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Abstract

In [ST 86] the notion of constructor implementation was introduced gen-
eralizing previous well-known implementation definitions such as in [EKMP
82]. In this paper we explore a proof strategy for this kind of implementa-
tion in a specification language close to ASL. The results show that these
proofs are feasible in some cases, but since a general result is not attainable
we are satisfied by coping with the most common cases.

1 Introduction

Any formal program development method, and in particular the algebraic ones,
consists of a specification language, an implementation notion, and some tech-
niques for proving correctness of an implementation with respect to a specification.
In recent years a new framework for specification has been defined [SW 83, ST
85, ST 86] where stress has been put on defining an elegant implementation no-
tion and using as specification language a small collection of powerful specification
building operations. Some important features of this work are the generalization
to an arbitrary institution [GB 84] of as much of the work done on algebraic spec-
ification as possible, and the study of behaviourally abstract specifications in the
context of a model-oriented language. Our purpose in this paper is to explore
some techniques for proving correctness of implementations in this framework.

The study of implementation proofs for such a language is particularly inter-
esting for two reasons.

Firstly the degree of generality of the specification language and the imple-
mentation definition considered will bring together different results and problems
which have already been studied in more particular frameworks.

In second place the abstraction provided by the language with respect to the
underlying logic used and the stress on matters of structure will focus our proofs
also towards structural considerations contrary to many other approaches which
stick to theorem proving problems.



The paper is divided into six sections.

In the second section we describe the framework on which the paper is based,
first recalling some background on algebra and then defining the specification
language and the implementation notion as they were defined in [ST 85, ST 86].

In section three we show the problems which arise when we try to handle
proofs of implementations simply by using theories to describe the class of models
of a structured specification. An analysis of the possible relationships between a
theory and a class of models is given, and the requirements for such a method to
work are shown.

In section four we argue informally about the feasibility of a proof for an
example. The language is slightly simplified and a graphical representation is
defined.

In section five a proof strategy is presented. Firstly the general procedure
relying on some transformation rules is described and proven to be a generaliza-
tion of the approach in section three, and then the transformation rules are listed
and proven correct. These rules constitute an incomplete calculus of specifica-
tion transformation built around a collection of basic judgements on structured
specifications. ’

Finally some remarks are made in section six on possible extensions and related
work.

2 Preliminaries

In order to make this paper self-contained we recall in this section some preliminary
concepts from [ST 85] and [ST 86].

2.1 Algebraic background

In this section some of the usual concepts of algebra and algebraic specification
are reviewed. Some definitions from category theory are assumed known.

A signature is a pair (S,) where S is a set of names (sort names) and  is

a family of sets of names (operation names) {4 s}wes+ ses- An element f of Q,,
is denoted by f:w — s.

A signature morphism o : (S,Q) — (5, Q) is a pair (0s,0q) where og :
S — 8" and oq is a family of sets of functions {0y, s : Qu,s — er;(w),a s(s)}wGS*,sGS
where 0% means application of og to every component of w. For the sake of
readability we will omit the subscripts and superscripts of o.

Signatures together with signature morphisms form a category.



Given a signature ¥ = (S5,{), a (total) -algebra consists of a S-indexed
family of sets (carriers) |A| =g.¢ {|Als}ses and a function f4 : |Al,, X ... X |A[,, =
|Al,s for every f: sy,...,8, — sin Q.

Let A and B be two X-algebras. A ¥-homomorphism from A to B, h: A —
B, is a S-indexed family of functions {h,}s;cs between the corresponding carriers
hs : |Als = |B|s consistent with the operations in ; i.e. for all f : 8q,...,8, — 8
in @ and a3 € |Als, .y an € |Alsns hs(fa(as, ..., ax)) = fB(hs,(a1), ..., hsn(@n)).

The algebras over a signature ¥ together with their X-homomorphisms form a
category, denoted by Alg(X). In general the collection of objects of a category C
are denoted by |C|.

A first-order X-sentence is a closed term built from the logical connectives
-, A,V and =, the quantifiers V and 3, and equations ¢ = ¢ as atomic formulae,
where t and ¢’ are X-terms.

A X-algebra A satisfies ¢t = ¢’ for a valuation v : X — |A|, if the values of ¢
and ¢’ in A under valuation v, denoted by v#(t) and v#(¢') respectively, are the
same. Satisfaction of a first-order X-sentence ¢ by an algebra A is defined as usual
from the satisfaction of its atomic formulae (equations), and denoted A |= . This
notation can be extended to satisfation of a set of X-sentences, A, by a class of
Y-algebras, I, when it is the case that each algebra in I' satisfies each sentence in

AT EA

Given a signature morphism o : ¥ — X/, the o-reduct of a X'-algebra A’ is
defined as the X-algebra A’|, such that for all sorts s in X, |(A']|,)]s =aes |A’ |o(s)
and for all f : sy,...,8, = sin X, fa, = o(f)a.

We can also define the o-reduct of a ¥’-homomorphism &' : A’ — B’, where
A" and B’ are Y'-algebras, as the ¥-homomorphism A'|, : A'|, — B'|, with
(B'le)s =des ho(s) for all sorts s in X.

-|o turns out to be a functor from Alg(¥') to Alg(X).

Given a set of X'-equations eq we can define Mod[(X’, eq)] to be the full sub-
category of Alg(X') composed by those algebras satisfying the equations in eq. It
is a known result of universal algebra that:

Fact 2.1 For every morphism o : £ — X' and set of L'-equations eq, the left
adjoint Free_|, of the reduct functor _|, : Mod[(¥', eq)] — Alg(X) exists.

A subalgebra B of a X-algebra A is a X-algebra such that for every sort s in
Z, |Bls € |Als and for all f : s4,...,8, — sin X and b; € |Bl|s;, ..., bs, € |Bln,
fA(bh ooy bn) = fB(blv ey bn)-

We say that a subalgebra of a X-algebra A is reachable on sort s if it differs
from A only on |A|, and it contains no proper subalgebra which differs also only
on |A|s. Similarly reachability can be defined with respect to a set of sorts.
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Fact 2.2 For all L-algebras A and set of X-sorts S there is a unique reachable
subalgebra Reachg(A) of A on sorts S.

Let V/= denote the quotient of the set V modulo the equivalence relation
=CVxV.

A congruence ~ on an algebra A is an equivalence relation ~ C |A] x |A|
which is consistent with the operations of A; i.e. for all f : sy,...,8, — s in
the signature of A, a1,b, € |Aly,...,a0,b, € |A], and a; ~ b;,...,an, ~ b, then
fA(al, ooy (I,n) ~ fA(bb ceny bn).

Fact 2.3 Let ~ be a congruence on A. Then A/~ is a well-defined L-algebra,
where |A/~|; = |Als/~s and for all f : 81,...8, = s in 2 and a; € |Al1,...,ay €
|Aln, fan(la1], -..; [an]) = [fa(ay, ..., an)].

For any set of Y-equations eq, we denote by ~% the least congruence on an
algebra A such that for all equations VX.t =t in eq and valuations v : X — |A|,
the values of the two terms are congruent: v¥#(t)~Fv#(#).

2.2 Semantics of specification building operations

A specification SP denotes a pair (Sig[SP], M od[SP]) where Sig[SP)] is the signa-
ture of SP and Mod[SP] C |Alg(Sig[SP])| are the models of SP.

The specification language considered is composed of the following specification
building operations (SBO’s for short).

e Unrestricted specification.

Sigles] =S Modles] = | Alg(5)|

Ag Imposition of some axioms (X-sentences) ® on a specification SP* over X.

Stg[AeSP] = Sig[SP] Mod[AsSP] = {M € Mod[SP]| M = &}
U; Union of a collection of specifications SP; for ¢ € I over the same signature
Y.
Sig[UieISP,'] =% MOd[UgE[SPi] = ﬂ Mod[SP,]
iel

T, Translate a specification over ¥ according to a morphism o : ¥ — 3.

Sig[T,SP) = X' Mod[T,SP) = {M' € |Alg(X")| | M'|, € Mod[SP]}

}In [SW 83] a basic specification is defined which fixes the signature and imposes some axioms
at the same time. Both presentations are trivially equivalent but ours is closer to the graphical
notation to be introduced in section 4. Throughout the paper Ag will be used for Agzecx when
¥ consists of the symbols used in .



D, Derive a specification over ¥’ according to a morphism o : ¥ — X',

Sig|[D,SP] =X Mod[D,SP] = {M|, | M € Mod[SP]|}
Mg Select those models of a specification over ¥ which are reachable on a set of
sorts § of X.
Sig[MsSP] = Sig[SP] Mod[MgSP] = {M € Mod[SP) | Reachg(M) = M}
Rs Restrict to the reachable submodels of a specification over ¥ on a set of sorts
S of X.
Stg[RsSP] = Sig[SP] Mod[RsSP] = {Reachs(M) | M € Mod[SP]}

@y Quotient the models of a specification over ¥ w.r.t. a set of Y-equations eq.

Sig[Qe,SP] = Sig[SP] Mod[Q,SP] = {M/~e; | M € Mod[SP]}

F¢? Free extension of the models of a specification over ¥ according to a mor-
o T p g
phism o : ¥ — ¥/ and ¥'-equations eq.

Sig[FeeSP] = & Mod|F#SP] = {Free_, (M) | M € Mod[SP]}

o

These SBO’s correspond to the ones directly definable in any institution [ST
85] plus the most common ones involved in implementations [ST 86]. They can be
classified into three groups: selectors such as A,U, and M which select some of
the models of a specification; constructors such as D, R, Q and F which return
the image class formed by applying a function to all the models of a specification;
and inverse-constructors such as T which apply the inverse of a function to the
models of a specification.

2.3 Constructor implementation

A primitive implementation relation can be defined as the simple inclusion of
model classes, and is called refinement.

For SPy, 8P, such that Sig[SPy] = Sig[SP3], SP1~ SP2 <% Mod[SP;] 2 Mod[SP,)]

On top of this, more elaborate concepts can be defined such as constructor and
abstractor implementations [ST 86]. In this paper we consider constructor imple-
mentations only.

A constructor « is defined as a SBO characterized by its concreteness. It can
be viewed as a program Func, built on top of a specification SP,, in the sense
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that as soon as we replace that specification SP; by a program p implementing it,
we get a program Func,(p) for the whole specification SP;. Since our models are
algebras, a constructor « is a SBO whose semantics is determined by a function
Func, : Alg(X2) — Alg(Z,) in the following way:

For SP; such that 8ig[SP;] = 54, Sig[kSPs] = 51 Mod[kSP,] = {Func.(M)|M € Mod[SP

Constructor implementations are defined as follows:
SPy 5 5Py £ Py~ k(SPs)

This implementation notion is transitive and compatible with the SBO’s; i.e.
implementations compose vertically and horizontally. Thus it is suitable for a
framework of structured program development (as in the CAT system [GB 80]).

Among our SBO’s there are four constructors: D,Q,R and F. Also, the
composition of two constructors is a constructor.

Constructor implementations can be compared with other common implemen-
tation notions such as the one in [EKMP 82], concluding that these constructors
correspond to other approaches’ semantical constructions which have been shifted
from the implementation’s semantics to the specification language. An important
difference is that in our framework constructors can be composed freely instead of
following a fixed pattern as in [EKMP 82].

Example: SetNat~ BagN at

In the following Nat stands for the specification of the natural numbers in-
cluding booleans and ‘((sorts S opns ), axioms @ )’ is our notation for the
basic specification Age(s,n). We begin by giving specifications of sets and bags of
natural numbers, but where the sort nat and operations on natural numbers need
not be interpreted as usual:

Set =ger (Sig[Nat]U(sorts set
opns ) :— set
add : nat, set — set
tsempty : set — bool
€: nat, set — bool ),
axioms add(a,add(b,S)) = add(b,add(a,S))
add(a, add(a, S)) = add(a, S)
isempty(0) = true
isempty(add(a, S)) = false
a €= false
a € add(a, S) = true
a#b=a€add(hS5)=a€?l)



Bag =45 (Stg[Nat]U(sorts bag
opns 0 :— bag
add : nat,bag — bag
1sempty : bag — bool
count : nat, bag — nat ),
axioms add(a,add(b,S)) = add(b,add(a,S))
isempty(0) = true
tsempty(add(a, S)) = false
count(a,) =0
count(a,add(a, S)) = succ(count(a, S))
a # b = count(a,add(b, S)) = count(a, S))

The specifications of standard sets and bags of natural numbers can be obtained
by combining Set and Bag with the given specification Nat of natural numbers,
and taking the reachable models.

Let ¢; and ¢3 be the inclusion morphisms of Sig(Nat) into Sig[Set] and Sig[Bag]
respectively. Then define:

SetNat = Met((T,, Nat)U Set)
BagNat = My.,((T,, Nat)U Bag)

One way to construct sets from bags is to add the membership operation €, rename
bag to set, forget the function count and identify those bags which have different
numbers of occurrences of the same elements. This can expressed using three
constructors as follows:

K =def Qeq1Do1Fa-e:2

In F;2, oy : Sig[BagNat] — (Sig[BagNat]U{opns €: nat,bag — bool)) is the
inclusion morphism which adds the membership operation and egq; =45 {V @ :
Nat, B:bag. a € B = count(a, B) > 0} defines it.

In D,,, oy : Sig[SetNat] — (Sig[BagNat]|J(opns €: nat,bag — bool)) is the
signature morphism mapping set to bag which is the identity on the other sorts
and operations. Note that count is not in the image of oy and therefore it will be
forgotten.

In Qe s €q1 =dey {Va : Nat, S : set. add(a,add(a,S)) = add(a,S)} identifies

those bags with the same elements.

Now we can conjecture that SetNat ~5> BagNat, but it has still to be proven
correct.

3 Simple strategy

An intuitively appealing way of proving a refinement correct is to prove that those
properties required by the specification are satisfied by the implementation. In
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order to do this we can use theories to represent these collections of properties.
We can easily see how a basic specification, Ag, is represented by the collection
of sentences (properties) ® and a structured specification Ag,UAg, is similarly
represented by ®; U ®,.

Our first approach, called the simple strategy, will explore the possibility of
representing specifications by theories and reducing implementation proofs to syn-
tactic proofs using those theories.

3.1 Theories versus models

Since not every class of algebras can be represented by a theory and, in particular,
this turns out to be the case for the model classes of some specifications in our
language, we study the possible relations between a class of X-algebras I' and a
theory A over ¥ which tries to capture the properties of I'.

Definition 3.1 The closure of a set of X-sentences ® under semantic entailment
is the set of those sentences satisfied by all those algebras satisfying the sentences
in ®, and is denoted by CI(®).

A theory A over I is a set of X-sentences closed under semantic entailment;
ie. Cl(A) = A.

Corollary 3.2 For every two theories A; and A,, semantic entailment between
theories, Mod[A4] = Ay (A1 = A, for short), is equivalent to theory inclusion,
A D A,

Defining Th[I'] as the theory consisting of the X-sentences satisfied by all the
algebras in I" and Mod[A] as the class of X-algebras satisfying all the sentences in
A, we can compare by inclusion I' with Mod[A] and A with Th[T].

Definition 3.3 Given a class of X-algebras T' and a theory A over T,
A is sound w.r.t. T if A C Th[I].
A is complete w.r.t. T' if A D Th[T'].
A is M-sound w.r.t. I' if Mod[A] D T.
A is M-complete w.r.t. T' if Mod[A] CT.
When the inclusions are proper we use the terms strictly sound, strictly com-

plete, and so on.
A is exact w.rt. I' if Mod[A] =T.

These definitions are related by the following lemmas.

Lemma 3.4 A is sound w.r.t. I iff A is M-sound w.r.t. T'.

Lemma 3.5 If A is M-complete w.r.t. T then A is complete w.r.t. T.
Corollary 3.6 If A is ezact w.r.t. I then A is sound and complete w.r.t. T.
The proof of each of these lemmas is an immediate application of the Galois

connection between theories and classes of algebras. For example:
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Proof of Lemma 3.4 If A is sound then A C Th[I']. Applying Mod on both
sides gives Mod[A] 2 Mod[Th[l']], and recalling that Mod[Th[l]] 2 I' we get
Mod[A] D T which is the definition of M-sound.

If A is M-sound then Mod[A] D T'. Applying Th on both sides, and recalling
that by definition of a theory A = Th[Mod[A]] we get A C Th[I'] which is the

definition of sound.

Summing up, we end with six different possible cases: A can be exact; sound
and complete but not exact; sound but not complete; M-complete but not sound;
complete but neither M-complete nor sound; or not related w.r.t. I'. But not all
these cases can occur for the same class of algebras.

Definition 3.7 A class of algebras T' is aziomatizable if it there exists a theory
Ar such that I' = Mod[Ar].

Proposition 3.8 A class of algebras T' is axiomatizable iff every complete theory
w.r.t. T is also M-complete w.r.t. T.

Now we can classify theories again. For an axiomatizable class of algebras a theory
can be exact, sound (M-sound) and not complete, complete (M-complete) and not
sound, or not related. For a non-axiomatizable class of algebras all the cases are
possible except the exact one.

3.2 Basic proof rule

The previous definitions are connected to our implementation notion as follows:

Theorem 3.9 (Basic rule) If there exists an M-complete theory A, for SPq, a

sound theory A, for k(SP3) and A, + Ay, then SPy <5 SP,. Here & stands for
the syntactic consequence relation associated to |= in FOLEQ.

Proof Since | is sound, A; F A; implies Ay &= A;, which by corollary 3.2
yields Ay D A;. Applying Mod we get Mod[A;] € Mod[A;], and by definition
of M-complete and M-sound (equivalent to sound) Mod[x(SP2)] C Mod[A,] C
Mod[A;] € Mod[SP,].

The situation where the theorem applies
can be represented by the diagram on the

right. Every figure represents a class of SP,
models; in particular, squares represent ﬁ(SPgﬂ

those classes of models which have an exact Mod[A]
theory.

The theorem states that the inclusion of K / ) Mod[A,]
the two ovals can be proved by showing

the inclusion of the two squares.



Looking at the drawing the basic rule seems obvious but also the lack of any-
thing better unless every class of models described by the specification language
can be characterized by an exact theory. The situation can only be improved by
increasing the expressibility of theories and/or weakening the expressibility of the
specification language.

3.3 Inference rules for SBO’s

The inference rules are those rules which allow us to infer a theory from another
theory.

Definition 3.10 An inference rule A from X; to X, is a binary relation between
sets of ¥-sentences and Xo-sentences.
The theory A,y inferred from a theory A using A is Ayy = Cl({p|3@, C

Inference rules are related to SBO’s analogously as theories are related to
specifications, therefore we can extend the definitions given for theories w.r.t.
classes of models to definitions for inference rules w.r.t. SBO’s:

Definition 3.11 For a unary SBO ¢ we say that:

An inference rule A is sound w.r.t. &, if whenever is applied to a theory A
which is sound w.r.t. a specification SP (w.r.t. Mod[SP]) yields a sound theory
w.r.t. £(SP).

An inference rule A is M-complete w.r.t. &, if whenever applied to a theory
A which is M-complete w.r.t. a specification SP yields an M-complete theory w.r.t.
E(SP). |

An inference rule A is complete w.r.t. £, if whenever is applied to a theory A
which is complete w.r.t. a specification SP yields a complete theory w.r.t. £(SP).

For binary or n-ary SBO’s we can easily extend the definitions of inference
rule and inferred theory in order to infer a theory from several theories. Then,
soundness (M-completeness or completeness) of the inference requires sound (M-
complete or complete) theories for each of the arguments.

Sound inference rules are usually denoted by expressions such as SP - f(¢) =
€SP F g(p) where f and g are functions from sentences to sentences and ¢ is a
explicit reference to the SBO with which the rule is related. The inference rule
denoted is A = {({f(¥)},9(p)) | for all sentences p}.

Sometimes the inferred sentences are independent of the specification to which
¢ is applied, then expressions like ¢ SP - ¢ constrained by a side condition relating
¢ to ¢ are used. The inference rule denoted is A = {(true, ¢)} for all ¢ satisfying
the side condition.
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Moreover, the union of inference rules between two signatures is also an infer-
ence rule. This allows us to charactarize as complete or M-complete collection of
rules for a given SBO.

Some inference rules given in [ST 85], after slightly adapting them to our
SBO’s, can be characterized as follows (see section 5.4 for proofs):

SPtF o= AsSPF ¢ and AsSPt ¢ (if ® F ¢) Sound and M-complete (exact).

SP;F¢,5 €I =UjetSP; & Sound and M-complete (exact).
SPF ¢ =T,SPFl o(p) Sound and M-complete (exact).
SPF o(p) = D,SPF ¢ Sound and complete.

SP o= MsSP | ¢ Sound.

The fact of having a sound and complete rule for D entails by proposition 3.8 that
there is no exact rule for D at all.

Moreover there are no similar proof rules for R, @ and F. In particular, none
of these is necessarily consistent w.r.t. its parameter; i.e. what is true in SP does
not need to be true in RgSP, Q.,SP or F,SP. For example, in a sentence like
dz : s.Vy : s.z > y, = can refer to a non-reachable element, therefore this sentence
may be true in a specification SP and false in RgSP.

The simple strategy for proving correctness of constructor implementations
SPy <% SP, is the one which relies on the basic proof rule, and which tries to
infer A; using M-complete inference rules on the structure of SPy (specification
branch) and A, using sound inference rules on the structure of £(SP;) (implemen-
tation branch). This is too restrictive for use in practice since it only allows SBO’s
with M-complete inference rules to be used in specifications and SBO’s with sound
rules as constructors (provided they are constructors). This leaves us with only
A, U and T in the specification language, and this is far too litle.

4 Problems, Structure and Strategy

The problem mentioned above in the use of the simple rule compels us to search
for other strategies. We know that it is not difficult to give an ad hoc proof of
correctness of implementations such as the example in section 2.3, therefore there
must be a way of taking advantage of the structure of the specifications involved
and represent specifications not by plain first order theories but by use of a more
powerful formalism.

In this section a few simplifications on the use of constructors, some graphic
notation and an example of a refinement proof are given, concluding with the
informal presentation of a two-step strategy.
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4.1 Constructors versus SBO’s

Although every SBO can be viewed as a primitive operation of a specification
language, and therefore constructor implementations are refinements where the
implementation branch is of the form «(SP;), we think that stronger implementa-
tion notions must be balanced with a simplification in the specification language
primitives.

In this sense, SBO’s such as R,Q and F can be relegated to be used as con-
structors in implementations and avoided in specifications.

The consequences are important in the proof techniques to be considered;
namely, there are two simplifications:

1. D and M have no M-complete and complete inference rules respectively. The
way to handle these in our strategy, particularly M, is to give commutativity
rules w.r.t. the other SBO’s so that we are able to transform the specification
branch to a more convenient form. The more we restrict the set of SBO’s
used in the specification the easier it should be to get commutativity rules,
especially considering the difficulties in finding them for Q, R and F.

2. The constructors @}, R and F' are meant to appear only at the ‘top’ of the
implementation branch, thus only sound proof rules are required for them.

4.2 Graphic representation

In order to show the structure of specifications we shall define a graphic notation.
The graphs considered are DAG’s (directed acyclic graphs) with two different
kinds of oriented edges, optional labels on nodes and edges, and a key mark ~» in
each graph. Nodes denote specifications and the sign ~+ a relation of refinement
between two nodes; therefore, a graph denotes an implementation. The function
Spec defined in the following yields the denoted value of node and Specy is an
interminade function which yields the value of a node regardless of its annotations.

o A pnode denotes a specification. Its signature is given next to it by an un-
derlined name, and its class of models is defined by the arrows and edges
leading to it from other nodes and the annotations (see below) attached to
it. If a node is not the target of any arrow or edge then it denotes, apart
from possible annotations, the class of all the algebras over its signature i.e.
Specy[node] = ex.

e An edge denotes a T operation whose argument is the specification denoted
by the lower (source) node and whose result is the specification denoted by
the upper (target) node. The confluence of several edges denotes a U. A node
reached by one or more edges, apart from possible annotations, is defined as
Specyltarget] = User(T,, Spec[source;]). Morphisms o; are denoted by labels
next to the respective edges unless they are inclusions which are omitted.
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e An arrow denotes a D operation whose argument is the specification denoted
by the source node and whose result is the specification denoted by the target
node. A node cannot be the target of more than one arrow nor of one arrow
and one or more edges. The target node is defined, apart from annotations,
as Specaltarget] = D,Spec[source]. Morphisms are denoted as in the edges.

e Annotations are labels attached to the nodes. These are of two kinds: sets of
axioms and reachability requirements. Therefore, a node with annotations
such as Az: ®4,...,P,; Gen: sq,...3, denotes
Spec[node] = Ag,...As, M,,... M, Specs[node] where Specy is the denoted
value of the node apart from annotations defined above.

e ~» is a mark placed from the node denoting the original specification to the
node denoting the proposed implementation.

The recursive definition of Specy and Spec is well-defined provided that there
are no cycles in the graph.

The choice of an edge for T and an arrow for D is based on the reversibility of
T which allows the original class of models to be reconstructed from the resulting
one unless it uses a non-injective morphism, whereas once we have applied a D
we cannot guess what the original class of models looked like. The treatment of
A and M as annotations is suggested by their ‘selector’ behaviour which does not
contribute to the structure of the specification.

The graph is usually drawn with the edges going upwards and the arrows
downwards, so that in the case (very likely) of injective signature morphisms,
lower specifications correspond to smaller signatures.

With this graphic notation it is easy to represent any specification term involving
A,T,U,D and M. On the other hand the constructors R, @ and F need some extra
notation; we pick a dashed arrow labeled with R, @) or F' respectively.

In the case of equational logic R is M, Q.,SP when there are no free extensions
in SP then amounts to annotating SP with eq, and F consists of a T plus M for
the new sorts plus a general principle of ‘no-confusion’ for the new terms. Hence,
in the example we do not need any of these dashed arrows.

Example
The example presented in section 2.3 is represented by the following graph.
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EBagNat

x: axioms of €

SetNat SetNat BagNat
Gen: set Ax: absorption axiom Ga‘a:—_b?_zg

Ax: axioms of Se Ax: axioms of Bag

Nat
Gen: nat
Ax: axioms of Nat

Note that the basic specifications Set and Bag have been simplified from
(T.Nat)UAg to AgT,Nat, and the new annotation for ‘no confusion’ and reacha-
bility corresponding to the free extension ignored since F, in this particular case?,
does not introduce new values for any old sort or any new sort at all.

4.3 Aim: Sharing, Moving and Matching

If we look at the example, it seems clear that the proof should work as follows: for-
get about the annotations on Nat because it is shared, show that M,,; is satisfied
in the implementation branch by ‘moving’ Ms,, to the end of the implementa-
tion branch and ‘matching’ M,.;, and show that the axioms of Set are satisfied
by ‘moving’ axioms and theorems to the end of the implementation branch and
‘matching’ them with the axioms of Set.

Our aim is to formalize this sort of proof and give some rules for ‘moving’
M, ‘moving’ theorems and some criterion for recognizing when shared subspec-
ifications imply shared submodels. Compared with the simple strategy this is
a two-step strategy, in the sense that ‘moving’ theorems is the new name for
inference rules as we had before, but now we have a previous ‘step’ in which we
resolve questions of shared submodels and reachability constraints without relying
on theories.

5 Two-step strategy

In this section a new strategy is proposed. First the two-step strategy is presented,
then the inclusion of the simple strategy in the new one is shown and finally some
auxiliary properties are listed and proven.

2It is undecidable to check this in general.
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5.1 Strategy

In general, when we try to prove the correctness of a constructor implementation
syntactically or, equivalently, a refinement between structured specifications, we
proceed by transforming the specifications until they are in a form where refine-
ment is provable (basic case). Then provided the applied transformation rules
preserve refinement the proof is finished. Hence, we propose backward proofs of
refinement.

First we present the basic cases of our strategy and then some transformation
rules. The particular rules chosen among all the possible specification transforma-
tions are those embedding the informal ideas exposed in section 4.3 but we try, at
the same time, to give a broader motivation.

Basic case

From the definition of refinement there are some SBO’s which can be interpreted
as immediate refinements, namely, the selectors; i.e. for any selector L and speci-
fication SP, SP ~» LSP. This can be generalized in the following way:

Definition 5.1 A correct partial ordering between selectors <, is a partial
ordering between selectors such that:

VL., L, : selectors; SP : specification. Ly < L, = L;SP ~» L,SP

And now we may define an ordering for the three different kinds of selectors
used in our specification language.

Fact 5.2 The ordering < between selectors defined by
o for any two collection of sentences @, and @q, if 5 |= @, then Ag, < Ag,;
o for any two sets of sorts, if s; 2 s1 then Mg, < Mg,;
o for any specification SP, Uex < USP (currying one of the arguments of U);
o and no other two selectors are related

s correct.

The proof is immediate by referring to the definitions of these selectors in
section 2.2. We shall call basic rules the ones derived from the ordering according
to the previous definition.

Rule 1
VSP : spec. Ag,SP ~ Ap,SP (if O3 ©y)
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Rule 2
VSP : spec. Mg, SP ~» Mg,SP  (if 83 2 s1)

Rule 3 :
VSP,, SP; : spec. SPy~» SP, U SP,

We shall see on the example in section 5.5 how these three basic cases cor-
respond to the three distinct steps sketched in section 4.3, namely: proving that
a shared specification involves a sharing of submodels, proving that the imple-
mentation satisfies the axioms required by the specification, and proving that the
reachability requirements are fulfilled in the implementation.

Transformation rules

In general, refinement transformation rules are given in the form:

SP 1~ SP 2
SP] ~» SP,, )
where the transformation is correct if SP; ~» SP; entails SP] ~» SP3, or equiv-
alently if SP; ~» SP; can be proven correct by proving SP; ~» SP, correct. We
can say this is the presentation of an inference system |, for deducing refinement
relations where the axioms are called basic rules (rules 1-3) and the inference rules
are called transformation rules (4-13); however, we do not use the standard termi-

nology in order to avoid confusions with the inference rules for I given in section
3.

All the rules to be presented but one transform only one of the specifications,
either the specification branch SP] or the implementation branch SPY,.

Definition 5.3 A strong transformation, written SP; = SP;, is a specifica-
tion transformation such that:

SPl’V)SPQ

VSPg . 8pec. m

is a correct refinement transformation.
A weak transformation, written SP, = SP,, is a specification transforma-

tion such that:
S.Pl ~> SP2

VSP 1+ Spec. m

is a correct refinement transformation.
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It must be noted that these definitions are mere notation since we can define
equivalently SP’' = SP to be a strong transformation iff SP’ ~» SP, and a weak
transformation iff SP ~» SP'. A particular case are those rules preserving the class
of models. These are strong and weak at the same time and are called equivalent
transformations. '

In order to provide a criterion for chosing some schematic refinements to be
transformation rules, we must have in mind which are the basic cases to which
we want to reduce a proposed problem. In this section we present the skeleton of
our proof strategy by showing first a simplification rule which takes into account
the possible common top structure of specification and implementation, followed
by a collection of strong and weak transformations which precede and prepare the
application of the basic rules in the strategy.

Rule 4 (Simplification) For any SBO &,
SP 12 SP 2
ESP, ~ ESP,
Proof Immediate since all the SBO’s defined are monotonic.

Stror;g transformations aim to transform the specification branch in such a way
that the basic rules are applicable, therefore they can be classified according to
the basic rule they work for into three kinds:

Rule 5 (Pulling axioms)
VSP : spec. £As,SP = Ag,ESP
Rule 6 (Pulling reachability constraints)
VSP : spec. €Ms, SP = Mg, ESP
Rule 7 (Pulling subspecifications)
VSP,C : spec. ((SPU T,C)=¢SP U T,.C

Similarly the weak transformations aim to transform the implementation branch
in such a way that the basic rules are applicable. As the strong transformations
they can be classified according to the basic rules they work for:

Rule 8 (Inheriting axioms)
VSP : spec. €A, SP = Ag,EAs, SP
Rule 9 (Inheriting reachability constraints)
VSP : spec. €Mg, SP = Mg (Mg, SP
Rule 10 (Inheriting subspecifications)
VSP : spec. ((SP U T,C)=¢SPUT,C)U T,.C
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It must be noted that rules 5-10 are schematic and that they will be completed
for the differet values of £ in section 5.2 and 5.4.
The previous rules already sketch the strategy, but there are three equivalent
transformations which although auxiliary are necessary for the complete definition
of the strategy.

Rule 11 (Commutativity of selectors)
VL, L, : selectors; S :spec. L1LyS & Lyl4S
Rule 12 (Merging axioms)
V®,,®,: sets of axioms; SP : spec. Ag, As,SP < As,us,SP

Rule 13 (Collapse) For all specifications E built up from T, U, € and D (injec-
tive case), then
E & esigln)

The first one can be shown correct by the pointwise behaviour of the selectors,
the second one by the definition of Ag, and the third one inductively by the effect
of each operation on e.

Strategy

The so-called two-step strategy works as follows:

1. Discard the shared superstructure with the simplification rule.

2. Apply the strong transformations to the specification branch and efrentually
rule 13 until it is reduced to a sequence of selectors.

3. Apply the weak transformations to the implementation branch until we have
inherited enough selectors.

4. Apply some auxiliary rules such as commutativity and merging of selector,
and apply the basic rules.

The strategy contains some degree of freedom in chosing how much the simpli-
fication rule is applied (step 1), which subspecifications must be considered such
and not try to transform them (step 2), which properties must try to inherite and
from where (step 3), and finally in using the underlying theorem prover needed
for rule 1. :

The strategy is clearly incomplete for two reasons: firstly, the conditions for
the applicability of the transformation rules can lead us to a cul-de-sac at steps
2 and 3; and in the second place, since transformations are not in general equiv-
alent, it can happen that the transformed implementation is not a refinement of
the transformed specification for an originally correct refinement. Nevertheless,
the undecidability of specification equivalence disallows beforehand a complete
effective strategy.
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5.2 Strong transformations

At this point, we could start giving a rule for each SBO and each kind of proposed
weak and strong transformation (rules from 5 to 10), but we rather prefer to give
the strong transformations (and the weak transformations later) as consequences
of some elementary properties of the specifications or the SBO’s themselves. This
approach raises the need for an inference system for these properties (see section
5.4) which in turn will generate new properties needed in side conditions.

¢ strong transformations which pull up axioms.

These transformation rules can be derived from M-complete inference rules
(see section 3.3) in the following way:

Theorem 5.4 For any M-complete inference rule SP + f(p) = (€SP
g(p), provided ¢ distributes w.r.t. U3, then

fAf(q,)Spl = Ag(¢)£SP1
is a strong transformation.
Proof By the definition of A and U, and the distributivity of £ we know

that:
§As)SP1 = £(SP1U Agp)e) = (ESP1)U(EAf(p)€)

The theory CI(f(p)) is M-complete (exact) w.r.t. A€, then by defini-
tion of an M-complete inference rule, Cl(g(y)) is an M-complete theory for
EAj()€; i.e. Mod[Ay,)el € Mod[EAf,)€]l. Hence, by monotonicity of U,

EAs)SP1 = (ESP1)U(EAsp)e) ~ (ESP1)U(Agp)e) = Ag)€SPa
Fact 5.5 T, selectors and injective constructors distribute w.r.t. U.

e strong transformations which pull up reachability constraints.

These transformation rules can be derived from commutativity rules for M
(section 5.4) in the following way:

Theorem 5.6 For any commutativity rule of reachability requirements w.r.t.

a SBO £ and a specification SP, M) SP = My;)£SP, then
EMy()SP = My;)(SP

is a strong transformation.

3This condition is not necessary when SP; is axiomatizable.

19



Proof Trivial.

strong transformations which pull up shared subspecifications.

These transformations rules can be derived from preserving-submodels rules
(see section 5.4).

Fact 5.7 Allthe SBO’s considered and, in general, any selector, constructor
or anticonstructor distribute w.r.t. the union of classes of models.

Theorem 5.8 For any preserving-submodels rule for a SBO & w.r.t. a sig-
nature morphism ¢,

VSP : spec. Dy(¢€SP) C D,SP

where ¢/ is the suitable morphism by which both terms have the same signa-
ture, then

VSPy,C : spec. (E(SP, U T,C) = €éESPLUT.C

is a strong transformation.

Proof We factorize SP; into two parts, one agreeing with C and the rest
Mod[SP;]) = Mod[SP, U T,C|U Mod[SP, U T,C|
where C does not need to be a real specification (made of SBO’s) but it has

Sig[C] = Sig[C] and Mod[C] = Alg(Sig[C]) \ Mod[C)]. Applying ¢ to both

sides and by distributivity we obtain
Mod[¢SP1] = Mod[¢(SPy U T,C)|U Mod[¢(SP, U T,C)]

selecting in both sides those models with a submodel in C' and by distribu-
tivity we obtain

Mod[¢SPy U TuC) = Mod|£(SP, U T.C) U T.ClUMod[¢(SP, U T.C) U T.C]

Now, we apply the preserving-submodels rule to say that: D,({(SP, U T,C)) C
D,(SP, U T,C) C C and that D,(¢(SPy U T,C)) C C, from which it follows
that in the first term the union with T,C is redundant and that the second
term is empty.

Mod[¢SP, U T,C) = Mod[¢(SP, U T,C)]

hence the transformation proposed is a refinement.
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Weak transformations

We repeat what has just been done for the strong transformations in the last
section for the weak transformations.

o weak transformations which inherit axioms.

These transformation rules are derived from the sound inference rules (see
section 3.3) in the following way:

Theorem 5.9 For any sound inference rule SP + f(p) = €SP F g(y),
then

VSPy : spec. EAj)SP1 = Ay)€As)SPi

18 a weak transformation.

Proof By definition of A we know that A,)SP1 k= f(¢) and by definition
of soundness we conclude that {Af,)SP: = g(¢). And by definition of A
again,

Ay@§As()SP1 = EA (o) 5P

o weak transformations which inherit reachability constraints.

These transformation rules can be derived from inheritance rules for M (see
section 5.4) in the following way:

Theorem 5.10 For any inheritance rule of reachability requirements w.r.t.

a SBO &; EMy(5)SP = My My(5)SP, then
EMy()SP = My)§M;()SP

is a weak transformation.

Proof Trivial.

e weak transformations which inherit shared subspecifications.

These transformations rules can be derived from conserving-submodels rules.

Theorem 5.11 For any conserving-submodels rule for SBO & w.r.t. a sig-
nature morphism ¢ and subspecification C,

DyET.CCC

where ' is the suitable morphism by which both terms have the same signa-
ture, then

VSP : spec. E(SPU T,C) = ESPUTC)U T,.C

is a weak transformation.
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Proof Since ¢ is monotonic,
¢(SP U T.C) C ¢T.C

and applying T, to the rule and simplifying we obtain that (¢7,C C T,C,
then

§(SP U T,C)=¢(SP U T.C) U ¢T,C C ¢€(SP U T.C) U T.C

5.3 Simple strategy revisited

In this section we relate the two-step strategy to the simple strategy (section 3),

the informal two-step motivation (section 4.3) and the graphic notation (section
4.2).

Theorem 5.12 The simple strategy is the two-step strategy when considering only
a subset of the rules; namely, the basic rule concerning Ag (rule 1), the auziliary
rules (rules 12-18) and those strong and weak transformations handling the azioms
(rules 5 and 8).

Proof sketch For any sequence of strong transformations SPy = ... = A, ...A, F
where F stands for a specification as defined in rule 13, another sequence of theories
going in the opposite direction can be built. Starting from Ag = Cl({¢1,...,¥n})
which is an M-complete theory for A, ...A,, E, and applying successively those
M-complete inference rules from which the strong transformations used were de-
rived, we obtain A, ..., A SP, where each theory is an M-complete theory w.r.t. the
corresponding specification in the first sequence. We conclude that A Sp, 1s an M-
complete theory w.r.t. SP;. Working similarly in the implementation branch with
sound inference rules, weak transformations and sound theories, we can construct

a sound theory Agp w.r.t. SP;. The inference Agp F Agp, is performed by the

basic rule (rule 1) after merging the axioms (rule 12) and collapsing E (rule 13).
The construction can be built either from specification transformations to theories
or from theories to specification transformations, concluding that the considered
subset of the two-step strategy is exactly the simple strategy.

After the informal reasoning in section 4.3 we called the new strategy a two-step
strategy. Now, this can be justified by using, in a proof of refinement, first all the
rules excluded in the simple strategy, and then exclusively those in the simple
strategy. Because of the commutativity of the selectors and the independence
of the rules handling axioms from the rules handling reachability restrictions or
shared submodels, we can perform proofs in two steps without any loss of gener-
ality. In fact, a stronger result can be expected:
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Conjecture 5.13 Consider a sequence of refinements SPy ~» SP,, ..., €5i[SPs] ™
SP3, where each refinement is obtained from the previous by one of the transfor-
mation rules; i.e. a proof of refinement. Another sequence can be built where the
transformations handling shared submodels are applied first, followed by the trans-
formations handling reachability constraints and finally applying those handling
azioms (the simple strategy).

Finally, the transformation rules can be seen as modifications to the graph
representing a presumed refinement.

The basic case corresponds to a graph where the specification branch has been
reduced to the root node with some annotations and a subgraph hanging from
it which happens to be hanging also from the root node of the implementation
branch (sharing of submodels). The implementation branch can be of any shape.
In this case correctness can be immediately proven if the annotations at the root
of the specification are included in the ones at the root of the implementation.

Strong transformations affect the specification branch, each of them pulling up
the constraints of those subspecifications not shared. In the end, rule 13 prunes the
meaningless structure and leaves the specification branch ready for the application
of the basic rules.

Weak transformations affect the implementation branch by adding some re-
dundant annotations and copies of subspecifications. These rules provide the way
to show up on the implementation branch those properties required by the already
transformed specification branch.

The simplification rule clears the way to those subspecifications where the two
branches differ.

5.4 Properties of the SBO’s

In the presentation of the strategy, strong and weak transformations are syn-
thesized from M-complete inference rules, sound inference rules, commutativity
rules for M, inheritance rules for M, preserving-submodels rules and conserving-
submodels rules. All these rules are considered to state elementary properties of
the SBO’s and not mere intermediate requirements in refinement proofs. In fact,
we could have given strong transformations immediately instead of proving some
rules on commutativity of M and that the synthesis of strong transformations
from commutativity rules for M is correct, but we consider that the commutativ-
ity of M, or any of the other properties, is interesting in its own right and might
be useful in other problems apart from proofs of refinement.

First we define some more properties of specifications and morphisms which
are used later in side conditions of the rules in this section.

1. A sort s is new w.r.t. a signature morphism o iff 0=(s) = . And a term is
new w.r.t. a signature morphism o iff it does not include function symbols
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which are not in the image of o.

2. A specification SP is closed under subalgebras w.r.t. a set of sorts S
iff D,RsT,SP C SP |
where ¢ : Sig[SP] — (Sig[SPIU ({¢s: 8, fs: s — s | s € S}))

The extension of the signature provides an arbitrary function f, for each sort
in S which can make reachable any subalgebra of an algebra in Mod[SP]
where the sorts not in S are preserved. Therefore, if we take the reachable
part for every possible interpretation of f, we obtain all the subalgebras? of
all the algebras in Mod[SP]. The construction does not work for algebras
with empty sorts.

In case we use equational logic the models of basic specifications (varieties)
are closed under subalgebras but there are SBO’s such as D, that do not
preserve this property.

3. A signature morphism o forgets a set of equations eq

iff V SP : spec. DyQegSP = D,SP.

An alternative definition which refers to the congruence induced by eq is:
Vs € sorts(X). (Fel,e2 € |S|,. (1, €2) € (~eq\ident)) = (s is anew sort w.r.t. o),
where (el,e2) denote a pair of different values of the same sort which are
identified if we impose the equations eg; i.e. the pair belongs to the minimal
congruence generated by eq but not to the identity ((el, €2) € (~,, \ ident)).

In order to prove this property we can check that all the sorts mentioned
in the equations eq are forgotten in o plus those sorts which although not
directly mentioned depend on the ones mentioned (see [BKM 87] for a defi-
nition of dependency).

4. A specification is closed under quotients
iff Veq : set of equations. Q.,SP C SP.

In case we use equational logic the models of basic specifications (varieties)
are closed under quotients but there are SBO’s such as F, that do not
preserve this property.

5. A signature morphism o3 forgets a free extension F,,
iff VSP : spec. Dy, .0y Fo, SP = D,,SP.

As in the case of forgetting equations, o2 must forgets all those sorts altered
by F,, which,in particular, are those mentioned directly in oy plus the ones
depending on them.

“In fact only the countable subalgebras are obtained, so we should properly talk about closure
under countable subalgebras and indeed this is all that is required in the rules.
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6. A free extension F;?SP is sufficiently complete iff D, F?*SP = D,Q.,T,SP.
This can be redefined referring to the models as VA € Mod[SP). (Free?A)|, =

A/(~eq |o) where the reduct of a congruence is the congruence associated to
the reduct of the (surjective) homomorphism representing the original con-
gruence. Intuitively, a free extension is sufficiently complete if it does not
add new values to the old sorts, although it can confuse (quotient) some of
the old values.

The standard definition refers exclusively to the reachable models of SP or,
equivalently, to its initial model (see [Ber 87] for discussion).

7. A free extension FfISP is consistent
iff VA € Mod[SP]. A is a subalgebra of (Frees1A)|,.

Intuitively, a free extension is consistent (or hierarchically consistent) if it
preserves the old values of the old sorts into the extension, although it may
add new ones.

Similarly to sufficient completeness, the standard definition refers exclusively
to the reachable models of SP or, equivalently, to its initial model (see [Ber
87] for discussion).

8. A signature morphism o does not add new operations for a sort s
iff o(Lang(s,SP)) = Lang(o(s), T,SP)
where Lang(s,SP) is defined recursively as the collection of operations in

Stg[SP] which produce elements of sort s or of any other sort on which s
depends (see [KM 87] for definition).

9. Two sets of sorts S; and S; are junk-independent in a specification SP
iff Rs, Rs,SP = R(s,us,)SP = Rgs, R, SP.

It is sufficient to show that neither S; nor S, depend on the other.

10. A sentence ¢ has no negation w.r.t. a specification SP, if either ¢ (assumed
in prenex form) does not contain any inequality or each inequality A # B
it contains is trivial (its truth-value does not affect the truth-value of ¢) or

SP makes it false, SP = A = B.

11. A sentence ¢ has no existentials w.r.t. a specification SP, if either ¢
(assumed in prenex form) does not contain any 3 or each subformula 3z :

8.F(z) it contains is trivial (its truth-value does not affect the truth-value
of ) or SP makes it false, SP |= Az : s.F(z).

M-complete & sound inference rules

As mentioned in section 3.3, there are some inference rules associated to SBO’s.
Most of them were presented in [ST 85] but we go through all of them since they
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need still to be proven sound and sometimes M-complete according to the new
definitions given in 3.3.

o SPit = USSP F ¢

Fact 5.14 This is a sound and M-complete inference rule.

Proof Let {A;}ier be a family of M-complete theories w.r.t. {SP;}ier,

ie. Mod[A;] C Mod[SP;] for every 1 € I. The inferred theory is A,y =
Cl(U;A;). Then, by monotonicity of the intersection, ; Mod[A;] C N; Mod[SP}],
and by the definition of the models of a theory M, Mod[A;] = Mod[U;A].

We conclude that A;,s is an M-complete theory for U;SP;.

Analogously, and considering the inclusion in the opposite way the inference
rule can be proved M-sound and therefore sound.

¢ SPFo=T,5PF o(p)

Fact 5.15 This is a sound and M-complete inference rule.

Proof Given an M-complete theory A for SP and considering o : ¥ — X,
the inferred theory has models Mod[A;f] = {A € |Alg(X)| | A E o(A)}
which by the satisfaction condition are {A € |Alg(2")] | A|, = A}. Finally,
by definition of the models of a theory, the same class of models can be
expressed as {A € |Alg(X")| | Al, € Mod[A]} which, by M-completeness
of A, is included in {A € |Alg(X")| |A|, € Mod[SP]} = Mod[T,SP]. We
conclude that A,y is an M-complete theory for T,SP.

Analogously, and considering the inclusion in the opposite way the inference
rule can be proved M-sound and therefore sound.

e SPFo(p)= D,SPF ¢

Fact 5.16 This is a sound and complete inference rule.

Proof Let be A a sound theory w.r.t. SP. The inferred theory is Ay =
Cl(o~tA) where 07'A = {1 is a & — sentence | Jpz € A. p3 = o(p1)}
Then,

Mod[SP] C Mod[A] € Mod[o(c71A)] = {A € |Alg(D)| |A E o(c7tA)} =
— {Ae|Aly(D)] | Al, F oA}

applying the reduct functor to both sides

Mod[D,SP) C {A € |Alg(Z)| | Als = 07'A}, = Mod[oc™A]
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therefore the rule is sound.

On the other hand, let A be a complete theory w.r.t. SP. Assume that A;,¢
is not complete w.r.t. D,SP, then there exists a sentence ¢ € Th[D,SP)]
such that ¢ & Ai,y. But, by definition of Th and the satisfaction condition
o(p) € Th[SP], therefore o(¢) € A and ¢ € A;y;. Hence, the rule is
complete.

It must be noted that there exist classes of algebras which can be defined
using A and D but which are not axiomatizable in first order logic (see [BHK
86] for examples and discussion), therefore no M-complete and sound rule
can be expected in general. However, there would exist one for some kinds
of institutions.

Fact 5.17 For an injective o and in an institution where the conjecture
below holds this is an M-complete inference rule.

Conjecture 5.18 For an injective o, theory A and specification SP,
Mod[A] C Mod[T,SP] = Mod[o™'A] C Mod[SP].

Proof Let be A a M-complete theory w.r.t. SP. By definition of D and
T,
Mod[A) € Mod[SP] = Mod[T,D,SP]

applying the conjecture

Modlo~'A] € Mod|D,SP).
SPF o= AgSPt ¢ and AsSPF o (if @ | )

Fact 5.19 This is a sound and M-complete inference rule.

Proof For every M-complete A for SP, the inferred theory Ay = CI(A U
®) has models Mod[A;y] = {A € Mod[A]| A = ®}. Considering the
definition of Ag and the M-completeness of A it follows that Mod[A;,;] C
{A € Mod[SP]| A= ®} = Mod[AsSP].

Analogously, and considering the inclusion in the opposite way the inference
rule can be proved M-sound and therefore sound.

es F T'autologies on &

Fact 5.20 The set of tautologies on ¥ form an exact theory w.r.t. €.

27



Proof Trivial.

Sound inference rules

e SPFop=M,SPlF ¢

Fact 5.21 This is a sound inference rule.

Proof For all sound theories A for SP, since M is a selector, Mod[MsSP] C
Mod[SP] C Mod[A].

o eqkh o =>Q,SPFo

Fact 5.22 This is a sound inference rule.

Proof By soundness of equational logic, eq F #1(X) = t3(X) = VA €
Modleq]. Vv : X — |A]. v¥#(t1(X)) = v#(tz(X)) and by construction of
the minimal congruence for the relation of equivalence =., and algebra A,
(v#(t1(X)), v#(t2(X))) € ~eg. Therefore, in the quotient algebra, A/~
for all valuations v : X — |A/~¢|, both v#(¢1(X)) and v¥#(t5(X)) yield
the same value (partition class); hence, #;(X) = #5(X) holds in 4/~,, and,
in general, for every model of Q.,SP.

¢ (SP I ¢) and (¢ has no negation w.rt. SP) = Q. SP+ ¢

Fact 5.23 This is a sound inference rule.

Proof It is enough to show that for all algebras s.t. A = ¢, where ¢ is
a sentence built up exclusively from the equality predicate and connectives:
A,V,Y and 3, it holds that V~ : congruence on A. (A/~)  ¢. This can be
proved by induction on the structure of ¢:

A | t, = t;. For all algebras v4(1) = va(tz), by definition of quotient,
va/~(t1) = [va(t1)] and consequently v4/n(t1) = va/~(t2) and then (4/~) =
tl = t2.

A |= 3z : s. F(z). By definition of satisfaction of 3, there exists a a € |A],
such that taking a valuation » : £ — a we obtain v#(F(z)) = true. By the
induction hypothesis and substituting « by a constant a. of value @ in A,

A F(a,) = (A/~) E F([a.]) which implies (A/~) k= 3z : 5. F(z).

Similarly we can write more cases for the other connectives.

e (SPF ¢) and (¢ has no existentials w.r.t. SP) = RsSP I ¢

Fact 5.24 This is a sound inference rule.
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Proof It is enough to show that for all algebras A |= ¢, where ¢ is a
sentence whose prenex form does not contain existential quantifiers, it holds
that VA’ : subalgebra of A. A’ = ¢. This can proved by induction on the
structure of ¢ (assumed in prenex form):

A E t; = t; where 13,12 are ground terms. By definition of subalgebra,
for all f : 81,...;8n — s in X and by € |A'|1,...,bn € |A']n, fa(by,....bs) =
far(b1,...,b,); therefore, constants have the same value in A and A’, and so
do the ground terms generated from them, hence A’ |= ¢, = t,.

A = t1 # to. As in the previous case ground terms preserve the same values
in subalgebras, so A and A’ agree either in equalities or inequalities of ground
terms.

A |EVz : s. F(z). By definition of satisfaction, Va € |A|,. A |=,, F(z) where
Y, ¢ € — a. By definition of subalgebra |A’|, C |A|, then Va € |A/|,. A =,
F(z) which by induction hypothesis yields Va € |A'|,. A’ |=, F(z), hence
A" EVz s F(z).

Similarly we can write more cases for the other connectives.

eq o = FASPF

Fact 5.25 This is a sound inference rule.

Proof By definition, for o : ¥ — ¥/, F2 : Alg(¥) — Mod[(¥', eq)].
Then, it holds that Mod[F2'SP] C Mod[(¥', eq)] and since Mod[(¥', eq)] =
Mod[Cl(eq)] it follows that all semantic consequences of eq hold in F£9. By
soundness of equational logic the rule is sound.

Note The same proof can be obtained by proving a transformation rule
F2SP = Q¢qF7SP and then applying the appropriate rule already given for

Q.

(SP  ¢) and (FfSP sufficiently complete and consistent) = F£SP F
o(p)

Fact 5.26 This is a sound inference rule.
Proof Sufficient completeness and consistency mean that (Free?)|, is iso-

morphic to a quotient of A and to subalgebra of A at the same time, therefore
by the homomorphism theorem we conclude that

VA € Mod[SP]. (FreesA)|, = A

and by the satisfaction condition (Free2A)|, = ¢ & FreelA = o(p).
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o (tis a new sort) and (A.,SP [ a=;b) = FISPFa#; b
(a is a new term) and (A, SP fra =,b) = FSPtF a#,b

(Note: In fact the first rule is a particular case of the second.) -

Fact 5.27 This is a sound inference rule.

Proof Trivial by considering the construction of a free extension FreeS?A
as an initial object [Tar 86].

Note Although non-provability can be proved in some cases it is partic-
ularly interesting to use the technique presented in [B 87] which involves
transforming the free extension into another one where such a proof is easy;
this is perfectly consistent with our approach.

o SPF Gz :s. F(z) = MgSPFVz:s. F(z)

where Gz : s universally quantifies over the values of sort s which can
be expressed as terms without variables of sort s (ground terms if SP is

reachable).

Fact 5.28 This is a sound inference rule.

Proof Let Vz: s.F(z) be false in MgSP, then by definition of satisfaction
there must be a model of A € Mod[MgSP] and a value a € |A|, such that
A F(zva) F(2). However by definition of Mg, A has to be reachable on sort
s thus there exists a term ¢, whose value in A is a and therefore Gz : s. F(z)
could not be true for SP.

Note This rule is essentially infinitary therefore, analogously to what hap-
pends to arithmetic, the rule is complete but it can only be implemented
using induction techniques leading, in practice, to an imcomplete system.

Preserving-submodels rules
e VL : selector; e morphism; SP : spec. D,LS C D,SP

Fact 5.29 This is a preserving-submodels rule.

Proof Trivial by definition of constructor and monotonicity of D.
e Yo,.: morphisms. D, T,SP C D,SP

Fact 5.30 This is a preserving-submodels rule.
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Proof If o is injective then D,T,SP = SP, hence the rule holds. If ¢ is
not injective then D,T,SP contains those models of SP where the carriers
corresponding to the sorts identified by o were identical, hence the rule holds.

¢ 0.0y =0,= VSP:spec. D,,(D,SP) C D, ,SP

Fact 5.31 This is a preserving-submodels rule.

Proof Immediate by composing the two reduct functors D, D, = Dy.p, =
D,..

Conserving-submodels rules

We present rules of this kind only for the constructors since we already have
preserving-submodels rules for the other SBO’s and they entail automatically the
existence of a conserving-submodels rule.

Proposition 5.32 For any preserving-submodels rule for a SBO £ w.r.t. a sig-
nature morphism ¢,

VSP : spec. D,(¢€SP) C D,SP

where ¢/ is the suitable morphism by which both terms have the same signature,
then for any specification C
D£T.CCC

is a conserving-submodels rule for & w.r.t. ¢+ and C.

Proof The conserving-submodels rule is the instantiation of the preserving-
submodels rule with the specification 7,C and simplified by the fact that D ,T,C C
C.

In the following some conserving-models rules for the constructors are given:

o (s is a new sort) or (C ¢s closed under subalgebras) = D, RsT, C C C
Fact 5.33 This s a conserving-submodels rule.

Proof In the case where s is a new sort and since R only changes the carrier
of s, the rest remains unchanged so VSP; : spec. D, . SP, = D, RsSP;.

In the case where C is closed under subalgebras, first we realize that for
every algebra A € T,.C, (RsA)|,. is a subalgebra of A|, since RsA is a
subalgebra of A and the reduct functor preserves subalgebras. Then, since
Als, € C and since C is closed under subalgebras, (RsA)|s. € C.

e (0. forgets eq) or (C is closed under quotients) = D, Q. T,.C € C

Fact 5.34 This is a conserving-submodels rule.
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Proof By definition, if o, forgets eq, then D, (Q.,T,.C) = D, T, .C CC.

In the case where C is closed under quotients, it is enough to show that for
all algebras A € T,.C, (A/~eg)lo. = (Alo.)/~eqlo.- And this holds because
a quotient is equivalent to the application of a particular homomorphism
and by definition functors (and reducts in particular) commute w.r.t. the
application of morphisms. Finally, since Al,, is in C its quotient will also

be in C.

o ((0c forgets extension F,) or (FT, C is sufficiently complete)) and
((oc forgets eq) or (FT, C is consistent) or (C is closed under quotients))
= Dy (F2T, C) C C

This rule enumerates some trivial cases where F' is persistent and the case
where F' does not need to be consistent since C is closed under quotients.

Fact 5.35 This is a conserving-submodels rule.

Proof For all algebras A € T,,,C, if either F? is sufficient complete or o,
forgets the extension F,, there exists a congruence ~ such that (Freet?A)|,.,.
& (Als.)/~; 1. it is sufficiently complete w.r.t. the part of the signature
we are interested in. In the first case by definition of sufficient completeness
and considering the top reduct |,, we obtain ~= (~¢ |5.,.). In the case
where o, forgets the extension F,, we consider the standard decomposicion
of Free! into Free, and a quotient by ~.,; by definition of forgetting a free
extension the first step is ignore, then Freef?A = A/ ~., and applying the
reduct we obtain ~= (~¢q |o.0.) again.

If C is closed under quotients, then since Al,, € C, (Al,.)/~ € C.

If F;? is consistent, by definition A is a subalgebra of (Freet?A)|,. Reduct
functors preserve subalgebras , thus A|,, is a subalgebra of (A|,.)/~ and

this is only possible in the trivial case where ~ is the identity. Therefore,
(Alse)/~ = Al,, which belongs to C.

Finally, if o forgets eq then, by construction, ~ is the identity again.

Commutativity rules for M Due to rule 11 we do not need to bother exam-
ining commutativity of M w.r.t. A, U and M itself. Therefore only two rules are
needed.

¢ (No new operations for s in o) = T, MsSP = M, T, SP

Fact 5.36 This is a commutativity rule of reachability requirements
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Proof For all algebras A € Mod[MsSP], A is already reachable on s and
it will necessarily be so after applying T, since no operation is forgotten
thus TobMsSP C M,()ToSP. Conversely, for all algebras A € M, »T,SP,
Al, should already be reachable on s since Lang(s,SP) is not expanded

and without new operations no new elements in |A|, can be reached; hence
A|, € MsSP.

o (No new operations it for 6™ 's in ¢) = D, MsSP = M, (syDsSP

Fact 5.37 This is a commutativity rule of reachability requirements

Proof By definition we know that o(Lang(s, D,SP)) = Lang(o(s),T,D,SP),
which may be simplified to Lang(o(s), SP). Then, every reachable algebra

A € SP yields a reachable A|, € D,SP since the operations considered
are the same (up to renaming); hence D,MsSP C M,-1()D;SP. And the
opposite holds trivially since a D, never makes reachable those sorts which
were not reachable before.

Inheritance rules for M

L ToMSSP = M,(S)TaMsSP

Fact 5.38 This is an inheritance rule of reachability requirements

Proof The rule asserts that the models of T,MsSP are reachable on o(s).
This can be proven by contradiction assuming A € T,MsSP has a proper
subalgebra A’ only distinct on sort o(s). Since reduct functors preserve
subalgebras (proper subalgebras in this case because s is not a forgotten
sort), then A'|, is a proper subalgebra of A|, € MsSP only distinct on sort
s, and consequently A|, € MsSP would not be reachable on o(s).

o Qu,MsSP = MsQ.,MsSP

Fact 5.39 This is an inheritance rule of reachability requirements

Proof The rule asserts that the models of Q.,MsSP are reachable on s.
This can be proven by contradiction assuming A/~¢; € Qc,MsSP has a
proper subalgebra A’ only distinct on sort s. We can define another algebra
A" identical to A but with carrier |A”|, = {a € |A|, | [a] € |A’|,}, which is a
proper subalgebra of A € MsSP in contradiction with the definition of Mg.

e RgSP = MgRsSP

Fact 5.40 This is an inheritance rule of reachability requirements
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Proof Immediate since VA. Reachg(Reachg(A)) = Reachg(A) therefore
all algebras in RgSP are preserved by Msg.

(S1 and S, are junk-independent in SP) = Rg Mg, SP = Mg, Rs, Ms,SP

Fact 5.41 This is an inheritance rule of reachability requirements

Proof Assume the rule does not hold, then it exist an algebra A € Mod[Ms, SP]
and a sort s € S, such that elements in |A|, is only reachable through junk

in |A[s,. However, if that were the case Reachs, (Reach,A) # Reachg, U4
and junk-independence would not hold.

FeIMsSP = M, FS'MsSP

Fact 5.42 This is an inheritance rule of reachability requirements

Proof First of all by recalling the equivalence FfISP = Q.,F,SP and
considering that the reachability requirements have been proved to commute
with @), we restrict this proof to the case F, MgSP = M, () F- MsSP.

The rule asserts that F,MgsSP is reachable on o(s). This can proven by
contradiction assuming that A € F,MsSP has a proper subalgebra A’ only
distinct on sort o(s). Since F, is a constructor, there exists B € MgSP
such that A = Free,B. Free, cannot introduce non-reachable elements
to the carrier |B|, because if that were the case there would exist another
(smaller) extension of B, A’, without non-reachable elements such that no
homomorphism & : Free,B — A’ would exist, violating the freeness of the
extension. Finally, if Free, does not introduce new non-reachable elements
in s, those in A should already exist in B; hence contradicting the reacha-
bility of B € MgSP.

(s is new sort) = Ff4SP = M,FSP

Fact 5.43 This s an inheritance rule of reachability requirements

Proof Considering the construction of a free extension Freef?A as an ini-
tial object [Tar 86] it is clear that any new value must be finitely generated
from constants and the old carriers in A, therefore any new sort has a reach-
able carrier.
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5.5 Example:

The proof of SetNat ~> BagNat left open in section 2.3 and informally sketched
in section 4.3 looks as follows:

1. Nat is a shared submodel.

Since the specification branch only contains T and selectors, and all these
preserve submodels (rule 7 instanciated by the cases 5.29 and 5.30), Nat is
a submodel of SetNat.

It is the same in the implementation branch up to the constructor (rule 10 in-
stanciated by the preserving-submodels rules 5.29-5.30 turned into conserving-
submodels rules as shown in 5.32). In the constructor, we can apply the
conserving-submodels rule for the quotient since equational specifications
are closed under quotients (see 5.34), and for the free extension since it is
consistent and sufficiently complete (see 5.35). And finally the derive does
not affect the subsignature corresponding to Nat so the preserving-submodel
rule applies (see 5.31) and therefore Nat is also a submodel of x(BagNat).

2. M, is satisfied.

My, is inherited (rule 9) through free extensions and quotients (see 5.39 and

5.42) and the derive does not remove any constructor of bag, therefore M,,;
(=M,-1ag)) is satisfied by x(BagNat) (see 5.37).

3. The axioms of Set are satisfied.

One by one we can prove the axioms of Set from «(BagNat). In this exam-
ple we need the equation supplied by the quotient, the translation through
the derive of the axioms in Bag, the translation of the axioms in the free
extension, and the translation of a couple of inferred theorems for bag’s. For
example:

Va : Nat,S : set. isempty(add(a,S)) = false is just the translation of a
Bag axiom: ¢~ '(Va : Nat,S : bag. isempty(add(a,S)) = false) and we
know that SP I o(t) = D,SP I- t (see 5.15).

Va : Nat. a € 0 = false can be deduced from {(Vz : Nat. succ(z) >
0); (Va: Nat,S : bag. a € S = counit(a,S) > 0); (Va : Nat.count(a, ) = 0)
} for bag (see 5.19) and then translated to set (see 5.15).

Va: Nat,S : set. add(a,add(a,S)) = add(a, S) is satisfied since it belongs
to eg in the quotient and we know that Q.,SP F eq (see 5.22).
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6 Final Remarks

6.1 Generalizing to an arbitrary institution

So far the work has been presented in the context of a particular institution,
namely first order logic with equality. Throughout the paper some simplifications
have been mentioned in the context of the equational institution, but some of the
results are more general. Some of these generalizations are:

Arbitrary institution.- The original work from [ST85] which includes the defini-
tion of A,T,U, D and M,5, and the proof rules for them mentioned in sec-
tion 3.3, are institution independent. Moreover the characterization of these
proof rules as M-complete or complete given in this paper (facts 5.14-5.20) is
also institution independent (generalizing some considerations about hidding
treated in [BHK 86]). The rules for the same operations on preserving sub-
models for T, U and D (facts 5.29-5.31) are directly institution independent.
However, the rules which mention Mg should be transformed to suitable
rules for M,.

Algebraic institution.- In an algebraic institution, that is considering algebras to
be the models and algebraic signatures but disregarding the kind of sen-
tences used, My is already definable. The rules concerning Mg dealing with
submodels and all those concerning its commutativity and inheritance are
directly valid. At the same time Rg makes sense since the minimal subal-
gebra of any algebra is unique. Summing up all rules are valid except those
which explicitly use equations.

Algebraic institution with equality.- If the logic used in our algebraic institution
is a conservative extension of equational logic then Q., and F2? are definable,
and their inference rules are valid.

Apart from generalizing to an arbitrary institution, another important point
should be noted. Analogously to what is done in [ST 86] when defining implemen-
tations, here the two-step strategy is presented in two layers. The first one defines
a strategy independently of the particular SBO’s, and the second one completes
the strategy with rules for every SBO. This is comparable to the definition of
constructor implementation with a separate list of possible constructors; the first
definition is independent of the specification language considered and the second
one is specific to it. Summing up, the specification language is independent of the
logic used in the axioms (institution independent), and the implementation notion
and the proving strategy are independent of the concrete SBO’s.

5M, is more general than Mg, since it does not require the existence of sorts but only the
existence of signature morphisms, which are available in any institution. Both SBO’s have the
same generality in an algebraic institution.
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6.2 Extensions

The work presented can be continued in three main ways.

1. Try to make the proof method effective; that means, sort out how to compute
the side conditions (presented as premises) of the rules.

These side conditions are syntactic requirements such as ‘¢ is a new term’,
or semantic ones which can be replaced by stronger syntactic requirements
as for instance ‘junk-independent’, or merely semantic requirements such
as ‘closed under subalgebras’ or ‘S £ ¢’. The work to be done is to find
suitable syntactic requirements in order to be able to apply all the rules.

2. Extend the two-step strategy to handle some more cases. For instance, we do
not know what to do when an M and some axioms cannot be pulled all the
way to the end of the specification branch. However, proofs are still feasible
if we can reproduce the same situation in the implementation branch, so we
have to generalize matching below the end node of each branch.

3. Related to the previous point, extend the transformation rules to a more
complete calculus of structured specifications, and investigate to what extent
it is complete.

4. Use this technique in the context of abstractor implementations.

5. Explore possible simplifications when we substitute ASL by a more prag-
matic workbench such as PLUSS (a specification language based on ASL)
and consider only the reusability relation (a special case of constructor im-
plementation).

6.3 Related work

Among all the work done in a similar area, and apart from the papers already
mentioned as the basis of this work [ST 85, ST 86] this paper is particularly
related to four earlier ones.

In first place the rules we give in section 5.1 are related to the transformations
for ASL given in [SW 83]. The rules presented here can be considered as a selection
of those for ASL which suit our proof purposes. For the sake of our goal, we have
gone deeper in a few of the equivalences searching for side conditions where a
general result was not possible, whereas in [SW 83] the main concern was to make
ASL more understandable and only general results were presented.

In [EWT 82] some transformation rules and canonical forms are shown for a
language similar to ours. In this case a general (complete) strategy looks obvious:
reduce both branches to their canonical forms and compare them. But such a re-
sult is questionable for two reasons. First the language in [EWT 82] is a language
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of constraints where basic specifications with axioms (presentions) are ignored, so
that undecidability is avoided and canonical forms for the language of constraints
are effectively computable, but comparing constraints is not comparing specifi-
cations. In the second place our language has a few more SBO’s than the one
in [EWT 82], in particular some involving equations which entails undecidabil-
ity in their comparison. In this case, canonical forms would be non-effectively
computable therefore any complete strategy is bound to be inapplicable.

In [BHK 86] an extensive treatment is given to a specification language whose
SBO’s are basically Ag,U,T, and D, with interesting results on the expression
power of such a language when used with first order logic, coditional or equational
logic. It differs from this work on the language considered, which is a sublanguage
of ours, and on the purpose, which is the study of its expression power instead of
a method for proving implementations.

Finally this work is related to that in [SB 83], where theorems are inferred from
specifications represented by graphs. Our work can be seen as a new instance of
the same problem for an extended specification language and with a more specific
interest in proving implementations instead of plain theorems.

Strongly related to this paper is the recent work undertaken by D.Sannella and
A Tarlecki in [ST 88]. The main concern is finding correctness requirements for
a framework of stepwise program development using Extended-ML®. Although
both works are close, [ST 88] leaves open the problems related to non-trivial
structure and especially addresses the issue of behavioral equivalence which has
been ignore in this paper when restricting to constructor implementations (point
4 in extensions).
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