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Timing Concurrent Processes.

Chris Tofts
December 18, 1989

Abstract

In this paper two timed calculi for concurrent processes are presented. They differ in
their concepts of time cost. We will show that they are strongly related and present a
number of natural equivalences and orders over timed processes. We present a number of
examples including a temporal analysis of an alternating bit protocol.

1 Introduction.

Algebraic approaches to the study of concurrent systems [Mil80, Mil86, Hoa85, Ber85] and
others, have i)roved effective. Unfortunately they either give no account of the passage of
time, and its passage is explained in the form of synchrony[Mil83]. The temporal properties of
concurrent processes give an insight into some interesting aspects of concurrent programming.
There have been some attempts to proevide a formalism within which these concepts can be
expressed [Ros86, Koy83, Koy87, Jef]. Some of these assume synchrony which results in some
of the more interesting temporal properties of process being inexpressible. In a previous paper
[Tof88] we provided an extension to CCS which admitted a notion of timing. That approach
was unsatisfactory in that the account it gave of time was somewhat eccentric. Processes could
only evolve simultaneously by communication, time and action were interleaved otherwise. In
order to give a fuller account of time for asynchronous processes we need to just let time pass,
and observe what the processes produce and when they produce it.

In order to give this fuller account the state transitions have been split into two orthogonal
parts; one part is our normal notion of action (which can be regarded as computation) and
the other part is the passage of time. There are sound reasons for making this separation.
Computation involves energy change and there is a result of quantum mechanics which states
that energy changes and time cannot be measured simultaneously [Dir58, Sch82]. Thus it seems
reasonable when producing models of time and computation not to permit the simultaneous
observance of the two activities.

We therefore assume that actions have no duration; although if we wish to construct actions

with duration we can in the manner of [Cas85].



2 Language Definition.

We define a timed extension of the language CCS [Mil80] as follows.

Let A be a set of (atomic action) symbols not containing 7 or €, and let Act = AU {r}. We
also have times ¢ taken from one of the following: positive integers, positive rationals or positive
reals, representing the divisions of time. We assume a complementation bijection -. : Act — Act
which is its own inverse. The letter A ranges over A, the letter u over Act, and S over relabelling
functions, i.e. those § : Act — Act such that S() = S(u) and S(u) # 7, unless y = 7. The’
languages wTCCS (weakly timed CCS) and sTCCS (strongly timed CCS) consist of an infinite
set Var of variables ranged over by X and Y, a constant symbol N¢l, unary function symbols
g, \A, [9], and FIXx (X € Var), and the binary function symbols + and |. With unary |
functions u. taking a process and prefixing the process by the given action. In wTCCS the
function symbol [], denotes a function which takes a process and a time and yields a process
prefixed by that amount of time. The function () takes a process and a time (not zero), and
returns the process prefixed by that time, along with the unary function § which returns a
delayed process in the calculus sTCCS.

The set P.of wTCCS-expressions ranged over by P is the set given by the following definition:

P u= Nil| p.P| [t]P| P|P | P+ P| FIXxP| X | P\L| P[S].
The set P of sTCCS-expressions ranged over by P is the set given by the following definition:
P == Nil| u.P| t)P| 6P| P|P | P+ P| FIXxP| X | P\L| P[S].

(It will be clear from the context which version of the timing system is being used.) The
intention of the time action prefix is as follows. In wTCCS, [¢]P means that after a period of time
t' where t' > t the process P is reached; this is very similar to the wait introduced into CSP by
Roscoe and Reed [Ros86]. On the other hand, the system sTCCS represents separation of delay
from the initial timing so ()P represents a process that will becomes P in precisely a period of

time ¢. The § operator providing a way of introducing delays to allow for synchronisation.

2.1 Derivation Laws.

The action-evolution of a process can be derived from the operational rules presented in Figure
8-1. The temporal evolutions of wT'CCS are derived using the operational rules presented in
Figure 8-2. The alternative set of rules presented in Figure 8-3, give the temporal evolutions for
sTCCS. The transition relations between processes is the least set of transitions satisfying the

set of action laws plus the appropriate set of temporal laws.
Definition 2.1 We define the operator < on times as follows;
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Figure 1: Operational rules for wTCCS and sTCCS

pfl — t—t whent' <t
1o otherwise,

where — is the usual subtraction operator.

2.2 An Example.
In wTCCS the following process deadlocks,
(a.b.nil | @.[5]b.nil)\a, b.
The process has the following derivation,
(a;b.nil | @.[5]b.nil)\a,b 5 (b.nil | [5]b.nil)\a,d.

In the parallel composition above, the right hand process now requires a period of time of
length at least 5 to pass before it will undergo any further activity; the left hand process requires
a matching b action to proceed but will not delay. No further action is therefore possible.

So actions not separated by delays must be performed sequentially and immediately in time;
failure to do so leads to a deadlock.
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Figure 2: Temporal rules for wTCCS
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This would seem to imply that it would be useful to add temporal evolution laws as in figure
8-4.

Proposition 2.2 Let P be a process in wTCCS in which all actions are guarded by time actions,
and all Nil processes are guarded by [0]. Then P has ezactly the same evolutions in wTCCS +
DR. :

1

Proof: Since all actions are guarded by time prefixes, we never reach a state where
we must infer (by ACT alone) that P 2 P'. In other words for all processes P we
can always infer P 3 P’ for t' larger than some arbitrary ¢, thus we can never reach
a state where in a parallel composition P | @, either P or ¢ can only evolve through
an action, therefore we can infer any evolution that we could infer with the addition
of the rules DR.

Proposition 2.3 Every process P in wTCCS is directly equivalent to a process P in sTCCS,
given by replacing every weak temporal evolution of P with a strong temporal evolution plus a

delay in P. In other words we write (t)6Q for every occurrence of [t]Q.

Proof: It is clear from the definition of wTCCS and sTCCS that any action evolution

of P is directly matched by P. Thus we need only consider the temporal evolutions.

. ¢ . = ¢ 5
Given P ~» P’ then we can also infer P ~+ P’. There are two cases,

1. t is less than the time for any time action in the current derivation to reach

zero. In this case the time rule is identical in both cases.

2. t is greater then the time for at least one time action in the current derivation
to reach zero. Then we have to use both the TIME and the EXT-DELAY rule
to infer that P % P and P" % P with t; the least time to the exhaustion of
any temporal action and £, an arbitrary time introduced by the delay such that

t = 11 + t3 combining these two evolutions we get P4 P

Notation: we will use the abbreviation P* to represent the process P’ when P~ P’, when-
ever it is inconvenient to introduce a new process name for all the timed intermediates of a

process.

2.3 Temporal Deadlock.

The Nil or deadlocked process is one which is capable of no action. There is an equivalent
temporal process which can always permit the passage of time, but never produces an action.
The following are the simplest definitions for both wTCCS and sTCCS respectively:



[0]Vil,
SNil.

There are, however, an infinite variety of processes which are equivalent to this temporal nil.
For any P in wTCCS and @ in sTCCS, the following processes are equivalent to the temporal
nil:

[0][1]P,
§(1)@,

since in neither case can we infer a direct action, and so we cannot remove the leading [0] or

the é operators.

2.4 Deadlock.

The Nil processes acts like a deadlock [ Ber85] with respect to the continuing temporal evolution
of the system. If we examine the derivation laws COM ~TIMFE and SUM —TIM E, we observe

that the following are true for any non-zero ¢.

Nil + (t)P = Nil
Nil | (t)P = Nil

Thus once we have an unguarded Ni/ process in any leading binary term all further temporal
evolution is blocked. Any composite process is stopped immediately, the process cannot evolve

further in time. We can use this property to compare the initial time behaviour of any processes.

Definition 2.4 Given any equivalence [order] we can construct the time pre-fix equivalence [or-
der] simply by composing in parallel both processes we wish to show equivalent[related] with the

process (t)Nil.

This is motivated from the proceeding observation. After a period of time ¢t has passed the
processes (¢)Nil | P and (¢)Nil | Q become equivalent to Nil; until ¢ has passed they exhibit all

the possible behaviour of the respective processes within that period.

2.5 Time Actions.

There is an interesting distinction between weak and strong time actions.

Proposition 2.5 Consider two successive time actions in both wTCCS and sTCCS then;

1. if to > O then [t1][t2] P has different derivations to [t; + t5] P,



2. (t1)(t2)P has identical derivations as (t, + t2)P.
Proof:

1. for t5 > 0 this process is the temporal nil, and if P has at least one immediate

action then [¢; + ¢3]P is not a temporal nil.

2. directly from the inference rules for any ¢ < t; + {3 we can only infer that
(t1)(t)P ~ P’ with P’ = (t; + &5 — t)P and (t; + )P -5 P’, and furthermore
for t = t; + t we can infer (¢1)(t3)P 2 P and (t1 + t2)P A3

3 Strong Time Sensitive Pre-order.

It is possible, much as for CCS, to produce two different basic notions of equivalence (strong and
weak), which are based on orders with respect to time. The first of which requires that the time
taken after any action be matched directly by the time taken after a similar action in the other

process, not that the total time taken to go from one state to another via an action is greater.

Definition 3.1 (Strong pre-order) We will say that P is faster than Q iff there exists a relation
R with (P,Q) € R iff for all u € Act and for all times t;

1. if P 5 P’ then there ezists Q' such that Q % Q' and (P',Q') € R,
2. if P-4 P’ then there exists Q' such that Q £ Q' and (P',Q") € R and t' > 1,
8. if Q B Q' then there exists P! such that P % P' and (P',Q’) € R,
4. if Q5 Q' then there exists P',t' such that P 4 P and (P',Q'Ye R and t' < t.

The relation R is called s strong pre-order.

Proposition 3.2 If R, R’ and R; for i € I are all strong pre-orders then so are;
1. Idp,
2. RR,
3. User B

Proof:
Parts 1 and 3 are obvious so we will prove part 2.

Given P RR' @) then there exists S such that P R S and S R’ Q. Since R and R’

are both strong pre-orders from the definition.
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If P& P’ then there exists §' such that § & §’ and P’ R §’. Similarly from the
second equivalence there is a Q' such that Q 2 Q' and §' R’ Q'.

Thus for P % P’ then there exists Q’ such that Q@ 5 Q' and P’ RR'Q'.
If P 5 P’ then there exists S’ and # such that S ~» §' with P' R S and ¢’ > t.

Similarly from the second equivalence there is a @’ and t” such that § 53 Q' with
S"R Q" and t" > 1.

Thus for P ~» P’ then there exists Q' and ¢ such that Q L Q' with P’ RR' Q' and
" >t

The symmetric cases can be proved similarly. ]

Definition 3.3 A functional F on binary relations R C P x P such that (P,Q) € F(R) iff for
all p € Act and for all time t:

1. if P 5 P then there exists Q' such that Q 5 Q' and (P',Q’) € R,
2. if P~ P' then there exists Q',t' such that Q 55 Q' and (P',Q") € R and ¢’ > t,
3. if Q —’—L+~Q’ then there exists P! such that P & P’ and (P',Q’') € R,
4. if Q% Q' then there exists P',t' such that P 4 P and (P,Q"Ye R and t' < t.
Proposition 3.4
¢ F is monotonic,
e R is a strong pre-order iff R C F(R).
Proof: both parts directly from the definition of F.
Definition 3.5 Call >= {|JR | R is a strong pre-order } .
Proposition 3.6 > is the largest strong pre-order.
Proposition 3.7 > is the fized point of F.

Proof: > is a strong pre-order hence >C F(>),

F is monotonic thus F(>) C F(F(>)),

(In other words F(>) is a pre-fixed point of F.)

but > contains all pre-fixed points of F hence F(>) C> : |

Proposition 3.8 If P > Q for P,Q in wTCCS; then for their respective CCS equivalents P~

Q. Two process can only be temporally related if their computational behaviour is identical.



Proposition 3.9 Strong Pre-Order is substitutive with respect to the finite operators of wTCCS.
Thus for P > @ the following hold;

1. [1)P > 1@,

. 2. a.P>aQ,
3. P+E>Q+E,
4-P|E>Q|E,
5. P\L>Q\L,
6. P[S] > Q[S].

Proof:(following [Mil86], Proposition 5.17)

Most of the cases are self-evident so we shall provide a proof of one as an example.
We shall show that given P > @ then P | E > @ | E. We will show that the relation
T={P|E, Q| E)|P > Q}is a strong pre-order. Consider firstly the action

evolutions of P | E so if P | E 5 R then there are three cases;

1. R= P'| E then P - P’ and from the definition Q -~ Q' with P’ > @’ so
Q|E-X Q| Ewith (P'|E,Q' | E)eT.

2. R=P|E then Q| E X Q| E with (P|E,Q|E)€T.

3. R= P'| E' and p = 7; then there is a yu such that P 5 P’ and E LB
so Q - Q' with P’ > Q' therefore we can infer Q | E =~ Q' | E' and (P’ |
E,Q'|E)eT.

The time evolutions are much simpler since we know that if P | E % R then
R = P'| E' where P 2 P and E ~5 E' thus there exits Q' and ¢’ > ¢ such that
Q|ES Q| E" with P' | E' > Q' | E”, since from E ~» E' we can infer E 4 E”

with B/ = E” from the time evolution rule.

Unfortunately this pre-order is not substitutive in sTCCS, for consider the following pro-

Cesses;

P=(5)a Q=(Ma E= (6,
R=P|Eand S=Q|E.

10



Clearly P > @ but there does not exists a ¢ > 5 such that S 4 5" with a | (1)b > &', since
we can never reach an $’ which can perform an a action without performing a b action first. A
similar lack of congruence can be observed with respect to the non-determinism operator.

Strong pre-order is not substitutive with respect to sTCCS, owing to the introduction of
causality via timing information. In the system sTCCS the following two processes are equiva-

lent,
(5)a | (7)b and (5)a.(2)b.

The process on the left has the causality introduced implicitly by timing, while the other
process has the causality explicitly introduced by action-prefix. Any interleaving ‘faster than’
relation will not preserve timing causality, but will preserve structural causality. Thus to obtain
a notion of “faster than’ that will be an order for sTCCS, we shall need to distinguish between
the explicit introduction of causality through structure and the implicit causality introduced by
timing,.

We will not proceed with further study of the strong pre-order. Since we regard the system
sTCCS as the more fundamental we will instead attempt to find an equivalence relation which

is substitutive for that system.

4 An Equality for sTCCS.

Definition 4.1 Processes P and @) are time-equivalent iff there exists a relationship R between
P and Q such that for all n € Act and for all times t;

1. if P& P’ then there exists Q' such that Q & Q' and (P',Q') € R,
2. if P-4 P’ then there ezists Q' such that Q ~» Q' and (P',Q’) € R,
3. if Q £ Q' then there exists P' such that P % P' and (P',Q’) € R,
4. if Q5 Q' then there exists P’ such that P~ P' and (P',Q’) € R,

the relation R is called a time-equivalence.

Proposition 4.2 If 5,5 and S; for alli € I, are time-equivalences; then the following are also

time-equivalences;
1. Idp,

2. 85,

11



3. 571,
4- Uier 5:-

Proof: A trivial extension to the proof of proposition 8.3.2
Definition 4.3 ~p= {5 | S is a time-equivalence}
Proposition 4.4

1. ~7 is a time-equivalence,
2. ~ is the largest time-equivalence.

Proof:

1. directly from the above proposition.

2. immediately from the definition of ~.
Definition 4.5 T is a time-equivalence up to ~g whenever ~g T ~¢ is a time-equivalence.
Proposition 4.6 If T is a time-equivalence to ~7 then T C~r.
Proof: for (P,Q)) € T we have P ~7 PTQ ~7 @ and thus P ~7 T ~7 Q.

The usual functional extension in the style of [Par81] can be used to demonstrate time

equivalence well founded; as the details are precisely those of the earlier definition and proof we

omit them.

Proposition 4.7 Time-equivalence is substitutive for the finite operators of sTCCS. In other

words, given P ~p @) then;
1. a.P ~T1 a.Q),
2. (t)P ~r (1)P,
3. 6P ~7 6Q,
4. P+ E~pQ+E,
5. P|E~r Q| E,
6. P\L ~r Q\L,

7. PS] ~7 Q[S).

12



In order to prove the above we need to demonstrate that appropriate bisimulations can be

found. The detail has been presented earlier and is therefore omitted.

Definition 4.8 Let E and F be two expressions, with free variables X. Then we will say that
E ~1 F iff for all vectors of processes P
| E[P/X] ~r FIP/X]
Proposition 4.9 given E ~1 F then Fiz g E ~1 Fiz g F.
Proof: consider only a single pair of equations:
A= E[A/X] and B = F[B/X]

with E ~7 F. We will show that the relation

{(G[A/X],G[B/X]) | G contains at most X free } is a time-equivalence to ~7. We
proceed by induction over the depth of inference by which either G[4/X] - P’ or
G[A/X] < P" is inferred. Then we continue by case analysis over the structure of
G. The resulting proof mirrors that of [Mil80,Mil86]; but we have to perform each
case both for action and temporal evolutions. For example consider the case for the

parallel composition operator. Suppose G = Gy | G then

o if G{[A/X] L Gi[A/X] then G[A/X] L+ Gi[A/X] | Go[A/X] but from the
inductive assumption G1[A/X] ~p G1[B/X] as there actions are derived by a

shorter inference; as we can then immediately obtain the desired result.
o Similarly for G,[4/X] = G4[A/X].
o if G1[A/X]|Gy[A/X] T Gi[A/X]| G4[A/X] then there is a A such that
G1[A/X] 25 P! and G,[A/X] s P,
So from the inductive assumption we can find:

G1[B/X] 2 @4 and G[B/X] = Q;
with P{ ~p T ~g Q4 and P ~r T ~7 Q).

Take P/ = P{ | Py and Q' = Q) | Q% then P, = H;[A/X] for some H and
similarly @; = H;[B/X]. But (P;,Q;) €~ T ~r so letting H = H, | Hy we
have (P',Q") = (H[A/X],H[B/X]) € T and hence

G[A/X] - P'and G[B/X] = Q'
with (P',Q") € T.

o G1[A/X]| Go[B/X]~ P'| Q' thisis the same as the above case but with time

actions replacing the normal actions.

The other structural cases follow the same pattern.
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4.1 Stratified Bisimulations.

In his original discription of the language CCS [Mil80], Milner used a stratified notion of bisim-
ulation, in that the bisimulation was given in terms of the number of actions for which two
processes were initally equivalent. In the limit this gives the full bisimulation.

In the timed system we have two approaches available to giving a stratified account of .
bisimulation; one is that for an arbitary number of initial actions of both time and computation
our processes match, the other is that for an initial period of time our processes are identical. -
We would hope that the limiting cases of both these forms of bisimulation give us our original
notion of bisimulation. Unfortunately when using time we do not have ordinals and thus can
only work with finitely branching processes and do not recover the full bisimulation. In the

following we shall be working with the ordinal numbers, which we will denote O.
Definition 4.10 ( Action Stratified Bisimilation)

1. P ~g @ for all processes P and @),

2. Py Qiff

e For allt such that P~ P' then there exists Q' such that Q ~ Q' and P ~, Q,
e For all a such that P -+ P’ then there exists Q' such that Q - Q' and P' ~, @',
o For allt such that Q ~» Q' then there exists P’ such that P~ P' and P ~, Q,
e For all a such that Q -2+ Q' then there exists P' such that P —— P' and P’ ~, Q’,

8. for each limit ordinal A P~y Q iff for allk < A P ~, Q.
Proposition 4.11 ~= .o ~&

Definition 4.12 (Time Stratified Bisimulation(1)) P < Q iff

e for allt’ such that P L P’ then there exists Q' such that Q 4 Q' and P’ i~ Q'
o for all a such that P -+ P' then there exists Q' such that Q - Q' and P' & @',
e for all t' such that Q 4, Q' then there exists P' such that P 2 P and PR Q,
e for all a such that Q - Q' then there exists P’ such that P — P' and P’ L Q)
Definition 4.13 (Time Stratified Bisimulation (2)) P ~; Q iff (t)nil | P ~ (t)nil | Q.
Proposition 4.14 P4 Q iff P <, Q.
Proposition 4.15 For finitely branching P and ). P ~ @Q iff for allt P k3 Q.

Corollary 4.16 Let P and @ be finitely branching processes and ty,...,t;,... an infinite strictly
increasing sequence of times. Then if for all t; P K Q) then P~ ().
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5 Temporal Structure independence

We wish to equate processes where performing the same action costs the same amount of time.
Whilst the strong equivalence appears to do this, it is only relevant if we assume that all of the
time cost of an event is located either immediately before it or immediately after it, not if it has
a cost distributed either side of it. Consider the following two processes;

P =(1)a.(5)R,

Q = (3)a.3)R,
where R is an arbitary process. If we take the time actions above as the cost of performing the
@ action in both cases, then these processes should be considered equivalent in that sense, but
they are certainly not equivalent in the strong sense.

Essentially we wish to identify processes where we can find time slices between which they

are alway capable of the same computation, but not necessarily at precisely the same time. We
would like to base this notion of equivalence on an order. We start by abstracting actions to

remove the precise location with respect to time and replace it with a notion of associated cost

in time.

Proposition 5.1 Let P be a process in wTCCS, or sTCCS over a dense time (ie, the reals or
the rationals). If P ~% P' then there exists P" such that P B P and P55 P!, witht; +1t, = t.

Proof: Immediate from the nature of the TIME rule in both the case of sTCCS and
wTCCS.

Definition 5.2 For any process P, P——f—» Q iff one of the following holds

1. there exists P! and P" such that :

() PSP,
(b) P/_ﬂ P",
(c) P'%Q,
(d) t =1t +1t,.

2. There exists P' such that:

(a) P~5 P,
(b) P' 5 Q.

3. There exists P! such that:

15



(a) P& P,
(b) P'~5 Q.

4. Failing the above.

(a) P5Q,
(b) t=0.

Now we can define a temporal simulation. The evolution defined above is an abstraction

from the underlying timed system; a similar method is used in [Smo90].

Definition 5.3 We will say P is faster than Q iff there ezxists a relation T, called a Temporal
Simulation, such that for all u € Act and for all times t;

1. if P—E~ P’ then there exists Q',t' such that Q—i~ Q' and (P,Q)eT witht' > t,
2. if Q—L> Q' then there exists P',t' such that P—&~ P’ and (P',Q") € T with t' <t.
4 4

Unfortunately, owing to the different nature of TCCS and both sTCCS and wTCCS this is
not the same as the form of temporal simulation as defined in [Tof88]. However it does have the

property of equating the processes A and B defined earlier.

Proposition 5.4 If T, T’ and T; for all i € I, are temporal simulations then the following are

all temporal simulations;
1. Idp,
2. TT,
3. Uier T
Definition 5.5 >7= |J{T | T is a temporal simulation}.

Proposition 5.6
e >r is a temporal simulation,

e > is the largest temporal simulation.

Once again the above can be demonstrated well founded by a functional definition in the
style of [Par81].

16



Proposition 5.7 If P >1 Q then for finite wT'CCS processes P and () then;
o [t]P > [']Q with t' > ¢,
o P+E2>rQ+ E,
s PIE27Q|E,
o P[S] 27 QIS],

o P\L>7Q\L.

Unfortunately the problems with implicit causality prevent this order being substitutive for
sTCCS. We do not include a proof of the above proposition since it is in essence identical to

that given earlier.

6 Equational Characterisation.

Consider the following equations.

Given P ~7 @ and t; < t5 then the following equations are true of sTCCS processes:

1. Action Prefix;

(a) (t1)(t2)P = (t1 +t2) P,

2. Non-determinism;

(a) P+ P =P,

(b) P+ éNil = P,

(¢) ()P + Nil = Nil,

d) P+R=R+P,

() (t)P + (12)Q = (t1)(P + (t2 — 11)Q),
(f) P+(R+5)=(P+R)+5,
(8) (21)8P + (12)6P = (t1)6P,
(h) éa.P+ a.P = a.P,

(i) 6P+ 6R=6(P+ R),

() (t1)a.P + (t2)R = (t1)a.P,
(k) a.P(t)S = a.P,
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3. Composition;

(a) P|6Nil=P,

(b) (t)P | Nil = Nil,

(c) PIR=R|P,

() PI(R[S)=(P|R)|S,

() (t)P | (22)@ = (t1)(P | (t2 — 11)@),
4. Restriction;

(a) a.P\L = Nil if a, overlinea € L,

(b) a.(P\L) = (a.P)\Lifa,a ¢ L,

(c) (P\L) = (HP)\L,

(d) 6(P\L) = (6P)\L,

(e) P=P\Lifforallae L(P) a ¢ L,

() P\I\Ly = P\Ly U Ly,

(8) PAL+Q\L=(P+Q)\L,

(h) (PAL)|Q = (P|Q\L,ifforalla € L(Q) a, T ¢ L,

We have not given rules for wT'CCS since we cannot obtain the same structural identities.
But there is no manipulation possible of the temporal operators owing to the property that

processes of the form
[2)[4]P
deadlock. In other words, in
R =[2]a.P | 3]Q
if we tried to replace this process by the obvious,
5 =[2)(e.P | [11Q);

then this would temporally deadlock in the context §\a whereas R\a does not. Since further
passage of time will permit the process @ to evolve. In the strong system however both the

processes;

R =(2)a.P|(3)Q and ' = (2)(a.P | (1)Q),
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deadlock in the context \a. Thus it is possible to manipulate the time action prefixes in the
strong system. A similar property ensures that we cannot distribute weak time over a non-
deterministic pair of processes.

Most of the above equations come directly from CCS and from the natural properties of
time. The non-determinism equations come from the unwillingness of a sTCCS process to delay
when it can perform a normal action. As in, for instance, equation 2.k where we are stating that
either it immediately evolve either through the action or by undelaying the alternative.

There is no general equation analogous to the expansion theorem, so this equational system is
not complete. This results from the problems of introducing unintentional causality. In [Mol89]
an extended form of the calculus sTCCS is shown to admit an equational theory which is both

sound and complete with respect to strong bisimulation.

7 Observational Evolutions.
We can define the usual observational notions of evolution.

Definition 7.1 For s = );...)\, € Act* we say that, P—:— P iff

P——t"ll— o= P with =ty .

Definition 7.2

S I » Sp, / -
P.__,t__>-P iff P~——->t P’ for some 5 = s

Time pressure means that we have not looked at the equivalence induced on processes by
this evolution, but we suspect that we will obtain results on wTCCS which mirror those for
CCS. However since we cannot yet provide a substitutive order for sTCCS, we do not suspect

that an order induced by observational evolutions will be substitutive.

8 Process Logic For Timed CCS.

We introduce a simple extension of the process logic PL [Mil86], with a timed modal operator.
Since our space of times may be dense, it is not sufficient to add a next operator which is
interpreted as at the next instant the proposition holds. A similar logic is presented in [Koy87].

The formulae of our logic (UPL) are defined as follows:

Fu= N F|-F|<a>F|{t}F.

Definition 8.1 The satisfaction relation between processes and formulae is defined as follows;
P Er Fiff:
o Pl=r Nie; Fi iff for allie I, P =p F,
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¢ Plp —F iff P |=7 F is false,
o Pl=r<a> F iff there exits P' such that P = P' and P' |=r F,
o P = {t}F iff either

— there exists a, P! such that P % P' and P |=7 F,

— or there exists P',t' such that P L P owith ¢ <tand P'l=r F.
Proposition 8.2 If P |er {t}F then for allt' > t, P =1 {{'}F.
Proof: Immediate from the definition of the operator {¢}.

Note: since zero times are not permitted in sTCCS the first clause of the temporal modality

only applies to delays and these are matched over the equivalence.

8.1 Stratifying tPL

We wish to show that tPL characterses strong temporal bisimilation. We start by defining the

depth of formulae in our logic.

Definition 8.3 We define the depth of a formula recursively over its structure;
o depth({t}F) =1+ depth(F),
o depth(< a > F) =1+ depth(F),
¢ depth(—F) = depth(Fi,

o depth(Nier Fi) = mazier(depth(F,)).
Definition 8.4 The stratified family of formulae tPLy =4 {F | depth(f) < k}

Proposition 8.5 For each k € O, P ~y, Q iff for every F € tPLy
PEFiffQEF.

Proof: We start by proving that bisimularity up to k implies that the processes
satisfy exactly the same formulae of tPL; we proceed by induction on k. Assume
P ~; Q and P |= F where depthF < k we require to prove that @ = F. There are

two critical cases;

1. F=<a> F,

2. F={1}F.
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In the first case, we have that P — P’ for some P’, and P’ = F' with depth(F') =
A < k. Since P ~; Q there exists Q' with Q@ =+ Q' and P’ ~;_; @', thus by
inductive assumption P' = F' iff Q' |= F” since depth(F') < k—1 and hence @ = F.

In the second case, we have that P %, P' for some P’ and ¢ < t with P/  F’
with depth(F') = A < k and an identical argument to above holds. Or P -+ P"
and P = F’, but if P ~; Q then P ~ k — 1@, and there must exist Q" such that
Q — Q" and thus Q |= F’ as required.

We now show that if two processes satisfy exactly the same formulae in tPLj then
they are bisimilar to k. Assume P +; @, we will look for F' € tPLy, such that P = F
and @ [~ F. Consider k£ = A + 1, then wlog assume, either

1. P -2 P’ and for all Q' such that Q@ — Q' then P’ o4y @', or
2. P-~% P’ and for all Q' such that Q ~» Q' then P' £, Q'

From the inductive assumption if P’ o6, @} then there exists a set of formulae
F; € tPL) such that P’ | F; and Q' £ F]. Where we have a set of @ derivatives

{Q; | i € I}. Then to distinguish our process we can use the formulae;

1. use F=<a> \;; F;, and

2. F =1t \;c; F; respectively,

by construction the depth of the formulae above is lees than or equal to k. The proof

for limit ordinals follows immediately. a
Corollary 8.6 P ~ @Q iff for all F € tPL
PEFiffQEF.

To handle observational congruences we define an extended operator, for s € A* and ¢ €

Times, [[s,t]]T, in the following way;

Definition 8.7 P k= [[s,t]JTF iff there exists {to}[s1]{t1}--[sn]{tn} such that P |= {to}[si{t1 }...[sn [ {tr} F
and tg+1t + ...+, <t.

We can define the observational version of the modal operators, by using the hat operator,
ie Plr [[3trF iff P =g ([s,tlTF.
Note: we can add quantifiers and implications in the same manner as for PL.
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9 Examples.

9.1 A Simple Timer.

Consider the example of the timed and the timer controlled actions presented in [Tof88].

E, = a.[tlE,
Timer = alarm.[t'|Timer
E., = alarm.[t;]a.[0].E
R, = (Timer | E})\alarm

We consider the evolutions of the two systems with #; < t’ and t5 = ¢/ — #;:

E, %% E,,
thus Ey—t=-E,

T t1 a iy

R, —=~—35 R,

a
thus Ra?>-Ra, .

Note, theée are minimum time paths.

It seems that the time of the process R, is independent of the value of t; provided it remains
less than #'. It seems that we can achieve an analogous result to the weakness replacement
[Tof88]. The following example shows that in these systems weakness replacement will hold only
when processes behaviours are much more constrained than the requirements of the original
result.

Consider the following processes;

P =b.[5]Py,
Q= B'[lo]Qla
E = b.[20]N4d,
R,=FE ” P,
Ry=FE| Q.

Even if P; and ¢}, are identical then R; will not be the same as Ry. The former can evolve
to a state equivalent to P;, twice as fast as the latter. Thus the condition for the processes to be

made identical by communicating with a slower process must include repeated communication.

9.2 Action Available For a Period.

In the following process:
(5)6a.P + (7)a.P
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the action @ can be inferred at any time between 5 and 7, but it must have been used by
at latest 7 or the process will deadlock. This can be used to represent a process that requires a

certain time to start and is then only available for a limited period.

9.8 Actions With Duration.

So far we have assumed that our actions take no time, when modelling circuits however we would
like our actions to extend over a period of time. In [Cas| the method of splitting an action into a -
pair of new actions is suggested, one signifying the start of the signal, the other the conclusion.
Following that method to get an @ action of duration 5 we take the new actions assq ¢+ and afinish

and construct the following:
astart'(5)afinish-P

which represents a process pre-fixed by an a action of duration 5. To synchronize with the above
we need the action pair, @ssqrs and @yinisy ( the natural duration version of @). So the following

process could synchronize on the a action:
a'.sta,'rt-(5).(—7"‘)"L"rvish-Q‘

We can construct processes that will respond to signals of arbitary duration; for example the

following requires an a of duration at least 2 to synchronise with
Estart'(2)6afinish'Q'

9.4 Representing SCCS in sTCCS.

We will assume that our action set Act is an abelian group with 7 as its identity, and @ as the
inverse of a. We can then represent an SCCS process as an sTCCS process using the following

translation.

Definition 9.1 Let P be an SCCS process and P! its translation into sTCCS, we define PT as

follows:

SCCS sTCCS
0 Nil
a.P  (Da.Pt
P+Q Pt+Qt
PxQ PHQ

Definition 9.2 Let s € Act* be a sequence of actions. Then prod(s) is the action s1 X s3 X ... X

S, where 8 = 8189...58,
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Note, for any permutation s’ of a sequence of actions s; prod(s) = prod(s’).
Yy P

Proposition 9.3 Whenever can infer P - Q in SCCS iff we can infer P14 5 Q in
sTCCS, with prod(s) = a.

Proof: By a induction over the the structure of the processes.

10 Value Passing.

If we use the operators of CCS with values and either set of temporal operators then we can
derive a value passing calculus from our basic calculus in an identical manner to that used for

CCS. The translation was presented in chapter 1.

11 The Alternating Bit Protocol.

In his book [Mil86] Milner presents an implementation of the alternating bit protocol in CCS,
and demonstrates that the protocol is correct. Perforce this implementation ignores the exact
temporal projperties of the system and its components. We extend the implementation in CCS
to one in sTCCS, where we can take advantage of the temporal properties of the system compo-
nents. In this version some of the system complexity can be reduced by exploiting the temporal
information. An alternating bit protocol realisation can be viewed as follows. (We let b stand

for the negation of the boolean value b.)

deliver

The process Ac will work in the following manner. After accepting a message, it sends it

with bit b along the channel Tns and waits, subsequently there are three possibilities:
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o it times out, and re-Transmits the message;

e it gets an acknowledgement b from the Ack line (correct transmission), so it can now accept

another message;

e it gets an acknowledgement b (superfluous extra acknowledgement of earlier message) which .

is ignored.

The replier T'm works in a dual manner. After a message is delivered it sends an acknowl-

edgement with bit b along the Ack line. There are then three possibilities:
e it times out, and re-transmits the acknowledgement;

o it gets a new message with bit b from the T'ns line, which it delivers and acknowledges
with bit b;

e it gets a repetition of the old message with bit b which is ignored.

The channels in the implementation are identical and have the ability to duplicate or lose
an arbitrary message, arbitrarily many times. For convenience we ignore actual messages and
concentrate on the value of the control bits.

We now give the definition of a timed version of the alternating bit protocol in the following
fashion. There are 4 fundamental times involved, the transmission times on both channels and

the re-try times in both senders.

Ac(b) = Sack(b).Ac(b) + dack(b).Ac(b) +8accept.Sd(b)
Sd(b) = send(b).Sdy(b) + back(h).Sd(b) +back(b).Ac(d)
Sdy(b) = (t,;)send(b).Sdy(b) +back(b).(ty)Sdy(b) +6ack(b).Ac(b)

Tm(b) = stransmit(b).Tm(b) +6transmit(h).Tm(b) + deliver.Rp(b)
Rp(b) = reply(b).Rp,(b) +btransmit(h). Rp(b) +6transmit(h).Tm(b)
Rp,(b) = (tTt).reply(b).Rpl(b) +6transmit(h).Rp; (b) +6transmit(b).Tm(b)

. Let s = 81b282
Tns(bys1bosy) = 6send(b).Tns(bbys) +(ts)Transmit(by).Tns(s) +67.Tns(bysysy) +67.1ns(s)

Ack(bys1bysy) = reply(b).Ack(bbys) +(t,)ack(b).Ack(s) +67.Ack(bys;sq) +67.Ack(s)

With initial state,
Ab = Ac(0) || Ack(0) || Tns(0) || Rp*(1)
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A static flow diagram for the above is

deliver

We firstly impose the restriction that ¢, and %, are less than f,; this is sufficient to ensure
that the ack .a,nd transmit ports are always available to the transmission channels. We impose
the condition on the re-try rate that t¢,; > 2¢,. This seems reasonable as we cannot be sure
that a transmission has failed until this period of time has elapsed. The external environment
is forced to take delivery as soon as possible. This enables us to calculate the period of time
between the reception of an accept action, and the return of the process to a position where the
next transmission may be attempted.

From the constraint on re-tries we can observe that there is no path with a time short enough
to require that the transmission channel should contain more than one data item at once. We

redefine our channels as follows.

Ack = éreply(b).Ack(b)
Ack(b) = (t,)ack.Ack + é7.Ack

Tns = bsend(b).Tns(b)
Tns(b) = (ts)transmit.Tns + §7.Tns

With initial state,
Ab = Ac(0) || Ack || Tns || Rpls(1).

It should be noted that we have arranged that at no time is an immediate ack or transmit
action of either type impossible, apart for a period immediately after the reception of such an

action, and then the evolution is possible before any more actions of that type can be produced
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by the channels. Thus we can use actions with no delay guarding in the channels to force the
evolution to proceed at certain intervals.

Let us examine the evolution of the process Ab. (Note that we will not divide time actions
below the minimum to permit another physical evolution. We will include a path only if two
immediate evolutions lead eventually to the same state. For clarity we will subscript the 7
actions with the initial letter of the original action from which they where inferred. We will
mark points at which genuine divergence can take place with a number and the evolution will .
be reconsidered from there later.)

Ac(0) || Ack || Tns || Rp(1)

P Sd(1) || Ack || Tns || Rpfe(1)

= 8dy(1) || Ack || Tns(1) || Rpy (1)

A3 Sdis(1) || Ack || transmitl.Tns || Rpit(1) (1)
3 Sdis(1) || Ack || Tns || Tm(0)

B Sdie(1) || Ack || Tns || Bp(0)

™8 §ds(1) || Ack(0) || Tns || Bpy(0)

X5 5d%:(1) || ack0.Ack || Tns || Rpt(0) (2)
™8 Ac(1) || Ack || Tns || Bp':(0)

This is the inversion of the initial state so their has been a correct transmission in time 2%,
if there are no errors, as we would expect. We now consider the evolution if there is an error on
the first transmission (which we labelled (1) above) some period of time ¢, after the transmission

was started. Note that ¢ must be less than or equal to our transmission time t,.

Sdi(1) || Ack || Tns(1) || Rpy*(1)

5 Sdi(1) || Ack || Tns || Rpfe¥?(1)

8™t sdirte(1) || Ack || Tns || Rp(1) (*)
5 Sdirete(1) || Ack(1) || Tns || Rpa(1)

A5 §db || ackl.Ack || Tns || Rpt(1)

There are now two possible evolution paths, one leading to the re-try as desired the other
requiring a further complete cycle before the re-try can even be attempted. If the following

alternative is chosen,

™8 Sdy(1) || Ack || Tns || Rpis(1)
trgsts Sdirt_ts || Ack || Tns “ Rp(l)
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This is the same as state (*) and thus has the same behaviour. Thus we have an imple-
mentation of the protocol which has a non-linear response to error: after one error we have a
potential computation which will never correctly transmit. This can be corrected by separating
the activities of re-trying, and responding to enquiries. The next version of the alternating-bit

protocol is produced along these lines, and has a linear response to errors.

Tme(b) = Sack(b).Tme(b) + back(b).Tme(b) +accept. starty(b).Tms(b)
Tms(b) = Sack(b).Tms(b) + dack(b).stop,. Tme(b)
Sends = §start,(b).send(b).Send(b) + éstop,.Sends
Send(b) = (t,;)send(b).Send(b) + éstop,.Sends
Recc(b) = 6transmit(b). Recc(b) + 6transmit(b)Rece(b) + deliver. start, (b). Recs(b)
Recs(b) = Stransmit(b). Recs(b) + Stransmit(b). stop,.Recc(b)
Reply = bstart,(b).reply(b). Replys(b) +éstop,.Reply
Replys = (t,;)reply(b) + §stop,.Reply

With the-restriction that t,; > 2t, we can re-use our earlier channels and the complete

protocol’s initial state is;
Tme(0) || Sends || T'ns || Ack || Recs(1) || Reply*s(1).

A static flow diagram for the above is.

)

deliver

Sends Tns Recs

) (G

—accept L[y, Ack Reply

(

It is relatively easy to check that the time performance of this process is liﬁearly affected by

the number of errors in transmission.



12 Conclusions.

We have presented a temporal model which is an extension of CCS. This system has most of the
properties we desire, excepting that we have so far not demonstrated an order over processes.
We believe that such an order may be obtained using the techniques of [Cas87]. The temporal
behaviour of the systems sTCCS and wT'CCS has little effect on the operational behaviour
derived from CCS, and we believe that the methodology of separating action and temporal
evolutions can successfully extend any underlying operational reasoning system for computation »

actions.
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