ulﬁf_’-7 .--.___.‘,{g/.iw.c.ﬁ,*
v /

Gm ___Gbviswr -(0%1_{.70:!‘»1.8... aélation____ _amsd _ _bhe _aboee __PHESG i __m>

gxcggtion . Tig ‘v.,ﬁ-,f.ur.f.e’eo__~_‘,__r.':~., orsw b0 et CR.___the __ghove. ..:‘7:7‘4'»1
z
——Lgntegpomts L to g tawth” ’J-_V-O’L_._l':m (L valid, 1‘7 AR /J‘U’ e Light
it rtetms dha o melthen. _TAe N€arov . iy . that __bthe
- v S 4 i +
_ Q- aule ,.({40 A {m_, AA) _ds . Conmd _ _ [,.a, __h__/EM_J._/SaWM-,_

.__.ﬁl'ﬁt,w......,,tz;@ k-) whdt o the D dmb e Sesmd L /m. .EJ-T_._.__.]_./M
ot ZM IE L a A clorin . ('Mrfvzd i‘vm /'.('Véc./sJ . Aw«zwm/. L‘/m/'
s S T {5 htne . mot ,31,1 L byt o« “meta” 2ale in f'(/ql./'""f
o BAy AR O This mtdumnte (r- - £o4md fen 11_- » enni//
AT PR « B Sy a Vs
e I;? ;ﬁmfm(h’w;: -~ &) [;_. W f’d Gm o gl Cr Kbl
_ mehfzugc) Tt {ollowy €qfl’/-?) f"*'n'zfmc/ ghet bhue s @ /"!'-‘v; J/ e
fﬂ"&‘m the &5$ bwmptigng Ay ey A MM A0Sy z//[Aoy Fmiz B
frosy S acwm’w'm?./‘(, 5 ESTemiialy d J'(f”z(m*l’«’ calenlur . Iy
e LF we cammet ;J howeven 5 dinzcd! InFevnaiize ;‘(7"1641”-(},'5’1
_ am we e H? Aamd ¢ the (mphas #L) Cansth 57 the Tide
Comdybign ew o A~ dinte TE (0 mst in!‘(. {)'bu’fo e, -to SNfopatle
A, A ;m_? B @ mtaming. . fant Ay 1000 ALt dhne B
—{derpite droo 5&;’*7. o Ehe masl gbuless ("'xf(,\imefd‘f:': W) o Smie L _thir. Caws

i el nbie Pﬂ,;!';.fwr.,.. -~-(ﬂ“\£41"‘""“7'~ RS Rl i3 4

v @ ' 54%.% The /?. or . fhe g ,:2 e e
\"——...-—-.—I_!J%é+ ation _j‘f paDsy. L //»7;/‘ 2 S R V) fAa?
Ay Ak B entarls (hot Ay by B3 Hemee wltmtess
thoas s - - f”#’“’f”‘“‘i A P/_,L,-,.. Apye A im PDLY
gt (T the (aSe that walid 4y, . .. <alid Ao totasl _walid R,
k¢ (e re /41’;//)’ S Hn_/gkj ualesr __all__the AT ang.
e bored A, Mk f/xam.qfls, L LITmTiq / 5 %nz!_al__(iiélhcéhj -
are n=0 '), 7h'x /fh"/‘V/’l or /E((. Y. fJ LAk

! .t L
:’MA ,l_)‘y A gm -

or met “i::.:& ..*_7/,71. MJ‘..JM —alyve.gdrveli;mS , &) el fd e

_the _ Lefuitien___jheoabmy . .~_/u,,..,.. o odf __ the. .. /aa.m wimr . 7 R LV R

me‘cu&hu M gt _Je,?)effw_.;,.,,". LA, fm, gmf 7Y .[q.r,el..”.‘.l_._
ML hanged . arthmgtin o beved (v K fe Lt

e WAL 7 _ETTen bl s d al). AM’M b A tatien n,m.éu —

AR S MJqu/ﬂ ahe 3/’)4 7#/1:2

R /w_ R A

w._m._.‘.ﬁ_..,_,aﬂ ﬁ[B A

_O(4oR). - M,.(A TIhMs flo‘[-“__ﬂﬂ(f (/‘\M&/(.w ‘» ,._._.)y e

[, § IS S < S € DU -+ 7 S — .
dischoged . n 3)

S _W._J

—e . B) g A A amp e
e B) e A P (o

S Y, L A Y

v) 18 5, 0 -t
3) . pA>WOB [¢, >
7)) n(omolsasop) (7, >

Conresr Miw

&0
ot devva e

-('4%‘,‘7‘:/) /, Dinqt J4 7 74}‘7((:/ ﬁ[AfV(
pimcl Lvin vl i (A)/U ¥a

41;:”4.4 blg) élllﬂl/i'!lj & allewr il iy Fed

P bloms M/‘)

ml) 6 mete, It (r
are o’i > mt L vhay m/l} _ tauth. /b,"xd/’tl"m/ t’h/znmccr
.. e uvelved. Rw | o Cam be doeme 5&) ux,fw/"u"'; K atw
gw“y;ﬁm,- ; tad £01q ei‘/;»:m{«'n}e Y prvasiiy 'V,r;'w’ /?’Illl)ﬂ,“l"(/"*\"/..‘
3 €ri{ninr, Acf‘nf’v; L, a5 N-El o s At A ¢l th rFaly) fta
E__v A uw P/(’e C madmieatien . 00 T4, L Py, B B ﬁﬁ/ﬁ;‘vc _ &'4’
byooo Ay e al fﬂ‘,lﬁ\ﬂ'a/’y i

>S5, Mo jé,w-q’/;,: a’/

BAL A A B, > -
Ay An B BDBD - 2RDE

than Ay ces I By B, o o

thanefoie

ir valpd, We g IZYAA ”f:q_ﬁb' 10 tnpggm ~ 22 e alle
F#nl\} the phac qeler u’{ A DSY * . Thr /(icl;__‘b_.______
“ { ‘“‘l/o...,n} ,,7»\ alfhae /11 inFeam al 1;7./’41/4 Pp/ L9

A(,D V& ,4'0(. G —:L__i‘,!;{; ¢

& bt o g thpe
) (9 Vo ;C gl 4 = valid A S

‘o
) NG 4 @MLAJ bt B = (st A0
- tg, Ao /.»,_6,

@ DN 1;:,“4?-... K. (V”/'/cl UA“I"'"'Y/’U f)’} =2 ya)id ..([j'ﬁ'\f}

@ D Flie L - _.,fm* .(zb/zf_ = .,,.(if?.lf Azteatp)

o e i v Y M A C— o 0

\3)_ 3_,5/1'%\ T % V"Iu< ﬁj@ "'{V A A~ v »’M’f’)
v As T Rip

’

@ Aiw bt A.Z p Al '4‘:-) 4‘);140{..,0,4 e e e e e e e

e

) YN e w HA5. +wd A.

40

B Y e
,‘“6‘ @7 e .{l’* "76 /izhﬁ &l P t'/\,LY.v.L“""/?/'Z""r""'mecefn'f#/‘«v-
l(“’" V&uf/’M /
. N,,f’l‘!jmb‘“f . DJY. gt ke /.-,/.' cAarrsen/ J’j;ff;-» ove __mledr
g’wi B .,,// o the g;w Casler {,7 tha yfde, (emecctieer,
H ; . v
.((}"// eerally J—) hriva fg-t. .
Ts reamaliug fhe Fecemd wverrrem we Jho ¥/ ol

arothin j’h-/f;w».a“}/ LI Mo dfs] . ' A the Muc;,pm.l/’v,a
enplimts ., oml o dpleee @ 57/‘

~ - AS)
@l) 3«#’:. T T Utm- sl 4) s/(pell A= ealid B) 2 it [ﬂ%:‘»)

_ T fes (N Seymdmeri a[L dhese . anler qre bhe /’wu vt gtatien,

...;-w-' Thone CF . A F’IU‘V; . .r/ A o thy H'-.)M’ -é“lg(J;th
IJ’L b wkA wiel ,mn’»;, R X R arst A, Co Y7 f.};f‘{_-n,\ As ¢

velrd 4. J
LALEL T f's"LI A,

>

___Q______I."x\ cdent 1 The oyt Z ("l{'{/\ et ations ALt ihrersie
T __M é’—v *-—“"'-—)
‘ hnt (647 tct- o(,ql b._,/l,ﬁ,". 7he L (lean Hm {Ac 551'1,’ o Ahem

{7’\4* L A {;13..3;_/_“ 9; the ,/ﬂ%a_ ‘ C 4 mlrl
be: passa bl¢ uj_e;; My l//m«, J94- [24 4&44,_14'1.’:11.1 JE
v ot t(»?/.:_(_»J t o fhes 7%, Eoo /1,_1 weln__Hhag__ __.il wh___a
A ! brz Eéqm
-—-P?‘!'m{ llb," R O fase 1]01 ”"“‘j q f‘“ﬂ’" ot b e bl

——walnef _mw.f:owA/qwtfr_ﬁ,‘_x{“a,-a?,“ _MA)“V{__AQB) (AR (ﬂ) h). vu) f—
v (@A) EN o tankhe Mo acceniablt o .
)——- (-«{ / £ u‘/ fh:uaf w”*f‘mf’b 7 bc,ff/:;“ 0 ;
— dIThwt Y. ['D”!._(BA) o amd _ba . thes i&w)&"?‘/m/cm,u
4o . ._F..‘,,u‘;{ P kit 12 o obhd&r . /;n lia_ LL g - 04 _1‘/..4:(///‘}”‘.,
w.ﬁ-ei(b? vt fartly oAb et tRer o b R hi¢ //’L e
At _,,/SI,_.___{.,,_V;,Q o we At wamt ek’ B4~ fak € 3 o
__5—* |

-L-«-ﬁwa—-—/llﬁv a5 MY = J"l\“p#) Ltﬁﬂ_.‘{l,./_. ‘_,,/){,’“ Myl .Gl afe_ . A...J{'" e e e

4“? Lhat . wf(‘n.__w ‘-_m.,.' D '/7;)({ 4(_, (GM g mical
— l/ om m*’: gl kil ane anfs & of A ,Zq,s«_-._,_, e
ot am 73 bvayhis mr) .. {{44 S Y rlemd J-ﬂ-m/___ RV I VL A
: - U\\/h
M_..*.__.f_‘lﬁ-.,,.r'?_.ﬁ:h?,.- Y, D) 7708 S 7Y SN Y S, S« L “arle g ,m,_,‘“/jw#"u} R
TH (1 matssm: Hem 1o 30 o\ anf fo X placn. _ahal=
il bt o fhmmanied .]l Mt -.“7% Pt A feab B adJe_an
’ Fw
_ Thir i) be . dme o in __He ._._.4.0‘14,'»*44-) _ tandillm]' o Pagta- [/ A
i} zt i .(4“/’7!) M,r} te . shew | eHmtr 7 / the
e I-/a* Han ol gativs, ,ﬁb Ay 5 we memylt; that
@ 1/ A, .. A\Z_ g thorn thne & oA tam €
. H—l P Xjo—tfual A X foa! 4
a.f]ﬁ‘h,]'-"‘f Al Jvr ey 1 p , s /{
AeG T)JY,' valdl 4, ... xy o vald A b2 vald g
v 2z Apee A i‘"‘“ Ay 8 bhow bhane At o fega F
Ny ALY T SN - ;' . [,
. fé (a /‘;,- ; 0/1- ~Jl"v 1 A_v,)J X, ©teq? "{) Cae g Yo ! {‘0’1' A"z F {' ﬂ‘t?‘ B
® 1
,GK.—X) Q&'fw(mw hWe, Lhe M¢m1'37._ I/ ol there 5-‘7*/"\4‘,’:# and ,,;L/hz'n;
- Y AR Y S -_/&P\r) ,,.mliu'm.') (,{(V’. . '{/ ‘“\C’ &7“‘1 1](]/éff(,_45/7 j\:l')\,/_ _7‘4‘ .
ntal {acus y; (‘-27,:’1., ’fwup./ Whie b fan B G megmy f Z@/m; Jolee

tdw*ﬁ ‘v,n',/f' . S frer 3 e ,)(,0.;'/!

Y . , ,
@ t~n£151._v n-lw'fc‘\ffr’v\n él\l /Il/n‘z'(h Lo twtis LA i bewvt

'f.'?n\m‘m: gud_the 'J.-u';y’uj PHDIY bhty o gne ufhe
—fhtrtien ihnt omight he ackeds what uhot £ I Mail

ke fm R £ MLL;JL_L'_&.M [ized fev bb iatacd ‘Lo/'m/-v &
.
et W _____m\'j'q Ag /(,a‘mxi,.,___’t 1ne? ” Fzn auhi iy €05, Lot ad mers

thim) /
e gAd _Lﬁl’*_pl_ziu,e has Wt mtﬂ{.__:f.-_ﬂe Rt twe Lafa ___rom o Tembor
— L A _yalid A_=2 tane. /é_ . ,,__,,,_______._______._k,_;mi_.__.-w.
Ao
— D Elm %4 T tane (Ad3) ~ (fare A 2 fane /3),,_
L1 Alo g“o
et e MT_{.._“.M,JJ; .-.\,J\M’i',iﬂjm."_-w (/) .,,.__._.._/u{ u/ el /J“v o lEm r.f, M’lf Ly i lra
to Hhore _of 4 b [frke. >} . 4'/‘/1% IV S . Y
o bat_ klre tamp JI/ £he decined — bype . _are defymalls
e 011.1.1547 SR Y R T2V R S VO ‘ -

— .,._@ _The adatien betugenm . JESU___dmd _ Prpsy. -
Bk e e—pasb o o thir rechien 1o fo s kel exlem? and

A% what remre__ 5 LESH AL /’/7 G - —imlomaliratier

U(r - pwpShwL, O bi/‘fﬂ‘tf’"l g z'i AT el am mlomale a*ﬁn\-.J[btk

‘....__#1"[bt - ‘l"}’)[; f‘)}'fﬁn—. 9 Siwie . .omg . {tn5Tgn? v LFCY 141 l,f/?a'v/r

. to -amy 0, whilt . the argaguar o Diwt (emstants amd
Ehein ('d’LACl’/}gf'u/‘w'ﬂ7 Ax'y“h-«of\/fm j'L.A Uman's are fopien! /i
. - 4
fi‘\lﬁ"n‘\ mi - lfelf“.(_)(/'ﬂh J’L) fT&"\j (0.1,‘ f (l/)!mﬁf"a IS f,/ {l\(’ /"‘{Mf"}z
;a[the Ve guf 5.'”,4‘?/“,‘%,1,. . b ujzu/ on {ho)Ah"i"//ﬁ Aty
fh &4-"‘1"“‘“""‘-,7 the VAL ENT (owm st omiy wiu (v Thmr 7,
the EREINE typt ‘Y o bat A 5 A “tmtnal /(4*‘\4,'
/ , ,,
0{ M. fﬁ) thans © thA U\C*’ . warnall nerw !t /4_.»\ &«
- A / : . -
fé'!hﬂ“l:nﬂ'd-\ e} e i fheory It - Lopt Jy5Tom, T A,
e I Eaming u[/,’4, —— _A.‘ F A S ‘LJA’) n’!v /‘/l'(ﬂ M '/W\r- .a/
' | FPabry . . ,
| ,_f'i on fE ‘)’ . H.‘)HW(A JLFLa ,,.,..‘,'71\-1 9'-1 T umu'}«:""/{?\ o “wW (
N o_mte MO /,;_1 welatiem 05 — .j"’/ /«'//&wd' /'wm, {hat u/ quq,'fz

™ DEIRC gy i-} il fﬂ}\)(;’f(.ﬁl ,37 r'rm/i.

Y)
& T cadt 40 dj{j'm 1ehy (eftle thig : weidion gr mesl P
}
.F’Iﬁ‘f.ijf.ﬂ______.__,-&z.ﬁﬁh "_{ ‘ ial'“\’lkl " eanall 24 ')‘10_'» - HA,Q& Iy ,10 mot haie
at __fre Ao g v drt e D2 e g 7 'm__‘? - !'""?"‘ 44 L0242 Lpamiitmie——be Pt ém_whaFo
—_Llgn po ’nfw veed R £he i~ tima L,}{_d i‘ﬁ s1em ond __fS R jl',/zg rted
‘ . . { , I '] ! o d . oy = tpq g
__wimel patien [—sa. Litm befiveom P_ggw, . e Lhe /, a5t 4. EL = tegmy
_Am__tht__reegmd) ;s dop she 25 e tw_wiak. TE (ot 1@.«:7 -
. '~n ¢ 7 ie N L’ /\,' Y. .. ' Aap " - ,l v .
_ weeo_ the _LF wikh 15 ‘If:,mw,m{m__..g Zlf{jy%vaf___iL—-.—a, way £

o

—_ Vﬁo‘-.fm higeo

- FOWM

]
"1

o the

R T Y LY P #(4/ FR 2
tnst . T¥DS4, On_ _ the

R T S VT IR S 2
=¥

- - W.Af\‘ ,".I‘!
1

7L S A

T ”__{7553’*;_ = Lll';.ﬂ

_..._f.f.'..'}'m‘»ma o

lllﬁ Al S Lime

S o+

J[.“__A,_é’ll R v/

i 4 et o ot e 8 3 4 A.Xf.a’_‘_tﬁ_(,__Ab o ——— e
% L tn 0'1’\

othorhamd . the

- :Jl?“\ﬂﬁ‘lcm.._{al4--.-—--{'5('-,_‘.~..Jr/4/‘/ft'f/l’ J..;,f,.!m..,,,_i..LEH_._)_ L

the __mlsamaliae /“__47 Tem. _hzatcet)AMLE'A ‘1_)

.fhf(}u' el o rhaely

{viay ,mfyﬂwi’ s
J
A ST RN 7 R e ,/.(, 1™ 'v) e

imtetmalizes mibae

aod _fawj_'b o L i g othar_gye—.be o;.;:uL

L‘h *l"l
Cglam
a!;ﬁw . .17‘1.4/.», e Iicﬁ W ,-,,.ér oo

/
: [r .)-7.;'.\-.__ the A.W‘ﬁif‘:?ﬂ,uf_l?’"
[(enstant Z
)@

e e N 0 T T TR
v

{l_m M,'»’;' Ll

X, J1quTt : fawe 3
desinalble . fo._ _Aike _this

JUUTIYE S SR_....,._../ ql Jl.ll./ w/ ---—-{«!\ 6%4] Lt J.ph ._..,I/.__....Eaé,gj.«‘ixo =

We

e ¢/

xe‘l,f the T et _..__......,J'Ao%,’ o dorthom . nzall 4{/"'1-(_4‘6 S 3 = VN - DS
matnaal ‘,wq? — __,_,_”,é&zm_m..«..,ﬁ/ rim ,,."741‘:1’ RIS 17 "EANY h’ CBGE ..1)‘ Sy _...5{1// renl b

fﬁﬁsu '.,/'? t

Negwe the

[5’4((.1’3'1_ chean bty s ation

') AT

7’ tl‘lij’., 1‘17’1‘11'} 5w,

/1":7:’) fgam /’ ,/")-’L/'I.//z;

[R z . . < . . 7, [. Y
d'fbr‘h_"‘ﬂ,/; /ﬁ\;t.th/ "\,‘lmn-‘i'c/;,],n*lli", v{ﬂ - __/7/;*})‘:1 (“)V([,L,'ij‘i}';!‘lf. f,:;’l
i , . ‘
Fresun” panposes wi chal Che o enitmr with /74,&;/,'/’;«},
r l . /(#)] / /
N lf)’l&(,(f{hnt wh ik ?/vi’/r\ G ... publYy Frey o/ r /4,»;
--AM; -) A~ ’1(*‘4’1 G q TL"&"J’“ .é ﬂ/ ‘L’Ef(.’ .(/,"""J'//t).,"h,}:
. , L. !] . . -
X, Lals /14J I valid A~ F t uglid /,’J
K2 ol o)
o tha? t of acfaally iontlancted /”"“‘ the guvin ,’7702}
/

(S 4 [; < '[i ¥ :
M(,'%j"f."{lﬁ v /’...3/ I’idf' . c'?t.,., ...-....@'-vf . amalha s, /u, 1 {/)4 eromd Jr. We ﬁl//(uc
. YRt {Arr warinwtiem eafabiisher.. . a~ Mltamalitaliw 5/
_ Irosy wotn o LFS.,
SR The _ i tasdi ._o/ bt dr. deme n fhaec rTagig!
e - & — . I S - N - : A

'-R’ L\/C, 5/{,‘];{ w‘“fl;")) Tia __‘f/ Iy /,‘1 élap ‘/;/q;‘) ,’{’Ir/;"'. Vs Vi 7 L 1,,,.”'»”
R T "'“77/»}}1"{«;!»"(' ts o dhe Firom/ Sag)

0 ’ ‘ . ‘ P 1
g C SHaes £ o Th $Ix42 LVE Jegt, AAr b s L,"lljil"'h"{_(
. ! A———————t—=rr /
4

CTENY pagt We gongareh (h s 4 tigw * /44
B S & ~ —
“f(ﬁh’l-"\-# e £he 4 pirks Ipn_-r,’ g {‘ :

‘ / N T

. " - ,‘ .] . . ’ ‘ . / ,
X tont P, ‘52’) : v£0J'\t_&£3.4.:_{_4.’_‘iﬂl‘j;,f).“::ﬂ_f_td_ﬂ_t_a.éyﬁ):‘l_hﬂ_ﬂj;--gggﬁ__;,.k t L

. 3 4 ’ L . Y
(2 e} { _«3 ;,,,‘J bl
.____wﬁ_m-f_ 'DAU — Da.. e el the e aTThY o e kA Co

| fvim PG t .7“;.27-;1‘._ ,__/ ", _,,.,..,_,.’i.‘ij 570 codhpac. xfx,...,.;_
__._,aifz"?ﬂ..._.m(-. Y Y S /,,;‘%;,aw.____gf"_m.,,_ﬂ\t e 82 Fy ook . 9 LWJ 24l b -

| ﬂf‘-,

B Vo é".i _..ﬁdf..ﬂ_':’!fi‘.'i";', 2 W) ¥ th .__...«.1_...“-Ll).m. S e et e e oo e

I v k] : h l
_hte . The medd Ao hse toum .;,’-4, O £7:Y S LA PR fart 1 -
_.__’MT'L ads tho _ Jgct _ thak e g mt tle _ whsie _ _segseml. inviieid

p ;
Shoslt b fenewm b e Lh«’x;,..__#fwvf.‘&g.w__d ey R

The pwitauction GK f/c b y imdvefiom. _owm _ _the

__.__._.thg,i‘:.w;;" 4tk ____T:Lm{, ““JI’ Coa 7XIM pe_duo_ basie cqitr fo) L (O

Y S A',«;P:;Af.i.,an'r . _._Jl«-..___cafrcmf. Koo {t}- L= BF. ok \.__wm.,_W_«.'x;/zrmz,e‘_-.,.w
__V,.{,l‘h B !LLf,“ H’\@V\ ..o 171J ~any MUD‘;, Iyt - ":.{'! the Ly 4 rl‘a""I}\r 2. B 0%
ki F (amd C) . ii/)&m‘.}___.i«/d A _

x, € foub 0Dy, - & fout EP.,J:';C; (ot 3D, 3 toul B39 .o =t O3 bmj{—m rleft

3 i o,

’-Fj\,
, P re , ;
l‘,%u - wi Cav takce {5:, fo he by Y Xgee ¥ (m A (¢sf.
é
The (v et (e (cyriandien a[t"_ fw sthes &rer oS
6’{7%6 ne) CO’L sz‘{‘lp ');é » f[,,/v;;v;,‘)- e C = A’D/Zl WA,) ‘.’17 {0]/1 (J{ !)-7 ’:/\I""’"
P ! ~ i . P / K ? y ‘
e Com tales tli. Ehs, Ta by o) l-“"} (XX- font A7 2L :\,) P wh fy
(oF %VW f?; NAYIS i?*\&i“'tf".:":.“ IJquZTu .. 0(»!,{4 farer wné A{ugn J‘/”")I)/-G"l_
Staqr 2 Im i !TK?L, Cwe . (rwriant .ieu*. 6:_ (/.'L LaA ! a

I YR o such _ that | R
,(* *‘) P %C ; 4 ll'(li,b"..,_ 33- Vﬂ’tl ’j-j 4 -3 V‘ﬂll’/ UE)/L —?V“,,’I IJE"‘L).&WI‘/? OFS“' "tz:Wu

~whe D¢ ‘Ej".”....m(-_-._‘.JaL,,A o (%)

wrfFacctim o'[£:_ [r downge an //://a Wi’ . R

; : ‘(é) »‘4,41'1‘-"]‘ o) i"‘*éo ’ d D E]’l""‘ to hi(.__,_[[hj‘.l:"‘«" {‘“‘h
T T N Y N ‘*
sy ‘

S ———

(@ _at &2 = v(t) . thom k€2 vald T
(Fotheformsin b€ bLT)

| ‘m-‘(‘“_) _L’.) e Y _a~£/;¢ afl“‘ .m..k/),yjji n/;'m . J/. "D‘E/""v e ol

»»;,,_fd., -,{m. _,_k_.‘f.‘ ~ t% .4 e

_J";_l:é_J _wlr»{ 01 M,,“_J;/‘p,, -)wi..l_(ﬂsﬂb-. Daky, ij),,) Sl

R {ihj ’ ({ ""‘3 D.MI_'f,‘!.fv‘.‘__.._wl.Juﬂi”?A .w_"_f/‘bn{f_,,m‘__ - ;U‘ //1 [ﬁvlv j e e
a__tom, L X v e e e
: @ZF ”‘ fj S {vaid BB, v A, . vl OE, ™ i gF } 2 wM (a Byyd-n® !JP)

.@jm 'L: amd m.,..i.j, we hfl/7 }d_.j.ﬁfn 4//7 . (m.:-.v._w_ﬁ; e o (M

. — 1¢ Aesia
‘ Ste 2. The tom, t; obtarsed . m . __dTr 2 hﬂm:[:»w
,_'_,,5; . 4..,A.-/nW’_ﬂ7 o xfa _z/r!u - wtin bl [/7‘){J‘/Jihr’{/7 to
mrnsphas T e fpn BB OB O sk
ke " proof - ul R ¢ SR {w‘n Ay - An trbas 7
§ p'xn[.:1 QF) 144% WOW/Q&» By - Eo,.{«)'~
- ThT I&l)-}?flﬁ(i q propia $ah Fﬂwi di the ;,t'”fh one d
Lo e pay afTume bhat e /740&(4‘143 prvvider wr wilh
“ t et 'b) Va}ll nE,, - arald ’jEy,,_"'D <o D valid 1 55’5) 3 valif F.
W} s oh: Lon Ehen be rebsfofsfe /0-1 fhe it /Mc
_ysmiabler te ruwfl.‘-.,bu' P at /424) the derred ., (Wi thay
ke chenld mf be ___grtancted {»m, finafh bat famm /;c
Sty e 3 &y alesl) @
Te Shammtadse The o bl J 4 N LR AL
dowe P thagy iFag. H‘n:,g 4 fread oy apllit £y ,,/ ihe

(Y) Tee &#‘4:4“‘\ l} U "N W S L

CP I;q& 41,1(_{ 9/ P b ih (‘u"/‘v} 2 ‘qu*). ’(falal - the
‘ luxf’. (4’/"? r 4/ é‘(‘Arﬁq‘ g - Li'lr asle {AJ‘J‘? m,__flr‘rf/.;4_,y______—

W ’!J L~——-J’ fﬂy .~..9. —fémacd bhe $vo I }”Ai’u'_‘“lﬁ —ph !J'(ft'/ -4.___1/4, -
1 E{'ﬂ* o wealid.

. Nete _ Ar amtndignd —_abive . Ehe M«eu"! _thy */ 4{4 ne— (. __J‘f')g Y SR
.u__{'r . »..f’ii_f__._.;//ju_’ parﬁyw_i-ﬁ L Pgyentr ‘__/ he frim (]) /m_-_-_,__
| ‘t@.'* {o | lﬁa.[ﬂr{;_..ﬁli.u thir /mrtﬂy(,<,W.L/a_/‘f/l,7fr-,‘,.,7 R 7 DO Y. V4.) ,,.,,Dvn'[’f‘:m_m

e g b passnpph—farm. .. EISlapbfyS ,/' ke ot i
. i ¢l /
¥ _weali [LM,) e AP TBR) Ao X sl 4y P walif A . B OAIDT

Al __Bys. parsay . (5. _Aemdle .!:7 b DN, TAC _oHu
—pant £r Ehe pa ¢S l{,gc,_,__“{n,ew\..,_....J:u.t Ay 9o B 0t Ay S —
_te enld - Appp Al A Ay D ralid N-A,,t Pir ——pasrage i _doe
™ [119-"7._....__%4 o Thenld Do _Aateen __aa. _a _ basst .mizg_ﬁ'_c: “““"{"’L LF3u.
eetimn “_w/;, de_the _ pbuignr Mwam,/: ~n/i7 vt _oeed A rtqumfc fackic ...
.”fm ___Lach__ m M,En__,._ fx%pu /-“-Mﬁuu-_.._uc e AN;/L. eto m_ .

_ itelrd—A il A seald L thetarly Aoata~y dond B et Q) lf Ehe .
__facky o Keadting . T TN ot Ao ald Byl e
g_mw o ho 4.,_“_{o~,f_4,,-3{ww(afsm.mm!c}w_m f0 drr sl B D (mM ~ vl ()
C Hine we e gl b r/'p/ enlert we A a Facti

(cwb'/v} /ﬂl‘h. (605149 valid €) {e valrd A 5 valif L, l{mlnhmf:';;

g _(8an¢ f,wm‘.h) fum T 1s exi'rfs ¢ LFIY { n/ﬂuh]" /-z

_ Lalk ~m thare D B feam t © {,{06/4,-:\.... ~ tint 4,)‘) (vald llﬁa-ﬁk'o/iv{ /4-\,)
Oxe 'm'f* (em riden ad /4'~) a LY X anstaemt with ki [7"-‘/7bf‘7.-

' ! T ! &/ t ' f
The dmtwptipe ah of 1/22*‘3,24 b Ziﬂ’ld ,)Bc tha | Cammemicaly fevnr a[
ot A9 valed 1 3henld 411 er,;mzl tv 4 pﬂ'ﬂ{r 4/' R [/1,1‘!

fype
A al(on /ua) u“’ {E J amd ‘-ﬂv-—»d———f-/-ﬁd-f——r’-:——*/a-ﬁw €he
oflﬂrf.'ﬂ what //7470». o .fn[8y v's witd fo ohtam A ¢7‘J‘e7
i (aelqvast . Howerg, the minetuny U citm/mg Ehe ovPuitive a-.uw’a;
o/ ﬂ/jbqa{r [ike fant A valid (e mot cleer atb ke mement,
Y LY S e Camne! . fed (4ne bhal \’;7 u{,a',../, aquf/,awb';n;
_tenctentr g bl heve L4 g ad ey elre(e the
CEhe gyflarion ir ____Lomrerv afiee M bt bt jemid We o ompide B

we
P14 bigm 4 be a “‘"’ Empe 2t an/ g /11 /'m“m (‘w(,-/v'}af/n.r.

—@ |

H_ Tatgnal, 1);'*1 g5

!

<s s ohtaimed {M’u, 54 f:u,/, 40{”(1.,&7 the _ ax/pm
~ (A o O n4 o . e

7‘(NJ).___.S%,L% nl/ I”) 2wt 4{1 {Lr 1< "r/,"‘ﬂ//M Lo

,___{:4_.,_.! Q{JQJ M _ynr ,n)___EAJL_ £he ._—Jil? B/ ///uwu AT
fke %mt'b’b‘! vl! 1;;1:%‘,4//7 = Anedal . _[Foa._ S5 _ we _hee

o /3 ___aAm__:;._m_Mz:rmq//? modal

.. _ i) A A ed B _me erM"M// ;.;hae{ 4/
e A, AVS, AAR_amd . ADB.

7

_bhat

Aciondimg___to _thir o1 (s ohyione _,M(:/mf _the __(mTeyma -

—lee aton l_m;ss well be lmc/’y &y - th '/ —PHDIs (T4

——tArfin) . *___43,{ __bhe___gnlt __m;u//ma.ur__w/”m_./& lwlu ke ,_;11 / e
—nrtentc __gpaa cfpo»s/fn} b Hhe errombomeds) D j'tq f{}iounfm_ e

AN INTRODUCTION TO SET NOTATIONS
J.R. ARbrial

TARLE OF CONTENTS

1. BASIC SET CONSTRUCTS
1ed. INDEXATION
1.7, CRRTESIAN FRODUCT
L. BOWER SET
1w 4. SET MEMRERSHIR
1. 5. SET INCLUSION
1.6. BET ERURLITY

P, DERIVED CONSTRUCTS
el DOMEREHENSION
P, EXTENS ION
. 3. UNION AND INTERSECTION
Fa e COMELEMENT

3. RINARY RELATIONS
F.l. DEFINITION :
3.2. DOMAIN AND CO-DOMAIN
3. . COMEOSITION
Ted. EMETY AND IDENTITY RELATIONS
3.5, RESTRICTION OND CO-~RESTRICTION
Z.6. CONVERSE
T 7o IMAGE
.8, UNMION AND INTERSECTION
FeD. OVERRIDING

4. FUNCTIONS
Lu 1. EARTIALITY V& TOTALITY
4., EVALUARTION

W Jgoo~N~NOOamud R L R R R R e

4.5, CONSTRUCTION 10
G b INJECTIVE FUNCTIONS 10
5. CONSTRUCTING MATHEMATICAL OBRJIECTS 10
G. FINITE SETS 3
7. INFINITE SETS ‘ 14
8. NATURAL NUMBERS 14
8. 1. DEFINITION A 14
8.2, RECURSION ON NMATURAL NUMBERS 16
B.%. ARITHMETIC 17
3. SEQUENCES 18
10, TREESG =0
10.1. BINRRY TREES el
10. 2. LABELED BINARY TREES 21
10,3, N=ARY TREES ' =z
10. 4. LABELED N-ARY TREES =3

REFEZRENCES

Aopendix 1d SUMMARY OF NOTAETIONS
Appendil » 2 SUMMARY OF AX{I10MS
Appencix 3 SUMMORY OF DEFINITIONS

AR INTRODUCTION TO 8

Im
tions

this mote,

. BASIC SET CONBTRUCTS

We may denote a set by a symbol.

L The EMPTY SET (with no
NAT The set of ratural

NAT
is the ewmpty

construct
givean

we shall latenr
s0 far (God)

T hat

14

Mot e

whiidoh

We may also deriots sebtas by msans of
ture the idea of consdtructing new sets

three such constructs called INDEXATION,

we introduce various slementary

(spe section B)
mat {F.

ET NOTARTIDNG

set theoretical rota—
Examples of these are

membe)

Munmbers

#0 that The only set

various notations intended to cap-
from already known ones. There are
CARTESIAN PRODUET, and POWER DBET.

NoB: [l motations used in this presentation are summarized in Aooendix 1.
1od. INMDEXATION

Lornstructing & set by indexation consizts in givivg the genmeral * Fforw’
af ites menborg, The form i acouestion is supnosed to bhe an expression
wrcdexaed by a wvariable ranging over ail members of ancther set. For
instance, the Ffollowing set is the set of perfect socuarezs of mnatural
rutabers; that is, thne set whose smembers have the gensral form "v*n’ for all

iz rs m

Fr. (M ANAT L omEm)

Mo e

germarally, given a variable x, a

40N the set whosse nenbhers have the

cdevicted by
. (nis & B L ED

Wiy ode TF

wa @immnli fy

{xsa &

TRUE | R

Note that we have nob yvet axiomatise +He
will b dome in section 1. 4.

set %, a

the gonstract

predicate & and an expres-—

TFarm® = for x in s such that P is
as follows

DEFINITION
(membershin? predicate "xig', This

—
.

N, ED ALY definitions are summarized in Appendix 3.
1o DARTESIGN PRODULCT

The cartesian product of two sets s and t is the set whose mewmbers are
all DRDERED PAIRS of members of 8 and tp it is dencted by 's*t°. As a nota-
tion fFor the pairing operator, we shall use either 7,7 or 7 1-)73 wmovre,pre—.
misely Tx,y’? and *ri-Yy' are altermnate notations for the pair made of x
and v in that order. Neote that pair sguality idis axiowatised DIRECTLY as
follows

{a, = {c,) = {a=c) & (b=cd) AXTOM

NeBr Al axkioms are summarized in Apoendix 2

1o ROWER SET
The power set of a set @ is the et whose members are all sets
INCLUDED inm 8 (see sectiorn 1.5 it is denoted by "FPOWis)".

MEMBERSHI -

As we have iwmplicitely adwitted in previouws sechions, a BET I8 CHARAD-
TERIZED RBY ITH MEMBERS. Set membership is formally defined by means of the
nradicate "xiz! which can be vead 'x iz a wember of 7. Membhershio is
definec recursively for the three previous constructs (as well as for the
enmpnty set) using Predicate Calculus as follows

i

yi®x. (xig & RO OEY = #x. (xis R R & y=E) AXIOM
(%, y) ist = coxieg & yit - AX IO

@ 1 (L) = Px. (xi® =) xit) AX I10mM

ot #Hx. (il AXTIOM

1.5, SET INCLUSIONM

Membevshin of & power set is called set inclusion, fovrmally

5 ino bt o= siR0WE) . DEFIMITION

Belt inclusion iz & PRE-order sines it is abviously refexive and transitive,

orme s ly

1]

it

& OLNe B
= ing b & b ive o ow o= 5 ine u

1o €. BET ERUALITY

Sivce a st is charactevized by its wembers, we have

I, (g = xilh) =) (g=t)) AXIOMm

T
i

his leads o tne following which is gasier to use in practice and makes
set inclusion a PARTIAL order

Boive 5 & 9= inc 6 = {(@=t)

2. DERIVED CONSTRUCTS

We define rnow a collection of derived constructs: namely, set
comprehtension, set extension, union, intersection and complementation.

21, COMPREHENSTON

A set is defined in comprehension’ when its vembers are exactly the
menbere of a given set such that a certain predicate holds. Set cowmprehen—
asiomn can obviously be defined as a special case of indexation: +the 7 forw?
of the menbers ig Just the indexing variable itself

I 1 o wig & By o= $x, (xis & B 1 x) DEFINITION

Hade EXTENSION

A set can also be defined 7in extension’” by am explicit enumeration of
its mewnbars supposed to be already mesnbers of a given set. Such an enumera-
tion is a soecial case of comorehension. For instance, if a and b are
wembers of &, Lthen we have

{Lak w=o{x | oxits & (x=al)l DEFINITION
Ta,bhr = Lu | wig & (x=a or x=)%¥ DEFINITION

Fa e UMIOCN AND INTERSZCTION

Biven a set o which haospens to be a wewber of HOWROW(s)) for some set
@, The (gensralized intersection) of u, denoted by “inter{u)" {(oniy defined
IF w dis mot empty), is the subset of s whose wmembers are members of all
menhers of w, formally

K

riot (u={¥) =) interiu) = {x | xig & 'v. (ysiu =} x=y5} EFINTITION

Examnpla
inter{{{a,b,c,d¥, {b,c,er, {d,b,c,er¥) = {b,c?

Likewise, the (gemneralized) union of u, denoted by "union(w)”, is the sub-
set of ¢ whose wembers are members of at least orne wmewmber of w, formally

unioeniu) = {x ! xis & #Hy. (yiu & xiy)l} DEFINITION

Example
inter{{{{a, b, oc,d¥, {b,c,e¥, {d,b,c,er)) = {a, b, c.d,e}

Gemeralizred intersectioms (reg. unions) are greatest Llower bDounds (resp.
least upner bounds). More precisely, the intersection (resp. uniorm) of the
wet (of sefts) 8 is the greatest (resp. least) sel which iz smaller (resp.
ereater) tham all its members; Formally (if 8 is not ewoty in the case of
intersectiaom

tim owmy inter{s) inc t ' ' it is a lower bound
T"L.fhis =} u inc) =) woive inter(s)) it ig the greatest of them
Lae o= toivic union({s) it is an upper bound

L. (Ese o=y b Ano Wl =} urnionis) inge w it i the least of them

The classical overations of {(swall) union and (small) intersection of sets
are now defined as special cases of the corresponding generalized opera-—
tioms. More precisely, givern btwo subsets a and b of s, we have

avs/bh = uniton{{a,bd) DEFINITION
as/“\h = inter{{a, b DEFINITION

Nobe that this defimnition allows us to define zet in extension when there
are more than two elements, formally

I, w,2d = {x,y*I\/ixz}

~

o EOMES EIMENT

Giwven a subset & of @, tre complewent of t with respect to s is the
sunsaet of @ whose vwembers are not members of ¢, formally

gt = L | owKie & mobixit) > DEFINITION

Note that 1iFf s—-t is empty thern 8 is inmcluded in %, therefore ecual to it
sinvce t is, by defirnition, already included in s, formally

g-t = {F+ = mot #x.xis-t
‘ = w0t #Hx. (ig & riob{xit))
= PRa (g =) 2t
= o5 ing b
e RINARY HELATIONS
Fele DEFINITION
M pirvary relation » with SDURCE s and DESTINATION t is a subset of the

carbtezian progdact of s and t. The set of all such relations frowm & to £t is
deroted Dby s{-rt, Fformally

g{-—3t = DWW {skt) DEFINITION
Txample

LE2i=-Ya, 3Il=rd, 4l-dn, 4i->d¥ 1+ {1,2,3,4¥(=r{a, b, o,d?
Fewe DOMAIN AND CO-DUOMAIN

Hivern a relation v of s(=2t, the domain of » i
mEmbers - ars related Yo at least ome elemnent (o
rel

domain of v i the subset of © whose menbers are
giemant (af s). Formaliy

- subset of 8 whose
Bimilarly, the co-—
d to at least one

&
“
{

Nt

th
t
ate

dom{r) = {x | xig & #Hy. (x,y)irk DEFINITION

cod () = Ly Fowib & #x, (x,v)Eir) DEFINMITION
Examnle

dom({Zl—-2a, Ji-id, al->h, 41-dc?) = {2 3, 4%
cod ({2i~>a&, 3l-rd, at-—-ibh, 4i->d¥) = {a,b,d?

- e s, 2 s e,
winm ot

S DT TON

Given three sets u, v, and w and bHtwo relations r and s fFrom u $to v and

v ko w respectively, the comgposition "ris" of r and 3 is & relation with
ouree o and destination w such that

s o= M, ® b X, Ziudw & v, ((x,ydir & (y, =) is)) DEFINITION

Examphle

{Ei=>a, Jl=d, 4i-)b, al=-)dr:{al—=>0, al->5, oi->i, di-)37
£ |

S0, 21T, Fledd, 41->3F

Domposition is associative

Fo dw EMETY AND IDENTITY RELATIONS

Two special relations play am important role, the embty relation
{which dis rnothing else than the ewmpty set) and the identity relation built
on A cerbain set. Here is the defFinitiorn of the second one

itentibty(s) = SHx. (xIs | x,x) ‘ DEFINITION
Tor exanple, we have
identity {a, b, o) = {al-2a, bi-dh, cl=->ak

Here are some properities

ety o= {F
{Yer = {>

Bl

™
1

rridentity (codir))
identity (dam(r))or = ¢

dami{irsas) = dom{ryidentityl{dom{s))
cocireg) = codlidentitylcodir)) is)

identisy (s8) gidentity (8 =jdentity {s/\t?

S . REGTRICTION AND CO-RESTRICTION

Given a relation » of sd{-rt, a subset 4 of 5, and a subset v of &, the

restriction of r o ¥ is defined to be

iclermtity () ey

arid the co-restriction of r to v is o

rridentity (v)

oy s oo, 1 m
Ewanms e

idevmtity (41,2, 31 {21 —>a, 3l->d, 41-Yh, 4i->d¥

i

{21->a, 3i->dr

{2i=Ya, Il->d, 4i=-Yh, 4l->d}ridentity({b,e, f})

it

L4i->b2>

Sa & CONVERSE

A

The converze » of a relatiorn r» of gs{-)t is defined as follows

Y o= Ly, x] (y,x)ites & (x,y)iry DEFINITION
Here ave various prooerties of the converse

(ras)™ = g™ap™

P =

identity (W)™ = ddentity OO
LF™ - = Ly

dom{r™) = codir)

ool (r™) dom ()

H

3. 7. ITMARBE

Biven a relation r of s{-2t, and a subset u of =, the image of u under
rods the subset of t whose mewbers are related to at least ove mewmber of u,
Farmally

image (M) () = {y | yit & #Hx. (xtu & (x,y)ir)} DEFINITION

Example

image ({Zl-ra, St=dd, &4l-)b, 4l=) ad¥) ({2,4%) = {a, b,d}

Here are some propevties of images

image (r) (W) = pod{identity (WO)
image (s) (image(r) (W)} = imagel(r;s) (L)

image () (uN/v) = image{r) {W\/inage(r) ()
cod(r) = image(r) (s}

cdom(ry = image{r™) (t)
GeB. UNION AND O INTERSECTION
Relations being sets, it is possible to uniorn and intersect them as in

Nl
H

o

m LR

b

&, Si=>d, 4l-Yb, a4l-3d> N/ {L11->F, - 21-ra, 3Il-rckr
R, wi=yd, ail-dhb, 4l->d, 11->Ff, ZIi->c?

{&1=%a, 3t-)d, 4l-db, 4l-3d} /N L11-)F, Z1-da, 3l-rct
= {21->ak ’

Here are some prooerties of the union and intersection of relations

dom{r\N/s) = dom(rIN/dom(s)

ry (EN/s) {rsti)N/{rysd

{rN/s) 1t (rebiN/ (st

(rN/s)™ = opN g™

(r/N\g)™ PMANE™
identity (N identity(v) = identity (u\/v)
ident ity () /Nidentity(v) = identity (W/\v)

il

i

i
i

H]

Jw F. OVERRIDING

The overriding of relatiom » hy relation = (both relations being
mevbers of wd(-)v) is denoted by “r{(+s"r it is also a relation from u to v
outalned by revoving from v those pairs whose first elements are wmembers of
The domain of 8 and thern by making the wiion of the resulting relation with
%, TFTovrmally

Pt owm (ddemtity(u—domi{s)) erdI\/s DEFINITION
Example

LEt=da, 3Ii-dd, 4l=db, 4i=->d} (+ {Zi=db, Il-de, Li->5)
= {Zi-db, 3l-de, 4l=Yb, 4&l-dd, 11-=)>%}

Overriding is associative
(rd{+g) (+ & = pr {+ (s{+)

4. FLUNCTIONS C . o
b Lo FARTIALITY V8 TOTALITY

A partial furnctiorn with source s and destination t is a relation of
(=2t suchk that ro two distinct wembers of + are related to a single wmewmber
f g. The set of such Functions is denoted by “s+->t". Here is its defini-
ion

o

<

mb=-dlb o= {pr | rig{-2t & (r¥:m)tidentityl(cod(r))? DEFINITION

A total functionm from to t is a partial function Ffraom s to t whose domain
is equal to . The set of such Functions is denoted by "s-—3%", formally

g3t = {F~!.F=5+«>t & dom(f)=slk DEFINITION
Frogerties

Fig+—2>t & git+—ru =) (Figlis+t—du

fig—>t & git——twu =; (Frg)is——iu

Fim+=2%t & gig+—2t =) (f+g)isg+-2t

fig+—>t & gis+-2t & dom(Ff)/Ndom(g)={} =) F\/gis+-2%
4.:%. EVALUATION
Givern a function f in s+->t, and a member x of dom(f), the value of f
at % is denoted by Fix). It iz defined indirectly by the following axiom
Fig+—>t & xidom(F) =) x,Ff(x)sF AXI10M

Eraperties

Fig+=>t & widam{f) =) F{x)icod{f)

Fret—3t & git+—-2u & xidom(Figl) =2 (Ffig) OGO=g(fix))

- 10 -
W G DONSTRUCTION
Given a set s and an expression E with free variable x, the set aof
]

paire of the Form (x,E) for all x in s is a function dencoted by %x. (xis
EY, formally

K. (xie | OE) = dx. (xism oM, EDC DEFINITION
Examnle (the scuare functior)
Hr. (RINAT | x#¥x) = {Q]-2>0, L!-=-1, 20-r4, 3T1-33,...7%

The Ffollowing oroperty relates function evaluation to substitution

Y. Ixis =3 Eit) =) (%X. (Xfg | E)ig—--3%t

Tn,o (8w =) Eitr & ats =) (%x. (xis | EY(a)y=[xi=alE
Example

(Y. (HEMAT | x*¥x) {3 = [xi=03](x#tx) = Z%T = 9

Ao e INJECTIVE FUNDTIONG

An injective Function is a function whose converse is also a function.
We consider partial @ and total ingective TFurnctions from 8 to t denoted
respectively by s¥*+rt and s%*-3t, Fformally

g¥+rt = {F | Ffig+—3t & F¥it+—>asl DEFIMNITION
s>t = omEedE S\ -3t DEFIMNITION

Tropert ies

<r

*¥+dp =y (Farg) igk+dt
#®bdg o=y (Fgld isH+dd

=k

s

Se COMSTRLLCTING MATHEMATICAL JRJECTS

In Mathevatics, objects obeying ologed ’definitions’ are Freaguently
ercountered. For instance

1 Finite set is sither the empty set or the set obtained
by adding a single element to an already given finite set

A Natural Number is either O or the vumber obtained by adding
1 tno an already given MNMatural NMumber

A fFinite seguence is either the empty sequence or the seguence ;
abtained by appending an element to the end of an already
given seguencs

A binary tree is sither the ewmpty binary tree or the tree obtained
by Toubkting together’ two already given binary trees

-
4

1oeach case, the ildea is that the entire set of objects can be "generated’
im this way. MHowever, the trouble with such definitions is that they do not
lgad maturally to formal expressions using set comprehension. The best
Ehivg owe can do iz to write down the properties stated informally. Fore
instance, ivm the case of the set NAT of Natural Nunbers, we have

OiNAT
re (MENAT =) suocinm) INAT)

where "succ" is supnosed to be the function which *adds | to a number’.
SGinee we Tknow' that all matural muwbers are charachterized in this way, we
cart simplify the previous properties as follows, by using the image oopera—
tor "image" defined in section 3.7, yielding

NAT = {O¥I\/image (suce) (NAT)
fAs you can see, bthe set NAT obeys am equation, of the gengral form
NAT = germat (NAT)

where "gerrmat" is supovosed to be a certain set Funcotiow’® . For obvious rea-—
BOVIS, such an eguation is said te be a FIXPOINT egquation. fAs all sxamples
apove (and many others) follow this general scheme (that is, obey a fix-
point etyuat iond, it ig certainly worth investigating the possibility to
define a {(or mavbe *the’) fixnoint of a furnction. Let *Ffix’? bhe this
hwypathetical oparator. " In the exawmple of the mnatural rnumber above, and up-
to the determimnation of the generabting function "germat", we have

NET = Fix (genmmat) that is, NAT 48 *the’ set s suckh that s=germat (s)

Im wihat follows, we First give the definition of 7" fix® and thern construct
various sets using this techmigue.

Givern a set s, and a total function f from POW(s) to POW(s), we defirne
Fix () to bhe the (generalized) intersection (see section Z.3) of all sub-
sebs ¢t of 5 such that f(t) is irncluded in t, formally

Fix(f) = inter {t | tiR0OW(s) & F(t) inc t2 DEFINITION

Frow the greatest lower bound properties of ? inter’ (section 2.3), we can
immediately deduce the following

(1) LsROWls) & f(b) inc t =} Fix(f) inc &
() e, ((HePOW(sY & FE) inc ©t = u inc t©) =3 woine Fix(f))

Moreover, we suppose that the function f is MONOTONE, that is
()Y % inc vy =} fx) inc fy) for all x and vy in RPOW(s)

We rnow prove that "fix{(f)" is indeed a fixpoint of f. For any t such that
Y POW (s & f(E) ine £, we have "fix(f) inc t" after (1), hence after (3)
we also have "F(fix{(f) inc ft)", therefore "f(Ffix(f)) inc £ hy tranmsi-
tivity of inclusion and since "Ffit) inc t": consequently, after (2) where u
is reglaced hy "F{(Fix(FI)}", we have

(4) FAFix(F) inec Fix(F)

Corversely, after (4) and because of (3, we have VUF(F(Fix{fr)I inc
FOFin(F23", therefore, after (1> where t is replaced by "F{fix(f)1", we
have

{(3) Finlf) inc FiFfix(f)

We have just re-proved Tarski’s theorem stating that Fix () is indeed a
Fixopoint of F iFf f is mometorne. We lmave it as an exercise for the reader
to prove that Fix(F) i=s the LEAST such Ffixpoint (hence Justifying our
imformal uwsags of "the’), formally

Fi{f) = FIFinl{f))
TEPOW(s)Y & t=F{t) =) Fix(f) inc t

The Fact that fFix(f) is a lower bound leads directly to the possibility to
prove properties of Fix(F) BY INDUCTIOM. More precisely, suopose we like bto
nrove that all members of Fix(Ff) enjeoy a certain property B, let t be the
suhset of Fix(f) where the property holds

o= Lx O xEFix(F) & B} we obviouly haved t oine Fix(F)

If we are able to prove that Ff(t) is included in %, then, after (1), Fix{F)
will be included in t, therefore be egual teo it: formally, this corresponds
to the Ffollowing proof method

Fldx | xeFix{fr & F¥) inc x| xifix(f) & R} =} Ia (xE8Fix (f) =) B
B, FINITE SETS
Given a set «, we demnote by *FIN(s)' the set of its FINITE subgeté. We

obviouwly like to have "FIN(s)? enjoying the following properties

{
x

85 Ayd

TFIM
s &

)

{
tiFIN(s) =) ({xFI\/L)IiFIN{s)

These properties leads us to the construction the following set function

genfin(s) = %z {(z:iPOWROW(sI)Y | £{FF N/ $(x,t). (x,tis®z | {xI\N/%t))

DEFINITION

t

We define "FIN(s)® to g the fixpoint of thig function
FiIN(=) = fix(genfin(s)) DEFINITION

Therefore, and since the above Ffunction can be proved tao he monotone, we
have

FiNis) = genfin(s) (FIN(s))

= fzs=FIM{s)I{LLFF N/ B(x,). (x,big®z | {xIN/t)2
= LEFE NS Bk, b)), (X, bis¥FIN(s) | {xI\N/E)

Comseguaently

LIFINCs)
Kig & LIFINMIs) =) {({xI\/t)FIN(s)

We mave constructed a set with the desired property. s a by-product of
this definition, we have an inductive method to be used in order to prove
properties of finite sets, formally

Che=L3IR & ‘L. (LAFIN(s) & I =) Ix. (xtg =) [t

={xIN/TIR)) = lE.(LiFIN(s) =))

For inmstance, we can easily prove the following by induction

£IFIN(s) & WIFIN(s)Y =) (£\/u):iFIN(s)
FEFINGg) & wifFIN(s) =) (E/Nu)iFIN{s)

7. INFINITE SETS

foset is said to bhe INFINITE if it is mot ong of its finite subsets,
Fformally

infinitel(s) = not(siFIN(s)) DEFINITION

Arn dmportant property of infinite sets is that they are indeesed infinite;
more precisely, if €t is a finite subset of an infinite set s, then the com—
plement of © with respect to s (see section Z.4) is not ewmpty since, in
this case, t would be eaual to s therefore he infinite, formally

infinite(s) & t:1FIN(s) =) noti(s—-t={})

Finally, we postulate the existence of an infinite (God given) set that we
mane RBIGE

infinite(BIG) AXIOM

8. NATURAL. NUMRERS
8. L. DEFINITION

Let us state again the caracteristic oproperties of natural nunbers
that we want to achieve i

QENAT
mEMNST =) suecin) INAT

The problem here is more complicated thamn in the previous case Dhecauss we
have to define from sceratch the function "suce’ as well as the constant
TG, The only sets we know so far are the ewpty set {1} and the infinite
sl TRIG . We have also a formal defimitionm of the conecent of " Fimite sub-
sets’ of a given set. The idea is to represent sach natural riumber by a
Finite subset of BIG: therefore O is obviously {2

0 o= {%F . DEFINITION

Given a rnuwmber n (that is, a finite subset of RBIG), we would like +o con-—
struct its 'successor’, an operation which, operatiomnally, can be performed
by adding a NEW element to m (that is, an element choosen in BIG but ouside
). Te this always possible? The answer is yes, since, by definition, n is
a fFinite subset of the infinite set BIG (see section 7). The next aquestion
ist how are we going to choose such an elevent? Well, we shall suppose that
we always have the possibility to choose an element in a set (provided the
sel in ouestion 1is nmot ewmpty of course) thanks to a (Bod given) CHOICE
FUNCTION called "taw’ and axiomatized as follows

ot (s={3}) =) tauls)is AXI0OM
Here ji@ the definition of 7 succ?

suoe = %r. (MAFINBIG) | {tanlBIG—r) X\/m) DEFINITION

The definmition of NAT follows: we defime a function 7 gennat’ whose least
Fixpoint is NAT

genmnat = ZAs. (sIFOWFIN(BIG))Y | {OX\/image(succ) (s)) DEFINITION

NEAT = fix(genmat) . DEFINITION
As a consequence, and since "gevmat’ can be proved to be monotone, we have

NAT = germat (NAT)
Cei=NATI ({OF\/image(sunc) (8))
LOXN/image (suce) (NAT)

it

We have constructed a set with the desired property. In what follows, wes
use alsog the constant "NATL1IY to denote the set "NAT-{OX".

Re o we know, this comstruction gQives us the possibility to nrave | oro-
perties of matural vuwbers by induction: in this case, the induction prin-
ciple exhibited in section &. can be re—-stated as follows

EriasQlR & '"mo (MEINAT & P =) Ini=succo(n) 1) =} Per, (MEINAT =3 [

It is also pussible to prove the remaining Feano axioms, namely

- 'L(I:“J e

NENAT =3 rnobt (succe () =0)
MENAT & meNQT = (suco () =suce {m) =} n=ml

The oroof of the last Peano axiom (the injgectivity of "suce’) is not very
simple. In fact, it requires the proof of a very important property of
matural number which says that two matural nuvbers are included in each
ather, formally !

mENQT & wmiINAT =) (v inme v) or (n inc w)

The irnglusion relation For matural nuvnbers is the usual "gsmaller than’
relation which ig thus a TOTAL order. We can also define the MINIMUM of a
nom empty set of matural numbers as its gemneralized intersection, formally

SIP0OW(NATY & notlas={} =) min{g)=inter(s)

OFf course, min(s), being a lower bound, is included in all wewbers of s; we
car alsh nrove that this greatest lower bound is indeed a member of s (this
cowes From the fact that all members of s are ewbedded in each other), for-
mally

si[0W {INATY & nobt {(a={}) =) minis) is

We have reconstructed the classical properties of the minimum of rnon—-empty
subsets of natural vumbersg and so proved that the “smaller tharn® relation
is a WELL order (since every mnon empty subset of NAT has a least element).

8. 7. RECDCURSION ON NATURAL MUMRERS
Givern a set s, an elewment a of & and a total furction g from s to s,

we wonid like to construct a total function f From NAT to s, obeving the
Following specification

F (D) = E
Folmucoind) |

0 g

4

{(F(m)) whern it nakes sense

i

DF course, we €o ot knew yet whether such a function does exist and even
inm this case, we oo ot know what its domain is (s0 that an expression such
azg "FOOY dis, Foar the moment, very dubious)., In order to const ruct F, we
shall wse the following strategy: first, we construct a relation from NAT
to s, and second we prove bthat bthis relatiom is & total function obeyinag
the reguired specification. For this, we define the following (reliatiow)
fumction Tgenf’ whose least fixooint is

genf = %F, (MINAT{(=)s i {0I~-Yalr \/ succ™ihiig)

f = fix(genrnt)

Sirnce ’genf’ is obviously monotone, we have

F o= L0l-rar \/ succ™:ifig

We mow prove by INDUCTION that the domain of f is NAT and that f is indeed
a furnction, formally .

+

e (MEINAT =) #Hy. (n,y:f & !z

We leave thiﬁ proof as an exercise for the reader {(use bthe
restriction of "guce™" to NATL ig a total function frowm NATL ombto NATY. (s

is easily shown, we have eventually constructed & fuwnetion enjoyving the
regulred properties.

fact that the

8.3, ARITHMETIC -

In order to construct arithwmetic iv a comoletely formal

way, we can
define acddition and multiplication by recursion as follows

m+3 = m

mEauce (n? = succ {im+n)
¥l = 0

mEseo () = nEn-km

We could also have define the ITERATE of

a ralation r with source and des-
tivation the same set s, by recursion

iterate(r) (O)
iterate () {suco (n))

it

identity(s) .
iterate(r) (M) DEFINITION

The following properties being sasily proved by induction

tetb-rg =y iterate(f) () is+-dg

¥
Fig—-=tg =) iteratelf) {(n)ig-—-2sg

Ard then, we could have define addition

ard multiplication of natural
mumbhers asz follows

m+r = iterate(succ) (n) (o
ey = iterate(iterate (suce) ()) (n) (O)

Differernce and divisiorn can be defined as 'converses’ for addition and mual-
tiplication)

]

{in~r1) +1 0 if ow is greater than or eaual to n
v/ ¢) %51 = m if n is not eqgual to O

We leave it as an exercice for the reader to prove all elementary arithmet-
ical oroperties. '

For pach Finite sets of & set s, we can define its CARDINAL as the
rivvber of elaenentsz il contains

FIFIN(®) =) card(t) = min {nINAT | triterate(genfin(s)) (n+) ({1
I fact it can be proved that the infinite seguence

¥, iteratel{genfin(s) {13 ¥, ... , iterate(genfin(s)) (M), ...
cornveragas to FIN((g): wore precisely, we have

FiN(s) = union $n. {n:NAT | iterate(genfini{s)) (n) ({3
Fs a conseguence, the operator "min' is correctly used in the definition
of Yocard!" since the corresponding set is not empty.
9. SEQUENTCES

A gequence built om a set & is either the empty seguence or the
geguence obtained by pushing’ amember of x at the beginmming of a given
saguence. In order to formalise this clogsed defintion, we need to make pre-—

cise this idea of pushing’. Given a partial funmction £ frowm NATL to a set
5 and a member x of &, we defire "x—->s" as follows . "

®-rag o= L=y PN/ (succ™is) DEFINITION

Informally soeaking “"x-)s" *pushes’ % at the ’beginning’® of s; for instance
W ave

w=d Lt l=dy, Bl=dzr o= {1i-dx, Fi-dy, Ji-=dz}

- 19 -

Thi evpbty seguence {which is mothing else than the awpty functiom) is
denoted by 2. The set of fFfinite seguences built on s is denoted by
"waol(e) " this is the fixpoinmt of the function “gensegi{s)’ defivned as fol-
lows

gensedq (s) = %F. (gfFIN(NATLI+-)g) | LOFN $(x, Fr.(x, fFiaxg | x—>Ff))

seq(s) = Ffix(gensenq(s)) DEFIMITIONS
As a consegueance, wWe have

rimaeg(s)
X1m & fFilseg(s) =) x-)€iseql(s)

It can be shown that & sequence s a function whose domain is an INTERVAL
From 1 o a mnatural mnuwber m (denoted by "i..m"); more precisely, 1t can be
proved that "seqls)" is egual to the union of the sets of functions having
such domains, formally

sea{s) = uniom $n. (MINAT | {(l..mn)—-—2s)

Far gach seguence s, this number » (which is the cardinal of the dowmain of
) is ecalled its SIZE, formally

size(a) = card{dowm{s)) DEFINITIGN.

Mote that the ewpty sequence is +the function with domain the interval
"1,,0", hence of size 0@ sequences defined in extension are special case of
sets defined in extension; conseguently, we use a special notation as shown
an the following example ‘

a, b,a) = {1ll->a, Zl->b, Ii-ral - DEFINITION

Fraoperties of sequences can be proved by indwuetion. Here is the statement
af the corresponding principle

B lm. (misealt) & B o=) Ix. (xism =) [si=x->slf)) =) i, (siseal(s) &)

1
@
e
ii
-
'
i
RE]

fs Far matural numbers, sequence Functions can be defined recursively Dy
givern trelr value at " O and then at "x=rs" in terms of their valus at s.
Examples of these, are functions to corcatemnate two seguences Yes*g', to
appenc an element at the end of a sequence "s{(-x", o reverse a sequance

P Y s .

"t oy to do bthe generalized concatemnation of a seguence of segquences
"eovmofls) Y, formally

OF 31 = g DEFINITIONS
{x—>x) %t = K=} (g¥t)

3 A~y = y—) {2

(=2} {~y = X} (s{-y)

Ly = {3}

{x—=>s)™ =g (=)

cornc{s? = {2}

i

cone{k—ras) XK*oone (s)

The Following properties can easily be proved by induction

s () =g

s¥ (L*1d = (gt) %

S# (L {—x? = (g¥*t) {-x

(g {—x}*t = ¥ (K->t}

(g {-x)"™ == 5

(gt)™ = fRsT

conc(s*t) = concis)*conc (L)

10 TREES
12,1 BINARY TREES

A BINARY TREE is either the null binary tree or the tree obtained by
considering two binary frees in a certain order: one is said to be the LEFT
subtree and the other one the RIGHT subtree. This closed definition can be
Formalised using, of course, a certain fixpoint., Given two sets bl and b2

of seguences built on the set {0,1), we define the function "cons" as fol-—-
lows

cong = %{(bl,h2). (bl,bRiFIN(seq{Q, 1) #FIN{gea{d, 13) !
{0 N/ $s.(sthl | O-)sg) N/ $s.{sib2 | 1-rs))

DEFINITION

For example, we have

cons (40, O, (1 X L0,), 0, M)
= O, 40y, (0,0, (D, 1y, {1y, (1, 0r, (1,0, 1)

The mnull tree denoted by "NILY is simply the empty set.

MIL, = {2 . DEFINITION

The set BIN of birmnary trees can thew be defined as the fixpoint of the fol-
lowing function "genbin®

genbin = %s. (83FIN(seq({0, 13 1 - {NIL} \/ image({cons) (g*s))

BIN = fix(genbin) ' C DEFINITIONS
The functiorn "genbin" is obviously morotone, so that we have

NILIBRIN
BI¢BIN & b2:iRIN =) cons(bl, b2) 1BIN

Here is an example of binary tree
LA

LoDy, (0,0, 0,1y, <1y, (1,00, <(1,0,1>%

Thig tree can be pictured as follows

AN
/N7
AY

Frvr incduction principle follows from this definition

The=NILIP &

Pll, B3 L (Bl tBIN & BESBIN & [bi=pR11P & Lbhi=hRIF =) [bhi=cons(bl,bZ)IF =3

e (DEBRIN =))

10, %, LARELED BINARY TREES

We carm also form the set of LABELED bimnary trees "bin(s)" builst o oa
ocertain set 5, Such a tree is the umion of all furctions whose domain are
members of BIN

himis) = union $. (DIBIN | b-—)s)

Note bthat "bin(s)" could alse have been defined as a Fixpoint., In fact the
cornsetructing Fuwnetion like "suced{m ", for natural numbers, "x-rs™ for
sequences , or Ycomsibi¥ For binary trees, is dencted this time by
PhlsxNRRY, a0 that we have the Following induction principle for proving

praparties of "binl(s)y",

[he=NILIlF &

Hhi, b)) . (bltbhin(s) & b2:bin{(s) & [bi=bllPF & [bi=bXlPF =) [bi=bl/x\bZ1F)

b (bibinis) =} M)

§

We may also define functions on "bin{s)" recursively. Examples of these are
the Following tramsforming labeled binary trees ints seqguences in various
ways (pre-, post-, in-ordewr) :

pre(Nit) = O
ore(bl/x\bi) = x-){(pref{hl)*pre{bi))

in(NILY = (O
in{nl/x\b2) = irn{bil)®x{x=>in{hz))

post (NILLY = (O
nost {1/ «\b) = post (bl)*oost (b2 {(—x

mirvor (NIL) = NIL
mirvror (ol /xNb2)Y = mivvor(bZ) /x\mirror(bhl)

The following property can easily be proved by induction:
pral{mirror{(h)) = pre(b)™

100, 3. N—-ARY TREES

I¥ is possible to generalise the corceot of finite binary trees to
that of findite nary trees; that is, trees whose "nodes’ wmight have more
than two ouwtgoing ° bhranches’ as is the case with binary trees. We use the
same mebthod as for definivng the set BIN: this time, we represent an n—ary
tree as a st of seguences bBuilt on NATY: thus, the set "TREE" is a subset
ef the set "FiN(seg(NATIIY, Im order to build a new tree from a ssgquence
"st" of tresms, the idea is to T push’ the corresponding index i at the
meginning of sach seaquence of st (i). Here is the corresprding function

build = %st, (st iseq(FiN(seq(NAT)) | €O F N/
, unien $i., (ifdomist) | i-dst{i1))

The set TREE is then defined as the fixpoint of the following function

pent ree = As. (sIPOWFIN{(seq (NATLY) | iwage{build) (seq{s))

TREE = fix({gentree) DEFINITIONS

=

g oo
b wod

The function "gentree" being obviously monmotone, we have
TREE = image (build) (seg{(TREE))

g there is, as dsual, an induction and a recursion principle. NMote that
Elhe Funetiom “huild® restricted to the set "seq(TREE)" is a bijection’ so
that the set TREE is said o be °isoworphic?® to the set "seq(TREE)".

There is anobther intersebting isomorphism, this tiwvme bhetween TREE- and

Bl More orecisely, we can define the two furnction “destruct’® and °*con-
struet’ such that

clestruct s TREE == BIN
construct 3 BIN-~—) TREE

as follows

destruct (i ld ({3 = NILL

destruct (haild{t—-)st)) = cons{destruct (t), destruct (buildlist)

cornst ruct (NIL) = puild({3

covst ruet (coms (hl, b2 = build{construct (bl)->build™ {(construct (b2)
it cawm bhe shiown by induction that

deatruct = construcet™

LW 4. LARELED N-ARY TREES
As for bimary trees, we can also define the set "tree(s)" of labeled

n—-ary btrees built om a set s. In fact, this is the set of all functions
whose domailn are members of TREE, Formally

trees(s) = union $t. (LITREE 1t--)s) DEFINITION
We leave 1t as an exercise for the reader %Yo develop the various

covresponding notations.

REFERENCES

N. BOURBAKI Theorie des ensenbles (He rmanm)
A, LEVY Basic Set Theory (Springer—-Verlag)

H, BENDERTON Elements of Det Theory {(Reademic Press)

Bopencdix 1: SUMMARY OF NOTATIONS

LOGIC
by [} Foimplies &)
[conjunction of P and & ’
B oor 0 gisgunction of B and ©
ot = negation of R
TXa. For all x, B
. for some x, P
Cxa=E0R Pwith free oscouwrences of x reolaced by E
SETS
{7 enpty set i.
Bre Ixts & R | E) gset of objects of the form E for x in s where P 1. 1.
Bx. (ts | ED set of objects of the form E for x in s R
a, b) ordered pair (a followed by b) ' 1.2,
al—=rh ordered pair (a followed by b) 1. 2.
= 3 cartesian product of 8 and ¢ 1.2,
ROW (s set of subsets of s : 1.3.
xig . X'is a mevber of s 1.4,
s inc b 3 is8 included in t 1.5,
I{x | xis & P> subset of s where R Zal.
{ak B set made of a e e
{a,bt set made of a and b e B
inter (1} intersection of the set (of sets) u S
union () urtion of the set (of sets) u 2. 3.
s/t intersection of s and & e B
s\/t union of 5 and t 2a T
st complement of & with respect to t Za b
RELATIONS
B>t set of binary relations from s to ¢t 3.1
dom(r? domain of » Je 2
cod {(r? co-domain of r G
v forward composition of r and s Fa 3.
identity (s) identity on s e bia
P canverse of r ‘ Fa b
image (r) (=) iwage of s under r LI
r{+s overriding of r by s ' TR N
FUNCTIONS
s+ % st of partial functioms from s to % bdala
==t . set of total Ffunctiowns from ¢ to t 4. 1.
v Ixis | OED the function with value E at x (for x in «) d. 3.
mEd L sat of partial ingections from s to © 4. 4.
s¥-> L set of total ingections From s to ; 4o

FIXPOINT

Fin (F)

FINITE AND INFINITE

FIN(=)
infinite (s
BIG

SMATLIRAL NUMRERS

tau (=)
@ o
NAT
NAT L
mir{s)
iterate (r) Om)
[t u

Bk gl

i1
m/ v
card{t)

SEQUENCES

x—rF
seqls)
Y
{(a, b, az
sizels)

BINARY TREES
oS

NIL
BIN

Fixpoint of the (set) function F

SETS

st of fFinite subsets of
s iLgs infinite
an infinite set (Bod givern)

a fixed element of the romn—ewmpty set s
successor fumnction

set of matural rnunbers

set of positive natural numbers

minimuwn of a nom—ewpty set of natural rnumbers
mth iterate of a relation r

aun of wm and ©

procuct of m and n

difference of m and n

division of m by n

the rnunber of elements of the finite set t

appending element x to sequence s
set of seguerces bullt on s
the emplty segquence

the sequence made of a, b, and ¢ in that order

the size of a finite sequence g

constructor furction for binary trees
the mull tree
set of birnary trees

LARELED RINARY TREES

bin{s)
LT

in
post -
mivrror

set of labeled binary trees built on s
pre—-arder function

in—-order furnction

past-order function

mirror function

&
7.

= A
T
B

mgba:m

8.1.
8. 3.
B.3.
8. 3.
8. 3.
8. 3.

8. 3.

Lﬂu)';ﬂu]kﬂ

1001,
104 1.
1. 1.

10. 2.
10. 2.
10. 2.
10. 2.

10. 3.

pM-RARY TREES
bhuild
TREE
destruct
construct

LARELED N-ARY TREES

treeis)

— R -

consgtructor function for rn—-ary trees 1O, 3.
set of mn ary trees 10. 3.
transforming an r—ary tree into a binary tree 10. 3.
transforming & bimary tree into an m—-ary tree 10. 3.

s

set of n—ary trees built on s) 100 4.

fiopendix 23 SUMMARY OF AXIOMS

(a, hl=(c,) = a=c & b=d pair eqguality ! . 2
yithu, (i & P 1 ED = H#x, (i & P & y=E) membership ' 1.4.
(2, y) ig*t = - xits & yil vweynbership 1.4,
sP0OW (E) = . (xig =) xit)d newbership . i.4.
viot #x. (0L empty set 1o 4.
. {nis = xit)d =) (s=%) set eguality 1.6.
Fig+-2t & xidom(F) =} x, Fix)ef function evaluation 4 2
infinite(BIG infinity axiom 7.

ot (s={3}) = taui(s)ig choice functiom axiom 8. 1.

Appendix 3@ SUMMARY OF DEFINITIONS

Most of these definitioms reguire sowe pre-conditions (check with the
corresponding section)

SETS
Sx, {xim | E) = #x.{({xis & TRUE | E) 1.1,
% ine € = giPOWE) 1. 3.
Ix 1 xig & Br = $x.ixis & F |) PP
{1aY = {x | xis & (x=a)l D2
{a, h> = 4% | xig & (x=a or x=h)l} e
inter () = {x | xis & ly.(y'u =) x:iy)} 2. 3.
unioen () = X | Xig & Hv.lyiu & xiy) P
a\/b = union {a, bl 2. 3.
a’/\i = inter {a, b}) P
st = L{x | xts & not(xit)d T
REL.ATIONS
s{->% = ROW(s*t)? 3. 1.
dom(r) = {x | xig & #Hy. (x,y):rd He B
coc () = {y | yit & #Hx. (x,y)irk A
rIs = {x, 2 1 oM, ziudw & #Hy. ((x,yrir & (y,z)is)’ Fe 3.
identity () = Fx. (xiz | x,x%) : . b
P = Ly, x | (y,x)it¥s & {(x,y)ir} I G
image (v} {u) = Ly | yiu & #Hx. (x?u & (x,yriv)r ' FeTa
r{+s = (identity (u—domis))iriN/s e Da
FUNCT ITONS
S+t) = {r | rig{(->t & (v fidentity(cod(r))} f. 1.
g3}t = {f | Fig+—2t & dom(fli=sl 4. 1.
%x. (xis | E) = $x. (Kis | x,E) 4. 3.
SR+ L = {f | Fig+-2t & F>¥it+-dgk du b
B¥—->§ = S%k+)t /\ s-—)>t dad.
FIXPOINT
fFin {f = jimter {t | t:EP0W(s) & FlE) inec 1 Se

FINITE AND INFINITE SETS

i

genfin{s) Am. (IPOWEOW(s)) | £43Y N/ $ix,t). (xu,tig#x | AxIN/t)) E.
FIN(s) Fix(genfinis)) E.

infinite (s) = ot (siFIN(s)) : [

i

—~ Y -
.

MNATURAL NUMRERS

O = {F 8.1
suee = % (MEIFINC(BRIG) | {tauw(BIG—m) X\/m 8.1.
germat = %e. (sRFOWFINI(BIGYY | £O0XN/image{isuce) (s)) 8.1
MEAT = fix (germat)) 8.1.
NATL = NAT-{O} ; Bl
iterate(r) (0O) = identity(s) : 8.3.
iterate(rm) (succ{m) = iterate(r) (n)r 8. 3.
R = jteratel{succ) (n) (n) . 8. 3.
N = iteratel(iterate{succ) (m)) () (D) . S
(=11 +1 =) 8. 3.
(/™) %¥n = n 8. 3.
card(t) = min {MiNAT | triteratel(genfinis)?) Gr+l) ({3} 8.3.
SEQUENCES
K-> & = {1!=->x¥\/ (succe™r 9.
genseq (s) = %f. (QEFIMNNATLI+=>) | LN/ S(x, Fr.ix, Fiakg | x—3F)) 9.
s {s) = fix({genseq(s)) : . =N
> = {%¥ 9.
{a, b, &) = {ll->a, Zi-)b, JIl-ra¥ =
size(s) = card(dom(s)) 3.
{y *s3 = 5 ’ Q.
(H=—re) *% = RH-r (5%%) ER
> {~y = =) () .
(x-3>8) {(~y =)= (s {~y) - 2.
(O = 9.
(H=rs)™ = g™ (-x 3.
care(() = () 3.
cone (x—-rs) = x¥conc(s) . : . 3.

BINARY TREES

CoNs = %(hi,bd). (bl, b2FIN(seqgl{d, 1) *FiN{(seq{0, 13} | .
LY N/ $s. (sibl | O-rs) \/ %s.(sibh2 | 1->s)) 10.1.
NIl = {% 10.1.
gerbin = %e. (s:FIN(seqg({0,13) | {NILY N/ image{cons) (s¥s)) 10. 1.
BIN = fix{genhim 10.1.

LABELED BINARY TREES

himis) = yunion $b. (biBIN | b—=)>s) 10. 2.
pre (NIl = {3} 10. 2.
pra{bi/x\hi) = x—=}{(pre(hil)*pre(bz)? 1o 2
irm (NIL) = (> . 10. 2.
in(hl/x\h) = in(bhl)*(x=->in{b2)) . 10. 2.
post (MNIL) =) 10, 2.
nost (bl /x\hZ) = post (bl)%*gost (b2) {(—x i 1002,
mirror(NIL) = MIL . : 10.2.

mivror{bl/x\b2)

i

mirvror(bzZ) /x\mivrror{bl) 15, 3.

- 50 -

N-ARY TREES

byuai ld = %st. (st iseg{FIN(seg(MNATY)) | {3 N/
wion $i. (izdomist) | i-yst{i))? 10. 3.
gentree = %s. (sIPOW(FIN(sea(NAT1)) | .
: image{build) (seqg(s)) 1o, 3.
TREE = fix(gentres) 1100 3.
destruct (build (O)) = NIL C10. 3,
destruct (build{t->st)) = cons (destruct (t), destruct(build{st))) 10, 3.
covst ruct (NTL) = hild{{) . 1003,

i

comst ruct (cons (bl, b2)) build (const ruct (b1) =) build™(const ruct (b)) 10, 3.
LABELED N—-ARY TREES

tree(s) = union $t. (E:TREE |&--)s) 10, 4y

On the Meaning and Construction of
the Rules in Martin-Lof’s Theory of Types

Roland Backhouse
CS 8606

Computing Science Notes

This is a series of notes of the Computing Science Section of the
Department of Mathematics and Computing Science of Groningen
University.

Since these notes are preliminary versions or may be published
elsewhere, they have a limited distribution only and are not for
review.

On the Meaning and Construction of the Rules in Martin-L3{’s Theory of Types

Roland Backhouse
Department of Mathematics and Computing Science
University of Groningen
PO Box 800
9700 AV GRONINGEN
The Netherlands

Abstract We describe 2 method to construct the elimination and computation rules from the forma-
tion and introduction rules for a type in Martin-L5f's theory of types. The construction is based on an
understanding of the inference rules in the theory as judgements in 2 pre-theory. The motivation for the
construction is to permit disciplined extensions to the theory as well as to have a deeper understanding of
its structure.

0 Introduction

Martin-Lf's theory of types [MLO] has attracted considerable attention from both logicians and com-
puting scientists, and for a variety of reasons. First, it has considerably enhanced our understanding of
constructive proof and the relationship between such proofs and programs. Second, it anticipated the notion
of dependent type introduced for example in the language Pebble [BL]. Third, as a formal system it has
an elegant structure that is worthy of study in its own right. This paper is largely concerned with the
latter aspect, the motivation being that by gaining a deeper understanding of its structure we will be better
equipped to adapt the theory to individual needs

The present work grew out of a feeling of discontent with the theory. On first encounter the universal
reaction among computing scientists appears to be that the theory is formidable. Indeed, several have
specifically referred to the overwhelming number of rules in the theory. On closer examination, however, the
theory betrays a rich structure — a structure that is much deeper than the superficial observation that types
are defined by introduction, elimination and computation rules. Once recognised this structure considerably
reduces the burden of understanding. And yet, to my knowledge, the structure of the theory has not been
properly discussed or documented; Martin-L5f, himself, alludes to the fact that there is a “pattern... in the
type forming operations” in the preface to the notes prepared by Giovanni Sambin [ML1}, but he does not
give a detailed account of the pattern.

So much for the ideological motivations for this paper. At a more practical level it has become increas-
ingly clear to us that there is a need to freely permit dieciplined extensions to the theory. That the theory
is open to extension is a fact that was clearly intended by Martin-Lof. Indeed, it is a fact that has been
exploited by several individuals; Nordstrom, Petersson and Smith [NPS] have extended the theory to include
lists, they and Constable et al {Co] have added subset types and Constable et al have introduced quotient
types, Nordstrom has introduced multi-level functions [No], Chisholm has introduced a very special-purpose
type of tree structure [Ch} and Dyckhoff [Dy] has defined the type of categories.

Initially we were against such extensions on the grounds that it is often possible to define them in terms
of the W-type (for examples see [Kh]), because they add to the complexity of the theory and because they
might undermine the quality of the theory even to the extent of introducing inconsistencies. The experiences
and arguments of others have now convinced us that this view is wrong. The view that we now hold is
that implementations of type theory (proof checkers, proof editors etc. like Nuprl and the Gothenburg Type
Theory System) should permit user-defined extensions to the theory but in a disciplined way. This paper is
therefore a first attempt at formulating such a discipline.

The main contribution that we make here is to describe a scheme for computing the elimination rule and
computation rules for a newly introduced type. In other words, we show that it suffices to provide the type
formation rule and the introduction rules for a new type; together these provide sufficient information from
which the remaining details can be deduced. (At this stage in our work we cannot provide such a scheme
to cover all type constructors; the limitations of our work are discussed in the conclusion.) The significance
of this result is that it has the twin benefits of reducing the burden of understanding and the burden of
definition. It reduces the burden of understanding since we now need to understand only the formation

1

and introduction rules and the general scheme for inferring the remaining rules. Conversely, the burden of
definition is reduced since it suffices to state the formation and introduction rules, the others being inferred
automatically.

A necessary preliminary was to give an explanation of the meaning of the formal rules in the theory.
Such an explanation is notably absent from the seminal account of Martin-L5f’s theory [MLO}; although
the paper gives a very careful account of the meaning of the various judgement forms, nowhere is it stated
- how to interpret the rules. Yet, it is fundamental that a type be defined by its rules and that the rules-be
meaningful in some precise sense. We therefore begin this paper by providing an account, in section 2, of
the rules in type theory as judgements in a “pre-theory”, that is, a theory that precedes the theory of types
itself. Also in section 2 we introduce the notion of internal consistency of a rule. The pre-theory is taken
from [NPS], with which we assume some familiarity, and is summarised in section 1.

The main body of the paper is contained in section 3. Here we detail the scheme for computing
elimination and computation rules. Several examples of the scheme are also included in this section.

There are many shortcomings in this stage of our work. Some of those of which I am aware are discussed
in the conclusions. Needless to say I would be grateful for further criticism and comments.

1 The Pre-Theory

The pre-theory that we need involves an understanding of the theory of expressions and the notion of
a category as discussed by Nordstrdm, Petersson and Smith [NPS], and to which we refer the reader for
complete details.

-The theory of expressions defines the arity of expressions and definitional equality of expressions. For
understanding the rules that follow it is necessary to know that different occurences of the same variable in
a rule denote definitionally equal expressions. Identical expressions are, of course, definitionally equal but
also ((z)P)(z) is definitionally equal to P for any expression P and variable z, and ((z)c)(y) is definitionaily
equal to ¢ for any constant ¢ and variables z and y. In particular ((z) Type)(y) is definitionally equal to Type,
since Type is a constant.

The rules of the pre-theory (and of the theory) prescribe the formation of derivations and from deriva-
tions one may abstract judgements. The syntactic form of derivations and judgements is described in essence
by the following BNF syntax

(derivation) ::= (statement)s
(statement) ::= (primitive statement) | (contezt)
(contezt) ::= “|[" (assumption)“p " (derivation)“||”
(cssumption) ::= (statement)
(judgement) == (primitive statement) | “|[* (assumption)“v> " (judgement)“||”

A derivation is thus a sequence of statements each of which is either a primitive statement or a context.
Contexts are delimited by the scope brackets “|[" and “}|” and consist of an assumption followed by a (sub-)
derivation. A judgement is formed from a derivation by the simple process of elidii g all but the last statement
in the derivation and in all its sub-derivations. For example consider a derivatior. of the form

Po
Il a0
> n
[a1
1
Il

where po,p; and p; are primitive statements and ao,a; are assumptions. Then the judgement obtained by
eliding all but the last statement in each derivation is the following.

2

il a0
D“ a3
> P2

I :
I o |

which may be read as “ggsuming ao and assuming ay then po”.

We say that a statement p precedes a statement ¢ within a derivation if p is the ith statement of the
derivation, for some i, and either (a) ¢ is the jth statement of the derivation for some j > i or (b) the jth
statement, for some j > i, is a context that includes the statement g. The statement p also precedes the
statement q in a derivation if p precedes ¢ in a subderivation of the derivation. Thus in the example above
statement po precedes statements ao,p1,61 and pg. Also p; precedes [a1 > p2 || and p2, and so on.

Each rule in the pre-theory (and in the theory) consists of a set of premises and a conclusion, in the
usual way. The application of a rule permits a derivation to be eziended by adding a statement to the end
of the derivation or to the end of a subderivation provided that the extended derivation includes statements
preceding the added statement that match the premises in the same way that the added statement matches
the conclusion. An axiom is a rule that has no premises; thus application of an axiom permits a derivation
to be extended at an arbitrary point.

Note that there is considerable freedom in the order of construction of statements in a derivation. The
form in which derivations are presented on the printed page will suggest one particular order but it should
not be supposed that this is the only order.

Just those rules that we explicitly employ are given below. For these rules we explain their meaning in
an ad hoc way. We do not, however, attempt to give any meaning to the word category : the reader must
accept that certain expressions denote “categories”, which expressions being determined by application of
the rules. Thus the first rule must be accepted as an axiom - “Type” denotes a category.

Type Formation
Type cat

“T'ype cat” is a primitive statement and therefore a derivation and a judgement.

Contexts may be introduced into 2 derivation via the assumption rule.

C cat
— Assumption
| z:C

>

I

I in a derivation we have a primitive statement of the form C cat then it is possible to extend the derivation
by adding an assumption of the form z : C where z is a variable. Note that the assumption is a particular
sort of primitive statement. For clarity it is separated from following statements by the symbol .

For each type A the elements of A form a category. Thus we have the rule of element formation.

A :Type ~

Element formation
El(A) cat
The rule permits a derivation that includes a statement of the form A : Type to be extended by adding the
statement EI(A) cat to the derivation. In so doing the context of both statements must be identical.
Function categories are obtained by discharging assumptions.

A cat
[z: A

> B(z) cat
I

e Function formation

F(A, B) cat

F(A; B) is the category of functions that map an object z of the category A into an object of the category
B(z). Note that B(z) does not denote an expression containing free occurrences of z, as it would in
conventional mathematics, but an expression that is definitionally equal to the application of some expression’
B of arity 0 — 0 to some variable z. For instance Type takes the form B(z) since it is definitionally equal

to ((y) Type)(z)- |
' The final rule we need in the pre-theory is the rule of function elimination.
a:A
¢: F(A,B)
c(a): B(s)

Anrexample of a derivation using these rules is as follows. Note that the line numbers and material
within:braces are not part of the derivation but are only included as aids to the reader. Also, the symbol
“=" has:been used to denote definitional equality.

Function Elimination

{Type formation}
0 Type cat
0, assumption}
10 l| X : Type
» {1.0, El-formation}
1.1 -~ ElX) cat
1.1, assumption}
1.2.0 ﬁ z: El(X)
o {Type formation}
1.2.1 Type cat
|
{11, 1.2, ((z)Type)(z) = Type, fun-formation}
1.3 F(EI(X),(z)Type) cat
1.1, assumption}
1.4.0 ly: EI(X)
» {1.3, assumption}
1.4.1.0 Y : F(EI(X),(z)Type)

» {1.4.0, 1.4.1.0, ((X)Type)(y) = Type, fun-elim}
1.4.1.1 Y(y): Type ’

I
I
I

The judgement obtained from this derivation by eliding all but the last statement in every subderivation is
the following.

|| X:Type
> || v:EX)
o || Y:F(EIX),(z)Type)
> Y(y):Type

I I

In words, assuming X is a type, y is an element of X and Y is a function mapping elements of X into the
category of types, then Y applied to y is a type.

2. The Rules of Type Theory

Now that we have discussed the pre-theory we may proceed to explicate the meaning of the rules in;
type theory itself. We do this by interpreting each rule of type theory as a judgement in the pre-theory. The
premises of the rule become assumptions of the pre-theory judgement.

This rather simple idea has far-reaching consequences. It means that we can decide whether the premises
of a type-theory rule make sense by constructing a derivation in the pre-theory. We can also check that the
conclusion of the rule obeys a certain consistency requirement (called internal consistency in the sequel).

Some preliminary examples may help to convey the idea. Let us consider the formation, introduction
and elimination rules for the disjoint-sum type.

Below we show the formation rule and the corresponding pre-theory judgement. Here the correspondence
is immediate: premises become assumptions and P type is replaced by P: Type.

I| A:Type
A type > || B:Type
B type _ | > AVB:Type
—_— |
AV Btype I
type-theory rule pre-theory judgement

v-formation

Next consider one of the introduction rules for the disjoint-sum type. Again we exhibit the type-theory
rule and the corresponding pre-theory judgement.

I| A:Type 4
» || B:Type

A type > || z:El(A)
B type > i(z): El(AvB)
zEA
—_— I
i(z)e AVB I
type-theory rule pre-theory judgement

v-introduction

This example is more illuminating because we can use it to give a preliminary account of what it means
for an introduction rule to be internally consistent. Specifically, given an introduction rule with conclusion
¢ € E we convert the rule into a judgement EI(E) cat under assumptions derived from (in a manner yet to
be described) the premises of the rule. The rule is then said to be internally consistent if the judgement can
be verified using the rules of the pre-theory and the formation rules of the type. Thus for our example w¢
verify internal consistency by establishing the judgement

Il A:Type
> || B:Type
> || z: El(A)
' > El(Av B) cat
I
I

This judgement has the following derivation.

R {Type formation}
0 Type cat

1.0

io,assumption}
Il A: Type
» {0, assumption}
1.1.0 || B: Type
: » {1.0, element formation}
111 EI{A) cat
: 1.1.1,assumption}
1.1.1.0 I z: El(A)
- » {1.0,1.1.0,v-formation}
1.1.1.1 AV B :Type
o {1.1.2.1,element formation}
1111 El(AV B) cat
I
I
i

Note that the penultimate step makes use of the v-formation rule.

‘ Finally consider the elimination rule for disjoint sum. The type-theory rule and corresponding judgement
are shown below.

A type :

B type | A:Type

f zeAvB > || B:Type

‘ » C(z) type > || C:F(EI(AvV B),(z)Type)

| o || d:F(EI(A),(y)EIC(i(y)))

I yeA . : > |l (e= (F ()El({B), éy)(Egl(lC(}(y))))
> dy) € C(ily) > || f: El{Av B)

I > w(/,d,e): EIC(/))

I veB

I > e(y) € C(i(y) I I

f €AVB I I

w(f,d.e) € C(]) I ,
type-theory rule pre-theory judgement

V-elimination

The additional complexity of this example arises from the hypothetical premises (that is, premises involving
assumptions). The specific translation process used converts a premise of the form || z € Ao J || as follows.
First convert the judgement J to, say, b(z): B(z). Then construct the judgement b: F(E!(A), B). Thus the
premise || z€ AVBo C(? type || is converted by first converting C(z) type to C(z) : Type, which is
definitionally equal to C(z) : ((z)Type)(z). Then the judgement C : F(EI(A vV B),(z)Type) is constructed.

As an exercise the reader may wish to verify the internal consistency of the rule by constructing a
derivation of the following judgement.

"I A:Type
o || B:Type
» || C: F(EI(AV B),(z)Type)
> I 4: FEKAL ECl))
> Il e F(BI(B), (1 ENCGW)
» || J:EI(AVB)
> EI(C(])) cat

l
!Il

2.1 Pormalising the Conversion from Type Theory Rules to Pre-Theory J udgements

Converting from type theory rules to pre-theory judgements is a purely syntactic process which we now
summarise.

Each type theory rule consists of an ordered sequence of premises and a single inference. The pre-theory
judgement consists of an ordered sequence of assumptions (each corresponding to a premise) and a single
conclusion. Individual statements (premise or inference) of the rule are converted according to the following
algorithm.

(a) “E type” is converted to “E: Type"

(b} “e € E” is converted to “: EIE)

{c) given a hypothetical premise of the form | H » § || first convert H to the form “z: E™ and S to the
form “d(z) : D". Then the premise is converted to “d : F(E,(z)D)". Note that definitional equality
may be required to complete the conversion of H and/or S to the required form. Note also that the
construction permits the hypothesis H to be itself hypothetical.

Consider now the presentation of a new type in the theory. The order of presentation of the rules is
(1) formation rules (2) introduction rules (3) elimination rule (4) computation rules. (We do not consider
equality rules in this paper although they do not pose additional difficulties.) Suppose the inference of one
of these rules is converted to a statement of the form “e: E” and the premises are converted to statements
of the form “a; : A1”,...,“Ga : Aa". Then we say that the rule is internally consistent if and only if there is
a derivation of the judgement

| 61:41> ...»> || 6a:Aap Ecat N i

in a system consisting of the pre-theory and those rules governing the type that precede the given rule in
the above order.

3 Introducing New Types into the Theory

The mechanism fcr introducing a new type into the theory has three stages. First the formation rule
for the type is prescribed followed by the introduction rules. Finally the elimination rules and computation
rule are automatically inferred from the formation rule and the introduction rules (provided, of course, that
the latter are internally consistent). This is the subject of the next three sections.

[———]

3.1 Formation Rules

Each formation rule introduces some new type constructor, © say. The premises of such a rule all take
the-form “A type”, for some expression A and within some context. The corresponding pre-theory judgement
therefore has the form

[Ai:Th
b || A2: T
[.

o || An:Ta
> O(Ai1,...,An): Type
I
|
I
I

where the expressions T},. . .,T, are all elements of a class of expressions TYPE where TYPE has the following
syntax

TYPE ::= “Type” | “F(" ezpression “,” TYPE “)”

For future reference we refer to A,,...,Ax as the formation variables.

3.2 Introduction Rules

A type © may have several introduction rules, each one of which introduces a new canonical-object
constructor. Consider one such constructor, # say. Then the premises of the §-introduction rule are in two
parts. First there are the premises of the ©-formation rule. (These are rarely stated explicitly.) Second
there is a number, m say, of premises each of the form “b € B” for some expressions b and B and within
some context. Thus the corresponding pre-theory judgement takes the form

A :Ths.oi4n: Ta
> |l 21:515...;%m : Sm
" b 0(3],...,3,,,):El(e(Al,...,A‘))
I

The first set of premises corresponds to the premises of the ©-formation rule. The expressions Si,...,5m
in the second set of premises all belong to the syntactic category ELEMENT defined as follows:

ELEMENT := “El(" expression *)" | “F(EI(" expression “)," abstract ELEMENT)

Again for future reference we call the variables z),...,2m the 8-introduction variables.

The 8-introduction rule may be recursive: that is, one or more of the premises of the rule may take the
form that, in a certain context, b € ©(l) for some expression b and some list of expressions /. (For such a
premise to make sense the inference rule must be internally consistent as defined earlier.) If the sth premise
is indeed recursive we refer to z; as a recursive 0-introduction variable.

3.3 Elimination Rules

For-each type constructor © there is exactly one elimination rule. Let us suppose the elimination
rule-introducessthe non-canonical constant Orec, and that there are k introduction rules defining canonical
constants:4,...,0k. Then the elimination rule is formed as follows.

- 0 (premises<of ©-formation)
1 a.€ 6{Ai,...,Ax)
2 || we(Ay,...,4.)

> C(w)type

3 . {context:computed from 6;-introduction rule)
": b Z{,(lr, 6-3) € 0(01 (l]))

2+k | (éc;ntext computed from fx-introduction rule)
I o zx(le, 8x) € C(O(lx))

- ©-elimination
©rec(a, 21,..., 2) € C(a)

The premises are divided into four parts. In the first part the premises of ©-formation are repeated
once again (and also once again rarely explicitly). The second part postulates the existence of an object “s”
of type © (where “s” is a new identifier). The third part postulates that C (where “C” is a new identifier)
is a family of types indexed by objects of type ©. Finally the fourth part consists of a premise for each
canonical-object constructor 6. (In the above schema z;,...,2; are new variables and ¢;,...,8,01,... Jk are
lists of variables constructed from the introduction rules in in a manner to be described shortly.) A summary
of the ©-elimination rule would be that the proof of a property C(a) given object a of type © proceeds by
structural induction, i.e. by case analysis on the possible form of the canonical value of a.

The premise (referred to later as ps) corresponding to the d-introduction rule takes the form:

| (context computed from 6-introduction rule)
> z(l,8) € C(8(1))

where [is simply the list of é-introduction variables but where the construction of the context and the list
of é-elimination variables, s, depends on whether the introduction rule is or is not recursive. The details of
their construction are as follows.

Suppose that the ﬂ-introduction rule has the following form.

(premises of ©-formation)
Il {context 1)

_ " b bl;EEi_

|[..(éontext‘ m)
o b€ Bm

I
o(t) e o(t)

where by,...,bm,Bi,..., Bm are expressions, { is the list of #-introduction variables and ¢t is the list of
©-formation variables. Then the premise, py, to be included in the ©-elimination rule has the form

9

il '(cuumption(a) 1)
| : z:uumptt‘on 8) m) ;
> z(l,s) € C(6(1)) :

Here “(assumption(s) k)" refers to either one or two assumptions depending on whether z; is or is not a
recursive f-introduction variable. In the case that z; is not recursive then “(assumption 8) k)" is simply a
repetition of the corresponding premise in the f-introduction rule. That is “(assumption 8) k)" is

[l {context k)
> b € B,

i
On the other hand if zx is a recursive #-introduction variable then, by deflnition, the corresponding
premise of the d-introduction rule takes the form

Il (context k)
> zx(ux) € O(l)

for some list of variables ux. In this case {assumption(s) k) consists of

a} a repetition of the premise as in the case of a non-recursive -introduction variable, and
b) the assumption

context k
I £ ;:(ug) é Clze(ur))

where 5 is a new variable.
The list, &, of f-elimination variables is then just the list of variables, yx, that are introduced by the
recursive §-introduction variables.

3.4 Computation Rules

The computation rules for type © are in (1-1) correspondence with the introduction rules for ©. Thus
for each canonical-object-constructor, 8 say, there is exactly one computation rule which prescribes how to
apply Orec to a f-object. Again the method of constructing the rule is complicated by the presence of
recursive introduction variables.

For the purpose of this discussion let us identify @ with its index in the list of canonical-object construc-
tors for the type 8. Also let us denote by Iy the list of #-introduction variables.

In general the computation rule for -objects is a combination of the 6-introduction rule and the ©-
elimination rule. A schema for its construction is as follows.

0 premises of ©-formation)
1 premises of d-introduction (excluding \)-formation premises))
2...24+k (premises 2...2 + k of 6-elimination)

Orec(8(ls), 21,...,2) = z¢(ls, v) € C(8(ly))

Apart from the construction of the list of expressions v (which we have yet to describe) the construction
of the #-computation rule is thus very straightforward.

There is an expression in the list v for each recursive é-introduction variable. Suppose z;(1 < i < my)
is such a variable and the corresponding premise of the #-introduction rule is

I[{context 5)
> zi{u:) € B(t)

6-computation

10

‘f{;,:: Then the entry in the list v takes the form

(us)Orec(zi(ui), z1,. .., 2)

3.5 Examples .
We present several examples of the construction of the elimination and computation rules. First consider
the disjoint sum type. This has the formation rule:
' A, type
Az type .
———n v-formation
_ A, V A2 type
and two introduction rules:
A; type
Az type
Z€ A

i(z) € Ay v Ag

i-introduction

A; type

Az type

z) €EAy
—— j-introduction
](z) €EAI VA,

The list of v-formation variables is thus (A, A2), the list of i-introduction variables is (z) and the list
of j-introduction variables is also (z).
Referring back to section 3.3 we construct the following elimination rule.

0 A; type
Az type

1 €A VA
2 " wEA VA

> C(w) type
3 | z €A

> z(z) € Ci(z))
4 il z€ A,

I > (z) € C(j(z))

V-elimination

v-eim(a, 2, 22) € C(a)
Also, referring to section 3.4 we construct the following computation rules
0 A, type
Az type
I TEA;

2...4 (asin v-elimination)

i-computation
v-elim(i(z), 21, 2} = 21(z) € C(i(z))

11

 %0

A, type
Az type

i S | ZE€ Az
2...4 (asin v-elimination)

: j-computation
v-elim(j(z), 21, z2) = 22(z) € C(i(z))
“Our second example is concocted to illustrate the problems of recursive introduction variables. The
formation rule is as follows.

A type
— H-formation
H(A) type

" The type has one introduction rule

A type
| veA
I > z(v) € H(A)

h(z) € H(A)

Note that the A-introduction variable z is recursive by virtue of the premise “z(v) € H(A)".
From these two rules we compute the H-elimination rule according to the schema described in section

h-introduction

A type
e € H(A)
I| weH(A)
» C(w) type

[S~)

3 | veA
> z(v) € H(A)

i I ved
> y(v) € C(z(v))

> 2(z,y) € C(h(z))

H-elimination
Hrec(a, 2) € C(a)
Finally the computation rule takes the following form.

6 A type
 § | veA
> z(v) € H(A)

2...3 (asin H-elimination)

h-computation

H-rec(h(z), 2) = 2(z, (v)H-rec(z(v), z)) € C(h(z))

We conclude our list of examples with the definition of the W-type.

The W-type stands out in Martin-Lof’s presentation of his theory [MLO] because it is the only one that
appears to require an understanding of other types in the theory. In particular the rules given there appeal
to an understanding of the [I-type and of “—", a symbol that is not defined (although Martin-Lf does make
its meaning clear elsewhere [ML1]). One important aspect of the rationalisation of the theory, mentioned
by Martin-Lof in the Padova Notes [ML1], detailed by Nordstrom, Peterson and Smith [NPS] and exploited

12

by us in this paper, is that this lacuna has been overcome. The W-type is also the one that is considered
to be the hardest to understand. Our contribution is thus to show that it may be understood solely by
understanding its introduction rule and the general scheme for inferring elimination and computation rules.
The W -formation rule is as follows.
A; type
“ Z€ A
o Az(z) type

W-formation
W (A1, Az) type

The W-type also has just one (recursive) introduction rule:

(premises of W-formation)
21 €A
I ve AzSzl)

> z2(v) € W(A;, A2)

sup-introduction
sup(zy,12) € W(A,, A2)

According to the schema for its construction the W-elimination rule therefore takes the following form.

0 {premises of W -formation)
1 s € W(A;, Ag)
2 ﬂ wGW(Ag,Az)

> C(w)type

3 T € A;
i uEAzsz;)
> z2(v) € W(A;,A2)

: | v € Az(z1)
> y(v) € C(z2(v))

o z(z;,zz,y)EC(GuP(zl,zz))

W-elimination
W-rec{s, z) € C(a)

Finally the single computation rule takes the following form.
{premises of W -formation)
z; € Ay

[ve Azxz1)
> z2(v) € W(A,,A2)

i~

2.3 {as in W-elimination)

sup-computation
W-rectoup{z,, 22), 2) = 2(21, 22, (V)W -rec(z2(v), 2))

13

Conclusions

Martin-Lof’s theory of types has a rich structure which we hope this paper has helped to expose. Our
account must, however, be recognised as very preliminary. This section is therefore devoted to a description
of the work that we plan to do in the near future.

To begin with there are certain flaws in the above account. In particular, it has been pointed out to
us that additional constraints apply to the use of recursive introduction variables. Thus in the first draft of
this: paper our example of h-introduction (see section 3.5) had the premise

Il ve H(A)
> z(v) € H(A)

which should be prohibited on account of the fact that there is a negative occurrence of a recursive introduc-
tion variable leading to nonterminating programs. (I am grateful to Per Martin-L4f for pointing this out.)
This highlights a lack of a semantic justification of the scheme we have described, but which we intend to
remedy.

Secondly we intend to describe schemes for the construction of derivations of closure properties and
uniqueness properties of a type. Closure properties are properties like “every element of a disjoint sum
is either-of the form i(a) or j(b) for elements a and b of the appropriate type” and uniqueness properties
express-the fact that objects introduced by distinct introduction rules are always distinct. Thus the two sets
of properties reflect the fact that types introduced into the theory are extremal, and, of course, they are
fundmental to our understanding. For particular instances of such derivations the reader is referred to [Bal.

Thirdly, we'intend to extend the construction to novel type structures such as the subset type [Co,NPS]
in which the type introduction rules incur information loss. For the subset type and similar type constructors
that we have in mind the way ahead is clear. The quotient type introduced by the PRL group [Co| is much
less clear to us.

Finally, we intend to try to provide a collection of examples that illustrate our thesis that the abil-
ity to introduce new type constructors is an indispensable feature of the theory - and, consequently, of
implementations of the theory.

References

[Ba] R.C. Backhouse “Notes on Martin-Lf’s Theory of Types” Department of Computer Science, Uni-

versity of Essex, England, Section 1, Feb. 1986, Section 2, June 1986.

[Be] M.J. Beeson “Foundations of Constructive Mathematics” Springer-Verlag, Berlin (1985).

{BL] R. Burstall and B.Lampson “A kernel language for abstract data types and modules,” in Semantics

?f Da;a Types, Eds. G.Kahn, D.B.MacQueen and G.Plotkin, Lecture Notes in Computer Science 173, 1-50
1984).

[Ch] P. Chisholm “Derivation of a parsing algorithm in Martin-L5f's Theory of Types”, Department

of Computer Science, Heriot-Watt University, Scotland, U.K., 1985. (To appear in Science of Computer

Programming).

Eo] R.L. Constableet al “Implementing Mathematics with the Nuprl Proof Development System™ Prentice-
all, Inc., Englewood Cliffs, N.J. (1986).

[DF] ?.W. Dijkstra and W.H.J. Feijen “Een methode van programmeren”, Academic Service, 's-Graven-

hage (1984)

- [Dy] R. Dyckhoff “Categery theory as an extension of Martin-L3f's Type Theory”, University of St.

Andrews (1985).

|[Kh} A.M.A. Khamiss “Program Construction in Martin-Lof’s Theory of Types”, Ph.D. Thesis, University

of Essex, Department of Computer Science (1986).

[MLO] P. Martin-Lof “Constructive Mathematics and Computer Programming”, pp. 153-175 in Logic,

Methodology and Philosophy of Science, VI, North-Holland Publishing Company, Amsterdam (1982), Pro-

ceedings of the 6th International Congress, Hannover, 1979.

{ML1] P. Martin-Lof “Intuitionistic Type Theory” Notes by Giovanni Sambin of a series of lectures given

in Padova, June 1980.

14

[No] B. Nordstrm “Multilevel Functions in Type Theory”, pp. 206-235 in Workshop on Programs as
Objects, Lecture Notes in Computer Science, Vol. 217, Springer-Verlag, Berlin (October 1985)

INPS] B. Nordstrsm, K. Peterson and J. Smith “An Introduction to Martin-Lof's Type Theory”, Draft,
midsummer 1986, Programming Methodology Group, Chalmers University of Technology, S-41296 Gateborg,
Sweden. ‘

Acknowledgements My thanks go to Bengt Nordstrom and Per Martin-L3f both of whom have pro-
vided helpful criticisms of this report. Thanks go also to Kees Straatman for helping me to win the battle
with TEX.

This work was begun whilst 1 was still employed by the Department of Computer Science of the Univer-
sity of Essex and was supported at that time by a grant from the Science and Engineering Research Council.
I am grateful to both organisations for their support.

15

The Independence of Peano’s Fourth Axiom from
Martin-Lof’s Type Theory without Universes

Jan M. Smith
Department of Computer Science
University of Géteborg/Chalmers

S-412 96 Goteborg
Sweden

January 1987

Abstract

Martin-Lo6f’s type theory without universes is interpreted in the calculus of truth
values. The interpretation shows that no negated equalities can be proved without
universes and also gives a finitary consistency proof of type theory without universes.

1 Introduction

In Hilbert-Ackermann [2] there is given a simple proof of the consistency of first order
predicate logic by reducing it to propositional logic. Intuitively, the proof is based on
interpreting predicate logic in a domain with only one element. Tarski [7] and Gentzen [1]
have extended this method to simple type theory by starting with an individual domain
consisting of a single element and then interpreting a higher type by the set of truth valued
functions on the previous type.

I will use the method of Hilbert and Ackermann on Martin-Lo6f’s type theory without
universes to show that - Eq(A,a,b) cannot be derived without universes for any type
A and any objects a and b of type A. In particular, this proves the conjecture in
Martin-Lof [5] that Peano’s fourth axiom (Vz €& N)-Eq(N,0,succ(z)) cannot be proved
in type theory without universes. The construction will also give a consistency proof b |

finitary methods of Martin-Lof’s type theory without universes. So, without universes,
the logic obtained by interpreting propositions as types is surprisingly weak. This is in
sharp contrast with type theory as a computational system, since, for instance, the proof

that every object of a type can be computed to normal form cannot be formalized in first
order arithmetic.

The nonderivability of = Eq(N,0,1) for the version of type theory given in Martin-Lof [4]
was already shown in Smith [6] as a corollary to a somewhat less straightforward con-
struction made with a different purpose. The proofs in this paper will work for any of the
different formulations of Martin-Lof’s type theory.

2 The construction of the interpretation

We define a truth valued function ¢ on the types of Martin-Lo6f’s type theory without
universes. Intuitively, ¢(A) = T means that the interpretation of the type A is a set
with one element and ¢(A) = 1 means that A is interpreted as the empty set. ¢ is
defined for each type expression A(zy,...,z,) by recursion on the length of the derivation
of A(zy,...,z,) type |21 € Ay, ..., Tn € Ax(Z1,...,Zn-1)], using the clauses

p(N) = 1L
o(Ny) = T (k=1,2,...)
©(N) T
v(Ea(4,a,b)) = ¢(4)
v(A+B) = p(4)Ve(B)
p((lIz€ A)B(z)) = ¢(A4) — o(B(z))
o((2z€4)B(z)) = ¢(4)Ap(B(z))
p((Wz€A)B(z)) = ¢(4)A(-p(B(2)))
p({z€ A|B(z)}) = (4)Ap(B(z))

A, V, —,and - denote the usual boolean operations.
That ¢ really interprets type theory in the way we have intended is the content of the

following theorem.

Theorem. Let a(zi,...,2,) € A(Z1,...,2n) [21 € Ay, ..., 24 € Ap(z1,... 20 1))
be derivable in type theory without universes. Then p(A(z1,...,2,)) = T provided that
p(di) =+ - - =p(An(z1,.. s Zn-1)) =T.

In the proof of this theorem we will use two lemmas. The first says that the truth
value assigned to a type expression is preserved under substitution. The second lemma

says that equality between types is preserved by .

Lemma 1. If A(zy,...,Z,)type [z1 € A1, ..., Tn € An(Z1,...,Zn-1)] and
a; €Ay, ..., a, € Ay(ay,...,0,-1) are derivable in type theory without universes, then

©(A(z1,...,20)) = p(A(ay,...,a4)).

Proof. The proof is by induction on the length of the derivation of A(z,...,z,) type
[z1 € Ay, ..., Zp € Ap(Z1,.-.5Za-1)]. The only type forming rule where free variables
may be introduced is Eq-formation. Since ¢ (Eq(A4,a,d)) = ¢(A) the induction hypothesis
directly gives the result.

1

Lemma 2. If A(zy,...,2,) = B(Z1,...,%,) [Z1 € A1, ..., Zn € Ap(Z1,...,Z01)] s
derivable in type theory without universes, then p(A(z1,...,2,)) = p(B(z1,...,2,))-

Proof. This lemma is straightforwardly proved by induction on the length of the
derivation of A(zy,...,2,) = B(Z1,...,%s) [z1 € Ay, ..., T, € A,4(Z1,...,24-1)]. Note
that lemma 1 is needed for the rule ‘

a=be A C(z) type [z € A]
C(a) =C(b)

Proof of the theorem. The proof is by induction on the length of the derivation of
a(zy,...,2,) € A(Z1,...,2,) [Z1 € Ayy - .. Zp € Ap(Z1,- .., Zn-1)]. I will only discuss a
few of the rules; the remaining can be handled in the same way.

Equality of types

ac A A=B
a€B
By the induction hypothesis we have that ©(A) = T and, by lemma 2, that p(4) = p(B).
Hence, ¢(B)=T.
There are different formulations of the rules for the Eq-type in Martin-Lof [3] and

Martin-Lof [4,5]. I will here use the earlier formulation which is the one now used by
Martin-Lof since it does not destroy the decidability of the judgemental equality
a=b€A.

Eq-introduction
ac A

eq(a) € Eq(4,qa,a)
Since, by the definition of ¢, p(Eq(4,a,a)) = ©(A), the induction hypothesis directly

gives p(Eq(4,a,a)) =T.

Eq-elimination

c € Eq(A,a,b) d(z) € C(z,z,eq(z)) [z € A]
J(¢c,d) € C(a,b,¢)

By the induction hypothesis we have that o(Eq(A4,a,b)) = T and that p(C(z,z,eq(z))) =
T if p(A) = T. Hence, since p(Eq(4,a,b)) = ¢(4), ¢(C(z,z,eq(z))) = T which, by
lemma 1, gives p(C(a,b,c)) =T.

If we instead had considered the Eq-rules in Martin-Lof [4] we could simplify the
definition of ¢ by putting ¢(Eq(A4,a,b))=T.

IT-introduction b(z) € B(z) [z € 4]

A(b) € (TIz€ A)B(z)

By the induction hypothesis we know that ©(B(z)) = T if p(A) = T. Since
o((Mz€ A)B(z)) = p(A) — p(B(z)) this gives that p((llz€A)B(z)) = T.

I1 -elimination
a€ A c€ (llz€ A)B(z)

apply(c,a) € B(a)
According to the induction hypothesis, we have p(A4) = T and p((Ilz€ A)B(z)) =T,
which, since p((Ilz€ A)B(z)) = ¢(4) — ¢(B(z)), gives that p(B(z)) = T. Hence, by
lemma 1, ¢(B(a)) = T.

N -elimipation

neN de C(0) e(z,y) € C(succ(z)) [z €N, y € C(z)]
rec(n,d,e) € C(n)

By the induction hypothesis we have that ¢(C(0)) = T which, by lemma 1, gives
o(Clr) =T

3 Some consequences of the interpretation

3.1 The unprovability of Peano’s fourth axiom

By the interpretation we can now see that for no type A and terms a and b does

there exist a closed term t such that
te _‘Eq(A’aa b) (*)

is derivable in type theory without universes. Assume that (*) holds. Then there must
exist a derivation of Eq(4,a,b) type and, hence, also a derivation of @ € A. So, by the
theorem, ©(A) = T which, together with the definitions of ¢ and -, gives

©(—Eq(4,a,b)) = p(Eq(4,a,b) = No) = p(Eq(4,a,b)) — p(Ng) = p(4) = L =1L

Hence, by the theorem, ~Eq(A,a,b) cannot be derived in type theory without universes.
Assume that Peano’s fourth axiom can be derived, that is, that we have a derivation
of
s € (IIzeN) -~ Eq(N, 0, succ(z))

for some closed term s. By Il-elimination we then get apply(s,0) € - Eq(N,0, succ(0))
which is of the form (x) and therefore impossible to derive in type theory without uni-
verses. ;
That no negated equalities can be proved reflects the intuition behind ¢, which is
' that it interprets type theory in a2 domain with a single element. We can make this
explicit inside type theory by introducing a new constant x and for each type A such
that ©(A) = T adding a new rule

*x€ A

The theorem can still be proved with this new rule added, so the extension is consistent.
Since o ((Mlz€ A)Eq(A4,z,%)) = p(A4) = p(A) = T we have that x € (Ilz€ A)Eq(A4, z,+),
that is, all objects of a type are equal to *x. Note that the extension is classical because
* € AV (~A). Since * € Eq(N,0,1), type theory with universes becomes inconsistent if
the x-rule is added.

3.2 Well-orderings

The definition of ¢ on well-orderings, p((Wz € 4)B(z)) = w(4) A (~p(B(z))), is
made as to validate the rules in Martin-Lof [4]. The W-introduction rule in [4] does not
have a bottom clause 0 € (Wz € A)B(z) since such a clause can be derived using a universe.
We can now see that this use of a universe is necessary. Since p((Wz € A)B(z)) = T
implies p(A4) = T and ¢(B(z)) = L we get, by the theorem, that if (Wz€ A)B(z) is not
empty then B(a) must be empty for all @ in A. This gives that all elements of a well-
ordering type are initial, that is, without predecessors. So, only very trivial well-orderings
can be constructed.

If we add a bottom clause to the W-rules and change the definition of ¢ by
p((Wz€A)B(z)) = T, we get the full computational strength of the well-ordering types
and can still prove our theorem.

3.3 Consistency

That type theory is consistent means that there is no term of type No. By the theorem,
type theory without universes is consistent since ©(Ny) = L. Clearly, this consistency

proof is finitary in the sense of Hilbert and can be carried out in primitive recursive

arithmetic. This may seem surprising since the proof theoretic strength of type theory
without universes measured in terms of provable well-orderings is, without well-ordering
types, the same as first order arithmetic and, with well-ordering types, even far beyond
£o. However, this is not in conflict with Godel’s second incompletness theorem, because
in order to prove Godel’s theorem, primitive recursive predicates must be numeralwise
expressible in the theory and, as we have seen, not even equality is numeralwise expressible
in type theory without universes.

1

3.4 Universes

If ¢ was extended to a universe, then ¢(T(a)) has to be defined for each object a of

the universe U because of the rule
acl

T(a) type
which says that if a is the code of a type then T(a) is the type that a encodes. Let ng
and n; be the codes of No and N; respectively. Since

T(no) = No and T(nl) = N1
we must have
©(T(ng)) =L and (T(n)) =T

Hence, lemma 1, which is crucial for the proof of the theorem, would no longer hold.

An obvious way of extending type theory in order to obtain the strength of first order
arithmetic is to add Peano’s fourth axiom. This would not, however, follow the general
pattern of introduction and elimination rules in type theory which is very natural, par-
ticularly when viewing a type as a set and not as a proposition: the elements of a set
are defined by the introduction rules and the elimination rule makes it possible to define
functions by recursion on the set.

Martin-Lof has instead suggested to extend type theory without universes by using the
objects 0, and 1, of type N; as codes for No and N; respectively. We then have to add

the type formation rule
a€N;

T(a) type
and the type equalities
T(Oz) = No T(12) = Nl

With these new rules added, Peano’s fourth axiom can be proved as in [5]. Another similar
way of extending type theory without universes in order to obtain the strength of first
order arithmetic, is to add a very small universe Up,, by restricting the first universe U
to only have two objects, n; and n;, coding Ny, and N; respectively.

References

[1] G. Gentzen. Die Widerspruchsfreiheit der Stufenlogik. Mathematische Zeitschrift 41,
No. 3, 1936, pp.357-366.

[2] D. Hilbert and W. Ackermann. Grundziige der Theoretischen Logik. Springer-Verlag
1928.

[3] P. Martin-L&f. An intuitionistic theory of types: predicative part. In Logic Collo-
quium ’73, North-Holland, 1975.

[4] P. Martin-Lof. Constructive Mathematics and Computer Programming. In Sixth
International Congress for Logic, Methodology, and Philosophy of Science, pp. 153-
175. North-Holland, 1982.

[5] P. Martin-Lof. Intuitionistic Type Theory. Studies in Proof Theory, Lecture Notes,
Bibliopolis, Napoli, 1984.

[6] J.M. Smith. On a Nonconstructive Type Theory and Program Derivation. To ap-
pear in the proceedings of Conference on Logic and its Applications, Bulgaria 1986
(Pergamon Press).

[7] A. Tarski. Einige Betrachtungen iiber die Begriffe der w-Wiederspruchsfreiheit und
der w-Vollstandigkeit. Monatsh. Math. Phys. 40, 1933. pp.279-295.

Inductively Defined Sets
in Martin-Lof’s Set Theory

(Draft)

Peter Dybjer
April 16, 1987

Abstract

There are several possible schemes for introducing inductive definitions in
Martin-L6f’s intuitionistic set theory. One such scheme is obtained by including a
fixed point operator in the theory. The rules for such fixed points are displayed,
and it is shown that Aczel’s interpretation of Martin-Lof’s set theory in a logical
theory of constructions can be extended accordingly. Moreover, algorithms are
given which derive introduction and elimination rules for particular inductively de-
fined sets and set operators (parameterised sets). Another scheme is obtained by
representing inductively defined sets as well-orderings. A theorem shows that this
method yields isomorphic representations if one assumes extensional equality of
functions.

1 Introduction

Recursive data structures, such as natural numbers, lists, and binary trees, are very
important in programming. The corresponding notion in Martin-Lo6f’s intuitionistic set
theory (or type theory) is that of an inductively defined set. In [9] there is no general
scheme for inductive definitions, however. This is unlike Coquand and Huet’s theory
of constructions [5], where inductively generated sets can be defined impredicatively by
using second order quantification. The only common recursive data structure which is
introduced as a primitive is the set of natural numbers. Other recursive data structures
can instead be represented in terms of the powerful well-orderings. In [10] it is for
example shown how to represent the set of natural numbers and the set of ordinals of
the second number class as certain well-orderings.

But intuitionistic set theory should not be viewed as a closed framework: new set
operators can be added when there is a need for them. For example, in [10] the list
former is added as a primitive set forming operation. Another example can be found
in [13] where rules for inductively defined sets of multilevel functions are given. 1

It seems that there are general methods both for representing inductively defined -
sets in terms of well-orderings and for adding new rules for inductively defined sets. We

* Author’s address: Programming Methodology Group, Department of Computer Sciences, Chalmers
University of Technology and University of Goteborg, S-412 96 Goteborg, Sweden

shall discuss such methods here for sets inductively generated by certain set operators
G, which are built up from the identity and constants by the standard operators +, x
and — and which are strictly positive, that is, the set variable X must not occur to
the left of an arrow in G X. I shall use strictly positive to refer to an operator in this
collection in the sequel.

The problem of adding new rules for inductively defined sets has been dealt with by
Roland Backhouse. In [3] he gives a general scheme for introducing new set operators
by giving formation and introduction rules, and then deriving elimination and equality
rules. In section 3 I shall discuss another method based on adding a fixed point operator
which can be applied to strictly positive set operators. In section 4 I shall also show
how to derive the constructors, and thus the introduction rules, and the selector, and -
thus the elimination rule, for the set Fiz G from a G in a certain subcollection of the
above collection of strictly positive operators.

The problem of representing inductively defined sets as well-orderings is discussed
in section 5, where I show that all inductively defined sets which are generated by a
strictly positive operator can be isomorphically represented as well-orderings. However,
this theorem assumes the extensional equality relation on sets as given in [9] and [10].
It does not hold in the intensional intuitionistic set theory given by Martin-Lof [8] and
which is described in section 2.2.

Acknowledgements. I wish to thank Per Martin-Lof for helpful advice and criticism
and in particular for telling me about the general rules for fixed points in intuitionistic
set theory. He also suggested that I study algorithms for deriving constructors and
recursion operators for inductively defined sets. Moreover, I wish to thank Peter Aczel

for telling me that well-orderings could be used for representing a large collection of
inductively defined sets.

2 Martin-Lof’s Type Theory and Set Theory

I shall in this paper use the notational framework proposed by Martin-Lof in [8]. This
framework is similar to the Edinburgh Logical Framework [7] and has its origins in
Church’s simple type theory, the languages of the AUTOMATH project [6], and the
theory of constructions [5]. To make this paper reasonably self-contained, a survey
of the notational framework is given in section 2.1. Martin-Lof has proposed to call
the framework ‘type theory’, since it is a theory of ‘logical types’. Thus ‘type’ as in
‘intuitionistic type theory’ and ‘data type’ has to be changed to something different,
for example, ‘set’. In section 2.2 a survey of Martin-Lof’s theory of sets in this sense
(intuitionistic set theory) is given. ;

2.1 ‘Type Theory

I essentially follow Martin-Lof’s presentations in [8] and at this workshop [11], but
write . -+ .zn.e instead of (z1):::(z,)e for abstraction and fz, --- z, instead of
f(z1,...,z,) for application.

There are four kinds of ‘analytic’ judgements in this theory:

a : type,
a=f : type,

! a,

a
a=b : a.

The theory is a typed A-calculus with dependent function space types, a ground
type ‘set’, and a rule saying that every object of type ‘set’ is also a type.
The rules of type formation are:

set : type,

A: et
A type’
(z: a)
a : type B : type
(z:a)B: type
We may write (a)8 = (z : a)B if § does not depend on =z.
The rules of object formation are:

(z:a)
b:p
zb:(z:a)f’

b:(z:a)f a:a

ba: Bla/x] ’

and a rule of assumption. The equality rules are typed - and 5-conversion:
(z:a)
a:a b: B

(z.b)a = bla/x] : ﬂ[a/xv]’

c:(z:a)p

c=z.cz:(z:a)f |

Moreover, we may everywhere substitute equals for eciuals.
There is also a notion of polymorphism. The rule of polymorphic type formation is:

(z:a)
a: type B : type
(z:a)B: type

The rules of object formation are:
(z:a)
b:p
b:(z:a)p’
where b must not depend on z, and
b:(z:a)f a:a

b: Bla/z]

A theory consists of a signature, whichis a finite list ¢; : @, ..., ¢, : a, of assignments
of types to constants, and a finite list a; = b; : £1,...,am = by : Bm of azioms or
equations. If we have formulated a sensible theory then the four forms of analytic
judgements are decidable. (The notion of sensible theory was discussed on several
occasions during this workshop. For the judgements to be decidable one assumes that
there is no polymorphism and that expressions are kept in normal form.)

Definitions are introduced by writing judgements of the form ¢ = a : o (or sometimes
just ¢ = a) where c is the definiendum (a new constant), a is the definiens (an object),
and « is their type. For example:

o=g.f.a.g(fa): (A:set)(B: set)(C : set)((B)C)((A)B)(A)C.

- I also freely utilise ordinary notational conventions, such as infix notation, and thus ,
write g o f instead of og f.

2.2 Intuitionistic Set Theory

Let us represent Martin-Lof’s set theory in the notational framework. The rules are
more or less those of [10], except that the rules for equality are those for intensional
equality from [8]. I have also changed the order of the arguments of the selectors (F,
E, D, J, R,, R, T) so that the principal argument comes last instead of first.

Rules for the cartesian product of a family of sets:

II: : set)((A)set)set,
A i (A:set)(B:(A)set)((a: A)Ba)[] AB,
F : (A:set)(B:(A)set)(C : (I AB)set)
((b:(a: A)Ba)C (Ab))(c:] AB)Ce,
d.b.Fd(Ab) =dbdb : (A:set)(B:(A)set)(C : ([] AB)set)
((b:(a: A)Ba)C (Ab))(b: (a: A)Ba)C (Ab).

Rules for the disjoint union of a family of sets:

> (A:set)((A)set)set,
(52 ¢ (A:set)(B:(A)set)(a: A)Ba)) AB,
E : (A:set)(B:(A)set)(C: (D) AB)set)
((a: A)(b: Ba)C (a,b))(c: >, AB)Ce,
d.a.b.Ed{a,b) = d.abdab : (A:set)(B:(A)set)(C:(D)_ AB)set)
((a: A)(b: Ba)C (a,b))(a: A)(b: Ba)C {a,b).

Rules for the disjoint union of two sets:

+ : (set)(set)set,

i : (A:set)(B:set)(A)A + B,
J ¢ (A:set)(B:set)(B)A+ B,
D : (A:set)(B:set)(C:A+ B)

((a: A)C(ia))((b: B)C’_(j b))(c: A+ B)Clec,
de.a.Dd(ia)=d.e.ada : (A:set)(B:set)(C: (D) AB)set)
(a: A)C (ia))(b: BC(jH)(a: 4)C (ia),
debDe(jb)=d.ebeb : (A:set)(B:set)(C: (D AB)set)
((a: A)C(ia))((b: B)C (jb))(b: B)C (jb).

Rules for the equality:

I : (A:set)(A)(A)set,
r : (A:set)a:A)IAaa,
J : (A:set)(a: A)(b: A)(C:(a:A)(b: A)(I Aab)set)
~ ((a: A)Caa(ra))(c:IAab)Cabec,
da.Jd(ra)=d.ada : (A:set)(C:(a:A)b: A)(I Aab)set)
((a: A)Caa(ra))(a: A)Caa(ra).

Rules for finite sets:

(n—-1), N,,
R, : (C:(N,)set)
(C0,)

(C(n—1),)
(c: N,)
Cec,
Co."*Cn1.Rpnco ot €p10,
PSP (oF 6 AT
(C0,)

(C(n—1)n)
Co,,
€o-* *-Cn-1.Rnco v Cnr(n—1),
= €p.**Cn1-Cn1 ¢ (C:(Ny,)set)
(Co,)

(C(n—1))
C(n—1),.

(Note that by letting n = 0,1,2,... we get an infinite list of declarations and axioms,
and thus not a proper theory in the sense of section 2.1. It is possible to reformulate
the rules for finite sets and obtain a finite list of declarations and equations.)

Rules for natural numbers:

. set,
: N,
: (N)N,
: (C: (W)set)
(CO0)((a: N)(Ca)C(sa))(c:N)Cec,
de.Rde0=ded : (C:(N)set)
| (CO)(a: N)(Ca)C (s))C0,
de.a.Rde(sa) =d.ea.ca(Rdea) : (C:(N)set),
(C0)(a:N)Ca)C(sa))(a: N)C(sa).

Moe o 2

Rules for well-orderings:

W @ (A:set)((A)set)set,
sup : (A:set)(B:(A)set)(a: A)((Ba)W AB)W AB),
T : (A:set)(B:(A)set)(C: (W AB)set)
((a: A)(b:(Ba)W AB)((v: Ba)C(bv))C (sup ab))
(c: WAB)
Cec,

d.a.b.Td(supab) ,
=d.abdab((Td)ob) : (A:set)(B: (A)set)(C : (W A B)set)
((a: A)(b: (Ba)W AB)((v: Ba)C(bv))C (sup ab))
(a: A)
(b: (Ba)W AB)
C (supab).

Rules for the first universe (the formulation ‘4 la Tarski’ [10]):

U : set,

: (U)set,

2 (a:U)((Sa)U),
: (a:U)(Sa)U)U,

2 (U)X,

: (a:U)(Sa)(Sa),
ng : U,

n, : U,

o+ a 3 U

R |

n : U,

w : (a:U)(Sa)U),
a.b.S(rab)=ab J[(Sa)(Sob) : (a:U)(Sa)U)set,
a.b.S(cab)=ab.) (Sa)(Sob) : (a:U)(Sa))set,

a.b.S(a+b)=abSa+Sb : (U)U)set,
a.b.c.S(tabc)=ab.cI(Sa)bc : (a:U)(Sa)(Sa)set,
Sng= Ny : set,
Sny=N; : set,
Sn=N : set,
a.b.S(wab)=a.bW(Sa)(Sob) : (a:U)({(Sa)l)set

We could then iterate this process and form a second universe, etc, but note the problem
with the finiteness of the signature and the axioms.

We also have the following abbreviations (definitions). First we have function ap-
plication:

Ap=c.a.F(bba)e : (A:set)(B:(A)set)([[AB)(a: A)Ba

Then we have the left and right projections of a pair:

. p=E(aba) : (A:set)(B: (A)sel)(3 AB)A,
qg=E(a.bb) : (A:set)(B:(A)set)(c: Y AB)B(pc)

‘We also have

—=AB.[[Az.B : (set)(set)set,
Xx=A.B.Y Az.B : (set)(set)set.

The definitions of the associated constructors and selectors have to be redefined accord-
ingly.

Moreover, we write @ =4 b, 3,., Bz, [1,.4Bz, and W, 4Bz instead of T Aab,
> AB,]] AB,and W AB.

3 Adding Fixed Points to Intuitionistic Set Theory

One possibility, suggested by Per Martin-Lof, is to add to intuitionistic set theory a
general fixed point operator on the level of sets and a general fixed point operator on

the level of elements. Let G : (set)set be a strictly positive set operator. Then we have
the following rules:

Fiz G-formation:
Fiz G : set

Fiz G =G (Fiz G): set

Fiz G-elimination:

fiz : (C:(Fiz G)set)
(9: (X :3et)(X CFizG)*(f : (z: X)Cz)(y:GX)Cy)
(z: Fiz G)
Cz

Fiz G-equality:

fiz =g.9(fizg) : (C:(Fiz G)set)
(g:(X:8et)(XCFizG)(f:(z: X)Cz)(y:GX)Cy)
(z: Fiz G)
Cz

(Similar rules can be found in papers by Constable and Mendler, see [4], [12].)

These rules can be given a semantic justification, informally as in [9], or more
formally by an interpretation in a logical theory as suggested by Peter Aczel, see [2], [1],
[15]. In order to do this we need to include in the logical theory a new class (or predicate,
that is, object of type (¢)o) former ambiguously denoted Fiz : (((¢)0)(¢)o)(¢)o (¢ is the
type of individuals and o is the type of propositions in the logical metalanguage),
which may only be applied to strictly positive class operators G, that is, the class
variable X may not occur to the left of an implication in G X z. Moreover, we also
include a non-canonical program form ambiguously denoted fiz : (((¢)¢)(¢)e)(¢)e, which
has the computation rule (in old fashioned notation)

g(fizg)z=c
fizgz=c

The idea behind the interpretation is to interpret each set as a class invariant un-
der the computation (or conversion) rules. The equality on the sets is interpreted as
convertibility. A strictly positive set operator will be interpreted as a strictly positive
class operator. Fiz and fiz in intuitionistic set theory will be interpreted as Fiz and
fiz in the logical theory. :

Let us prove informally the correctness of the rules under this interpretation. The
formation rules are correct by definition. The elimination rule is proved by induction

}This leads to an undecidable equality relation on sets and thus the theory defined is not ‘sensible’ in
the sense of section 2.2. However, this rule does not fit into the notational framework in any other way
either. .

2improper notation meaning that X is a subtype of Fiz G.

3We had no type of propositions in the type theory, but we could put o = prop = set by identifying

propositions and sets.

on Fiz G. Let us write the interpreted rule in the ordinary way, using ‘set notation’ for
classes and suppressing some premises.

(XCFizG,fzeCz (z€X))
9fyeCy (yeGX)
fizgz€Cz (z € FizG)

So assume that g satisfies the premise of the rule. Let P = {z € Fiz G|fiz gz € Cz}.
Our task is then to prove Fiz G C P. Since P C Fiz G, and fiz gz € Cz (2 € P) we
can use the premise to conclude that :

g(firg)ze Cz (2€ GP).
But since fiz g z has the same value as g (fiz g) z it follows that
fizgzeCz (2€GP).

Hence it follows that Fiz GN G P C P. But then it follows by induction on Fiz G that
Fiz G C P.
The equality rule can be proved correct in a similar manner.

4 Deriving Recursion Operators for Inductively
Defined Sets

For each inductively defined set there is a principle of primitive (or structural)
recursion. For natural numbers we have ordinary primitive recursion and the R-operator
of intuitionistic set theory. For lists we have primitive list recursion and the listrec-
operator. For well-orderings we have transfinite recursion and the T-operator, etc.

We shall now give a method for deriving such recursion operators for a subcollection
of the inductively defined set that we defined above. The subcollection is the one
obtained by changing the last clause in the definition of strictly positive to the restricted
case where GX = K — X. Note that this is not a severe restriction; a similar, and
in fact stronger, restriction is implicit in Backhouse’s method which uses introduction
rules to define new sets. If we translate such definitions into definitions in terms of
strictly positive operators, this results in having + outermost, then x (or ¥°), and —
(or [T) innermost. To find recursion operators for the general case is an open problem.
Another algorithm has been proposed by Dag Normann [14]. This algorithm derives
recursion operators for for the special case where the new function value is expressed
only in terms of the values of the function on the immediate predecessors.

So assume that G is in this subcollection. We wish to determine its n constructors
and their types, and hence the introduction rules for Fiz G. Moreover, we wish to
determine the recursion operator and its type, and hence the elimination rule for Fiz G.
From this information the equality rules can also be determined.

The recursion operator and the elimination rule for Fiz G is obtained by instanti-
ating the general elimination rule of the previous section. We first find a selector (or
pattern matching function) sel® for G with n+2 arguments, such that, if we substitute

" sel€ dy---d, for g then the premise of the general elimination rule for Fiz G will be
satisfied. Thus we can define the recursion operator for Fiz G as

rec™Cd, .- d,z = fiz (sel®d; --- d,)z.
For example, if we define the natural numbers as N = Fiz X.N; + X, then we get
the two constructors '
0=1:0;, : N,
s=3 : (N)N,
and a recursion operator
| R = dy.dy.fiz (f.D (R dy)(21.dz 21 (f 71))) :
(C : (N)set)
(d1:C0)
(dy : (z1: N)(C z,)C (s z1))
(z:N)
Cz,
which uses that the selector for X.N; 4+ X is of the form
natcases = dy.dy.f.D (R, dy) (z1.d2 z1 (f 21)).

4.1 Finitary induction

"The problem of finding a recursion operator for Fiz G is thus reduced to that of finding
a selector for G. It will turn out to be convenient to define the constructors for G at
the same time.

We shall begin with a case of finitary induction, where G X is built up from the
finite sets N,, and the variable X by binary sums + and binary products x.

A k-ary constructor for G is a function

con® : (X : set) (X)---(X)G X,
k
which is built up from the constructors of the standard operators, that is, m,, i, j,

(-

Note that if we let X = Fiz G and thus get G X =!Fiz G, then we get the construc-
tors and introduction rules for Fiz G.
If G has n constructors with arities ki,...,k, respectively, then a selector for G is
a function
sel® : (X: set)(C : (X)set)(C’: (G X)set)
(di:(21: X)(C21) (21, : X)(C 21,)C' (cOn1 21 -+ T1y))

(dn:(z1: X)C21) - (24, : X)(C 24,)C (cON 2y -+ 23,))
(f:(z: X)Cx)
(y: GX)
Cy
which is built up from the selectors for the standard"operators, that is, R,, D and E.

10

Note that if we let X C Fiz G and thus (since G is monotone) get GX C Fiz G
and hence also can have C' = C : (Fiz G)set, then we get the recursion operator

recf*C =d,...-.d,.fir (.selGd1 ceedy)
(C : (Fiz G)set)
(dy: (z1: Fiz G)(C 1)+ (xk, : Fiz G)(C z4,)C (cony zq - -+ z1,))

(dn : (z1: Fiz G)(C 1)+ - - (2k, : Fiz G)(C zx,)C (conp z; - - 1))
(z: Fiz G)
Cz.

We begin with the base case G = X.N,,. ‘There are n constructors, all 0-ary:
0, : (X :set)N,,

(n—1)n : (X :set)N,.
The selector is

dy.:-dp.fRydy oo dp 2 (X :set)(C:(X)set)(C': (N,)set)
: (dl : C, Oﬂ)

(dn:C'(n—=1),)
(f:(z:X)C2)
(y: N,)

C'y.

Note the similarities and differences between the constructors and the selector here,
for the case where X.N,, : (set)set is a constant function, and the ordinary constructors

Ory ...y (n — 1), and the ordinary selector R,, for the case where N, : set is a constant
set.

G = X.X. There is one constructor
z1.21 : (X :set)(X)X,
and the selector
di.f.ydiy(fy) : (X :set)(C:(X)set)(C’: (G X)set)
(di: (z1: X)(Cz)C' z4)
(f:(z: X)Cxz)

(v:X)
C'y.

11

For the remaining two cases assume the induction hypothesis that G’ has n' con-
structors con!,...,con, of arities k{,..., k., respectively, and the selector sel’; and
that G" has n” constructors conf,..., con, of arities ky,..., k", respectively, and the

selector sel”.
G =X.G' X+ G"X. Then G has the n’ + n” constructors

[

y. - iy i cony zy e T) (X :set)(X)---(X)G'X +G" X,

!

b
Ty .:z:;c, d(conpyzy ---zp) 1 (X :set)(X)---(X)G'X + G" X,
gy Tpwj(cony zy -+ pw) (X :set)(X)--(X)G' X + G" X,

. b
Ty.ee- .m;:,, J(eonguzy -+~ xpn) (X :set)(X)---(X)G'X +G"X,
and the selector

di. e, ;/.d;,. n" f D (861’ d’ . :11 f)(sel" d;l s n" f)
(X :set)(C : (X).set)(C’ : (G’X + G" X)set) v
(dy : (21 : X)(Cah)- - (zhy : XNC 2y)C" (i (comy 2y -+~ 7))

(dy : (2} : X)(Czy)---(zh : X)NChs)C' (i (conly zf - -~ 24)
(d : (z1 : X)(Cay)- - (ki : X)(Cz}p)C' (j (conyzy - - Tgw)))

w t(zy : X)(Cay)---(zfn : X Czku C'(j (conpuzy -+« ziu
n ! 1 al?

(f: (a: : X)C z)
(y:G'X +G"X)
C'y.

G =X.G'X x G"X. Then G has the n’ x n"” constructors

’ ’ " "
Tyt Thy Ty (Cku (conyzy --- a:k, conizy - a:ku),

' ron ” r ! ! "oz v
z3- ""xki'zl' .o ..xk::”.(conl 31 e zki,connu Iy .- $k:"),

' " " 't ! " _n "
3’1- cos 'mk;,'zl' cee ,a;ki,.(conn: xl e mkl con, Ly v zk;l),

" ! ! ! n " n
Ty Ty Ty .zkx”.(conn, Ty co Tyt CONpu Ty <= :ck:”),

12

a

and the selector

di. -+ dyn
dor. +o dpge.
Fy.E(y.y" sel
.) " 't [R A "
(2121 -+ Ty 2y -sel” (dra 77 21 - Ty 2) (diwn 121 -+~ Yy 210) f Y")
(z1.21. - wh 2 S€l"(dunzy2y ooz 23) o0 (Appnahuzizy ---zh 20) FY")
n'! n! n! Tn! n’ Tnf
!
fy)y

The types of the constructors and the selector have been omitted for lack of space.
One can now check that this algorithm indeed gives the constructors and the selector
for the natural numbers as above.

4.2 Parameterised sets

Some minor extensions to the schemes are needed for parameterised inductively defined
sets (or data types). Important examples of such are lists, which are generated by
the operator X.N; + A x X, and binary trees, which are genera.ted by the operator
X.A+ X x X, where in both cases A is a parameter.

We can view these generators as functions of the parameters as well. If we extend
the notion of a constructor to cope with set operators of arbitrary arity, then we get
the following constructors for A.X.N; + A x X:

nil =40, : (A:set)(X:set)N;+ A x X,
cons =a.z.j(a,z) : (A:set)(X:set)(A)(X)N,+ Ax X.

The notion of a selector can also be modified to a corresponding notion for set op-
erators of arbitrary arity. One of the arguments, the X, is singled out for the recursion.
Thus, the selector for A.X.N; + A x X is,

listcases = dy.dy.f.D (Ry dy) (E (a1.21.dy a1 21 (f 21))) :
(A:set)(X :set)(C: (X)set)(C': (N1 + A x X)set)
(dy : C'(nil))

(d2: (a1 : A)(z1 : X)(C x1)C' (cons ay wl))

(f:(z: X)Cx)

(y: M+ AxX)

C'y

The binary trees generated by A.X.A + X x X are treated in a similar way. We get
the following two constructors:

leaf =i : (A:set)(X :set)A+ X x X,
treecons = £1.22.5 (71, %2) : (A:set)(X : set)(A)NX)A+ X x X.

13

* The selector is

treecases = dy.dy. f.D dy (E (z1.22.d2 21 (f 1) 22 (f 22))) :
(A : set)(X :set)(C: (X)set)(C': (A+ X x X)set)

(dy : (a : A)C' (leaf a))

(dz : (z1 : X)(C z1)(z2 : X)(C z3)C’ (treecons z; z2))
(f:(z: X)Cx)

(y: A+ X x X)

C'y.

I have already presented some longwinded descriptions of how to form constructors
and selectors for the case without parameters, and shall only show the new base case
for a parameter A.X.A. Then the one constructor is

a.a:(A:set)(X : set)(A)A

and the selector is

di.fydiy : (A:set)(X :set)(C:(X)set)(C': (A)set)
(d1:(a1: X)(Ca1)C'a;)
(f:(z: X)C2)
(y:4)
C'y.
Note that the only difference between the variable and parameter base cases is that
the selector does not depend on f y in the parameter case.

4.3 Infinitary induction

Also here the scheme needs to be modified to account for the case where G contains —
innermost. We need a new base case when X.K — X for some constant K : set. For
this case we have one constructor

A (X D sel)(K)X)K — X

and the selector

di.f.F(wdyw(fow)) : (X:set)(C:(X)set)(C': (K — X)set)
(dy : (w1 : (K)X)((k : K)C (wy k))C' (Awy))
(f:(z:X)Cx)
(y: K= X)
C'y.

Again, to get a complete account we need to modify the other cases in a uniform
manner.

14

As an example we consider the ordinals of the second number class, which are
generated by X.N; + N — X. We get the following constructors:

0=1:0;, : (X:set)N;+N— X,
sup=w.j(Aw) : (X:set)(N)X)M;+N - X.

The selector is

ordcases = dy.dy.f.D (Ry dy) (F (w.daw(f o w))):
(X :set)(C : (X)set)(C': (N1 + N — X)set)
(dy:C'(0)) |

(d2: (w: (N)X)(n: N)C(wn))C' (sup w))
(f:(z: X)Cx)

(y:M+N - X)

C'y.

As a final example we look at the well-orderings generated by X.Y .. s(Bz — X).
The rules for }° are just a straightforward modification of the rules for x. We get the
constructor

sup = aw.{a,\w): (A:set)(B:(A)set)(X : sei) Z;Q(B z — X),

and the selector

transcases = d.f.E(y'.y".F (w.dy' w(f o w))y"):
(A : set)(B: (A)set)(X : set)(C : (X)set)(C: (Z;(Bm — X))set)

(d:(a: A)(w:(Ba)X)((k:Ba)C(wk))C'(sup c;‘w))
(y: Q;(Bz — X))
C'y. .

5 Representing Inductively Defined Sets as Well-
Orderings

The well-orderings in intuitionistic set theory are themselves introduced by an inductive
definition. As we saw in the last section, a version of W,.4B z is obtained by taking
the least fixed point of the set operator

X.3(Bz - X).
A

Natural numbers can then be represented by W,.n, By x, where By 0; = Ny and By 1, =
N,. The ordinals of the second number class can be represented by W,.x, Bo , where
Bo 02 = Ny, and Bp 1; = N. (Both examples are from [10].)

15

In what sense are these representations correct? A reasonable idea seems to be that
the representation is isomorphic to the primitive set. For example,

Wen,Bnz & N,
where isomorphism of sets is defined in the obvious way, that is, by

AB.ASB
= A.B.(3f: A— B)(3g: B — A)
((Vz : A)(Apg(Ap fz))=az)A(Vy:B)(Ap f(Ap 9Yy)) =B ¥))

The suggested correspondence is between 0 and sup0; (A R,), and between sa and -
sup 15 (A z.a’), where a corresponds to a’. However, the fact that this correspondence
determines an isomorphism depends on the extensional equality of functions of [9] and
[10]. Every function in Ny — X is equal to A Ry, that is,

(Vf : No - X)(f =No—X)\Ro),

provided the equality is extensional. However, if equality is intensional, as in [8], then
this proposition can no longer be proved.

The two representations above are more or less instances of a general pattern, and
assuming extensional equality in the definition of isomorphism, we have the following
theorem.

Theorem 1 For any strictly positive set operator G, we can find an A : set and a
Jamily B : (A)set, such that, if X : set, then

GX2)Y (Bz— X).
z:A
Proof. Associate with each strictly positive G an A : set and a family B : (A)set
as follows:
e G is a constant operator X.K. Then A = K and B = z.N,.
e G is the identity operator X.X. Then A= N, and B = z.N;.

e G = X.G'X 4+ G" X for strictly positive G’ and G” with associated A’, B’, and
A", B" respectively. Then A = A’ + A” and B is such that Boi = B’ : (A')set
and Bo j= B":(A")set.

e G=XGXxG'X for strictly positive G’ and G” as above. Then A = A’ x A"
and B is such that z’.2".B (z',2") = z'.2".B'z' + B"z" : (A")(A")set

G = X.K — G' X for a constant set K and G’ as above. Then A = K — A’ and
B=f3%, kB (Ap fy): (K — A')set.

16

“ First we state some useful isomorphisms.

Nl = NO — A, (1)
A = Nl - A, (2)
A 2 Ax N, 3
A= N1 X A, (4)
[I>Czy = > JICz(4pfa), (5)
z:Ay:Bzx j:HI:ABzz:A
[IIIczy =2 I Cr2)(g2), (6) .
r:Ay:Bzx z:Zz:ABx
> B'z’+), B"z" &2 3 Ba. (7) -
o' A z': A r:A'+ A"

where, in the last isomorphism B is such that Bo: = B’ : (A')set and Bo j = B" :
(A")set.

By using these isomorphisms we can prove the theorem by induction on the structure
of G. We have the following cases:

e G is a constant X.K. We need to show that
K 2 K x (No — X).
(Recall that A x B = 3,4 B.) But this follows direcf;ly from (3) and (1).
e G is the identity X.X. We need to show that
X =2 N, x (N, — X).
But this follows directly from (4) and (2).
e G=X.G'X 4+ G"X. We need to show that

(B -X)+ Y. (B'z"-X)2 Y (Bz—X),
z!: A z!: A" o Al4 AN

where Boi = B’ : (A')set and Bo j = B” : (A")set. But this follows directly
from (7).

e G=X.G'X x G"X. We need to show that
Y(Br->X)x Y (B'z"-X)=2 Y (Bz-X),

z': A z!': A" o A'x AM
where z'.z".B (z',z") = 2'.2".B'z' + B"z" : (A")(A")set. A typical (canonical)
element of the LHS has the form ((d/, '), (a”, f")), where a’: A, f': B'a’ — X,
a”: A", and f”: B"a" — X. A typical (canonical) element of the RHS has the
form ((a',a"), f), where a' : A’, a” : A", and f : (B'a’+ B" a") — X. Thus we get
the isomorphisms

Az.{(p(pz),p(g92)), (D (4p (¢(rz))) (Ap (g(gx))))) :
S(B-X)x). (B"z">X)—> Y (Bz—X)

o' A! AN z:A'x A"

17

and

Ay-((p(py), A((4p(a¥)) 0)}, {2 (p¥), A((Ap (gy)) 0))) :
.;A”(Bw — X)— zg'(Bl 2 — X) x ZJZA"(B” z" — X).

¢ G = X.K — G'X for a constant set K and G’ as above. We get

K- Y (B'z’-X) = Y [[B(4rfy)—X)

z!: A’ F:K—A" y:K

= 3 (Q_B(4pfy)—X)

K= A y:K

by using special cases of (5) and (6) respectively. O

There seems to be no difficulty in extending this theorem to include the cases where
G contains Y and [TJ.

We can now apply the algorithm to X.N; + X and get a representation of the natural
numbers as Wo.n, 4N, B z, where B (:0,) = No and B (j 0,) = Ny, which is very similar
to the representation from [10] given above.

References

[1]

[2]

[3]

[4]

[5]

[€]

[7]

P. Aczel. Frege structures and the notions of proposition, truth and set. In The
Kleene Symposium, pages 31-59, North-Holland, 1980.

P. Aczel. The strength of Martin-Lo6f’s type theory with one universe. In Proceed-
ings of the Symposium on Mathematical Logic, Oulu, 1974, pages 1-32, Report No
2, Department of Philosophy, University of Helsinki, 1977.

R. Backhouse. On the meaning and construction of the rules in Martin-Lof’s theory
of types. In Proceedings of the Workshop on General Logic, Edinburgh, Laboratory
for the Foundations of Computer Science, University of Edinburgh, February 1987.

R. L. Constable and N. P. Mendler. Recursive definitions in type theory. In
Proceedings of the LICS-Conference, Brooklyn, N.Y., Lecture Notes in Computer
Science, Springer-Verlag, June 1985.

T. Coquand and G. Huet. Constructions: a higher order proof system for mecha-
nizing mathematics. In B. Buchberger, editor, EUROCAL ’85: European Confer-
ence on Computer Algebra, Volume 1: Invited Lectures, pages 151184, Springer-
Verlag, LNCS 203, 1985.

N. G. de Bruijn. A survey of the project AUTOMATH. In J. Seldin and J. Hindley,
editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Jormalism, pages 589-606, Academic Press, 1980.

R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In Pro-
ceedings of the 1987 Logic in Computer Science Conference, June 1987. To appear.

18

[8] P. Martin-L6f. Amendment to intuitionistic type theory. March 1986. Notes from
a lecture given in Goteborg.

[9] P. Martin-Lof. Constructive mathematics and computer programming. In Logic,
Methodology and Philosophy of Science, VI, 1979, pages 153-175, North-Holland,
1982.

[10] P. Martin-Lof. Intuitionistic Type Theory. Bibliopolis, 1984.

[11] P. Martin-Lof. The logic of judgements. February 1987. Notes from a lecture
given at the Workshop on General Logic, Edinburgh.

[12] N. P. Mendler. First- and Second-Order Lambda Calculi with Recursive Types. -
Technical Report TR-86-764, Department of Computer Science, Cornell University,
Ithaca, N.Y., July 1986.

[13] B. Nordstrom. Multilevel functions in Martin-Lo6f’s type theory. In N. Jones,
editor, Programs as Data Objects, pages 206-221, Springer-Verlag, LNCS 217,
October 1985.

[14] D. Normann. Inductively and recursively defined types. 1987. A seminar report,
Department of Mathematics, University of Oslo.

[15] J. Smith. An interpretation of Martin-L6f’s type theory in a type-free theory of
propositions. Journal of Symbolic Logic, 49(3):730-753, 1984.

19

Copyright © 1988, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

