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An Equational Formulation of LF

Robert Harper

1 Introduction

The LF type system [HHP87] was designed as a presentation language for formal de-
ductive systems to serve as the basis for a logic-independent computer-assisted proof
development environment. The LF type system has three levels: the level of objects, the
level of types and families, and the level of kinds. The types classify the objects, and
the kinds classify the types and families. There is one primitive type constructor, the
generalized product of a family of types indexed by a type, and two primitive kinds, the
kind of types and the generalized product of a family of kinds indexed by a type. The
“has type” (“has kind”) relation is invariant under conversion in the type (kind) position.
The type checking problem is decidable. (See [HHP87] for further details.)

For the intended applications of LF, there is no need to consider equational theories.!
There are, however, other reasons to do so. One reason is that Martin-Lof has recently
developed a closely-related type system, called the system of logical types [NPS88], to
serve as the foundation for a versmn of his constructive set theory. There set theory (and
other formal systems such as the Loglcal Theory of Constructions [Smi84, Acz83, MA88])
are formalized by presenting a set of constants together with a set of equational axioms.
For the case of set theory, there are two constants, Set : Type, the type of sets, and
El : Set — Type, the type of elements of a set. The formalization of set theory proceeds
by adding constants and equational axioms. For example, to define the function space
constructor, one would introduce the constants

arrow : Set — Set — Set
lambda : IIA:Set.ILB:Set.Ilb: EI(A) — EI(B).El(arrow(A, B))
apply : IIA:Set.ILB:Set.El(arrow(A, B)) — EI(A) — EI(B)

with the equation

AA:Set.AB:Set. \b : EI(A) — EI(B).)Aa : EI(A).apply(lambda(A, B, b), )
AA:Set. AB:Set.Ab : EI(A) — EI(B).\a : EI(A).b(a)

TLA:Set.ILB:Set.ITb : EI(A) — EI(B).Ila : EI(A).EI(B(a)).

1But there may be reason to study a theory of definitions [Gri88].
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See the monograph of Nordstrém, Petersson, and Smith [NPS88] for a more detailed
exposition of this approach.

Another reason to study an equational variant of LF is that it is, in a sense, a “mini-
mal” system of dependent types. It is therefore a good basis for considering the extension
of the model-theoretic techniques developed for typed M-calculi [BM84, BMMS87, Fri75,
Hen50, Mar75) to dependent types. The purpose of this report is to outline the devel-
opment for the case of LF, and to suggest directions for further research. The main
lesson is that the definitions follow the same pattern, but there are considerable technical
complications. (This is my excuse for providing few details.)

The development of the basic definitions and their properties follows closely the pat-
tern of [BMMS87]. The main differences are directly attributable to the presence of depen-
dent types. In particular, we must “stage” the definition of a frame and of interpretations
of terms in a frame to get around the fact that it is impossible to state the consistency
requirements on constant interpretations and environments without a prior definition of
interpretation. Furthermore, in order to take full advantage of equational axioms, we
must intermix equational axioms with constant declarations. This leads to a generaliza-
tion of LF’s notion of signature, and undermines the usual distinction between “language”
and “theory.” This means, in particular, that some signatures will have no non-trivial
models, just as some theories have none in the usual setting.

The paper is organized as follows. In Section 1 we define an equational variant of
LF, and state some of the important properties of that system. In Section 2 we define
the notion of an extensional model for LF, and sketch a proof of the soundness and
completeness of the equational theory with respect to the class of extensional models. In
Section 3 we suggest directions for further research.

I am grateful to John Mitchell for several helpful discussions about this work, and to
Furio Honsell for calling my attention to the need to consider non-extensional models as
well.

2 The Equational Theory of LF
2.1 Syntax

Let Var be a countably infinite set of variables, ranged over by =, y, and z, and let Const
be a countably infinite set of constants, disjoint from the variables, ranged over by ¢ and
d. The set of pre-terms is given by the following grammar:

K = Type | Iz:AK
A == c| dz:AL Ay | Az:A1. Ay | AM
M 2= c|z| ) :AM | MyM,

These classes are called, respectively, the kind expressions, the type family expressions,
and the object expressions. All are collectively called terms or expressions. Let J, K, and
L range over the kind expressions, A, B, C, and D over the type family expressions, and
M, N, P, and @Q over the object expressions. Let X and Y range over all expressions.
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The set of free variables of an expression, FV(X), is defined in the usual way, treating
A and II as binding operators that bind the declared variable in the second argument.

A signature is a finite sequence of constant declarations of the form c:A or c:K, and
equational hypotheses of the form M=N:A, such that no constant is declared more than
once. Note that we only consider as axioms equations between object expressions, and
not between types or families of types. The empty signature is written e, and non-empty
signatures are written as comma-separated lists of declarations and hypotheses. The set
dom(X) is the set of constants declared in £. We write £(c) when ¢ € dom(3) for the
unique A or K such that c:A or ¢:K occurs in X.

A context is a finite sequence of variable declarations of the form z:A such that no
variable is declared more than once. The empty context is written o, and non-empty
contexts are written as comma-separated lists of declarations. The set dom(T') is the set
of variables declared in I'. When z € dom(T'), we write I'(z) for the unique A such that
z:A occurs in T, and T'; for the prefix of I up to, but not including, the declaration of z.

2.2 Formation and Equality Rules

In this section we present the set of formation and equality rules for the equational variant
of LF. It is characteristic of systems of dependent types that formation and equality must
be defined simultaneously, for equations between objects can entail equations between
types, and hence can lead to additional typings. Conversely, equations make sense only
for well-formed terms. '

The formation judgements are as follows:

Y valid Y is a valid signature
e T I’ is a valid context
'y K K is a valid kind

F'rFgA: K A is a family of kind K
Ty M:A M is an object of type A

It is technically convenient to let 7 range over the right-hand sides of the latter three

formation judgements, writing ' b5 7 to stand for any of these three judgement forms.

The free-variables and substitution operations are extended to 7 in the obvious way.
The equality judgements are as follows:

' K =L K and L are equal kinds
s A=B: K A and B are equal families of kind K
F'FrsM=N:A M and N are equal objects of type A

We let ¢ range over the right-hand sides of these judgements, and extend the substitution
and free-variables operations to ¢ in the obvious way.

The valid formation and equality judgements are inductively defined by the rules
appearing in Tables 1 through 10.



2.3 Technical Properties

The following two propositions summarize some technical properties of the formation and
equality rules. Although they are stated separately for the sake of clarity, they must in

fact be proved simultaneously since the formation and equality relations are mutually
dependent.

Proposition 2.1
1. IfT'kg 7, then FV(7) C dom(T).
2. IfT k7, ks IV, and for all x € FV(7), T, bg T'(z) = I'(2) : Type, then I b5 7.
3. Signatures, contexts, and classifiers are well-formed:
(¢) If b5 T, then ¥ valid.
(b) IfT ks K, then b5 T.
(c) fTtx A: K, thenT' F5 K.
(d) IfT'Fg M : A, thenT g A : Type.
4. Unicity of classifier:
(0) fThg A:K andT g A: L, thenT b5 K = L.
() fTFsM:A and Tz M : B, thenT kg A= B : Type.
9. Substitution: IfT,z:AbFs 1 and Tty M : A, then T bg [M/z]r.

Note that the second property given above entails both strengthening (eliminating non-
occurring variables) and weakening (adding non-occurring variables) for contexts.
The following proposition summarizes some technical properties of the equality rules:

Proposition 2.2

1. IfT+s K =L, bg T, and for all « € FV(K) UFV(L), T, b5 I(z) = I'(z) : Type,
then T'b5 K = L.

2. Well-formedness of equands:

(a) fTts K =1L, thenT Fg K and T b5 L.
() fTFs'A=B:K, thenTtg A: K andT g B : K.
(c) f TFs M =N:A thenT' kg M : A and T kg N : A.

3. Invertibility of type and kind equations:

(a) IfT' kg lz:AK = lla:B.L, thenT kg A= B : Type and I',z:A g K = L.

() IfT 5 Nz:A.C = Nz:B.D : Type, then T g A = B : Type and ', z:A +x
C = D : Type.

4. Substitution. IfT,xz:AFse andT kg M : A, then T by [M/z]e.
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3 Extensional Models 6f LF

In this section we shall need to work with partial functions. We adopt the following
conventions for our informal work. For e some mathematical expression, we write e} to
indicate that e is defined (has a value). The Kleene equality relation, e ~ ¢/, is defined
to mean e} V €'] D e = €/. An expression of the form e/, where = = e is defined only if
¢ is defined. We write ¢ : X — Y to indicate that ¢ is a partial function carrying some
subset of X to Y. :

In order to cope with the complications introduced by dependent types, we develop
the notion of model for LF in stages. First, we define the basic notion of a frame which
provides the overall structure of a model. Then we define the interpretation of terms into
a frame as a partial function of the derivation of well-formedness for the term. Partial
functions are an artifact of the need to stage the model definition; in the end, the meaning
functions will all be total on the intended domain. The meaning functions are defined
by induction on derivations as a technical device to cope with the type and kind equality
formation rules. We then show that any two derivations for a given term in compatible
contexts have the same meaning, and so we can correctly speak of the meaning of a term.
We then classify frames according to the signatures that they satisfy (in an appropriate
sense), and, similarly classify environments according to the contexts that they satisfy.
Finally, we define a model of a signature to be a frame in which every well-formed term
has an interpretation, in every environment appropriate for the context.

Definition 3.1 An extensional frame is a structure
A=(K,F,0),

where K is a kind frame, F is a type family frame, and O is an object frame, defined
simultaneously as follows.
A kind frame is a tuple
K = (IK|, Type®, Pi*)

where
o |K| is a set (of kinds).
o Type® € |K| is a distinguished kind.

o For every a € |F|pypes,
Piy : (|0]. — IK]) — |K]

is a partial function.
A type family frame is a structure
F = (IF|,Pi”, ", 17)

where



o |Fl = (|Flk)reix) is a family of sets.

® For every a € |Flyypex and f: |0y — |Flpypec such that Pi¥(a, f) is defined,

®o s 1 Flei@n = 1 1Flsw

z€[0|a

s an injective function.

o For every a € |F|pypex,
Piy : (|0]a = |Flzypec) = | Flzyper

s a partial function.
o 77 : Const — Useix( |F |k is a partial function.
An object frame is a structure

0 =(0},2°,1°)
where

o O] ={ lola)aGITlTypelc is a family of sets.

® For every a € |Flyyper and f:|Ola — |Flpypex such that Pi*(a, f) is defined,

‘I>a0,f= |Olpi7 (4,5 ™ II 105w
z€|0)q

s an injective function.

o 79 : Const — UaElflTypelc |0l O

We adopt the following notational conventions:

T = IflType'C
IFI = Uke( 1Fle
O] = Uer|9la

Al = [KJulFlu]O]

An environment for a frame A is a partial function 5 : Var — |0|. The environment
]z « u] is the environment that agrees with  on variables in its domain other than z,
and that sends z to u.



Definition 3.2 Let ¥ be a valid signature, and let A be an extensional frame. The inter-
pretations of kind, type family, and object expressions into A are defined simultaneously
by induction on the structure of derivations.

[T Fx Type]* 7
[T Fs HOz:A.K] 9y

[Crsec: K]
[ s Hz:A.B : Type]”

[T ks Az:A.B : Tz:A.K]” 7

[T b5 BN : [N/z)K]" 5

[CrsA: K}y

[Crsc: A%y
[CFgz:A]°y
[T bs A2:A.M : TIz:A.B]® 5

[T s MN : [N/z)B]° g

[CreM: A%y

P!

1 R 1R

R1RR R 1R

R

Type®
Pi*(a, ¢), where a = [T ks A:Type]l” 5, and
Vu € |O|,p(u) = [T,z : Aty K] nz — u]

I7(c) if T%(c) € |Fls, where k= [o g K]*0
Pi’(a,), where a = [T kg A: Type]” 5, and

Vu € |O|gp(u) ~ [T,z:Abx B: Type]]}-n[m — u]
@iw_l(cp) where a = [T k5 A: Type]” n, and

Vu € |0|a.0(u) ~ [T, 2:A g B : K]” gz — u]

&7 ,(¢)(u) where ¢ = [T F5 B : Ta:A.K] g,
u=[TFg N:A]%y, a=[TFg A: Type]” 5, and
Vu € |0|,9(u) ~ [T, 2:A by K]” glz — u]

[T ks A: LT 9 (kind equality rule)

Z%%ec) if I%(c) € |Ola, where a = [0 b5 A: Type]” 0
n(z) if n(z) € |O|s, where a = [T, Fg A: Type]”
(I)ao,(p—l(cp), where a = [[' kg A: Type]” 5, and

Vu € |Ola.p(u) = [T,2:A Fg M : B]° [z — u]

09, (0)(u), 'wher%go =[['Fg M : z:A.B]°p,
u=[CrgN:A]l%y, a=[CFg A: Type]” 5, and
Vu € |0|a.9(u) [T, z:A kg B : Type]® gz « u]

[T ks M : B]®y (type equality rule)

a

We drop the superscripts on the meaning functions when they are clear from context.
Given X, T', and M, it is easy to see that two derivations, one of I' sy M : A; and the
other of I' g M : A; can differ only in the use of the kind and type equality rules, all
others being syntax-directed. Since meaning is preserved under applications of either of
these rules (by definition of the interpretation functions), it is easy to see that we obtain

the following result:

Proposition 3.3

1. [TFks A: K]n~ [T Fg A: L) n whenever both judgements are derivable.

2. [TFs M: Aln ~[I'Fs M : B]n whenever both judgements are derivable.



Furthermore, if I'y and T'; agree, up to type equality, on all free variables occurring in M
and A, then I'y - M : A is derivable iff I'; - M : A is also derivable. Moreover, any two
such derivations differ only on the uses of the kind and type equality rules. We therefore
obtain the following result:

Proposition 3.4 IfT Fy 7, Fx IV, and for all z € FV(7), T, g T(z) = T'(z) : Type,
then [I' by 7]n ~ [V Fx 7] 9.

These two propositions may be summarized by saying that meaning is a function of
the term and the types of its free variables, and is independent of the well-formedness
derivation and of the types of non-occurring variables. Thus we may properly speak of
the meaning of a term, given the types of its free variables.

There are several sources of undefinedness in the definition of the interpretation func-
tions given above. First, a constant occurring in some derivation may not lie within
the domain of 7% or Z© as required, or may lie within the domain, but be mapped to
the “wrong” set. Second, the environment 7 may either be undefined on, or assign an
inappropriate value to, some variable occurring in the derivation. Third, some function ®
arising in the clauses for product types and kinds may not lie within the domain of Pi¥ or
Pi%, as required. Fourth, some function ¢ arising in the interpretation of a A-abstraction,
either at the level of families or at the level of objects, may not lie within the range of
®% or ©9, as required.

To deal with the first source of undefinedness, we classify frames according to the
signatures with which they are consistent.?

Definition 3.5 Let X be a valid signture. The property of being a X-frame, is defined by
induction on the length of ¥ as follows:

o Fvery frame is a o-frame.

o If Ais a X-frame, [o b5 K]0 exists and is equal to k, and I7(c) € |Fly, then A is
a ¥, z:K-frame.

o IfAisaX-frame, [o b5 A: Type] 0 exists and is equal to a, and IT°(c) € |O|,, then
A is a 3, z:A-frame.

o IfAisaX-frame, [otgs M: A0 =[o s N: A]0, then A is a &, M=N:A-frame.
We write A |= X to assert that A is a X-frame.

Thus if A is a X-frame, the meaning of a derivation cannot fail to be defined on account
of the non- or mis-interpretation of a constant.

To deal with the second source of undefinedness, we classify environments according
the the contexts with which they are consistent.

2The following two definitions depend on some obvious structural properties of the formation rules
such as the fact that a derivation of b5 I', z: 4 contains a derivation of I' 5 A : Type as a sub-derivation.



Definition 3.6 Let ¥ be a valid signature, let T be such that b5 T, and let A be a B-

frame. The property of being a I'-environment for A is defined by induction on the length
of T as follows:

e Every environment for A is a e-environment for A.

o If n is a I'-environment for A, [Ty Fx A: Type] 0 exists and is equal to a, and
n(z) € |O|a, then n is a T, z: A-environment for A.

We write n =4 T to assert that 5 is a T-environment for S-frame A.

Thus if we restrict attention to environments appropriate for the given context, the inter-

pretation of a term cannot fail to be defined on account of the non- or mis-interpertation
of a variable.

We may now define our analogue of environment model [Mey82, BMMS87].

Definition 8.7 Let ¥ be a valid signature, and let A be such that A = . If for every
derivable ' b5 7, and every n such that n =4 T, all functions ¢ arising in [T'ker]n

lie within the domain of the appropriate Pi or ® functions of A, then A is said to be a
Y-model.

It is clear that the definition of a ¥-model is somewhat unsatisfactory in that it expresses
a “completeness” condition on the frame that is left unanalyzed. However, lacking a
combinatory model definition, this is the best that we can do at present. See Section 4
below for further discussion.

Proposition 3.8 Let ¥ be a valid environment, let A be a L-model, and let n be a
I'-conteat for A. Then

1. All meanings exist: [I' g 7] n].
2. Meanings are “well-typed:”

(a) If [I'Fx K]n =k then k € |K|.
) If[TFs A:K]ln=a and [T 5 K] n =k, then a € |Fl.
(c) f[TFe M : Aln =u and [T'tx A: Type]n = a, then u € |O|,.

3. Interpretations respect equality:

(a) IfT'Fy K = L, then l[l-‘l‘g KB?]=[[FI"2L]]'I].
() fT s A=B: K, then [T Fg A: K]n =T b5 B: K]9.
(c) f Tts M =N:A then [T Fg M: Alp=[Ctg N: A]y.

4. Substitution: Suppose thatT' s M : A. Then
[T Fs [M/z]r]n =[T,z:Abs t]g[z « [T Fg M : A] 7).

9
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Validity of equations in LF models is defined as follows.
Definition 8.9 Define the relations I' |=5 ¢ by cases on € as follows:
o Suppose that I' by K and T b5 L. Define T =5 K = L iff for every fmme A

and every I'-environment 5 for A,

[T'te K]n=[TFxg L]y.

o Suppose thatT'kx A: K andT' kg B: K. DefineT' |es A=B: K iff for every
Y-frame A and every I'-environment g for A,

[Tt A:K]np=[Tts B: K]y.

o Suppose thatT'Fx M : A and T g N : A. Define T' Es M = N : A iff for every
2-frame A and every I'-environment n for A,

[THsM:Aln=[CFg N: A]n.

The connection between the equational theory and the environment models is given
by the following theorem.

Theorem 8.10 (Soundness and Completeness) Ty e iff T k=5 ¢.

As usual, the proof breaks into two parts.
Lemma 3.11 (Soundness) IfI'tge, then T =g ¢.
The soundness lemma is proved by a lengthy induction on derivations.

Lemma 3.12 (Completeness) IfT =5 ¢, then T 5 €.

The proof of the completness theorem relies on the construction of a term model, for
which we shall need to introduce a generalization of contexts. A generalized contezt is an
infinite sequence of variable declarations such that no variable is declared more than once,
and such that every prefix is a valid context in the usual sense. The formation relations are
extended to generalized contexts by defining A F5 7 (where A is a generalized context)
iff A, g 7 for some z € dom(A). (Note that A, is a context in the ordinary sense.) A
generalized context is saturated iff whenever A 5 A : Type, then for infinitely many
do we have A(z) = A. It is easy to see that an arbitrary context I' may be extended to
a saturated context.

The completeness proof goes as follows. Suppose I' =5 &, and ¢ is such that its
equands are well-formed in the context I'. We are to show I' k5 . Let A be a satu-
rated extension of I'. Define a frame whose sets consist of equivalence classes of terms
well-formed in the context A under the equivalence relation of provable equality. An
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environment for this frame maps variables to equivalence classes of terms. It is easy to
see that the meaning of a term in this frame is the equivalence class of the substitution
instance of the term induced by the environment. We obtain the desired result by con-
sidering the environment that maps each variable to its equivalence class, and observing
that two terms have the same meaning in this environment iff they are provably equal in
the context A. But since these terms are sensible in the context I', and since I' and A
‘agree, by construction of A, on these variables, we may apply the strengthening rule for
equality to conclude that they are provably equal in T', completing the proof. .
To make this more precise, fix a signature ¥, and suppose that I' =5 ¢ for some
equation €. Let A be a saturated extension of I'. The relation =y,q is defined by

KEkindL Zﬁ AI‘EK=L

The relations A =k B and M =4 N are defined similarly. The latter two are obviously
well-defined, for if K =g L, then A and B are provably equal at kind K iff they are
provably equal at kind L, and similarly for equality of objects. We write [K] for the
equivalence class of K under =yinq, and similarly for [A] and [M] (their kind (type) being
determined up to provably equality). The term frame A is defined to be (K, F, 0), where

K| = {K | Abrs K}/ =gina

Type® = [Type]
Pi*([A], f) = Hz:A.fz where f[M] = [fM]
|Fly = {A|AFs A: K}/ =k
Pi*([Al, f) = Ha:A.fc where f[M]=[fM]
oy [([B)((M]) = [BM]
I%(c) = [d]
|0|[A] = {M l A"EM:A}/EA
o ((MD(N]) = [MN]
I°%c) = [d

It is easy to see that this is a well-defined extensional frame (n plays an important role
in showing extensionality.)

Suppose that 7 |=¢ I'. Then 5(z) = [M] for some term M. Define n#(X) to be
the term resulting from the replacement of all free occurrences of & € dom() by some
representative of n(z). (It will not matter which we choose since provably equality is a
congruence relation.) It is relatively easy to see that in A, [[' by K]y = [p*(K)], and
similarly for the other formation judgements. In particular, if we consider the environment
no defined by 7o(z) = [z], then

[CFs Klno=[CtsLlne iff Abg K =L,

11



Now FV(K) UFV(L) € dom(T'), and A and I' agree on dom(T"), by the construction of
A. It follows that T' g K = L. This, together with similar arguments for the other

cases, suffices to show completeness, for if an equation is valid in every S-model, it is
valid in 4.

4 Directions for Further Work

In this paper we have presented an equational variant of the LF type theory, given a
definition of an extensional model for this system, and outlined a proof of completeness
for the theory with respect to this definition of model. Many more questions remain to
be considered.

Meyer’s notion of an environment model [Mey82] is a useful device for temporarily
avoiding the question of the existence of sufficiently many functions in a frame to ensure
that all terms may be interpreted. For many M-calculi, this gap is filled by the definition
of a combinatory model and the proof of combinatory completeness (see [Bar84, Mey82,
BMMS8T], for example). Any serious consideration of the model theory of LF would
have to address this question. The key problem seems to be to extend the notion of
combinatory completeness to encompass product types and kinds, for a frame can fail
to be a model if the required product types cannot be interpreted into it. The V3 type
theory of Constable and Zlatin [CZ82] is a combinatory system of dependent types, but
it relies on the existence of an infinite hierarchy of universes and an associated infinite
set of combinators. It would be interesting to investigate whether it is necessary to incur
such an infinite regress.

We have concentrated on extensional models in order to simplify the machinery. It
seems clear that we may consider weakly extensional models by relaxing the injectivity
condition on the @’s, following the pattern of [BMMS87]. The basic idea is to introduce a
“selector” W that chooses a canonical “code” for a function of the appropriate semantic
type in such a way that ¥ is right inverse to ®.

In joint work with Andrzej Tarlecki (as yet unpublished) we have investigated “inten-
sional” models of LF corresponding to the A-algebras for the untyped A-calculus [Bar84].
Here we expect £ to hold only as a rule of conversion (not equality). It is usual to define
the A-algebras using a combinatory structure, but lacking such we were forced to resort
to the methods introduced by Hindley and Longo [HL80] (Barendregt’s “syntactical A-
models” [Bar84]) to give an appropriate definition. Unfortunately such structures are
rather unwieldy to manipulate. It would be interesting to reconsider such intensional
interpretations in the light of a combinatory model definition for LF, if one can be found.
(It seems that such structures would be the intended models for the aforementioned V3
type theory, but we have not verified this supposition. )

Set-theoretic interpretations may not always be appropriate. For example, Mitchell
and Moggi have considered models of the simply-typed A-calculus in functor categories
in connection with empty types [MMMS87]. It would be interesting to examine the
categorical structure of the LF type system. Hyland and Pitts [HP88] have developed
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such structures for the Calculus of Constructions [CHS85]; it seems likely that one can
specialize their definition to the much simpler case of LF. The work of Seely [See84, See]
and Cartmell [Car86] is also relevant here. It appears that a categorical study of the
structure of LF models may suggest the definition of combinators for LF in a manner
similar to that of Curien [Cur86] for the simply-typed A-calculus.
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o valid

Y valid Fy A:Type c¢ dom(X)

2, c:A valid

Yvalid Fs K c¢¢&dom(X)
Y, c:K valid

Yovalid FyM:A FgN:A
YX,M=N:A valid

Table 1: Signature Validity Rules

Y valid
Fxeo

FsI' T'kg A:Type z ¢ dom(T)
FeT,2:A

Table 2: Context Validity Rules

Fe T
I' kg Type

Fz:AFs K
'ty Ha:A.K

Table 3: Kinds
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(1)
(2)
(3)

(4)

(5)

(6)

(7)

(8)



FeI' cKeX
r |‘2 c: K
I'z:A b5 B : Type
Iy z:A.B : Type
I'e:Ars B: K
'y Az:A.B : lIx:A.K
'y B:Mle:A.K Ty N:A
I' g BN : [N/z]K

'FsA:K THsK=1L
FI‘EA:L

Table 4: Families of Types

FsT' cAe X
I'kFge: A

FeI' 2:AeT
FI"E:E:A

I'yz:AFs M : B
I'btg Aa:A.M : lz:A.B

Tty M:Iz:AB Ty N: A
T bz MN : [N/<|B

'FyM:A Thg A= B: Type

'kxM:B

Table 5: Objects
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9)
(1)
(11)
(12)

(13)

(14)
(15)
(16)
(17)

(18)



ks K

FFs K=K
FI‘EA:K
'rsA=A:K
I‘l“zM:A
FFyM=M:A
'rs K=1L
'ty L=K
'y A=B: K
'y B=A:K
'ts M=N:A
F'FxN=M:A
FkyJ=K Tk K=1L
F'kFeyJ=1L
Pl‘zA=B:K FF2B=C:I{
F|“2A=C:K
PI“2M=N:A Fl‘gN=PA
FFxM=P:A

Table 6: Equivalence Relation

17

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



FeT' M=N:AeX
ks M=N:A
'rs A=B:K T'tysK=1
'ksA=B:L
'bksM=N:A Tty A= B: Type
'brsM=N:B
'y A=B:K FgI' T,FsT(z)=0'(z): Type
Mty A=B:K

(Vz € FV(4) UFV(B) UFV(K))

Iy M=N:A FgI’ T,bgT(z)=TI'(z): Type

IMFsM=N:A
(Ve e FV(M)UFV(N)U FV(A4))
Table 7: Structural Rules

'y A=B:Type T z:AFs K =1L
'y l2:A.K = Hz:B.L

Table 8: Kind Equality
I'Fs A=B:Type TI',z:Ats C =D :Type
I'Fy lIz:A.C = 1Iz:B.D : Type

'y A=B:Type T',z:AbsC=D:K
ks Az:A.C = Az:B.D : lIz:A.K
'Fe B=C:llz:A K TFsM=N:A
I'ts BM =CN : [M/z]K
T'z:AFs B: K ThksM:A
Tty (Az:A.B)M = [M/z]B : [M/z]K

'ty B:1lz:A.K z ¢ FV(B)
I'bg Az:A.Bz = B : lIz:A.K

Table 9: Family Equality
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(28)
(29)
(30)

(31)

(32)

(33)



'Fx A=B:Type TL2:Ars M =N:C

I' s Az:AM = \z:B.N : lIz:A.C (39)
ks M=N:IIz:AB Ty P=Q: A %)
I'Fs MP = NQ: [P/z]B (
F,w:A“‘gM:B Ff‘zN:A (41)
I'ty (Az:A.M)N = [N/z]M : [N/z]B
I'ts M :MIz:A.B FV(M
. ; T (42)

I'Fs Az:AMz =M :z:A.B

Table 10: Object Equality
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