LECS

SNOLLSANO NOLLYNIAVXH ZLVAAVIOLSOd

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

EDINBURGH UNIVERSITY
POSTGRADUATE EXAMINATION QUESTIONS
IN
COMPUTATION THEORY

1978 - 1988
. ECS-LFCS-88-64
LFCS Report Series (also published as CSR-276-88)
LFCS SEPTEMBER 1988
Department of Computer Science
University of Edinburgh , .
The King's Buildings Copyright © 1988, LFCS

Edinburgh EH9 3JZ

Edinburgh University
Postgraduate Examination Questions
in

Computation Theory

1978 — 1988

Preface

For the past eleven years an informal course of lectures and seminars in Computation
Theory has been offered to postgraduate students at Edinburgh University. This course,
designed to give first-year Ph.D. and M.Phil. students a suitable grounding for research in
this area, was begun in 1977/78 by the Departments of Computer Science and Artificial
Intelligence and has been continued since 1979/80 by the Department of Computer Science.
In 1977/78 the course consisted of about 100 hours of lectures plus seminars and this has
grown to over 170 hours in 1987/88.

The course is divided into three broad sections: Complexity, Programming Methodol-
ogy and Semantics. Each of these sections contains between three to five topics. These
topics vary from year to year, reflecting the interests of lecturers and visiting researchers.
Some of the introductory material has in recent years been incorporated into the third-
and fourth-year undergraduate syllabus but the more advanced material (about half of the
course) is provided for postgraduate students only.

Each year in May there is an informal three-day take-home examination on the material
taught in the course. The examination normally contains one question on each topic and
students are asked to answer four questions of which at least one should be from each of the
three sections of the course. The students are allowed to consult books and course notes
but not to collaborate or discuss the questions with others. Each question is supposed to
require on the order of six hours to solve. This report contains all of the questions which
appeared on these examinations since the course began, organized more or less by topics.

Here is a list of the students who have endured the examination:

1977/78: ~Con Bradley, David Rydeheard, Martin Seysen and Glynn Winskel

1978/79: Luca Cardelli, Luis Damas, Mark Jerrum, Alan Mycroft, Michael
Sanderson and Donald Sannella

1979/80: Gordon Brebner, Li Wei, Brian Monahan and Kevin Mitchell

1980/81: Rocco De Nicola, Peter Dybjer, Mark Millington and Carl
Sturtivant

1981/82: Flemming Nielson, Barbara Paech, Hanne Riis Nielson and Oliver
Schoett

1982/83: Ilaria Castellani, Andreas Goerdt, K.V.S. Prasad, Brian Ritchie and
Allen Stoughton

1983/84: Tatsuya Hagino, Kim Larsen and Alistair Sinclair

1984/85: Marek Bednarczyk, David Berry, Martin Ilisley, Eugenio Moggi and
Mads Tofte

1985/86: Simon Brown, Mads Dam, Claire Jones, Andreas Knobel, Faron
Moller and Sun Yong

1986/87: Jordi Farrés-Casals, James Harland, Pawel Paczkowski, David Pym,
Simon Ambler, Luo Zhaohui and Chris Tofts

1987/88: Jamie Andrews, Jo Blishen, Julian Bradfield, Carolyn Brown,
Douglas Gurr and Leslie Henderson

The lecturers on the course who were responsible for setting examination questions in-
cluded the following:

Lloyd Allison, Gordon Brebner, Rod Burstall, Gerardo Costa, Martin Feather,
Michael Gordon, Robert Harper, Matthew Hennessy, Furio Honsell, Mark

Jerrum, Kyriakos Kalorkoti, -Clemens Lautemann, David MacQueen, Ian
Mason, Robin Milner, Kevin Mitchell, Eugenio Moggi, Alan Mycroft, Gordon
Plotkin, Nick Rothwell, David Rydeheard, Donald Sannella, David Schmidt,
Jerry Schwarz, John Scott, Mike Shields, Alistair Sinclair, Mike Smyth, Colin
Stirling, Andrzej Tarlecki, Robert Tennent, Les Valiant, Chris Wadsworth and
Glynn Winskel.

The course has been organized by a succession of people including:

Rod Burstall, Matthew Hennessy, Robin Milner, Donald Sannella and Les
Valiant.

My apologies if anybody has inadvertently been omitted from these lists.

Special thanks to Peter Dybjer, Andreas Goerdt, Eleanor Kerse, Gordon Plotkin and
Brian Ritchie for digging up old exam papers, to Robert Harper, Mark Jerrum, Kyriakos
Kalorkoti, Robin Milner, Kevin Mitchell, Gordon Plotkin and Colin Stirling for helping
with the editing, and to Karen McCall for typing.

Donald Sannella
September 9, 1988

i

1 Analysis of algorithms

Analysis of algorithms (1988)

Let n be a perfect square, X a set of cardinality n, and < a total order on X. The
elements of X are arranged into a v/n X \/n array (a;;) in which the elements which form
each row and column are correctly ordered according to <; that is to say, the conditions
a5 < @541 and ag; < @449, hold for every legal choice of ¢ and j. Note that the arrangement
of elements of within the array gives partial information about the total order <. This
prior knowledge may reduce the number of pairwise comparisons required to answer queries
involving the total order <.

- Derive good upper and lower bounds on the number of pairwise comparisons requlred
in the worst case, to perform the following operations.

(a) Sort the set X (i.e., completely determine the total order <). [Hint: you may need
to use the so called ‘hook formula’, which can be found in a number of references
including [Knu).]

(b) Given an element = € X, locate z within the array (a;;).
(c) Given an element z, determine the rank of z within X.

(d) Find the median of the set X. [Note: in this part, it may not be possible to obtain
upper and lower bounds which are within a constant factor of each other.]

References

[Knu] D. E. Knuth, The Art of Computer Programming 2: Sorting and Searching. Addison-
Wesley, 1969.

Analysis of algorithms (1987)

Consider the following probabilistic algorithm for finding the kth largest of a finite set
S of integers.

procedure select(k, S);
begin
Choose @ uniformly from S;
Sp:={zeS: z<a};
Sag:={z€S: z>a}
[Forming Sz, Sg requires |S| — 1 comparisons in total |
if £ < |S¢g| then select(k,Sg)
else if k = |Sg| + 1 then output a
else select(k — |Sg| — 1, SL)
end

Analyse, as accurately as you can, the expected number of comparisons performed by
select when finding the median of a set of n elements. (An ezact analysis may be impossible
or infeasible).

Analysis of algorithms (1986)

Suppose G = (V, E) is an undirected graph, and w a function which assigns a rational
“weight” w(e) to each edge e of G. Extend the function w to subgraphs of G by defining
the weight of a subgraph H to be the product of the weights of the edges which compose
H. Let M(G,w) be the sum of the weights of all perfect matchings in G, and C(G,w)
be the sum of the weights of all closed subgraphs of G. (These quantities have a certain
significance in statistical mechanics.)

Let T = (U, A) be an undirected graph. The prism with base I' and height & is the -

undirected graph with vertex set U x {1,...,k} and edge set
{{{w,9), (v,9)}:1 < i< hand {u,v} € A} U {{{v,%),(u,i +1)}:1<i<h—1landueV}

(a) Let T be a fired undirected graph. Present a polynomial time algorithm for
computing M (G, w) when G is a prism with base I', and w is an arbitrary
assignment of rational weights to the edges of G. (Assume any reasonable
encoding for rational numbers. Note that the running time of the algorithm
may be exponential in the size of T.)

(b) A polynomial-time algorithm is known which computes M (G,w) when the input
graph G is restricted to be planar. Using this algorithm as a subroutine, design
a polynomial-time algorithm for computing C(G, w) when G is planar.

Notes:
® A perfect matching is a spanning subgraph in which every vertex has degree 1.

o A closed subgraph is a spanning subgraph in which every vertex has even degree
(possibly 0).

Analysis of algorithms (1985)

Let ¥ be a finite alphabet. Define a relation R on £* as follows. For z,y € X*, 2Ry if
and only if y can be obtained from z by one of the following three operations.

i. Inserting a single letter into x
1. Deleting a single letter from z
ili. Replacing a letter in z by a different letter

Also define d(z,y) = min{k € N; zRFy}. (d is a metric on ¥*).
Present an algorithm for computing d(x,y) which runs in time O(d(z, y)min{|z]|, |y|})-

[Hint: as a subgoal find an algorithm which runs in time O(|z| - |y]).]

Analysis of algorithms (1984)

Let n by a positive integer, X = {1,...,n} and fi,... fn: X — X be a set of functions
from X to itself. The functions fi,..., f, are sparse, that is to say they differ from the
identity function on only a small subset of X. Accordingly, each function f;, 1 <i < m,
is specified by listing (in any order) the elements of the set:

Si ={(=, fi(z)):z € X, fi(z) # =z}

Give an algorithm, running in time O(n + £7,|S;]), for finding the composition g =
fio fao-- o fn of aset of functions {fi,... fm} presented in the above form. .

[Note: This problem has a trivial solution, a fact which was not realised when the question
was set.]

Analysis of algorithms (1983)
The following is a non-trivial result for the theory of graphs:

Theorem (Lipton and Tarjan) Let G be an undirected, planar graph on n vertices. Then
the vertices of G can be partitioned into three sets, U, V and S, such that no edge of @
has endpoints in both U and V, neither U nor V contains more than 2n /3 vertices, and
S contains not more than 21/2+/n vertices. Moreover, an algorithm exists which finds a
partition U;V, S satisfying the above in O(n) time.

The theorem suggests a natural recursive divide and conquer approach to solving prob-
lems on planar graphs. Investigate this technique by applying it to the following two prob-
lems:

PLANAR GRAPH 3-COLOURABILITY
Input: Undirected planar graph G

Output: True if there is an assignment of three colours to the vertices of G such that no
two adjacent vertices are assigned the same colour; false otherwise.

COUNTING MATCHINGS IN A PLANAR GRAPH
Input: Undirected planar graph G

Output: The number of matchings in G. (A subset M of the edges of G is a matching iff
no two edges in M are incident at a common vertex.)

Obtain tight upper bounds on the run-time of your proposed recursive algorithms, and
compare then with the corresponding bounds for algorithms employing naive “exhaustive
search”.

Graph algorithms (1982)

Consider the following generalisation of the notion of matching in a graph. Suppose D
is a subset of the natural numbers and G' = (V, E) is an undirected graph with vertex set
V and edge set E. A subset F of E is said to be a D-factor iff, for all vertices v € V:

|{e € F' | e incident at v}| € D

Note that under this definition, perfect matching and {1}-factor are synonymous. The
decision problem corresponding to this notion is:

D-FACTOR
Input: Undirected graph G.
Output: True iff G contains a D-factor.

Suppose (as in fact is the case) that there exists a subroutine for {1}-FACTOR which
runs in time O(n?%), where n is the number of vertices in the input graph. Given such

a subroutine, construct and justify polynomial time algorithms for each of the following
specialisations of D-FACTOR:

(a) D is restricted to be of cardinality 1.
(b) D is of the form {d | dy < d < d;} for some natural numbers dg, d;.
(c) D={1,3,5,17,9,...}.

What are the time complexities of your proposed algorithms for (a)-(c)?

Analysis of algorithms (1982)

Saigon is a game similar to Hanoi, but with the tiresome restriction on the number of
towers removed. In (n,t)-Saigon there are n discs of various sizes arranged in t towers.
An arrangement of discs is legal if no disc rests immediately on top of a disc of smaller
size. A move is a transition from one legal arrangement to another, which is effected by
removing the topmost disc from one tower and placing it on top of another tower. A game
is a sequence of moves which transforms the initial arrangement, in which all discs are in
the first tower, to the final arrangement in which all discs are in the second tower. Let
S(n,t) be the minimum number of moves in a game of (n,t)-Saigon.

(a) Prove that S(n,4) < 2%’ for some real number o

(b) Prove that S(n,5) < 2em** for some real number o

(c) Prove that S(n,|lgn]), for n > 8, is bounded above by a polynomial function
of n.

Graph algorithms (1981)

Let T' = (V, A,r) be an undirected tree, rooted at r, with vertex set V and edge set A.

Call a matching M C A of T proper if, for all vertices v € V — {r}, the following property
holds:

gither v is covered (saturated) by M
or there is an edge in M which is incident both at the father of
v and at some brother of v.

(a) Prove that if M is a proper matching in T then M is a maximum (cardinality)
matching in T

(b) Show how to find a proper matching (and hence a maximum matching) in T in
time O(|V]), using depth first search.

(c) Let G = (V, E) be an undirected graph and let T' = (V, A,r) be a depth first
spanning tree of G. Let M(G) be a maximum matching in G, and M(T) be
a proper matching in T. Prove that if r is covered by M(T') then |M(G)| <
2 |M(T)| — 1, and that otherwise |M(G)| < 2 |M(T)|.
[Hint: Use induction on the number of vertices in G. Consider the subgraphs
of G which are spanned by the subtrees of T rooted at the sons of r.]

(d) Use the result of (c) to construct an algorithm which takes as input an arbi-
trary graph G = (V, E) and produces, in time O(|E|) a matching in G whose
cardinality is at least % that of a maximum cardinality matching in G.

Analysis of algorithms (1980)

Show that both of the following problems have polynomial time algorithms:

(a) Satisfiability of CNF formulae with at most two literal in each conjunct.

(b) Given threestringsay...an,b1...by,¢1...Copm € {0,1}* to determine whether
the set {1,...,n 4+ m} can be partitioned into two disjoint subsets Xy, X, such

that the substring of ¢; ... ¢s4m indexed by X is a; ... a,, and that indexed by
X2 is bl...bm.

Analysis of algorithms (1978)

Derive a comparison algorithm for the problem of finding the median of five elements
that has worst-case complexity equal to six.

2 Computational complexity

Computational complexity (1988)

After a particularly successful day at the office, you are convinced that you have de-
signed a polynomially time bounded deterministic Turing machine with the following cu-
rious property: when presented with (a reasonable encoding of) a Boolean formula ¢ over
{A,V,~} it outputs a list of ten natural numbers, one of which is the correct number of
satisfying assignments of ¢. (Unfortunately, there is no way of telling which one.) You

inform your best friend of this result, whereupon she reflects for a moment and exclalms, “
“So P = NP — I knew it!”

Alas, before she is able to provide a proof of this preposterous claim she is spirited
away by an evil sorcerer, never to be seen again. Ever eager to boost your list of publi-
cations, you are therefore obliged to construct a proof yourself, assuming the existence of
the Turing machine described earlier.

[You may find the following ideas helpful:

(a) Consider how a pair ¢y, #; of Boolean formulae may be combined into a third Boolean
formula + such that the numbers of satisfying assignments of ¢; and ¢, may be
deduced easily from the number of satisfying assignments of .

(b) For a given Boolean formula ¢, think about the binary tree of formulae formed by
setting the values of successive variables in ¢ to True and False. Satisfiability of ¢
may be determined by searching this (rather large) tree: how might the information
provided by your Turing machine be used to prune the tree to a manageable size?)

Computational complexity (1987)

Let f by a polynomial time transformation from quantified Boolean formulae to strings
over {0,1}. Prove that if, for some polynomial p, the set {f(F) | F is true} contains at
most p(n) strings of length n for all n, then P = PSPACE.

Computational complexity (1986)

Find a direct polynomial transformation f which maps any conjunctive normal form
expression E to some graph G and some integer k such that the number of satisfying
assignments of E is equal to the number of non-isomorphic colourings of G using & colours.

Comment on the relevance of your transformation to the classification to the problem
of counting graph colourings.

Computational complexity (1985)

Let PNPlog] he the class of polynomial time deterministic Turing Machines (TMs) which
makes at most a logarithmic number of calls on an NP oracle during execution.

Show that, for any TM M in PNFPlogl there is a polynomial time deterministic TM
making one call on a #P oracle during execution which accepts its input string w if an
only if M accepts w. :

[Hint: Consider a non-deterministic TM M’ which is the same as M, except when an
oracle call is made. At each call, it non-deterministically chooses between

a) Simulate the oracle computation, then halt.

(
(b) Assume the oracle answers ‘yes’, and continus M’s computation, but “repeated”
non-deterministically many times.

(c) Assume the oracle answers ‘no’, and continue M’s computation, but “repeated”
non-deterministically many times.]

Computational complexity (1984)

Let EXPTIME [NEXPTIME] be the complexity class which contains precisely those
languages which can be recognised by a deterministic [non-deterministic] Turing Machine
in time at most exponential in the input size.

(a) Show that if EXPTIME # NEXPTIME, then P # NP

A language L is said to be sparse if, for all n, the number of strings in L of size at most
n is bounded by a polynomial in n.

(b) Show that, if a sparse language L is contained in NP, but not P, then EXPTIME
NEXPTIME

Computational complexity (1984)

Given a fixed non-deterministic Turing Machine M which has polynomial run-time,
devise a polynomial time transformation which maps each input w for M to a directed
graph G(w) such that M accepts w if and only if G(w) has a Hamiltonian circuit. Your
transformation should be direct, i.e. not involve any intermediate sub-transformations.

Complexity (1983)

It is well-known that the problem of determining whether an undirected graph has a
Hamiltonian path is NP-complete. Indeed, the problem remains NP-complete even if the
graph is restricted to being “cubic”, that is exactly three edges are incident at each vertex.

An undirected graph G = (V, E), with vertex set V and edge set E, is called an edge
graph if there exists an undirected graph H = (N, L) such that G is isomorphic to the
graph with vertex set L and an edge set consisting of all pairs of edges that share a com-
mon vertex in H.

A theorem of Krausz states that G = (V, E) is an edge graph if and only if there is a
partition of E such that each subset in the partition forms a clique and every vertex in V
has incident edges which are in at most two subsets in the partition.

Show that the problem of determining whether an edge graph has a Hamiltonian path
is NP-complete.

Complexity (1983)

A Turing Machine (TM) may be augmented with an oracle. This allows it to test
whether the string stored on a special “oracle” tape is contained in a particular language
in one time step. By employing such TMs, new complexity classes may be defined. If X
is a class of TMs operating within some resource bound, then X4 is the same as X except
that the TM can recoginise the language A in one time step.

Consider the complexity class RP, which consists of all non-deterministic TMs in NP
having the additional property that, if they have time complexity n* for some constant k,
then they have either zero or at least 271 accepting computations. RP may be viewed
as the class of polynomial time randomised algorithms.

Show that, for some language D, PP # NP? = RPP.

[Hint: Construct D (by induction on the size of strings contained in D, or otherwise) in
such a way that:

(a) {z | 3y.ly| = |z| and y € D} ¢ PP and
(b) The problem NCOMP (generalised to TMs with D oracle) € RP?\)]

Complexity (1982)

Consider the following pebble game, played on a directed acyclic graph (DAG), in
which the aim is to place a pebble on every node exactly once and end with a pebble on
every output node, subject to the rules:

1. A pebble may be placed on a node if either

i. the node is an input node, or
ii. all immediate ancestors of the node have pebbles on them.

2. A pebble may be removed from any node at any time.

Show that, given a DAG G and an integer k as input, the problem of determining the
existence of a strategy using at most k pebbles is NP-complete.

[Hint: Recall that satisfiability of CNF expressions with exactly three literals per clause is
a well-known NP-complete problem. An obvious non-deterministic algorithm is to select
true/false values for each variable in turn, and then check the truth of each conjunct in
turn. You may care to consider simulating this algorithm by playing the pebble game on
an appropriate DAG.]

Complexity (1981)

(a) Give a direct polynomial time reduction from NCOMP to CLIQUES [N.B. Here
NCOMP is the problem of determining whether a non-deterministic one tape
TM M halts in y steps on input = (M, z,y arbitrary). You may not appeal to
any known results.]

(b) Let LOGCLIQUES be the problem of determmmg for an arbitrary graph with
(say) n nodes whether it has a clique of size l'logzn'l Would you expect this
problem to be NP-complete?

Complexity (1981)

Let HC be the problem of determining for an arbitrary undirected graph whether it
contains a Hamiltonian circuit. Describe an algorithm for this problem that runs in time
K™ for all n-node graphs, where K is a fixed constant (independent of the graph and of n).

Now consider space efficient non-deterministic Turing machine algorithms for HC.
What is the best non-deterministic space upper bound that you can give for this problem?
Why would an upper bound of o(y/n) surprise you?

Complexity (1980)

(a) Show that each of the following functions is time constructible and space con-
structible.
i. n?
ii. 27
iii. n!
(b) What, if any, is the relationship between each of the following pairs of complex-
ity classes?
i. DSPACE(n?) and DSPACE(f(n)) where f(n) = n for odd n, and f(n) = n?
for even n.
ii. DTIME(2") and DTIME(3™)
ili. NSPACE(2") and DSPACE(5")
iv. DSPACE(n) and DTIME([log,m|™)

Complexity (1980)

Consider the following three computational problems:

(a) K-colouring the nodes of a graph
(b) Satisfiability of Boolean formulae in conjunctive normal form and

(c) Hamiltonian circuits in directed graphs.

Give direct polynomial time reductions

1. from (a) to (b) and
2. from (b) to (c).

Complexity (1979)

Give a direct polynomial time transformation f
f: Boolean CNF Formulae — undirected graphs

such that if F' is any CNF formula over n variables, then for some & the number of distinct

truth assignments that make F true is equal to the number of ways of colouring the graph
f(F) with k colours.

[N.B. Here sets of isomorphic colourings are counted as one.)

Complexity (1979)

For appropriately restricted functions f, g, h prove that
DTAPE(f(n)) € DTIME(g(n)) = DTAPE(f(k(n))) € DTIME(g(h(n)))
Using such arguments prove that for all rational r > 1,
(a) P # DTAPE(z")
(b) P &£ NTAPE(2")
(c) NP # DTAPE(z")
(d) NP # NTAPE(z")

10

Complexity (1978)

Consider the class of regular expressions over the alphabet {0,1} which include the
operation of squaring in addition to the usual concatenation, union and Kleene closure.
(If E is a regular expression then the language denoted by E? is {wrwy: wy,we € L(E)}
where L(E) is the language denoted by E.) Let TOT be the problem of deciding whether
the language represented by such a regular expression is equal to {0,1}*.

Describe in detail how you would obtain a number X for which the following statement
is true: “Any Turing machine with tape alphabet {0,1} that

(a) works in space less than 2190, and
(b) solves TOT for all inputs of size X,

is of size at least 21000”

11

-3 Algebraic complexity

Algebraic complexity (1988)

Let k be any field, X a finite set of indeterminates over k and F a finite subset of k(X).
For Y C X put

Ly(k,X):{ > oz tyg azek,gék(Y)}.

z€X Y
B

Define fi,..., fa € k(X) to be linearly independent modulo Ly (k, X) if, for all oy, ..., a4€
k, we have that ayf; + -+ + ayfs € Ly(k,X) if and only if ay,...,aq = 0. Put

b6y (F,k,X) = max{d | 3f1,..., fs € F which are 1i. modulo Ly(F, k, X)}.

Let Ay(k,X) be the set of all isomorphisms o: k(X) — k(X) which are the identity on
k(Y). Put
py (Fyk, X) = min{6(F’, k(X - Y),Y) | 0 € Ay(k, X)}.

Show that forallY C X
L(F) 2 5Y(F’ kaX) +/‘Y(F7kaX)'

Algebraic complexity (1987, 1986)

The first part of this question is much harder than the second and carries twice the
marks. The two parts are independent.

Let k be an infinite field and po,...,Pm,qo0,-- ., qn,t be indeterminates over k. Put

m 3
p=) pi,

=0

qg= EQitia
1=0

m+tn

pg = Z et

i=0
For0<l<u<m+4nandT C{0,...,m+n} let P(m,n,l,u,T') denote the non-scalar
complexity of computing ¢, ..., c, given that each ¢;, for ¢ € T, has already been computed
and can be used without extra charge.
Let zo,21,... be new indeterminates over k£ and put

X = Z a:,'ti,

i=0
Y=X1= iyiti.
=0
(Regard X as a unit of k(zo,z1,...)[[t]] and take its inverse in this ring.) For n > 1 put
Tn= LYo, sYn-1),

12

where computations are carried out with scalars k and “inputs” wo, ..., Zn_1.

1) Show that

T4n S T2n + P(n—l,Zn—l,O,?)n—?,w)
+ P(4n—2,4n—1,2n,4n—1,{0,...,2n —1})

2) Let g be as above and put
2n
q2 = Editz7

1=0
Sy = L(do, s ’dr-l)a

where 1 < r < 2n + 1, and computations are carried out with scalars k and “inputs”
Qos -+ -+ gn. Show that

Tn 2 Sn—?-

(Hint: you will find it helpful to consider an optimal algorithm A for computing yo, . . . , yn_1
and replace xo with some suitable scalar a. Alternatively treat zo as a scalar so that com-
putations are carried out with scalars k(o) and “inputs” ;,...,2,_;.)

Algebraic and axiomatic complexity (1985)

Let k be an infinite field, X = {z,...,z,} a set of indeterminates over k and A a
straight line algorithm over k(X)) given k, X. For any S C k(X)" say that A admits
substitutions s if for all (s4,...s,) € S the substitution ¢ defined by o(z;)) =s,1<i<n

is suitable for A (i.e. replacing each “input” w; of A with o(z;) does not cause a division
by zero). Define the L5-complexity, L5(F), of F C k(X) to be

min{L(A) | A computes F' and admits substitutions S}

if such an A exists and oo otherwise.

(a) State a necessary and sufficient condition for L5(F) to be finite. (The condition
should depend only on the elements of F').

(b) Explain briefly why
of
S(fy==—,..., =) < 3L"S
2oL, 2Ly <ans(m
holds for any f € k(X) and S C k(X)" (See chapter 4 of [Kal)).

From now on let
R ={A € k" | A is an invertible matrix}

(identify n X n matrices with n?-tuples by writing the rows of a matrix one after the other).
Let I(n) be the LE-complexity of computing the inverse of arbitrary invertible n x n

matrices. Let M(n) be the ordinary L-complexity of computing AB for arbitrary n x n
matrices A, B.

13

(c) Find the inverse of the matrix

0 0 I
0 I B
I A0

where A, B are arbitrary n X n matrices and I is the n X n identity matrix.
Deduce that

I(n) 2 cM(n)

for some constant ¢ > 0.

The trace of an n X n matrix A = (a;;) is given by

tT‘(A) = Z a;;
1=1

Let T'(n) be the L¥-complexity of computing tr(A™!) of an arbitrary n X n matrix A.

(d) Show that
T(n)>dM(n)

for some constant d > 0.

[Hint: use part b and an “extended” version of part c.]
References

[Kal] K. Kalorkoti. Introduction to algebraic complexity (lecture notes).

14

4 ML
ML (1988)

The paper [Car] describes the polymorphic typechecking algorithm applied to a simple
functional language, and gives an example implementation in an (obsolete) dialect of ML.
Your task is to understand and re-implement the typechecker in Standard ML, using the
modules facilities.

Break the implementation down into modules, one to provide each of:

the library routines, utilities and timestamps given on page 12 of the paper;

the type definitions for Type objects, and functions to manipulate them (pages 13—
15);

the environment management functions (page 15);

the typechecker itself (page 16).

If any of these modules relies on any other, then it should be written as a functor with
the other module as an argument. If a module does not rely on any other, then it can
be implemented as a structure. Attach a signature to each module, to minimise interface
dependency between them.

The top-level module should be an abstraction, to ensure that there are no accidental
dependencies on types visible in sub-structures. The signature should look like:

signature TYPECHECKER =
sig
datatype Term = ...
datatype Type

exception Undefined and Unify
val AnalyzeTerm: Term -> Type
end

(one or two other datatypes may be necessary so that you can construct terms and ma-
nipulate the types provided by this abstraction).

The function AnalyzeTerm should typecheck in an initial type environment containing
the pervasive identifiers given on pages 2-3 — others (such as times) may also be needed.
The Term datatype should be extended to allow integer constants.

Test your typechecker with the factorial function on page 2, the length function on
page 3, and the specific examples Ezl, Fz2 and Ez8 on pages 5-6.

References

[Car] L. Cardelli. Basic polymorphic typechecking. Polymorphism — The ML/LCF/HOPE
Newsletter 2,1 (1985).

13

ML (1987)

The problem is to write an interpreter for Horn clause logic programs in ML. While
grossly inefficient solutions will be marked down, the emphasis should be on clarity and
elegance. Your program should be written in terms of abstract types that you shall define;
luxuries such as parsing, pretty—printing, and proper error reporting are to be neglected.
The problem breaks down into two parts. The first is concerned with building the ma-
chinery of terms and substitutions, and the second with the interpreter proper.

Terms, atoms, substitutions

Fix a first—order language £. A term t is either a variable v or an n-ary function
symbol f applied to n terms ty,...,t,, written f(t1,...,%,). An atomic formula, or atom,
A is an n-ary relation symbol R applied to n terms t4,...,t,, written R(¢y,...,t,).

A substitution is a function o from variables to terms which is almost everywhere the
identity. The domain of a substitution o is the set of variables z such that o(z) # z. A
substitution o is extended to a function ¢! on terms as follows:

o(v) = o(v)
A f(tryeetn)) = foM(ts),. .., 0 (tn))

Substitutions are similarly extended to atoms. The superscript § is usually dropped.

Two terms #; and t, are said to be unifiable if there is a substitution o with domain
a subset of the free variables of ¢; and t; such that o(t;) = o(¢;); such a o is called a
untfier of ¢, and t5. A key fact about unifiers is that if two terms have a unifier, then
there is a unique (up to renaming of variables) most general unifier, written mgu(t,,1t,).
By “most general” we mean that if o = mgu(¢1,¢2) and o' is any other unifier of ¢; and ¢,
then o/ = 0" 0 o for some substitution o”. There is a simple, but inefficient, algorithm to
determine whether or not ¢, and t, are unifiable, and, if so, to return their most general
unifier.

The first part of the problem is to define abstract types for terms, atoms, and substitu-
tions, and to write an ML program in terms of these abstractions that implements the mgu
algorithm. To keep things simple, use a fixed first~order language £ with, say, a nullary,
a unary, and a binary function symbol, and a unary and a binary relation symbol. If you
are pressed for time, then you may simply specify, and not implement, the operations on
terms, atoms, and substitutions, and concentrate on writing a unification algorithm.

Logic programming

Aj,...An. A logic program, P, is a finite set of program clauses. A goal, or query, G, is
an n-tuple of atoms (n > 0), written ?A,, ..., A,. The empty goal is written 0.

The informal meaning of a clause A « A;,..., A, isVzy,... 2. A1A---AA, D A, where
all of the free variables of the clause are among the z;’s. For a fixed logic program P, the
informal meaning of a goal G =7A,,..., A, is the query “does there exist a substitution
o whose domain is the set of free variables in G such that o(A;) A--- A o(A,) is a logical
consequence of P?” Such a substitution is called an answer substitution.

Let P be the following logic program:

A program clause, or clause, C, is an n + 1 tuple of atoms (n > 0), written A «

ancestor(a, b) « parent(a, b)
ancestor(a, b) « parent(c, b), ancestor(a, c)

16

parent
parent
parent
parent

Fred, Pebbles) «
Wilma, Pebbles) «
Barney, Wilma) «
Betty, Wilma) «

The relation ancestor(a, b) means “a is an ancestor of b,” which holds if a is either a parent
of b or an ancestor of a parent of b.

The goal ? ancestor(Barney, Pebbles) is a consequence of P (with the empty answer substi-
tution), and the goal ? ancestor(a, Pebbles) is also a consequence of P, with substitutions
a + Fred and b~ Wilma. The goal ? ancestor(Bill, a) is not a consequence of P.

An interpreter for Horn clause logic programs is a program that, given a logic program
P and a goal G, attempts to determine whether or not G is a logical consequence of P, and,
if so, returns an answer substitution witnessing that fact. Note that no answer substitution
need exist, and that it is not recursively decidable whether or not one does exist. Thus
any logic programming interpreter may diverge if a given goal G is not a consequence of
P.

If G is a consequence of P, then it is always possible to find an answer substitution by
applying SLD resolution. Let G =?4,,...,A, be a goal and let C = B « B,,...,B,, be
a clause such that o = mgu(Ay, B) exists. The resolvent of G and C is defined to be the
goal

Az, ..., An,0(By),...,0(B,).

If A; and B fail to unify, then C' and G have no resolvent. An important theorem about
logic programs is that a goal @ is a logical consequence of a program P iff there is a

sequence G-= G1,...,G, = O of goals, and a sequence Cj,...,C,_y of clauses of P such
that G4, is the resolvent of G; and C; for each 1 < 7 < n — 1. Such a sequence is
called a refutation of G. Let 04,...,0,_; be the sequence of substitutions obtained at

each resolution step of a refutation of G. Then the answer substitution determined by this
refutation is the composition ¢,y 0 -+ - 0 oy restricted (for the sake of uniqueness) to the
free variables of G.

From the point of view of the logic programming interpreter, the problem is to find
a refutation of G whenever one exists. In the interest of efficiency many logic program-
ming systems (notably PROLOG) do not have this property: the interpreter may diverge
pursuing a sequence of resolutions that does not lead to O. For example, the goal P(a, c)
is clearly a consequence of the following program, yet most PROLOG interpreters fail to
find an answer substitution.

P(a,b) «

P(c,b) «—

P(.’IJ,Z) — P(m’y)’P(y,z)
P(z,y) « P(y,z)

The problem is that the fourth clause is “starved” by the PROLOG interpeter since every
atom that matches the fourth clause also matches the third, and so the fourth is never
tried, and the search fails to terminate.

The second part of this problem is to construct an interpreter for Horn clause logic
programs defined over the first-order language that you implemented in part one. Your
solution must have the property that it will find an answer substitution whenever one
exists.

17

ML (1986)

Design a package to support polynomial arithmetic with the following signature as an
interface.

signature POLYNOMIAL =
sig
type polynomial
and terms

exception polynomial of string (% In case of errors *)

datatype term = term of { order: int, coeff: coeff }
and coeff = int of int | poly of polynomial

(* Polynomial construction %*)
val polynomial: string * ((int * coeff) list) -> polynomial

(* Printing *)
val print: polynomial -> polynomial

(* Polynomial decomposition *)
val indeterminate: polynomial -> string
val terms: polynomial -> terms

(* Terms decomposition *)

val first_term: terms -> term
val rest_terms: terms -> terms
val is_empty_terms: terms -> bool

(* Polynomial arithmetic *)
val + : polynomial * polynomial -> polynomial
val * : polynomial * polynomial -> polynomial
val / : polynomial * polynomial -> { quotient : polynomial,
remainder: polynomial }
end;

Design the package so that it uses an efficient representation for both sparse and dense
polynomials. The package should be able to handle expressions such as

(@®+ (y* + 2y + 3)a® + 32 + 7) + (322 + 2¢ + 3)

Discuss how you would extend the package to cater for three or more representations
of a polynomial. :

ML (1985)

1. Design a function samefringe which, given two binary trees z and y, returns true
if the same values occur in the tips of z and y in the same order, regardless of the

18

internal structure of # and y, and returns false otherwise. The solution should avoid
flattening a huge tree when it is fringe unequal to the one with which it is being
compared.

2. Given an integer n, enumerate without repetition all paraffin isomers with the em-
pirical formula C, Hy, 2.

3. Briefly indicate how your solution to the paraffin problem could be made more effi-
cient.

ML (1984)

It is possible to remove bound variables from functions with curried arguments by the
use of combinators. We introduce three combinators, S, K, I, defined by the equations

Sfgz = fz(gz)
Kzy = =

Iz = &
We can ‘abstract away’ a bound variable from an expression E (written [z]E) as follows

[z](E1 E2) = S ([z] Ey) ([z] E,)
xlz = I
Xly = Ky

where y is a constant or a variable other than z.

1. Create an abstract data type in ML for simple terms involving arithmetic operations
and conditional expressions. Implement the abstraction function and use it to convert

definitions of the form “let fz = E” to “f = [z] E”.

2. Introduce the extra combinators B and C, defined by

Bfgz = f(g7)
Cifgz = fzyg

and the optimisations

S(KE)(KE) = K(EE)
S(KE)I = B
S(K E1)E; = BE;E, if no earlier rule applies
SE,(KE,) = CEE, ifno earlier rule applies

For testing purposes, you should check that the term representing
let fact n = if 0 = n then 1 else n * fact(n — 1)
is translated to

S(C(B cond (eq 0)) 1)(S times (B fact (C minus 1)))

19

where the constants cond, eq, times and minus are the curried versions of the
obvious functions.

3. Provide a reduction function for the resulting combinator terms and explain what

type of reduction you are performing (e.g. normal order reduction, applicative order
reduction, normal graph reduction etc.)

Include details of how to execute your program.

ML (1983)

1. Use the abstract data types expr (expressions) and term (terms, i.e. expressions
with variables) in the program below to write a simple rewrite rule theorem prover
to test whether two expressions are equal with respect to a given set of rewrite rules.
Give documentation for your program.

2. Suggest, without writing ML code, how your program could be extended to do
inferences using induction, e.g. about numbers or lists (data type definitions and
types of functions would be helpful).

(* Print formatting for lists *)
fun format _ [] = []
| format [bra, sep, ket] tkll =
let fun insert sep [1 = []
| insert sep [h] =h
| insert sep (h::t) = h @ (sep :: insert sep t)
in bra :: insert sep tkll @ [ket] end;

(* tkll is a list of list of strings, bra an open bracket, sep a
separator and ket a close bracket, all strings, result is a list of
strings e .g. format [u (ll s 1 s " s u) u] [[nau s "b"] , ["C" , "d"] R [ueu]] -
[Il (ll s |lall s |Ibll s 11 s 11] s llcll s Hdll , " s 1 , Ilell , H) "] *)

(skokokskskok sk e sk s sk s okok)

(* Expressions)

(kskeakskskok sk s sk s ko ok ok ok)
type opérator = string;

abstype expr = expr of operator * expr list
with
fun CONST opr = expr(opr, [1)
fun APP(opr,exl) = expr(opr, exl)
fun OPOF(expr(opr,_)) = opr
fun ARGSOF (expr(_,exl)) = exl
fun eqexpr(expr(opri,exll), expr(opr2,exl2)) =
let fun eqexprs([],[]) = true
| eqexprs((hi::t1), (h2::t2)) =
eqexpr(hl,h2) andalso eqexprs(ti, t2)
in oprl = opr2 andalso eqexprs(exll,exl2) end
fun prexpr(expr(opr,exl)) = opr :: format ["(",",",")"] (map prexpr exl)
end;

20

(ot ook sk stk se sk sk e sk s ok e sk o)

(* Substitutions x*)

(ke seske sk o skoke s sk ok sk sk ok ok)
type variable = string;

type substitution = (variable * expr) list;
exception Get and Put;

fun prsub subst =
let fun prpair(v,ex) = format ["<",",",">"] [[v], prexpr ex]
in format ["sub(",",",")"] (map prpair subst) end;

fun get(_, []: substitution) = raise Get
| get(v, (vi,ex)::subst’) = if v = vl then ex else get(v,subst’);
(* gets the value corresponding to a variable v in a substitution
e.g. get("b",[("a", ex1), ("b", ex2)]) = ex2 *)

fun put(v, ex, subst) =
(let val exl = get(v, subst)
in if eqexpr(exl, ex) then subst else raise Put end)
handle Get => (v,ex) :: subst;
(* puts the pair (v,y) into a substitution, first checking whether
v is already defined. Fails if V is differently defined. %)

(kokkkokkodok ok)

(* Terms *)
(seokeokeskeske sk ok ok ok ok)

abstype term = var_t of variable | app_t of (operator * term list)
with

fun var v = var_t v

fun const opr = app_t(opr,[])

fun app(opr,tml) = app_t(opr,tml)

fun subst subs (var_t v) = get(v,subs)

| subst subs (app_t(opr,tml)) = APP(opr, map (subst subs) tml)
(* substitute in term to get an expression *)

infix &;
fun £ & g = fn x => g(f x);
fun I x = x; :

exception Match;
fun match(tm, ex) = (* subst (match(tm, ex)) tm = ex,
if possible, if not raise Match *)
let fun matchl ((var_t v), ex) subs =
(* subst (matchl(tm, ex)) (subst sub tm) = ex,
if possible, if not raise Match *)
(put(v,ex,subs) handle Put => raise Match)

. 21

| matchl ((app_t(opr,tml)), ex) subs =
(if OPOF ex = opr then matchall(tml, ARGSOF ex) subs
else raise Match)
and matchall([], exl) = I
| matchall(h::t, eh::et) = matchl(h, eh) & (matchall(t,et))
in matchl (tm, ex) [] end

fun prterm (var_t x) = [x]
| prterm (app_t(opr,tml)) =
opr :: format ["(",",",")"] (map prterm tml)
(* converts a term to a string list for printing *)
end;

(koo ok ok ok ok)
(* Testing *)
(ks skokeskesk sk sk ok koK)

val A = CONST "A" and B = CONST "b";

fun F(el, e2) = APP("f", [e1l, e2]) and G e = APP("g", [el);
val FAGB = F(A, G B) and FGBGB = F(G B, G B);
implode(prexpr FAGB); implode(prexpr FGBGB);

val x = var "x" and y = var "y" and a = const "a'" and b = const "b";
fun f(el, e2) = app("f", [el, e2]) and g e = app("g", [el);

val fxy = f(x,y) and fgxa = f(g x, a) and fxx = f(x,x);

val fay = f(a, y) and fgby = £f(g b, y);

implode(prterm fxy); implode(prterm fgxa); implode(prterm fxx);

implode(prexpr(subst [("x", FAGB)] fgxa));
implode(prsub(match(fxy, FAGB)));

implode(prsub(match(fxx, FAGB))) handle Match => "Fails on match";
implode(prsub(match(fxx, FGBGB)));

ML (1982)

You intend to write in ML an interpreter for a subset of ML (with parser and type-
checker). Give a plan for your program indicating the main abstract data types you would
use and what functions you would define. It is not necessary to specify these formally, but
you should convey your intentions by giving good names to functions and giving the type

of each function with a brief explanation.

Try to show the overall structure of your design. Don’t actually write the program.

ML (1981)
Write a unification algorithm in ML. It need not be efficient, but it should be correct.

Submit your program with test data and results. [Some credit will be given for a hand-
written program if you are short of time.] Note that the most general unifier of a pair

22

of terms (if it exists) is the most general term which is a substitution instance of each of
them; thus the unifier of f(a,y) and f(z, g(z)) is f(a, g(a)).

Programming languages and concepts (1980)

Write and test in ML a simple editor for abstract syntax trees. The abstract syntax
may be fixed, e.g. that of a trivial programming language, and it should be impossible to
create ill-formed trees. Operations should include

e create a tree

e move pointer up or down

¢ find next occurrence of a sub-tree

e replace sub-tree at pointer by a given tree.

Please include comments and test run results. Give a short program description. [If time
is short, write the description rather than finishing the programming.]

Programming languages (1979)

1. Consider the following problem specification:

Given a text file consisting of ‘words’ separated by blanks and newline
characters, produce as output a new version of the file such that each line
has length at most LMAX, no words have been split, and the total number
of characters is unchanged.

This specification is incomplete and vague on some points. Refine it to produce a
precise and complete specification.

2. Write programs satisfying the revised specification in Pascal, ML and Prolog.

3. Explain briefly how the differences between languages affect the structure of the
programs.

Programming languages (1978)
Write a program to find the longest ascending subsequence (not necessarily without
gaps) in an array or list using ML.
Prove the resulting program correct.
Example: 1021323
[The program should not be grossly ineficient.]

23

Programming languages (1978)

1. Write a function in ML to solve the following problem:

The input to the function is a sequence of commands, and the output is a
sequence of items, where an item consists of a priority (which is an integer)
and a string of characters. The sequences may either be presented exter-
nally (i.e. as data to be read and printed) or as internal data structures.

The program maintains an internal multiset of items which will be referred
to as S. (A multiset is like a set but permits duplication of items.) The
commands may modify S and/or request an item be added to the output
sequence.

The possible commands are

Reset: S is made empty.
Add: An item (indicated in the command) is added to S.

Min: An item with the smallest priority is output and deleted from
S.

Max: An item with the largest priority is output and deleted from
S.

The program will be marked on the following criteria:

(a) readability and style,

(b) correctness as determined by examination not by execution (a correct program
which cannot be seen to be correct will lose marks),

(c) efficiency.

Machine output is not required. Arguments in support of (b) and (c) should be
explicitly presented.

2. Discuss the following aspects of the program written in part (1):

e What were the critical decisions made in the implementation?

e What alternatives were there and how might the use of these alternatives have
influenced the final result?

How did the programming language influence the organisation of the program?

What kinds of features which were not in ML (e.g. co-routines, objects, persis-
tence) would have been useful? How would they have influenced the program?

What kinds of changes in the problem description could be easily handled by
your modifications to your program? What kinds would present difficulty?

24

-5 Algebraic specification

Algebraic specification (1988)

The Standard ML core language provides a powerful exception-raising and exception-
handling mechanism.
The expression

raise exzn with exp

raises exception exn, passing the value of the expression exp. This must occur within the
scope of an exception declaration

exception exn : ty

which says that exception ezn passes a value of type ty, and the expression ezp must be
of type ty. The expression

ezp handle ezn with maitch

yields the value of exp (which may be an exception), unless this is exception ezn in which
case the exception is trapped and the rules in match are used to determine the result from
the value passed with the exception. See [HMM 86|, [Har 86] and [HMT 87] for more
information about exceptions in Standard ML.

Suppose that you wish to adopt this exception mechanism for your algebraic specifi-

cation language. Here is a simple example of a specification you would like your language
to handle:

val nth : int * ’a list -> ’a

exception nth : string

axiom length(1l)<n => nth(n,l) = raise nth with "too high"
axiom n<l => nth(n,l) = raise nth with "too low"

axiom nth(length(1l)+1,1@(a::1’)) = a

Your first step is to devise an appropriate institution. The expressions from which axioms
are built should be allowed to contain both raise as in the example above and handle.
Forget about polymorphic types, imperative side-effects, higher-order functions, and any-
thing else you like (but mention what else you are forgetting and mention why you are
forgetting it). You might like to try the simpler case of exceptions which do not pass
values first, and then see how value passing can be added.

References

[HMM 86] R. Harper, D. MacQueen and R. Milner. Standard ML. LFCS report ECS-
LFCS-86-2 (1986).

[Har 86] R. Harper. Introduction to Standard ML. LFCS report ECS-LFCS-86-14 (1986).

[HMT 87] R. Harper, R. Milner and M. Tofte. The semantics of Standard ML: Version 1.
LFCS report ECS-LFCS-87-36 (1987).

25

Algebraic specification (1987)

Definition: Let SP,SP’ be specifications and let o: Sig[SP] — Sig[SP'] be a signature
morphism. SP’ implements SP via o, written SP ~%&% SP, if for every model A’ of SP'
there is a model A of SP, a subalgebra A” of U,(A’) and a homomorphism h: A" — A.

1. Prove that implementations compose vertically, i.e. that SP ~&> SP’ and SP’ > SP
imples SP Z&s SP",

2. Let @ be a binary specification-building operation which is monotonic on model
classes (so Mod[SP1'] C Mod[SP1] implies Mod[SP1' @ SP2] C Mod[SP1& SP2] and '
Mod[SP2') € Mod[SP2] implies Mod[SP1 & SP2'] C Mod[SP1 @ SP2]) such that
Sig[SP1 @ SP2] =g« Sig[SP1]U Szg[SP2]

Suppose that SP1 '\~> SP1" and SP2 ~ws SP2 are implementations; is it the case
that SP1 @ SP2 &> SP1' @ SP2' for some o (i.e. do implementations compose
horizontally wrt (&®)?

If yes: prove it.

If no: give a counter-example, and try to think of some reasonable
condition on the semantics of @ and/or the specifications
involved which would guarantee this desireable property.

Specification (1985, 1986)

This question has four parts.

1. Define an institution appropriate for specifying the time complexity of applicative
ML programs over the natural numbers running on a VAX 780 (ignore features of
ML like exceptions and assume that all programs terminate). Call this institution
TIME. TIME-specifications will contain axioms of the form:

Ti,..., Ty tl requires at most ¢2 CPU seconds
where x4, ..., 2, are variable names and t1, {2 are terms built using the functions and
constants provided by the program and possibly containing z;,...,z,. For example:

Vm,n. f(m,n,m) requires at most 37 * n CPU seconds
Vz,y. g(z,h(3,y)) requires at most = * t(z,y) + 4 CPU seconds

It is difficult to give a completely formal answer to this question; try to be formal

where possible but do not go overboard (e.g. do not give a formal definition of the
VAX 780 instruction set!). Make any assumptions you think are reasonable.

2. Consider a specification-building operation with the following syntax:

temporally constrain SP by AX

26

where SP is a TIME-specification and AX is a set of TIME-sentences over the
signature of SP. Let the denotation [SP] of a TIME-specification SP be a TIME-
signature X (i.e. an object in the category Signypyg) together with a class of E-
models (objects in the category Modrimg(Z)). Informally, the above operation
produces a specification having the signature of SP and those models of SP which
satisfy the time constraints given in AX. Give a formal semantics for this operation.

3. Consider another specification-building operation with the following syntax:
expand SP by opns OPNS

where SP is a TIME-specification and OPNS is a set of operator declarations, e.g.
{opl: nat x nat — nat, op2: — nat}. Informally, the above operation produces
a specification having as signature the result of adding the operators OPNS to the
signature of SP. Give a formal semantics for this operation.

4. The institution EQ (equational logic) can be used to specify the functional behaviour
of ML programs. Consider another specification-building operation with the follow-
ing syntax:

functionally constrain SP by AX

where SP is a TIME-specification and AX is a set of EQ-sentences over the signature
of SP. Informally, the result of the above operation is a TIME-specification having
as models those models of SP which satisfy the sentences given in AX. Give a formal
semantics for this operation.

Specifications (1984)

Suppose T' = (X, E) and T = (¥/, E') are equational theories (i.e. E and E' are closed
sets of equations) with T' C T; let :T — T be the inclusion and let S = sorts(X).
Let _|i:Mod(T") — Mod(T) be the i-reduct functor, with left adjoint F: Mod(T) —
Mod(T"); let n and € be the unit and co-unit respectively of the adjunction. We restrict
consideration of algebras with countable carrier sets.

Recall that an algebra A’ € |Mod(7")| is called i-generated iff €4: F(A’ |:) — A’ is
surjective.

Suppose X = {X,}ses is an S-indexed family of countably infinite sets (of variables).
An algebra A’ € [Mod(T")| is said to contain no junk wrt ¢ iff there exists a map ¢: X —
|A’] such that % Tg/(X) — A’ is surjective. That is, for every value a € |A’| there is a
term ¢ with variables of sorts in T only such that ¢ has value a for some assignment of
values in A’ to variables.

1. Prove that an algebra A’ € |Mod(T")| is i-generated iff A’ contains no junk wrt 1.

2. Suppose s is a sort in sorts(L’) — sorts(X). Give a structural induction principle for
s which is sound for i-generated models of T".

27

A Y-generating constraint is an inclusion i: T' — T" such that sig(7") C . A Z-algebra
A satisfies a X-generating constraint :: 7" — T" iff A],,-g(gp) is t-generated. A specification
is a triple (¥, E,C) where C is a set of -generating constraints; a model of such a
specification must satisfy the constraints as well as the equations.

Consider the specification

SP = (sig(setUnion), egns(SetUnion), {# — Bool, Elem — Set})

where @ is the empty specification and

Bool = sorts bool
opns true, false: bool
not: bool — bool
and, or: bool, bool — bool
eqns not(true)=false not(false)=true
Vp:bool. p and true = p Vp:bool. p and false = false
Vp:bool. p or true = true Vp:bool. p or false = p

Elem = Bool U
sorts elem
opns eq: elem, elem — bool
eqns Vz:elem. eq(z,z)=true
Vz,y:elem. eq(z,y)=eq(y,z)
Vz,y,z:elem. eq(z,y) and eq(y, z) and not(eq(z, z))=false

Set = Elem U
sorts set
opns §: set
add: elem, set—set
€: elem, set—bool
eqns Vz:elem. z € §§ = false
Vz,y:elem, Siset. « € add(y, S)=eq(z,y) or z € S

SetUnion = Set U
opns U: set, set—set
eqns VS: set. US =S »
Va:elem,S, 5" set. add(z, S)US' = add(z, S U S’)

3. Using the induction principle in (2) and the usual rules of equational deduction
(symmetry, reflexivity, transitivity, substitutivity) prove that all models of SP satisfy
the equation Vr:elem,S, S"set. z € (SUS) =z € (S'US).

Specifications (1983)

1. Explain how the concepts of initiality and freeness are useful in specification lan-
guages.

28

2. Give a specification in approximately the style of Sufrin’s paper on editor specifi-
cations (in Science of Computer Programming, May 1982) for a program to play
noughts and crosses (tic-tac-toe). Also define an n-move lookahead strategy for such
a program.

Specifications (1982)

Specify a text formatter in CLEAR.

o The input is a sequence of words. Each word has length > 0. A word of length-0
denotes the beginning of a paragraph.

o The output is a sequence of pages, each consisting of pagelength lines, where each line
has length linelength. Lines should be right-justified (i.e. the right margin should be
straight, as in a book, not ragged) and as many words as possible should be packed
into each line. A new paragraph should begin a new line (the last line of the old
paragraph need not be right-justified) and should be indented indentlength spaces.

The final specification (and the smaller specifications which make it up) should be as
parametric and general as possible and make suitable use of modularisation. Note that
pagelength, linelength and indentlength are parameters of the final specification. Also note
that (e.g.) the informal specification does not state that a word is a sequence of characters.

This informal specification is somewhat vague; indicate any design decisions you make.

Try to write a specification, not an algorithm, and to leave some freedom to the im-
plementor (e.g. the informal specification does not say that words in a justified line must
be spread out evenly). Assume that theories of natural numbers, sequences etc. with
appropriate operators are predefined.

Program Development (1981)

A finite directed graph G' (without parallel edges) with a finite set of nodes nodeg can
be represented by its adjacency function

neighboursg : nodeg — set nodeg

Assume nodeg, neighboursg and the specification ARRAY (of nodes, see below) to be
given.

1. Specify the boolean function path: array — bool by a universally quantified formula
using the function neighboursg. path(p) should check whether p is a path of G; i.e.
if (get(p, 1), get(p,1 + 1)) is an edge of G for all 3.

2. Specify the function reach: nodeg — set nodeg by set comprehension using the
function path. reach(z) should be the set of all nodes which are reachable from node
z by some path.

3. (a) Specify the function embed: set nodeg, set nodeg — set nodeg by set compre-
hension using the function path. embed(S1,.52) should be the set of all nodes
which are either in S1 or which are reachable from a node of S2 by a path not
containing any node of S1.

29

(b) Show that embed(f, {z}) = reach(z), i.e. embed is an embedding of reach.
4. (a) Derive equations for embed(S51,0) and embed(S1, 52U {z}).
[Hint: Distinguish z € S1 and = ¢ S1).

(b) Use these equations to give a recursive definition of embed (in an iterative form)
and prove the termination of this algorithm.
[Hint: Use the choice-operator some to choose an element of S2].

5. (a) Prove embed(S1, 52U S3) = embed(embed(S1, 52),53)

(b) Derive two different (non-iterative) recursive algorithms for embed correspond- :
ing to a “depth first search” and a “breadth first search”. '
[Hint: Use (5(a)) and S2U S3 = S3U S2]

The specification ARRAY is as follows:

spec ARRAY
based on NODEg, NAT
type array

functions empty: array
conc: nodeg, array — array
length: array — nat
get: array, nat — nodegU {error}

laws Va: array Yz: nodeg Vn: nat.

length(empty) = 0
length(conc(x, a)) = length(a) + 1
get(cone(z,a),0) = z
get(conc(z,a)n + 1) = get(a,n)
get(empty,n) = error
end of spec

where error is a special element not in nodeg.

30

- 6 Program logics and type theory

Program logics and type theory (1988)
Here are 5 questions about the so-called “intersection type discipline”.

1 exam question amounts to 2 of these 5.
2 exam questions amount to 4 out of these 5.

The intersection type discipline is a system S for assigning types to terms of the lambda ?
calculus. S is a system for deriving assertions of the form I' - M: 0. :

M, N range over ordinary terms of the lambda calculus. o, T range over T, the set of
type symbols, I' ranges over type environments, i.e. sets of pairs consisting of a variable
and a type (I'::=0 | T',z:0). The set T is defined inductively as follows: let At be a given
set of atomic type symbols,

i. AtCT
ii. ifo,7r€T theno—-1,0N7T€ET
The rules of the system S are:

1.

provided z:0 € T' and all the variables in I" are distinct.
'kFaz:io

2 (a) Tyziob M:T
F'FAeM:ioc—1T
(b)FI—M:a—H‘ I'N:o
I'FMN:r
3. (a)I‘l-M:a 'FM:7
'FM:oen7
'FM:onT
(b) 'M:o
(©) 'EM:onT
'-M:r
The following result holds:

THFM:0AM -3 N)=TF N:o
Question 1
Show that N is strongly normalizing iff 3T, 7 such that '+ N: 7.
[Hint:
= Induction on the structure of normal forms and on the maximum length of a reduction

sequence.
<« Use the computability method].

31

Question 2

Encode a natural deduction version of the above formal system S in the logical framework
LF. State formally the faithfulness property you conjecture your encoding satisfies.

[Hint: Do not encode object language type environments explicitly.]
Question 3

A number of decidability questions concerning $ can be raised.

(a) given M does there exist I', 7 such that I' - M: 7?7
(b) given I' and o does there exist M such that I' - M:o?
(c) given I', o, M does T'+ M: o hold?

Decide at least 2 of the above.
[Hint: One of the above is still an open problem, as far as I know.]
Question 4

Show that if a type is inhabited by a closed term then, interpreting N as logical conjunc-
tion, the formula corresponding to the type is a theorem of minimal logic.

Is the converse true? If not, how would you extend the calculus and the system in order
to achieve the inhabitability of all minimal logic implicational and conjunctive theorems?

Question 5

Consider the system S’ consisting of the rules 1, 2(a), 3(a) of the system S and the fol-
lowing:

Fiywo—-rxrENp T'FMo

2 I
(b) I',y:0 = 7+ N[yM/z]: p

Lyzioyy:ir = M:p

3()’ yzioNTk Mz/z,2/y]:p

provided z & dom T

'-M:0 TI,zick N:7

(cut) I'F N[M/z):r

Compare the system S to the system S’, and show that

'te M:0 = 3AN.T '—S’—{cut} N:o

32

Program logics (1987)

1. Let 7 be the type assignment system for A-terms, where types are defined by the
grammar
o=k k|0 — o
where «° and ! are the only basic constants. Suppose that the congruence! relation

~ generated by k% ~ k! — £° and &' ~ k° — &! is defined over types. The rules of
the natural deduction presentation of are:

(a) 2:0
All assumptions have this form.

(b) JpeoT

M:o'

Az M:o— o

provided all undischarged assumptions of the form z: o in the derivation of M: 7
are discharged by an application of this rule.

(©) M:oc— o N:o
MN:o!

provided undischarged assumptions in the derivation of the premises which have
the same subject also have the same predicate.
M:oc o~d

(d) M:o!
Prove that if T’ |I M: o then M is strongly normalizing.

2. Generalize the above result, studying the issue of strong normalization for recursive
type assignment systems. Namely, consider congruence relations ~ generated by
exactly one equivalence of the form &; ~ o; for each basic constant «; (0<i<n)
try to give a necessary and sufficient condition on the shape of the equivalences
generating ~ for the following to hold:

TF M:o = M is strongly normalizing

(There is no need to solve this completely; significant sufficient conditions are enough.)

3. List a number of conjectures you would like to prove or problems you would raise in
order to understand the relation between recursive type assignment systems and the
Curry type assignment system.

1A congruence relation is an equivalence relation compatible with the constructor —, i.e. satisfying
the property (o ~ o/,0" ~ 6") = 6 — 0" ~ ¢/ — "

33

Intuitionistic type theory (1987)

The purpose of this exercise is to investigate the problem of adding second—order quan-
tification to a Martin-Lof-like type theory. Recall that in the second-order A—calculus,
the type V¢.7(¢) is the type of functions that, given a type o, return a value of type 7(0).
We shall investigate adding such a type constructor to a type theory based on operational
semantics.

Define V to be a constructor of arity (0)0, and take V(F) to be a value for any F.
Extend the inference rules of type theory to include: The inference rules for type theory,
are extended to include: '

(t type) F(t) = F'(t)

YF) = V{F) (t new)
(t type) a=d € F(t)

VI a=da €V(F) (t new)
a=d €V(F) A type

vE a=a € F(A)

In keeping with the type-free nature of terms and evaluation type abstraction and type
application are implicit. Hypothetical judgements of the form (¢ type) J are new, and
hence must be given semantics as part of this exercise.

The problem breaks down into two parts. First, the methods used to define a type
system over an operational semantics must be extended to provide semantics for the V type
constructor. The principal problem is to overcome the impredicativity of the second—order
quantifier in the construction of a type system. Second, semantics must be given to the
new hypothetical judgement form, and the above rules must be proved sound with respect
to the type system constructed in the first part of the exercise.

Building a Type System with V Types

The problem is to construct a type system that gives semantics to the second—order
quantifier. The method used in the notes is to define an operator on type systems such
that the transfinite iterates form an increasing sequence of type systems. The type sys-
tem defined by the operator is defined to be the limit of this chain, a fixed point of the
operator. Type systems are partially ordered by a relation that expresses the idea that
one type system is greater than another if it increases the set of types (by extending the
type equality relation and assigning an equality relation to each of the new types) while
leaving the equality relation assigned to existing types fixed (see [Har] for the technical
details). The latter property is crucial to the construction, for if the equality relation to an
existing type were extended, then the operator would fail to be monotone. But since the
second-order quantifier is defined by abstraction over all types, and since the collection of
types is increased at each stage of the iteration of the operator, monotonicity fails, and it
is no longer clear that a fixed point exists.

Thus the purpose of this exercise is to devise a type system that gives meaning to the

second—order quantifier in such a way that the above rules come out true. The key is to
account for the quantification over all types without referring to the set of types available

34

at any one stage of the iteration. For the sake of simplicity, you may neglect explicit treat-
ment of the other type constructors of type theory, but your solution must be adequate
for systems with value-dependent types such as the II type constructor. Therefore you
may not treat the type equality relation separately from the membership relation (as was
done in the case of simple type theory.) In order to give an account of the second-order
quantifier you shall need to extend the set of values by an infinite set of type variables
(so that they evaluate to themselves, thus behaving like base types). Type variables are
accounted for in the semantics by parameterizing type systems by type environments that
assign p.e.r.’s to type variables; type variables are related only to themselves, and the
p.e.r. assigned to a type variable is given by the environment.

Proving the Soundness of the Rules

The second part of the problem is to specify the semantics of the new hypothetical
judgement forms (¢ type)A = B and (¢ type)a = b € A. Since these judgement forms have
no prior meaning in type theory, you are free to choose them however you see fit for the
soundness of the above rules, provided that the following rule of substitution is validated:

(t type) F(t) = F'(t) A=A’

S F(A) = F(4)

You may find it useful to contemplate choices for the semantics of the hypothetical judge-
ment form before you tackle the definition of a type system in the previous part.
References

[Har] R. Harper. Constructing type systems over an operational semantics. LFCS report

ECS-LFCS-88-59 (1988).

Program logics (1986)

Here is a partition problem. Initially, there are two non-empty sets of integers So, L.
The problem is to partition them into sets S and L so that

i. the maximum of S is less than the minimum of L
ii. S has the same size as Sy and similarly for L and L,
ili. the original elements are maintained: S U L = So U L.

(a) Design an algorithm for solving this problem which employs two parallel pro-
cesses SMALL and LARGE: SMALL is to be responsible for the changes from
So to S and LARGE for the changes from Ly to L.

(b) Make explicit any synchronization assumptions between SMALL and LARGE
you implicitly appeal to.

Can you think of a good way of formalizing these assumptions?

35

Constructivism and type theory (1986)

Let RE be the submodel of the graph model given by restricting attention to r.e. sets
of natural numbers (cf. [Sco]).

1. Show that a version of Kleene “number realizability” for arithmetic can be defined
over RE. [Hint: Take the “probjects” to be members of RE, interpret “probject
application” to be application as understood in RE, etc.)

2. Show that Heyting arithmetic is sound with respect to this interpretation.

3. Indicate whether or not CT is true on the interpretation. If not, can you suggest a j
principle which is slightly weaker than CT and which is true on the 1nterpretat1on
but which is still a plausible expression of Church’s thesis?

References
[Sco] D.S. Scott. Data types as lattices. SIAM J. Computing 5 (1976).

Program logics (1985)

The following program computes the first component of an array a[k], 1 < k < m,
which is greater than 0 (if there is one) using two parallel processes.

i:=2; j:=1; even:=m+1; odd:=m+1;
(esearch| |osearch);
k:=min(even,odd);

where

esearch = while i<min(odd,even) do

if al[i]>0 then even:=i else i:=i+2
osearch = while j<min(odd,even) do

if a[j]>0 then odd:=j else j:=j+2

(a) Prove that the program is partially correct (assuming that assignments and
evaluation of boolean conditions are atomic actions).

(b) Devise a proof to show that the program is totally correct.

(c) What issues arise when considering total correctness of parallel while programs
with await statements?

Program logics (1984)

(a) Suppose L is a first-order language for arithmetic whose set of terms includes
(one-dimensional) array terms of the form a[t] where t is a term. Let PL be the
set of while programs defined with respect to L which also includes assignments
of the form a[t]: = s where s, ¢ are terms. Design and prove totally correct a PL
algorithm which sorts an array a of arbitrary size n + 1 (of integers) such that
alt — 1] < afé] for 1 < ¢ < n. (Assume any truths of arithmetic in your proof.)

36

(b) Suppose the set of while programs defined with respect to some first-order
language is augmented by a parallel operator:

a || B is a program whenever «, 8 are programs

Given that the intended meaning of || is arbitrary interleaving of atomic actions
— where an atomic action is an assignment or an evaluation of a boolean —
then what problems do you find when trying to design Hoare rules for || of the
following form?

{A}e{B} {C}B{D}
{?}e || B{7}

Program logics (1983)

Suppose L is a first-order language for arithmetic, AL is a standard axiomatization of
arithmetic (on L), and PL is the set of while programs defined on L. Let HAL be the
Hoare logic relative to AL and PL whose set of rules is:

Assig {Aft/z]}a: = t{A}
{A}e{C} {C}B{D}

Com
’ T {4 hiD)
{AAD}o{C} {AA-D}B(C) o
i {A}if D then « else g i{C} D is quantifier free
. {AAD}a{A} _ _
While [A}while D do a 0d{A A =D} D is quantifier free
Con tar A= B {B}e{C} tarC=D

{A}e{D}

Let « be the program:

if y=0 then a:=1
else a:=x; b:=y;

while b>1 do a:=a*x; b:=b-1 od
fi

(a) Assuming any theorems of AL and standard definitions of substitution prove
that:

L {z>0Ay> 0}a{a = z*} is a theorem of HAL.
ii. « is totally correct with respect to (input) £ > 0 Ay > 0 and (output)
a = av.

(b) Consider ways that one might attempt to define a proof-theoretic notion of
soundness (consistency) for HAL. How successful are these? (A proof-theoretic
notion of soundness does not appeal to a semantics.)

37

c) Let PL be extended to pPrL by iIlClllSiOIl of the followin clause for variable
g
declarations:

begin var z;a end € PL' whenever oo € PL'

i. Add to HAL new proof rules to take account of variable declarations. Call
the resulting system HAL'.

ii. Extend the standard valuation semantics of PL for PL’. Using these and
standard semantics for AL give a sketch proof that HAL' is (semantically)
sound.

Program logics (1982)

1. The following flowchart program sets & to the integer part of the square root of some
value a. (Assume all values are natural numbers.)

X:=
A y:=1
z:=1
(’v'v D
z>a?
| x:=x+1'
yi=y+2
N
Z2:=zZ+y

T

Using Floyd’s method show that the program is partially correct with respect to the
input assertion True and the output assertion z*> < a A (z +1)? > a. [Hint: The
variables y and z are used to ensure that z = (z + 1)? always holds at the head of
the loop.]

The following applicative program is derived from the flowchart program above,
where f and g are functions of type Natt x Natt x Natt — Natt x Natt x Nat*.

f(x,y,z) <= g(0,1,1)

g(x,y,2z) <= case z>a of
true: (x,y,2z),
false: g(x+1,y+2,z+y+2)
end

38

[Note: If 0, y0 and 20 #.1, f(20,y0, 20) = the values of the variables after executing
the flowchart program starting at the beginning of the program with the variables
initially containing 0,0, 20; and g(x0,%0,20) = the values after execution starting
at the head of the loop.] Using computational induction, prove that the 3-tuple
f(z,y, z) satisfies the following predicate:

Az,y,z). eitherz=y=2=1
or (x#LAy#LAz#L A2 <aA(z+1)?>a)

[Hint: Base your proof on the Floyd proof of the flowchart program.]
Describe briefly how an Floyd proof of partial correctness of a flowchart program can

be transformed into a computational induction proof of a corresponding applicativ
program. '

. The following is a deduction rule which may be used to prove properties of flowchart
programs. Show that the rule is valid for a large class of properties (including the
property R in the example below).

Deduction Rule: Let

|

q

N

be any flowchart program with two exits. Given any 1-exit program p, let F(p)
denote the composite program

Let R be any property of 1-exit programs. Suppose we can prove the following:

A1l R holds for the program ‘loop’ which has the property that no execution
ever terminates.

A2 Given any 1-exit program p, if R holds for p then it holds for F(p).
Then we can deduce that R holds for the program

39

For example, let ¢ be the program

{

b(x)?
N Yes
[v:=£x,v) |
e
x:=g(X)

N

where b is any predicate and f and g are any functions. Let R be the property which
holds for a program p if

V) \

y:=h(y) p

B v:=h(y)
v

(where ‘=" means that, given the same initial values for their variables, either the
two programs will both fail to halt, or they will both halt with their variables having
the same values). Then it is clear that conditions Al and A2 are satisfied provided
that f(z,h(y)) = h(f(z,y)). In this case the rule allows us to deduce that

‘y:=h(y) ' b(x)?

No Yes

b{x)? v:=£f(x,vy) ‘y:=h(y) '

Nc:J Yes= J/
y:=f(x,y) I :=g(x)

—/

Program logics (1981)

Consider the problem of a Hoare-like logic for a programming language whose com-
mands are

A::=skip | break | z:= E | (4; A) | if B then A else A | loop A

The break command causes exit from the smallest enclosing loop command, which oth-
erwise loops indefinitely. Note that in general a program may therefore terminate in two
possible ways: either normally, or via a break. (Termination of a loop is always normal.)

40

()

(b)

(d)

Formulate an inference system for partial correctness proofs for this language,
in terms of sentences

{PYA{QHR}

whose informal interpretation is “if P holds at the start, then if A terminates
normally @ will hold, while if A terminates via a break then R will hold”.

Formulate a soundness theorem for this proof system, in terms of a suitable
semantic function M; show in particular that your inference rule for loop is
sound. (Do not prove the whole theorem.)

Prove, in your system, partial correctness of the following program for checking
whether two arrays X[1..n], Y[1..n] are equal:

equal:=true; i:=0;
loop (if i<n then i:=i+1 else break;
if X[il=Y[i] then skip else (equal:=false; break))

Derive the best rule you can for the derived iteration construct

while B do A %/ loop (if B then A else break)

(You should consider this derivation as a preliminary test that your proof system
is powerful enough.)

Total correctness of simple programs (1980)

Let L be a many-sorted first-order language including a sort w and binary relation
symbols < and = over w (i.e. of sort w X w). Let

e z range over variables

w range over variables of sort w

t range over L-terms

b range over quantifier-free L-formulae
P, ¢, range over L-formulae

s range over the usual set of simple programs, as given by the grammar:

sii=(z:=1t) | (s;8) | (if b then s else s) | (while b do s)

but restricted so that in assignments “x:= ¢” the sorts of and ¢ are the same.

Let X be a set of closed L-formulae and consider the following axiomatic system which
is designed for proofs of total correctness:

i.p (if p is in X).

. _PpDlt/a]
" A{pHa:=t){q}

41

i {p}81{'r} {T}SZ{q}
C A{p}siss2){a}

o W Abisi{g} {pAb}ss{g}
© {p} if b then s, else s;{q}

v pOr {rAbA(t=w)}s{rA(t<w)} (rA=b)Dg
' {p} while b do s{q}

(if w is not free in p, ¢,r, b, s or t)

Now let (W, <w) be a well-founded set (i.e. W is a set, <y is a binary relation over :
W and there is no infinite descending sequence wo >w w; >w ... of elements of
W). A W-interpretation I of L is a first-order interpretation I of L where the set
of elements of sort w is W, the equality symbol is interpreted as equality and < is
interpreted as <.

1. Using a standard denotational or operational semantics, define the I-total correctness
relation according to the following intuition:

(I=r {p}s{q}) iff V I-states 0.(if o |=; p then when started in o, the program s
terminates in a state ¢’ such that ¢’ =7 ¢)

Prove that if =7 p for every p in X then if {p}s{¢} can be proved in the above
system, it follows that |l=; {p}s{¢}. (In various subcases you need only consider V
and one of (ii)-(iv) as given above).

2. In the following examples, a,b,z,y,1, j, k are variables of sort non-negative integer.
By suitable choice of L, X, W, <w, I in each example show that:

(a) [Fr{X20Ay >0}
a:=0; b= X;
while b>=y do b:=b-y; a:=a+l
{ay+b=2A0<b<y}

(b) lEr{i 20Aj 20Ak >0}

while i<>0 or j=0
do if j=0 then i:=i-1; j:=k; k:=bxk
else j:=j-1

{i=0Aj=0}

Program transformation (1980)
Backus has suggested that second-order functions, such as maplist or Iverson’s / (called

* and ** in HOPE) would be useful for program transformation. Discuss this with exam-
ples.

42

Program proving (1979)

Prove, using intermittent assertions, that the following program computes z — 10 if
z > 100 otherwise 91, and leaves it in z. You need not give a complete formal proof; but
state each lemma needed and indicate how it is to be proved, proving one lemma in detail
as an example.

begin integer a,b;
a:=x; b:=1;
L: if a>100 then
M: if b=1 then z:=a-10; goto HALT fi;
N: a:=a-10;
b:=b-1
else a:= a+li;
b:= b+l fi;
goto L;
HALT
end

Program proving (1979)

The following program sorts a list of items into ascending order using <:

sort: list item -> list item
sort(nil) =-> nil
sort(A::L) -> bubble(4,sort(l))

bubble: item * list item -> list item

bubble(A,nil) => A::nil
bubble(A,B::L) -> B::bubble(A,L) if B<=A
A::(B::L) ifnot

Notation: nil represents the empty list and : : represents infix “cons”, so A: : L represents
a non-null list with head A and tail L.

Define a predicate ordered,
ordered: list item => truthvalue

such that ordered(L) is true iff L is in ascending order w.r.t. <.
1. Prove that for all lists of items L,

ordered(sort(L)) = true

Define a function count
count: item * list item ~> number

such that count(A, L) counts the number of occurrences of A in the list L.

43

2. Prove that for all items A and lists of items L,
count(A, sort(L)) = count(A, L)
The following prograrﬁ also sorts a list of items:
gsort: list item -> list item

gsort(nil) => nil
gsort(A::L) -> gsort(lessish(A,L)) <> (A::gsort(greater(A,L)))

lesgsish: item * list item -> list item

lessish(A,nil) -> nil

lessish(A,B::L) -> B::lessish(A,L) if B<=A
lessish(A,L) ifnot

greater: item * list item -> list item

greater(A,nil) -> nil

greater(A,B::L) -> greater(4,L) if B<=A
B::greater(A,L) ifnot

<>: list item * list item -> list item

nil <> L2 -> L2
(A::L) <> L2 => A::(L1<>L2)

3. Prove that for all lists of items L,

ordered(gsort(L)) = true

44

7 Concurrency

Communicating Systems (1988)

In answering the several questions below, give a rigorous argument in each case. If a
counter-example is appropriate, then find the simplest that you can.

1. Let A¥ apwbd, Y $.5.5, and 4; & Ala;/a,b;/b], (: = 1,2). Define
Sys & (41| S | A))\{p, v}

(Think of A; and A; sharing the semaphore $). Further, let B & 4.5.B and B; & |
Blai/a,bi/b], (i =1,2). Then is it true that Sys ~ B, | By? (Recall that ~~ stands
for-weak bisimilarity.)]

2. Now re-define A with b and v swapped, i.e. A & a.p.b.v.A, with no other changes.
Is it now true that Sys =~ B | By?

3. Let S be any binary relation over agents. S is said to be a simulation if PSQ implies
that, for all y € Act,

Whenever P % P’ then, for some Q’, Q g @' and P'SQ’.

Analagous to weak bisimulation we then define the largest simulation, <, to be the
union of all simulations. Prove that < is a pre-order, i.e. transitive and reflexive.

4. Define the equivalence x & 2n =; that is, P<x Q iff P < Q and Q < P. Is <
stronger than =, or weaker, or are they incomparable?

5. Does P < Q imply P+ R =< Q + R?

6. Let =% be trace-equivalence; that is, P ~; () means that for all s € A*, P = iff
@ =>. What is the relationship between < and =;?

7. Going back to (1) and (2) above, does Sys < B; | B; hold in each case?

8. Give one reason in favour of & over < for practical use.

Theory of communicating systems (1987)

A strong bisimulation S over process agents P may be defined as a relation which

satisfles § C F(S), where, for any relation R, .7: (R) is defined as follows: (P,Q) € F(R)
iff, for all s € Act™,

i. Whenever P =+ P’ then, for some Q, @ > Q' and (P",Q) € R
ii. Whenever @ = Q' then, for some P/, P - P’ and (P",Q) € R

Note that s ranges over Act*, so this definition differs from that in Chapter 4 of [Mil].

1. Show that every strong bisimulation S according to this definition is also a strong
bisimulation according to the definition in Chapter 4 (Def 3), and conversely.

45

2. Let ~g,~1,... be the sequence of relations given by ~o= P X P and ~;y1= F(~;)
(using the above definition of F). Show that ~;,; C ~; for each ¢, and that each ~;
is an equivalence relation.

3. Let ~, = MNjew~i, and let ~g4y = F(~,). It is not true in general that ~, ., =
~u, but it is true provided that each action relation % (u € Act) is image finite
[Definition: a relation R is image finite if, for each z, {y | (z,y) € R} is finite]
Prove this fact. Also, find an example of a pair (P, Q) of agents such that P ~, Q
but P #ut1 Q. (Give P and @ as derivation trees).

4. Let the pairs (P, Q;) (2 € w) be given as follows:

Py=fB.NIL Qo =~.NIL
Py = a.(P+ Q) Qit1 = a.P 4+ 0.Q;

The derivation trees of P, and @, for example, are

By an inductive argument, prove that P; ~; Q; but P; #iy1 Q;, for all 1 € w. [Hint:
you will need a stronger inductive formula than this.]

References

[Mil] R. Milner. Calculus for Communication and Concurrency. Prentice Hall (to appear
in 1989).

Theory of communicating systems (1986)

1. Describe in detail the significant features of the following three concurrency models:

CCS, SCCS, CIRCAL.

2. Explain in detail the differences and similarities of composition and abstraction in
the three models.

3. All three models may be used to describe gate level hardware. Explain the approach
adopted in each model to interpret the inherently continuously changing voltages
through time.

46

4. Model an AND gate constructed out of a NAND and inverter in series using each of
the three models. Say what assumptions you have used with particular reference to
time and propagation delays.

5. Discuss how time is represented in each of the three models. Outline how a de-
scription at a fine grain of time may be made “coarser” using a larger time grain in

CIRCAL. Can this approach be adopted in CCS and SCCS? Explain.

You will probably need to check through references for CCS [Mill], SCCS [Mil2] and
CIRCAL [Milne] to answer some of these questions. o

References
[Mill] R. Milner. A Calculus of Communicating Systems. Springer LNCS, Vol. 92 (1980).

[Mil2] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science 25
(1983).

[Milne] G. Milne. CIRCAL and the representation of communication, concurrency and
time. ACM Trans. on Programming Languages and Systems 7, 2 (1985).

Concurrency (1985)

This question is based on [Hen]. It is divided into three parts, each part based on a
model] for the language Tk:.

1. Let SFNT be the X%po (FNT, <,) where
t <, t'if for every s € L(t'), A(t'(s)) C A(¢(s))

Prove SFNT is initial in the class C(SA;) where SA; is the set of equations A,
together with the equation z @ y < z.

2. Refusal Sets (cf. [BHR])
A finite refusal set R is a finite set of pairs of the form (s, X) where s € Act* and
X C Act is finite, which satisfies

i. (¢,0) € R
ii. (st,0) € R implies (s,0) € R
iii. X €Y and (s,Y) € R implies (5,X) € R
iv. (s,X) € R and (sa,0) ¢ R implies (s,X U {a}) € R.
Let FRef be the set of finite refusal sets.

(a) Prove (FRef,D) and SFNT are isomorphic as partial orders.

(b) Extend FRef to a X% interpretation so that this isomorphism is also a %2
isomorphism.

47

3. Sets of Deterministic Processes
A deterministic process is a non-empty, finite, prefix-closed subset of Act* and we use
D to denote the set of all deterministic processes. Let NP, the set of non-deterministic
processes, be the collection of subsets n of D which satisfy

ci. d,d’' € nimpliesdUd' € n
cii. d,d' € n, d C e C d' implies ¢ € n.

NP can be made into a X%interpretation by defining

1. NILNP = {{6}}
ii. anp(n) = {ad | d € n} where ad = {as | s € d} U {¢}
iii. n4+npn'={dUd' |d €n,d €n'}
iv. n@npn' = c(nUn'), where ¢(m) is the least set containing m which satisfies
the closure conditions (ci) and (cii) above.

(a) Prove (NP,D,%%p) is a X2%po.

(b) Prove NP is not fully abstract with respect to Cyust over Ts:.
(c) Which equations in Figure 2.4 does NP satisfy?

(d) Find a set of equations E such that NP is initial in C(E).

References

[BHR] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of communicating sequen-
tial processes. Journal of the ACM 31 (1984).

[Hen] M. Hennessy. An Algebraic Theory of Processes. MIT Press (1988).

Concurrency (1984)

A “self-sorting” memory can be designed in terms of individual cells as follows:

e each cell contains at most one value

e the cells are connected together in a chain so that the left-hand neighbour always
stores a smaller value.

(a) Give an expression in CCS for such a memory M which

1. accepts values to be stored
ii. will say whether or not it contains a given integer
ili. has bounded capacity

(b) Give an expression S in CCS which captures the overall external behaviour of M,
its specification.

(c) Give an outline of a proof that M is a correct implementation of S.

(d) Amend the definition of the memory so that in addition it will accept a value which,
if it is in the memory, will be deleted.

48

Concurrency (1983)

Let = denote the bisimulation equivalence over CCS terms obtained by using the
relations =, defined on page 41 of [Mil].

1. Show that for all terms P, Q,

(TP)| @~ 7(P|Q)
You must prove any non-trivial property of ~ which you use.
2. The dining philosphers problem.

There are five philosophers each with the same characteristics: they either eat or
think. They think standing up and eat sitting down. If they wish to eat they have
a designated place at a table: each place has before it a plate and two forks (which
are shared with adjacent neighbours). To eat a philospher picks up the fork to the
left, then the fork to the right and uses them on the spaghettti from the bowl in the
middle of the table.

(a) Describe this system in CCS. Show that it has a deadlock.
(b) Describe (in CCS) any of the well-known methods which avoids this deadlock.

(c) Give a CCS term, SPEC, which describes the overall behaviour of the modified
system in (b) (in terms of eating and thinking). Give the outline of a proof that
your modified system is equivalent, w.r.t. bisimulations, to SPEC.

In your modified system it is not necessary to ensure that every philosopher
eventually eats.

References

[Mil] R. Milner. A Calculus of Communicating Systems. Springer LNCS, Vol. 92 (1980).

Models of parallelism (1983)

Let A be a non-empty set and let a: I — 24 be an indexed cover for A. Recall that
ind(z,y) iff Viel: 2(¢) > e = y(i) = ¢
1. Let V C A%. We shall call V an abstract machine iff

(a) V is left closed in A%.
(b) Vz € V:Va,b€ A:z.a,2.b € V Aind(a,b) = z.ab eV

Show that if V' = &;¢;V;, where the V; are left-closed subsets of the a(¢)*, then V is
an abstract machine.

2. V is determinate iff
Ve € V:Va,be Arz.a, 2.6 €V = a =0V ind(a,b).

49

If z € V let V, denote the set {y € AL | z.y € V}.

Show that if V is a determinate abstract machine, then the set of “expressions”:
Vo aVea (va€V)

satisfy the conditions of strong confluence and determinacy in CCS.
3. Show that if ind(u,v), then u.v = v.u and that for any z, z.u.v is the least upper

bound in A} of z.u,z.v. [Hint: Examine the coordinates.]

Show by induction on length(v) that, for V determinate,
r.au,z.v €V = a<uVind(a,u)

where a € A and u,v € A%. Conclude that if z,y € V, for V a determinate abstract
machine, then z.y € V.

Using the order-theoretic properties of behaviour systems and the representation by
vector languages (or otherwise), explain briefly why any abstract machine contains
greatest lower bounds for all non-empty sets.

Complete the proof that:

Theorem: V is a determinate abstract machine iff V is a left-closed lattice.

4. Let V be determinate and define
Vi={z(}) |z € V}.
Show that the V; are totally ordered string languages and that
V = &ierV;

Complete the proof that V is a determinate abstract machine iff V is the vector

language of a system of left-closed, totally ordered coinciding sequential processes.
5. What has all this got to do with:

(a) Marked Graphs?

(b) GEq-paths

2A Petri Net is a Marked Graph if no place in the net has more than one output or input transition,
i.e. there is no conflict.

50

Models of parallelism (1982)

The following program which is taken from [CHP] is designed as a solution to the fol-
lowing problem in process synchronisation.

We have two sets of sequential processes, readers and writers. We also have a critical
section which any of these processes may wish to access. The processes must be designed
in such a way that:

1. At most one writer may ever be in the critical section at any one time.

2. Any number of readers may be in the critical section at any one time but at no time
may a reader and a writer be in the critical section at the same time.

3. Writers have priority over readers; once a writer is ready to write, he will be able
to do so as soon as possible. In particular, writers waiting to write will be allowed
access to the critical section as soon as it is free and no reader will be allowed to use
the section thereafter until all writers have finished.

integer readcount, writecount; (initial value = 0)

semaphore mutexl, mutex2, mutex3, w,r; (initial value = 1)
P(mutex3); P(mutex2);

P(r); writecount:= writecount + 1;
P(mutex1); if writecount = 1 then P(r);
readcount := readcount + 1; V(mutex2);

if readcount = 1 then P(w); P(w);

V(r);

V(mutex3);

(reading) (writing)

P(mutex1); V(w);

readcount := readcount — 1; P(mutex2);

if readcount = 0 then V(w); writecount := writecount — 1;
V(mutex1); if writecount = 0 then V(r);

V(mutex2);

For a given fixed number R of readers and W of writers:-

1.

Describe a suitable ‘state space’ for the above program and use it to describe the
construction of a transition system which expresses the interleaved behaviour of the
system.

Devise a predicate expressing the desired mutual exclusive and fixed priority prop-
erties of the system such that the predicate is go-inductive, where ¢, denotes the
initial state of the system. Use this to prove the correctness of the solution. What
assumptions must be made about the behaviour of semaphores?

Is the program still correct if the processes run in a maximally parallel manner (i.e.
the only sequentialisation derives from the sequential nature of the processes and
semaphores)? Justify your answer formally in terms of the trace or vector language
determined by the transition system together with the independence relation deter-
mined by the assumption of maximal parallelism.

51

References

[CHP] P.J. Courtois, F. Heymans and D.L. Parnas. Concurrent control with “readers”
and “writers”. Comm. of the ACM 14 (1971).

Concurrency (1982)

Let A be a set of actions ranged over by a. Let X be the set of operators {NIL, &, a:}.
For each s € A* we define =% to be the least relation over finite Yy-terms which satisfies

Lttt
i, art =t
i, ¢ ®u =1
iv. udt=t
v. t =3 ty,4, S ¢, implies ¢ £2 ¢,
Here € is the empty word and s - s’ denotes the concatenation of s with s'.
Using these relations we may define a notion of observational equivalence as on page
42 of [Mil]:
i. t&ou for every t,u
il. t& pyqu if for every seA*
(a) t =>t' implies u = u/ for some u’ such that ¢ 2 zu’
(b) u =% v/ implies ¢ =2 #' for some ¢’ such that ¢’ 22 yu’
iii. & = Nxo(=r)
iv. t&2cu if for every Yo-context C[], C[t] a2 Clu).
1. (a) Is &® a Yg-congruence, i.e. is it true that ¢ & u iff a2 u?
(b) State as many independent axioms as you can for ..

(c) Give a translation, tr, into CCS such that
ta qu iff tr(C[t]) = tr(Clu]) for every Zo-context C[].

(d) For your translation is it true that ¢t cu iff C[tr(t)] ~ O[tr(u)] for every CCS-
context C[]?

(Here ~ denotes observational equivalence as defined on page 43 of [Mil]).
2. An alternative equivalence may be defined as follows:
p~qif Vs € A*

i. p = p’ € Dead implies ¢ = ¢’ for some ¢’ € Dead.
ii. ¢ = ¢’ € Dead implies p = p’ for some p’ € Dead.

Here Dead = {p | p = p’ implies p ~ p'}

(a) Is ~ a ¥g-congruence?

(b) State as many independent axioms as you can for .

92

(c) Discuss the difference between =~ and .

3. Extend the alphabet to £; by adding the binary operator + and extend the semantics
by the rule

vi. t=> ¢t and t # ¢ implies t +u > ¢ and u+¢ > ¢/

(a) Are = and «~ both ¥;-congruences?

(b) How does the addition of + affect your axioms? Are they still true? Are there
any new axioms?

(c) State informally the differences between the operators + and .

References

[Mil] R. Milner. A Calculus of Communicating Systems. Springer LNCS, Vol. 92 (1980).

Calculus of communicating systems (1981)

1. In CCS, sequential composition of two agents may be defined by

By; B, & (By[6/6] | 6'.B)\&'

where ¢’ is a new name. It acts as sequential composition when § occurs as the last
action of By (cf. [Mil] p. 128). Prove from the laws of strong equivalence that “” is
associative, i.e., By; (Bz; Bs) ~ (B1; Bz); Bs.

2. Adapt the construction of [Mil] §8.4 to build a priority queue, in which the items
stored are pairs (¢,v) where ¢ is an integer (the priority) and v a data value. The item
at the head of the queue at any time is the item of highest priority which has been
longest in the queue. Prove that your construction satisfies a specification analogous
to §8.4 equation (3).

[Note: part (2) carries greater weight in this question.]

References

[Mil] R. Milner. A Calculus of Communicating Systems. Springer LNCS, Vol. 92 (1980).

Models of parallelism (1981)

Suppose N is a net (9,7, F) and M C S designates a marking (case) of N'. A causal
net N/ = (S',T", F') represents a non-sequential behaviour of A from M if there is a
mapping f:S'UT' — SUT with

L VteT": f(°t) =°f(t) A f(t°) = f(£)° (tis an occurrence of f(2))
2.Vse Ss=0= f(s)e M

3. Vo,2' € S'UT" f(z) = f(2') = aF"*a'Vi'Ftz Ve =1’

33

Characterise (to within isomorphism) the set of all causal nets representing nonsequen-
tial behaviour of A from M, if A is a connected marked graph which is live and 1-safe
w.r.t. the marking M.

Hint: Consider the causal net C = (SU M',T, F') where M' = {s' | s € M},s — s’ is a
bijection and

Vse S,t€T:(s,t) € F & (s,t) € F!
Vse M,teT:(t,s) ¢ F'
Ve M',teT:(t,s") € F' & (t,8) € F

54

8 Algebras and categories

Algebras and categories (1988)

Definition: Let T be an arbitrary category. The category Into(T) of functors into T
is defined as follows:

e objects are functors F: I — T

¢ amorphism from F1: I1 — T to F2: I2 — T is a pair 4 = (G, n), where G: I1 — I2
is a functor and 5: G;F2 — F1 is a natural transformation _

e the composition of morphisms is defined componentwise, i.e. for any two morphisms
pl = (G1,91) and p2 = (G2,72) such that the target of ul coincides with the
source of u2, their composition is ul;u2 =4 (G1;G2,7), where 74 = 72G1(4)inla
for any A € |I1].

Prove that if the category T is cocomplete then the category Into(T) is complete.
(This result was mentioned without proof in [Gog 71].)

References

[Gog 71] J.A. Goguen. Mathematical representation of hierarchically organized systems.
In Global System Dynamics (E. Attinger, ed.), pp. 112-128. S. Karger (1971).

Algebras and categories (1987)

Definition: An indezed category C over a category Ind (the index category) is a functor
from Ind® to Cat. Thus, for each index ¢ € |Ind| there is a category C() and for every
index morphism o: ¢ — j in Ind there is a functor C(c): C(j) — C(3).

Examples of indexed categories are: many-sorted sets (the index category is Set and
the functor takes S to Set” and f: § — S to the forgetful functor from Set” to Set’)
and many-sorted algebras (the index category is Sign and the functor takes ¥ € |Sign|
to Alg(X) and ¢: ¥ — X’ to the functor U,: Alg(X') — Alg(T)).

Definition: For any indexed category C: Ind®® — Cat, Flat(C) is a category with:
Objects: pairs (¢,a) where ¢ € |Ind| and a € C(2)

Morphisms from (i,a) to (j,b): pairs (o, f) where 0: ¢ — j (in Ind) and f: a —

C(o)(b) (in C(2)).

Composition: if (o, f): (i,a) — (j,b) and (p,g): (j,8) — (k,¢) then (o, f);(n,9) =
(730, ;C(0)(9)): (i, a) — (&, c).

a) Let C: Ind®® — Cat be an indexed category such that:
1. Ind is complete;

2. for all indices ¢ € [Ind|, C(7) is complete; and

35

3. for all index morphisms g: ¢ — j, the functor C(c): C(j) — C(i) is continuous (i.e.
translates limits in C(j) to limits in C(2)).

Prove that the category Flat(C) is complete. (Hint: it is sufficient to prove that Flat(C)
has all products and equalisers.) '

Definition: An indexed category C: Ind®® — Cat is locally reversible if for every index
morphism o: ¢ — j in Ind the translation functor C(c¢): C(j) — C(i) has a left adjoint
F(o): C(i) — C(j) (let n°: idc(;) — F(0);C(c) denote the unit).

b) Let C: Ind® — Cat be an indexed category such that:
1. Ind is cocomplete;

2. for all indices ¢ € |Ind|, C(%) is cocomplete; and

3. C is locally reversible.

Prove that the category Flat(C) is cocomplete. (Hint: it is sufficient to prove that Flat(C)
has all coproducts and coequalisers; coproducts are the easier of the two.)

Some of the following definitions and facts may be useful (you may use the facts without
proving them):

Fact: Let C:Ind® — Cat be a locally reversible indexed category. For any index
morphisms 0: ¢ — j and p: j — k in Ind, there is a natural isomorphism tep: F(o;p) —

F(o);F(p).
Definition: Let C: Ind°® — Cat be a locally reversible indexed category. For any index
morphism p: ¢ — j, we can “lift along p” any morphism (o, g): (k,a) — (i,b) in Flat(C)
to a morphism in C(j):
L,({0,9)) = iz,p(a);F(p)(97): F(3p)(a) — F(p)(b)

Fact: Under the notation and assumptions of the above definition, for any index mor-
phism 6: j — m in Ind and morphism (p;6, f): (1,8) — (m,c) in Flat(C), f#: F(c)(b) —
C(0)(c) is a morphism in C(j) such that

(030, 17(a))5(0, L ({0, 9)); £ *) = (0,9)3(p:0, f): (k,a) = (m,c)
in Flat(C).

Corollary: Under the notation and assumptions of the previous definition,

n°*(a);C(L,({o,9))) = :C(n°(b))

Algebras and categories (1986)

Let K be an arbitrary category.
Definition: A factorization system for K is a pair (E, M) such that:

(a) E is a class of epimorphisms in K and M is a class of monomorphisms in K

56

(b) both E and M are closed under composition and contain all isomorphisms in
K

(c) every morphism in K has an (E, M)-factorization, i.e. for any morphism f there
are e € E and m € M such that f =¢;m

(d) (E,M)-factorizations are unique up to isomorphisms, i.e. for any el,e2 € E
and ml,m2 € M, if el;ml = e2;m2 then there is an isomorphism 7 such that
el;: = e2 and 7;m2 = ml.

Let (E, M) be a factorization system for K.
Prove the following theorems:

1. For any morphisms f1, f2,e,m in K, if fl;m =¢; f2,e € E and m € M, then there
is a morphism ¢ such that e;g = f1 and g;m = f2.

2. If e € E and f is a morphism such that e; f € M , then e is an isomorphism. If
m € M and g is a morphism such that g;m € F, then m is an isomorphism.

Definition: For any A € |K]|, a sub-object of A is any B € |K| together with a morphism
m: B — A such that m € M. A quotient of A is any B € |K| together with a morphism
e:A — B such that e € E. An object A € |K]| is reachable if it has no proper sub-object,
i.e. every morphism m € M with co-domain A is an isomorphism.

Assume that K has an initial object and all products (of sets of objects).
Definition: A class K € |K]| of objects is closed under:

(a) products if for any set F' C K, the product of F belongs to K.

(b) non-empty products 1f for any non-empty set F' C K, the product of F belongs
to K.

(c) sub-objects if for any morphism m € M, if the co-domain of m belongs to K
then so does its domain.

(d) quotients if for any morphism e € E, if the domain of e belongs to K then so
does its co-domain.

Definition: A class K € |K| is called a variety (resp. quasi-variety) if it is closed under
quotients, sub-objects and products (resp. under sub-objects and non-empty products).
Prove the following theorems:

1. An object A € |K] is reachable iff the unique morphism from the initial object to A
isin E.

2. If A € |K]| is reachable then for every B € |K| there is at most one morphism from
A to B.

3. If A, B € [K|, B is reachable, and f: A — B, then f € E.
4. Every object A € |[K| has a unique (up to isomorphism) reachable sub-object.

5. For any object A € |K|, let Ezt(A) denote the class of objects in K such that
B € Ext(A) iff there is a morphism from A to B. If A € |K| is reachable then:

(a) A is initial in Ext(A)

57

6.

(b) Ext(A) is a variety

Suppose K is E-co-well-powered, i.e. for every object A € |K| there is a set of
morphisms E’ C E with domain A such that for every e € E with domain A there is
an ¢’ € E' and isomorphism ¢ such that e = ¢’;i. Then any non-empty quasi-variety
in K has a reachable initial object.

Category Theory (1985)

This question consists of a number of loosely-connected sub-questions.

1.

Let K be an arbitrary category. Prove that if K has coproducts (i.e. any set of
objects in K has a coproduct) and coequalizers (i.e. any pair of morphisms in K
with the same domain and codomain has a coequalizer then K is cocomplete (i.e.
any diagram in K has a colimit). Is it enough to assume that any pair of objects has
a coproduct? Give a proof or a counter-example.

Let K be an arbitrary category. Prove that if K has products (i.e. any set of objects
K has a product) and equalizers (i.e. any pair of morphisms in K with the same
domain and codomain has an equalizer) then K is complete (i.e. any diagram in K
has a limit).

Let ¥ be a many-sorted signature. As usual, Alg(X) is the category of E-algebras
with X-homomorphisms as morphisms. Show that Alg(Y) is complete.

Show that the category Set of sets with functions as morphisms is complete and
cocomplete.

. Consider the category RSet with sets as objects and binary relations as morphisms,

i.e. for any sets A and B, RSet (4,B) = {R| R C A x B}. Composition is defined
as usual: for RCAxB,SCBxC,R;S={(a,c)|Ib€ B. [(a,b) € R & (b¢) €
S]}. Is RSet cocomplete? Give a proof or a counter-example.

Set is a sub-category of RSet; let I:Set — RSet be the inclusion functor, i.e. Iis
the identity map on objects (sets) and it maps any function f: A — B to its graph
relation I(f) = {(a,d) | f(a) = b} C A x B. Show that I preserves colimits.

Algebras and categories (1984)

Preliminaries

By an w-complete poset we mean an arbitrary partially ordered set (X, <) in which
least upper bounds of all countable chains exist. A function between two w-complete
posets is w-continuous if it preserves least upper bounds of all countable chains.

Let ¥ = {X, }n>0 be a (one-sorted) algebraic signature.

Define the category Alg,(X) of w-continuous X-algebras (with w-complete posets as
carriers and w-continuous functions as operations) and w-continuous X-homomorphisms
(with the natural composition). In the following we identify any class of K of w-continuous

38

X-algebras with the full sub-category of Alg,(X) having objects K and assume that K is
closed under isomorphism.

If X is a set (of variables), the algebra of X-terms with variables X is defined as
usual. Moreover, for any term ¢ with variables X, w-continuous E-algebra A and valuation
v: X — |A], the value of ¢ in A under v, t4(v) € |A|, is defined as usual (state these
definitions).

By a X-inequality we mean a triple (X,t,t’) written in the form VX.t < t', where X is
a set (of variables) and t,t' are X-terms with variables X.

An w-continuous Y-algebra A satisfies a X-inequality VX.t < ¢’ if and only if for any
valuation v: X — |A4],

ta(v) <a ty(v).

For any set of X-inequalities IE, let Alg, (2, [F) denote the class of all w-continuous
Y-algebras that satisfy all ¥-inequalities in IE.

Let Uy, 1z: Alg,(Z, IE) — Poset be the functor from Alg, (T, IE) to the category of
all partially-ordered sets and monotone maps, mapping any w-continuous Y-algebra to its
partially-ordered carrier and any w-continuous X-homomorphism to its underlying map
(show that this is in fact a functor).

Problem

Prove that for any (one-sorted) signature ¥ and set of Z-inequalities IF, the functor
Ug 1z Alg (2, IE) — Poset has a left adjoint.

Sub-problems, indicating one approach to a solution

1. Show that any set of w-continuous X-algebras in Alg(Z,IE) has a product in
Alg (S, IE).

2. Define a notion of w-continuous X-subalgebra in such a way that whenever A €
Alg (%, IE), any w-continuous X-subalgebra of A belongs to Alg, (%, IE) as well.

3. Prove that for any w-continuous X-algebra A and set X C |A| there is at least
w-continuous ¥-subalgebra [X]4 of A which contains X. Show that whenever X
generates A, i.e. [X]4 = A, any two w-continuous X-homomorphisms 21,52: A — B
(B is an w-continuous I-algebra) are equal if they are equal on X.

4. Prove that any class K of w-continuous X-algebras closed under isomorphism, prod-
ucts and w-continuous X-subalgebras has an initial algebra.
Hint: If the product of K existed, its subalgebra generated by the empty set would
be initial in K. To justify a similar construction which gives an initial algebra in K,
prove that the cardinality of w-continuous X-algebras generated by the empty set is
bounded (and so there is a set G of w-continuous X-algebras generated by the empty
set such that any w-continuous X-algebra generated by the empty set is isomorphic
to an element of G).

Using (4), prove that for any set of X-inequalities IE and any partially ordered set
(X <), there is an algebra in Alg (X, IF) free over (X <).
Hint: Consider the signature ¥(X), which is the extension of ¥ by a constant for each
element of X.

59

Algebras and categories (1982)

The paper “An algebraic description of programs with assertions, verification and sim-
ulation”, SIGPLAN Notices, 7, 1 by Burstall was written in 1971. Rewrite it more clearly
using more standard categorical terminology and definitions. Perhaps you can extend the
results e.g. to less restrictive notions of simulation between programs.

You need not rewrite the explanatory material nor necessarily redo the whole paper,
but please make your answer intelligible.

Algebras and categories (1981)

Show that pushouts preserve epimorphisms, that is if f:a — b and g:a — ¢ have
pushout p with morphisms g1:b — p and f1:c — p then if f is epic so is f1. Show further
that pushout preserves regular epimorphisms, where f:a — b is a regular epimorphism if
it is the coequaliser of morphisms hl,h2: z — a for some z.

Category theory (1980)

1. Show that if a category has an initial object, binary coproducts and coequalisers
then it has finite colimits. (Please don’t look up the proof in a book).

2. Write briefly (say half a page) on the applications of colimit constructions in com-
putation theory.

Category Theory (1979)

Write an account of some application of Category Theory in Computer Science. Give
references.

60

9 Denotational semantics

Denotational Semantics (1988)

Read the first two pages of [MC], a substantial portion of which describes a model of
networks of processes which appeals to “internal” and “external” traces.

Your task is to make this model precise by developing it into a denotational semantics
of networks. To do this you will need to specify an abstract syntax of networks, and you
will need to describe the domains of traces. Finally, you should comment on when two
networks will have the same meaning, according to your semantics. ‘

References

[MC] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Trans. on
Software Engineering, SE-7, 4 (1981).

Denotational Semantics (1987)

Read [THM)] and answer the following questions.

(a) Specify an abstract syntax for a PROG language.

(b) Comment on the claims made on pages 485-487 about the inadequacies of stan-
dard store models. (Don’t spend much time on this.)

(c) Give a denotational semantics of your PROG using store models and support
(pp 487-488).

(d) Sketch proofs that the local storage discipline makes equivalent the examples
given on page 489.

References

[THM] B. Trakhtenbrot, J. Halpern and A. Meyer. From denotational to operational and
axiomatic semantics for Algol-like languages: an overview. Proc. Logics of Programming
Workshop, Carnegie-Mellon, Springer LNCS Vol 164 (1984).

Denotational Semantics (1986)

(a) Give a brief description and comparison of the proof methods known as struc-
tural induction and computational induction.

(b) Read [Rus] carefully. Explain why the proof of the theorem in section 5 is
(seriously) incorrect.

(c) Give a proof of the following lemma by computational induction on sem':
for all p/, sem’(p’) C sem(compiler(p’))(firstlabel(compiler(p”)))

(If several cases of a case analysis are essentially similar, you need only discuss
one of them in detail.)

61

References

[Rus] B. Russell. Implementation correctness involving a language with goto statements.
SIAM J Computing 6, 3 (1977).

Denotational Semantics (1985)

Consider a variant of the usual simple imperative language, allowing exceptions to be
raised and handled. The primitive phrase classes are:

a € ACom (Atomic Commands)

be BExp (Boolean Expressions)
l € Lab (Labels)

and the syntax of commands ¢ € Com is given by

c::=a|skip | ¢;c|if b then celse ¢ | loop ¢
| exception [is ¢ in ¢ | raise [

The command “loop ¢” repeats ¢ until an exception is raised; thus
while b do ¢
could be defined as
exception [is skip in loop (if b then c else raise !)

where [is not free in c. We assume truth values T' ={true, false}, a set S of states, and
primitive semantic functions

A: ACom— S — 8
B: BExp - S —1T

We now define cpos as follows

r€R=S5,+(Lab x S), (results)
yeC=8,—-1851 (continuations)
p € LEnv =Laby —, C (Label environments)

[Note: You may find it convenient to use the injections first: S — R and second: Lab x
S — R, and to use the syntax

cases e: first(s) = ...,second(l,s) = ...

for case analysis of the value of an arbitrary result-valued expression e (where the variables
s, or | and s, become bound to the value components).]
(a) Give a direct semantics and a continuation semantics for Com:

D: Com— S, - R
C: Com — LEnv — C — C

(b) Write down an equation

Cle =...

which expresses the continuation semantics of ¢ in terms of its direct semantics
D[c], and prove your equation from your definitions.

62

(c) With the help of (b) show that, whenever ¢ contains no free labels,
Dlc] = C[c] L (Aps.s)

(d) A context C is defined to be a “command with a hole in it”, so that if ¢ is
a command then so is C[c]. You may assume that D[c;] = D[c,] implies
D[Cle1]] = D[Cle.]], and likewise for C. Prove that the following defines an
equivalence relation = over Com:

¢1 = c; iff, for every context C[] such that C|c;] and
Clc3] have no free labels, D[C[c;1]] = D[Cle,]]

() Assuming that for any state s € S’ there is some a € ACom such that Afa]s # s,
prove that

C1 = C2 iff DI[C:[]I = DlICZ:[l

(f) Suppose now that Com is extended by adding non-recursive parameterless pro-
cedures:

c:=...|procedure p=cinc|call p

where p ranges over identifiers. Without giving full formal details, discuss
(in not more than 400 words) how procedures might interact with exceptions,
and how the semantic functions D and C might be modified to deal with this
interaction correctly.

Denotational semantics (1984)

Three principles of programming language design are defined in [Ten]. See Chapter 8
of [Sch]. The principles are:

abstraction: every syntactic class of a language is allowed an abstract (i.e. procedure)
definition mechanism.

parameterisation: an abstract may be parameterised on any syntactic class which may
occur as a subpart of the abstract’s body.

correspondence: every parameter transmission method corresponds to a binding method
used in abstract definition.

qualification: every syntactic class is allowed a block structure construct for holding
definitions.

Given the following syntax of an ML-like applicative language:

E: Expression
V: Varient
T: Typestruct
I: Identifier

63

succ E The successor operation on numbers.
I See the function construct below.
E, E, A pair of values.

E:= 0 The number zero.
I
l
|
|

AV:T.E A function — an argument with data type T is to be bound
to V and used to evaluate E.

| E1E, Function E; is applied to argument F,.
| (E) Use parentheses as you please.
Vii= 1 A binding variable can be a single identifier
| V1, Va or a pair of things — see Chapter 3 of [GMW] for details.
“T::= nat Numbers have type nat.

| Ty x Ty Pairs have this type.
| Ty — Ty Functions have this type.

answer the following questions:

(a) Provide a denotational semantics for the language which is faithful to the in-
formal descriptions given next to the syntax definitions. Provide some informal
documentation of your definition and note any design decisions you have made.

(b) Apply the qualification and abstraction principles to all syntax classes to cause
the addition of let ... in ... blocks. You will need to
e augment the syntax definition
¢ add new semantic algebras and alter existing ones
e add new semantic clauses to the valuation functions.
When updating the definition, note any interference that the new constructs

bring to the existing clauses of the semantic definition. Comment on trouble
spots in the augmented language.

(c) Apply the parameterisation and correspondence principles to allow Expression
abstracts to accept parameters. For simplicity, you may deal with Expression
abstracts which take exactly one parameter. As in part (b), augment the syntax
and semantics and note any trouble spots which arise.

(d) Based on your experiences in (a) — (c), prune the language down to a subset
which you feel has the best pragmatics. Give the abstract syntax of the language
and justify your selections and omissions.

References

[GMW] M.J. Gordon, A.J.R. Milner and C.P. Wadsworth. Edinburgh LCF. Springer
LNCS, Vol. 78 (1979).

[Sch] D. Schmidt. Denotational Semantics. Allyn and Bacon (1986).

[Ten] R. Tennent. Principles of Programming Languages. Prentice Hall (1981).

64

Denotational Semantics (1983)

(a) Below is given the abstract syntax of an ML subset. The subset is typed
(but non-polymorphic) and contains the abstype mechanism. Based on your
experiences with ML, define a denotational semantics in the spirit of ML for
the language.

(b) A denotational definition should provide a guide to the implementation of the
programming language. In particular, the semantic domains used in the defini-
tion should be mapped to built-in data types (e.g. integers) or to system level
data structures (e.g. symbol tables). Based on the results of part (a), briefly
and informally describe the built-in data types that an abstract machine for
executing programs should have and the data structures that a compiler for
this subset of ML to the abstract machine should use.

Syntax domains

P: Program

E: Expression

D: Declaration
B: Binding

T: Datatypename
I: Identifier

Z: Integernumeral

Syntax (annotated with informal semantics)

P::
D::

K A program is just a single expression.

let B Declare an ordinary binding.

| abstype I = T with B end Declare a user-defined abstract type. An ab-
stract type name [is introduced, and T, a type
expression, is its representation type. The equa-
tion I = T may be recursive! The operations
upon I-typed objects are listed as bindings B.

I=F Identifier I is bound to expression value E and
has the same type as E. This is a non-recursive
binding.

|rec I =FE As before, but any references to I in E are re-
cursive.

| By and B, A list of bindings.

65

1

E:= DinFkE Expressions may have local declarations; use
static scoping.

| I I must have been declared earlier in an enclosing
expression.
| Ey E, Function E,; is applied to argument E,. Types

must match in the obvious way.

| \I. T.E A function abstraction which expects an argu-
ment of type T'. The argument is bound to I
for evaluation of E. Use call-by-value parame-
ter evaluation and static scoping as in ML.

b

| By + E, Integer expressions E; and E, are added. Types
must be checked as usual.)

| E; = E, Comparison for equality of arithmetic expres-
sions. A truth value results.

| not E Negation on truth-valued expression E.

| Z An integer constant.

| (E1, E2) A pair of expressions.

| ist E » Selects the first object from a pair. E must eval-
uate to an expression pair.

| snd E Selects the second object from a pair.

| if Ey then E, else F; The ML conditional: F; must be a truth value,

and E; and Es must have the same type. The
conditional evaluates in the usual way.

| abs E Used only within the body B of ‘abstype [= T'
with B end’, abs coerces T-typed expression E
to type I.

| rep E Used only within the body B of ‘abstype [= T
with B end’, rep coerces I-typed expression E
to type T'.

T::= int The data types include the integers,

| bool the truth values,

| I user defined type names,

| (Th — T3) function spaces, and

| (Ty x T3) product (pair) spaces.

Definitions for I and Z are omitted.

Denotational Semantics (1982)

Consider the following variation on the usual simple imperative language with facilities
for exception raising and handling. First ACom, BExp and Lab are categories of Atomic
Commands, Boolean Expressions and Labels ranged over by a, b and [, respectively. Now
the category of commands is Com ranged over by ¢ and given by:

c::=a|skip | ¢ c|if bthen celse ¢ fi | loop ¢ cycle | exception [is c in ¢ | raise [

66

Here loop ¢ cycle continually executes ¢ until an exception is raised. For example one
can get the effect of while b do ¢ by

exception [is skip in
loop if b then c else raise [fi
cycle

where [is not free in c.

For the semantics we assume given a set S of states and functions 4: ACom — § — §
and B:BExp — S — T.

(a)

(b)

Give both a direct semantics
D:Com — (8§, —, (SL+ Lab; ® §1))
and a continuation semantics
C:Com — LEnv — C — C

where the cpo of label environments is LEnv = Lab, —, C where C = (S —y
S1).

Prove that the continuation semantics can be obtained from the direct semantics
by the formula

Clclpyo = cases Dc]o
first o/.y0’
second l', o’.pl'c’

Use this to show that if ¢ contains no free labels then
Dlc]o =C[c] L (ALo'.0")o

Define a relation = between commands by ¢; = ¢; iff for all contexts C[] such
that Cle;] and C[e,] have no free labels, D[C[e;]] = P[C]c,]]. Prove this is an
equivalence relation.

Here a context C[] is a “command with one hole in it” so that if ¢ is a com-
mand so is Clc]. For example if C[]is exception [is ¢; in [] then Clc,]
is exception [is ¢; in ¢;. Note that for any ¢1,c; if Dfei] = DJc;] then
D[C[e1]] = DP[C|e:]] and similarly for C.

Assume from here on that for any state o there is an a with Afa]o # 0. Show
that for all commands ¢; and ¢,

C1 = ¢ iff Dl[cl]] = DI[CQ]]

Now use this and part (b) to show that for all commands ¢; and ¢,

D[[cl]] = D[[Cz]] iff C[[cl]] = C[[Cz]]

67

H

(d) Define an operational semantics using a transition relation — C I' x I' between
a set I' of configurations. As configurations take the set

I'=(Com x S)U S U (Lab x §)
and as terminal = final configurations take
T=SU(Labx S)

Define O: Com — (S. —1 (S. + Laby ® S1)) by

L if o =1 or if (¢,0) diverges

O[d](o) = { o' if (¢,0) =* o’
'®o if (c,0) —=*(lI',o)

Prove that D = O. You need not give every detail but you should demonstrate
understanding of the essential ideas of the proof.

Denotational Semantics (1981, 1979)

Describe how to add coroutines to SMALL (see [Gor]). Assume a coroutine named
I is declared by coroutine I(I;);C. To run I with actual parameter E one evaluates
the expression run I(E). To temporarily leave a coroutine one executes the command
leavewithE; this passes E’s value to the context which ran (or resumed) the coroutine.
A temporarily-left coroutine can be resumed by evaluating the expression resume I;
this “starts up” I at the beginning of the command following the leavewith E in I.
To permanently leave a coroutine one evaluates the expression quitwith E; subsequent
attempts to resume it cause errors. For example:

begin coroutine count(n);
while n < 3 do
(leavewith n;

n:=n + 1);
quitwith 3; _
output run count(0); - outputs 0 and leaves
output resume count; - outputs 1 and leaves
output resume count; - outputs 2 and leaves
output resume count; - outputs 3 and quits
output resume count; - causes an error

end

In your description of the semantics of coroutines you should include semantic clauses for
the constructs coroutine I([;); C, run I(E), resume I, leavewith E and quitwith E.

References

[Gor] M.J.C. Gordon. The Denotational Description of Programming Languages. Springer
(1979).

68

Denotational Semantics (1980)

This question concerns a simple compiler correctness proof.

(a)

()

Consider the simple imperative language with the following syntax:
ACom - the atomic commands, a given set ranged over by a
BExp - the Boolean expressions, a given set ranged over by b
Com - the commands, ranged over by ¢, and given by:

c::=a|skip | (¢c) | (if b then ¢ else c)|(until b do c)

For the denotational semantics we postulate a flat cpo S, of states, rangéd
over by ¢ and denotational functions,

A: ACom — (S5, — S,)
B: BExp — (SL —1 T))

where T' is the set of truth values. Write a standard denotational semantics,
defining

C:Com — (S, — S,)

Next, consider the “machine code” language with the following syntax:

Lab — an infinite set of labels ranged over by L
MProg — a set of machine code programs ranged over by m and given by

m::=gq | skip | jump L | jump L if b
| (Ly:my ... Lgzmy) (if the L; are all different)

We consider a direct semantics M: MProg — (51 + Lab; ® S) but you can
define and use a continuation semantics instead if you prefer (alter the statement
of compiler correctness if you do). The idea is that if M[m](o) is ine(c’) that
means m exits normally in state o’ when started in state o; if instead it is
in1(L ® o') that means m exits with a jump to L in state o/, when started in
o. Here are some clauses in the definition of m — you supply the other two:

M[jump] = Ao.in, (L ® o)

M[Li:my ... Ly mi] = p[L1] where

p=pp.AL. if L = Ly then [p[L,;],ALL,0c.p[L](c)] 0o M[M;]
elseif L = Ly_y then [p[L;],ALL,0.p[L](c)] 0 M[Mi_1]
elseif L = L then [ing, A\ L, 0.p[L](c)] 0 M[M;]
else \o.L®c

Here are two clauses in the definition of a “compiler” Comp: Com — MProg —
you supply the missing clauses:
Compla] = a
Compl[if b then c; else ¢;] = L1: jump L4 if b
L2: Comp(cs)
L3: jump L5
L4: Comp(c)
L5: skip
Prove the compiler correct in the sense that for all commands ¢,

69

ing o C[c] = M[Comp[c]]

[Advice: Proceed by Structural Induction. It should be a straightforward
calculation up to the until case when you might find it more convenient to
prove two inequalities, using Fixpoint Induction or Computation Induction as
appropriate.]

Denotational Semantics (1980)

Consider the following applied untyped A-calculus.

o [ranges over identifiers

e B ranges over basic expressions

e [ranges over unary function symbols

F; ranges over binary function symbols

o E ranges over expressions given by:

E::=I|B|F | F,| \.E | E(E)

Note that AI.E is a procedure, Eo(E}) is an application and procedures can be passed to
procedures as parameters. There are two possible kinds of operational semantics:

Call-by-Value: Here parameters are evaluated when their procedures are called so that,
for example, Ey should be evaluated before applying Eq to it in the expression Eq(E).

Call-by-Name: Here one uses the textual replacement rule of Algol-60 so that actual
para[meters are only evaluated when required in the body of the procedure.

(a)

(b)

(c)

For each case outline a denotational semantics which properly reflects the in-
tended behaviour. Explain your choice of semantical domains and why you
chose direct or continuation semantics. You should assume a domain, V, of ba-
sic values and denotation functions B, Fy, F,, so that B[B] is in V and F;[F}]
isin V! = Vfori=1,2.

Generally, recursion is handled using the paradoxical combinator
Yy = AR (ALF(I(1))(M.F(I(I)))

Show that this is useless in the Call-by-Value case and explain what this means
in terms of the denotation of Y). Show that an adequate replacement for Y, is
provided by the combinator Z = AF.M(M), where M is \X.F(\Z.X(X)(2)).

Assume Y is the least fixed-point functional under the call-by-name semantics,

show that Y)(ALLAF.F(I(F))) is too.

70

Denotational Semantics (1979)
Consider the following imperative language:

Syntactic Sets

1. b € Bexp — The Boolean expressions
2. a € Act — The primitive actions
3. L € Lab — The set of labels y

4. s € Stat — The statements given by:
S::=a| dummy | (s;s) | (if b then s else s) | (while b do s) | (L:s) | goto L

Here “goto L” is executed by going to the statement labelled by the smallest textually
enclosing L. '

Semantic Domains

1. t € T}, — The truth values

o € §; — The states

0 € O — The output domain

~€(C =85, —,; O— The continuations
r€ R=2S5, + (Lab; ® S;) — The results

0 € DT = S, —,; R — The direct state transformations

N

t € CT = (C x (Laby —, C)) -1 C — The continuation state transformations
Denotations

1. B: Bexp — (S, —. 1))

2. A Act — (S —1 S))

3. D: Stat — DT — see below

4. C: Stat — CT — see below

Define D and C. Define ¢: DT — CT to show that C = ¢ o D. Show that if O = R
then D[S] = C[S](:d, p) for a suitable p.

71

- Denotational Semantics (1978)

1. The language FLOW [Wad] is to be extended by an additional statement construct
“repeat s while 5", whose meaning is given informally by the following flowchart:

(a) Give a semantic equation for this new construct analogous to that for while-
statements (i.e. using the fixed point function fiz), and indicate briefly (4 or 5
lines) how you arrived at your equation.

(b) Prove by a fixed point method that “repeat s while 5" is semantically equiv-
alent to “s; while b do s”, i.e. that

C[repeat s while 8] = C[s; while b do s]

(Note: No marks for defining the repeat-construct this way!)

2. The language L [Gor] is to be extended by a generalisation of the valof/return
mechanism which allows these constructs to be tagged with identifiers indicating
which valof-expression is to receive the value passed by a return-statement. Assume
the additional syntax:

valof I: S (an expression)
return £ to I (a statement)

The meaning of “valof I:S” is: bind I to a new kind of value called a “tag value”
associated with this valof-expression, then execute S until a return-statement is
encountered. The meaning of “return E to I” is: evaluate E then return its value
as that of the valof-expression whose tag value is bound to I.

Additionally, “valof I: S” is to be a local binding construct, with S as the scope of
I. Adopt also the design choice that the tag values bound to such identifiers may be
used freely as expression values (in particular, they may be passed as parameters of
procedures), except that they are not to be assignable, nor may they (or procedure
values either) be returned by a return-statement.

(a) Modify the semantic domains of [Gor], being sure to include in your list a
suitable domain (call it Z) for tag values.

(b) Give semantic equations for the two new constructs, and revise those for E[I]
and S[I: = E] as necessary.

(c) Explain your domains and semantic equations (say, 3 or 4 lines on each), in par-
ticular noting any differences from the semantics of L and including comments
on:

72

ii.

iil.
iv.

References

. the choice of domain for tag values

the composition of the domains D, E and V of denotable, expressible, and
storable values

error checks (run-time) in your semantic equations

whether the constraints on tag values and procedure values are sufficient to
enable this extended language to be implemented using a stack discipline
for storage.

[Wad] C. Wadsworth, lecture notes.

[Gor] M. Gordon, lecture notes.

73

10 Domains

Domains (1988)

Notation. Dom, is the O-category of Scott’s domains and partial continuous func-
tions, PDom is the O-category of pointed domains (i.e. with a least element) and con-
tinuous functions, PDom¥ (DomF) is the corresponding w-category of (p-)embeddings.

If A and B are domains, then A — B (A — B) is the cpo of (partial) continuous
functions. We write in: A < B (in: A <, B) to indicate that in is a (p-)embedding of A
into B. If F,F": A — Domf , then In: F' 4, F' means that In is a natural transformation |
from F to F'. It is convenient to treat domains as w-categories, in particular if a < b thén
we write @ — b for the only morphism from a to b.

1. Indexed Domain Theory ([CGW 87] may help):
1.IfAe€ Domf and F: A — Dom{;’7 is an w-functor, let

Ya:A.F(a) be {<a,b>|a € AND € F(a)} with order

<a,b><<d, b > a<a' A Fla—ad)(b) <V
prove that Ya: A.F(a) is a domain and that the projection m: < a,b >— a is a
continuous function from Ya: A.F(a) to A.
If intA <, A" and In: F <, F' o in, prove that Ta: A.F(a) 4, Ta: A" F'(a) via
(Zindn): < a,b > < in(a), Ing(b) >.

2. If both F: A — Dom[and G:(Za: A.F(a)) — Dom?Z are w-functors, then extend
la: A.Xb: F(a).G(a,b) %o a functor from A to Dom? (not compulsary and prove
that it is an w-functor).

3. If A€ PDom” (i.e. Ais pointed) and F: A — Dom?Z is an w-functor, let
Ia: A.F(a) be {f: A — (2a: A.F(a))|rof = id4} with the pointwise order

prove that Ila: A.F(a) is a domain. An element < ¢,|a € A > of Ila: A.F(a) is called
a continuous section of F.

Ifin: Ad A’ and In: F'q,F'oin, prove that Ila: A.F(a)< Ila: A’.F'(a) via (Ilin.In): <
tala € A >+=< F'(in o out(b) — b) 0 Insup)(tou(s))|b € A’ >

(Not compulsary: Is it possible to drop or relax the condition “A pointed”, so
that Ila: A.F(a) is still a domain? No restrictions on F should be imposed)

4. If F:A — PDomP and G:(Za:A.F(a)) — Dom are w-functors, then extend
la: AI1b: F(a).G(a,b) to a functor from A to DomE (not compulsory and prove
that it is an w-functor).

2. lx-interpretation We consider a subset of the l5-calculus and a notion of l,-structure,
then you have to define how terms are interpreted in it.

o €Types::= t | Vio

74

- A ranges over sequences of type variables ty,...,%, without repetitions, I' ranges over
sequences of type assignments x4:7y,..., %, 7, without repetitions of z;s. FV(T) C A
means that all the free type variables of I' are in A.

——e -
var m—— Te€land FV(I)CA

At Feo
AT F At.e:Vio
AT FeVto
-
YE RTFerifr/ge LV (NEA

M =< T™, WM, SetM AM, AppM > is a lp-structure iff (we drop the superscript in

vI

t ¢ FV(T)

o T is a pointed domain

Ve T -T)—-T

©

Set:T — Dom?Z is an w-functor, we write ¢ instead of Set(t)
A ellF:T - T.(IIt: T.F(¢)) — V(F)
App e IF:T - T, t: TNV(F) — F(t)

Given a lp-structure M define the lo-interpretation [JM so that:

L. [Ag):Tr — T, for all A s.t. FV(o) CA=ty,...,t,.
[A.T]: T — Dom¥ is an w-functor, for all A s.t. FV(T') C A.

2. [ATF e:0] € Ila: T™.[A.T'](a) — [A.0](a), for all derivable A.T' | e: 0.
A l;-structure M is standard iff A(F) is an isomorphism and the “B-axiom” holds, i.e.
App(F, 1) (A(F)(f)) = f(2).
3. Universal domains and l;-structures ([ABL 86] may help):

1. IfU € Domy, let Fp,(U) be {in(A)|in: A<,U} with the inclusion order. Prove that
Fp,(U) is a pointed domain and that Fp, (U) 4 U — U.

2. f U — U U, then define a standard l,-structure s.t. T' = Fp,(U) and Set(t) is the
subset ¢ of U with the induced order.

References

[CGW 87] Coquand, T., Gunter, C. and Winskel, G. Domain theoretic models of poly-
morphism. Report TR-116, Univ. of Cambridge, Computer Laboratory (1987).

[ABL 86] Amadio, R. and Bruce, K. and Longo, G. The finitary projection model for

second order lambda calculus and solutions to higher order domain equations. Proc. I[EEE
Symp. on Logic in Computer Science, Cambridge (1986).

75

- Domains (1987)

1. Consider the nondeterministic imperative language

c::=a | skip | if b then celse ¢/ | whilebdo c|cor ¢

where there are two given semantic functions, one D: Acom — (S — §) for atomic
commands, ¢ and another, B: Bezp — (S — T') for Boolean expressions, b. This
language has an evident semantics C: Com — (§ — P(S)) where P(S) is the cpo
of all subsets of S under the subset ordering. Give this language a “weakest-liberal-
precondition” semantics H: Com — (P(S) — P(S)) so that

(*) HIe(D) = wip(Ce], D) =aet {o | C[c](¢) C D}
For example the semantic clause for conditionals might be:

H[if b then celse ¢'] = AD.(B[]7(tt) N H[c](D))
U (BIo) (&) n H[I(D)).

Show that (*) holds. [Hint: For while-loops, use greatest fixed-points so that
H[while b do ¢](D) = N,<o®"(S) for a certain ®: P(S) — P(s).]

2. For P an w-algebraic cpo (not necessarily with a bottom element), take the relational
powerdomain of P to be Pg(P) =qe¢ Z(P°), where P° is the set of finite elements
of P and I(P°) is the complete lattice of the ideals of P° ordered by subset (ideals
being downward-closed subsets, possibly empty).

Now there is a “weakest-liberal-precondition” isomorphism,
W: P — Pr(Q) = Pr(Q) —em Pr(P)

where P and @) are given w-algebraic cpos and where on the left we take the contin-

uous total maps and on the right we take the completely multiplicative maps, that
is those g such that ¢(ND) = Npep g(D) for any D C Pr(P).

The isomorphism is well-defined by:
W(f)ND) = wip(f, D) =qet {a € P°| f(a) C D}.
It has inverse well-defined by:
W g)(z) =({D € Pa(P) |Va € P*.aC z D a € g(D)}.

Establish these assertions about W and W1,

Domains (1986)

This question presents a nondeterministic functional programming language. You are
to provide both an operational and denotational semantics for it and show them equivalent.

76

The Language

Types: o ranges over the set TExp of type expressions and ¢ over the set FTExp of
function type expressions. These two sets are given by:

ou=1|N|oxo|o+o
@ u=0a — P(o)

It is intended that all type expressions represent sets: 1 is the one-point set, N is the
set of natural numbers, o x ¢/, o + o’ are the product and sum constructions. Further
o — P(o’) represents the set of all functions from o to subsets (in the ordinary sense —
possibly empty) of o’

Expressions: ranges over a set Var of variables, f over a set FVar of function varz’ableé,
e over a set Exp of expressions and fe over a set of function expressions. The latter two -
sets are partially given by:

eer==a| fe(e)|eore|...
feer=dz €oel| f|pfp.fe

It is intended that expressions e of type o stand for subsets of o and that function ex-
pressions fe of type ¢ stand for elements of . In particular the function application fe(e)
stands for all possible results of applying fe to an element of e and the nondeterministic
choice e or €' for the union of e and €’ (operationally this is nondeterministic choice) and
the abstraction Az € o.e stands for the function which, given an element of z of o, returns

the set of results, e, and the recursive definition pf:p.fe stands for the f in ¢ recursively
defined to be fe.

Now do the following:
1. Syntax: Fill in the syntax for expressions to cover 1, N, products and sums.

2. Typing: Give typing rules to show e € o for expressions and fe:p for function
expressions. The rules can be in natural deduction style with assumptions of either
the form = € o or f:p.

3. Operational Semantics: Specify canonical forms, ¢, and give rules defining rela-
tions e = ¢ (read as “e may evaluate to ¢”) and (fe,c) = ¢’ (read as “fe may evaluate
to ¢’ when applied to ¢”). As an example here is the rule for recursion:

(fe(ufp.fe),c) = ¢
(ufipfe.c) = ¢

4. Denotational Semantics: Give this according to the intentions written above.
Give the set [o] that o represents and the set [p] that ¢ does. A type-assignment is
amap a: Var — TExp and a functional type-assignment is a map B: FVar — FTExp.
Say what a-environments, p and what S-environments, 7, are (total functions will
work). Give semantic clauses for the denotations

Ele; @, Bl(p,7) C [o]
Flfe; @, B(p,) € [¢]

(i

where o, B F e € o and «, B | fe: ¢ in appropriate senses.

3. Show that, for canonical forms, [c] is a singleton and [c] = [¢/] if and only if ¢ = ¢'.
(We drop «, §,€,p, 7 when understood or not needed.)

6. Consistency Theorem: Show that if e = ¢ then [c¢] C [e]. To do this state
the corresponding result for function expressions. You need only present four cases:
function application, nondeterministic choice, abstraction, recursive definition. State
any substitution lemma, independence lemma or recursion lemma that you require.

7. Completeness Theorem: Define the relation X <, e between subsets of [¢] and :
closed expressions, e, by:

X Z,eiff Va € X.Fc{a} =[c] Ae=c

And define the relation h <, fe between elements of [¢] and closed function expres-
sions, fe, by:

h <, feiff Va € [o].Ve.{a} = []
D Vb € h(a).3c.{b} =[] A {fe,c) = ¢

where ¢ = o —P(d”).
Show that for e € o (e closed) and fe: ¢ (fe closed) the following holds:

(a) [el <. e

(b) [fel <, fe.

To do this you must state the generalisation for open e and fe. You need only present
the four cases required in the consistency theorem.

8. Conclude that for closed expressions e: [e] = U{[c] | e = ¢}.

Domain theory (1985)

This question concerns equational logic for partial algebras where it is (unfortunately)
necessary to consider assumptions of existence. An axiom system is given below. You are
required to do an example within the system and prove its completeness (not its consis-
tency).

Let ¥ be a fixed signature throughout. A partial Z-algebra A is a set |A| together-
with a partial function f4:|A|* — |A| for each operation symbol (= function symbol) of
arity n > 0. Terms ¢, u,v are formed from variables and operation symbols in the usual
way. For each environment p mapping variables to elements of |A], the value A[t](p) of ¢
is defined in the evident way, but may not exist. (Note: p is total.)

The logic has two kinds of atomic assertions At, viz E(t) (to be read as “t exists”) and
t = u (to be read as “¢ exists iff u does and they are equal when they both exist”). The
logic assumes given a set Az, of such atomic assertions as axioms. It gives rules to derive
sequents of the form I' - At where T' ranges over finite sets of the form {E(t1),..., E(tn)};

78

- so I is the set of assumptions of existence.
Here are the rules of derivation of sequents.
Axioms
0F At (if Atisin Az)
Sequents
1. TU{E(®)} F E(¥)

'+ At
CTUTY - At

Equivalence

1. THt=t¢

ThRt=u

9 =7
F'Fu=t

F'rt=u,TFu=v

3 TkHt=v

TU{E@)}Ft=u,TU{EM@)}Fu=t

4,
'Ft=u

Existence

1. OF E(z) (where z is any variable)

TFE®),TFt=u
I'+ E(u)

Tk E(f(ts,...,t))
TF E()

3. (where n > 0 is the arity of f and 1 < i< n)’

Congruence

F'rty=wy,...,IHt, =u,
I'kF f(tl,...,tn)Ef'(ul,...,un)

(where n > 0 is the arity of f)

Substitution

'tt=wu,T'F E(v)
I'F tlv/z] = ulv/z]

1. (if # does not occur in T")

'+ E@),TF E(v)
I'F E(tlv/z])

(if z does not occur in I')

79

Here t[v/z] is the term resulting from substituting v for z in t.

So, for example, the axiom rule says that () - At is derivable when At is in Az, and the
second rule of existence says that if I' - E(t) and I' - ¢ = u are derivable, so is T' - E(u).

Example: The axioms for (partial) group theory are (where we use an infix - for multi-
plication and write e instead of e(), etc.):

Associativity z-(y-2)=(z-y) =

Identity T e=zxT, € T=C
Inverse -z l=e zl-z=e
Existence E(e)

Show that § - E(z~1) and 0 - E(z - y) are derivable.

Returning to semantic issues, write =4, E(t) to mean A[t](p) is defined and }=, , t = u
to mean that A[t] is defined, being d in |A|, iff AJu](p) is defined, being d too. We say A is
an Az-algebraif =4, At for every p and every At in Az. We write {E(t1),..., E(tn)} Ea,
At to mean that if =4, E(t;), for i =1,...,m then =4, At.

Consistency: For every Az-algebra A, if § - At is derivable then § =4, At, for every p.

Completeness: If for every Az-algebra A and every p, it is true that § = At holds then
0 + At is derivable.

You are asked to prove completeness only.

Hint: For every I one can define an algebra Ar with [Ar| = {[t] | T F E(t)} where [t]
is {u | T Ft=u}. fa([td,...,[ta]) is [f(t1,-..,t.)] if that is in |Ap|, and is otherwise
undefined. Look at Ar[t](p) for arbitrary ¢, p and use the algebra for suitable choices for
I’ and p.

Domains (1984)

This question concerns the denotational and operational semantics of the following
functional programming language (which can be considered as a fragment of a functional
metalanguage for denotational semantics).

Syntax: There is a denumerably infinite supply of function variables, f. There are type
expressions o, function type expressions ¢ and function expressions fe, given by the fol-
lowing grammars (where n > 0):

Type Expressions: o::= X(0y,...,0,) | +(01,...0,)
Function Type Expressions: ¢::= ¢ — o'
Function Expressions:

fe:i=id, | fe'ofe | f | uf:p.fe
(fey,...fe,) | Toy,..0n,t (where 1 <37 < n)
tMoy...onst (Where 1 <7< n) | [feq,...,fe,]

80

Informal Explanation

There are product and sum types (denoting sets) and function types for partial func-
tions between them. There is the identity function and functions can be composed. Func-
tions can be defined by recursion. Functions can be combined by target tupling and there
are the projection functions. There are injection functions and functions can be defined
by source tupling.

Now answer the following:

1.

Not all expressions make sense. Give typing rules to show when fe:p under the as-
sumptions that fi:¢y,..., fm:¢m. Here is an example rule written in natural deduc-
tion style, leaving irrelevant assumptions implicit and showing cancelled assumptions
by the square bracket convention.

[f:¢]

fe:p
(kfp.fe):p

Show every closed function expression has at most one type.

Give the denotations of types o, as sets [o] and of function types ¢, as complete
partial orders [p] of partial functions.

. Give the denotations [fe] in [¢] of function expressions, fe (where fe: ¢ if fi: ¢, ..,

fmi¥m) given denotations «; in [p;] for f; (i = 1,... ,n). Pay attention to the
issue of the continuity of expressions in variables, stating definitions and giving the
necessary facts without proof. [Hint: You might find it best to introduce constants
for elements of [¢] and begin with the denotations of closed expressions.]

The set of canonical expressions c is given by the following grammar:
Cii=(cry..s6n) | 1oy, 0n,i(C) (n>0)

Give typing rules to show when ¢ € 0. Give denotations of canonical expressions so
that [c] € [o]. (Note that [¢] = [¢] iff ¢ = ¢).

Give the operational semantics of closed function expressions, fe, by defining an
evaluation relation:

(fe,c) = ¢

Show that if (fe,c) = ¢’ where fe:o — o' and ¢ € o then ¢’ € o'. (State without
proof any lemma needed about substitution.)

. Show that if (fe,c) = ¢’ where fe: 0 — o and ¢: o then [fe]([c]) is defined and equals

[¢]. (State without proof any lemma needed about substitution.)

81

7. Show for the sublanguage without recursion that for any closed fe: ¢ — ¢’ and ¢ € ¢ if
[fe]([c]) is defined there is a ¢’ such that {fe,c) = ¢/. (Warning: This is deliberately
stated in a weak form.)

8. Show for the full language that for closed fe: 0 — o’ and ¢ € o if [fe] ([¢]) is defined
then (fe, c) = ¢’ for some ¢'.

Hint: Add a constant §,,: ¢ — ¢’ to denote the empty function from [o] to [¢'] and
extend the result of (7). Now define abbreviations u™ f:p.fe (for n > 0) by putting
pOf:p.fe =aes 0501 (where ¢ = 0 — ') and @V fip.fe =4p felu™ frp.fe/ f].
Then say when an expression fe’ in the language without recursion approzimates one
fe in the full language and show that then if (fe’,c) => ¢’ then (fe,c) = ¢. Then
show that if [fe]([c]) is defined, so is [fe]([c]) for some approximation fe’ of fe.
(State without proof any lemma needed about substitution).)

9. So far the language is trivial as every type has only finitely many members. Show
briefly how you would extend the above to include natural numbers.

Postscript

In the above it is assumed that free and bound variables are defined in the normal way
and that so is fe[fe'/ f], the substitution of fe’ for f in fe.

Domains (1983)

The question is about the possibility of solving “domain equations” in the ordinary
category Set, and the relation between solutions obtained there and those obtained in
categories of cpo’s. The solution of domain equations in Set was, in effect, proposed in
[McC] §6, and has been revived in another form in [AM]. (It is not necessary to read these
papers to answer the question, though it might be helpful to look at [AM] for 2.(c) & (d).)

1. Show that Set may be identified with (strictly: is isomorphic with) the subcategory
of CPO_ consisting of the flat domains and the very strict morphisms. What stan-
dard functors on CPO_ cut down to X,+ (product, coproduct) on Set, modulo
this identification? Let Pg, be the “finite power set” functor on Set, so that Pg,(S)
is the set of finite subsets of S, and Pgy is defined on morphisms in the obvious
way. Show that Pg, can be considered as (the restriction of) one of the usual power
domains. Can anything similar be done with function space (exponentiation)?

2. (a) State a version of the initial fixed-point theorem ([Plo] Ch.5) for Set rather
than CPOg; also state a greatest fixed-point theorem for Set (or, what is the
same thing, an initial fixed-point theorem for Set°P), formulating carefully the
notions of continuity of functors needed for the initial and greatest fixed points,
respectively (call them w-continuity and w®P-continuity). [The use of greatest
fixed-points is advocated in [AM]. It would perhaps be better to call these
fixed-points “terminal” or “final” rather than “greatest”.] Show that Pg, is
w-continuous but not w°P-continuous in Set.

(b) Show informally (full details not required) that, at least for the “usual” functors
which preserve injections, the identification of Set with a subcategory of CPO |
extends to initial fixed-points, so that the initial fixed-point theorem for Set
can be considered as a restricted case of the initial algebra theorem ([Plo] Ch.5,

Th.2).

82

()

(d)

A domain of finite and infinite binary trees may be introduced as the initial
solution of

TZOPAQRT, ®T, (1)

(A is a flat domain of labels, O is the two-point domain.) As pointed out by
[AM], one could also use the greatest solution in Set of

T=14+AXxTxT (2)

However, the “domains” obtained as solutions of (1) and (2) are not quite the
same, even as sets; point out the difference, and briefly explain how it arises. °
How, by a slight modification of (2), might we define a “domain” of infinite
trees only? What happens if the corresponding modification is made in (1)?

Optional) Any comments?
(Op y

References

[McC] J. McCarthy. A basis for a mathematical theory of computation. Computer Pro-
gramming and Formal Systems, North-Holland 1963.

[AM] M. Arbib and E. Manes. Parameterized data types do not need highly constrained
parameters. Information and Control 52, 139-158 (1982).

[Plo] G. Plotkin, lecture notes.

Domains (1982)

The category Equiv has as objects structures (X, =) where = is an equivalence relation
over X and as morphisms f:(X,=) — (X',=') total functions f: X — X’ such that for
any a,bin X if a = b then f(a) =' f(b).

(a)

(b)

Show that Equiv has finite products and coproducts. Define a “finite-set”
functor F:Equiv—Equiv so that on objects

F(X, =) = ({u| v is a finite subset of X}, (to be filled in))

Define a “finite-function” functor Map 4: Equiv — Equiv (A any set) so that
on objects

Map,(X,=) = ({fiv — X | u is a finite subset of X},
(to be filled in))

A morphism f: (X, =) — (X',=') is an inclusion if X C X' and for all a,bin X
if a = bthen a ='b (i.e. = C ='). Let Equiv! be the subcategory of inclusions.
Show it has w-colimits of chains ((Xy,=,), fx). What should the definition of
a continuous functor,
G: (Equiv))" - Equiv’

of n arguments be? Show that all the functors considered in part (a) when
specialised to inclusions yield functors over Equiv’ which are continuous (The
obvious sense of specialisation is intended).

83

(c) Show, with suitable definitions, that every continuous G:Equiv! — Equiv’

has an initial fixed-point (=algebra), ng: G(Fizg) = Fizg (note the equal-
ity!). Show that if F: Equiv — Equiv specialises to such a G then the initial
G-algebra is also the initial F-algebra. Finally demonstrate a Principle of
Structural Induction for Fizg and illustrate it in the cases

(i) Integerss N=1+ N
(ii) Hereditarily Finite Sets over X: H = F(X + H)
(iii) A-trees over X: T = (X x Map ,T)

(d) Let ¥ be a one-sorted signature. What should the category of Z-algebras over
Equiv be? Let E be a collection of equations in the signature £. When should a
T-algebra satisfy E? Show that there is a free Z-algebra Algy g(X, =) satisfying
E over any (X,=). Show too that Algs g yields a functor Fyg p: Equiv —
Equiv where on objects

Fyz 5(X,=) = equivalence relation of Algy g(X, =)

Demonstrate that Fy g specialises to a continuous functor on Equiv!. What
happens if you try to obtain F as such a Fyg g7

(e) Indicate briefly what would happen in the above if inclusions were replaced by
strict inclusions where an inclusion f:(X,=) — (X', =') is strict iff for all a,b
inX wehavea=biffa =¥ (le. == ='|2).

Domains (1981)

A nondeterministic cpo (ndcpo) is a structure (D,C,U) where (D,C) is a cpo and
U: D? — D is a binary continuous function such that: '

Associativity: zU(yUz)=(zUy) Uz (z,y,z € D)
Commutativity: zUy=yU=zx (z,y € D)
Absorption: zUz ==z (z € D)

A function f: D — E over ndcpos is linear if for all z,y in D we have:

flzUy) = f(z)U f(y)

The category IND has the ndcpos as objects and the linear continuous maps as mor-
phisms.

1. Show that ND has (binary) products.
2. Define the subcategory of embeddings, NDE.

3. Show NDF has direct limits of w-chains and there is a simple local criterion for the
universality of cones.

4. Show how to turn product into a continuous functor on NDE,

84

- Domains (1980)

The untyped A-calculus has the following syntax:

Var: a set of variables, ranged over by z,y,
Exp: a set of expressions, ranged over by e, and given by

e:=1z|e(e) | (A\z.e)

Let D be a cpo and suppose (D — D) 5 D % (D — D) are continuous functions of
the indicated types between D and the space D — D of all continuous functions from D

toD

(a) Define the natural denotational semantics £:Exp — Env — D using ¢ and ,

(b)

(©)

(4)

(f)

where Env = Var — D is the set of environments.

Show that for all expressions e and €', variables z, and environments p, that, in
an evident notation:

Elle'/z]e](p) = E[e)()[E[e'N(p)/2])
You may assume, for the sake of simplicity, that z is not a bound variable of e.
Show that, assuming ot = id, the following restricted version of the #-rule is
true:

(B) (Az.e)(e) =[¢'/z]e (z does not occur bound in e)
Show that the n-rule is true iff ¢ 0 9 = id; the p-rule is

(n) (Az.e(z)) =€ (z not free in €)
You can assume that for all expressions e and environments p and p’, E[e](p) =
E[el(p") whenever p[z] = p'[z] for any variable z free in e.
Let A be an arbitrary set (of “atoms”); let S be the least set such that:

S=AU(P,S)xS)
where for any set X, P,(X) = {U C X | U finite } is the set of finite subsets
of X. In other words, § = Uy>0S, where Xo = 0 and Sn41 = AU (P.(S) x S).
Now let D be the complete lattice P(S) of all subsets of S and define ¢ and
by:

o(f) = {(X,s)|X € Pu(S),s € 5,5 € f(X)}

P(d)(e) = {s|]3X € P,(S).(X,s) € dand X C ¢}

Show that ¥ o ¢ = id. What is the relation between ¢ o ¢ and idp and what
does this portend for the p-rule?
Prove the following formulae (where X,Y range over P,(S) and s ranges over
S):
El(Az.z)](p) = {(X,s) | s € X
s

}
E[(Aa.(Ay.2))](p) = {{X,(V,)) | s € X}
El(Az.z(2))](p) = {{{{X, 8)}UY s) | X €Y}

Elz.z(z))(Az.2(2))](p) =
What do you guess S[[)\:c./\y.)\z.w(z)(y(z))]](p) is?

85

b

Semantics (1979)

Let Stat be any solution (i.e. not necessarily the standard one obtained by inverse
limits or by retracts) of the cpo equation

Stat = Act) + [Stat x Stat]

where Act is a set of basic actions (primitive statements).

(a) Write down, in terms of the standard functions over cartesian products and °
coalesced sums of cpos, definitions of the natural abstract syntax operations on

Stat:
tsprim, tsseq: Stat —» T
mkprim : Act; — Stat
mkseq : Stat x Stat — Stat
act : Stat — Act,

staty, staty : Stat — Stat
(b) Let copy: Stat — Stat be the least fixed point solution of the recursive definition

copy(s) = isprim(s)— mkprim(act(s)) |
isseq(s) — mkseq(copy(staty(S)),copy(stata(s))) | Lstas

Let P[s] be an w-inductive property of s € Stat, and assume the following hold:
i. P[1]
ii. Va € Act. Plmkprim(a)]
iii. Vsy,s9 € Stat. P[sy] A P[sy] = P[mkseq(sy, s3))
Prove that
Vs € Stat. Plcopy(s)].

(c) Let C be a cpo with (continuous) functions

A : Act, — C
compose : CxC — C

and define C:Stat — C as the least fixed point solution of

C(s) = isprim(s)—.A(act(s)) |
isseq(s) — compose(C(stati(s),C(stata(s))) | Lo

Prove that
Vs € Stat. C(copy(s)) =C(s).

(d) Let @[c] be an w-inductive property of ¢ € C. Combine the results of parts (b)
and (c) to state and prove a principle for inferring

Vs € Stat. Q[C(s)]
(e) Comment briefly (about 75 words) on why an extra axiom

Vs € Stat. copy(s) = s

86

was not needed for part (d), indicating what this axiom would tell you about
Stat.

[Note: For proofs by induction mention clearly the induction rule you are using].

Semantics (1978)

Let X be a ranked alphabet of operators; that is, each ¢ € ¥ has an arity of n > 0 ;
Denote by X,, the subset of X of operators with rank n.

Ws({L}) is the set of words generated for the symbol L, that is

i. L is a word
ii. If wy,...,w, are words, and o € ¥, then ow; ... w, is a word.
There are two ways of defining a partial order over Wg({L}):
(a) w < w' iff this can be inferred in a finite number of steps from
1. L< w for every word w

!

il. Ifw; Swjforl1<i<nando €, then ow;...w, <wj...w,

(b) w £ w' iff w' may be got from w by replacing all occurrences of L in w by
words; that is, if w = w[L,..., 1] then w’ = w[vy,...,v,] for some words v;.

1. Prove that (a) and (b) are equivalent, i.e. show that
Yu,w' w<w & wl v

(You will need structural induction, or induction on the number of steps of an infer-
ence under (a), or both).

2. Prove also that < (or C) is indeed a partial order.
3. Show that any pair of words w,w’ has a greatest lower bound under < (or C).

4. Discuss (in about 200 words) the importance of Wg({.L}) in semantics.

Semantics (1978)

We can generalise from sums and products of cpos over sets, such as 3¢ D; or [TiesDi,
to sums and products over cpos.

Definition. Let D be a cpo. It is therefore a category with at most one morphism from
one object (= element of D) to another and there is a morphism from d to d’ iff d = d’ (in
which case the pair d,d’ determines it and we call the morphism d — d’ here). A functor
F: D — OY is w-continuous iff whenever (d,) is an increasing sequence in D with lub d
then the co-chain

87

- has as co-limiting cone p: A — F(d) where p, = F(d, — d).

Now if D is a cpo and F: D — OF is an w-continuous functor we define 3, F to be
the set {(d,e) | e € F(d)} ordered by:

(dye) T(d",e)if dC d AF(d— d')(e) C e

(a) Show that Y5 F is a cpo.
(b) (Examples)
i. Show that D) = Yo F where F(L) = U, F(T) = D,and F(L— T) =Llyp.
ii. Show that Dy +FE, = ¥ 7 F where F(L) = U,F(¢) = D,F(ff) = E,F(L—
tt) = J—U,D, and F(_L-——+ ﬁ) = —LU,E- -
iti. Show that D x E = Y p F where F(d) = E and F(d — d') = idg.
iv. What about denumerable sums?

For products, we say that a function f: D — Uuep F(d) is well-typed iff Vd € D.f(d) €
F(d). It is monotonic iff

Vd,d' € D.dE d'= F(d — d')(f(d)) C f(d).
It is continuous iff whenever (d,) is an increasing sequence with lub d then

f(d) = U, F(dn — d)(f(dn))-
We define [iD F to be the set

[IpF ={f: D — Uyep F(d) | f is well-typed and continuous}

with the pointwise ordering:

fEgiff Vde D. f(d) C g(d).

(c) Show that [Tp F is a cpo.
(d) (Examples)
i. Show that D x E = [[r F where F is as in part b(ii).

ii. Show that D — E = I]p F where F is as in part b(iii).
iii. What about denumerable products?

88

11 Operational semantics

Operational Semantics (1988)

This question is divided into two parts. For 2/3 credit, answer the first part, and for
full credit answer the second as well.

Part I

Consider the following fragment of ML:

e ii= & |c|letz=eine | refe|le|e:=¢

The metavariable z ranges over the set X’ of variables, and the metavariable ¢ ranges over
some set C of constants. Informally, ref e allocates a new cell in storage, initializes it to
the value of e, and returns a reference to that cell. If e evaluates to a reference, then le
returns the contents of the corresponding cell, and e : = ¢’ replaces its contents with the
value of ¢/. This can be made precise by defining an operational semantics which employs
an explicit store.

Let ¥V = CU A be the set of values, consisting of the constants and a set 4 of addresses.
Let S = A —g, V be the set of stores, which are finite functions® from 4 to V. Let
& = X —4, V be the set of environments. Let v range over V, a over A, s over S, and
E over €. The store s[a « v] agrees with s on addresses other than a, and sends a to v.
Similarly, the environment E[z « v] agrees with F on variables other than z, and sends
z to v. The function nezt(s) yields a € A such that a € dom(s). Assume that there is a
special constant done € C.

The relation E F e,s = v, s’ is defined to be the least relation closed under the following
rules of inference:

EtFcs=cs

z € dom(FE)

Elz,s= E(z),s
Eles=v,s Elz—v]teé,s=v,s"
EFletz=eine,s = s"
Etes=v,s
E |- refe,s = next(s'), s'[next(s) — v]
Elre,s=a,s a€ dom(s)
Etle,s = s'(v),s
Eles=a,sd Etreé,s=vs"
Ete:=¢,s= done,s"[a—v]

A natural type system for this language is based on taking the following language of
types:

7 = b | 7ref | crmd

3That is, partial functions with finite domain.

89

The metavariable b ranges over some set of base types. The type T ref is the type of
references to cells containing a value of type 7, and the type cmd is a distinguished base
type. Let CT be a function assigning a base type to each constant, with CT(done) = cmd.

The problem is to define a type system for the above language and prove that it is
sound. More precisely,

1. Based on the informal description given above, define the relation s |= v: 7 specifying
the values of type 7 relative to a store s.

2. Define a monomorphic type inference system for deriving assertions of the form
T'F e: 7 (where T is a type environment assigning types to variables.)

3. Prove that the type system so defined is sound with respect to the operational
semantics in the sense that if an expression is assigned a type 7 and evaluates, in a
store s, to a value v and a new store s’, then v has type 7, relative to s'.

Part IT

The type system discussed in Part I is based on the fact that, in a given store, every
value has at most one type. In this part of the question we consider some of the problems
that arise by admitting a degree of polymorphism. To do so, we extend the language to
include the following operations on lists:

e ::= nil | e::¢’ | hd(e) | t1(e)

The operational semantics is extended to account for the new expression forms in the
obvious way, taking nil and v::v' as values. The language of type expressions is extended
to include types of the form 7 list whose values are nil and v::v’, where v is a value of
type 7 and v’ is a value of type 7 list. Note that nil is a value of every list type.

We shall now extend the type inference system defined in Part I to admit a polymorphic
typing rule for let, so that the following program is well-typed:

let r = nil
inlet x =1 ::r
in true :: r

On the other hand, the following program should not be admitted as well-typed:

let r = ref nil
in let x = (r := (1 :: nil))
in let y = (r := (true :: nil))
in ('r)+1

Recall that for pure ML, the language of type expressions is extended to include type
variables t. In addition, a set of type schemes o of the form Vty,...,t,.7 is introduced in
order to express polymorphism. An instance of a type scheme Vt,,...,%,.7 is a type 7'
obtained by replacing each ¢; in 7 by a type expression; write o > 7/ when this is the case.
Given a type environment T (assigning type schemes to variables) and a type 7, T(7) is
defined to be the type scheme V¢4, ... ,¢,.7 such that ¢; occurs free in 7 but not in the type
scheme assigned to any variable by T'. Soundness of the pure system is proved by taking
the values of a type scheme o to be the values of every closed instance of o.

90

The above examples show that the usual polymorphic typing rule for let is not sound in
the presence of references. A crude, but effective, way to ensure soundness is to distinguish
two cases, based on the form of the expression bound to the identifier by a let:

e€C Trer Tx«T(T)kFe 7
Thletz=eine: 7
e¢C Trer Ttk

Thrlet z=eine": 7

The idea is that the constants do not create references to the store, and hence may be’
safely taken to be polymorphic. (More refined criteria are available, but this one will serve
to illustrate the method.) The remaining rules for the type inference system follow the
pattern of Part I, with the exception of the variable rule which must employ the type
scheme instantiation relation.

The problem is to formulate and prove a soundness theorem for this type system with
respect to the operational semantics. The principal complication arises from the fact that
nil is polymorphic, making it difficult to define the values of a type relative to a store
in a way that is useful for establishing soundness. One way to handle this problem is to
introduce store typings assigning types to addresses, and then to define a 4-place relation
s: S = v: 7 defining the values of type 7 with respect to a typed store. The definition
may be given uniformly, regardless of whether or not S and 7 contain type variables. You
will need to extend this relation to type schemes, following the informal motivation given
above, and to environments. Once you have defined this relation, formulate and prove the
soundness theorem for the type inference system. As a check, verify that the unrestricted
let rule is unsound.

Operational Semantics (1987)

1. Design some additional rules for raising and handling exceptions in the SMC machine.
For this purpose, use the raise and exception constructs introduced in section 4.6
of [MM]. Do not give any formal proofs, but justify your design by discussion.

2. Complete the proof of the second part of Theorem 4.4 in [MM], the equivalence of
two semantic definitions:

p,M —*null, M’ if p, M= M’
[Deal carefully with all the cases not treated in [MM].]

3. Define an SECD machine derivative that supports both static and dynamic scoping
of variables. Assume the existence of a new feature, dynamic(z), which returns the
value of z in the dynamic environment. Undecorated variables should be bound in
the static environment. Show the steps necessary to evaluate the expression

Ay.((Af.(Ay.f 3) H)(Az.x + y — dynamic(y)))) 5
on your machine.

4. Show how the expression

91

let fun f zx =ifs =0then lelsez* f(z —1)in f 2
can be represented as a graph suitable for evaluation using graph reduction. Describe
the steps necessary to reduce this expression to WHNF (Weak Head Normal Form),
illustrating your answer with the intermediate states of the graph where appropriate.

References

[MM] R. Milner and K. Mitchell. Language semantics and implementation (lecture notes).

b

Operational Semantics (1986)

Consider the following type inference rules (from [DM 82]) for the let-lambda-calculus:

TAUT: At zi0c (z:0in A)

Al eo

INST: - Sy (0>9)

G Z%_\E/%; (o not free in A)
coup AT e
B e

rpy. AFeo AU{sio}beir

AlF(letz=eine):7

In these rules, types T are built by arrow (—) from primitive types ¢ and type variables
o, and type schemes o are of the form Voy ...Vay,,7. o > o' (o' is a generic instance of

o) means that ¢ = Vay...Va,,7 and ¢’ = VB;...VYB,7', where fy,..., 0, are not free in
oand 7' = [ry /ey, ... Tm/am]7T. Assumptions A are of the form {zy:0y,...,z4: 0} where
Zy,...,2; are distinct, and A, means A with any element z: o removed.

1. An expression e of the let-lambda calculus may be converted into a let-free expres-
sion &, by repeatedly replacing any sub-expression of the form let z = e; in e, by
[e1/x]es, the result of substituting e; for free occurrences of in e, (with appropri-
ate bound variable changes). Define & inductively on the structure of e, and discuss
briefly what semantic property will ensure that e and & are semantically equivalent.
(This type is independent of type inference).

2. Give a detailed proof of the following theorem about type inference:
AF e:o implies AF &0

stating any properties of generic instantiation which you require.

92

3. Is the converse of this theorem in general? If not, demonstrate the falsity and postu-
late a condition on e under which it should hold. Then give a proof of the (modified)
converse. You may use the following without proof:

Lemma: If B F [¢//y]e: o, and y occurs free in e, then for some o/, B I ¢’: ¢’ and
B,U{y:0'} Fe:o.

References

[DM 82] L. Damas and R. Milner. Principal type schemes for functional programs. Proc.
9th ACM Symp. on Principles of Programming Languages, 1982.

Operational Semantics (1985)

In an extension of the untyped lambda-calculus, the syntax of expressions e € Exp is
as follows:

e:==c|k|ee|if e then e else e | Az.e
|let z =eine|letrecy = Az.eine

where k € Const and z,y € Var (constants and variables).

Without recursion, one can give operational semantics in terms of Val, Clos and Env
(values, closures and environments) as the smallest sets satisfying the equations

Val = Const x Val* 4+ Clos
Clos = Var x Exp x Env

Env = Var =5 Val (finite maps).

(The two different kinds of value may be written kvy ... wvn, [z, €, p]).

1. To handle recursion, assume larger sets Valivg, Closing and Enviyp satisfying the
above equations, but allowing infinitary closures; in particular assume (for each
z,e,p) a unique closure ¢ — denoted py.[z,e,p] — such that ¢ = [z,e,p + (¥,¢)].
(The environment p’ = p + (y,c) is equal to p except that p’(y) = ¢). Now define an
operational semantics FpnC Enving X Exp x Valiyg, where

priNFe— v

means that e evaluates to v in environment p. Assume call-by-value, and also assume
that if e; and e; have values kv;...v, and v, then eje; has values kv ...v,v.

2. As an alternative, to avoid infinitary values, consider sets Valpmy, Clospy and Envppy
as the smallest solution of

Val = Const x Val* + Clos
Clos = Var x Exp x Env + Var x Exp x Env x Var

Env = Var FN Val

93

Here the second form of closure, ¢ = [z, ¢, p,y], is intuitively understood as [z, e, p]
except that, in evaluating e, y is bound to c itself. Define an operational semantics
FrNG Envpivy X Exp X Valpy, under the same assumptions as in (1).

3. Formulate a theorem which relates g and Fry in the most satisfactory way, and
prove it. (This part of the question carries most weight).

4. Will your theorem still hold if you extend the language to allow non-determinism
in some form, for example the expression form “e or e¢”? If so, will your proof also
extend? Discuss in not more than 300 words.

Operational semantics (1984)

This question refers to [Mil 84].

(a) An alternative operational semantics for the ML subset is required, in which
each sentence

pnbEy =7

(where 4,4’ € T are configurations) represents a single evaluation step rather
than a complete evaluation. Define carefully an appropriate class I' of configu-
rations, and give the required semantics.

(b) (This part does not depend on (a) above.) It may be loosely claimed of the
given semantics that “whenever an expression evaluates to an address, then the
address points to a well-defined value”.

How would you formulate this claim precisely? Give essential details of the
inductive proof, if necessary correcting the semantics to ensure the claim.

(c) (This depends partly on (b) above.) Suppose that it is required to change the
semantics so that, informally, “whenever an exception is handled, the store
reverts to what it was before”. Find a sensible precise form of this imprecise
requirement, and suggest how the given semantics may be adjusted (almost) to
meet the requirement. Would you need to impose constraints on the language,
to preserve the truth of (b) above?

References

[Mil 84] R. Milner. Operational semantics of an ML subset. Internal Research Memo,
1984.

Operational Semantics (1983)

The simple programming language L (in [Plo], p.14 and elsewhere) is to be augmented
by two commands to allow “escape” values to be “trapped”.

c::=...|escape e | c trap v

The first command escapes from the normal control flow with the value of expression e,
and the second traps any escape generated by ¢, assigning the escape value to variable v.

94

1. Give two forms of operational semantics for this language: (a) an SMC-type machine,
and (b) an axiomatized transition system. (You need not detail the evaluation of
expressions in either case.)

2. How would you state the theorem which expresses the equivalence of these two
semantic definitions? Discuss, without carrying out the proof of equivalence, the
inductive methods which it may require, and whether the propositions which are
proved by induction need to be stronger than the statement of the theorem.

References

[Plo] G.D. Plotkin. A structural approach to operational semantics. Technical report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

Operational Semantics (1980)

We modify the language of recursion equations and its reduction-rule semantics [GW1]
to include non-deterministic choice symbolised by or.

Suppose the defining evironment for functions is
fi(Xla-"aXn,‘):T'i (1_<_z§m)

where f; takes n; arguments and the terms T; have free variables included in {Xj,..., X}
and take a form given by

ti=n|X;| —(n,m) | +(z,m) | fi(t,...,t) |if t thentelset|tort

(Here n,m are numerals and X3, X,... are variables).

(a) Write down a set of reduction rules — for closed terms ¢ of the form above.
These should include ¢; or ¢, — t; and ¢; or ¢, — t5. Represent true by 0 and
false by all other numerals. The reduction rules should reflect this and that
function evaluation is call-by-name.

Because of non-deterministic choice the relation —* forms a tree from an initial closed
term t. Write ¢ T if any branch fails to reduce to a numeral. For a closed term ¢

eval(t) =gt {n |t =*n}U{L]t T}
gives an operational semantics.

(b) To give a denotational semantics use the powerdomain of integers,
PN]={ACN,|A#0and (L¢g A= A is finite)}

ordered by ACgy Biff Va € AJbe€ B.a Z band Vb€ B.3a € A.a T b. Show
that P[N,] is a cpo.

Now take the environment as ¢ = (zo,21,...,%;,...) in P[N,]® and the function
environment as § = (o,...,0n) in [Tocicm[P[NL]"i — P[N.]]. Define the denotational
function M by:

95

M[[X,]]@ = T;

M[n]0z = {n}

Mi[fi(tla s vtni)}mm = wz(Ml[tllmxa s 7M|[tni]mm)

Mﬂ:tl or tg]]@l‘ = M[[tﬂ}@(l? U M[[tg]]@:c

Mop(t1,t2)]0z = {op(v,w) | v € M[t;]0z and w € M[t;]bz}

MIif t; then t; else 3]0z = U{cond(y, M[t:]0z, M[t3]0z) | y € M[t,]0z}

where op is the strict extension of + or — and cond: N; x P[N,]* — P[N,] is defined by

cond(z,Y,Z) ={l}ifz=L
=Yifz=0
=Zifz#1,0.

You may assume that M[t] is continuous.

Define I'i(0) =ges A1, ..., n M[T]0[z1, . .., z0; 2] and T(0) = (T1(0),...T (D).

(c) Show for ¢ a closed term that M[t]fiz(T)z = eval(t).

Hint. Use labelled terms to characterise M[t]JI"™(L)z in an operational way.
The proof follows the lines of [GW2] very closely. Use any results of the notes
without proof provided you state them clearly.

(d) How would you modify the denotational semantics for call-by-value evaluation
of the functions f;? (Do not spend very long on this part unless for bonus
points; some informal justification of your guess will do.)

References

[GW1], [GW2] Glynn Winskel, course notes.

Operational Semantics (1979)

A very simple non-deterministic programming language E is given by the following
syntax, where A is a set of basic commands and NIL stands for termination:

i. NIL is a program
ii. if e is a program, so is a: e
iii. if d and e are programs, so is (d + €)

Example: (a;:(ag: NIL + as: ag: NIL) + a;:aq: NIL) is a program. (Notice that there are
no tests and no iteration; ‘+’ stands for choice).

The problem is to investigate the operational semantics of F, by considering what se-
quences of basic commands can be executed by a program. We can define a production
relation = over E, for each a € A, by the following axiom and rules:

d-=d eSe
(d+e) > d (d+e)>e

Here are two possible ways of defining operational equivalence of programs:

a
a.e — e

96

i. Extend = to = for s € A* by e 23 ¢/ iff e ... 23 ¢’ then define:
d>d = 3ele e
and e S e =3d.d > d

ii. Define a sequence EQq, EQ)4, ... of equivalence relations over E by taking
EQo=FE x E, and

deqeifstEA*.{

_ d>d = 3e(e>eANd EQ,)
d EQn+1 eiff Va € A. { and e = e = Eid’(d = dnad EQn 6,)

then define: d EQ e iff Vn.d EQ,, e.

(a) Prove that both eq and EQ are congruences, i.e. (for eq) d eq e = a:d eq aze
and d eq d',e eq €' = (d+ ¢e) eq (d' + €').

(b) Are eq and EQ the same relation? If so, prove it; if not, give and justify a
counter-example.

(c) Prove that (d + €)EQ(e + d), and find two or three other laws satisfied by EQ
or eq or both.

(d) A preorder (reflexive transitive relation) < over E can be defined analogously to
EQ: take <= EX E,and d <p1 eiff Va € Ad 5 d' = 3e'.(e S ' Ad' <, €).
Then define: d < e iff Vn.d <, e. Is it then true that d EQ e iff (d £ e and
e < d)? Prove this, or give and justify a counter-example.

Hint
It helps to think of programs as finite trees, with arcs labelled by members of A — e.g.
for the example,

97

Copyright © 1988, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

