LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

A Natural Deduction treatment

of Operational Semantics

by

Rod Burstall and Furio Honsell

sonuewag [euoliesado J0 juswieal) uononpaq [einieN v

ECS-LFCS-88-69

LFCS Report Series (also published as CSR-282-88)
LFCS November 1988
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinbureh EH9 3)Z Copyright © 1988, LFCS

]
A Natural Deduction treatment of Operational Semantics:

Rod Burstall? and Furio Honsell3
University of Edinburgh and University of Turin

Abstract

We show how Natural Deduction extended with two replacement operators can provide a framework for
defining programming languages, a framework which is more expressive than the usual Operational
Semantics presentation in that it permits hypothetical premises. This allows us to do without an explicit |,
environment and store. Instead we use the hypothetical premises to make assumptions about the values of
variables. We define the extended Natural Deduction logic using the Edinburgh Logical Framework.

1. Introduction

The Edinburgh Logical Framework (ELF) provides a formalism for defining Natural
Deduction style logics [Harper et al. 1987]. Natural Deduction is rather more powerful
than the notation which is commonly used to define programming languages in
"inference-style” Operational Semantics, following Plotkin [1981] and others, for
example Kahn [1987]. So one may ask

"Can a Natural Deduction style be used with advantage to define programming

languages?".
We show here that, with a slight extension, it can, and hence that the ELF can be used as a
formal meta-language for defining programming languages. However ELF employs the
"judgements as types" paradigm and takes the form of a higher order typed lambda
calculus. We do not need all this power here, and in this paper we present a slight
extension of Natural Deduction, simply typed, as a semantic notation for programming
language definition. This extension can itself be defined in ELF.

The inspiration for using a meta-logic for Natural Deduction proofs comes from Martin-
Lof. Our work benefited from that of Mason [1987] who did a proof system for Hoare
logic in the ELF, encountering problems about the treatment of program variables. In
particular he adopted the non-interference relation originally used by Reynolds [1978].

The main feature of Natural Deduction proofs, used in our semantics but not used in the
usual style of Operational Semantics, is that the premises of a rule may be hypothetical:
they may themselves be of the form "Q is derivable from P1 and ... and Pp". We write a
premise of this form thus

P1, ..., Pn)

1 To appear as invited paper in Proc. 8th Conf. on Foundations of Software Technology, Pune, Springer LNCS. This is a
revised version with some corrections. The main changes are (i) the rules for applying a closure or a primitive (ii) the
example proofs (iii) removal of explicit equality in alpha logic (iv) the rule of substitution uses .

2 Dept of Computer Science, Edinburgh University, JCMB, King'sBdgs., Mayfield Rd., Edinburgh EH9 3JZ

3 Dipartimento di Informatica, Universita di Torino, Corso Svizzeria 185, Torino, Italy

5:06 pm 12/11/88 1

Using these techniques we are able to give an operational semantics which dispenses with
the traditional notions of environment and store. This makes our semantic definitions and
our proofs of evaluations appreciably simpler than the traditional ones. Our proofs are the
same shape as the traditional ones, but each formula is simpler; the environment and store
do not appear repeatedly in formulas as they do in the traditional system. Instead of
environment and store we use the notions of expression with an attached substitution and
evaluation of an expression after a command (compare Dynamic Logic). Instead of
evaluating an expression M with respect to an environment we consider its value given
some assumptions about the values of the variables which occur in it.

The main technical difficulty is to define the substitution operation; this plays a crucial
role in our semantics. We need substitution both for expressions and for commands. This
is not a textual substitution; it depends on the binding operators in the language being
defined. The meaning of [m/x]M (substitute value m for identifier x in expression M) is
that when we come to evaluate M we assume the value of x to be m and ignore any
previous assumptions about the value of x. To express this we use the hypothetical
premises of Natural Deduction, with side conditions to ensure that we have a fresh
variable. However we are not able to express substitution purely in a Natural Deduction
logic. The difficulty can be reduced to substituting a (new) identifier for an (old) one.
Thus we have to add a primitive operator for identifier replacement, just textual

replacement, which we call o. (It is named from o conversion in lambda calculus.) We
define this with a special rule schema. We also need an "dual” to o which we call g.

In using an editor or a programming language you probably learn from a "Users'
Manual” and then, having got some experience, look up the fine points in a "Reference
Manual". For our style of doing operational semantics the "Reference Manual” is a formal
description in ELF. We try to provide also a less formal "Users' Manual" which describes
the form of the semantic rules and the criteria for proofs; this takes the form of "Alpha
Logic". Alpha Logic will be described with about the degree of precision with which the
rules of predicate logic might be defined in a text book. As usual we will give the Users'
Manual first, asking the reader to suspend critical judgement while getting an intuitive feel
for the style of semantics we propose.

We proceed in four steps.
» We define Alpha Logic: Natural Deduction extended with operators o and ¢ to
replace variables.
+ We specialise this to Evaluation Logic, by using Alpha Logic with evaluation
predicates, =>, and substitution operators, [/], obeying suitable rules.
» We use Evaluation Logic to define the semantic rules for a sample programming
language which features lambda expressions, commands, procedures and
expressions with side effects.
« We give a formal definition of Alpha Logic in the Edinburgh Logical
Framework.
This last step puts Alpha Logic on a firm foundation and shows the connection of our
approach with the ELF treatment of logical languages.

5:06 pm 12/11/88 2

Comparison with the Edinburgh Logical Framework

Our original aim was to use the ELF as a definition medium for Programming Languages.
We achieve this in the last step above. Our semantic rules can be written in ELF notation
by mere transliteration. However the rules do not use all the power of the ELF except in
defining the substitution operations. It seemed to us better to present Evaluation Logic as a
simpler framework for semantics. It is not higher order and does not use dependent types,

instead it makes use of the primitive operators o and o. The semantic rules do not even
mention o or ¢, once we have defined substitution. In short

ELF approach: If you understand lambda calculus with dependent types you can
define many logics formally.

Alpha Logic approach: If you understand Natural Deduction with variable
replacement you can define many programming languages formally.

In alpha logic we lose the ELF advantage of a built-in type checker for dependent types, so
that we have to write a separate static semantics (not treated in this paper). Even in ELF
we may have to write a static semantics, for example to handle phenomena such as the
polymorphism in ML.

Acknowledgements

We thank the UK Science and Engineering Research Council for support (RB and FH) and
the Italian Ministry of Public Instruction for support (FH). Much of the work was carried
out while FH was at Edinburgh University, and we thank our colleagues at the Laboratory
for Foundations of Computer Science for stimulating interaction. We would like to thank
Randy Pollack who coded our semantics in his LEGO ELF system and thereby brought to
light two errors in our earlier version of the paper. RB also thanks Butler Lampson of
DECSRC for experience gained in their joint work on the semantics of the Pebble
language, and he thanks the Conference Programme Committee for the invitation to
present a paper.

2. Definition of a Framework for Operational Semantics
Alpha logic is about syntactic entities, namely identifiers and expressions.
2.1.Alpha logic

Let X be a first order signature with two sorts, Id (identifiers) and Expr (expressions),
some predicates P and some function symbols F. We introduce two distinguished function
symbols o, a: Id * Id * Expr -> Expr; o denotes replacement of all occurrences of an

identifier in a term by another identifier, whilst ¢ is "dual” to it.

£

We define Terms and (atomic) Formulas over the signature and variables as usual and
Rules as in Natural Deduction.

An alpha logic over a signature X has the sorts Id and Expr with the distinguished function
symbols o and g subject to a set of rules R U R which we now define.

4:56 pm 12/11/88 3

An element of R is a well formed instance of the following schema:

where C[] is any context (formula with a hole) and where J is the term obtained from the
term I by replacing all occurrences of identifier i with j.

Thus to prove aj/i(i+k) <3 we have to prove j+k < 3.

An element of R is a well formed instance of the following schema:

where C[] is any context (formula with a hole) and where I is the term obtained from the
term J by replacing all occurrences of identifier j with i.

Thus if we have proved i+j < 3 we may conclude 0j/i(i+i) < 3. (We may reach the same
conclusion from i+i < 3 or j+i <3 or j+j < 3.) The reader may like to think of Qj/i as dual
to aifj.

A proof in alpha logic is a natural deduction proof (Prawitz 1966). Later we will give a
formal account of the notion of alpha proof in the Edinburgh Logical Framework.

More generally a "many sorted alpha logic" has sorts Idgy, ..., Ids, and Exprty, ..., Exprt,
with function symbols oigt, ast: Ids * Idg * Exprt -> Expry. '

2.2.Evaluation logic - 1

We now specialise the alpha logic to "evaluation logic". We consider first the case with
two sorts Id (identifiers) and Expr (expressions). An evaluation logic is an alpha logic
whose signature contains two distinguished predicates, a distinguished function and
certain rules which they obey.

The distinguished predicates are evaluation and value
=> over Expr * Expr
Value _ over Expr

The distinguished functions are expr (to convert Id to expr) and substitution
expr : Id -> Expr
[_/_] : Expr*Id * Expr -> Expr

For ease of reading we will usually omit the conversion function expr hereafter, treating
Id as a subsort of Expr.

4:56 pm 12/11/88 4

We use the following symbols (possibly primed)
X, V, z for identifiers
M, N, m, n, p for expressions

There are two rules are, first

x'=>n)
value n, ox'/x M=> ox'fx m
x' 1S a new variable
[n/X]M =>m

By "x' is a new variable"” we mean that is it does not occur in n, x, M and m nor does it
occur in any assumption except those of the form x'=> n ; such assumptions are
discharged by an application of this rule.

This rule is really no more complex than the usual rule for, say, existential elimination.

The second rule is

The rule for substitution is the key definition. It encapsulates the way we handle object
language variables. One of the virtues of the Natural Deduction framework used in
evaluation logic is that it provides uniformity in handling scopes of variables, avoiding
side conditions on rules. This is important in practice because handling variables is a
traditional pitfall in defining logics or programming languages. Our approach is to define
substitution in terms of evaluation.

A naive version of the substitution rule might have been

x=>n)
value n, M -.—-> m
[hX]M =>m

but the evaluation of M in the hypothetical premise could make use not only of x => n, but
also of any other statement about the value of x in the context in which the rule is used; we
might be evaluating [n/x] M in a context in which x => n' and this should not affect the
value. Thus we need to introduce a new variable x' local to the hypothetical premise. We
have to replace x by x' in M in the right subproof. Just in case the resulting value m in the
subproof contains an x' we have to replace the x' by an x (This will occur in our example
language only for closures).

4:56 pm 12/11/88 5

Syntactic sugar

We will mostly use infix syntax for expressions, e.g.

letx=MinN for let(x, M, N)

When we introduce a syntax for a particular object language in what follows this is to be
understood as syntactic sugar.

Example proof _

We now give a proof in alpha-logic with the substitution rule above,
constants 1,2,3, an operation + and three extra rules
M=>1,N=>2

M+N=>3 value 1 value 2

We will show that [1/x][2/y] x+y=>3

X' => 1], [y'=>2]p

X'+y' =>3

value 2 Oly'fy X'+y =>Qly'fy 3
@y

Ryl x+y=>3

value 1 : ox'/x [2/y] x+y => ox'/x 3
M x'

[XI[2/5] x+y =>3

The square brackets enclose hypotheses which are discharged at the level indicated by the
subscript. The scope of a variable is shown by writing it at the end of the line below the
scope.

We could write this proof more briefly omitting the applications of the o and & rules. We
may think of the o0 expression brought in by the substitution rule being immediately
reduced. A proof editor could do this step automatically. We recommend this style of
proof display. Introducing o and ¢ is a technical device for making the machinery of

substitution explicit. They do not appear in the semantic rules once we have defined
substitution, and they can well be omitted from the proofs.

[X' =>> 1](1), [y' => 2](2)

value 2 X'+y'=>3

@ Yy
value 1 Ryl x+y=>3

[1/x]12/y] x+y =>3

4:56 pm 12/11/88 6

We have treated the case with one sort Id and one sort Expr, in a many sorted case these
would be indexed families Idg and Exprt. The distinguished functions and predicates,
when required, would be indexed accordingly.

2.3. Conventions for syntax

To extend the evaluation logic signature (Id, Expr, => value and [/]) we will use the usual
conventions of syntax. These allow us to introduce function symbols together with the
infix notation for them. We will use the names allocated to schematic variables for the
syntax classes. For example using

X, ¥, z for identifiers

M, N, m, n, p for expressions
the syntax definition

M:=Klletx=MinN| lambdax . M
introduces the new function symbols

K: Expr

let: Id * Expr * Expr -> Expr

lambda: Id * Expr -> Expr

3. Example semantics

3.1. A basic functional language

In this section we will give the semantics for a simple functional language as a signature and
a set of rules in evaluation logic.

Signature

We use a signature with sorts Id and Expr.

We use the following symbols (possibly primed)

X, y, z for identifiers

M, N, m, n, p, f, k for expressions

M:=0lsucclplus| YI..IMN lletx=MinN| lambdax .M [m.n

To be explicit, M N means apply(M, N). We explain m.n below.

We need a new unary predicate over expressions
closed M - (informally) M has no free variables, except ones assumed to be closed.

The evaluation of a let and the application of a lambda expression (assuming call by
value) are formulated in terms of our substitution operation.

Since our language allows a lambda expression to appear as the result of evaluating an
expression, we must ensure that it carries with it enough information about the values of
its free variables to enable it to be applied in any context, so we use Landin's notion of
"closure" (Landin [1964]). Our Natural Deduction technique really corresponds to stack
discipline and we cannot expect it to handle function values without some further device.
We do not have an explicit environment, instead we give rules which successively bind the
variables appearing in the body until the body is "closed". We have to define closed,
essentially by induction on the syntax. This means that for each syntactic constructor (let,
lambda and so on) we need not only a rule for => but also a rule for closed. The predicate
closed conveys the binding nature of the operators; it really belongs to the static semantics.

4:56 pm 12/11/88 7

We have to give rules for the application of closures and primitive functions to argument
values. For this we introduce a new syntactic construct "m.n" for such applications with
appropriate rules. These rules allow us to take a closure to pieces and apply its body in the
correct context .

An illustrative proof follows the rules.

Evaluation rules

N=>n, [nXIM=>m

letx=NinM=>m

M=>m, N=>n, mn=>p
MN=>p

valuen, [p/yl(f.n)=>m
([p/ylf) .n=>m

valuen, [n/x]M=>m

(lambdax. M) .n=>m

Example of "delta rules" for primitive functions :-

value 0
value n
value succ SUCC . n => Succ . n
value m
value plus plus. m =>plus. m
value n (plus.m).n=>p

(plus.0).n =>n (plus . (succ.m)) .n =>succ.p
value Y "

value f (f.(Y.f)).m=>‘n
Y.f=Y.f Y.f).m =>n

Rules for evaluating lambda expressions to closures :-

4:56 pm 12/11/88 8

(closed x)

closéd M
lambda x. M => (lambda x. M)

(closed y)

y =>p, lamb(ia Xx.M =m

lambda x. M => [p/y] m

The reader might like to compare these with the usual treatment using an explicit
environment, p . For example

pl-N=>n ph/x]-M=m

plletx=NinM=>m

pl-M=>m, pl-N=>n mn=>p

pFMN=>p

In the latter rule the environment is not used; it is simply passed down. This is implicit in
out Natural Deduction formulation. We only mention the environment when it is used.

Rules for closed
(closed x)

closed n, cldsedM
closed([n/x]M)

— and similarly for the other constants
closed 0

closed M, closed N
closed(M N)

closed m, closedn

closed(m.n)

4:56 pm 12/11/88 9

(clgsed X)

closed N, cldsed M
closed(let x = N in M)

(closed x)

cloéed M
closed(lambda x. M)

Rule for value

M=m

value m

Example of evaluation

As an example of proofs using these rules we evaluate

(let y =2 in lambda x.x+y) 1

We use two Lemmas, A and B, to simplify the layout. They are proved below. We will
omit the proofs of such exciting facts as "value 1" and "1+2 => 3".

Main evaluation proof

y'=>2]y
A

value 2, lambda x.x+y'=> [2/y'](lambda x.x+y")

(1)
2=>2, [2/y](lambda x.x+y) => [2/y](lambda x.x+y) B

let y=2 in lambda x.x+y => [2/y](lambda x.x+y), 1=>1, ([2/y]lambda x.x+y).1=>3

(let y =2 in lambda x.x+y) 1 =>3

Lemma A |
Show that if y' => 2 then (lambda x.x+y") => [2/y'](lambda x.x+y")

[closed (Y] [closed(x)]
closed (x-+y")

(5)
y =2, Iambda x.x+y' => lambda x.x+y'

4)

Iambda x.x+y'=> [2/y'](lambda x.x+y")

4:56 pm 12/11/88 10

Lemma B

Show ([2/y]lambda x.x+y).1 =>3

[X'=> 1], [y'=>2] g

value 1, X'+y' =>3

(1)

value 1, [1/x](x+y) =>3

value 2, (lambdax.x+y’).1=>3
()

value 1, [2/y]((lambda x.x+y).1)=>3
([2/y]lambda x.x+y) .1 =>3

3.2. Complex declarations

We now consider allowing let to be followed by a complex declaration, formed with
"and" (parallel declarations) and ";" (sequential declarations). Such declarations will
form a new syntax class and will need to have as values just the environments which we
have otherwise succeeded in eliminating. This seems unavoidable for languages, such as
Standard ML, which permit such a declaration feature. However the "environments” only
appear as values (declaration values).

Signature

We extend the previous signature as follows.

We introduce a new Expr-like sort Declaration with a new evaluation predicate =>.
We use the following symbols

R, S,r,s for declarations

R:=x=MIRandSIR; S ;

We generalise the syntax class Expr, introducing a new let and {}:

M :=letRin NI {r}M

Finally we introduce the new rules for => and closed.

Evaluation rules
M=>m

X =M=>m/x

R=>r,S=s

Rand S=>rands

R=r1 {(r}S=>s

R;S=>rands

4:56 pm 12/11/88 11

[n/x]M =>m
{(nxXIM=>m

R=>r, {r]iM=>m

let Rin M=m

{r}({s}M) =>m

{r and siM=>m

Rules for closed

closed([n/x]M)
closed({n/x}M)

R =>r, closed({r}M)
closed(let R in M)

closed ({r}({s}M))
closed ({r and s}M

3.3. An assignment language

Signature
We extend the previous signature as follows.
We introduce a new Expr-like sort Command.
We use the following symbols
C,D for commands.
C:=x=MIC;DIif Mdo Clwhile MdoC
We extend the syntax class M
M:=[C]M
The intended meaning of this new kind of expression is " evaluate M after doing the
command C". For example if x#y then
[x:=1; y:=2] x+y
evaluates to 3. These expressions have no side effect.
The use of [] for commands should not be confused with the notation for substitution.
However there is a suggestive analogy.
We introduce a new predicate over Commands closedcomm(C), which we will write
simply as closed(C).
Finally we introduce the new rules for => and closed.
Evaluation rules

M=>m, [m/x]N=>n
[x:=M]N=>n

4:56 pm 12/11/88 12

[C1(DIM)=>m
[C;DIM=>m

N=>true, [CIM=>m
[if NdoC] M=>m

N=>false, M=>m
[fNdoC] M=>m

[if N do (C; while N do C)] M =>m
[while N do C] M =>m

Rules for closed
closedC, closed M

closed [CIM

closed M
closed(x:=M)

closed C, closed D
closed(C; D)

closed N, closed C
closed(if N do C)

closed N, closed C |
closed(while N do C)

3.4. Expressions with side effects

How can we extend the system to deal with expressions which may have side effects? Here
are some tentative thoughts. In the above C had a side effect but with the given semantics
for the functional language [CIM had no side effects. Now let us change the semantics of
the functional language to allow expressions, M, to have side effects. To accomplish this
we adopt the following device: write [M]N to mean the value of N after evaluating the
expression M. Now for example

[M+N] P has the same value as [M]([N] P)

M+N => p if M=>m and [M]N =>n and m+n =>p

The revised semantic rules might be as follows. We do not give them all, just enough to
illustrate the idea.

4:56 pm 12/11/88 13

[X]IN =>n
N=>n
——— similarly for the other constants
[OIN =>n
N=>n

[lamb_da X.M]N=>n
The rule for evaluating an application becomes

M=>m, [M]N=>n, mn=>p
MN=>p

P=>p
— (m.n has no side effect)
[mn]P=>p

[CITM]N) =>n.
[[CIMIN=>n

4. Framework for Operational Semantics - continued

4.1.Evaluation logic - 2

In a semantics we may have several sorts of identifiers and expressions and more than one
substitution operation. For example we may have local variables in commands.

We may define an evaluation logic over a multi-sorted alpha logic with sorts Idg and Exprt
with more distinguished evaluation and value predicates and substitution functions. Thus
we have

0ij, &ij : Idi * Idj * Exprj-> Exprj

exprik : Idj -> Exprk

=k over Exprk * Exprk

Valuek over Exprk

[_/_1likm : Exprk*Idj * Exprm -> Exprm

Corresponding to each substitution function an appropriate substitution rule schema is
added, or even several rule schemas corresponding to different evaluation predicates.
These schemas will always be of a similar pattern. (Since we do not specify such a pattern
here the notion of evaluation logic is somewhat loose.)

4:56 pm 12/11/88 14

Substitution rule

We consider as an example of a substitution rule the one needed for the language features
introduced in the next section. We have

x for identifiers

N,m,n for expressions

C for commands (a second sort of expressions)

We want a rule for substituting expressions for identifiers in commands. The rule is
(dropping subscripts)

' => m)

value n, [ox'/x CIN => ox'/x n
x' iS a new variable

[[m/x]C]N=>n
provided that x' is a new variable, that is it does not occur in any assumption except the
ones on the top line norin m, x, C, N and n.

5. Further example semantics

5.1. Local declarations and procedures with parameters

In this example we illustrate the semantics of a language with local variables in commands
and with procedure declaration facilities. More precisely we discuss procedures with one
parameter, passed by value, and possibly with local variables. We do not consider kinds of
parameters other than value ones or procedures as parameters. We do not address the
issue of recursive procedures here. '

Signature

We extend the signature of the assignment language as follows.

A distinguished substitution function

[/]: Expr * Id * Command -> Expr

obeying the substitution rule introduced in the previous section. This will enable us to take
care of local variables.

We introduce a new Expr-like sort Procedures and an Id-like sort Procedure_names,
with a corresponding evaluation predicate ==>.

We use the following symbols

Q, h for Procedures

P for Procedure_names

P = Pol...IPk

Q = lambdax. C

We generalise the syntax class Command to

C ::=begin new x =M in D end | proc P(x) = C in D | P(M)

We use the substitution [m/x]C defined in the previous section. We omit the definition of
the other substitution which we need, [h/P]C. The definition will be similar to [m/x]C, and

4:56 pm 12/11/88 15

it will give us the mechanism for procedure call. We do not need to introduce procedure
closures.
Finally we introduce the new rules for => and closed.

Evaluation rules

M=>m, [[m/X]JC]N=>n
[begin newx=M; Cend] N=>n

[[lambdax. CP]D]N=>n
[procP(x)=CinD]N=>n

P==>lambdax.C, M=>m, [[m/X]JC]N=>n
[PAM)]N =>n

Rules for closed

closed x

closed n, cl<‘)sed C
closed([n/x] C)

closed x

closed M, clos;ed C

closed(begin new x =M ; C end)

closed [[lambda x. C/P]D]
closed [proc P(x) = Cin D]

closed M, closed N
closed [P(M)] N

closed(x)

close:d(C), closed(|D]IN)
closed([[lambda x. C/P] D] N)

4:56 pm 12/11/88 16

6. Definition of Alpha Logic in the Edinburgh Logical
Framework
In this section we outline a definition of the minimal signature of Alpha Logic in the

Edinburgh Logical Framework. This is a signature with two sorts Id and Expr and two
function symbols :

a, o : Id —> Id —> Expr-> Expr

In order to encode in ELF such an instance of Alpha Logic we proceed as follows. First of |
all we will introduce an ELF type corresponding to the collection of sorts and a typé
constructor, Term, defined on sorts.

Sorts : Type

Term : Sorts -> Type

We will introduce constants corresponding to Id and Expr and two new constants. The
first o, is intended to denote the higher order sort constructor (written as an infix and

bracketed to the right), while the second is intended to denote syntactic application
Id : Sorts
Expr : Sorts

D : Sorts -> Sorts -> Sorts
app : Ils,t : Sorts. Term(sot) -> Term(s) -> Term(t)

Corresponding to a function in the signature we declare a constant of type Term(s) for the
appropriate s, that is
a, o : Term(Id o Id o Expr o Expr).

Corresponding to the class of formulae we introduce an ELF type

Form : Type.

Corresponding to a predicate in the signature we would introduce a constant over types
Term(s) for appropriate sorts s.

Finally we introduce a judgement forming operator, asserting the truth of Alpha Logic
formulas
True : Form -> Type.

We now encode the rules for the replacement operators o and ¢. This is the most

elaborate part. We have to introduce in the ELF signature a number of new predicates,
new constants, new formula forming operators, and new rules governing the provability
of these new formulae. More precisely we define

€ : Ils: Sorts. Term(Id) -> Term(s) -> Type
¢ : IIs: Sorts. Term(Id) -> Term(s) -> Type

The judgement x € M says that the identifier x occurs in M, while x ¢ M says that it does

not occur. To translate the rules of Alpha Logic we introduce constants of the types which
follow. (For ease of reading we will write rules using a somewhat more suggestive

notation than the ELF II and ->. We will subscript arguments which are sorts)

4:56 pm 12/11/88 17

X GsM
s,t: Sorts, x:TermId, M: Terms, N:TermS:Dt

xetappstNM

XESDtN

s,t: Sorts x:TermId, M: Terms, N:TermSDt

x €tapps tNM

X €M, xegtN

s,t: Sorts x:TermId, M: Terms, N:TermS:Dt

x ¢tappstNM

_ X :TermId
X €Id X
Y€Id X

—_— x,y :Termpq
XEId Yy

x: Term]d (and similarly for o)
X €1doldoExp DExpr &

When we come to add identifier constants to the signature, for each pair of distinct
constants, i,j in Term]d, we will need a rule

ield j

We are now ready to illustrate how to encode the set of rules about the o and o operators
in ELF. We introduce constants of the following ELF types

x €Expr F(y), True(G(F(y)))

- F:Term]g->TermExpr, G:TermExpr->Form,
True(G(oty/x F(x)) x,y: Term]d

y €Expr F(x), True(G(F(y)))
F:Term]d->TermExpr, G:TermExpr->Form,

True(G(ay/x F(x))) x,y: Term]d

4:56 pm 12/11/88 18

In the last rule we have omitted app before a and ¢ for ease of reading.

Evaluation Logic in ELF

We will now consider a more elaborate example: translating the minimal signature of
Evaluation Logic.

Besides the standard ELF types and constants we will introduce here a judgement forming
operator corresponding to => , one corresponding to value and constants for the
expression constructors.

The first part of the ELF signature will then be as before:

Sorts : Type

Form : Type

Term : Sorts -> Type

True :Form -> Type

Id : Sorts

Expr : Sorts

D : Sorts - > Sorts ->Sorts

app : Ils,t : Sorts. Term(sot) -> Term(s) -> Term(t)
a, & : Term(Id > Id o Expr D Expr)

€, ¢: Ils: Sorts.Term(Id) -> Term(s) -> Type

with the addition of
expr : Term(Id o> Expr)
[/]1: Term(Expr o Id o Expr > Expr)

value: Term(Expr) -> Form
=> : Term(Expr) -> Term(Expr) -> Form

A few more rules specific to the particular X of Evaluation Logic have to be introduced
in addition to the ones we had before. As before we will limit ourselves to giving the type

x: Termld
X €Id > Expr o Expr o Expr [/]

x: Termld
Tx €1d > Expr expr

The translations of the rules specific to Evaluation Logic in ELF are straightforward:

True(value(n))

n:TermExpr
True(n =>n)

and

4:56 pm 12/11/88 19

WERX W €y M W E gy M

w:Termyq w:Termy —— w:Termyy
W€K, W& X, WX, True(x'=>n)
x"Termyy

True(value(n)) True(ox'/x M => gx'/x m)

x:Termy M,m,n:Termgxp;
True([x/n] M =>m)

In the last rule for ease of reading we have omitted expr, also app before o, & and[/].

The extension to Evaluation Logic for commands will be analogous.

- Concluding remarks

We have shown how to define semantics of a simple but non-trivial language in our
Natural Deduction style. We have not treated reference variables, exceptions or data
types, nor have we defined the type discipline by a static semantics. These remain to be
investigated. Another area for exploration would be the application of the technique to
defining logics. We would also like to consider program verification and transformation
in this formalism .

Although our system relies on the Edinburgh Logical Framework for a formal definition,
it can be applied without explicit reference to ELF, basing it on Alpha Logic.

References

Avron, A. ,Honsell, F, Mason, I, (1987) Using Typed Lambda Calculus to Implement
Formal Systems on a Machine, Report LFCS87-31, Comp. Sci Dept. Edinburgh Univ. UK

Kahn, G. (1987) Natural Semantics, Rapport de Recherche N. 601, INRIA, France
Harper, R. , Honsell, F., Plotkin, G. (1987) A Framework for Defining Logics,
Proceedings of the Second Annual Conference on Logic in Computer Science, Cornell,
USA

Landin, P.J. (1964) The Mechanical Evaluation of Expressions, Computer Journal, 6.

Mason, I. (1987) Hoare's Logic in the LF, Report LFCS-87-32, Comp. Science Dept.
Edinburgh University, UK

Plotkin, G.(1981) A Structural Approach to Operational Semantics, DAIMI FN-19,
Computer Science Department ,Aarhus University, Denmark

Prawitz, D. (1965) Natural Deduction: A Proof-Theoretic study, Almqvist & Wiksel,
Stockholm

Reynolds J.C. (1978) Syntactic Control of Interference, Sth Annual Symp. on Principles
Of Prog. Langs., Tucson, ACM

4:56 pm 12/11/88 20

Copyright © 1988, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

