LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Co-induction in Relational Semantics

by
Robin Milner and Mads Tofte

SOIJUBWAS [BUOIIR[8Y Ul UOONPUI-0)

ECS-LFCS-88-65

LFCS Report Series (also published as CSR-278-88)
LFCS OCTOBER 1988
Department of Computer Science

University of Edinburgh

The King's Buildings Copyright © 1988, LFCS

Edinburgh EH9 3JZ

Co-induction in Relational Semantics

Robin Milner
Mads Tofte
Laboratory for Foundations of Computer Science
Department of Computer Science

University of Edinburgh
Edinburgh EH9 3JZ, U.K.

October 6, 1988

Abstract: An application of the mathematical theory of maximum
fixed points of monotonic set operators to relational semantics is pre-
sented. It is shown how an important proof method, called co-induction,
can be used to prove the consistency of the static and the dynamic re-
lational semantics of a small functional programming language with
recursive functions.

1 Introduction

The purpose of this paper is to present one instance among several we have encoun-
tered where the use of non-well-founded sets, maximum fixed points of monotonic
operators and a proof method, which we call co-induction, are essential tools in
studying the semantics of programming languages.

A set A is non-well-founded if there is an infinite sequence A;, A, ... such that
Ap+q is a member of A, for all n > 1. Otherwise it is said to be well-founded.
Although it is often assumed in set theory that all sets are well-founded, Aczel’s
anti-foundation axiom [2] leads to an alternative set theory which is very useful
in computer science. The significance of maximum fixed points and non-well-
founded relations in connection with concurrency has been demonstrated in work
by (among others) Park [8, 9] and Milner [7)

Non-well-founded objects occur naturally in programming language semantics.
The example we present in this paper is the soundness of a type inference system
with respect to the dynamic relational semantics of a little functional program-
ming language. The language is essentially the lambda calculus enriched with an
explicit construction for recursive functions. In the dynamic relational semantics

all functions evaluate to closures of the form (z, exp, E), where z is the formal pa-
rameter of the function, exp is the body of the function and F is an environment
containing bindings for the variables that occur free in exp. If the closure is the
value of a recursive function, then E should map the name of the function to the
entire closure itself. For example, the evaluation of the expression

fix factorial(n)= factorial(pred n) (1)
in the empty environment should yield a closure satisfying
Clact = <n, ...factorial(pred n), {factorial s clgpy} > (2)

By encoding tuples and finite maps as sets, one can view a solution to (2) as
a non-well-founded set. Alternatively, one can consider non-well-foundedness of
other objects than sets with respect to other relations than membership. In our
case, for every n-tuple (z1,...,z,) let us say that each z; is a constituent of the
tuple and for every finite map {2, — yi,...,2, — y,} let us say that each y; is a
constituent of the map. Let us write z > y to mean that y is a constituent of z.
A constituent sequence is a finite or denumerable sequence of objects such that if
y is the successor of z in the sequence then z > y. If we broaden the notion of
membership to constituentship in this way, then it is quite natural to call an object
non-well-founded when it occurs in some infinite constituent sequence. Note that
any clgq satisfying (2) is non-well-founded as it occurs in the infinite (periodic)
constituent chain

cliact > {factorial s clgcy} > clpay = {factorial s clgg} > ...

Whereas structural induction is a powerful technique for proving properties of
well-founded objects, co-induction may be used for proving properties of non-well-
founded objects. Co-induction is not a new mathematical tool, but it is perhaps
not as well-known as it deserves. We hope that the proofs we present in this paper
will stimulate the awareness of the underlying theory.

The reader may suggest, at this point, that there is no need to take a closure
to be a non-well-founded object, since one can deal instead with perfectly well-
founded objects — namely a finite expression, formed by a recursion operator,
which represents the infinite unfolding of the closure. This can be done, but it does
not remove the need for co-inductive proof; indeed, we have pursued this approach
and have found that the proof presented here requires only minor modifications.
We prefer to deal with closures as non-well-founded objects because it appears
most natural to do so.

Relational semantics borrows the idea of inference rule from formal logic to
define the semantics of programming languages. It derives from Plotkin’s work on
“structural operational semantics”[10]. Kahn and his group use the term “natural
semantics” [5] for what we call relational semantics. Whatever the name, it is

2

of a more syntactical and mechanical nature than denotational semantics, where
programs are mapped to objects (so-called denotations) in a mathematical model.
Using denotational semantics it has been proved that the type inference system
we define below is sound, i.e. that if an expression exp has a type 7 according
to the type inference system and d is the denotation of exp then d is a member
of the set (actually an ideal) which models the type (see e.g.[6]). In this paper
we shall prove the corresponding result for relational semantics. This gives us the
opportunity to review and apply the principle of co-induction, without which we
have not been able to prove the consistency of the type inference system and the
dynamic semantics.

The rest of this paper is organised as follows. In Section 2 we define the
syntax and the dynamic semantics of the language; in Sections 3 we define the
statics semantics of the language; in Section 4 we introduce the idea of maximum
fixed points and co-induction and in Section 5 we use it to prove the consistency of
the static and the dynamic semantics. In Section 6 we finally discuss alternative
notions of what it is for a value to have a type, some of which take one beyond the
realm of co-induction, since this concept depends on the monotonicity of functions.

The reader is supposed to know elementary set theory; the basic ideas in
relational semantics are simple and will be introduced when they are used. In
order to allow the reader to concentrate on the basic proof method, we have
chosen to state and prove a relatively elementary theorem.

2 The Language and its Dynamic Semantics

For the definition of the language we assume a set Const of constants, ranged over
by ¢, and a set Var of variables, ranged over by = and f. The language Exp of
expressions is

exp u= <z Variable
c Constant
fnz=>exp Abstraction
fix f(z) = ezp Recursive function
exp; erp, Application.

The abstraction fn z => exzp corresponds to lambda abstraction in the lambda
calculus. In fix f(z) = ezp, the function f is defined recursively.

In what follows, we use ¥ to mean disjoint union of sets and A &3 B denotes the

partial functions from the set A to B that have a finite domain. If fEA 53 B the
domain and range of f are denoted by Dom(f) and Rng(f), respectively. Every

finite map f € A 58 B can be written on the form {as ~ b1,...,a, — b,}; in
particular {} means the empty map. For every f,g € A 5 B the map f+g €
AL B, called f modified by g is the finite map with domain Dom(f) U Dom(g)

3

and values (f + g)(a) = g(a), if a € Dom(g), and (f + g)(a) = f(a) otherwise.

3)

EFc—rc

z € DomFE (@)
E|—a:——-+E($)

(5)

Erfnz=>exp — (z,ezp,E)

clo = (z, ezp, E+{f — cln}) 6)
E I fix f(z) = exp — ¢l (

Etlexpy —c; EF exp, — c; ¢= APPLY(cy,c)
Et exp, exp, — ¢

(7)

E v+ exp;, — (2, exp', E')
E F exp, — vy
E'+{z' > v} F exp’' — v

(®)

E | exp, exp, — v

Figure 1: Dynamic Semantics

We now give a relational semantics for Exp in the form of a set of inference
rules the conclusions of which are of the form E - exp — v, read “exp evaluates
to v in E”. To handle recursion we allow our semantic objects to be non-well-
founded. More precisely, it is possible to define sets Val, Clos, and Env so that
they satisfy the set equations

v€ Val = Constt Clos Values

E€Env = Var 3 val Environments
clor (z,exp,E) € Clos = Varx Exp x Env Closures

and so that for all f, , exp, E there is a unique closure cl,, € Clos solving the
equation

| clo = (z, exp, E+{f — clw}). (9)
Mathematical justification that it really is possible to find sets Val, Env and Clos
which meet these requirements (in particular the requirement that (9) have one

4

and only one solution for ¢l,,) can be found in Aczel’s book [2]. Intuitively, the
solution to (9) can be understood as the non-well-founded object which results
from repeated application of (9) as a rewriting rule. Note that, because Clos =
Var x Exp X Env, every closure ¢l in Clos is a triple and if (x4, ezp,, B;) =
(z3, expy, E4) then z; = 3, ezp, = exp, and E; = E,.

A closure is the value of an abstraction. As in the literature, a closure takes the -
form (z, exp, E) where z is the formal parameter, exp the body of the function and
E an environment which maps each free variable of exp to the value it assumes
at the time of the declaration of the function. In general, evaluation of a fix
expression yields a non-well-founded closure as illustrated with the factorial
example in the Introduction.

To handle the application of constants to values we assume a partial function
APPLY : Const x Const — Const. With these conventions we define the dynamic
semantics of Exp by the inference rules in Figure 1; the rules allow us to infer
statements of the form E F exp — v, read exp evaluates to v (in E). For
instance, rule 7 can be read: if ezp, evaluates to ¢; and ezp, evaluates to ¢, and
¢ = APPLY (¢, c;) then ezp, exp, evaluates to c.

3 Static Semantics

The static semantics of Exp is defined by an inference system, more precisely a
simple monomorphic type inference system, as follows.
The set Type of type expressions (just called types in the following), ranged
over by 7, is defined by
Tu=T| T — T,

where 7 ranges over a set of primitive types, e.g., int and bool. A type environment
is a finite map from variables to types:

TE € TyEnv = Var i Type.

We assume a basic relation IsOf C Const x Type relating for instance 3 to int,
true to bool but not 3 to bool, and we require that whenever ¢ = APPLY (cy, ¢;)
and ¢; IsOf (1, — 73) and ¢; IsOf 7y then ¢ IsOf 7,. The inference rules appear in
Figure 2; they allow one to infer statements of the form TE \ exp == 7, read ezp
elaborates to v (in TE).

clIsOf r
TEFc= 1 (10)
z € DomTFE (1)
TE & z => TE(z)
TE+{z — n}tF exp =1, (12)
TEFfnz =>erp=> 1 — 72
TE+{formon}l+{z— n}tFep=mr (13)
TEFfix f(z)=ezp =11 — 7y
TEV expy =11 —> 10 TEF expy => 7y (14)
TE | exp, exp, => 7y
Figure 2: Static Semantics

4 Typing Values Using Maximum Fixed Points
and Co-induction

By pointwise extension of the relation IsOf C Const x Type we get a relation
IsOf C Env X TyEnv. We expect it to be the case, then, that if exp elaborates to
7 in TF and and exp evaluates to cin E and EIsOf TE then ¢ IsOf 7. We refer to
this proposition as the basic consistency of the static and the dynamic semantics.

However, this proposition needs strengthening before it can be proved by induc-
tion, the reason being that evaluation resulting in constants may require evaluation
resulting in closures (about which the basic consistency says nothing). Below, we
first extend the relation ¢IsOf 7 to a relation v : 7, read v has type 7, which also
says what it is for a closure to have a type; then we define the relation E : TE,
read E matches TE, to be the pointwise extension of v : 7 and prove that if ezp
elaborates to 7 in TF and ezp evaluates to v in £ and F matches TE then v has
type 7. There are variants to the v : 7 relation which also are plausible definitions
of what it is for a value to have a type. We shall call these relations collectively
correspondence relations, because each of them defines a correspondence between
the dynamic semantics (values) and the static sémantics (types).

The consistency proof is relatively simple if we can define the correspondence

relation so that it satisfies

(1) if v = ¢ then v 5Of T;
) : (i6) if v = (z,exp,E) then there exists a TE such
viT iff that TE I fn z => ezp => 7 and Dom(E) = (15)
Dom(TE) and E(z) : TE(z), for all z € Dom(E).

Because of the existential quantification in (15.4), these bi-implications do not
constitute a definition, merely a property of a correspondence relation. The reader
is probably surprised to see (15.4); given that we are trying to prove the soundness
of the type inference system, why refer to the type inference system itself in the
definition of what it is for a closure to have a type?

There are two reasons, a pragmatic one and a technical one. The pragmatic
reason is that the main interest of Theorem 5.1 is the case where E is an initial
environment binding pre-defined variables to constants, TE is an initial type en-
vironment binding the same variables to their types, and v is a printable value,
l.e., a constant rather than a closure. In this case the theorem gives the desired
result independently of (15.11).

The technical reason is that (15.ii) leads to a simple proof of the consistency
theorem since a relation satisfying (15) can be obtained as the (maximum) fixed
point of a monotonic operator as follows.

Let U be the set Val x Type, let P(U) be the set of subsets of U and let
F: P(U) — P(U) be the function defined by

F(Q) ={(v,r) €U | ifv=cthen vIsOf r;
if v = (z, ezp, E) then there exists a TE such that
TEtFfn x => ezp => 7 and Dom E = DomTE
and (E(w),TE(m)) €Q,forall z € DomE}.

(16)

It is clear, then, that the relations satisfying (15) are precisely the fixed points
of F. Notice that F' is monotonic with respect to set inclusion: Q C Q' implies
F(Q) € F(Q"). Since (P(U), C) is a complete lattice, it follows from Tarski’s fixed
point theorem that F has a largest fixed point and a smallest fixed point, namely

m=N{QcU|F@Q ce}
and
e ={QcU|QcF@)} (17)

For our particular F', the minimum fixed point Q™" is strictly contained in the
maximum fixed point Q™2* and the minimum fixed point is too small. To demon-
strate this, let us show that the closure clg, defined in the introduction has type
int — int if we take the correspondence relation to be Q™** but not if we
take it to be Q™. To show (clfact, int — int) € Q™ let us define Qe =

7

{(€ltact; int — int)}. Looking at the definition of F, we can now check that
Qtact © F(Qfact). First, for the sought TE, take {factorial — (int — int)}.
Next, it is easy to show that TE I fn n => ezp => int — int assuming that
the IsOf relation associates the constants in ezp, the body of factorial, with
the obvious types. Finally, letting Ey,.; = {factorial s Cliact}y Epucr and TE
are defined on factorial only, and the pair (E,q(factorial), TE(factorial))
is the element of Qgact. Thus Qgact C F(Qfaes). But Q™= contains all the subsets
Q of U that satisfy @ C F(Q), 50 Qgact € Q™*, Therefore claes : int — int if
we take : to be Q™ax,

On the other hand we have (clgt, int — int) ¢ @™=, To see this, let us recall
that there is an alternative characterization of Q™®, namely

R™® =, F, (18)

where F* = F(U,(\F*), where) ranges over all ordinals (see [1] for an introduc-
tion to inductive definitions). In other words, one obtains R™® by starting from
the empty set and then applying F iteratively. However, intuitively speaking,
there is no first point in the chain

0PC F()C FF@) S

where the non-well-founded object (clgact, int — int) could enter because, ac-
cording to the definition of F, clg,e, cannot be typed unless E fact has already been
typed, i.e. unless clg itself has already been typed. More generally, for any
monotonic F' which has the property that if all members of Q are well-founded
then so are all members of F(Q), one can prove by transfinite induction that the
minimum fixed point of F' contains only well-founded objects.

We say that a subset Q C U is F-consistent if Q C F(Q). This use of language
is motivated as follows. @ can be seen as a set of claims, each claim being a pair
(v,7) claiming that value v has type 7. If Q is F-consistent then there is a
justification for each such claim ¢ € Q, either with or without reference to claims
in (). The former is the case when ¢ is a pair of a constant and a type, in which
case the definition of F' ensures that the constant is of the claimed type. The latter
is the case in our example above, where the element of Qy,e serves as justification
for itself. (The fact that claims can serve as justifications for themselves makes
the use of the word consistency very appropriate.) Indeed Qg is the smallest
F-consistent set containing (clfact, int — int). Note that Q™2* is the largest
F-consistent subset of U.

Associated with the device of defining a relation as the maximum fixed point
of a monotonic operator is the important proof technique of co-induction:

Let U be any set, let F': P(U) — P(U) be a monotonic function and
let R be the mazimum fized point of F. For any Q C U, in order to
prove Q) C R, it is sufficient to prove that Q is F-consistent i.e., that

Q< F(Q).

The point is that R=U{Q C U | @ C F(Q)}, so R includes all F-consistent
sets.

As an example of co-induction, assume we want to prove a theorem of the
form Vo € A.(P(z) = (e[z] € R)), where A is a set, P is a predicate, €[z] is a
formula which depends on z and R is the maximum fixed point of a monotonic
operator F': P(U) — P(U), where U is any set. We can then define Q@ = {q €
U | 3z € A(P(z) A (¢ = €[z]))} and attempt to prove @ C F(Q). (For if
Q@ C F(Q) then by co-induction @ C R, and Q C R is equivalent to the desired
Vz € A.(P(z) = (e[z] € R)).) Sometimes the inclusion Q@ C F(Q) does not hold,
in which case one must look for a set @’ O Q which is F-consistent. It will even
suffice to prove that Q U R is F-consistent.

5 The Consistency Theorem
We take v : 7 to mean (v,7) € Q™*, where Q™ is the maximum fixed point of
the operator F' defined by (16). The relation E : TFE is the pointwise extension of

v : 7. We can now formulate and prove the consistency theorem.

Theorem 5.1 (Consistency of Static and Dynamic Semantics)

IfE:TE and Et exp — v and TE & exp => 7 then v : 7.

Proof. By induction on the depth of inference of E I exp — v. There is one
case for each rule. The cases for constants, variables and application of a constant
are trivial. Of the remaining cases, the one for fix is the most interesting, in that
it uses co-induction.

Recursion, rule 6| Here the evaluation is of the form

cloo = (z, exp, E +{f — clx})

Efix f(z) = exp — ¢l (19)
and the elaboration is of the form
TE+{frnonl+{z—n}tep=—=rn (20)
TEFfix f(z)=exp =1y — 7 ’
where 7 = 7 — 7,. To prove cl, : 7 by co-induction we define Q =
@™* U {(¢lw, 7)}, and prove that Q is F-consistent.
Take a ¢ € Q.

If ¢ € @™ then ¢ € F(Q) because @Q™** C @ and the monotonicity of F
implies F(Q™) C F(Q) i.e., @™ C F(Q).

Otherwise ¢ = (¢lo,7). Let TE' = TE+{f — 7} and E' = E+{f — cly}.
We have TE' +{z — 71} - ezp = 7, by (20) so TE' } fn = => exp => 7
by inference rule 12. Since E : TE we have Dom E = Dom TE and for all
¢ € Dom E, E(z) : TE(z). So for all z € Dom E we have (E(z), TE(z)) € Q.
Moreover (E'(f),TE'(f)) = (¢lo,) € Q. Thus Dom E' = Dom TE' and for
all z € Dom E’ we have (E'(z), TE'(z)) € Q. So in this case as well, we have
q € F(Q).

This proves that Q is F-consistent.

Abstraction, rule 5| Here the evaluation is of the form

Etfnz=>exp — (z,exp,E)

and the conclusion of the elaboration is TE + fn z => ezp =—> 7. Since in ad-

dition E : TE, the type environment TE satisfies the requirement (15.4¢). Hence
(z,exp, E) : 7.

10

Application of Closure, rule 8| Here the evaluation is of the form

E F exp, — (2, exp’, E')
E | erp, — v,
E'+{z' = v} F exp' — v
EF exp, exp, — v

(21)

and the elaboration is of the form

TEF expy =71 —>7 TEF expy=>171'
TE | exp, exp, = T

(22)

for some 7.
By induction on the first premises of (21) and (22) together with E : TE we
get
(' exp’, E'y : 7' — 1. (23)
Similarly we get v : 7/ by induction on the second premises. From (23) and the
fact that : is a fixed point of F, there exists a TE’ with E': TE' and

TEF fnz'=> exp) = 7' — 7. (24)

Take such a TE'; this type environment allows us to use induction a third time.
(Indeed this is why the “E : TE” is important in (15.)). More precisely, since
E': TE' and v, : 7' we have

E'+{z' = v} : TE' +{z' — 7'}. (25)
Moreover, (24) must be obtained from the premise
TE'+{z' = 7'} F exp’ : 7. (26)

Noticing that the third premise of (21) was deduced in fewer steps than the con-
clusion, we can use induction on it together with (25) and (26) to deduce the
desired v : 7. u

6 Discussion

Since the v : 7 relation is an extension of the ¢ IsOf T relation, Theorem 5.1 implies
the basic consistency result (namely that if E + ezp — c and TE F exp = 1
and E IsOf TE then c¢IsOf 7). However, there are other natural extensions of the
IsOf relation for which one can attempt to prove the consistency result. One is

(¢) if v = ¢ then v IsOf r;
g (i) if v = (z, ezp, E) then there exist 7y, 7o, such that
v iff T = 11 — T3 and for all vy, vy, if vy ' 7y and
E +{z — v} F exp — v, then v, 7.

(27)

11

Interestingly, the operator F' associated with this revised property is no longer
monotonic with respect to set inclusion because of the occurrence of “vy i’ 7;” on
the lefthand side of the implication. Nevertheless, there is precisely one relation
:' € Val x Type satisfying (27); this can be seen by induction on the structure of
type expressions.

There are closures that have a type using :' but have no type using : . One
example is the closure (n,if true then 7+n else false,{}). However, we do
not know whether : is contained in :’ . The consistency result can be proved using
" instead of : ; the proof we have again uses co-induction, but it is rather involved
and therefore not included here.

The justification for the existence of fixed points were completely different in
the two cases. Sometimes it is not at all obvious whether a given F has any fixed
points at all. For example, let us extend our set v of values by constructed values,

v €Val = Const” ConValW Clos Values
¢(v) € ConVal = Const x Val Constructed Values

and consider the property

((¢) if v = cthen vIsOf 7;
(4) if v = ¢(v1) then there exists a 71 such that

) . cIsOf (1 =) and vy 1 1y
vit iff (#¢) if v = (z, exp, E) then there exist 7, 7o, such that (28)
T = 71 — 7, and for all vy, vy, if v; : 7y and

{ E +{z — v;} F exp — vy then v, : 75.

The operator associated with this property is not monotonic with respect to set
inclusion. Neither is this property a definition on the structure of types because of
(i5). We do not see how to justify the existence of such a relation without making
assumptions about the IsOf relation.

This should not leave the impression, however, that the technique of using
maximum fixed points can rarely be applied. In fact, we have encountered sev-
eral situations in operational semantics where the technique turns out to be very
strong. In general, the technique is useful when considering consistency properties.
Consistency is often of interest when one wants to relate non-well-founded objects,
or more generally objects whose behaviour is in some sense infinite. Indeed, in the
introduction we indicated that closures can be treated in either of these ways; in
each case, typing of closures is a consistency property. Another example is the no-
tion of observation equivalence in CCS [7] which is defined as the maximum fixed
point of a certain monotonic operator. The idea is that two agents are bisimilar if
the hypothesis that they are susceptible to the same observations is consistently
maintained during computation. Finally the technique has been used to prove the
soundness of a type discipline for polymorphic references [11, 12]. Here the need
for taking the maximum fixed point in the definition of what it is for a value to

12

have a type arises because, when locations are values, one can create cycles in
the store; since the type of a location depends on the type of the value it con-
tains, a cycle in the store may have a consistent typing although the justification
of the typing is a cyclic argument (i.e. a consistent claim rather than something
that in finitely many steps can be reduced to a question of constants being typed
according to the IsOf relation).

References

[1] P. Aczel, An Introduction to Inductive Definitions, in J. Barwise (ed.) Hand-
book of Mathematical Logic, North-Holland Publishing Company, 1977

[2] P. Aczel, Non-Well-Founded Sets, CSLI Lecture Notes, Number 14
LSCI/Stanford, 1988

)

[3] L. Damas, Type Assignment in Programming Languages, Ph. D. Thesis, Uni-
versity of Edinburgh, Department of Computer Science, CST-33-85, 1985.

[4] L. Damas and R. Milner, Principal type schemes for functional programs, in
Proceedings of the 9th ACM Symposium on the Principles of Programming
Languages, pp. 207-212, 1982

[5] G.Kahn., Natural Semantics, Proc. of Symp. on Theoretical Aspects of Com-
puter Science, Passau, Germany, February 1987.

[6] R.Milner, A theory of type polymorphism in programming languages, Journal
of Computer and System Sciences, 17, 348-375.

[7] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science 92, ed., G. Goos and J. Hartmanis, Springer, Berlin, 1980.

[8] D. Park, On the Semantics of Fair Parallelism, in Abstract Software Specifi-
cations, ed. Bjgrner, Springer LNCS 86.

[9] D. Park, Concurrency and Automata on Infinite Sequences, in Proc. 5th GI
conference on TCS, Springer LNCS 104.

[10] G. Plotkin, A Structural Approach to Operational Semantics, Technical Re-
port DAIMI-FN-19, Computer Science Department, Aarhus University, Den-
mark, 1981

[11] M. Tofte, Operational Semantics and Polymorphic Type Inference, Ph. D.
thesis, Edinburgh University, CST-52-88, 1987.

[12] M. Tofte, Type Inference for Polymorphic References, under preparation.

13

Copyright © 1988, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

