LECS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Syntax, Typechecking and Dynamic Semantics
for Extended ML

2]

e

& by

<

E

S Donald Sannella

@ Fabio da Silva

§

Q

o

=

ol

O

<

>

o

3,

o

»n

@

3

o

=

=

»

. ECS-LFCS-89-101

LFCS Report Series (also published as CSR-320-89)
LFCS December 1989
Department of Computer Science
University of Edinburgh]
The King's Buildings Copyright © 1989, LFCS

Edinburgh EH9 3JZ

Copyright © 1989, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Syntax, Typechecking and Dynamic Semantics
for Extended ML

Donald Sannella Fabio da Silva

Abstract

This document defines the synﬁax, typechecking and dynamic semantics of the
Extended ML specification/programming language. The reader is assumed to be
familiar with the notation used in the formal definition of Standard ML.

1 Inti'oduction

Extended ML (EML) is a framework for the formal development of programs in the Stan-
dard ML (SML) programming language from high-level specifications of their required
input/output behaviour. The EML language is a “wide-spectrum” language which en-
compasses both specifications and executable programs in a single unified framework. It
is a simple extension of SML in which axioms are permitted in module interfaces and in
place of code in module bodies. This allows all stages in the development of a program
to be expressed in the EML language, from the initial high-level specification to the final
program itself and including intermediate stages in which specification and program are
intermingled.

This document defines the syntax, static semantics and dynamic semantics of the
EML language as an extension and modification of SML. The reader is assumed to be
acquainted with the formal definition of SML [HMT89]. The present document has a
similar structure: Section 2 covers the syntax of the core and module languages, Section 3
gives static semantics (typechecking) rules, Section 4 covers dynamic semantics, and the
Appendices cover derived forms. Everything which is not explicitly mentioned here (e.g.
lexical matters) remains as in SML. Section 5 contains some remarks on the rationale
for the definition in this document.

The motivation, theoretical underpinnings and use of EML are discussed in [ST85],
[ST86], [ST89] and [San90]. The interested reader should consult these for more infor-
mation. The present document is intended as a definition of the EML language for use
by implementors of the language. One important omission is a definition of EML signa-
ture matching which takes axioms into account. Since this involves arbitrarily complex
theorem proving and is therefore undecidable, it is regarded as a separate problem to be
addressed by an EML program development environment. The static semantics of EML
as given here treats only those aspects of signature matching which can be handled by
a compiler. This means that axioms are treated as formal comments which are parsed
and typechecked but have no other effect.

2 Syntax

2.1 Syntax of the Core

The core syntax of EML is a proper extension of the core syntax of SML. New reserved
words are axiom, forall, exists and ?. We introduce six new phrase classes in Figure 1,
and use the variable logatezp to range over LogAtExp, etc.

LogAtExp logical atomic expressions
LogExp logical expressions
LogMatch logical matches

LogMrule logical match rules
LogExpRow logical expression rows
Ax axioms

Figure 1: Core Phrase Classes for EML

LogExp (and related syntactic classes) are introduced in order to simplify the type-
checking of axiom declarations. This is better explained in Section 3.1.

The new grammar rules for the EML core language are given in Figure 2. As in
the SML definition, we first give the syntax of the bare language. The derived forms of
LogExp, and their equivalents in the bare language, are given in Appendix A. The full
grammar for LogExp is given in Appendix B. We exclude function abstraction from the
syntax of LogExp; therefore conditional expressions must be included in the bare syntax
of LogExp. The new syntax for declarations, atomic expressions and type expressions
are additions to those for SML. The grammar for those syntactic classes that do not
appear in Figure 2 remains as in the definition of SML.

2.2 Syntax of Modules

The grammar for modules in EML introduces minor alterations in that for SML. In
this sense, the grammar of EML is not a proper extension of the grammar of SML. The
grammar for the syntactic classes that do not appear below remains as in the definition of
SML. Functor and structure bindings are required to include explicit output signatures,
but may have undefined bodies (via the use of 7). The syntax of Spec is extended to
include axioms. The relevant rules in the grammar of modules are given in Figure 3.

3 Static Semantics

3.1 Static Semantics for the Core

The semantic objects are the same as in the SML definition. We give below the rules for
typing the undefined value ?, quantified and conditional expressions, axiom declarations,
equality type declarations and the undefined type ?. We do not give rules for LogMatch,
LogMrule, LogExpRow, LogAtExp, and for most of the forms of LogExp, which are
handled the same as the similar forms in SML. The rules for the derived forms of
LogExp are also omitted. Apart from the following rules, typechecking in EMI remains
as in SML.

logatexp

scon

(op)longvar
(op)longcon

{ (logezprow)

let dec in logezp end

special constant
value variable
value constructor
record

local declaration

(logezp)
logexprow lab = logezp (, logezprow) logical expression row
logexp logatexp logical atomic
logezp logatexrp application (L)
logezp, id logexp, infixed application
logezp : ty typed (L)
exists logmatch existential quantifier
forall logmatch universal quantifier
if logexp, then logezp, else logexp; conditional
logmatch logmrule (| logmatch)
logmrule pat => logexp
atexp ? undefined value
dec axiom ax axiom
eqtype typbind equality type declaration
az logezp (and az) axioms
ty ? undefined type
Figure 2: Core Grammar for EML
strbind u= strid : sigezp = strezp (and strbind) structure binding
strid : sigexp = ? (and strbind) undefined structure binding
Junbind = funid (strid : sigexp) : sigexp’ = strezp functor binding
(and funbind)
funid (strid : sigexp) : sigexp’ = ? undefined functor binding
(and funbind)
spec u= axiom az axiom

Figure 3: Modules Grammar for EML

The introduction of the phrase class LogExp simplifies the typechecking of axioms
and quantified expressions, for it is then possible to isolate the occurrences of quantifi-
cation and equality over non-equality types to axiom declarations by syntactic means.
As can be seen in rule (7), axioms are typechecked in a context in which the equality
function can be applied to values of any type.

Atomic Expressions C F atezp = T]

‘a fresh in C
———— 1
CkH?7=a ; @

Comments:

(1) An undefined value receives type ’a, i.e. the most general type. Therefore, the
type of the undefined value unifies with any type, allowing the undefined value to
appear in any expression.

Logical Expressions : C I logezp = 'r|
C F logmatch = T — bool 7 ¢ FunType)
C F exists logmatch = bool
C F logmatch = T — bool T ¢ FunType
(3)
C F forall logmatch = bool

C F logezp, = bool C F logexpy = T CFlogexps = 7
C + if logexp, then logezp, else logezps => T

(4)
Comments:

(2),(3) The reason for the constraint on 7 is to restrict quantification to be first-order.

The constraint does not quite achieve this result, since the following type is not in
FunType:

datatype foo = mkfoo of int -> int

but such type declarations will not appear in programs developed using EML
anyway.

(4) We give the static semantics of conditional expressions since they are now part of
the bare syntax of LogExp. Nevertheless, conditional expressions are still derived
forms of Exp.

Declarations , |CF dec = E|

Ckaz = {}
C I axiom az = {} in Env

Cof Bt typbind == TE V(0,CE) € RanTE, 0 admits equality (6)
B+ eqtype typbind = TFE in Env

(3)

Axioms Chkaz = E]

C' =C\{ref — V’.a.’a-—’aref, :=— Y’a ’aref * ’a— unit}
C'+{=+V’a. ’a * ’a— bool} I logexp = bool (CFaz = {}) %o
C F logezp (and az) = {}

Comments:

(7) Axioms are elaborated in the context C altered in two ways. First, ref and :=
values are taken out of C yielding C’. Then, C' is extended with a new type for
the equality function, in order to allow equality between values of every type (even
types which do not admit equality). This does not cause problems because axiom
declarations are not executable.

Type Expressions ChHty=r

t¢ (Tof C)
CH?=t (8)

Comments:

(8) A question mark type gets a new type name every time it is elaborated. This
prevents the question mark type from unifying with any other type. Note that the
? type is not the type of the ? value.

3.2 Static Semantics for Modules

The semantic objects are the same as in the static semantics for SML modules. Signature
matching in EML functor and structure declarations is more strict than in SML. In
SML, the output signature of a structure/functor is taken to be the explicit output
signature augmented by any information about type and structure sharing which can
be inferred from the body (sharing by construction in [Mac86]). In EML, structures are
like abstractions [Mac86] and functors are like parameterised abstractions rather than
parameterised structures: the output signature of a structure/functor is taken to be
exactly the explicit output signature with no added sharing.
In order to achieve this we need to introduce a new semantic function:

¥ : Sig — Str
defined as follows:

P(N(S) = &
where:

name of S = name of §’, and

Env of 5 is obtained from Env of S by renaming all bound names of S in
the following way:

if m € N and m’ is a fresh name in B (type name or structure
name), then replace all occurrences of m in S for m'.

The inference rules are:

Structure Binding | B I strbind = SE |

Bt strezsp=S Blsigeep=>X,5>8<5,58" = (%)
(B + names S” I strbind = SE)

9
Bt strid : sigexp = strezp (and strbind) = {strid — S"} (+ SE))
Bl sigezp=> %, S = ()
(B 4+ names S F strbind => SE) (10)
B | strid : sigezp = 7 (and strbind) = {strid — S} (+ SE)
Functor Bindings lB b funbind = F|
B F sigexzp = (N)S B & {strid + S} | strezp = §'
B & {strid — S} I sigexp’ = X', &' > 5" < 5’
§" =(Z) N" =namesS”\ ((NV of BYUN)
(Bt funbind = F) (1)
B & funid (strid : sigezp) : sigezp’ = strezp (and funbind) =
{funid — (N)(S, (N")S")} (+ F)
B |- sigexp = (N)S B @ {strid — S} - sigexp’ = ¥
§"=4(2) N"=namesS”\ ((Nof B)UN)
(Bt funbind = F) (12)
B & funid (strid : sigexp) : sigezp’ = 7 (and funbind) =
{funid — (N)(8,(N")S")} (+ F)
Specifications |B F spec = E|
Ctazx={} (13)

CF axiom az = {} in Env

4 Dynamic Semantics

4.1 Dynamic Semantics for the Core

The semantic objects are the same as in the core dynamic semantics of SML. Apart
from the new constructs, EML’s dynamic semantics is exactly the same as for SML. A
new basic value Incomplete is introduced, which is the semantic value of 7. The new
exception NoCode is also introduced. The new exception NoCode is not added to the set
of basic exceptions; rather it is handled in the rule for value binding (rule (16)). This
prevents the exception NoCode from being caught by an explicit handler in the program.
The rules are:

Atomic Expressions EF atexp = v/p

EF 7 = [NoCode] (14)

E(longvar) = Incomplete
E |- longvar = [NoCode]

(15)
Comments:

(14) The evaluation of ? always raises an exception. This exception is caught before
any binding takes place (rule (16)).

(15) When a variable’s value is Incomplete, the variable always evaluates to an excep-
tion, indicating that no code exists for that binding.

Value Bindings E F valbind = VE/p

E I ezp => [NoCode] E,Incomplete F pat = VE (E + valbind = VE'
E & pat = exp (and valbind) = VE (+ VE')

L (16)
Comments:

(16) If the exception NoCode is raised while evaluating the expression, the exception
is caught before doing the binding. Then the binding is done with the value
Incomplete. In this rule, the exception convention of Section 6.7 in [HMT89] is
not obeyed.

4.2 Dynamic Semantics for Modules

The semantic objects are the same as in the dynamic semantics of SML modules. We
give the dynamic semantics for structure and functor bindings when the body of the
structure or functor is undefined (i.e. 7). The dynamic semantics for normal functors
and structures are handled as in SML. To generate a dynamic environment from an
interface we define the operation

€ : Int — Env
as follows:
e(I) = (SE,VE,EE)

where:
VE = {Vid € varsof I : id — Incomplete}

EE = {Vid € ezconsof I : id ~ id}
SE = {Vid € Dom IE of I : id v e(IE(id))}

We also define:
I': Env — StrEzp

to be a function that generates a structure expression from an environment. This is
necessary because a functor closure requires a structure expression as a component.
The definition of T' is:

I'(E) = struct strdec end

7

where strdec is:

Vid € DomVEof E :valid =17
Vid € Dom EFE of E : exception id
Vid € Dom SE of F : structure id = I‘(SE(zd))

The semantic rules are:

Structure Bindings B |- strbind = SE/p
Inter B + sigezp = T (B F strbind = SE) (an)

B - strid : sigexp = ? (and strbind) = {strid — (1)} (+ SE)
Functor Bindings IB F funbind = F|

Inter B I sigexp = I Inter B + {strid + I} - sigexp’ = I'
E=¢I) (BF funbind = F)
B F funid (strid : sigezp) : sigezp’ = 7 (and funbind) =
{funid ~ (strid : I,T(E): I', B)} (+ F)

(18)

5 Rationale

The definition given here adheres in most respects to the usage of EML in [ST89] and
[San90]. As in those papers, the notation of first-order equational logic is used for ax-
ioms. The syntax for forall and exists is by analogy with the syntax for fn. Axioms
are not implicitly universally quantified over all their free variables; the additional re-
dundancy introduced by requiring variables to be explicitly quantified was thought to
be helpful in detecting typographical errors. The use of ? to stand for an undefined
value, type or structure was introduced in order to avoid the need for lookahead in pars-
ing. The rationale behind the dynamic semantics given here is to maintain the ability
to run programs as usual in the presence of undefined EML functors, structures, types
and values; an exception will be raised only when an attempt is made to evaluate an
undefined expression or access a component of an undefined structure.

At present, the mathematical basis of EML only supports the development of pro-
grams in a small purely functional subset of SML (excluding higher-order functions,
polymorphism, references, exceptions, and input/output). As a consequence, the mean-
ing of axioms which make use of features outside this subset is undefined. The syntax
and static semantics of axioms reflect this restriction, but only up to a point:

Higher-order functions: Axioms may refer to higher-order functions but may not
quantify over function types, although it is possible to get around this restriction
as mentioned above (see rules 2 and 3). Function expressions are forbidden by
excluding fn from the syntax of LogExp; however, there is no similar restriction
on the dec part of a LogExp of the form let dec in logezp end.

Polymorphism: The use of polymorphism in axioms is unrestricted.

References: Direct use of the values := and ref in axioms is forbidden (see rule 5).
However, nothing prevents axioms from referring to other functions which cause
side-effects.

Exceptions: Raising and handling exceptions in axioms is forbidden by excluding
raise and handle from the syntax of LogExp. However, there is no similar re-
striction on the dec part of a LogExp of the form let dec in logexp end.

~ Input/output: The use of input/output functions in axioms is unrestricted.

Since the subset of SML programs which EML supports is expected to enlarge as time
goes on (polymorphism appears to be unproblematic; higher-order functions and ex-
ceptions seem harder; handling references and input/output will be quite difficult) it
was decided to take the path of least resistance and forbid some common things which
seemed to be particularly easy to forbid while permitting the remainder for the present.

Implementors of EML who wish to provide users with the ability to experiment with
axioms making use of assignment, exceptions etc. may choose to make LogExp a proper
extension of Exp, and neglect to remove the values := and ref from the environment
in which axioms are elaborated (see rule 7). Users should however be aware that the
meaning of such axioms is “officially” completely undefined.

Acknowledgements

Thanks to Dave Matthews for helpful discussions. DS thanks Andrzej Tarlecki of the Pol-
ish Academy of Sciences for past and continuing collaboration on formal program devel-
opment in Extended ML. The research reported here is supported by grant GR/E78463
of the Science and Engineering Research council. FdS is supported by a Brazilian gov-
ernment scholarship, CNPq process number 200459/88.0/CC.

References

[HMT89] Robert Harper, Robin Milner, and Mads Tofte. The definition of Standard
ML (version 3). Technical Report ECS-LFCS-89-81, LFCS, Computer Science
Department, Edinburgh University, May 1989.

[Mac86] David MacQueen. Modules for Standard ML. Technical Report ECS-LFCS-
86-2, LFCS, Computer Science Department, Edinburgh University, March
1986.

[San90] Donald Sannella. Formal program development in Extended ML for the work-
ing programmer. In 8rd BCS/FACS Workshop on Refinement, Hursley Park,
January 1990. To appear.

[ST85] Donald Sannella and Andrzej Tarlecki. Program specification and develop-
ment in Standard ML. In 12th ACM Symp. on Principles of Programming
Languages, pages 67-77, New Orleans, January 1985.

[STS6]

[ST89]

Donald Sannella and Andrzej Tarlecki. Extended ML: an institution-
independent framework for formal program development. In Workshop on
Category Theory and Computer Programming, pages 364389, Guildford,
September 1985. Springer Lecture Notes in Computer Science. Vol. 240, 1986.

Donald Sannella and Andrzej Tarlecki. Toward formal development of ML
programs: foundations and methodology. Technical Report ECS-LFCS-89-
71, LFCS, Computer Science Department, Edinburgh University, February
1989. Extended abstract in Intl. Collog. on Current Issues in Programming
Languages, Barcelona, March 1989. Springer Lecture Notes in Computer Sci-
ence. Vol. 352, 1989.

A Appendix: Derived forms of Logical Expression

The derived forms for LogAtExp are constructed in the same way as those for AtExp.
There are three derived forms of LogExp, presented in Figure 4. Each derived form is

given with its equivalent form. As in [HMT89], we interpret each row of the table as a
rewriting rule

Derived form == Equivalent form

and these rules may be applied repeatedly to a phrase until it is transformed into a
phrase of the bare language. The other derived forms for phrases of the Core Language
remains as in the SML definition. Appendix B gives the full LogExp and LogAtExp
grammar, including the derived forms.

Derived Form Equivalent Form

Logical Expressions logezp

logexp; orelse logexp, | if logezp; then true else logezp;
logezp, andalso logexp; | if logezp; then logexp; else false
logezpy => logexpy if logezp; then logezp; else true

Figure 4: Derived forms of Logical Expressions

B Appendix: Full Grammar for Logical Expression

The full grammar for LogExp consists of the grammar in Section 2.1 augmented by the
derived forms of Appendix A. The full grammar for LogAtExp consists of the grammar

in Section 2.1 augmented by derived forms as with AtExp in SML. The rules are shown
in Figure 5. ‘

10

logatexp

logezprow

logexp

logmatch

logmrule

n= scon

(op)longvar

(op)longcon

{ (logexzprow) ¥

lab

O

(logexp, , -+ , logexp,,)

Llogezp, , -+ , logexp,,]

(logezpy ; -+ ; logexp,,)

let dec in logezp; ; -+ ; logezp,, end
(logezp)

u=lab = logexp (, logezprow)
u= logatexp

logezp logatexp

logezp, id logezp,

logexp : ty

exists logmatch

forall logmatch

logexp, andalso logezp,

logezp, orelse logezp,

logezp, => logezp,

if logezp; then logerp, else logezps

u= logmrule (| logmatch)
= pat => logexp

special constant
value variable
value constructor
record

record selector
0-tuple

n-tuple, n > 2
list, n >0

‘sequence, 1 > 2

local declaration, n > 1

logical expression row

logical atomic
application (L)
infixed application
typed (L)
existential quantifier
universal quantifier
conjunction
disjunction
implication (R)
conditional

Figure 5: Full Grammar for EML Logical Expressions

11

