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1 Introduction

Research in type theory may be classified into three traditions:

o The proof-theoretic tradition. The emphasis here is on studying function calculi
representing formal proofs in systems of natural deduction. On the syntactic side,

- strong normalization results are of particular interest [Tai67, Gir72, Mar73, CH85],
particular since they entail the consistency of the type system as a constructive
logic. On the semantic side, the definition and construction of models has been
important [Tro73, Mar73, Don79, McC79, BMMS87, HP88]. Well-known examples
of type theories that fall into the proof-theoretic tradtion are the simply typed
A-calculus [Bar84, HS86], the second-order A-calculus (Girard’s System F) [Rey74,
Gir72], Martin-Lo6f’s early [Mar73] (and most recent) type theories, and the Calculus
of Constructions. [CH85, Coq86).

e The A-calculus tradition. Here the principal concern is with typeability of untyped
A-terms in a variety of type disciplines. On the syntactic side, the emphasis is
on isolating interesting type disciplines (such as first- and second-order functional
types [Hin69, CHS72, Mit84], intersection types [CD78], type containment [Mit84]),
on characterizing the typeable terms in a given discipline [Hin69, Mil78, DM82,
Dam85, CD78, CDCV80, CG83, Mit84, dR87, GAR88], and on type inference algo-
rithms [Hin69, Mil78, DM82, dR87, GAR88]. On the semantic side, the emphasis
is on characterizing the theories of certain classes of models based on untyped A-
interpretations [CDCV80, CG83, Hin83, BCDC83, Mit86].

e The computer science tradition. Here the emphasis is on viewing types as predicates
about a programming language defined by an operational semantics. Of particular
interest is the development of type disciplines that are sufficiently rich to serve
as specification languages for programs, and the development of formal systems
in which to conduct proofs of correctness. There is no clear proof theory/model
theory distinction in these systems since the assertions are interpreted as statements
about a fixed operational semantics, rather than as formal assertions subject to a
variety of interpretations. The most important examples of research in this direction
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are Martin-Lo6f’s type theory [Mar82], the Goteborg type theory [NPS86], and the
NuPRL type theory [Con86].

Of course, such a categorization is in many ways inaccurate, emphasizing as it does only
certain aspects of the research in each area. However, it doesn’t seem to be an overly
procrustean classification, and does serve to place the subject of this report in context. -

The purpose of this note is to illustrate the construction of a small type theory in the
computer science tradition. The idea is to give a set-theoretic account of Martin-Lof’s.
semantics for a predicative type theory that includes dependent types and universes. Of
course, the use of a set-theoretic construction robs the approach of any foundational
significance, and would not be of any use to an intuitionist. However, if we ignore
philosophical issues, and concentrate on type theory as a programming logic, then a set-
theoretic explanation is less inappropriate, and provides a pedagogically useful basis for
introducing some of the central ideas of Martin-Lof’s type theory.

The account given here grew out of the author’s attempt to understand why Stuart
Allen’s definition of the semantics of type theory in the NuPRL book [Con86] defined
anything at all. For on close inspection, the definition does not immediately fall into any
standard format for inductive definitions, and hence it is unclear at first sight whether
the type and member equality relations are well-defined. Meanwhile, both Allen and
Mendler at Cornell developed a rigorous account of the inductive character of the defini-
tion [All87a, All87b, Men87]. Allen’s approach is based on an intuitionistically acceptable
theory of inductively-defined relations, while Mendler’s is a thoroughly set-theoretic ac-
count (and is essentially equivalent to ours). Two closely-related constructions are Aczel’s
construction of a Frege structure from a model of the untyped A-calculus [Acz80, Acz83]
and Beeson’s realizability interpretation of type theory [Bee82, Bee85]. Aczel’s construc-
tion, which partly inspired the present approach, is based on a set-theoretic argument,
but he conjectures that it could be made intuitionistically acceptable (Allens’ work may
be viewed as bearing this out.) Beeson’s is based on the (constructively unacceptable)
device of inductively defining both a relation and its formal complement, then proving
that they are complementary relations.

Responding to a similar impulse to cast the semantics of type theory in an indep-
endently-acceptable setting, Smith provides an interpretation of type theory in a logical
theory of constructions [Smi84]. Unlike our account, Smith does not present a type
system as an inductive definition, and may therefore be considered to be more faithful to
the “open-ended” character of type theory. However, it appears that Smith’s approach
cannot be extended to handle W types, or Mendler’s recursive and co-recursive types.

I am grateful to Peter Aczel, Stuart Allen, Furio Honsell, John Mitchell, Nax Mendler,
and David Walker for discussions about this account of type theory.

2 Preliminaries

The semantics for type theory that we shall developed is based on an inductive con-
struction of a system of relations between terms interpreted by an operational semantics.
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Since the terminology and notation for the relations that we shall consider are not well-
established, we set down our definitions here.

A symmetric and transitive binary relation E on a set X is called a partial equivalence
relation (p.e.r.). The field of E is defined by |E| = {z € X | E(z,z)}. It is easy to
see that a p.e.r. is an equivalence relation on its field. The equivalence class under F of
an element z € X, is defined by E[z] := {y € X | zEy}. Note that if z ¢ |E|, then
E[z] = 0. The quotient of X by E, X/E is defined to be the set of non-empty eqmvalence
classes of elements of X under E.

Let (X,E) be a partially-ordered set. A subset D C X is directed iff every pair of
elements in D has an upper bound in D; in particular, every chain (linearly-ordered
subset) is directed. The poset X is a complete pointed partial order, or cppo, iff it has a
least element |, and every non-empty directed subset D C X has a supremum, || D, in X.
A function f: X — Y between posets is monotone (or order preserving) iff f(z) C f(y)
whenever £ C y. A monotone function is continuous if it preserves countable directed
suprema.

Every monotone map on a poset X has a least fixed point. To see this, construct the
sequence (z,) of elements of X indexed by ordinals as follows: zp =1, 2441 = f(z4),
and ) = |ly<) %o It is easy to show by transfinite induction that at each stage a, the
initial segment of the sequence determined by « is directed, and so the required suprema
exist. Since X is a set, and each z, is an element of X, there must be a stage ) at
which 24, = z,, for otherwise there would be a bijection between ON and X, which is
impossible. Now z, is a fixed point of f, since zy.; = f(z)). Furthermore, if y is any
fixed point of f, then x, C y for each «, and so =, C y, completing the proof. Note that
for continuous maps it is not necessary to appeal to a cardinality argument to establish
the fixed-point property since the sequence closes off at w.

The set X — Y is the set of partial functions from X to Y. When working with
partial functions, we adopt an (informal) logic of partial terms, writing e | to mean that
the expression e is defined (has a value), and e ~ ¢’ for Kleene equality. Quantification
is only over values — there are no “undefined objects.”

Let S be a set (of sorts). An S-sorted set X is a family of sets X = ( X, )ses indexed
by sorts. An S-sorted relation R between S-sorted sets X and Y is an S-indexed family
of relations R = ( R, )ses such that for each s € S, R, C X, x Y,. An S-sorted partial
function f between S-sorted sets X and Y is an S-sorted relation between X and Y that
is a partial function at each sort. Relations between and operations on S-sorted sets are
defined “sort-wise,” so that, for example, X CY iff X, C Y, foreach s € S. fzis a
variable ranging over an S-sorted set X, then, by convention, z, ranges over X,, and the
subscripts are dropped whenever they are clear from context.

3 Language

In this section we define the syntax of a small programming language that we shall use as
the basis for illustrating the construction of type systems. Since several of the program



forms are binding operators, it is convenient to present the language as a set of expression
constructors using the system of arities introduced by Martin-Lof.

An arity o is an n-tuple of arities, for n > 0. The terms of the arity calculus are
similar to those of the simply-typed A-calculus with only one base type. A closed term of
arity (o,...,a,) is to be thought of as a term with n “holes,” with the ith hole awaiting
a term of arity o;. A closed term of ground arity, (), or 0, is called a “saturated” or
“completed” term since it has no holes. The inspiration for this view of expressions
comes from Frege’s conception of functions as arising from completed entities by striking
out a component, leaving an incomplete entity that may be “applied” by filling in the
hole with an entity of the appropriate kind (arity).

nLet X be a denumerable arity-sorted set of variables such that X,NX; = § whenever
« is distinct from B. Let z, y, and z range over X. Let C be a denumerable arity-sorted
set of constants, disjoint from the variables. Let ¢ and d range over C. A signature o
is a finite subset of C. The set of terms generated by a signature o, 7 (o), is the least
arity-sorted set 7 such that X C 7,0 C 7T, a(a1,...,ax) € T if a € Ty,,...«,) and, for
1<i1<k, 0, €7y, and xy,...,24.04 € T(o, .0 if, for 1 < < k, z; € X, and a € Tp.
The metavariables A, B, C,a,b, ¢, f, g range over 7 (o).

The notions of free and bound variables, and capture-avoiding substitution are defined
in the usual way, provided that we take z4,...,z; to be bound in a in z4,...,zs.a. Write
FV(a) for the set of free variables in a and [a/z]b for substitution of @ for free occurrences
of  in b. If T is a set of terms, then the set of closed terms is the subset 70 C 7T
consisting of those terms a such that FV(a) = 0. A closed term of ground arity is said
to be saturated; let § = Ty be the set of saturated terms.

Terms are identified up to the a, 8, and n conversion, defined as the smallest congru-
ence relation = containing all instances of

® Ti,. . Tk G = Y1y Yk [Y1ye o YR/ T, - - -, TH)G,
e (z4,...,z5.0)(as,...,a;) =[ay,...,ar/z1,...,%5)a, and
® zy,...,25.0(21,...,2k) = a.

In the sequel we work with a fixed language 7 generated by the signature appearing
in Table 1. The table is divided into three columns, labeled by headings that suggest
the role of the term formation operators in the operational semantics (canonical/non-
canonical) and in the type system (type/object forms). A canonical form is a saturated
term whose outermost constructor is labelled canonical in Table 1.

4 Operational Semantics

A programming language is defined by a syntax of expressions, a distinguished set of
program expressions (usually closed terms, possibly with other restrictions), and an op-
erational semantics defining a partial function Eval mapping program expressions to
values. In the present situation the language is 7, defined in the previous section, the
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[ Canonical Type Forms | Canonical Object Forms | Non-Canonical Forms |

| Form Arity | Form  Arity | Form  Ariy |
U; (1 € w) 0
nat 0 0 0 rec (0,0,(0,0))
§ (0)
T (0,0,0) | ax 0
X (0,0) pair (0,0) split (0,(0,0))
+ (0,0) in] Eg; case  (0,(0),(0))
- (0,0) A ((09) ap (0,0)
I (0,(0))
b (0,(0))

Table 1: Signature of a Small Language

program expressions are the saturated terms, and the set of values V (ranged over by v
and w) is the set of saturated terms in canonical form. The evaluation function is defined
by an inductive definition of its graph, the relation ¢ = v, which is the smallest relation
closed under the rules of Figure 1. It is easy to see that ¢ = v is single-valued, and hence
we may define Eval(a) to be the unique value v (if one exists) such that ¢ = v.! We
abuse notation by writing @ | for Eval(a) |, and a ~ b for Eval(a) ~ Eval(b).

The evaluator defined by the rules of Figure 1 is Martin-L6f’s weak head reduction
evaluator, for which the property of being a value is determined only by its outermost
form. For other evaluation strategies it may be more convenient to define the set of
values as the image of the saturated terms under evaluation, rather than by a prior
definition on the basis of the shape of the term. It seems plausible that the type system
construction described below goes through for an arbitrary evaluator, but the author has
not investigated this possibility in detail.

5 P.e.r.’s on Saturated Terms

In Martin-Lof’s type theory a type is determined by defining those values that are to
serve as elements and defining when two such values are to be equal. The presence of
dependent types, and the ability to define type-valued functions on a type, makes it
impossible to separate types from objects. The types themselves are therefore drawn
from the collection of values, and it is part of the definition of a type system to define
when two types are to be considered equal. Thus both the definition of the collection of
types and the elements of each type have both a “collecting” and a “quotienting” aspects

1Strictly speaking, Eval is a partial function of the = class of a, and hence we should stipulate that
a => v respects = in both positions.



U;=1U;
nat = nat 0=0

s(M) = s(M')

M=0 N=P M = s(M") F(M' rec(M',N,F)) = P

rec(M,N,F) = P rec(M,N,F) = P
I(M,N,P)=1(M,N,P) ax => ax

MxN=MxN (M, N) = (M, N)

M= (M,M"Y F(M',M")= N
split(M,F) = N

M+N=M+N inl(M) = inl(M)

int(M) = inr(M)

M = inl(M') F(M)= N M = int(M") G(M')= N
case(M,F,G) = N case(M,F,G) = N
M—-N=M-N A(F) = M(F)

M= MF) F(N)=P
ap(M,N)= P
(M, F) = II(M, F) X(M,F) = X(M,F)

Figure 1: Operational Semantics



which is conveniently captured by using partial equivalence relations.

The p.e.r.’s that we shall consider are over the set S of saturated terms. It might
seem at first sight that we could first consider p.e.r.’s over the subset ¥V C S of values,
then extend to all saturated terms “at the end.” But since the evaluator that we are
considering is not compositional (and it is hard to see how one could be made to be so
in the presence of binding operators), we are forced to “interleave” evaluation within the
definition of the p.e.r.’s representing type and member equality. One way to view the
construction to follow is as a way of providing a compositional way of reasoning about the
non-compositional evaluator; interlacing evaluation with the definition of the relations is
crucial to achieving this end.

Viewed as a programming logic, type theory is a logic of total correctness in that a
saturated term may serve as a type or a member of a type only if it has a value under the
operational semantics. In particular, we shall see that a term inhabits a function type
A — B only if it carries elements of A to elements of B, and hence is a total function.
It is possible to consider partial functions (and, more generally, partial objects) in this
setting [CS87, CS88]. The formal realization of this aspect of type theory is the notion
of a “value-respecting” p.e.r.

Let PER denote the set of partial equivalence relations on the set of saturated terms
S. Hereafter, we use “p.e.r.” to refer only to elements of PER. A p.er. E respects
evaluation iff

1. E relates only defined terms: if a € |E|, then a |.
2. E respects Kleene equality: if a ~ o’ and b ~ ¥/, then E(a,b) iff E(a’,V').

Let VPER be the set of all value-respecting p.e.r.’s (v.p.er.’s). If & : § — VPER, then
we extend ® to closed terms of arity (0) by taking ®(f)(a) = ®(fa).

A v.p.er. E is determined by its behavior on values: E(a,b) iff there exists v,w € V
such that @ = v, b = w, and E(v,w). Therefore one way to define a v.p.e.r. is to first
define a p.e.r. E on V, then extend to a v.p.e.r. E* by pre-evaluation: E*(a,b) iff there
exists v and w such that a = v, b = w, and E(v,w). Note that E* is the unique v.p.e.r.
agreeing with E on values. (This is essentially Martin-Lof’s method of defining types
by defining their canonical members, then extending membership to all saturated terms
that evaluate to canonical members.)

‘ PER forms a cppo under the ordering E C E’ iff for all a € |E|, Ela] = E'[a]. It is

easy to see that this defines a partial ordering, with the empty relation as least element.
Let D be a directed set of p.e.r.’s. The supremum | |D of D is given by the p.e.r. D such
that a € |D| iff a € |E| for some E € D, in which case Dla] is defined to be E[a]. This
is well-defined since D is directed: if @ € |E’| for some other E’ € D, then Efa] = E'[d]
since they have an upper bound in D. It is easy to see that VPER is a sub-cppo of PER
under the above ordering: we need only observe that the supremum of a directed set of
v.p.e.r.’s is itself a v.p.e.r.

The following operations on v.p.e.r.’s, inspired by Plotkin’s “logical relations” [P1o80],



are used in the construction of type systems.

N = (@) |mew)
ExF = {({a,b),(a",¥)) | E(a,a’) A F(b, ") }*

E+F = {(il(a),inl(a") | E(a,a)}U{ (int(b),inx()) | F(b,b)}"
E—F = {(\)MNf) | Va,a"B(a,a) > F(f(a), f(a)) }*
1(e,,8) = {(ax,ax) | E(a,b)}"

I(E,8) = {(A(F)AF)) | Ya,a"B(a,a’) D 8(a)(f(a), f(a) }*
S(E®) = {((ab)(a’¥)) | E(a,a) A d(a)(b,b)}"

Note the use of the “evaluation closure” operation on the result of each operation. The
effect of the closure may be illustrated by observing that, for example, I(a, b, E)(c,d) iff
¢ = ax, d = ax, and E(a,b). In the definitions of X(E,®) and II(E, ®), the choice of
argument to ¢ is immaterial, provided that @ respects E. We shall only be interested in
these operations when this is the case.

6 Type Systems

A type system may be thought of as a family of partial equivalence relations, one for
type membership and equality, and one for the membership and equality of each type.
More precisely, type system is a pair 7 = (E,®), where E is a v.p.er. and & : S/E —
VPER is a function assigning a v.p.e.r. to each a € |E| in such a way that if E(a,b),
then ®(a) = ®(b). The relation E is the type equality relation for 7, and, for each
a € |E|, the relation ®(a) is the member equality for type a in type system 7. Let
TS = XgcvpeR(S/E — VPER) be the set of type systems.
TS forms a cppo under the ordering

(E,®)C (E',®") & EC E'AVa € |E|. ®(a) = ®'(a).

Informally, 7 is less than 7/, iff 7/ has at least as many types as 7, and they agree on the
equality relation assigned to the types that they have in common. It is easy to see that TS
is partially ordered by this relation, with (0, 0) as least element. Let D((E;, ®,) }icr be a
directed set of type systems and let 7; = (E;, ®;) and 7; = (E;, ®;) be two elements of D.
Therefore, the supremum of D is given by | JD = (£, ®), where E = | ;7 E;, and ®(a)
is defined iff ®;(a) is defined for some i € I, in which case ®(a) = ®;(a). (That this is
well-defined follows from the fact that D is directed: if a € |E;|N|E}|, then ®;(a) = ¥;(a),
since 7; and 7; have an upper bound in D.)

7 A Fragment of Martin-Lof’s System

In this section we construct a type system for a fragment of Martin-Lof’s type theory
without universes. The type system includes dependent product and sum types, and
the equality type, and hence illustrates some of the characteristic features of type theory.
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Treatment of universes is deferred to the next section. This type system shall be obtained
as the least fixed point of a monotone operator on TS, a cppo. The construction may be
motivated by considering the iterative construction of fixed points described in Section 2.
Beginning with the empty type system, we have, at each stage «, a “partial” type system
To = (Eqy Do) A type is said to “exist” at stage a iff it is a member of the field of E,.
Since T, is a type system, if a € |E,|, then ®,(a) is defined. At successor stages, the
set of types is extended to include some set of “new” types constructed from the types
existing at the previous stage. For example, if A and B are types existing at stage «,
then the type A X B exists at stage oo + 1. At limit stages we simply collect together
everything that has been constructed at earlier stages. The crucial point is that whenever
a type is introduced, its membership equality relation is defined and remains fixed for all
future stages. Were this not the case, the construction process would not be monotone,
and we would not be guaranteed to reach a fixed point.

To make these ideas precise, we define an operator T : TS — TS by T(E,®) =
(F*,T), where

F { (nat, nat) }
{(al X a2, all X a,Z) l E(alaall) A E(a2>a,2)}
“{ (a1 + az,01 +a3) | E(ar,a7) A E(az,a3) }
{(a1 = as,a1 — a3) | E(a1,a7) A E(az,a3) }
{ (I{a1, a3, a3), I(a}, a3, a3)) | E(as,a3) A ®(as)(as,a}) A B(as)(as,a3) }
{ (1L(&, £), 1LY, 1)) | E(b,b) AVa,a'.@(b)(a,a’) D E(f(a), f'(a))}
{ (25, 1), 2, ) | E(b,¥) AVa,d'.®(b)(a,a’) D E(f(a), f'(a") }

ccccccl

and

(N if @ = nat

®(a1) X ®(az) if a=ay X az A ay,a; € |E|

(I>(a1)+<I>(a2) if a=a1+azAaj,ag € |El

U(a) =< P(a1) = D(az) if a=a; — a2 Aay,a; € |E|

I(a1,az,®(as)) if a =1(a1,az,a3) Aas € |E|

H(®(b),2(f)) i a=I(b fYAbE |E|AVa € |B(b)|.f(a) € |E]
| B(2(5),8()) it = 5(5,1) A b€ || AVa € [8(b)]-F(a) € |7]

Theorem 7.1
1. T is monotone.
2. T is not continuous.

Proof Let 1 = (E1,®1) and let 7, = (E2, ®3) be type systems such that 7y T 75, Let
1 = (Ef, ®1) = T(71) and 74 = (E}, ®%) = T(72). We are to show that Ty C 75, i.e., that
E} C E} and for every a € |Ej|, ®i(a) = ®4(a). Let a € |E;|. Then a must evaluate
to some value v such that v € |E}|. Consider the case v = b x c. Then since v € |Ej],
we must have b € |E1| and ¢ € |Ey|. But then b € |Es| and ¢ € |E3| since E; T E,
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and so v € |Ej}| as well, and therefore a € |E}|. By similar reasoning, Ei[a] = Ej[a]
for all a € |Ey|, and so E] C Ej. To see that ®)(a) = ®4(a), we consider the unique
v such that a = v, and proceed by case analysis on the form of v. For v = b X ¢,
1(@) = ®1(b) x ®4(c), but this is just D5(b) x Bo(c) = D4(b X c) = ®)(a).
To see that continuity fails, consider the term a = II(N, z.rec(n; N;u,v.N x v)). At
each finite stage i, only the type N X --- x N (i times) exists, and hence a exists only at
stage w, and therefore more types exist at subsequent stages. i

Let 7o be the least fixed point of T. As we shall see below, this type system is a model
for the inference rules of Martin-Lo6f’s type theory, restricted to the type constructors that
we consider. We shall also use 7, as the basis for the construction of a type system with
universes in the next section.

8 Adding Universes

One characteristic feature of Martin-Lof’s type system is the cumulative hierarchy of
universes. A universe of types is a type whose members are types, whose equality re-
lation is the restriction of type equality to its members, and which is closed under the
type formation operators considered in the previous section. Since it is inconsistent to
introduce a universe of all types (which would include the universe itself), Martin-Lof
instead introduces a countable hierarchy of universe U; (z € w) such that U; is included
(in a suitable sense) in U;yy and, for each j < ¢, U; contains U; as a base type. In this
section we construct a model for type theory with universes.

The idea is to construct the type system 7, as the limit of a countable sequence
(7i )iew of type systems, where 7; is a type system with the first ¢ universes as base types.
The first type system, 7o = (Eo, ®o), was already constructed in the last section. The
type system 7y is defined by taking U, as a base type equal only to itself and with E,
as member equality relation. The type system 7, is a proper extension of 7y in the sense
that 7o C 7y. Iterating this process we obtain a chain 70 C 7y --- of type systems, and
take 7, to be its supremum. It is important to realize that we do not extend the language
of type theory at each stage. On the contrary, the universe symbols, and terms involving
them, are available from the start, and types in 75 may have members involving universe
symbols.

These ideas may be made precise as follows. Call a type system v = (E,,®,) a
universe system iff whenever a € |E,|, then a = U; for some i. We define the operator
T, : TS — TS similarly to the operator T of the last section, except that we take F'(a,b)
whenever E,(a,b), and ®(a) = ®,(a) whenever the latter is defined. It is important that
v be a universe system here, for otherwise this may not be well-defined.

Theorem 8.1 Ifv is a universe system, then T!, is a monotone operator on type systems.
Proof T/, is well-defined since the definition of T makes no reference to universes and
v is a universe system. The verification that it is monotone is similar to that for Ty in
the last section. |
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Define the sequences ( v; }iew and (7; )ie, simultaneously as follows. At stage 0, take
v to be the empty type system (which is trivially a universe system), and let 74 be the
least fixed point of T, . The required fixed point exists by the previous theorem, and is
the same as the type system 7o defined in the last section since T, = T. At stage i +1,
take v;1; to be the universe system (E,,,,, ®,,,,) defined by

L By, ={(U;;U;) | 0<j<i+1}y

2. Foreach 0 < j <241, @,,,,(U;) = E;_;.
Take 7iy1 = (Eit1, @is1) to be the least fixed point of T}, b
Theorem 8.2 For each i € w,

1. v; is a universe system;

2. T; exists;

3 e Tin.

Proof These follow easily from the definitions. 0

It follows that (7;)iew is a chain, and hence we may define 7, = ;e T:-

9 Judgements and Their Correctness

There are four forms of assertion, or judgement, in type theory: A type, A = B, a € A,
and a = b € A. The first two express typehood and type equality, and the second two
express membership and member equality for a type A. Let J range over the judgement
forms.

A basic judgement is a judgement involving only saturated terms (closed terms of
ground arity). We define what it means for a basic judgement J to be correct in a type
system 7 = (E, ®), 7 |= J, by cases on the form of J as follows:

o 7 |= Atype iff E(A4, A);

o 7= A= Biff E(A,B);

o 7 |=a € A (where 7 = A type) iff ®(A4)(a,a);

o T =a=>b¢€ A (where 7 = A type) iff &(A)(a,d).

In the case of the membership judgements, the relation 7 |= J is defined only under the
indicated presuppositions of typehood. Here we adopt Martin-Lo6f’s presuppositions, but
note that there are alternatives (see [All87b] for a thorough discussion.)

A hypothetical judgement is used to express a judgement about open terms. Hypo-
thetical judgements have the form (z; € Ai,...,z, € A,)J where the free variables
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occurring in J are among the z;’s. Roughly speaking, such a judgement expresses a kind
of universal validity of J over all terms of type A, ..., A,. However, the precise meaning
is complicated by the fact that hypothetical judgements also express functionality, which
means that not only must J be universally valid, but it must “respect equality” at each
of the domain types. The precise meaning of “respects equality” can be given only for
each individual judgement form, and hence definition of correctness for a hypothetical
judgement in a type system must be given first by cases on the form of J, and then
by induction on n. Furthermore, the definition is made only under presuppositions that
express the sequential functionality of each of the A;’s in z1,...,z,.

The precise definition of correctness of a hypothetical judgement in a type system may
be recovered from the following explanation for the case n = 1, and from Martin-Lof’s
account [Mar82]. Let 7 = (E, ®) be a type system, and let A be such that 7 |= A type.
Define 7 |= (z € A) J as follows:

o 7 = (z € A) B(z) type iff for every a and b such that ®(A)(a,b), 7 = B(a) = B(b).?

o 7 |=(z € A) B(z)) = C(z) (where 7 |= B type and 7 |= C type) iff for every a and
b such that ®(A)(a,b), 7 | B(a) = C(b).

o 7= (z € A) c(z) € C(z) (where 7 = (z € A) C(z) type) iff for every a and b such
that ®(A)(a,d), 7 = c(a) = ¢(b) € C(a).

o 7= (z € A) c(x) =d(z) € C(z) (where 7 |= (z € A) ¢(z) € C(z) and 7 | (:c €
A) d(z) € C(z)) iff for every a and b such that ®(A4)(a,b), 7 | c(a) = ¢(b) € C(a).

10 Proof Theory

We may now verify the soundness of some of the rules of Martin-Lof’s type theory with
universes in the type system 7,,. We prove, in each case, that if

Y P
J

is an inference rule, and for each 1 <¢ < n, J; is correct in 7, then J is correct in 7, as
well. When presented as a system of natural deduction, such an inference rule presents
only those hypotheses that are active in the inference, suppressing those that remain
inert. To avoid tedious details, we ignore these inactive hypotheses in the following
verifications, considering only closed rule instances. The verification for the general case
follows the same pattern, but is somewhat more complicated to present. In reconstructing
the suppressed premises of the inference rules, we have preferred to err on the side of
conservativity since we are not concerned here with minimality or convenience.

?Note that B(z), B(a), and B(b) are instances of application in the arity system!

12



Consider the rule of substitutivity of equality:
Atype a=be A (z € A) B(z) type
B(a) = B(b)
Suppose that each of the premises is correct in 7, so that we have
1. E.(A,A);

2. ,(A)(a,b);
3. If ®,(A)(a,b), then E,(B(a), B(b)).

from which it immediately follows that the conclusion is correct in 7,,.
Consider the rule of cumulativity for universes:

a=beU;
a=be U,

If the premise is correct in 7,,, then ®,,(U;)(a, b). But then ®,,(U;41) since ®,(U;) = E; C
Eiy1 = 9,(Uipa).

Consider the rule of product introduction:

A type (z € A) B(z) type (z € A) a(z) € B(z)
AMa) € II(A, B)

If the premises are correct in 7, then we have

1. E (A, A);
2. If ®,(A)(d,c), then E,(B(b), B(c));

3. If ®,(A)(b, ¢), then B,(B(b))(a(b), a(c)).

It follows that II(A,B) € |E,|. To show that A(a) € |®,(II(A4, B))| it suffices to show
that whenever ®,(A)(b,c), ®.(B(b))(a(b),a(c)). But this is precisely the third property
above.

Consider the rule of product elimination:

II(A,B) type bell(A,B) a€ A
ap(b,a) € B(a)
For the premises to be correct in 7, means
1. E (II(A, B),II(A, B));
2. ®,(II(A, B))(b, b);
3. ¢,(A)(a).

It follows from the definition of 7, and that fact that ®,(II(A, B)) is value-respecting,
that there is an f such that b = A(f), with A(f) € |®,(II(A, B))|. Therefore f(a) €
|®,(B(a))|- But ap(b,a) ~ f(a), and so ap(b, a) € |®,(B(a))|, as desired.

The verification of the other rules follows a very similar pattern.
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