LFCS

"';'SIOOJ_ g!eJqéﬁw |[eluswiepun awos

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Some Fundamental Algebraic Tools

for the Semantics of Computation

Part lll:

Indexed Categories

by
A. Tarlecki, R.M. Burstall and J.A Goguen

ECS-LFCS-88-60

LFCS Report Series (also published as CSR-272-88
LFCS July 1988
Department of Computer Science '
University of Edinburgh

The King's Buildings Copyright © 1988, LFCS

Edinburgh EH9 3JZ

Some Fundamental Algebraic Tools

for the Semantics of Computation
Part III:
Indexed Categories

A. Tarlecki R.M. Burstall J.A. Goguen

Institute of Computer Science Department of Computer Science Computer Science Laboratory
Polish Academy of Sciences University of Edinburgh SRI International
Warsaw, Poland Edinburgh, U.K. Menlo Park, CA, U.S.A.

July 25, 1988

Abstract

We present the concept of indexed category, a technical tool to model families of categories
defined in a uniform way. We show how any indexed category gives rise to a single flat
category, a disjoint union of the components with some additional morphisms between
them. Similarly, any indezed functor (a family of functors between component categories)
induces a flat functor between the corresponding flat categories. We prove that under some
technical conditions flat categories are complete (resp. cocomplete) if all their components
are so; flat functors have left adjoints if all their components do. A few examples illustrate
the usefulness of these concepts and results.

1 Introduction

Even a brief overview of recent and not-so-recent developments in theoretical computer science has to
indicate a fundamental role of many notions, techniques and results of category theory (and universal
algebra). They have been used to clarify, formalise, appropriately generalise and sometimes even
develop a number of practically important concepts and methods of computer programming.

Some leading examples may be found in the area of algebraic specification, from the very beginning
based on the notion of initiality to explicate the very concept of abstract data type (cf. [Goguen,
Thatcher & Wagner 76]) and then full of terminal objects (e.g. [Wand 79]), left adjoints (e.g. [Thatcher,
Wagner & Wright 82|, [Ehrich 82]), colimits (e.g. [Burstall & Goguen 77]), comma categories (e.g.
[Goguen & Burstall 84]) etc. _

Another example of a heavy use of category theory is a somewhat separate work, grown on the
grounds of algebraic specification around a certain formalisation of the concept of logical system,
the notion of institution introduced in [Goguen & Burstall 85] and further developed in [Goguen &
Burstall 86]. The topics studied here (so far) include specification languages (CLEAR [Burstall &
Goguen 80], ASL [Sannella & Tarlecki 84], Extended ML [Sannella & Tarlecki 86]), implementations
([Beierle & Voss 85], [Sannella & Tarlecki 87]), observational equivalence ([Sannella & Tarlecki 85)),
free constructions ([Tarlecki 85, 87]), elements of model theory ([Tarlecki 86]). We are deeply convinced
that most of these very important (in our view) topics cannot be adequately treated without categorial
tools.

The main goal of this paper is to add to the equipment of “the working computer scientist””
one more categorial tool, the notion of indexed category. The standard mathematical reference for
the basic definitions and some deep mathematics around this notion is [Johnstone & Paré 78]. The
underlying idea is very simple: quite often we define and deal with families of categories indexed by
a collection of indices, rather than just single categories. Moreover, the components of such a family
are defined in a uniform way; that is, any change (a morphism — indices form a category) from one
index to another induces (contravariantly) a smooth translation (a functor) between the corresponding
component categories. An indexed category is such a uniformly defined family of categories.

A prime example of indexed category the reader may be familiar with is the indexed category
of many-sorted algebras (our Example 3 below). For each many-sorted algebraic signature X, we
have a category ALG(X) of X-algebras defined in a well-known way. Thus, we indeed deal here
with a collection of categories, indexed by many-sorted algebraic signatures. Moreover, many-sorted
algebraic signatures form a category (with algebraic signature morphisms defined in a rather obvious
way) and indeed, for each algebraic signature morphism o: X — X', we have a “o-reduct” functor
ALG(0): ALG(Y') - ALG(X). (See, for example, [Burstall & Goguen 82] for an expository presen-
tation of these concepts.)

Any indexed category in a natural way gives rise to a single “flat” category, formed, roughly, as
a disjoint union of the component categories with some morphisms between them defined using the
translations induced by index morphisms. It turns out that many categories studied in computer
science are of this form, that is, may be built by “flattening” an indexed category. We introduce these
basic definitions and illustrate them by a few rather simple examples in Section 2.

Let us point out here that such a category, constructed by “flattening” an indexed category, may

be equipped in an obvious way with a projection functor that maps any object of this category to
the index of the component category the objects “comes from”. Thus, it forms what is known as a
“fibred category” (concept introduced in [Grothendieck 63]) and the indexed category we have started
with may be viewed as a presentation of this fibred category. It may be argued that fibred categories
incorporate the same intuitive idea as indexed categories, but are conceptually simpler and easier to
work with (cf. e.g. [Benabou 85]). Even if this was the case, we believe that the particular form of
presentation of fibred categories via indexed categories has much intuitive appeal and is very close
to the way we both construct and think about many categories that arise in applications of category
theory. In particular, we believe that this is the case with applications of category theory in theoretical
computer science, as we hope to illustrate in this paper. »

One of the elementary concepts of category theory, the limit (and dually, colimit) construction,
has been used in computer science to “put together” structures of all possible kinds (general systems
in [Goguen 71], [Goguen & Ginali 78], theories in [Burstall & Goguen 77, 80], labelled graphs in
[Ehrig et al 81] etc.). To use these constructions freely we have to show that in a given category the
limit (resp. colimit) of any diagram exists, that is, the category is complete (resp. cocomplete). In
Section 3 we prove that under some technical conditions, if all the component categories are complete
(resp. cocomplete) then the flat category formed out of them is so as well. This gives a useful tool to
structure and, in a sense, to localise proofs of (co)completeness of some categories.

Another basic notion is generalised to indexed categories in Section 4. Given two indexed categories
(over the same indices) an indexed functor between them is just a family of functors between the
corresponding coniponent categories consistent with the translations induced by index morphisms.
As with indexed categories, indexed functors can be “flattened” to obtain functors between flattened
categories.

In the theory of algebraic specifications one of the basic technical tools is the notion of free functor
(left adjoint to a usually obvious “forgetful” functor — cf. the concept of parameterised specification
in [Thatcher, Wagner & Wright 82], to take just one example). Adjoint situations between flattened
categories may be built “locally” on the components of the indexed categories: families of adjunctions
can be flattened, as can indexed categories and functors. More exactly, we prove that if all the
components of an indexed functor have left adjoints then so does the flattened functor. This offers a
way to structure proofs that some functors have left adjoints and, in fact, gives another possible proof
of the cocompleteness result for flattened categories mentioned above (details in Section 4).

Finally, let us stress once more that we advocate just the use of indexed categories as a simple
and convenient technical tool. We are not interested here in any deep foundational problems; in
particular, we are not taking any side in the controversy on whether indexed or fibred categories are
more appropriate as a foundation of category theory (cf. [Benabou 85]). We remain (comfortably) on
the grounds of what [Benabou 85] calls “naive category theory”.

In fact, this allows us to considerably simplify the concept of indexed category and “naively”
(but technically sound) work “up to equality” rather than “up to canonical isomorphisms” or “coher-
ences” (cf. [Johnstone & Paré 78]). “Canonical isomorphisms” seem necessary if one is interested in
foundational issues, but also lead to some technical difficulties (as pointed out in [Benabou 85]).

The technical results presented here seem new; at least we have not seen them published in this
form. Even if they were known in the folklore of the area (with which, admittingly, we are not too

familiar) we believe that they deserve an expository presentation which would be available to the
“users” of category theory.

Throughout the paper we assume some familiarity with basic category theory and universal algebra,
although not necessarily with any deep results. We refer to, for example, [MacLane 71], [Herrlich &
Strecker 73], [Arbib & Manes 75] and [Burstall & Goguen 82] for some notation, terminology and
definitions we omit here.

Acknowledgements 7
Many thanks to David Rydeheard who first pointed out to us that the concept of indexed category
may be useful for much of our work stimulated by the needs of the theory of specifications, and to
Eleanor Kerse for excellent typing.] ,
This work has been partially supported by grants from the Polish Academy of Sciences and from
the U.K. Science and Engineering Council (AT).

2 Indexed Categories

It is perhaps quite surprising to realise how often we talk not just about a single category, but rather
about a family of categories, “parameterised” by a certain collection of indices. Here is a very simple,
but nevertheless quite typical example.

Example 1 Many-sorted sets
For any set S, we have a category SSET(S) of S-sorted sets, with S-sorted (i.e. indexed by S)
families of sets as objects and S-sorted families of functions as morphisms. Formally, we define

SSET(S) = [S — Set],

where for any two categories A and B, [A — B] denotes the category of functors from A to B with
natural transformations as morphisms and the obvious — vertical — composition (cf. [MacLane 71,
I1.4, p.40], where this category is written as BA); Set is the category of all sets; and we identify any
set (S here) with the corresponding discrete category.

For notational convenience, we write X:S — Set in the form (X,),cs, where X, = X(s),s € S.
Similarly, g: X — Y in SSET(S) may be written as g = (g5: X, — Y.) ses.

O (Ex. 1)

Of course, it wouldn’t be of much interest to consider just any families of arbitrarily collected
categories. It is only natural to assume that all the categories in a family are defined uniformly in
the same way. Semantically, this means that any change of an index induces a smooth translation
between the corresponding component categories. In the examples we look at, the translation goes in
the opposite direction than the change of index. ‘

Example 1 Many-sorted sets (continued)
The collection of indices, which are sets here, comes naturally equipped with index morphisms,
functions between sets. Any function f:S51 — 52 induces a functor

SSET(f): SSET(S52) — SSET(S1).

4

More exactly, this functor is defined as follows:

on objects: for any object X € [SSET(S2)|, SSET(f)(X) = f; X:S1 — Set (recall that X:52 —
Set), i.e. for s1 € S1, (SSET(f)(X))s1 = Xy(s1);

on morphisms: for any morphism ¢g: X — Y in SSET(S2), where X,Y € |SSET(S2)| and g =
{9521 Xs2 = Yiz)s2es2, SSET()(9) = (95(1): X5(s1) = Yi(s1))s1esu: F; X — f; Y-

Moreover, the indices and their morphisms form a category, Set, the category of all sets and total
functions between them. A crucial property is that the functors induced by index morphisms-do not
depend on any decomposition of index morphisms. More formally, SSET is a (contravariant) functor
from Set to Cat, the category of “all” categories?!, :

SSET: Set’” — Cat

O (Ex. 1)

Notational remark
Throughout the paper, just as above, composition in any category is denoted by ; (semicolon) and
written in the diagrammatical order. Identities are denoted by id (with some subscripts, if necessary).

Definition 1

An indezed category C over an index category Ind is a functor from Ind®? to Cat, the category of
all categories. Thus, for each index ¢ € |Ind| there is a category C(i) and for each index morphism
o:¢ — j in Ind there is a functor C(c): C(j) — C().

O (Def. 1)

We often write C; and C,, for C(z) and C(o), respectively. We refer to C;, ¢ € [Ind|, as component
categories of C; we call C, the translation functor induced by o.

Although in an indexed category each component is a separate category in itself, they are uniform
enough that sometimes we want to consider them all together, in one single, usually rather “large”
category. In other words, we may want to “flatten” the indexed category and consider, roughly, a
disjoint union of all its components, with some additional morphisms between them built on index
morphisms.?

Example 1 Many-sorted sets (continued).
We can flatten the indexed category SSET: Set”” — Cat and get a category SSet = Flat(SSET)
of all many-sorted sets. More explicitly, SSet may be defined as follows:

objects: The objects of SSet are many-sorted sets with explicitly indicated set of sorts, i.e. pairs
(S, X), where S is a set, (of sorts) and X:S — Set is an S-sorted set.

10Of course, some foundational difficulties are connected with the use of this (very) large category. We do not discuss
this point here, and we disregard other such foundational issues in this paper.
2This is known as “the Grothendieck construction” — a frightening name for a simple idea.

morphisms: Given two such many-sorted sets, (S, X) and (S’, X’) (possibly with different sets of
sorts), a morphism between them is again a pair (f, g): (S, X) — (S, X'), where f is a
function between their sets of sorts, f:.S — S, and g: X — f; X’ is a many-sorted function,
9= (9 X, — X}(s))ses-

composition: The composition in SSet is componentwise — we have to re-index the second compo-
nent of morphisms, though. More exactly, for any two morphisms (f, ¢g): (S, X) — (S, X)
and (f', g'): (8", X') = (8", X"), {f, 9);{f', ') = (F, §): (S, X) = (S, X"), where f =
fi7:S — 8" and § = g;SSET(f)(¢"): X — f; f; X", 1.e. 9 = (955 955y Xs = X0} ses+

O (Ex. 1)

Definition 2
For any indexed category C:Ind” — Cat, Flat(C) is a category defined as follows:
objects: Objects in Flat(C) are pairs (i, a), where ¢ € |Ind| and a € |C;|.

morphisms: Morphisms in Flat(C) from (i, a) to (j, b) are pairs (¢, f), where ¢:¢ — j is a morphism
in Ind and f:a — C,(b) is a morphism in C;.

composition: For any morphisms (o, f): (i, a) — (j, b) and {p, ¢): (j, b) = (k, c) in Flat(C), their
composition is defined by

(o, f)i{p, g) = (o;p, F;Cs(9)): (¢, a) — (k, c).

O (Def. 2)
Just one more technical definition: every flattened category comes equipped with the projection ..
on the first component of the pairs. This projection is a functor which may be used to reconstruct
the original cleavage of the (indexed) category.

Definition 3
Let C:Ind”® — Cat be an arbitrary indexed category. We define a functor Cleave: Flat(C) —
Ind as follows:

on objects: for any object (¢, a) of Flat(C), Cleave({z, a)) = %, and
on morphisms: for any morphism (o, f) in Flat(C), Cleave({c, f)) = o.
O (Def. 3)

To complete this section, let us have a look at a few more simple examples which illustrate the
introduced notions.

Example 2 Many-sorted algebraic signatures
For any set S, a category ALGSIG(S) of S-sorted algebraic signatures is defined as the functor

category
ALGSIG(S) = [ST — Set]

6

(i.e. ALGSIG(S) = SSET(S™*)) where for any set S, St is the set of all finite nonempty sequences
of elements of S.

An S-sorted algebraic signature is just a family of sets (of operation names), one set for each
finite, nonempty sequence of elements of S (rank, i.e. arity and result sort, of the operations named in
the set); an S-sorted algebraic signature morphism is a renaming of operation names preserving their
rank.

The map S +— St extends in the obvious way to a functor (—)*: Set — Set. The indexed category
of algebraic signatures is ,
ALGSIG = (_)*;SSET: Set” — Cat '

(There is a slight technical inaccuracy in the above definition: we have identified the functor
(—)*:Set — Set with its opposite, ((—)*)?:Set®” — Set®, which although identical as a map,
formally is a different functor (as a morphism in Cat).)

For any function f:S — §’, the translation functor

ALGSIG(f): ALGSIG(S") » ALGSIG(S)

“extracts” an S-sorted algebraic signature from any S’-sorted algebraic signature using the sort re-
naming f. For any S’-sorted algebraic signature ¥’, for any sequence s;...s, € S¥, the operation
names of rank s;...s, in the S-sorted algebraic signature ALGSIG(f)(X’) are exactly the operation
names of rank f(s1)...f(s,) € (S')* in ¥'.

Finally, if we flatten the indexed category ALGSIG, we get what is usually meant by the category
of algebraic signatures (cf. e.g. [Burstall & Goguen 82]):

AlgSig = Flat(ALGSIG)

Algebraic signatures (objects of AlgSig) are pairs of the form (S, (X,),ecs+), where S is a set (of
sorts) and for any r € S*, I, is a set (of operation names of rank r). An algebraic signature
morphism from ¥ = (S, (E,),es+) to &' = (S', (X)r¢(s)+) consists of a renaming of sorts f: S — S’
and a renaming of operation names preserving their ranks (modified by f), i.e. a family of maps
g= (9r3 ¥, — 2}+(T))res+-

O (Ex. 2)

Example 3 Many-sorted algebras .
The category AlgSig of algebraic signatures is itself an index category in a prime example of an
indexed category, the indexed category of many-sorted algebras

ALG: AlgSig®” — Cat

For any algebraic signature £, ALG(X) is the category of all ¥-algebras as objects and all -
homomorphisms as morphisms; for any algebraic signature morphism 0:¥ — X'/, ALG(0) is the
usual “forgetful” functor

—|s: ALG(X) —» ALG(X)

(see e.g. [Burstall & Goguen 82] for the standard definitions).

7

In the flattened category of many-sorted algebras, Flat(ALG), the objects are many-sorted al-
gebras with explicitly indicated signatures; a morphism between such algebras, say from (Z, A) to
(X', B'), consists of an algebraic signature morphism o: & — %’ and a X-homomorphism h: A — B,.
A similar concept of a “generalised homomorphism” has been used in some work on algebraic speci-
fication, cf. e.g. [Kamin & Archer 84].

O (Ex. 3)

Example 4 Diagrams
For any “target” category T and “source” category G, we have a category

FUNC(T)(G) = [G — T]

of functors from G into T.

It is often convenient to define a diagram in a category just as a functor with a small source category.
This is essentially equivalent to the more standard definition of a diagram as a graph with nodes
labelled by objects of the considered category and edges labelled by morphisms with the appropriate
domain and codomain (cf. e.g. [Goguen & Burstall 84]). Thus, the category FUNC(T)(G) may be
referred to as the category of diagrams of the shape G in the category T.

As in the previous examples, it is easy to see that for any target category T, FUNC(T) forms in
fact an indexed category '

FUNC(T): Cat” — Cat

where we define:
component categories: for G € |Cat|, FUNC(T)(G) = [G — T] as above, and

translation functors: for ®:G — G/, FUNC(T)(®):[G' — T] — [G — T] is the obvious functor
defined on objects by FUNC(T)(®)(D') = ®; D’ for all D: G’ — T (i.e. D' € [G' — T]).

By flattening FUNC(T) we get the category Func(T) = Flat(FUNC(T)) of functors into T
(or diagrams in T — cf. [Goguen 71] where a slightly different definition is used). A morphism from
D:G — T to D": G’ = T in Func(T) consists of a functor ®: G — G’ and a natural transformation
a:D — ®; D’ (between functors in [G — TJ).

O (Ex. 4)

Example 5 Theories

We want to discuss theories built in an arbitrary logical system. The notion of institution intro-
duced in [Goguen & Burstall 85] provides an appropriate framework.

An institution I consists of:

e a category Sign (of signatures);

e functor Mod: Sign®” — Cat (giving for each signature ¥ € |Sign| a category Mod(Z) of
X-models);

e a functor Sen: Sign — Cat (giving for each signature X € |Sign| a discrete category Sen(Z) of
T-sentences);

e for each ¥ € |Sign|, a (satisfaction) relation =5 C [Mod(X)| x Sen(X)

such that the following satisfaction condition holds:
for each 0: ¥ — X/ in Sign,m’ € |Mod(Y')| and ¢ € Sen(X),

m’ s Sen(o)(p) <= Mod(c)(m') Fx ¢.

1

For any signature morphism o: ¥ — ¥/, Sen(c) will be written simply as o and Mod(c) as —|,.

First, let us remark that this definition explicitly involves two indexed categories: Mod (indexed
by Sign) and Sen (indexed by Sign?). In this example we want to discuss yet another indexed
category: the indexed category TH of theories in L. It should be stressed that this category naturally
arises in the study of specifications built over I.

For any signature ¥ € |Sign|, a X-presentation is any set of X-sentences ¥ C Sen(X). Each
Y-presentation U generates the set of its logical consequences,

Clg(¥) = {p € Sen(X) | for all m € Mod(X), m |= ¢ whenever m = ¥}.

By a X-theory we mean any X-presentation T' that is closed under semantical consequence, i.e. T =
Clg(T). _
Let TH(X) denote the poset category of X-theories ordered by inclusion. This extends to an
indexed category
TH: Sign®? — Cat,

where additionally we define for any signature morphism o: ¥ — ¥’ in Sign, for any X’-theory 7",
TH(o)(T") = {¢ € Sen(Z) | o(¢) € T'}.

The satisfaction condition implies that this is indeed a X-theory; it is obvious that TH(o) is a functor,
i.e. a monotone map.

We can flatten the indexed category of theories and get the category Th = Flat(TH), the usual
category of theories in the institution I (cf. [Goguen & Burstall 85]). Th has pairs of the form (X, T,
where ¥ is a signature and T is a I-theory, as objects; a theory morphism from (¥, T) to (X', 1)
in Th is just any signature morphism o: ¥ — X’ such that for all p € T', o(p) € T".

Just for fun (and to get yet another example) notice that in a similar way we can define a somewhat
larger indexed category of presentations in I. For any signature I, let PRES(X) be the poset category
of X-presentations in I. This yields an indexed category

PRES: Sign” — Cat,

where for any o: ¥ — ¥ in Sign, for any ¥’ C Sen(¥'), PRES(c)(¥') = {¢ € Sen(Z) | o(yp) € ¥'}.
We can “enlarge” this even further by adding some new morphisms in the component categories.
For any signature X, let PRESL(X) be the pre-order category of Y-presentations preordered by

9

semantical consequence f=y (for any X-presentations ¥ and ¥, ¥’ |=5 U if ¥ C Clg(¥')). This yields
an indexed category
PRES.:Sign® — Cat.

The satisfaction condition implies that PRES(0): PRES(X') — PRESL(X), defined for any
signature morphism 0: ¥ — ¥’ just as PRES(o) above, preserves the semantical consequence.
Notice that TH is an indezed subcategory of PRES, and that PRES is an indexed subcategory
of PRES.. — we will formalise this concept later (Example 8 in Section 4).
O (Ex! 5)

Example 6 Institutions)

Let us start by recalling the notion of an institution morphism (cf. [Goguen & Burstall 85)).

Let I = (Sign,Mod, Sen, (=x)s¢sign|) and I’ = (Sign’,Mod’, Sen/, (=%) sre(sign/|) be arbitrary
institutions. An institution morphism from I to I’ consists of:

¢ a functor ®:Sign — Sign’,
e a natural transformation f: Mod — ®; Mod’, and
¢ a natural transformation o: ®;Sen’ — Sen

such that the following satisfaction condition holds:
for each X € |Sign|, m € [Mod(X)| and ¢’ € Sen'(®(L)),

m [z as(¢) <= Be(m) Ea) ¢

Intuitively, I is a “richer” institution than a “more primitive” I'. ® extracts simpler I'-signatures
out of more complex I-signatures; S extracts simpler I'-models out of more complex I-models; o
translates I'-sentences to I-sentences, which is possible since I is “more powerful”.

Now, institutions and institution morphisms with composition defined in a rather straightforward
componentwise manner form a category (cf. [Goguen & Burstall 85]). We aim at presenting it using
the indexed-category machinery.

It turns out, however, that technically it costs nothing to generalise the concept of institution to
cover not just logical systems, where the meanings of sentences in models are logical values (true or
false), but also arbitrary semantic systems, where the meanings of sentences (“syntactic phrases”) in
models (“semantic structures”) are taken from an arbitrary “semantic” category (“of denotations”).

Let V be an arbitrary category. The category Room(V) of V-rooms (cf. [Mayoh 85]) is defined
as a comma category

| Room(V) = (|-|/FUNCp;,(V)),

where |_|: Cat — Cat is the discretization functor and FUNCp;,.(V): DCat® — Cat is the indexed
category of functors into V restricted to discrete categories DCat (cf. Example 4). Thus, a V-room
is a triple (M, R, S), where M is a category, S is a discrete category, and R: [M| — [§ — V]. A
V-room morphism (f, g): (M,R,S) — (M',R’, S’) consists of a functor f: M — M’ and of a function
g:S" — § such that the following diagram (in Cat) commutes.

10

R

M| [S — V]
I£| 95 (=)
M| YR [$" — V]

Consequently, for all m € |M|, R'(f(m)) = g; R(m), i.e. for all m € |[M| and s’ € S,

R/(f(m))(s") = R(m)(g(s")

(notice a ghost of the satisfaction condition here).
The category of generalised institutions with signatures Sign € |Cat| is defined as the functor

category
INS(Sign) = [Sign®” — Room(V)].

This extends to an indexed category
INS: Cat® — Cat

where for any functor ®: Sign — Sign’, the translation functor INS(®): INS(Sign’) — INS(Sign)
is defined on objects by:
INS(®)(I') = &7 T’

for any I': (Sign’)” — Room(V), which naturally extends to morphisms in INS(Sign’) as well.
Finally, the category of generalised institutions is

Ins = Flat(INS).

The reader is advised to check that if V is Bool, the category with exactly two elements, then this
definition coincides with the explicit definitions of institution and institution morphism spelled out
above.
Let us point out that the above technicalities are slightly different from Definition 14 and Propo-
sition 16 of [Goguen & Burstall 86], where a technical inaccuracy occurred.?
O (Ex. 6)

3In [Goguen & Burstall 86, Prop.16] the category of V-rooms was defined as the comma category (|—|°?/V ™), where
|—[P: Cat?? — Cat’® is the opposite of the discretization functor and V~—:DCat — Cat’ is the opposite of our
FUNCp;,(V):DCat”” — Cat. Consequently, a V-room is a triple (M, R, S), where M is a category, S is a discrete
category, and R: M — [S — V] is a morphism in Cat®, that is, R is a functor from [S — V] to M, unlike in the more
explicit definition. Correcting this ihaccuracy leads to the definition we present here.

11

3 Completeness and Cocompleteness of Flattened Cate-
gories

In this section we study how (and if) limits and colimits in flattened categories may be constructed
using the corresponding constructions in the index and in the component categories.

First, about limits:

Of course, we cannot hope to construct limits in a flattened category unless the corresponding
limits exist in the index and in the component categories. It turns out that the only additional
condition needed is that the translation functors induced by index morphisms preserve limits.

Theorem 1
Let C:Ind” — Cat be an indexed category such that

1. Ind is complete,
2. for all indices ¢ € |Ind|, C; is complete, and
3. for all index morphisms o:4 — j, the translation functor C,: C; — C; is continuous.

Then the category Flat(C) is complete.

Proof

It is sufficient to prove that Flat(C) has all products and equalisers (cf. [MacLane 71, Th.V.2.1,
p.109)).

products:

Consider any family of objects in Flat(C), (i, , a,), n € N (N is an arbitrary set).

Let 7 with projections 7,:4 — ¢,, n € N, be a product of i,, n € N, in Ind. Then, let ¢ with
projections fr:a — Cr,(ayn), n € N, be a product of Cr,(a,), n € N, in C;. We claim that (i, a)
with projections (7, , fn): (i, @) = (in, as), n € N, is a product of (i, a,), n € N, in Flat(C).

Consider an object (j, b) € |Flat(C)| with morphisms (o, , gu): {j, b)) — (én, a@s), » € N, in
Flat(C). By the construction, there exists a unique index morphism ¢:j — ¢ such that for n €
N, o;7, = 0, in Ind. Moreover, the continuity of C, guarantees that C,(a) with morphisms
Co(fa): Cola) = Co(Cr,(an)), n € N, is a product of C,(Cs,,(a,)) = C,,(a,), n € N, in C;. Hence,
there exists a unique morphism g: b — C,(a) such that for n € N, g; C,(f») = g in C;.

Then, (o, g):{(j, b) — (i, a) is a unique morphism in Flat(C) such that (o, ¢);{ms, f.) =
(0n, gn) for n € N.

equalisers:

Consider any two “paralle]” morphisms in Flat(C), (s1, f1),{02, £2): (i, a) — (5, b).

Let 0 k — i be an equaliser of 01,02:¢ — j in Ind. Notice that we have C,(C,, (b)) = C,,,1(b) =
Coi02(b) = C,(Cya(b)). Let f:c — C,(a) be an equaliser of C,(f1), C,(f2): C,(a) — C,(C,1(b)) in
Cr.

We claim that (o, f):(k, ¢) — (i, a) is an equaliser of {(¢1, f1), (02, f2) in Flat(C).

For, first observe that by the construction we have indeed:

12

(o, FiloL, F1) = (oi0L, £;Colf1)
= (0302, £;C.(f2))

= (o, Ni{o2, 2.
Then, consider any morphlsm (p, 9):{m, d) — (¢, a) such that in Flat(C)

Py 9)i{ol, f1) ={p, g); (02, f2),

ie. p;ol = p;o2 in Ind and ¢;C,(f1) = ¢;C,(f2) in C,,. By the construction, there exists a

unique index morphism #:m — k such that ;0 = p in Ind. Moreover, Cy is continuous and so

Co(f): Co(c) — Cy(Cs(a)) = C,(a) is an equaliser of Cy(Co(f1)) = C,(f1) and Cy(C,(f2)) =

C,(f2):C,(a) = Cygypy1(b) in C,,. Hence, there is a unique morphism h:d — Cy(c) such that
h; Co(f) = g in Cp. '

Then, (6, h): (m, d) — (k, c) is a unique morphism in Flat(C) such that (¢, &); (o, f) = (p, g)-

O (Th. 1)

It is easy to see that in fact a sharper result may be proved in a similar way. Namely, a diagram
D: G — Flat(C) has a limit in Flat(C) provided that D;Cleave: G — Ind has a limit in Ind
such that the component category corresponding to the limit index is G-complete and the translation
functors induced by index morphisms into the limit index are G-continuous. (We say that a category
K is G-complete if any diagram of the shape G has a limit in K; a functor is G-continuous if it
preserves the limits of all diagrams of the shape G.)

A construction of colimits in a flattened category is not quite so simple. The proof of Theorem 1
cannot be directly dualised. Roughly, the problem is that in the construction of limits we had to
translate objects (and morphisms) of component categories against index morphisms, which was easy
using the translation functors of the indexed category. In the analogous construction of colimits that
we present below, it is necessary to translate objects and morphisms of component categories along
index morphisms, which requires the translation functors to be, in a sense, reversible.

Definition 4

An indexed category C:Ind®® — Cat is locally reversible if for every index morphism o:¢ — j in
Ind the translation functor C,: C; — C; has a left adjoint.

For any o:4 — j in Ind, we will denote the left adjoint (an arbitrary but fixed left adjoint) to
Cys:C; — C; by F,: C; — C; and the unit of the adjunction by #?:id¢, — F,; C,.

O (Def. 4)

Notice that we do not require that C be “globally” reversible, i.e. that the family of left adjoints

forms an indexed (by Ind’?) category. In general, F,., # F,; F,. However:

Fact 1
Let C:Ind°® — Cat be a locally reversible indexed category. For any index morphisms o:¢ — j
and p:j — k in Ind, there is a natural isomorphism

top: Foyp = Foy F.

13

Proof .
Obvious, since Fy; F, is left adjoint to C,,, = C,; C, (cf. [MacLane 71, Th. IV.8.1, p.101]) and any
two left adjoints to the same functor are naturally isomorphic (cf. [MacLane 71, Cor. IV.1.1, p.83)).
In fact, for any object a € |C|, to0(a): Fy,p(a) — F,(F,(a)) is given by

to,o(a) = (1°(a); Co(n’(Fo(a))))*

and its inverse
tp(@) = (17 (a))*)*: F o(Fo(a)) — Fop(a)
(we leave it as an exercise for the reader to indicate which adjunctions the sharps “#” in the above

formulae refer to). :
O (Fact 1)

Definition 5
Let C:Ind*® — Cat be a locally reversible category. For any index morphism p:7 — j, we can
“lift along p” any morphism (o, g): (k, a) — (i, b) (the same i) in Flat(C) to a morphism in C;:

L,({o, 9)) = ‘a,p(a);Fp(g#):Fa;p(a) — F,(b)

O (Def. 5)

Lemma 1
Under the notation and assumptions of Definition 5, for any index morphism 6: j — m in Ind and
morphism (p; 0, f): (¢, b) — (m, ¢) in Flat(C), f#:F,(b) — Ce(c) is a morphism in C; such that in
Flat(C) ‘
(750, 17(a)); (0, Lo({o, 9)); F*) = (o, g); (30, f): (k, a) = (m, c).
Proof
We verify that in Cy

n°%(a); Coip(Lo({o, 9)); f#) = ¢;Co(f):a — Coyp(c)-

n°#(a); Coip(L,({o , 9)); #) (Def. 5)
= n7(c); Co1(ts,0(a)); Ca;p(Fp(g#)5 f#) (proof of Fact 1)
= n7(a); Co(n*(Fo(a)); Ca;p(Fp(g#); f#) (Coip =Cp Co)
= n’(a); C,(n°(F,(a)); C,(Fo(9%)); C,(f#)) (n* is natural)
= 1°(a); Co(9%; 17(b); C,(f#)) (f =n°(b); C,(f#))
= 1°(a); Co(9%); Co(f) (9 = 1°(a); Co(9#))
=g;C.(f)

. O (Lemma 1)

Corollary 1
Under the notation and assumptions of Definition 5

n7%(a); Cop(Lo({o, 9))) = g5 Co(n”(b))

14

Proof
Obvious by Lemma 1, since 9°(b)* = idp,).
a (Cor. 1)

We are now ready to state our main theorem:

Theorem 2
Let C:Ind’ — Cat be an indexed category such that

1. Ind is cocomplete,
2. for all ¢ € |Ind|, C; is cocomplete, and

3. C is locally reversible.
Then Flat(C) is cocomplete.

Proof
Dually to the proof of Theorem 1, it is sufficient to prove that Flat(C) has all coproducts and
coequalisers.

coproducts:

Consider any family of objects in Flat(C), (i, , @), n € N (where N is an arbitrary set).

Let ¢ with injections p,:¢, — ¢ be a coproduct of 7,,, n € N, in Ind. Then, let ¢ with in-
jections f#:F, (a,) — a be a coproduct of F, (a,), » € N, in C;. Finally, let for n € N,
fu =1 (a2); Cp () an — C,,(a).

We claim that (¢, a) with injections {pn, fn): (in, an) — (¢, a), n € N, is a coproduct of the
family (i, a.), n € N, in Flat(C).

For, consider an object (j, b) with morphisms (o, , gn): (in, an) — (j, b), n € N, in Flat(C).

By the construction, there exists a unique index morphism o:¢ — j such that in Ind for n € N,
pn;0 = 0n. Moreover, there is a unique morphism g:a — C,(b) such that for n € N, f#;9 =
g¥:F,.(an) = Co(b) (g¥ is well-defined since g,: an, — C,,(C, (b))).

Then, since in C; :

F2iCoalg) = 17(an); Cp(F#); Cpn(9)

= nf(an); Cpn(f#?!])

= n**(an); Cpn(9¥)

= Gny
(o, 9):(¢, a) — (5, b) satisfies (pn, fu);{c, g) = (0n, gn), n € N, in Flat(C). Moreover, (o, g) is
the only morphism in Flat(C) with this property: the uniqueness of o is obvious; the uniqueness of
g follows by its construction from the fact that if for some g’: a — C,(b), fn; C,.(9") = g for n € N,
then f#;g' = g¥# for n € N, and thus g = ¢'.

coequalisers: ,

Consider any two “paralle]” morphisms in Flat(C), (¢1, f1},(02, f2):(i, a) — (j, b).

Let 0:j — k be a coequaliser of ¢1,02:¢ — j in Ind. Then in C; there are two “parallel”
morphisms (cf. Definition 5)

L,({o1, f1)),L,({c2, f2)):Fs1,.(a) — F,(b).

15

Let f#:F,(b) — c be their coequaliser in C;. Consider f = 7°(b); C,(f#): b — C,(c) in C;.
We claim that (o, f):(j, b) — (k, c) is a coequaliser of (o1, f1),(02, f2):(i, a) — {j, b) in
Flat(C).
First notice that indeed in Flat(C) by Lemma 1 we have:
(61, f1);{o, f) ={ol;o, n7%(a)); (idk, Lo({o1, f1)); f¥#)
= (02;0, n7%(a)); (idk, Lo((02, f2)); f#)
= (02, f2);{o, f)
Then, consider any morphism (p, g):(j,) — (m, d) such that in Flat(C)

(o1, f1);{p, 9) = (02, f2); (p, 9),

i.e. 0l;p = 02;pin Ind and f1;C,(g) = f2; C,a(g) in C;.
By the construction, there exists a unique index morphism 6: k — m such that ¢;0 = p in Ind.
Moreover, by Lemma 1, in C;
74 (a); Corio(Lo({ol, f1));9%) = f1;Co(g)
= f 27 Ca?(g)
= 77”2;6(“); CoZ;a(La((a2a f2); g#)
(recall that ol;0 = 02;0 and that g#:F,(c) — Cgy(d)). Hence, the properties of adjunction imply
L,({02, f2));9%* = Ls({c1, f1));¢*. Thus, there exists a unique morphism h: ¢ — Cy(d) such that
f#;h =g#in C;.

Now, (0, h): (k, ¢} — (m, d) satisfies (o, f); (8, h) = (p, g) in Flat(C) (since in C; we have:
£35Ca(h) = 1°(8); Co(f#5 k) = 1°(); Co(g*) = g).

Moreover, (6, h) is the only morphism in Flat(C) with this property: the uniqueness of is
obvious; the uniqueness of A follows from its construction (if for some A':c — Cg(d), f;C,(h') = ¢
then f#; k' = g#, and thus h = 7).

O (Th. 2)

A sharper result may be proved in a similar manner: a diagram D: G — Flat(C) has a colimit in
Flat(C) provided that D;Cleave: G — Ind has a colimit in Ind such that the component category
corresponding to the colimit index is G-cocomplete and all the translation functors induced by the
index morphisms in the colimit cocone have left adjoints.

To complete this section, let us illustrate that the above results may indeed be used to prove
completeness and/or cocompleteness of some interesting categories. The sample results of this form
that we present below are known. Theorems 1 and 2, however, may be used to essentially simplify
their standard, rather laborious proofs.

Example 1 Many-sorted sets
Consider the indexed category
SSET: Set”” — Cat

of many-sorted sets. It is well-known that for any set S, the category SSET(S) of S-sorted sets is both
complete and cocomplete. The index category, Set, is both complete and cocomplete as well. More-
over, it is trivial to see that for any index morphism (a function) f: S — §’, SSET(f): SSET(S') —
SSET(S) is continuous and has a left adjoint (which sends any S-sorted set (X,)ses to the S'-sorted
set (W{X, | f(s) = 8'})scsr, where) denotes disjoint union).

16

Thus, Theorems 1 and 2 directly imply that the (flattened) category of many-sorted sets SSet =
Flat(SSET) is both complete and cocomplete.
0 (Ex. 1)

Example 2 Algebraic signatures
Consider the indexed category

ALGSIG: Set”” — Cat

i

of many-sorted algebraic signatures. Just as with sets, the index category and all the component
_categories are both complete and cocomplete, and the translation functors are continuous and have
left adjoints (in fact, this directly follows from the definition ALGSIG = (_)*; SSET, since SSET
has all these properties). '
Thus, the category of algebraic signatures AlgSig = Flat(ALGSIG) is both complete and co-
complete.
O (Ex. 2)

Example 3 Many-sorted algebras
Consider the indexed category
ALG: AlgSig® — Cat

of many-sorted algebras. Again, we can repeat: the index category is complete and cocomplete (by
Example 2 above), all the component categories are so as well, and the translation (forgetful) functors
are continuous and have left adjoints. Let us point out, however, that the existence of left adjoints to
the forgetful functors here is a non-trivial although well-known property (cf. e.g. [Burstall & Goguen 82]
for an expository presentation). Similarly, the cocompleteness of the category of X-algebras, for any
algebraic signature X, is not quite obvious (to form a coproduct of a family of X-algebras, one has
to, roughly, consider their disjoint union and then complete it to a total L-algebra in a free way;
coequalisers are easy).

Anyway, we can conclude that by Theorems 1 and 2 the category Flat(ALG) of many-sorted
algebras is both complete and cocomplete.

Notice that this yields an appropriate framework to formulate operations like the amalgamated
union of algebras over different signatures used in e.g. [Ehrig & Mahr 85].

O (Ex. 3)

Example 4 Diagrams
Let T be any category. Consider the indexed category

FUNC(T): Cat® — Cat

of functors into (or diagrams in) T.

Clearly, the index category, Cat, is both complete and cocomplete. Then, if T is complete, all the
component categories are complete as well. Namely, for any G € |Cat| limits in FUNCT(T)(Q) =
[G — T] are constructed “pointwise”, as limits in T “parameterised” by (the objects of) G (cf.

17

[MacLane 71, V.3, p.112]). Moreover, it is obvious that the translation functors in FUNC(T) preserve
limits constructed in such a way.

Thus, we easily conclude that the category Func(T) = Flat(FUNC(T)) of all diagrams in T
is complete whenever T itself is complete. Dually, we know that if T is cocomplete then all the
component categories are cocomplete and all the translation functors are cocontinuous. This is not
enough, though, to apply Theorem 2: we would have to prove that the translation functors have left
adjoints. Unfortunately, this need not be the case in general. (We were surprised to notice how close
we came here to the famous notion of Kan extension, cf. [MacLane 71, X]). ;

O (Ex. 4)

Example 5 Theories
Let I be an institution. Consider the indexed category

TH: Sign°? — Cat

of theories in I

Clearly, for any signature ¥ € |Sign|, THy forms a complete lattice, i.e. is complete and cocom-
plete as a category. Moreover, it is easy to see that for any signature morphism o: X — ¥’ in Sign,
TH,: THy — THg has a left adjoint which maps any Y-theory T' to the X'-theory generated by
the set {o(p) | ¢ € T} of X'-sentences. Thus, by Theorem 2, we directly conclude that the cate-
gory Th = Flat(TH) of theories in T is cocomplete whenever the category Sign of signatures is
cocomplete. Q

It is even easier to see that the categories Pres = Flat(PRES) and Presp = Flat(PRES}.) are
cocomplete whenever Sign is cocomplete.

About completeness: a similar result holds (all the component categories are complete, the trans-
lation functors are continuous) — it is not very interesting here though.

O (Ex. 5)

Example 6 Institutions
Let V be an arbitrary category. Consider the indexed category

INS: Cat’®? — Cat

of institutions. Recall that for any Sign € |Cat|, INS(Sign) = [Sign®® — Room(V)]. Arguing as
in Example 4 above, it can be shown that the category Ins = Flat(INS) is complete provided that
the category Room(V) is complete. To prove that this is indeed the case, we can use the following
general result on comma categories (its dual was stated in [Beierle & Voss 85], proved in detail in
[Tarlecki 86] — a slightly weaker result was given in [MacLane 71, Lemma in V.6] and [Goguen &
Burstall 84, Prop. 2]).

18

Lemma 2

For any categories A,B,K and functors F: A — K, G:B — K, if the categories A and B are
complete and the functor G: B — K is continuous then the comma category (F'/G) is complete.

O (Lemma 2)

Now, recall that we have defined Room(V) = (|—|/FUNCpi;s.(V)), where |—|: Cat — Cat and
FUNCp;s(V): DCat® — Cat. Since Cat is complete and DCat, the category of discrete categories,
is cocomplete (hence DCat is complete), the only thing to check is the continuity of FUNCp;,.(V).
This, however, follows from the construction of colimits in DCat and limits in Cat. The coproduct
in DCat of any family of discrete categories S,, n € N, is just their disjoint union S = ¥,cn Sn.
It is easy to see that the functor category [S — V] is (isomorphic to) the product category of
[S. — V],n € N. Then, the coequaliser in DCat of any two “parallel” functors F,G:S1 — S2 is
given as the natural quotient functor H: S2 — S2/=, where = is the least equivalence on (objects of)
S2 such that F(s) = G(s) for all s € S1; and S2/= is the quotient (discrete) category. Again, it is
easy to see that the functor category [S2/= — V] is isomorphic to the subcategory of [S2 — V] that
contains as objects all functors D: S2 — V such that F; D = G; D, and similarly for morphisms. The
isomorphism is given by the functor

FUNC p;,(V)(H): [S2/= — V] — [S2 — V].

This shows that FUNC p;,.(V)(H) is an equaliser of FUNC p;,(V)(F) and FUNCp;,.(V)(G) in
Cat.) ,

Summing up, FUNCp;,(V) maps coproducts in DCat to products in Cat and coequalisers in
DCat to equalisers in Cat. Hence, FUNC p;,.(V) is continuous as a functor from DCat® to Cat.

- Thus, by Lemma 2, Room(V) is complete.

Finally, we can conclude that the category Ins of institutions is complete.

Notice that since morphisms in Ins go from richer to more primitive institutions, the limit, not
the colimit, construction may be appropriate for “putting institutions together” (and hence, the
completeness, not the cocompleteness, of the category of institutions is important).

O (Ex. 6)

4 Indexed Functors

Given the notion of an indexed category, it is only natural to generalise in a similar way category
morphisms — functors.

Definition 6 (

An indezed functor F from an Ind-indexed category C:Ind” — Cat to an Ind-indexed category
D:Ind”” — Cat is a natural transformation F: C — D. Thus, for each index ¢ € [Ind| there is a
functor F;: C; — D; such that for each index morphism o:¢ — j, F;; D, = C,; F;.

19

Ind: Cat:

F;
7 C; D;
g Cg' DU
] C; D,
\7 J F] J . J

This yields the category INDEXEDCAT (Ind) of Ind-indexed categories (with the obvious vertlcal
composition of morphisms).
O (Def. 6)

A very simple example of an indexed functor is the many-sorted powerset construction:

Example 7 Powerset functor
For any set S, define the S-sorted powerset functor

Ps: SSET(S) — SSET(S)

in the obvious way. Pg maps any S-sorted set (X,)ecs to the S-sorted set (2%¢),cs of the powersets
of its components; P g maps any S-sorted function (g,: X, — Y,)scs to the S-sorted family (g;: 2% —
2%2)ses of the corresponding image functions, g, (A) = {g.(z) | ¢ € A} for any AC X,, s € S.

It is trivial to see that the family P = (Ps)gs¢|set| actually forms an indexed functor

P:SSET — SSET.

o (Ex. 7)

Example 8
Recall that in Example 5 we have defined three indexed categories

TH: Sign®” — Cat
PRES: Sign®” — Cat
PRES.: Sign” — Cat

such for any signature ¥ € |Sign|, THy is a subcategory of PRESs, which in turn is a subcategory
of (PRESL)s. Moreover, it is easy to see that the families of inclusion functors (from THy to
PRESy and, respectively, from PRESy to (PRESL)x) indexed by signatures ¥ € [Sign| form
indexed functors (from TH to PRES and, respectively, from PRES to PRESL).

This suggests a notion of an indezed subcategory: given two indexed categories C:Ind®®> — Cat
and D:Ind”” — Cat (over the same category of indices), we say that D is an indexed subcategory
of C if for each ¢ € |Ind|, D; is a subcategory of C;, and the family of inclusion functors forms
an indexed functor from D to C. This may be somewhat generalised in a rather obvious way by

20

considering indexed subcategories D over a subcategory of indices of C.
O (Ex. 8)
The operation of flattening of an indexed category may be extended to indexed functors as well.

Definition 7
Let Ind be any (index) category.
The flatten functor Flaty,q: INDEXEDCAT(Ind) — Cat is defined as follows

on objects: for any Ind-indexed category C:Ind”” — Cat, Flaty,q(C) is the flattened category as
defined in Definition 2, and

on morphisms: for any Ind-indexed functor F: C — D (where C,D:Ind” — Cat) we define the
functor Flatyygq(F): Flatpg(C) — Flatmpg(D) by:

on objects: for any object (i, a) € |Flatyq(C)|, Flati,qa(F)({(z, a)) = (i, Fi(a)), and

on morphisms: for any morphism (o, f): (i, a) — (j, o) in Flaty,g(C),

Flatia(F)((o, f)) = (o, Fi(f)):{i, Fi(a)) — (j , F;(b)) in Flatpa(D)
(recall that D,(F;(b)) = F:(C,(b))).

It is straightforward to check that this indeed is a functor.

‘ O (Def. 7)
We often omit-the subscript and write simply Flat, as before, instead of Flaty,g.
Intuitively, flattened indexed functors leave the first element of their arguments unchanged, but

use it to select the appropriate component of the family the indexed functor is to operate on the

second element of the arguments. In a sense, the flattening of an indexed functor may be viewed as
forming the “disjoint union” of its components.

Notice the similarity between Definition 6 and the definitions given in Example 4 (of the category
of functors into an arbitrary but fixed target category). In fact, Definition 4 yields yet another example
of an indexed category: the indexed category of indexed categories.

Example 9 Indezed categories
The indexed category of indexed categories is defined by

INDEXEDCAT = OP; FUNC(Cat): Cat®” — Cat

where OP: Cat®® — Cat®” maps any category K to its opposite K°? and any functor F: K — M to
its opposite F°P: K — M. (It makes a nice puzzle to define OP = ((—)°?)°".)

Thus, for any Ind € |Cat|, INDEXEDCAT(Ind) = [Ind”” — Cat], as in Definition 6. For
any functor ®:Ind — Ind’ and indexed category C’: (Ind)? — Cat, INDEXEDCAT(®)(C') =
®°P; C": Ind°? — Cat.

Flattening the indexed category of indexed categories yields the category

IndexedCat = Flat(INDEXEDCAT)

21

of indexed categories with objects that consist of an index category and an indexed category over this
index category. In IndexedCat, an indexed category morphism from (Ind1, C1:Ind1’ — Cat) to
{(Ind2, C2:Ind2% — Cat) is again a pair (®, F) where ®:Ind1 — Ind2 is a functor and F: C1 —
®°P; C2 is a natural transformation.

To make this perhaps a bit more readable, let us consider the relationship between the indexed
categories of many-sorted algebras (Example 3) and of many-sorted sets (Example 1).

First, we have the obvious functor Sorts: AlgSig — Set which maps any signature to its set of
sorts (in fact, this is just the cleavage functor as defined in Definition 3).

Then, for any algebraic signature £, we have the obvious “forgetful” functor (cf. e.g. [Burstall &
Goguen 82])

Uy: Alg(X) — SSET(Sorts(X))

which maps any Y-algebra to its many-sorted carrier. It is easy to check that the family U =
(Us)selalgsig| forms a natural transformation

U: ALG — Sorts®”; SSET.

Thus, (Sorts, U): (AlgSig, ALG) — (Set, SSET) is an indexed category morphism in Indexed-
Cat.

Let us also point out that Flat = (Flatiyq)inde|cat| as defined in Definition 7 is an indexed
functor as well. It goes from the Cat-indexed category INDEXEDCAT to the constant Cat-
indexed category that assigns the category Cat to each index (and the identity functor on Cat to
each index morphism.)

O (Ex. 9)

Part of our original motivation for looking more carefully at indexed categories was that we sought
some means to reduce a family of adjunctions (between component categories) to a single adjunction
(between flattened categories) — a remote echo of this motive may be found in the process of “getting
a charter out of a parchment” in [Goguen & Burstall 86].

Definition 8
Let U:C — D be an Ind-indexed functor. We say that U has locally a left adjoint, if for each
index ¢ € |Ind|, U;: C; — D; has a left adjoint.
O (Def. 8)

Theorem 3
For any Ind-indexed functor U: C — D, if U has locally a left adjoint, then Flat(U): Flat(C) —
Flat(D) has a left adjoint.

Proof

Consider any object (¢, a) in Flat(C). By the assumptions, U;: C; — D, has left adjoint F;: D; —
C; with a unit 7;:idg, — Fy; U,.

Now, we claim that (7, F;(a)) is a free object in Flat(D) over (¢, a) w.r.t. Flat(U) with unit
(id:, 1@)): i, @) — (i, Us(Fi(a))) = Flat(U)({i, Fi(a))).

22

For, let (j, b) be an object in Flat(D) and (o, f):(z, a) — Flat(U)({(s, b)) = (5, U;(b)) be

a morphism in Flat(C). Moreover, let f#:F;(c) — b be the unique morphism in D; such that

7:(a); Us(f#) = f in C;. Then (o, f#): (i, Fi(a)) — (j, b) is the only morphism in Flat(D) such
that in Flat(C) (ids, ni(a)); (o, F#) = (o, f).

0 (Th. 3)

Example 10
Recall that in Example 9 we have defined the AlgSig-indexed “forgetful” functor

U: ALG — Sorts?; SSET

It is well-known that the forgetful functor Ug: ALG(X) — SSET(Sorts(X)) has a left adjoint for
each algebraic signature X.. Theorem 3 allows us to conclude that the “disjoint union” of this forgetful
functors,

Flat(U): Flat(ALG) — Flat(Sorts®; SSET)

has a left adjoint which again is formed as a “disjoint union” of the “local” left adjoints.
O (Ex. 10)

Example 11

Recall that in Example 8 we have considered the Sign-indexed inclusion functor from the indexed
category TH of theories to the indexed category PRES of presentations in an arbitrary institution
I. It is clear from the definitions in Example 5 (where these categories where defined) that for each
signature ¥ € |Sign|, the inclusion functor from THs to PRESy has a left adjoint (i.e., that THy
is a reflexive subcategory of PRESy — cf. [MacLane 71, V.3, p.88/89]). In fact, the left adjoint
is just the closure operator Clg: PRESs — THy, as defined in Example 5. Now, by Theorem 3
we can conclude that the category Th = Flat(TH) of theories in I is a reflective subcategory of
Pres = Flat(PRES), the category of presentations in I

O (Ex. 11)

Theorem 3 suggests a different, rather neat way of proving Theorem 2 (the cocompleteness of
flattened categories).

Recall that for any “shape” category G and any “target” category T the diagonal functor

A$:T — [G — T]
is defined as follows:

on objects: for any object t € |T|, AS(¢) is the obvious “constant” diagram, i.e. the functor that
maps each object of G to t and each morphism in G to the identity on ¢, and

on morphisms: for any morphism f:t1 — ¢2in T, AG(f): A (t1) — AS(2) is the obvious “constant”
natural transformation, i.e. AG(f), = f for each n € |G|

23

Fact 2
For any categories G and T, T is G-cocomplete (i.e., any diagram of the shape G has a colimit
in T) if and only if the diagonal functor AG: T — [G — T] has a left adjoint.

Proof
Well known: for any diagram D: G — T, the free object over D w.r.t. AS is a colimit of D; the
unit is the colimiting cocone on D, and vice versa, the colimit of D is a free object over D w.r.t. A% .
O (Fact 2)
We will try to follow this hint in a (new) proof of a slightly stronger formulation of Theorem 2.

Theorem 2’
Consider any category G. Let C:Ind’® — Cat be an indexed category such that

1. Ind is G-cocomplete,
2. for all ¢ € |Ind|, C; is G-cocomplete, and
3. G is locally reversible.

Then Flat(C) is G-cocomplete.

Proof

C gives rise in a rather natural way to an Ind-indexed category DIAGS of G-diagrams in C.
Namely: :

component categories: for ¢ € |Ind)|, DIAGg(i) =[G — C}], and

translation functors: for o:i — j in Ind, the functor DIAGE(0): [G — C;] — |G — C|] is defined
on objects by DIAGS(¢)(D) = D; C,, for D: G — C;; this extends to morphisms in [G — C;]
in the obvious way.

Now, we have the diagonal Ind-indexed functor
A&:C — DIAGE

defined by: (A§); = AS‘,:C,- — [G — C;] for ¢ € |Ind|. (It is easy to check that this is indeed an
indexed functor.) Moreover, by (2) and Fact 2, for each 7 € |Ind|, AS", has a left adjoint. Hence, by
Theorem 3,

Flat(Ag): Flat(C) — Flat(DIAGE)

has a left adjoint. ,

Notice that we can identify Flat(DIAGS) with a certain subcategory of [G — Flat(C)]. Roughly,
it contains such G-diagrams in Flat(C) that fit entirely into one of the component categories of
C. A diagram D:G — Flat(C) is “in” Flat(DIAGS) if and only if D;Cleave: G — Ind is a
constant functor; similarly, a diagram morphism 6 is “in” Flat(DIAGS) if and only if § “horizontally”
composed with Cleave yields a constant natural transformation.

The corresponding faithful functor J: Flat(DIAGg‘) — [G — Flat(C)] may be defined as follows:

24

on objects: for any object (i, D) € |Flat(DIAGS)| (i.e. i € |[Ind| and D: G — C;) the G-diagram
J((¢, D)): G — Flat(C) is defined thus:

on objects: J((i, D))(n) = (¢, D(n)) for n € |G|, and
on morphisms: J((i, D))(e) = (¢d;, D(e)) for any morphism e in G;

on morphisms: for any morphism (v, @): (i, D) — (j, E) in Flat(DIAGS) (i.e. 4:¢ — j is a mor-
phism in Ind and :D — E;C, is a natural transformation, a morphism in [G — C;]),
I({y, a)):I((i, D)) = IJ({j , E)) is the natural transformation (a morphism in [G — Flat(C)))
defined by 3({v, a))(n) = (7, a(n)): (i, D(n)) — {j, E(n)) for n € |G|

It is easy to see that J({y,)) is indeed a natural transformation, that J is indeed a functor and
that it is faithful.

In the following we will identify Flat(DIAGS) with its image under J in [G — Flat(C)] and
refer to J as the inclusion functor.

Unfortunately, in general Flat(DIAGS) is a proper subcategory of [G — Flat(C)] (and so the
proof of Theorem 2’ is not finished yet).

One can directly check that the diagonal functor Ag‘lat(C): Flat(C) — [G — Flat(C)] satisfies

AFiat(c) = Flat(Ag); J.

Since we know already that Flat(AS) has a left adjoint, to show that AFlat(C) has a left adjoint it
is enough to prove that J has a left adjoint (cf. [MacLane 71, Th. V.8.1., p.101]). Thus, to complete
the proof of the theorem we need the following lemma.

Lemma 2

The inclusion functor J has a left adjoint, i.e. Flat(DIAGg) is a reflexive subcategory of [G —
Flat(C)] (cf. [MacLane 71, V.3, p.88/89] for the definition and basic facts about reflexive subcate-
gories).

Proof (of Lemma 2)

For any G-diagram D: G — Flat(C) we are to find its reflection in Flat(DIAGS), that is, a G-
diagram R(D): G — Flat(C) in Flat(DIAGS) together with a diagram morphism np: D — R(D)
such that for any diagram D’ in Flat(DIAGS) and a morphism §:D — D’ there exists a unique
morphism §#: R(D) — D’ in Flat(DIAGS) such that p;6# = § (in [G — Flat(C]).

So, consider an arbitrary diagram D:G — Flat(C). Let D(n) = (in, a,) for n € |G|, and
D(e) = {oe, fo): {(tn) @n) = (tm, an) for een — m in G.

Then, let ¢ with injections p,:i, — i, n € |G|, be a colimit of D; Cleave: G — Ind in Ind (Ind
is G-cocomplete by (1)).

Define R(D): G — Flat(C) as follows:

on objects: R(D)(n) = (i, F,.(a,)) for n € |G|,
on morphisms: R(D)(e) = (id;, L,,.({(0e, fe))): (¢, Fpo(an)) = (i, F,,.(an)) for e:n — m in G.

25

Recall that indeed L, ({0c, fe)): Foeiom(an) = F,.(an) — F,,_(an) (Definition 5).
Let us check that R(D) is a functor, that is, preserves identities and composition. It is obvious
that it preserves identities (Definition 5 implies that L,,((idy, id,,)) = F,,(id,,) = idF,_(a,)-)
About composition:
For e:n — m and d:m — k in G we have to show that in C;

Lon({oe, fe))i Lo({oa, fa)) = Lo({oe, fe);{oa, fa))-

This may be checked by “going back” to C;:
On one hand, in C;,
7% (an); Cp (L pk(<0e, fei{oa, fa))) :
= n"(an); Cp,(Lp((0¢; 04, fe; Coo(fa)))) (Cor. 1, pn = 0e; 043 pi)

= fe; Coe(fd)’ ve,dd((ak))'
On the other hand, in C;,

Up"(an) Pn(LPm(<ae, fe)) ka((a'da fd))) (Cor' L, pn = 0¢; Pm)
= fe; Co.(n°™(am)); Coo(Corm (Lo ({04, f2)))) (Cor. 1, pm = 04; pi)
= fe; C.. (.fd); Cce(Cad(npk (ak)))

Hence, in C;_

N7 (6n); Cpn(Lom({Tes fe))i Lan((od5 fa))) = 1P (an); Con(Lni((o¢, fe)i(0as fa)),

which by the properties of adjunction implies that indeed

Lom({oes fo))i Lon((04s fa)) = Lp((0e, fe)i(oa, fa)-

Clearly, R(D) is in Flat(DIAGS).

Having defined R(D) as above, there is an obvious way to define np: D — R(D): for n € |G|, let
m(n) = (pn, 17"(an)): (tn, an) = (2, F,,(a,)). Wehave to check that 5p is a natural transformation.

Consider any e:n — m in G.

We are to show that

D(e); np(m) = np(n); R(D)(e),
that is
{0, fe)i{pm, 1P (am)) = (pn, 17" (an)); (idi; Lo, ((0c, fe)))-

Since by the construction o.; p,, = pn, the only thing to check is

fe; Coc ("™ (am)) = 0" (an); Cpn(Lom({0e, fe))),

which follows directly from Corollary 1.

Now, we claim that R(D) with unit yp: D — R(D) is a reflection of D in Flat(DIAGS).

For, consider any diagram D’ in Flat(DIAG) and diagram morphism é6: D — D’. Let D'(n) =
(7, by) for n € |G|, and D'(e) = (id;, ge) for en — m in G, g b, — bm in C; (such an index
j € |Ind| exists since D' is in Flat(DIAGS)).

Further on, let for n € |G|, 6(n) = (05, hn): (¢, an) — (j, bn).

By the construction there exists a unique index morphism 4:7 — j such that p,;y = 0, forn € |G|.

26

Define a diagram morphism §#: R(D) — D’ by §#(n) = (v, ¥): (i, F,.(an)) — (j, bs) for
n € |G|, where h¥: F, (a,) = C,(b,) is the unique morphism in C; that satisfies n*(a,); C,,(h¥) =
Byt an, — C, (Cy(by)).

First, let us check that 6% is indeed a morphism in Flat(DIAGS‘); the non-trivial part is to verify
that 6# is a natural transformation, that is, for any e:n — m in G

§#(n); D'(e) = R(D)(e); §%#(m),

or equivalently
(v, b¥); (id;, ge) = (idi, Lon({oe, fo)))s (v, hE).
We are to prove that in C;
h#§cw(ge) = L, ({0e, fe)); h#m

To see this, notice that by the construction in C;,

17 (an); Con(h¥; Co(ge)) = bn; Con(ge)

and by Lemma 1 (since p, = 0¢; pm)
7 (an); Con (Lom({e, fe)); hh) = fes Cop(hm).
However, since 6: D — D’ is a natural transformation,
D(e); 6(m) = 6(n); D'(e),

that is
<0'ea fe); (oma hm) = (0n> hn); (id_h ge>7

which implies
fe; Cou(hm) = hn; Co,(ge)-
Hence, putting these equations together,
n°" (an); Cpn(h#; Co(9e)) = 1°"(@n); Con(Lpm ({0e s fe)); h#z)

Thus indeed
h#; C,y(ge) = Ly, ({oe, fe))5 hf;
We claim that §#: R(D) — D' is a unique morphism in Flat(DIAGS) such that np;6* = 6.
First, we have to verify that for n € |G|, np(n); 6#(n) = 6(n), that is

(Prs 177 (an)); (7, BE) = (6n, ha),

or equivalently
(Pr3v s 0" (an); C,. (h#)) = (0, ha),

which is clearly true.

27

Moreover, the construction guarantees that §#(n) is the only morphism in Flat(C) such that
Cleave(6#(n)) = v and np(n); 6#(n) = 6(n). Then, since the uniqueness of 7 is obvious, this implies
the uniqueness of §#.

This completes the proof of Lemma 2 and so the proof of Theorem 2’ as well.

O (Lemma 2)(Th. 2')

We do not think we should apologise for providing a second proof of a theorem previously proved
in the same paper. On the contrary, we feel that the details of this second proof are worth looking
through. Especially the “reflection lemma” (Lemma 2) seems quite intriguing and perhaps warth
exploring further. '

5 Summary of Results

We have presented the concept of indexed category. We believe, and the examples we have given in
this paper seem to support quite strongly the view that this is a very useful tool to structure and
clarify some categorial definitions and proofs.

We have shown how any indexed category C may be used to produce a single flat category Flat(C)
which contains all the components of C. Moreover, we have proven that this flattening construction
preserves some important properties of component categories: completeness and cocompleteness (The-
orems 1 and 2, respectively).

Then, the notion of indexed category comes naturally equipped with the notion of indexed functor.
We have shown how the flattening construction applies to indexed functors as well. Moreover, we have
proven that the flattening preserves existence of left adjoints: if all the components of an indexed
functor have left adjoints then the flattened functor does as well (Theorem 3).

6 References

[Arbib & Manes 75] Arbib, M.A., Manes, E.G.
Arrows, Structures and Functors: The Categorical Imperative.
Academic Press, New York, 1975.

[Beierle & Voss 85] Beierle, C., Voss, A.
Implementation Specifications.

In: H.-J. Kreowski (ed.), Recent Trends in Data Type Specification, Informatik Fachberichte
116, Springer 1985, 39-53.

[Benabou 85] Benabou, J.
Fibred categories and the foundations of naive category theory.
Journal of Symbolic Logic 50(1985), 10-37.

[Burstall & Goguen 77] Burstall, R.M., Goguen, J.A.
Putting theories together to make specifications.
Proc. Fifth Int. Conf. on Artificial Intelligence 5, 1045-1058, 1977.

28

[Burstall & Goguen 80] Burstall, R.M., Goguen, J.A.
The semantics of Clear, a specification language.
Proc. 1978 Copenhagen Winter School on Abstract Software Development, LNCS 86, 292-332,
Springer 1980.

[Burstall & Goguen 82] Burstall, R.M., Goguen, J.A.
Algebras, theories and freeness: an introduction for computer scientists.

Proc. 1981 Marktoberdorf NATO Summer School, Reidel 1982.
[Ehrich 82] Ehrich, H.-D.

On the theory of specification, implementation and parameterisation of abstract data types.
JACM 29(1982), 206-227.

[Ehrig et of 81] Ehrig, H., Kreowski, H.-J., Maggiolo-Schettini, A., Winkowski, J.
Transformation of structures: an algebraic approach.
Mathematical Systems Theory 14(1981), 305-334.

[Ehrig & Mahr 85] Ehrig, H., Mahr, B.
Fundamentals of Algebraic Specification I: Equations and Initial Algebra Semantics.
EATCS Monographs on Theoretical Computer Science, Springer 1985.

[Goguen 71] Goguen, J.A.
Mathematical representation of hierarchically organised systems.
In: E. Attinger (ed.), Global Systems Dynamics, 112-128, S. Karger 1971.

[Goguen & Burstall 84] Goguen, J.A., Burstall, R.M.
Some fundamental algebraic tools for the semantics of computation. Part I: Comma categories,
colimits, structures and theories.

TCS 31(1984), 175-209.

[Goguen & Burstall 85] Goguen, J.A., Burstall, R.M.
‘ Institutions: abstract model theory for computer science.

Tech. Rep. CSLI-85-30; an earlier version: Introducing institutions, in Proc. Logics of Pro-
gramming Workshop, ed. E.Clarke, Springer LNCS 164, 221-256.

[Goguen & Burstall 86] Goguen, J.A., Burstall, R.M.
A study in the foundations of programming methodology: specifications, institutions, charters
and parchments.
Proc. of Summer Workshop on Category Theory and Computer Programming, University of

Surrey 1985, Springer LNCS 240, 313-333.

[Goguen & Ginali 78] Goguen, J.A, Ginali, S.
A categorical approach to general systems theory. ~
In G. Klir (ed.) Applied General Systems Research, p.257-270.

29

[Goguen, Thatcher & Wagner 76] Goguen, J.A., Thatcher, J.W., Wagner, E.G.
An inijtial algebra approach to the specification, correctness and implementation of abstract data
types.
IBM Res. Rep. RC 6487, also in R.T. Yeh (ed.) Current Trends in Programming Methodology,
Volume 4, Data Structuring. Prentice-Hall, 1978, 80-149.

[Grothendieck 63] Grothendieck, A.
Catégories fibrées et descente. 1
Revétements étales et groupe fondamental, Séminaire de Géométrie Algébraique du Bois-Marie
1960/61, Exposé VI, Institut des Hautes Etudes Scientifiques, Paris 1963; reprint. Lecture Notes
in Mathematics 224, Springer 1971, 145-194.

[Herrlich & Strecker 73] Herrlich, H., Strecker, G.E.
Category Theory.
Allen & Bacon, Rockleigh 1973.

[Johnstone & Paré 78] Johnstone, P.T., Paré, R.
Indexed categories and their applications.
Lecture Notes in Mathematics 661, Springer 1978.

[Kamin & Archer 84] Kamin, S., Archer, M.
Partial implementations of abstract data types: a dissenting view on errors.
Proc. Semantics of Data Types, Sophia-Antipolis, France, LNCS 173, Springer 1984, 317-336.

[MacLane 71] MacLane, S.
Categories for the Working Mathematician.
Springer 1971.

[Mayoh 85] Mayoh, B.
Galleries and institutions.
Tech. Rep. DAIMI PB-191, Aarhus University, 1985.

[Sannella & Tarlecki 84] Sannella, D.T., Tarlecki, A.
Building specifications in an arbitrary institution.
Proc. Symp. Semantics of Data Types, Sophia- Antipolis, LNCS 173, 337-356, Springer 1984. Ex-
tended version: Specifications in an arbitrary institution, Information & Computation 76(1988),
165-210.

[Sannella & Tarlecki 85] Sannella, D.T., Tarlecki, A.
On observational equivalence and algebraic specifications.
JCSS 34(1987), 150-178; extended abstract in Proc. TAPSOFT 85, Berlin, Springer LNCS 185,
308-322.

[Sannella & Tarlecki 86] Sannella, D.T., Tarlecki, A.
Extended ML: an institution independent framework for formal program development.

30

In Proc. of Summer Workshop on Category Theory and Computer Programming, University of
Surrey 1985, Springer LNCS 240, 364-389.

[Sannella & Tarlecki 87] Sannella, D.T, Tarlecki, A.
Towards formal development of programs from algebraic specifications: implementations revis-
ited.
Acta Informatica 25(1988), 233-281; extended abstract in Proc. TAPSOFT’87, Pisa, Springer
LNCS 249, 96-110.

[Tarlecki 85] Tarlecki, A.
On the existence of free models in abstract algebraic institutions.
TCS 37(1985), 269-301.

[Tarlecki 86] Tarlecki, A.
Bits and pieces of the theory of institutions.
Proc. of Summer Workshop on Category Theory and Computer Programming, University of
Surrey 1985, Springer LNCS 240, 334-363.

[Tarlecki 87] Tarlecki, A.
Quasi-varieties in abstract algebraic institutions.
JCSS 33(1986), 333-360.

[Thatcher, Wagher & Wright 82] Thatcher, J.W., Wagner, E.G., Wright, J.B.
Data type specification: parameterisation and the power of specification techniques.

TOPLAS 4(1982), 711-732.

[Wand 79] Wand, M.
Final algebra semantics and data type extensions.
JCSS 19(1979), 27-44.

31

Copyright © 1988, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

