LFCS

aouablanIg yum SOD 10§ SBNWIOS dlsUsioeeYD

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

Characteristic Formulae for CCS

with Divergence

by
Bernhard Steffen

ECS-LFCS-89-76
LFCS Report Series (also published as CSR-294-89)
LFCS May 1989
Department of Computer Science
University of Edinburgh |
The King's Buildings Copyright © 1989, LFCS

Edinburgh EH9 3JZ

Characteristic Formulae for CCS with Divergence

Bernhard Steffen
Laboratory for Foundations of Computer Science

University of Edinburgh
GB Edinburgh EH9 3JZ

Abstract

Characteristic formulae have been introduced by Graf and Sifakis to
relate equational reasoning about processes to reasoning in a modal logic,
and therefore to allow proofs about processes to be carried out in a logical
framework. Based upon an intuitionistic understanding of the modal mu-
calculus, this paper extends the results of Graf and Sifakis in two respects.
First, it covers not only finite processes, but finite state processes. Second,

it handles not only bisimulation-like equivalences but also preorders, which

are sensitive to liveness properties 1.

1 Motivation

Transition systems are often used as models for concurrent programs. By them-
selves they are too concrete to provide an appropriate notion of computational
equivalence or simulation. Addition of an explicit equivalence or preorder relation
on transition systems overcomes this problem, by identifying processes (nodes)
of ‘similar’ computational power. In this paper we investigate transition systems
which explicitly provide divergence information [19] together with a notion of
simulation given by a divergence sensitive preorder. (Think of divergence as the
potential for infinite internal chatter.) As the main result we show how to ob-
tain characteristic formulae? for this notion of simulation within an intuitionistic
interpretation [19] of a sublanguage of Kozen’s modal mu~calculus [11]. Applica-
tion to CCS [14, 16] delivers characteristic formulae for bisimulation equivalences,
congruences and preorders. Therefore this paper extends the results of Graf and
Sifakis [9] in two respects. First, it covers not only finite processes, but finite state
processes. Second, it handles not only bisimulation-like equivalences (which are
also dealt with in [2, 10]) but also preorders [21], which are sensitive to liveness

! This paper is an extended version of [18].
2Characteristic formulae are the equivalent logical reformulation of an equational process
specification [9].

properties. — The results of this paper are the basis for an extension of the Con-
currency Workbench?® to automatically derive logical specifications from process
specifications.

2 Extended Transition Systems

An eztended finile state transition system T is a quadruple (P,—, Act,{t) where
1. P is a finite set (of processes or states);

Act is a finite set (of observable actions);

— is a mapping which associates, with each a € Act, arelation — C P x P;

o

. I is a mapping, which associates with each p € ActU {€}, where ¢ ¢ Act
represents unobservable actions, a unary predicate ftx on P.— Instead of
fru(p) we write pftp, and we require that p ffe implies p fta for every
observable action a € Act.

Typically P is a set of program states, and for each a € Act the relationship p—¢
indicates that p can evolve to ¢ under the observation of a. The fourth component
{} is introduced to express divergence potential: pfu is intended to mean that p
can be triggered by means of an offer of a p-action to evolve autonomously for
ever without responding to the environment. The predicate f}¢ does not depend
on any observable action. Therefore f}e implies {}a, for every a € Act. That
is the reason for calling ft¢ the global divergence predicate.— The negation of
pfhp, p-convergence, is written pl} 1, and we will represent states or processes (of
a transition system) as rooted transition systems (i.e. as pairs (T, p,), where p,
is the start state).

Typical examples in CCS would be4:

1) fia(X, 7.X +anil) expressed as ({7001}, po—p, {3}, pofie)s 2o)
2) a.nil expressed as (({Po’Pl}a Po—P1, {a}7 -), Po)

These two processes are observationally equivalent in the sense of [14, 16]
fiz(X, 7.X + anil) = a.nil

even though the first process can engage in an infinite internal chatter, and there-
fore refuse to response to an a-action at all. This motivates the definition of a
preorder, =, between processes:

3The Concurrency Workbench is an automated tool for the analysis of concurrent systems
5, 6, 7]. '
“In CCS divergence usually is interpreted as the potential for an infinite T-sequence.

2

Definition 2.1 = is the union of all relations R satisfying that pRq implies
1. VaVp'.if p—sp' then I¢'. ¢—=+q' and p'Rq'
2. Va. if pla then (¢la and V¢ if ¢—¢' then Ip'.p—sp’ and p'Rq’)

The preorder <, which is in fact the greatest relation satisfying the two conditions
mentioned above, now distinguishes between the two example processes. Indeed,
we still have:

fiz(X, 7.X + anil) < a.nil
but the converse fails:

anil K fiz(X, 7.X + a.nil)

3 The Logic and its Characterization of <

Our modal logic £ is essentially a sublanguage of Kozen’s modal u-calculus [11].
It involves modalities for expressing transitional change and a greatest fizpoint
operator to express infinite behavioural patterns. For each action a € Act the
operators [a] and (a) mean ‘after every’ and ‘after some’ a-transition respectively.
Atomic sentences AC ActU {e} restrict the set of possibles moves and the diver-
gence potential to members of A. Altogether L is given by:

F 2= X|A|FAF|FVF|[dF|(a)F|vX.F

where AC Act U {e}, a € Act and X ranges over a set of variables. It is convenient
to define the n-th approximation of a fixpoint formula as a derived operator:

(vX F)n where (vX F)°=y4 tt and (vX F)r+l=4 F[X:= (vX F)"]

where [X:= f] means syntactic substitution of the free occurrences of X by f and
tt abbreviates the atomic sentence ActU {e}, which is satisfied by every process
of 7} (see below). Furthermore we abbreviate the set of all closed formulae in £
by L,.

We directly interpret the closed formulae of the modal language £ on transition
systems T' by inductively defining the satisfaction relation |= between states of
T and formulae of L.

pE A iff {p:phpVIgeP.pqlC A
pEFAG if pEF and pE=G

pEFVG iff pkEF or p=G

pE [a]F if pla and VqeP.if p—=+qthen q=F
pE(a)F if JgeP.p—"sq and g F

pEvX.F if Vn pE@XF)r

3

Note, the convergence condition on [a]. So, there is an asymmetry between [a]
and (a) in that they are not duals. This is the basis for an intuitionistic under-
standing of modal logics as in [17, 19]. Indeed, the asymmetry in the intuitionistic
interpretation of the logical language is necessary to cover the asymmetry of the
preorder of our process language. A classical interpretation, for example, would
already fail to deal with the existence of a smallest element, which exists in form
of the totally divergent process in our process language. Intuitionistic interpreta-
tion however, delivers the following characterization theorem, which extends the
results of [15, 19]. This theorem is a consequence of the Main Theorem 4.12.

Theorem 3.1 Vp,qeP. p=q iff (VFeL,. plF implies g=F)

So, p X ¢ means that ¢ has more properties (expressible in £,) than p. Clas-
sical negation would exclude the proper inclusion of the set of properties of one
process in the set of properties of another process. That is the reason for classical
interpretations to be suitable for characterizing equivalences rather than preorders.

4 Characteristic Formulae

Unlike {15, 19], where logics do not contain the important fixpoint operator, there
are characteristic formulae for <X in L, i.e. for each process p there exists a for-
mula which is satisfied by a process g, iff p < q. Characteristic formulae have been
introduced by Graf and Sifakis in [9], where it was shown how to derive a logical
specification for finite processes up to observational conguence (i.e. characteristic
formulae for ~¢) in the modal mu-calculus [11]. We are now going to show, how
to derive characteristic formulae || p || for processes p € P in our setting. This
can be done in two steps:

1. The transformation of p into a closed algebraic term with fizpoint operators.

2. The successive construction of the formula || p || using a semantic functional,
the characteristic functional.

4.1 The Transformation

The characteristic functional needs a hierarchical representation of its argument
process p, which it explores in depth first manner to finally arrive at a formula
of £L,. We will construct the required representation for p using the same idea,
which is generally used to transform a mutually recursive equation system into an
equivalent hierarchy of nested recursions [4, 13]. For our context, such hierarchies
can be expressed in the following process language P:

p u= X | fix(X,p) | T{a;p;:i€l} + {0, : pec A}

where X denotes a process variable, which indicates recursive ‘calls’, fiz(X,p)
represents ‘declarations’ of processes, which are ‘called’ recursively and the fourth
alternative expresses the branching structure (Y"-{a;.p; : : €Z}, where a; € Act and
7 is a finite set of indices) and the divergence potential (3{Q,: u€.A}, where
AC ActU{e}) of a process p. Note that 3" {} + Y. {} represents the process 0
(cf. [14, 16]), which can neither diverge nor perform any action.

Two subsets of P are of particular interest. First, the subset F, of all expres-
sions with strongly guarded recursion only, i.e. admissible fixpoint expressions are
of the form fiz (X, X{a;.p;:i€Z} + {0, : p€ A}). Second, the subset P, of all
closed expressions of 7. Indeed, given a process p of a transition system T, our
transformation always ends up in 2.

The transformation proceeds in two steps. The first step transforms the orig-
inal process into a regular tree (i.e. a tree with back arcs [4, 13]) whose nodes
are labelled uniquely. Instead of giving the formal definition, we illustrate this
transformation by means of an example:

e transformation

The first transformation step does not affect the derivation tree5 of its argument
process. Thus it maintains the preorder and the satisfaction relation:

Lemma 4.1 Let p,q € P with p and § as their transformations into regular trees
respectively, and F' € L.. Then we have:

1. p=q if p=Xq
2.pF f pEF

5The derivation tree of a transition system is the (usually infinite) tree, which is generated
by unrolling loops successively (cf. [14, 16]).

Note that p and § essentially are elements of P. Thus we do not have to modify <
and |= when dealing with processes resulting from the first transformation step.

The second step translates regular trees into the process language P,. It pro-
ceeds in depth first manner along the tree structure of the regular trees. Thus we
can assume that all the sons of a node which is going to be processed are already
translated. Only back arcs reach unprocessed nodes. This is where variables come
into play. We describe the second translation step algorithmically in two steps. It
assigns process expressions <n> to each node n of the regular tree under consider-
ation. The actual result of this translation process is the expression assigned to
the start node <n0>.

1. Initialization: <ni> =4 X; (X; # X; for i # j)
2. Construction of the process expression for inner nodes in depth first order:

<wi> =y fiz(X;, T{a.<m>: ni—S<md>} + T {Q, : niftp})

Note, this translation process necessarily produces a closed formula. In fact, in-
troducing the notion ¢r: P — P for the whole two step translation process, we
obtain:

Lemma 4.2 VpeP. tr(p) € B,

Expressions of B are interpreted as one would expect, i.e. by means of the
following two derivation rules:

Gen " a;
YA{a;p; i€l +X{Q,:pe A} = p;

p[X:= fiz(X,p)] = ¢

Fix - 7
fiz(X,p) = ¢

Extending the notions of preorder, <, and satisfaction, |=, to expressions of B, by
means of these derivation rules and interpreting a summand (), as u-divergence
(fru), Lemma 4.1 and Lemma 4.2 deliver:

Lemma 4.3 Let p,q € P and F € L,. Then we have:
1. p=q iff tr(p) 2tr(q)
2.pEF iff tr(p) EF

4.2 Extensions, Approximations and Fixpoint Properties

The main part of the proof of the Main Theorem 4.12 consists of the verification
of the Main Lemma 4.11, which is a reformulation of the Main Theorem 4.12
for processes in B. The induction step of the proof of this lemma essentially is
a case analysis according to the structure of expressions of P, and £, including
open process expressions and open formulae. We therefore need to extend our
notions of preorder, <X, and satisfaction, =, using [(Xy, -+, X,):= (ry, -,)]
for simultaneous syntactic substitution of the (free occurrences of the) X; by the
corresponding r;:

Definition 4.4 Let p,g € B, F € L and X = (X4, -+, X,,) be a vector containing
all the variables as components which occur free in p, q or F. Then we define the
extended preorder, <,, and the extended satisfaction relation, =, by:

1.p=.q iff VFePR™ p[X:=7] < q[X:=7]
2.pE.F iff VFeR"VGeL. 7 =G implies p[X:=7] k= F[X:=G]

where 7 = G is understood componentwise.

Furtherinore, we consider finite approzimations of <, and k.. The proof of the
Main Lemma 4.11 proceeds by induction on the ‘depth’ of these approximations.

Definition 4.5 Let p,q € B, and X = (Xy,---,X,) be a vector containing all the
variables as components which occur free in p or q. Then the extended k-limited
preorder, =, , is defined inductively on the size of k:

1. p 2.0 q holds always
2. If k> 1 then p <. q holds, iff

() VP € R"Va € At Vp' € B. if p[X:=7]—5p' then
d¢ €P. ¢[X:=7]-=¢q and p’ Sek—-1 4
(b) Ya € Act. if pla then (qla and VFe R* V¢ € R.
if q[X:=7]—>¢ then Ip € R. p[X:=F]-p' and p/ Zo4-1 ¢')

Extended k-limited preorders can be used to characterize the notion of extended
preorder:

Theorem 4.6 Vp,geh. p=.q if VE>0.p =.; ¢

Whereas the implication “=-” is straightforward, the converse depends on the
considered processes having only a finite number of states. In fact, image finiteness
of the transition relations would be sufficient.

A k-limited version of the satisfaction relation can be defined in an analogous way:

(f

Definition 4.7 Let p € B, and X = (X,,---,X,) be a vector containing all

the variables as components which occur free in p. Then the extended k-limited
satisfaction relation, |=, , is defined inductively on the size of k:

1. plEeo F' holds for every pe P, and F € L
2. If k> 1 then =.; is given by:

PFex X f pE.X
plze,k A Zﬁ p I:e A
D i::e,k FAG Zﬁ p l=e,k F and p !=e,k G

b |=e,k Fv G Zﬁ b l=e,k F or b |=e,k G
PEer [6lF iff pla and (VFeR"VqeR.

if p[X:=7]—">q then ql= 4, F)
PEex (@F iff VieR" 3qeR.

pXi=7F]—=q and qlejq F
PEes vX.F iff Vo plk., (vXF)r

leading to a similar characterization result:
Theorem 4.8 Vpe R, VFeL. pEF iff Vk>0.p | F

Finally, we present three properties relating fixpoint processes and fixpoint
formulae by means of |=,; and =<_;:

Theorem 4.9 (Fixpoint Properties)

Let pe T, and F € L. Then we have:
1. pEsvX.F iff pl FIX:=vX.F]
2. fiz(X,p) Fex F iff plX:= fiz(X,p)] ey F
3. fiz(X,p) Rex plX:= fix(X,p)] 2.1 fiz(X,p)

Whereas the proof of the first property is trivial, the remaining two properties

depend on the fact that fiz(X,p) and p[X:= fiz(X,p)] possess identical deriva-
tion trees.

4.3 The Characteristic Functional

The characteristic functional |.|: B, — L is recursively defined on the struc-
ture of its argument process:

| Z{aipir i€+ 5{Q,:ped} | =4 A{{a)|pi| :i€Z} A
NMla] V{lp;l : 5€T N aj=a;}:
ZEZ/\G:Z¢.A}
A {a;:ieTIUA

| fiz(X,q) | =4 vX.|q|

First, we obtain the compositionality of the characteristic functional.

Theorem 4.10 (Compositionality Theorem)
Vp.ge R [qXi=pl| = |q|[X=]|p]]

Proof: We proceed by induction on the structure of q. The case where ¢ is a
variable is trivial. Thus let us next assume that ¢=3Y{a;.q;: i€ Z}+3{Q, : pc.A}
for some a; € Act and ¢; € . Then this case is a consequence of the following
sequence of equalities:

| (Z{aigi:i€I}+32{Q,:neA}) [X:=p] |
= | (Z{a;q:[X:=p]:i€l} + T{Q,:peA}) |

A{{a;)|g;[X:=p]| :ie€I} A
Alai] V{|g;[X:=p]| : jeTAa;=a;}:
?:EI/\OI,'¢A}

]

(induction hypothesis) = A{(a;)|q| [X:= |p|] : i €I} A
Ala] V{lg| [X:=|pl] : jeTAa;=a;} :
iEZ/\a,-¢A}

Ad{a;:i€T}UA

= |[(Z{a;q; i€} +2{Q,: peA})| [X:= |p|]

Finally let us assume that ¢ is of the form ¢ = fiz(Y, ¢') with X # Y. This allows
the following completion of the proof:

| fiz(Y,¢) | [X:=|pl] = (vY.|¢])[X:= |p]]
= VY. (|¢|[X:= |pl])

(induction hypothesis) = VY. |¢'[X:=p]]|

= | fiz(Y,q¢)[X:=p] |

The central property of the characteristic functional, however, is that it charac-
terizes process expressions up to =,:

Lemma 4.11 (Main Lemma)

Vp,qeB. p=2.9 iff gk, |p|

Proof: " According to Theorem 4.6 and Theorem 4.8 it is obviously enough to
prove:

(*) YE>20Vp,qeB. p=xpq iff gl |p|

The advantage of () is that it can be proven by induction on k. The case k = 0 is
trivial. Thus let k¥ > 1. Then we distinguish four cases according to the structure
of p. The case where p is a variable is trivial. Thus let us next assume that
p= fiz(X,p') for some p' € B. Then the Fixpoint Properties 4.9 (1& 3) imply:

o ¢ er lp| iff gl || [Xi=vX.|p]]
L4 D jek pl [X= fZiC(X,p’)] jelc D

respectively. In the light of the Compositionality Theorem 4.10 it is therefore
sufficient to prove the following case:

Vp,q€R. p'[X:= fix(X,p)] Rerq it q . |P[X= fiz(X,p)]]

Thus, according to the strong guardedness of p, it only remains to deal with
the fourth case, where p is of the form p = Y {a;.p;::€Z}+3{Q,: p€ A} and
therefore, where:

2] =4 A{(a}|pi| :i€Z} A
AMlal V{Ip;| : €T Aaj=a;} :
Z.EZ-/\G,‘¢A} ’
/\{CL1:Z€Z}UA

10

On the other hand, investigating both sides of the equivalence (*) under these
circumstances, we observe on either side that ¢ cannot be a variable. Thus let

us assume that ¢= fiz(X,q’) for some ¢’ € B. Then the Fixpoint Properties
4.9 (2& 3) deliver:

o ¢ ke |p| iff ¢'[X:=fix(X,¢)] Eex | P
¢ ¢ 2o ¢[X = fiz(X,q)] Zer ¢

respectively. And again, because of the Compositionality Theorem 4.10 this case
reduces to the case where ¢ is of the form ¢ = 3{b;.q;: €I} +{Q, :veA}.
Thus p=,rq is equivalent to:

1) VieZ dj€7. a; =b; and p; X.r_1q; and
J ’ 2

(1) A/CA and (Vje€I' bjeAdor (Fi€l. a; =0b; and p; <.p-19;))

Together with the induction hypothesis, we therefore obtain the following equiv-
alent to p <. 1 ¢:

(1) () VieZ3jel' a;=1b; and ¢; ey |p:i| and
(1) A'CA and (VjeT.bjedor(Iiel. a;=b; and g;Fosy |pil))

Thus it remains to show that (1) is equivalent to gf=.; | p|.

To prove “=", let us assume (1), and let F' be a syntactically minimal conjunct
of | p|. Then we are going to show ¢ k=, F, distinguishing three cases according
to the structure of F.

Due to 1(ii) we know that A’C.A and {b;:5€7'}C{a;::€Z}UA. This
shows gl=.; F' in case of F = {a;::€Z} UA.

Let now F = (a;)|p; | for some :€Z. Then 1(i) and the construction of | p |
deliver the existence of a j €I’ with a; = b; and g¢; |=.x_y | p; |, and therefore
q Fer F as desired.

Finally, let F = [a;] V{|ps|:¢ € IA ay = a;} for some 5 € Z. Then the
construction of |p| gives us a; ¢ A and therefore a; ¢ A’ because of 1(ii). Thus
it remains to show:

Vj€T'. a; = b; implies ¢; F=ep1 V{|pi|:¥€TA ay =a;}

Whence let j € I’ with a; = b;. Then b; ¢ A and 1(ii) guarantee the existence
of an ¢/ € T satisfying ¢; k=, 4. |py#|, which completes the proof of the first
implication. '

To show the converse, “<=", let ¢ |=.; | p|. Then we must verify the two prop-
erties formulated under (1). Thus let ¢ €Z. Then the definition of | .| delivers

11

a conjunct (a;)|p;| of |p| and therefore the existence of a ¢’ with ¢—+¢’ and
q' e -1 |Pi|. According to the pattern of ¢ this yields 1(i).

Let now b € A’. Then the assumption of b ¢ 4 would lead to b € {a;:1€Z}
and therefore to gl=.x [b] V{|pi| :¢ €A b =a!} in contradiction to b €
A’. Thus it suffices to finally consider a j € 7’ with b; ¢ A, and consequently
with b; € {a; : i€T}\ A. This yields ql=.; [0;] V{|p;| ::€ZAb; =a;} and
therefore the existence of an 1€ with b;=a; and ¢; =,z |p;]. O

After having analyzed the two steps of the procedure for generating character-
istic formulae for processes p € P, we are now able to collect our main result. Let
therefore || .|| =4 |.| otr. Then we obtain as an immediate consequence of the
Main Lemma 4.11 and Lemma 4.3:

Theorem 4.12 (Main Theorem)
Vp,geP. p=xq iff qF=|pll

5 Application to CCS

In CCS, bisimulation-like relations are used to compare the computational power
of processes. Depending on the needed sensitivity (deadlock, convergence, etc.)
and the mathematical covenience (axiomatizability, computability and provabil-
ity) one can choose between L (strong preorder), L (weak preorder), ~ (strong
equivalence), & (observational or weak equivalence) and ~¢ (observational congru-
ence). — The definitions of the strong preorder, the weak preorder and the equiv-
alences can be found in [19], [21] ¢ and [14, 16] respectively.— We are now going
to show how to obtain characteristic formulae for each of these relations.

The strong preorder, C, is just < in the context of a CCS-like transitions
system. Thus the strong preorder case is covered by means of the Main The-
orem 4.12. For the other four relations we define four process transformations:
W (for ‘weakening’ the transition relation by collapsing T—actions, which are re-
garded as internal or unobservable), C' (to obtain convergence), E (to extend
the corresponding transition system in a way that excludes the start state as the
destination of a transition) and S (for ‘weakening’, while maintaining the sensi-
tivity for 7-moves of the start state). As before we represent processes as rooted
transition systems (i.e. as pairs (T, po), where py is the start state):

¢ W((P7 —, Act, ﬂ)? Po) =df ((P7 =, (ACt \{T}) U {6}, ﬂ)’ Po) , Where

1. Vp,g e P Vac Act \{r}. p=2>q if p-"-%-7."¢ and

SWalker denotes the weak preorder by L.

12

2. Vp,geP. p==sq iff p-D1'gq

e C only changes the divergence predicate { to the predicate | that is con-
stantly false.

. E((P3_),A0t, ﬂ), pO) =df ((PU {ﬁo}a"", ACt’ ﬂl)a 170) ’ where —' and ﬂ'
are the smallest extensions of — and 1} respectively, such that p, and p,
possess identical branching structures and divergence potentials (i.e. py is a

copy of pg).
® S((Pa —, Act, ﬂ), PO) =df ((P, =, Act U {6}, ﬂ)a Po) , Where

1. Vp,g e P Ya € Act. p=25q if p-"--T,"¢
2.Vp,qeP. p=S>q iff p-"" ¢ and

In particular, the transition relation “=” resulting from this transformation
records weak T—moves of the start state, i.e: py=2p iff py — .

Note, the distinction between € and e. This distinction originates from the fact
that both, the weakening transformation and the global divergence predicate re-
quire their private actions. However, it is possible and often convenient to identify
¢ and €, which actually both represent unobservale actions. One only must change
the satisfaction relation |= for atomic sentences A as follows:

pEA Mt {p:phuV (p#enIgeP.ptq)} C A

According to the Main Theorem 4.12 characteristic formulae for the remaining
four relations can now be obtained by means of the following properties of the
transformations just defined:

Theorem 5.1 Let p,q € P. Then we have:

1.pSq iff W(g)E W(p)

2. p~q iff C(g) E C(p)

5. prg iff W(C()) E W(C(p))

4. preq iff S(E(C(g))) E S(E(C(p)))
W is the standard transformation for changing from the strong to the weak version
of equivalence and preorder; and obviously, C(strong preorder) coincides with
~(strong equivalence) in the absence of divergence. This yields the first three
properties of the transformations.

For observational congruence, ¢, the ‘weakening’ transformation must be re-
fined to additionally record initial 7-moves. This refinement is realized in two

13

steps. First, a new start node is created, which exactly ‘behaves’ like the original
start node, but which is not reachable from inside the transition system (see E).
This guarantees that a special treatment of the (new) start node only affects initial
moves. Second, the process is transformed into its weak version, in a way, which
records the possible 7-moves of the (new) start state (see S). The following figure
illustrates this transformation:

SoFEoC >

,-Tra £ ¢ ¢ a b

4
el

For clarity, the right hand side dlagram does not display e—edges that result from
the reflexive closure of —.

6 Conclusion

The results presented in this paper do not only demonstrate the expressive power
of an intuitionistic interpreted modal mu-—calculus, they also build the theoretical
background for a uniform method for the automatic verification of bisimulation—
like relations between processes by means of model checking: transform the under-
lying transition system w.r.t. the chosen process relation as described in section
5 7, construct the characteristic formula for the left hand side process and check
whether the right hand side process satisfies the characteristic formula constructed
in the second step. Whereas the first two steps of this method can be implemented
directly along the lines described in this paper, the third step can be realized as a
modification of existing model checking algorithms like the ones in [1, 3, 8, 12, 20].

“This is the only part which depends on the process relation under consideration.

14

7 Acknowledgements

I would like to record my appreciation to Colin Stirling who introduced me to
the problem studied in this paper. His critical remarks were of great help. Fur-
thermore I would like to thank Rance Cleaveland, Michael Mendler, Robin Milner,
Ernst-Riidiger Olderog, Joachim Parrow and Bent Thomsen for their constructive
comments. I have been supported by a grant from the Science and Engineering
Research Council.

References

[1]

[2]

3]

[5]

[6]

(8]

[9]

E. Clarke, E. A. Emerson and A.P. Sistla. Automatic Verification of Finite
State Concurrent Systems using Temporal Logic Specifications: A Practi-
cal Approach, ACM 1983

E. Clarke, O. Grumberg and M.C. Browne. Reasoning About Networks
With Many Identical Finite-State Processes, Carnegie Mellon University,
Pittsburg, October 1986

R. Cleaveland. Tableau-Based Model Checking in the Propositional Mu-
Calculus, University of Sussex, Brighton, Technical Report 2-89, 1989

G. Cousineau and M. Nivat. On Rational Ezpressions Representing In-
finite Rational Trees: Application to the Structure of Flow /Cha'r'ts, 8th
MFCS, LNCS 74, pp. 567-580, 1979

R. Cleaveland, J. G. Parrow and B. Steffen. The Concurrency Workbench.:
Operating Instructions, University of Edinburgh, Laboratory for Founda-
tions of Computer Science, Technical Notes 10, September 1988

R. Cleaveland, J. G. Parrow and B. Steffen. The Concurrency Workbench,
Accepted for the Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, France, 1989

R. Cleaveland, J. G. Parrow and B. Steffen. A Semantics based Verifica-
tion Tool for Finite State Systems, to appear in the proceedings of the

Ninth International Symposium on Protocol Specification, Testing, and
Verification; North Holland, 1989

E. A. Emerson and C.-L. Lei. Efficient Model Checking in Fragments of
the Propositional Mu-Calculus, LICS, Cambridge, Mass., IEEE, 1986

S. Graf and J. Sifakis. A Modal Characterization of Observational Con-
gruence on Finite Terms of CCS, Information and Control, pp. 125-145,
Vol 68, 1986

15

[10] S. Holmstrém. Hennessy-Milner Logic with Recursion as a Specification
Language, and a Refinement Calculus based on it, Report 44 Programming
Methodology Group, University of Goteborg, 1988

[11] D. Kozen. Results on the Propositional Mu-Calculus, TCS 27, pp. 333-354,
North Holland, 1983

[12] K. Larsen. Proof Systems for Hennessy-Milner Logic with Recursion, in
Proceedings CAAP 1988

[13] A.R. Meyer and K.A. Winklmann. On the Ezpressive Power of Dynamic
Logics, 11th STOC, ACM, pp. 167-175, 1979

[14] R. Milner. A Calculus for Communicating Systems, LNCS 92

[15] R. Milner. A Modal Characterization of Observable Machine-Behaviour,
LNCS 112, pp. 25-34, Berlin 1981

[16] R. Milner. Communication and Concurrency, Prentice Hall, 1989

[17] G. Plotkin and C. Stirling. A Framework for Intuitionistic Modal Logics,
Theoretical Aspects of Reasoning about Knowledge, Monterey, 1986

[18] B. Steffen. Characteristic Formulae, in the Proceedings ICALP 1989

[19] C. Stirling. Modal Logics for Communicating Systems, TCS 49, pp. 311-
347, 1987

[20] C. Stirling and D. J. Walker. Local Model Checking in the Modal Mu-
Calculus, in Proceedings CAAP 1989

[21] D.J. Walker. Bisimulation and Divergence in CCS, in Proceedings LICS
1988

16

Copyright © 1989, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

