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1 Introduction

The Calculus of Constructions (CC for short) [CH88] is a typed higher-order func-
tional calculus which provides a nice basic framework for formalizing mathematics
and developing proofs. The meta theory for CC was first studied by Th.Coquand
in his PhD thesis [Coq85][Coq86b]. Later on, Th.Coquand proposed an extension
of CC with an infinite type hierarchy (we will call it CC*® ) in [Coq86a], where
the consistency of CC* is claimed.

LCCZ [Luo88] is a higher-order calculus which can be seen as an extension of
CC*> by adding strong sum types (only to the type level) and including proposi-
tions as types (informally, Prop C Type). Strong sum types in XCC® provides a
useful module mechanism so that abstract structures can be naturally expressed
and theories can be thoroughly abstracted, leading to a comprehensive structur-
ing of mathematical texts in proof development. Including propositions as types
solves the technical difficulty that adding strong sums to the proposition level of
CC results in inconsistency [Coq86a]. The type hierarchy increases the expres-
siveness of the calculus. For example, according to the research results about the
models of the calculus, it seems that, without type hierarchy, one can only for-
malize recursive mathematics in the calculus of constructions (say, using Prop as
the ‘set universe’). With type hierarchy, one may take one of the type universes
as set universes so that abstract mathematics can be formalized.! See [Luo88] for
more discussions about this.

The theme of this paper is to study the meta theory of CCZ — the subsystem
of ZCC¥ with X-types removed. The main result is the strong normalization
theorem. We also discuss how the results can be extended to the whole system
LCC¥® . This work is based on the work of Th.Coquand [Coq86b] and the work
of G.Pottinger and J.Seldin [Pot87][PS86] in their attempts to give a proof of
strong normalization theorem for CC. The main contributions of this paper are
summarized as follows:

1. As far as we know, this is the first attempt to study the meta theory and
prove the strong normalization (henceforth the proof-theoretic consistency)
of a system which is an extension of CC with infinite type hierarchy. The
results and proofs given here also applies to the system CC* .

The key difficulty of seeking a proof of SN theorem of such a system is that,
not only propositions but also proper types (types that are not convertible
to any proposition) can be values. As a consequence, a term of application
form, M N, can be a proper type. This makes it very difficult to define a

1The proof-theoretic power of the calculus is unknown (as a matter of fact, the power of CC
is unknown). The model construction given in [Luo88] can be extended to a model of ECCZ by
interpreting type universes as set universes. (This is shown to be true by S.Hayashi in a recent
joint work with the author.) But we do not know whether the proof-theoretic power of the type
hierarchy is really as strong as we expected.



complexity measure of types like the complexity measure 3 in [Coq86b] which
_ is essential for the proof to work according to the insight of Th.Coquand.
This difficulty is overcome by extending the way of using a measure adopted
by G.Pottinger and J.Seldin in their attempt to prove the SN theorem for CC
[Pot87][PS86] to first prove a quasi-normalization result which shows that
every proper type can be reduced to a head normal form (see section 4).

2. With inclusion of propositions as types in CC¥ , a sort of weak impred-
icativity is introduced to the type levels, which seems to be questionable
concerned about the consistency of the calculus, as people generally believe
that, for such a system which has an infinite type hierarchy to be logically
consistent, its type levels should be predicative (see [Coq86a], for example).
However, the result of strong normalization shows that CCZ is still logically
consistent (theorem 5.11). In other words, the impredicativity at the type
levels of CCZ is weak enough to retain the consistency.

3. Some results which show the basic properties of CC® are proved, which
are important for people to properly understand the calculus. For example,
unlike CC, type uniqueness fails for CC¥ (and CC* ) because of the type
universe inclusions. But we will prove a theorem of type uniqueness upto
kinds (theorem 3.15) and show the existence of a unique minimum type
(theorem 3.18). This result shows one of the crucial properties of the calculus
and also plays an important role in proving the quasi/strong normalization
theorem.

4. In XCCZ , with strong sum types, type uniqueness upto kinds fails. How-
ever, following the same pattern as we do for CC® and using the notion
of minimal types, we are still able to prove the SN theorem, which shows
the consistency of XCC® and establishes the theoretical soundness of using
strong sums to express abstract structures and structure theories in proof
development as described in [Luo88].

Section 2 presents the calculus CCZ and its subsystems CCZ ‘stopping’ at the
nth level of types by which we will prove the quasi-normalization result. In sec-
tion 3, we prove the basic properties of CCZ (and CC¢). The quasi-normalization
result is proved in section 4 and the strong normalization and consistency in sec-
tion 5. In section 6, we discuss XCCZ and its properties.

2 The Calculus CC¥
2.1 CC®

CCg consists of an underlying (untyped) term calculus and a set of inference rules.



The basic expressions, called terms, are inductively defined by the following
clauses:

o The constants Prop and Type; (¢ € w), called kinds, are terms;
e Variables (z,y,...) are terms;

e If M and N are terms, so are the following:

— IIz:M.N (product)
— Az:M.N (X-abstraction)
— MN (application)

In IIz:M.N and Az:M.N, the free occurences of variable z in N are bound by the
binding operators IIz and Az respectively, and nothing in term M is bound by
them. Terms which are the same up to changes of bound variables are identified
(we will use = for identity). A term of the form (Az:A.M)N is a f-redex with
[N/z]M as its contractum, where [N/z]M, the substitution of term N for the free
occurrences of variable « in M, is defined as usual with possible changes of bound
variables. f-reduction ( I>g) and B-conversion (~g) are defined as usual.

Notation From this section to section 5, we only consider B-reduction. So, in
these sections, > and ~ will refer to bg and o, respectively. And, B>y will refer
to one step f-reduction (i.e., a single replacement of a redex by its contractum).
O

Church-Rosser property holds for the term calculus described so far:?2

Theorem 2.1 (Church-Rosser theorem) If My ~ M,, then there exists M
such that My > M and My b M. 0O

Contexts are finite lists of expressions of the form z: M, where z is a variable and
M is a term. Formulas are the expressions of the form M:N, where M and N are
terms. Judgements are of the form I' - F', where T' is a context and F' is a formula.
The set of free variables in a formula M:N, context Fy, ..., F,, and judgement ' - F
are defined as FV(M)UFV(N), Ui<i<a FV(F;) and FV(I')UFV(F), respectively.

The following are the inference rules of CCZ (where w is the set of natural
numbers):

(Az)

F Prop:Typeg

2As is well-known, Church-Rosser property does not hold for B7-conversion for the untyped
calculus described above. For the So-conversion we will consider in section 6, Church-Rosser
holds.



©) I' - A:Type;
I,z:AF Prop:Typeo

(z g FV(T),j € w)

' Prop:Typeg

T1 'E
) I' - Type;:Type;q (U €w) |
I' F A:T'ype;
(2) I'F A:Type;j (U ew)
I' - P:Prop
T3
o9 ' P:Typeo
T,2:A, T F Prop:Typeo
=) LA Fx:A
I'yz:AlF P:Prop
() '+ Ilz:A.P:Prop
't A:Type; T',z:A\ B:Type; .
(2 '+ Hz:A.B:Type; (J €w)
\) I'z:A+ M:B
I'F A z:AM:Ilz:A.B
' M:Ilz:A.B T'F N:A
(app)
i I' MN:[N/z]B
P '— M:A F '_ AI:T . . s
(conv) ST Yype; (A ~ A',] € w)

A derivation of a judgement J in CC® is a finite sequence of judgements
J1y ey I With J,,, = J such that, for all 1 < ¢ < m, J; is the conclusion of some
instance of one of the rules above whose premises are among {J; | j <i}. We
will write I' = F for ‘T' - F' is derivable’ and T' I/ F' for ‘T’ F F' is not derivable’,
when there is no confusion from the context. Specifically, we will sometimes say
‘T" is a valid context’ to mean ‘T' - Prop:T'ypey is derivable’.

Remarks Several remarks are as follows.

1. CCZ is the extension of CC* [Coq86a] by adding the rule (T3), which lifts
propositions to the type levels. This is a further step of following the prin-
ciple of ‘propositions as types’. With this extension, strong sum types (see
section 6) can be used as module mechanism to express abstract structures
and structure theories in proof development. (See [Luo88] for more discus-
sions about this.) Intuitively, for the type universes, we have

Prop € T'ypeg € Type, € ...



2.2

Prop C Typeo C Typey C ...

As the level of propositions is impredicative, the universe inclusions propa-
gate the impredicativity to the type levels. For example, suppose

P = lla:Typeoll B:Typeg — Prop.Bzx

then we have F P:T'ypeo because P is a proposition. As we will show, CCZ
is still strongly normalizing and henceforth consistent, despite of this weak
impredicativity.

The type universes (kinds) can be ordered as follows
Prop < Typeg < ...

which can further induce a partial order between terms (see definition 3.16
in section 3.3).

Note that, in rule (conv), we regard ‘A ~ A” as a side condition instead of
a part of derivation. When (conv) is applied, the side condition A ~ A’ is
chécked when the derivations of the premises are completed. Although the
untyped conversion relation is in general undecidable, it is decidable for the
well-typed terms, by the strong normalization theorem we will prove. ]

CC¢ and its relationship with CC¥

As we mentioned in the introduction, before proving the strong normalization
theorem of CCZ , we shall first prove a quasi-normalization result, which is proved
by considering the sunsystems CCZ (n € w), which are presented below.

The underlying untyped term calculus of CC? is the same as that of CC¥®
except that the constants T'ypen r41 (k € w) are removed. The rules for CCZ are

listed as follows (the names of the rules are the same as those for CC for ease of
comparison):

(A2 F Prop:Typeg

I' - A:T'ype; .
<j<
© T,z:AF Prop:Typeg (z ¢ FV(I'),0<j <n)
I' + Prop:Typeo .

T1 0< i<

o I'+ Type;:Type;a (0<j<n)

(T2) I' - A:Type; (0<j<n)

I'F A:Type;qq



I' - P:Prop

(T3) '+ P:Typey
[, z:A, T+ Prop:Typeg
(Tz) T,2:A,T' F :A
TI',z:AtF P:Prop
(1) '+ Ilz:A.P:Prop
I' - AType; T',2:AF B:Type; .
<9<
(112) Tt Te:A. B Type, (0=j=n)
I'z:A+ M:B
) TF \eAMIzAB (B 7 Typen)
(app) I'- M:Ilz:A.B TFN:A
PP T'F MN:[N/z]B
' M:A T F AType; , .
(conv) T A (A~ A0<j<n)

Informally, we may describe the relationship of CC% and CC® as follows:

ccz = | J ocn

new

As any derivation is finite, the following theorem can be easily proved by induction
on derivations.?

Theorem 2.2 D is a derivation in CCZ if, and only if, there is an n € w such
that D is a derivation in CCZ. O

Notation From the next section on, n stands for a ﬁxed (arbitrary) natural
number for which CCg is under consideration. O

3 Basic Properties of CC® (and CC2 )

Some basic properties of the calculus CC® (and CC2 ) are proved in this section.
If not explicitly indicated, the results proved in this section hold for both CC¥
and CCZ . The proofs are to be given for CCZ and can be easily modified for
CCg .

3We will say ‘by induction on derivations of ..." to mean ‘by induction on the length of
derivations of ...".



3.1 Some basic lemmas

Lemma 3.1 Let K and K' be kinds and T be a valid context. Then, I' + K:K'
if, and only if, K < K'.

Proof Sufficiency is obvious by using rules (T1)(T2), as I is valid. For proving
necessity, we can prove the following stronger result:

I'FK:AANA~K' = K<K'
by induction on derivations of I'  K:A. (]

Lemma 3.2 Any derivation D of I',z:A,T' F F has a sub-derivation of T' -+ A:K
for some kind K.

Proof Induction on D. |
Lemma 3.3 IfT'F F, then FV(F) C FV(TI).

Proof By induction on derivations of I' - F' and use lemma 3.2 when considering

the rules (II1) and (A). O

Lemma 3.4 IfT'+ F, then I’ has the form zy:Ay, ...,z Ay such that
1. 21,.c., Ty are distinctive;
2. FV(Ai) C{z; |1<j<i—=1} fori=1,..,m.

Proof Induction on derivations of I - F’ and use lemma 3.3 when considering the

rule (C). m]
Lemma 3.5 In CC¢Z , if '+ M:A, then Typey does not occur in M orT'.
Proof Induction on derivations of I' - M:A. ]

Lemma 3.6 In CCZ , if I' F M:A, then either A = Typen or Typen does not
occur in A.

Proof By induction on derivations of I' - M:A and use lemma 3.5 when consid-
ering (Tx)(\)(app)(conv). o

Lemma 3.7 Any derivation of I', T - F has a sub-derivation of I' - Prop:Type,.
Proof Induction on derivations of I', TV - F. a

Remark The above lemma implies that I' is a valid context whenever ' - F'. O

9



Lemma 8.8 IfT' - F and I is a valid context which contains every component
of T, then T/ F.

Proof By induction on derivations of I' - F'. For the rules other than (IT1)(\)(I12),
applying induction hypothesis and the same rule suffices. For rule (I12),
I' - AType; T,2:AF B:Type;
I'F z:A.B:Type;

(0<j<n)

by induction hypothesis, IV - A:T'ype;, and, assuming that z ¢ FV(I'), IV, z:A
B:Type;. Then, using rule (112), we have I'' - IIz:A.B:T'ype;. For rules (II1)(}),
using lemma 3.2 and similar arguments as that for (II12) suffice. 0

3.2 Some admissibility results

In this subsection, we study some admissibility results about the calculus. We will
show that

1. type-preserving substitutions preserve derivability (theorem 3.9);

2. every type (other than Type, for CCR ) is typed by some kind (theo-
rem 3.10);

3. replacing a predicate in a context by a convertible term preserves derivability
(lemma 3.11);

4. subject reduction holds, i.e., B-reduction preserves typing relations (theo-
rem 3.12);

9. removing redundant components in a context preserves derivability (lemma 3.13).
Theorem 8.9 IfT',z:N,I'+ F and '+ M:N, then I',[M/z][" + [M/z]F.

Proof By induction on derivations of I',z:N,I" I F. We only check rules (Tx)
and (II1). The other rules can be similarly checked.
For (Tx),

T1,y:A, T3 F Prop:Typeg
Iy, y:A, T2+ y:A

there are two cases:

1. z:N = y:A. We have to show I, [M/z][" F M:N. This is true by induction
hypothesis and lemma 3.8, as I' - M:N.

2. z:N occurs in I'; or T';. By induction hypothesis, I', [M/z]T" & Prop:Type;.
As z # y by lemma 3.4, T', [M/z]I" contains the component y:[M/z]A. So,
application of (Tx) yields the result.

10



For (II1),

I'z:N,IV,y:A + P:Prop
I',z:N,T' - Tly:A.P:Prop

as ¢ # y by lemma 3.4, we have, by induction hypothesis, T, [M/z][", y:[M/z]A}
[M/z]P:Prop. Applying (I11), I, [M/z]I" } IIy:[M/z]A.[M /2] P:Prop. By lemma 3.3,
y& FV(M),as T+ M:N. So, I, [M/z]l" - [M/z]lly:A.P: Prop. O

Theorem 3.10 * In CCE , if ' - M:A and A # Typen, then T+ A:K for some
kind K.

Proof By induction on derivations of I' - M:A. We check the case for rule (app):
with M = M'N and A = [N/z]B:

THFM:Iz:A.B T+ N:A'
'+ M'N:[N/z)B

By induction hypothesis, I' - IIz:A’.B:K and I' + A":K' for some kinds K and
K'. A derivation of I' - IIz: A’. B: K must end with (II1),(112),(conv),(T2) or (T3).
If it ends with (II1) or (II2), using Theorem 3.9 will suffice to get the required
result. If (conv),(T2) or (T3), as the form of Ilz:A’.B does not change in these
rules, there must be a sub-derivation which ends with rule (II1) or (I12) and whose
conclusion is T' - IIz:A’. B: K" for some kind K” < K. Then, using theorem 3.9
will also yield the desired result.

The other cases are easier. For (Tx), use lemma 3.2 and lemma 3.8. For (1),
use lemma 3.2. d

Lemma 3.11 If I',z:A,T' - F, T' F B:K for some kind K, and A ~ B, then
T,z:B,T"} F.

Proof By induction on derivations of I', z: A, T - F. O
Theorem 3.12 (subject reduction) IfT'F M:A and M b N, then T+ N:A.
Proof We only need to show that

'FM:AANMBN = THN:A

This is proved by induction on derivations of I' - M:A. We only check the cases
(I11) and (app) here; with other easier cases omitted.
For (111), with M = Ilz:A".P and A = Prop:

I',z:A'+ P:Prop
'+ Iz:A'.P:Prop

4For CCg , this theorem is formulated as: if I' - M:A, then I' - A:K for some kind K.

11



as M >y N, N must have form Ilz:A"”.P’ such that either
A D1A” ANP=P

or

A=A" N Py P

In the first case, by lemma 3.2 and induction hypothesis, I' -+ A”:K for some kind
K, and then, by lemma 3.11, I, 2:A” F P’:Prop. In the second case, by induction
hypothesis, I', z:A” - P':Prop. So, in both cases, an application of (II1) yields
the required result.

For (II2), it is similar to (II1).

For (), use (conv) and induction hypothesis.

For (app), with M = M'N’ and A = [N'/z]B:

' M"IIz:A’.B T+ N":A’
' M'N"[N'/z)B

There are two cases:

1. N'= M"N", and, either M’ >, M" and N' = N", or M’ = M" and N’ >, N".
In this case, by induction hypothesis, I' + M":IIz:A".B and T' + N":A'.
So, applying (app) yields I' - N:[N”/z]B. Since [N"/z]B ~ [N'/z]B (as
N' ~ N") and, by theorem 3.10, I' I [N'/z]B:K for some kind K, using
(conv) yields I' - N:[N'/z]B.

2. M= M'N' = (Ac:A".C)N'b>4[N'/z]C = N. A derivation of I' - M":IIz:A".B
must end with (X) or (conv). I it ends with (1), applying theorem 3.9 suf-
fices. If it ends with (conv), we have

't Az:A".C:X T+ X:Type;
'k Az:A".C:Iz:A'.B

(X ~z:A'.B)
We may assume that the last rule used to derive I' F Az:A'.C:X is not

(conv), then it must be (1), i.e.,

I',z:A"+ C:B’
T'FAz:A".C:lz:A".B’

where X = IIz:A".B’. By Church-Rosser theorem, we have X = [Iz:A".B' >
[Iz:Ao.By and Ilz:A’.B b Ilz:A¢. By for some Ay, By such that A’ b Ay,
A" b Ao, B' b By and B > By. So, A" ~ A’ and B’ ~ B. By theorem 3.10
and lemma 3.11 and applying (conv), we have I',z:A’ + C:B. Then, by
theorem 3.9, we have I' - [N'/z]C:[N'z]B, i.e., I - N:[N'z]B.

12



This completes the proof of the theorem. 0

Remark Unlike the pure calculus of constructions (CC) [CH88], although subject
reduction holds, the following rule is in general not admissible:

(4) I'-M:ATFN:B
'-M:B

(M > N)

An example which shows this is as follows:
M = (Az:Typey.z)Prop > Prop= N

We have - Prop:Typeo, but I/ M:Typeo. In fact, we only have - M:Type; for
12> 1. O

Lemma 38.13 IfT,y:Y, I+ M:A andy & FV(M:A)UFV(T'), then T, '+ M:A.

Proof First we prove, by induction on derivations of I', y:Y, IV - M:A, the follow-
ing statement:

I,yY,I'F M:A A y¢ FV(M)UFV(IY) = JA'~ A D,T' - M:A'

We only check the rule (app) here. The other cases are either obvious or easier.
For (app), with M = M M,, A = lIz:A;.A,,

I’,y:Y, FI F M1IH$IA1.A2 I‘,y:Y, F, + Mz:Al
I, y:Y, T+ My My:[M,/z]A,

By induction hypothesis, there exists A} ~ A; such that
F, FI }"‘ Mz:A'l

and there exists A” ~ Ilz:A;.A; such that I',)IV  M;:A"”. By lemma 3.3, y ¢
FV(A})U FV(A"). By Church-Rosser theorem, A” b Ilz:A{. A}, where A; t> A
(¢ = 1,2). As reduction does not produce new free variables, y ¢ Ilz:A}.AY. By
subject reduction,

I, T+ My:llz:A]. A}
As A ~ A, ~ A, by theorem 3.11 and applying rule (conv), we have
I, T'F My AY
Now, applying rule (app), we have
I T+ My My:[M,y/z]AS
where y & [My/z]A} ~ [M>/z]A; as required.

13



Now, suppose I',y:Y,IV I+ M:A and y ¢ FV(M:A) U FV(I'). Then, by the
statement just proved above, there exists A’ ~ A such that

I,IYF M:A'

and y ¢ FV(A’) by lemma 3.3. To get I, I F M:A by applying (conv), we only
have to show that I',I” - A:K for some kind K. By theorem 3.11, ', y:Y, I+ A:K
for some kind K. As y ¢ FV(A) U FV(I"), using the above statement, we have,
there is P ~ K such that I',IV + A:P. If Type, does not occur in P, then
K # Typey by Church-Rosser theorem. So, I',T' - K:K' for some kind K’. By
using (conv), we have I',TV  A:K. If Typey occurs in P, then P = Typey, by
lemma 3.6. Then, by Church-Rosser theorem, K = Typey, = P. We also have
I',T'+ A:K. So, we can apply (conv) to get I', I  M:A.

This completes the proof of the lemma. O

3.3 Typing properties

In this subsection, we study the properties of typing in the calculus. Although the
type uniqueness fails because of the inclusions between type universes, we show
that types of a term are ‘unique upto kinds’ (theorem 3.15). Furthermore, the
type universes induces an ordering under which there exists a unique minimum
type (upto conversion) for every well-typed term (theorem 3.18). We also define
a classification of types according to their levels and show that the types at the
highest level have specific forms.

Definition 38.14 (I-types) Let I' be a valid context. Then, For CC¥ , A is a
I-type iff T' b A:K for some kind K. For CC% , A is a T-type ¢f ' F A:K for
some kind K or A = Typey. O

Theorem 3.15 (type uniqueness upto kinds) IfT' - M:A and T + M:B,
then either
A~B

or,

A~C and B~C(C'

for some T'-types
C = H(I?licl...HIIZmICm.K

C'=lz.:Cy..02,,:C . K’
where m > 0 and K, K’ are different kinds.
Proof By Church-Rosser theorem and theorem 3.12, we only have to show that,

ifI' - M:A and T + M:B, then either A ~ B, or A ~ IIz,:C;..Ilz,,:C,,.K and
B ~ Izy:Cy...1z:Crp. K' for some Cy,...,Cy, and some kinds K and K’.

14




We prove this by induction on the sum of the lengths of derivations D4 and
DpofI' M:Aand I' - M:B. In view of the forms of ' - M:A and T+ M:B, we
have the following table, which shows possible combinations of rules as the last
ones for D4 and Dpg:

) [ (app)

Zapn)
N’
L~
S’

(Tx) | (I11)

)
=
N

e

(conv)

(T1) | (

v

(Ax)
(comv) | / |
(Ax) v

IS

i

NS
<

i

NG

(©)

@) 7

<R3

(T2)

NN =
|
|
|
] ]
S S I

(T3)

NS

(Tx)

< NN !

(II1)

NN NN
|

(I12)

o) 7

<!

(app)

where — means that the situation is impossible and 1/ means that the result holds
in that case (only half of the table is shown, due to the duality of D4 and Djp).
Let’s check the case when both D4 and Dg end with (app). Suppose

'k M1IH$:A1.Bl 'tk Mz!Al
'k M1M2I[M2/$]B1

'k M;[:H:B:Az.Bz 'k M22A2
T |" M]Mzi[Mz/.’lJ]Bz

with M = MiM,, A = [M;/z]B; and B = [M;/z]B;. By induction hypothesis,
either

Mz:A{.By ~1lz:A,.By

or, for some kinds K and K’,
Mz:A1. By ~ lzy:Cy.. Iz p:Crr . K

Hz:A5.B; ~ HOz1:Cy.. z,,:C . K’
In the first case, by Church-Rosser theorem, B, ~ B,. So,

A= [M;y/z]B, ~ [M2/x]B; = B

In the second case, By =~ Ilz;:C,..J12,,,:Cp. K and By ~ Ilz,:Cs...Hz,,:Cp . K'.
We may assume that zs,...,2, & FV(M3)U {z}. So,

A = [M;/z] By ~ [My/z|llz:Co...J120:Cr. K = Nz [M3/2]Cs.. 12 i [M3] 2] Con. K
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B = [M,/x]B; =~ [M,/z|llz,:Cy..J12,4:Cp. K' = Hzg:[ My /] Co.. Mz 2 [ Mo/ 2] Cr K

The other cases are simpler and omitted here. o
The order < over kinds can be extended to a partial order over terms, under
which a notion of minimal/minimum type will be introduced.

Definition 3.16 (partial order induced by universes) Define < as the small-
est partial order over terms which is congruent w.r.t. ~ such that

1. Prop <X Typeo = Type; =X ...;

2. if A~ A" and B X B’, then llz:A.B < Ilz:A'.B'.
A < B if, and only if, A< B and A # B. O
Definition 3.17 (minimal/minimum type) Let ' - M:A. rThen,

1. A is called a minimal type of M (underT) if, for all A’ such that T+ M:A/,

AR A;
2. A is called a minimum type of M (underT) if, for all A’ such thatT' + M:A’,
A=A O

Remark By the definition of < (definition 3.16), there is no infinite decreasing
sequence A; > Ay > .... So, every well-typed term has minimal types. A minimum
type of a term (if it exists) is unique upto conversion. For the system XCCZ , not
every well-typed term has a minimum type (see section 6 for more discussions).
But, for CC? (CCZ and CC* ), by theorem 3.15, we have that every well-typed
term has a minimum type. O

Theorem 3.18 In CCZ (CCZ ), every well-typed term has a minimum type, i.e.,
if ' M:A, then, there exists a minimum type of M.

Proof We show that all minimal types of M are convertible, which implies that
every minimal type is a minimum type. Let C be the set defined as follows:

C =4 {[Bl~ | B ts a minimal type of M}

where [Bly =4 {B’' | ' F M:B' A B ~ B'}. We show that #C = 1.° First, as
'k M:A C#0. If #C > 1, let [B]a,[B']~ € C be different. By theorem 3.15,
we have, for some kinds K # K’ (say, K < K'), B ~ Ilz,:Cy...I1z,,:Cp,. K and
B’ >~ Mlz1:Cy..[I2p:Cp . K' (as B % B'). But this implies that B < B’, which
contradicts the assumption that B’ is a minimal type of M. So, we have #C =1,

5We use #S to express the cardinality of a set S.
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i.e., all minimal types of M are convertible. As minimal types of M always exist,
so does a minimum type of M. (]

Remark Note that the minimum type is not the ‘most general’ type. In other
words, the following rule may be not admissible:

I'FM:ATFA'K
' M:A

(AZA)

For example, we may have
z:Typeog — Typeg tf x:Typeo — Typey

If we had subject reduction also for n-reduction, than the above rule would become
admissible. But, as well-known, untyped n-conversion destroys Church-Rosser
property of the underlying untyped term calculus. Further research is needed to
see whether restricting conversions to well-typed terms can make the above rule
be admissible. O

Definition 3.19 (categories of I'-types) Let A be a I'-type. Then, for j > 0,
(where T'ype_y = Prop),

1. A is a I'-proposition iff A’ ~ AT + A":Prop;
2. Ais aT-j-type iff A’ ~ AT+ A"Type;;
3. A is a proper I'-j-type iff A is a I-j-type and A is not a I'-(j — 1)-type.

A is called a proper I'-type if it is a proper I'-j-type for some j > 0.

Remark The fact that the rule (+#) in the remark in section 3.2 is not admissible
makes the above definition more complicated than expected, as we have to regard
a type which can be reduced to a I'-j-type but it itself can not be typed by Type;
as residing in the jth level. For example, (Az:T'ype,.z)Prop is a proper <>-0-type,
but i/ (Az:T'ype,.z) Prop:Typeo. O

The next lemma shows that the above classification of types are ‘exhaustive’
and ‘exclusive’.

Lemma 3.20 In CCZ , if ' - M:A, then exactly one of the following holds:
1. A= Typen;
2. A is a I'-proposition;

3. A is a proper I'-j-type for exactly one j € w.
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Proof Exhaustiveness is by theorem 3.10, lemmas 3.5 and 3.6. Exclusiveness is
obvious from the definition. ]

Lemma 3.21 In CCZ , Let A be a proper I'-n-type. Then, A has one of the
following forms:

e Typen_1 (Prop, whenn=0)
e IIz:A;.A,

Proof By induction on derivations of I' - A:T'ypey. For the rules (Ax),(C),(T1)
and (II2), it is obvious. The other rules are not applicable as the last rule, either
because of the form of A:T'ype, or because of the condition that A does not convert
to any I'-(n — 1)-type. For example, (app) is not applicable because, otherwise,
either B = T'ypen or N = T'ypen but the former is impossible by the side-condition
of (A) and the later impossible by lemma 3.5. o

§
Lemma 38.22 In CC , let A =Ilx:A;.A;. Then, A is a proper I'-n-type if, and
only if,

1. either A; is a proper I'-n-type or A, is a proper (T, z:A;)-n-type, and
2. A, is a proper (T',z:A;)-j-type for some 0 < j < n.

Proof Sufficiency is by theorem 3.10, applying (II2) and inspecting the rules. For
necessity, suppose IIz:A;.A; is a proper I-n-type. Then, A; is a [-type and A, is
a (T, z:A;)-type. If A; is not a proper I'-n-type and A, is not a proper (T, z:4;)-n-
type, then, by lemma 3.20, A, is a I'-proposition or a I'-j-type for some j < n and
Ay is a (I, z:A;)-proposition or a (I',z:A4;)-j'-type for some j' < n. By applying
rules (T2)(T3)(II1)(II12), we have IIz:A;.A; is a I-proposition or a I'-j”-type for
some j” < n, which contradicts the assumption. If A, is not a proper I'-j-type for
every 0 < 7 < n, then it is a I'-proposition by lemma 3.20. So, A is a [-proposition
by (I11), which also contradicts the assumption. 0

Remark All of the results proved in the above three subsections hold for the
system CC* [Coq86a] with some of them slightly modified. For example, the
theorem of type uniqueness upto kinds for CC*® can be stated as follows:

Theorem In CC*® ,if ' - M:A and T'  M:B, then either
A~B

or,

A~C and B~C(C'
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for some I'-types
C = lIzy:Cy.. 1z,,:Cr, . Type;

C' = z1:C1.. M2p:Crp . T'ype;

4 Quasi Normalization of CC2

In this section, we prove the quasi-normalization result, which says that every
proper type can be reduced to a head normal form (theorems 4.21 and 4.23). Sec-
tion 4.1 introduces the notion of environment — ‘infinite universal context’, follow-
ing [Pot87]. Section 4.2 consists of an inductive proof of the quasi-normalization
theorem. In section 4.3, we summarize the result of quasi-normalization.

4.1 Environments

Definition 4.1 (Environment) An environment is an infinite list
€ =z: My, x:M,, ...
where ; is a variable and M; is a term, such that
1. for alli € w, &+ Prop:Typey, and

2. for any i € w, for any kind K, if &'+ A:K, then the set {j | € = x;:A} is
infinite

where £ = xy: My, ...,z M; and &=z M;. ]

Every valid context can be extended to an environment, as the following lemma,
shows:

Lemma 4.2 IfT is a valid context, then there exists an environment € such that
E'=T for somei € w .

For an environment &, we write £ - M:A if, and only if, £ - M:A for some
t€w. HEF M:A, M:A is called an £-formula and, M and A are called £-terms.
A will also be called an £-type. M g N (M ~¢ N) if, and only if, M and N are
both &-terms and M &> N (M ~ N).

Lemma 4.3 Let £ be an environment.
1. IfE€'F F, then £+ F for all j > i.
2. If \e:AM (MIx:A.M) is an E-term, then A\z:A.M = Az A.M' Iz:A.M =
Hz":A.M') for some E-terms ' and M'.
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Proof By definition of environment and lemma 3.8. O

Lemma 4.4 Let £ be an environment and £ = z1: Ay, ..., xj:A;. IfE9 + M:A and,
foralli < j, £V Ng[Ni_a/zioa)..[N1/zi]A;, then EF [Nioy/ziq]...[N1/z1](M:A).

Proof Consider the form of A.

1. A= Typen. As &+ M:A, by repeated applications of (II1) and/or (I12),
we have
t Iz Ay dzj:A;. M : Typen

As € is an environment, we have that, for some variable y,
EFylley: Ay Tz A; M
So, by repeated application of (app), we have that
EF yNy..N;: [Nici/zima)...[Ni/z )M
By theorem 3.10, for some kind K,
EF [Nici/zioq]. . [N1/zM : K
Then, using (T2) and/or (T3) several (maybe zero) times yields the result.
2. A# Typey. As E7  M:A, by repeated applications of (), we have

EF Azi Ay AeiAj M Tz Ay Tl Ay A

Then, by repeated application of (app), we have
EF (Ary:Ar. Az Aj M)Ny.. N ¢ [Ni_y/ziq]...[Ny /2] A

Now, by subject reduction, we have the result. O

Definition 4.5 (Categories of £-types) Let A be an E-type. Then, where Type_; =
Prop,

1. A is an E-proposition ¢ff JA' ~ A. £+ A":Prop;

2. A is an E-j-type iff JA'~ A. EF AType;;

3. A is a proper S—j-type iff A isan E-j-type and A is not an E-(j — 1)-type.
A is called a proper ;‘:—type if it is a proper E-j-type for some j > 0. O

Remark Similar to the classification of I-types, the above categories of E-types
are exhaustive and exclusive in the senese that, if £ - M:A, then exactly one of
the following holds (for CCZ ):
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1. A= Typenp;
2. Ais a E-proposition;
3. Ais a proper &£-j-type for exactly one 0 < j < n.

We also have that, if A ~¢ B, then A is an &-proposition (proper &-j-type) if, and
only if, B is an E-proposition (proper £-j-type).

Notation For a term M, we use the following notation:
TeM =g {A | EF M:A ANVA ALY M:A'}

i.e., TeM is the set of minimal types of M under £. By theorem 3.15, 7T¢ M is in
fact the set of the minimum types and we have

A€TeM = TeM = [A]e
Where[]g—df{BlA gB} O

4.2 Quasi normalization of CC2 I : an inductive argument

The quasi-normalization result for CCZ is proved by induction from n to 0. The
following definitions, lemmas and theorems are inductively defined and proved for
J=nn-1,..,1,0. We first define the n-degree of £-terms, which is well-defined
by lemma 3.21 and then prove the quasi-normalization result (theorem 4.14 and
theorem 4.18) for j = n. Then, we define the (n — 1)-degree, which is well-defined
by theorem 4.18 (for j = n) and then prove the quasi-normalization result for
J=n—1. And we go on until j = 1. At the last step, based on the quasi-
normalization result for j = n, ..., 1, we define 0-degree of E-terms.

Definition 4.6 (§;, j-degree of £-terms) Let A g A°, where, if j =n, A° =
A, and if j < n, A° is an 1-Q-normal term for every i such that j < i < n. Then,
define 6;A, the j-degree of A, as follows:

3 If A® is not a proper E£-j-type, §;A =4 0;

e §;Typej—1 =a 1 (when § =0, éoProp =4t 1);

o [fA°= :cAl...Am is a proper E-j-type, 6;A =4 1.

o IfA° = Hm:A1:A2 is a proper E-j-type, §;A =4 mazx{;A1,8;A2} +1. O

Remark For j = n, §; is well-defined by Church-Rosser theorem and lemma 3.21.
For, 5 < n, it is well-defined by Church-Rosser theorem and theorem 4.14 below.
That is, 6; is a function from £-terms to natural numbers. 0
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Lemma 4.7 IfA e B, then 5JA = 6JB

Proof For j = n, by Church-Rosser theorem and lemma 3.21. For j < n, by
Church-Rosser theorem and theorem 4.14 below. 0O

Remark The above lemma implies that, for all A, B € T M, §;A = §;B. o
Lemma 4.8 A is a proper E-j-type iff 6;A > 1.
Proof Obvious from the definition. ' ]

Notations We introduce the following notations:

1. Let A € T¢M. Then,
6;(TeM) =4 6;(A)

2. Let £-term R = R;R; be a redex. Then,
85(B) =ar 6,(TeRy)

3. Let M be an E-term. Then,
v;M =g maz{6;(R) | R is a redex in M}

piM =a #{ R | 85(R) =v;M =21}

Remark These measures are extensions of the measures used by G.Pottinger in
[Pot87]. 8;(TeM) is the j-degree of the minimum type of M; &} assigns every
E-term Ry R, of redex form a measure value, i.c., the j-degree of the minimum
type of Ry; ;M is the largest 67-value of the redexes occurring in M; and, p; M is
the number of redexes occurring in M whose 6}-value is equal to ;M and greater
than 0. o

Definition 4.9 (j-Q-normal £-terms) An E-term M is j-quasinormal (j-Q-normal)
if, and only if, v;M = 0. O

Remark An &-term M is j-Q-normal if, and only if, it does not contain any redex
R R, such that the minimum type of R; is a proper £-j-type. O

The next step is to show that, every £-term can be reduced to an &-term
which is ¢-Q-normal for all ¢ > j (theorem 4.14 and corollary 4.15). First, we
prove several lemmas which are needed to prove this result.
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Lemma 4.10 Let £t = &, x:A. If

o £ N:A,

o &kl - B:Typen,

e B is not a proper E-i-type for any i > j,
then, if [N/z]B is a proper E-j-type, then so is B.

Proof Suppose B is not a proper £-j-type. Then, it is an £-proposition or a
proper &-j'-type for some j' < j, i.e., there is B’ ~ B such that £ - B":K for
some K < Type;. By lemma 3.13, we may assume £F,2:4 + B"K. So, by
theorem 3.9, £ - [N/z)B":K. As [N/z)B' ~¢ [N/z]B, [N/z]B is not a proper
&-j-type. This contradicts the assumption. So, B is a proper £-j-type if [N/z]B
is. ]

Lemma 4.11 Let E¥1 = &%, 0:A. If
o £k N:A,
o A is not a proper E-i-type for any i > j,
o EM1 ¢ B:Typen,
e B is not a proper E-i-type for any i > j,

then,
6,(N/<)B) < ;B

Proof By theorem 4.14 for ¢ > j, B b B° for some B° which is i-Q-normal for
all i > j (when j =n, B° = B). As §;B = 6po and §;([N/z]B) = §;([N/z]B°) by
lemma 4.7, we only have to show that é;([N/z]B°) < §;B°.

By induction on the structure of B°. By theorem 4.18 for j + 1, we only have
to consider the following cases:

1. B° = Type;j—;. It is obvious.
2. B°=yB...By,. If y # x, then
6,(IN/c]B") = 1 = 6;B°

But it can not be the case that y = z, for otherwise, we would have that
B° = zB;...By, is a proper £-j-type, which contradicts that A is not proper
E-i-type for any 7 > j. '
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3. B®° =1Ily:B,.B,. If [N/z]B° is not a proper &-j-type,
6,([N/2]B°) = 0 < &;B°

I [N/z]B° is a proper £-j-type, then so is B° by the above lemma. So, by
induction hypothesis, we have

§([N/]B°) = maz{8;([N/z]B1),6;([N/z]B:)} +1
maz{6;B1,6;B,} + 1

§;B°

(I VAN|

Lemma 4.12 Let £+ = &% 1:A. If
o £k N:A,
o A€ TN is not a proper E-i-type for any 1 > j,
o EM1 L M:B, and
o M isi-Q-normal for all i such that j < i <n,

then,
7 ([N/z]M) < maz{~;M,~;N,§;A}

Proof By induction on the structure of M.

1. If M is a constant or a variable, it is obvious as either [N/z]M = M or
[N/z]M = N.

2. M =1y:My.M; or M = Ay:M;.M,. Then, by induction hypothesis,

Yi([N/=z]M) = maz{6}(R) | R € redezes([N/z]M)}

= maz{6}(R) | R € redezes([N/z]M;) U redezes([N/z] M) }
maz{7;([N/x]My), v;([N/x]Mz)}
maz{maz{y;(M1),7;(N),6;(A)}, maz{v;(Mz),7;(N), 6;(A)}}
maz{y;(Mz), 7;(Mz),7;(N), 6;(4)}
max{y;M,v;N,6;A}

[ VAN i

3. M = M;M,. There are two sub-cases.

(a) [N/z]M is not a redex such that 83([N/z]M) > 0. Then, a similar
argument to that for the above case suffices.
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(b) [N/x]M is a redex such that §5([N/z]M) > 0. Then,

Vi(IN/2l(M1M)) = maz{y;([N/z]|M1),v;([N/z] M), 65(IN/z)(M1 M)}
maz{7;(Mr),7;(M2),7i(N), 6;(A), &5 ([N/ =) (M1 Mz))}
max{y;(My), 7i(M2), 7i(IV),6;(A), 6;(Te([N/2]M1))}
maz{maz{y;(Mi1Mz),7;(N),6;(A)}, 6;(Te([N/z]M))}

IAN I IA

So, we only have to show that
8;(Te([N/x]M1)) < maz{y;(MiMz),7;(IV), 8;(A)}
Note that, as [N/z]M; is of A-abstraction form, either M; = x or
M, = \y: M. M.
i. My = z. Then, as A € T¢N, we have,
8;(Te([N/=]M)) = 6;(TeN) = 6;(A)
ii. My = My:MI.M}'. We only have to show &;(T¢([N/z]My)) <
8;(Te M), as then, :
8i(Te([N/ =] M) < 6;(TeMy) = 65(M1M3) < v;(MyMz)

Let Ay € T¢M;. (Note that A, is not a proper &-i-type for any
i > j because, by assumption, M = M; M, is ¢-Q-normal for every
i > j.) By lemma 4.4, £ - [N/z]My:[N/z]A,. Consider [N/z]A;.
There are two cases.

A. [N/z]A; € T¢([N/z)M,). Then, by lemma 4.11,
6;(Te([N/z]My)) = 6;(IN/x)A1) < 6;A1 = 6;(TeMn)

B. [N/z]A; € Te([N/z)M,). Let A} € T¢([N/z]M;). Then, we
have A} % [N/z]A;. By theorem 3.15 and Church-Rosser the-
orem, for some kinds K < K’ and m > 1 (as M; is of A-
abstraction form),

Al b zy:Cy.. Oz, Cp K
| [N/z]A;y b lzy:Cy.. H2p:Cr K’
If K # T'ype;_1, we have, by the definition of §; and lemma 4.11,
8i(Te([N/z]Mn)) = 6;(A7) < 6;([N/x]Ar) < 6;A1 = 6;(TeMn)

But K can not be T'ype;._, for otherwise, if j = n, then K' =
Typen, which is impossible; if j < n, then we have [N/z]A; is a
proper &-i-type for some ¢ > j, which, by lemma 4.10, implies
that A; is a proper £-i-type for some z > j.

25



This completes the proof of the lemma. o

Lemma 4.13 Let MN = (Az:A.M7)N be an E-term. If
o MN isi-Q-normal for all @ such that j <1 <n,
o pi(MN) =1, and
o §5(MN) = 7,(MN),

then,
Vi(IN/z]My) < v;(MN)

Furthermore, if [N/z|M; is of the form Ay:X.Y, then
6;(Te([N/z]M1)) < v;(MN)

Proof Because MN is the only redex in M N such that 65(MN) = v;(MN), we
have
7M1 < 7;(MN)

ViV < v;(MN)
6;A < 6;(TeM) = ~;(MN)

As £+ N:A, we consider two cases according to A.

1. A€ T¢gN. Then, by lemma 4.12,

7j([N/m]Ml) < ma${7jM177jN, 6jA}
So, 7;([N/z]My) < v;(MN).

2. A € T¢N. By theorem 3.15, there is A’ = Mz:Cy..10z,,:Crr. K € TeN
such that A ~¢ Ilz,:C..112,,:C,,. K’ for some kinds K < K’. Then, by
lemma 4.12,

Yi([N/z]My) < maz{v;My,v;N, §;A"}

So, we only have to show §;A’ < §;A. But §;A4’ > §;A is impossible, for it
implies that K = Type;—1 < K’, which further implies that A is a proper
E-i-type for some ¢ > j, i.e., §}(MN) > 0 for some 7 > j, contradicting the
assumption that M N is i-Q-normal.

Now, we prove that, when [N/z]M; is of the form \y:X.Y, then
6i(Ze([N/z]My)) < 6;(TeM) = ~v;(MN)
By the form of [N/z]Mj, there are only two possibilities to consider:

1. My =2 and N = M\y:X.Y. We consider two sub-cases:
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(a) A€ TeN. Then, because Te M = [[Iz:A.B]¢ for some B, we have
8j(Te([N/z]My)) = 6;(TeN) = 6;A < 6;(TeM)

(b) A€ TeN. Let A’ € TeN. Then, by theorem 3.15 and Church-Rosser
theorem, for some kinds K < K’ and m > 1 (as M; is of A-abstraction
form),

A b zq:Cy.. z,,:Cp . K
[N/z]A b llzy:Cy.. M2,,:Cp K’
If K # Type;_1, we have

6;(Te([N/z]|My)) = 6;(TeN) = §;A' < 6;A < §;(TeM)

But K can not be T'ype;1, for otherwise, for j = n, K' = Typen,
which is impossible, and, for j < n, A is a proper £-i-type for some
¢ > j, which contradicts the assumption that M N is i-Q-normal.

2. My = dy:M{.M]. Let A; € T¢M,. Then, A; is not a proper &-i-type for
any ¢ > j, for otherwise, the types in 7z M are not proper &-j-type. So, by
a similar argument to that in 3(b)ii in the proof of lemma 4.12, we have

85(Te([N/2)My)) < 6;(TeMy) < 6;(TeM)
O

Theorem 4.14 If E-term M is i-Q-normal for all § < i < n, then M bg N for
some N which is i-Q-normal for all § <1 < n.

Proof First, for j < n, by lemma 4.16 below (for j + 1), -contraction preserves
¢-Q-normalness for all § < ¢ < n. So, we only have to show that M can be reduced
to a j-Q-normal term. This can be proved by a double ind on v;M and p; M.
We only indicate that, by lemma 4.13, for any £-term M which is -Q-normal
for every ¢ > j, reducing M by contracting any redex R;R; such that §;(7T¢R;) =
7;M and, in R, or Ry, there is no redex whose §7-value is ;M (e.g., the rightmost
of the innermost redexes whose 6}-value are ;M) decreases the pj;-value of the
term by one. : i

Corollary 4.15 If M is an E-term, then M ¢ N for some N which is i-Q-normal
for every 1 > j. o

Lemma 4.16 Let M g N. If M is i-Q)-normal for everyi > j, so is N.
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Proof By the ‘global’ induction argument on j, we only have to show that, if
M B3 N and M is i-Q-normal for every ¢ > j, then N is j-Q-normal. Suppose

M= ...((A$:A.M0)N0)... 21 ...[N0/$]M0... =N

By lemma 4.12, if NV is not j-Q-normal, then [No/z] My must be of the form Ay:Y.Z
such that N = ...((A\y:Y.Z)N')... and §;(Te(Ay:Y.Z)) > 0. But this is impossible
because, if so, there are only two possibilities according to the form of [Ny/z]My:

1. My =z, No = M\y:Y.Z and 6;(T¢No) > 0. This implies that §;(Tz(Az:A.Mp)) >

0 for some : > j.

2. Mo = Ay:Y1.Z, and 6;(Te([No/x]Mo)) > 0. This implies that §;(7z(Ay:Y1.Z1)) >
0.

So, both imply that M is not :-Q-normal for some 7 > j, contradicting the as-
sumption. a

Lemma 4.17 Let M N be an E-term and the minimum type of MN (under £) is
a proper E-j-type. Then, the minimum type of M under (€) is a proper E-k-type
for somé k > j.

Proof As M N is an -term, the minimum type of M has II-form, i.e.,
TeM = [Ilz:A.Bl¢

for some A and B. Then, £ F MN:[N/z]B. By lemma 4.10, we have B is a

proper £-k'-type for some k' > j. So, llz:A.B € T¢M is a proper E-k-type for

some k> k' > j. O
The following theorem is proved only for j > 0.

Theorem 4.18 Let A be an i-Q-normal proper £-(j — 1)-type for every i such
that j < ¢ < n. Then, A has one of the following forms:

e Type;_o

o zA,.. A,

o IIz:A4,.4,
where, when j =1, Type_; = Prop.
Proof By induction on the structure of A.

1. If Ais a constant (kind), A = T'ype;—s, because this is the only kind which
is a proper &-(7 — 1)-type.

2. If Ais a variable or of the form Ilz:A;.A,, it is obvious.

28




3. A is not of the form Az:A4;.A;, as A is a type.

4. A= Ay.. A, (m > 1 and A, is not of the form A;;A;5. In this case, as A
is a proper &-(j — 1)-type, T¢A = [T'ypej-1]e. By lemma above, for each
1 < k < m~1, every type in Tg(A;...Ax) is a proper E-ji-type for some
jk = j. This implies that A is not of the form Az:X.Y for otherwise A is
not j;-Q-normal (note that j; > j). So, A; must be a variable.

Lemma 4.19 Let A = Ilz:A;.A; be an E-(j — 1)-type. Then, A is a proper
T-(j — 1)-type if, and only if,

1. either Ay or Aj is a proper E-(j — 1)-type, and

2. A, is a proper E-k-type for some 0 < k< j—1.

Proof Similar to lemma 3.22. a

4.3 Quasi normalization of CCZ II

Definition 4.20 (Q-normal terms) An E-term M is Q-normal iff M is i-Q)-
normal for every ¢ such that 0 < i < n. ]

Theorem 4.21 (Quasi normalization of CCZ ) Every £-term reduces to some
@-normal E-term.

Proof By theorem 4.14 (ind from n to 0). o

Definition 4.22 (head normal forms for types) An E-type A is in head nor-
mal form if, and only if, it has one of the following forms:

e akind K
o zA;...A,,, where T is a variable and m > 0

o Ilz:A.B, where B is in head normal form

O

Corollary 4.23 A Q-normal E-type which is not an E-proposition is in head nor-
mal form. Henceforth, every E-type can be reduced to some head normal form.

Proof By lemma 3.21, theorem 4.18, theorem 4.21 and lemma 4.19. a

5 Strong Normalization of CCZ

In this section, the strong normalization theorem of CCZ is proved.
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5.1 A complexity measure for £-types

Based on the result of quasi-normalization in the last section, we are now able to
define a complexity measure of types satisfying the required property as stated in
lemma 5.2 below.

Definition 5.1 (complexity of £-types, 8) Let A be an E-type. Then define
the complezity of A, BA, as follows:

BA = (0,0) if A is an E-proposition
B (7 +1,6;A) if A is a proper E-j-type

where §; is defined in definition 4.6. B-values of E-types are ordered by the lexico-
graphic ordering. O

Remark The above definition is well-defined because §; is well-defined. Further-
more, it is obvious that, if A o~ B, then §(A) = §(B) by the properties we stated
in the remark after definition 4.5. The following lemma shows the most important
property of the complexity measure. ]

Lemma 5.2 If E-type A is not an E-proposition and reduces to a Q-normal E-type
Mz:A;.A,, then we have
B(A1) < B(A)

and, for every N such that €+ N:A,,

B(IN/z]As) < B(A)

Proof As A is not an &-prop, if A; is a proper £-j-type, then A is a proper
E-j'-type for some j’' > j. So, by definition,

BAL < BA
Consider [N/z]A;. There are two cases:

1. [N/x]A;z is an E-proposition, then it is obvious that B([N/z]A;) = (0,0) <
BA, as A is not an E-proposition.

2. [N/z]A; is a proper E-j-type. Then, by lemma 4.10, A; is a proper E-i-type
for some ¢ > j, and henceforth A is a proper £-i'-type for some ¢’ > i.

(a) ¢ > j. Then, we have
B(IN/z]Az) = (5 + 1,6;([N/x]Az)) < (i +1,8:4,) < BA

(b) ¢ = 5. By lemma 4.11, either A; is a proper £-k-type for some k > j,
or §;([N/z])As) < §;A;. For these two cases, we respectively have

B(IN/z]A2) = (j +1,6,([N/2]A2)) < (k +1,6:A1) = BA; < BA
B(IN/z]Az) = (7 +1,6,([N/2]Az)) < (5 + 1,6,42) < BA
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5.2 Values of £-terms
Definition 5.3 Let A be an E-type. Then, define

SNg(A) =4t {M | M is strongly normalizable and £+ M:A}
a

Definition 5.4 (saturated sets) Let A be an E-type. S is an A-saturated set
if, and only if,

1. 8§ C SNe(A);

2. If xM,...M,, € SNg(A), then zM,..M,, € S, where m > 0 and z is a
variable or constant;

3. If (Ax:B.M)NN;...N,,, € SN¢(A) and ([N/z]M)Ny...N,,, € S, then
(Ae:B.M)NN;...N,, € S, where m > 0.

Satg(A) is defined to be the set of A-saturated sets. O

Remark Sats(A) is not empty. In fact, SNg(A) € Satg(A). O

Definition 5.5 (possible values of £-terms) The set of (possible) values of an
E-term M, V(M), is defined as follows.

1. If M is an E-type, then V(M) =4 Sate(M);

2. If M is not an E-type, then suppose that £ - M:A and define V(M) by
induction on the complezity B(A) as follows:

(a) if A is an E-proposition, then V(M) =4 {k}, where & is a fized arbi-
trary symbol;

(b) if A is not an E-proposition and A reduces to a Q-normal term xA;... A,
then V(M) =4 {x};
(¢) if A is not an E-proposition and A reduces to a Q-normal term Ilz:A;. A,,
then define V(M) as consisting of the functions f such that
i. dom(f)={(N,v) | EF N:A;,v € V(N)},
. f(N,v) € V(MN) for all (N,v) € dom(f), and
iti. if N ~g¢ N', then f(N,v) = f(N',v) for all v € V(N) NV (N').
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Remark By lemma 5.2, the above definition is well-defined. Furthermore, by
Church-Rosser theorem, theorems 3.15 and 3.12, we can prove by induction on
the B-complexity of types of M and N that, if M ~¢ N, then V(M) = V(N). For
every E-term M, V(M) is not empty, as the following definition shows. o

Definition 5.6 (canonical value of £-terms) Define the canonical value of an
E-term M, vy, as follows.

1. If M is an E-type, vpr =as SNe(M);

2. If M is not an E-type, then suppose that E - M:A and define vy by induction
on the complexity B(A) as follows:

(a) if A is an E-proposition, then vy =g K;
(b) if A is not an E-proposition and A reduces to a Q-normal term zA;...A,,,
then vy =g K;

(c) if A is not an E-proposition and A reduces to-a Q-normal term Ix:A,.A,,
then define vas as the function f such that f € V(M) and f(N,v) =
" vmn for all (N,v) € dom(f).

O

5.3 Ewvaluation of £-terms

An &-assignment is a function ¢ with FV(£7) as domain for some j € w and terms
as images such that, for each 0 < i < j, £ F ¢(;):¢(A;), where z;:4; = &;. (We
also write ¢ for the substitution determined by ¢.)

An E-valuation is a pair of functions

p = (¢,val)

such that ¢ is an £-assignment and val is a function with dom(¢) as domain and
terms as images such that, for each z; € dom(¢), val(z;) € V(¢(z:)). The domain
of p, dom(p), is dom(¢). An E-valuation p E-covers an E-formula M:N if, and
only if, £ + M:N, where dom(p) = FV(E). In this case, we also say that p
E-covers M and N.

Now, we define the evaluation function of &-terms.

Definition 5.7 (Evaluation Eval,) Let p = (¢,val) be an E-valuation. The
evaluation function Ewval, of £-terms which are E-covered by p are defined by
induction on the structure of E-terms as follows:

1. For M being an E-proof (i.e., €+ M:P for some E-proposition P),
Eval,(M) =4 &

32



2. For M being not an E-proof, Eval (M) is defined by induction on the struc-
ture of M :

(a) M is a variable, then
Eval (M) =4 val(M)
(b) M is a constant (i.e., a kind), then
Eval,(M) =4 SNe(M)
(¢c) M = MM, then
Eval,(M) =4 Eval ,(M,)(¢(M3), Eval,(M,))

(d) M = \z:Myi.M,. We may assume that x ¢ dom(p). Then, Eval,(M)
is defined to be the function f such that

i. dom(f) = {(N,v) | EF N:¢(M,),v € V(N)}, and

. f(N,v) = Evaly(My) for all (N,v) € dom(f), where p’ extends p
such that p'(z) = (N,v).

(e) M = lz:M;.M,. We may assume that x & dom(p). Then, Eval,(M)
is defined to be the set of the terms F such that

i. EF F:¢(M), and

i. for all N € Eval,(M;) and v € V(N), FN € Evaly(M,), where,
p' extends p such that p'(z) = (N,v).

O

Remark Note that, if p; and p, agree on the free variables of an £-term M, then
Eval,, (M) = Eval,,(M). ]

Lemma 5.8 (substitution property) Suppose

1. p = (¢,val) is an E-valuation which E-covers N and [N/z]M and x ¢
dom(p);

2. p' = (¢',val’") is an E-valuation which E-covers x and M and extends p such
that p'(z) = (#(N), Eval ,(N)).

Then,
Eval,([N/z]M) = Evaly(M)

Proof By induction on the structure of M. Here, we only check the case when
M = My:M1.M;. We may assume that y ¢ dom(p’). Then, we have
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L. 4([N/z]M) = ¢'(M);
2. By induction hypothesis,
Eval,([N/z]M,) = Eval,(M;)
3. For all N' € Eval,([N/z]M,) = Eval,(M,) and v’ € V(N'), as y & dom(p'),
there is an £-valuation p” which extends p’ (and p) such that p"(y) = (N, v’).

So, by definition of Eval, Eval,([N/z]M) = Eval,(M). The other cases can be
similarly verified. ]

Lemma 5.9 Let p = (¢,val) be an E-valuation. Then,
1. for any E-term M E-covered by p, Eval,(M) € V(¢(M));

2. for any E-terms M and N E-covered by p, if M ~¢ N, then Eval,(M) =
Eval,(N). '

Proof The proofs of 1 and 2 are by mutual induction on the structure of M, using
lemma 5.8 when considering the case M = Az:M;.M; in proving 1 and the case
M = MM, in proving 2. O

Lemma 5.10 Let p = (¢,val) be an E-valuation such that

o M:N is E-covered by p;

o for all z; € dom(p), ¢(x;) € Eval,(A;), where E; = z;:A;.
Then, ¢(M) € Eval,(N).

Proof By induction on the structure of M and using lemmas 5.9 and 5.8. 0

5.4 Strong normalization and consistency of CC¥

Theorem 5.11 (Strong normalization for CC® ) If T + M:N, then M is
strongly normalizable.

Proof Take some environment £ such that & = T'. Let po be an E-valuation
(¢o,val) such that @ is the identity function with FV(I') as domain. Then, by
lemma 5.9 and lemma 5.10, we have

M = ¢o(M) € Eval,,(N) € V(do(N)) = V(N)

As N is an &-type, V(N) = Satg(N). So, Eval,(N) C SNg(N). So, M €
SNg(N) is strongly normalizable. O
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Corollary 5.12 (Con51stency of CC® ) CC¥ is consistent in the sense that
there is a proposition which is not znhabzted by any term. Particularly, for any
term M, if M:Ilx:Prop.z.

Proof Suppose - M:Ilz:Prop.z. By SN theorem and subject reduction (the-
orem 3.12), we may assume that M is in normal form. So, M has the form
Az:Prop.M'. As M’ is in normal form, it must have the form yM,...M,,, and
z:Prop - M":z. By lemma 3.3, z = y. So, we have

z:Prop - aMy..M,,:x

If m = 0, then we have z:Prop - z:z. But, by theorem 3.15 and CR-theorem,
this implies that & > Prop, which is impossible. If m > 0, then we have that
z:Prop b z:11z:A.B for some A and B. But, by theorem 3.15 and CR-theorem, this

would imply that IIy:A. B t>Prop, which is impossible, either. So, i/ M:Ilz:Prop.z.
O

Remark Based on the strong normalization theorem, we have that the problem
of type-checking and type computation for CCZ (and CC* ) is decidable. u

6 XCC® and Its Strong Normalization
YCCY is the system presented in [Luo88], which extends CC® by adding strong
sum types in the following way:

1. Adding the following term-forming clause:
¢ if M and N are terms, so are the following:
| Se:M.N, (M, N), ©1(M), m5(M)

2. For j = 1,2, m;(Mi, M,) is called a o-redexes with M; as its contractum
(i.e., 7r,(M1,M2) b, M;). b and =~ are correspondmgly extended to fo-
reduction/conversion.

3. Adding the following inference rules:
I'+ A:Type; T',2:At B:Type;

(%) | 'k Xz:A.B:Type; (G €w)
(pair) M M:A F;}{V(J[\]Zé\:[vggmf;lmBA F B:Type; (ew)
' M:Xz:A.B
(1) T F m(M):A
(x2) '+ M:Xz:A.B
I+ wo(M):[mi(M)/z]|B
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The Church-Rosser theorem and the properties we proved for CC¥ in sec-
tions 3.1 and 3.2 can also be proved for XCC¥ , which we summarize as the
following theorem:

Theorem 6.1 In XCCY , we have

1. (Church-Rosser) If My ~ M,, then there exists M such that My > M and
M, > M.

2. Any derivation D of T,x:A,I" F F has a sub-derivation of T' - A:K for some
kind K.

3. Any derivation of I',T' F F has a sub-derivation of T' F Prop:Types.

:R

IfT'+ F and 1 is a valid context which contains every component of I', then
I"+F.

IfT,z:N,I'F- F and T' - M:N, then T',[M /2" I [M/z]F.
IfT'F M:A, then T F A:K for some kind K.
(sﬁbject reduction) If T'+ M:A and M > N, then T - N:A.

S N

IfT,y.Y,I'F M:A and y ¢ FV(M:A) U FV(T"), then T',T' F M:A.

O

The partial order induced by universes are now extended to ECC by adding
the following clause to definition 3.16:

o if A< A" and B < B’, then Xz:A.B < Xx:A'.B'.

Every well-typed term in XCC® has minimal types under this ordering, although
its minimum type might not exist. For example, let

A = z:Typeolly:z.x

a = Ax:Typeory:z.y
then, we can derive, for 1,7 > 1,

F(A,a) : Xz:Type;.z

F(A,a): X2:Type;. A

We can easily see that, under the empty context, Xz:Type;.z and Xz:Type,.A are
minimal types of (A, a) but they are not fo-convertible. However, an interesting
fact is that, if we extend the complexity measure §; by adding the following clauses
to definition 4.6:

36



o If A° =, ..7i(zA1...Am)AL... A}, is & proper E-j-type, then 0;A =45 1;
o If A° = Sz: A1 Ay, then ;A =g maz{8;A1, 6;A2} +1.
then we have, for all j,
§;(Z2:Type;.z) = 8;(Xz:Typey.A)

With this property, we can prove the quasi-normalization result for XCCZ which
says that every well-typed term can be reduced to a term which does not contain
any o-redex or f-redex Ry R; such that R, has a type which is a proper type. This
further implies that every well-typed proper type can be reduced to one of the
following forms:

K, wil...wij(mAl...Am)A’l... ", Ay Ag, YAy Az

m')

where K is a kind, z is a variable, j,m,m’ > 0 and é; € {1,2}. Then, the
complexity measure 3 for the £-types defined as in definition 5.1 has the property

that, if an E-type A is not an E-proposition and reduces to a Q-normal &-type
Ix:A,.As or Xz:A;. A, then

B(A1) < B(A)
and, for every N such that £ - N:A,,
B(IN/=]Az) < B(A)

With this, one can define the possible values and canonical value of £-terms by
extending definitions 5.5 and 5.6 by the following clause (with the definition of
saturated set appropriately extended):

o If £+ M:A and A reduces to a Q-normal term Yz:A;.A,, then
V(M) =4 { (v1,02) | v1 € V(m1(M)),v2 € V(m2(M)) }

VM =df (’Uvrl(M)a 'Uﬂ'z(M))

Then, the definition of the evaluation function Eval is extended by adding the
following clauses:

o Eval,(Sx:M;.M,) is defined to be the set of the terms P such that EF
P:4(M), 7y(P) € Eval,(M,) and wa(P) € Evaly(M;), where p’ extends p
such that p'(z) = (71(P), vm (P));

o Eval,(My, M) =4 (Eval,(My), Eval,(Mz));
o For j = 1,2, Eval,(m;(M)) =4 v, if Eval,(M) = (v1,v2)-
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The strong normalization theorem for XCC® can then be proved following the
same pattern as the proof of SN theorem for CC® we give in section 5.

Remark As the type-uniqueness upto kinds fails, the author does not know
whether type checking for XCC is decidable or not. The introduction rule (pair)
for X-types ‘loses’ some type information which seems to be necessary to get a
direct type-checking algorithm (ec.f., [Coq86b]). O
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